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Abstract

The basics of Application of Machine Learning in Density functional Theory (DFT) to help us in
electronic structure calculations for ultrathin 2D materials, and the quest of new ultrathin 2D materials
have become a new field of research. To explain how we are approaching and progressing in this
project and what will be the motivation, we will start by drawing an analogy. Let us suppose that, this
DFT is my car, and we need to learn how to drive a car. So, to start with this, | will first get myself
acquainted with the working principle of the car. For instance, the role of engine, gear box, shaft,
handbrakes inside my car. Until we do not know these stuffs, we would not be able to understand why
we drive the car in lower gear on steep hills and on higher gear on a flat road. So, before we start
doing electronic calculations for different materials, we must know the functioning and the physics
phenomena working behind DFT. So, the first phase of our project was to understand the working
principle of DFT. The second phase is to drive the car, under the supervision of an experienced and
learned person who knows driving. And to indentify what modifications are needed to be done in my
car to optimize it. In this case, right now we are studying the things which can modify my car aka.
DFT and getting used to the tools required to add those things in my car, such as programming/coding
in different languages (for example: c++ and Python). That thing is called Machine learning. The third
phase is to make use of my car for different purposes. For instance, going to the office, or grocery
store, or hospital. In our case, we will use DFT for calculating electronic structures of ultrathin 2D
materials. And then we will think of a process to apply Machine Learning (ML) in my car (DFT) to
speed up our car so that we can reach our desired location (where we use to go very often) quickly.
ML methodologies have capability to speed up our electronic structure calculation. we will also think
of a way to make use of ML methodologies to predict new ultrathin 2D materials as well. We have
made a Machine Learning model, which takes the different energy band gaps of corresponding 2D

materials, and have successfully screened them on the basis of band gap between 1.2 eV to 1.3 eV.



TABLE OF CONTENTS

LIST OF FIGURES: ...ttt ettt s be e 9
CHAPTER 1: INTRODUCTION TO DENSITY FUNCTIONAL THEORY.. ..c.ooiriiiieicieenenenenne 10
1.1 BASIC HAMILTONIAN FOR INTERACTING ELECTRONS AND NUCLIE: ........cccvenenee 10
1.2 SYMMETRIC AND ANTI-SYMMETRIC WAVE FUNCTION: .....cccoiiiiieeieieeeenereeeeene 11
1.2.3 Combined wave funCtions SOIULION:.............cciiriiiiiiiicic s 11
1.2.4 Combined wave function solution after exchange of particles: .........ccooeeveievinieceveceece e, 12
1.3 UNIFORM ELECTRON GAS SYSTEM: ..ottt 13
1.4 HARTREE APPROXIMATION: ...ttt sttt ene b sae s nnens 15
1.4.1 Hartree ApproXimation CONGITION: ........coueueieieireriesertestetet ettt neen 15
1.5 HARTREE-FOCK APPROXIMATION: ....coiiiiiiitrtesesteeteeee ettt 18
1.6 THOMAS-FERMI MODEL :.....c.octiiiiieieieietetnteese ettt 19
1.7 HOHENBERG-KOHN THEOREM:....c..oiiiiiiiiiiiiereieeeeee sttt 21
1.8 KOHN-SHAM METHOD : .......oitiiitieieieeeteeeit sttt sttt ettt st sttt enesbesae b e 23
1.8.1 Hohenberg-Kohn and Kohn-sham SChemMALiCS:............coeveriiiiiiininenereeeeee e 24
1.8.2 KOhN-Sham MEthod SAYS: ....cccccuiiiiiiiiiee it ccieee ettt e e e sire e e e st e e e ssbte e e s sbteeeeeabaaeessntaeeesnnes 25
CHAPTER 2. MACHINE LEARNING: ..ottt 26
2.1 Introduction to Maching LEarNiNG: ......cc.ueiiieciiie et ettt e e e esar e e e e eatae e e senseeeeenaneeeaens 26
2.1.1 Here is how, in general, supervised algorithms WOork:...........cccocovereeiiiieccccieeecceee e 28
2.1.2 Here is how, in general, unsupervised algorithms Work: ........c.ccceeeriiiiiiiiiei e, 29
2.2 MODEL REPRESENTATION: ..ottt 30
2.3 COST FUNCTION: ..ottt 31
2.4 GRADIENT DESCENT ..ottt ettt sttt naea 32
2.5 MODEL REPRESENTATION IN NEURAL NETWORKS: ..ot 34
2.5.1 Sigmoid function and ReLU function as activation function: ..........ccccceeeiiiiieeiiieee e, 35
2.6 FORWARD PROPAGATION ALGORITHM: ....coiiiiiiiiiiiiciceeeeeeese e 37
2.7 BACKPROPAGATION ALGORITHM: ...oiiiiiiiiiiiiiiete e 37
2.8 K- NEAREST NEIGHBOUR (KNN) CLASSIFICATION: ..ottt 39
CHAPTER 3. APPLICATION OF MACHINE LEARNING IN DFT: ...oooviiiiiineeeceeeeeseeeene 40
3.1 FUNamMENtal Id@a ..o e 40
3.2 Bottleneck and problems which inspired us to use Machine Learning :.......cccccooeccciieeeeeeeecccnnnns 40
3.3 Main idea of Machine Learning Model .........c.uviiiiiiiiiciiiie et e e raae e e 41
CHAPTER 4. RESULTS AND DISCUSSION: .....ccoiiiiiiiiiiineneieeeeeentsese e 44
4.1 Density of states and Band StrUCTUIeS:. ... et e e e e e 44



4.1.1 Absorption spectra, Reflectivity and Refractive indeX.........cccveeeeciieeeciiiiee e 45

4.2 Energy Band Gap SCIEENING : ..cc.ecveevverieeeeriesteetesteeeestesteetesseesestesseessesseessessesssessessessessessessessesnes 47
4.2.1 IMPOITING T JaLA.....ccveeeieieiieeeer ettt 48
4.2.2 Calculation of the A using band gap from database ..........ccceeererieerinieninenceneeee e 49
4.2.3 Pre-processing or data WrangliNg: .......cuuei ittt et e s s ree e s e e s nree e e s e 50
4.2.4 SMOTE OVEISAMPIING: .o.vecveeiietieieiteetestesteetesteetee st e s e eteste e s e stesraebesbeesaessessaessesseessesseessensesseenes 52
4.2.5 K neighbours classifier and SKLearn rary: ...t 52
4.2.6 Scatter plot of materials with particular band gap:.....ccccceeeiiiiiiciiic e 53
CHAPTER 5. CONCLUSION ..ottt sttt ettt ettt sb et ese s sae b e 56
B. REFRENGCES. ...ttt b e sttt b s bbb st et e e et e st eaeebesbeebenaen 57



LIST OF FIGURES:

T I R = To 1Yo ] T T P T PP 12
Fig 1.2: Fermion FFEFEIMIONS. ....cccuiiiiiiiiieiee ettt e e e 12
Fig 1.3: Uniform electron gas SYSTEM ........cciiiiiiii ittt 14
Fig 2.1: An example of Classification of data in machine learning .........ccccceeecvveeenns 26
Fig 2.2 : A new data point is iNtrodUCEd ........ccueeiieciiiiiiiiiee e 27
Fig 2.3: Predicting output of new data input......ccccceeeeeciiieicciiie e 27
Fig 2.4: Machine learning and itS tyPe....c.ueeecieeeiecieee et 28
Fig 2.5: Supervised Maching LEarning. ......cccuvcueeeiiciieeeiiciieeeriieeessieeessveeee s ssveeee s 29
Fig 2.6: Unsupervised Maching LEarning.........cccceeecuveeeeciieeeeiieeeeccieeeeecvveeesecveeee e 29
Fig 2.7: Basic algorithm of a machine learning model...........ccoceeieiiiiicciie e, 30
Fig 2.8: Gradient deSCENt. ...cccccuviieiciiiie ettt e e e e e e s s bee e e e eanes 32
Fig 2.9: Sigmoid fUNCHION.....ccoiiiiee e et e e e rae e e e eaees 35
Fig 2.10: ReLU activation fUNCLION ........cccviiiiiiieec et 35
Fig 2.11: Neural network StruCtUre.......ccuiviiiciiie et 35
Fig 2.12: Forward and backward propagation........c.cccceecveeeieciiie e 37
Fig 2.13: Euclidean distance of every training dataset from new data point............. 39

Fig 3.1: Computational time and scaling of density functional theory (DFT) vs
machine learning (ML) for electronic structure predictions. DFT shows near-
quadratic scaling, whereas the ML prediction algorithm shows perfect linear-scaling
and is orders of magnitude faster than DFT........ccooviiiiiiiciie e 41
Fig 3.2: Overview of the process used to generate surrogate models for the charge
density and density Of States. ......uiiiiciiie i 42
Fig 3.3: Parity plot for the machine learning vs density functional theory (DFT) charge
density prediction for the unseen snapshot of a polyethylene (PE) and b aluminum

Y TR RS S 43
Fig 4.1: DeNSity Of StateS.ccccuviiiiiieiiieiiee ettt ettt 44
Fig 4.2: Band STructures 0f VaOs ...c.uuiieiiiiiieiciieee ettt e et e e e trae e e e enraeeeenes 45
Fig 4.3(A): The Absorption coefficient 0(A).......cccveeeciieiiieeciie e 45

Fig 4.3(C): it can be seen that Refractive index gets negative as the energy increases
(or, we go beyond visible range). .......ocouiiieicciie e 46
Fig 4.3(B): Reflectivity is an optical property of material (in our case, it is V,0s),
which describes how much light is reflected from the material in relation to an

amount of light incident on the material. ........ccccoeeiiiiieciiicceee e 46
Fig 4.4: Importing the data ........ooiciiiie i 48
Fig 4.5: Converting the Band gap value to wavelength values using formula............ 49
Fig 4.6: Removing all those datasets which are outliersin our data........cccccccenneee 50
Fig 4.7: Smote oversampling is used to make the data of both the classes Balanced

SO that there is N0 bias. ... 51
Fig 4.8: Splitting the data into train and test and, and applying the model............... 52
Fig 4.9: Code for sCatter PlOt. ...cciicciiie e 53
Fig 4.10: Scatter plot of 2D materials screened on the basis of band gap. ................ 54
Fig 4.11: Zoomed scatter plot, which shows some incorrect predictions.................. 55


file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124599
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124600
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124601
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124602
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124603
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124604
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124605
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124606
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124607
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124608
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124609
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124610
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124611
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124612
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124613
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124614
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124615
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124615
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124615
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124615
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124616
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124616
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124617
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124617
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124617
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124618
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124619
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124620
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124621
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124621
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124622
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124622
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124622
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124623
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124624
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124625
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124626
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124626
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124627
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124628
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124629
file:///C:/Users/91983/Desktop/Final%20Thesis%201903151006.docx%23_Toc75124630

CHAPTER 1: INTRODUCTION TO DENSITY FUNCTIONAL
THEORY.

1.1 BASIC HAMILTONIAN FOR INTERACTING
ELECTRONS AND NUCLIE:

R

i—1 me i=1 11 ‘F

T >

AN
This is a Hamiltonian (H ) for many-body systems where ‘m, * is mass of an electron, * M;’

y °

is mass of nucleus, ‘T ’ is position vector of electrons and ‘R ’ is position vector of

nucleus, ‘Z ’is the charge associated to the nuclei and m & N are the number of electrons

and ions. First term represent the kinetic energy associated to the electron, second term
represent kinetic energy associated to the nuclei, third term represent the interaction between
electron and the nuclei/ion, fourth term is inter electronic interaction, and the last term is
inter-nuclear interaction. The Hamiltonian in use is very complex and therefore extracting
any experimental data from this Hamiltonian is impossible. So, we use an assumption called
Born Oppenheimer (or adiabatic) approximation which states that the nuclear motion and the
electronic motion in molecules can be separated. According to this approximation, the
nuclear motion is so much slower than the electron motion that nucleus can be considered to
be fixed and their kinetic energies can be neglected. This is because, the approximation in
picture assumes the mass of nucleus is very very greater than the mass of an electron,
therefore nucleus are going to move much slowly than electrons. Hence Kinetic energies of

nucleus and inter-nuclear interaction are neglected. So, we are going to consider that
position vector of nucleus (F_i ) is fixed. R is assumed to be parameters which reduced

complexity of the system and interaction between nuclei is going to be constant.

HY, (01,505 Ty oy Ry, Ry Ry )= E¥y (Fioy, 0 Py oy - Res Ry Ry )
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Our aim is to characterize the eigen state ¥, and eigen value E of the Hamiltonian we

B

have here. This is eigen equation of many body systems where ‘o ’ is spin states of that

corresponding electron. Since electrons are fermions, so the wave-function we have to deal

with needs to be anti-symmetric.

‘I’(Flal...ﬁai WFjogL oy ): —‘P(Flal IO oy oy )
&
N ~10*e” /cm®

And number of electron we have in a solid is very large. This is extremely complex.
Therefore, It is impossible to have accurate wave function or eigen value for the above eigen
equation of the system. All the calculation has to be based on variational methods (of

guantum mechanics) or approximations. [1]

1.2 SYMMETRIC AND ANTI-SYMMETRIC WAVE FUNCTION:

Let us suppose we have a system with two electrons ( a helium atom). Both the electrons
occupy different quantum states ¥, & ¥ . Eigen states will determine the energy in which
electrons are present and they are not dependent of 17, T, here. Because, for the first electron,
the eigen state is ¥, , then the position will determine the probability distribution of the
electron and the probability distribution will only give a range of different values of r in
which the electron can be present. Therefore, electrons of eigen state ¥, can be present in

N number of locations. ¥ determines eigen state, which determines energy levels.

1.2.3 Combined wave functions solution:
Firstelectron: 1, —> ¥,

Second electron: r, — Wy

‘P(Fl,Fz): Y (Fl) Yy (FZ) ---(1), electrons are identical in nature therefore probability

distribution for exchanged system and probability for previous system will exactly be the
same. Suppose both these two electrons are at two distinct energy levels, what if they
suddenly swap places and the electron in one of the energy level changes place with electron
in another energy level ? There is not going to be any overall change in the configuration in

energy level and in the probability distribution either.

11



1.2.4 Combined wave function solution after exchange of particles:
# After theexchangeof particle:

Firstelectron: 1, > ¥,
Second electron: ; —> Wy

LP(F27F1)= lI’A(Fz) LPB(Fl) ~(2)

“P(rl’ Fz]Z =“P(F2’ Fllz

Probability distribution is invariant under exchange of electrons. This leads to fundamental
classification of elementary particle.

Bosons

= (.5, )=+v[F,.1)

1.Symmetric (BOSONS) : -
i 7, )= (e,

Fig 1.1: Bosons Fig 1.2: Fermion

2.Anti-symmetric (FERMIONS) : -
(g5l 5)

Both these two wave function solutions ( (1) & (2)) are possible if you are making
measurement of system consisting two particles and both the two particle underwent
some kind of exchange, you would not know from your measurement. So, both these
wave function solutions are possible. Linear combination of both the equation (1) and (2)

gives us the general solution of the two electron system.

12



Wy = % (7 ¢ 20 T ) Waniom = % FHAR

Special case: Both the particle exist in same quantum state :-

Firstelectron: 1, »> ¥,

Second electron:r, —» ¥,

Combined wave function : -
\P(FPFZ): \PA(Fl) ‘PB (Fz)
T(FZvFl): \PA(FZ) Vg (Fl)

1.Symmetric wavefunction : -

Wyym =some value

2.Anti - symmetric wavefunction : -
Wantisym = 0 (vanishes)

which is not possible!!

Not possible as it implies that these two particles simply do not exist at all.. But electrons are
existing somewhere, therefore there must be some probability distribution, otherwise, how
does it vanish. The two particle cannot exist in the same given quantum state, this leads to
pauli-exculsion principle. For certain class of particles, called fermions, which follow anti-
symmetric wave function condition, it is not possible for them to exist in same quantum
state, but it is possible for bosons. [2

1.3 UNIFORM ELECTRON GAS SYSTEM:
(Example of simple approximation)

13



L N N N N
o000 -~
0000
0000
ions uniform positive b!ckground

<|z

Fig 1.3: Uniform electron gas system

o is ionic charge density. First step in this approximation is substituting all ions and

nucleus into uniform positive background. Hamiltonian of this gas is :-

OO R B S
=2m, 29317 T—Fj‘ ¢!
N
-y [d*R—2 =H,,
;j _;—ﬁ‘ e-i
1 354357 P
+=[[d®Rd®R —H..
I ..

Where is H,, inter electronic interaction, is H,; electrons and ions interaction and is H;;

ion-ion interaction. If electrons are also distributed, then, n=p, Where nis electronic

charge density, then our Hamiltonian becomes :-

1 o . n?
_ Z—V2+§”d3rd3r —‘Fn_rl‘-”d3rd3R—n _

f-R

= ”d RA°R' ——
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All the contribution in interaction potential are cancelled and only term left is Kinetic
energy associated to electron (shaded in blue). Charge density of uniform positive
background is equal to p, which is equal to electronic charge density, so as to maintain

neutrality, , = ﬁ, where N is number of electron.[3]
V

1.4 HARTREE APPROXIMATION:

Now, free electron gas approximation was not enough to analyze physical properties of

solid. First approximation we consider is Hartree approximation.

! ]Y 1 — VY =EY
r-R)| _1.¢,\ﬁ—rj\

First term in the above equation is Kinetic energy associated with electrons, second term is

N

Av=y (- Lvy 2

i=1 e 1=1

electron-ion interaction and last term is electron-electron interaction. First goal is to get

eigen states and eigen values of the Hamiltonian.

1.4.1 Hartree Approximation condition:

a) ¥ (Flgli r,o,..Noy ): l/ll(rl’ Gl)V’Zl(rzli 0, )""l/jN (er’ Oy )
Independert electronpicture but No anti - symmetry.
+

b) Variational principle = Minimize <I:|> =(¥[H¥)
b

<\P|go Zj‘d r. a3 rY (ral, )go(Flal,....FNO'N)

O1,--ON

(a). Within this Hamiltonian, we cannot apply independent electron picture, since the last
term cannot be considered independent. But, considering that within this approximation, we
are looking for some kind of effective potential that each electron is feeling, this effective
potential could be affected by all the rest of the electrons and considering that effective
potential, the electron could be moving like indefinitely for the others. This is the idea

behind Hartree-Approximation. And considering independent electron picture, it means that

15



the wave function we are going to try here is the product of the wave functions of the
individual electron.

(b). Variational Approximation:

If we cannot find an analytic solution to the Schrddinger equation, this trick allows us to

estimate the energy of the ground state of a system.

(Plp) = Jd R0 R (Roy,... yoy Jp(Roy,.. fyoy )

0y,...0)\

We are looking for stationary states (or eigen state with all observable independent of time)
of the Hamiltonian of unconstrained wave function that is wave function of multi-particle
Schrédinger equation. Now, first step is to calculate the average Hamiltonian considering
wave function.

< > ZZId Py i(ro) —ZLVZ +u,0n(r)}yl(ra)

+£ Z de rd°r’ ‘ “l// Z‘Wi(f,a)‘z

(1,0)%(i,0)
and Y Y lyi(F.0) =n(P)

Basically, what we have here in the last term of average Hamiltonian is the interaction
energy, which means, whenever we have a system which is characterized by a charge
density and R, the interaction potential of a system or its electron density is given by this
expression. Now to avoid self interaction, that is electron A cannot interact with itself, we
have i # j, therefore we have to minimize that contribution or that expression. But wave
function we are going to use here have a constraint, they have to be normalized. Basically, it

means that the wave function for each electron has to be normalized.

> [d¥Fyi(F o) =

16



Whenever we are doing minimization with constraints, we have to use Lagrange multipliers
method. We have to define a new function,

using lagrange multipliers U
F[‘/’i (F’O-)’gi]: <|:|>\P _Zgi ZJ.d3F‘Wi (F’G)‘Z -1

Now, we will do minimization with respect to Lagrange multipliers (used to find local

maxima and minima subject to equality constraint), therefore doing minimization:-

oF

oy

=0 Functional derivatives taking sy and Sy~ as independent variation

Functional derivative can be done by taking any of the Yier.o) OF l//*i(f,a)

Hartreeequation =
(F.o)
1 — — oy l//J O — —
__vzl//i(r’o-)‘i'uion'//i(r’o-)"i' Z Id3r ————Vi(f,0)=¢gy,(r,0)
2m, (j.o")(i0) F—F

We need to solve the second term of left and side of the equation. This term is giving us
electronic charge density so this is like interaction potential that electron ‘i’ can see and can
cast or induced by all the rest of the electrons we have in the system. This is effective
potential that electron ‘i’ can see and the system encamped by all the rest of the electrons.
This effective potential here is doing the screening. All the electrons are screening the

potential created by the ions, which is complicated to solve. Now we start with initial guess
for all the wave functions l//oi(F,g) and we plug it in y ;. ) and solving it, we get a new

Yi(r.o) and use it again.[4]
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1.5 HARTREE-FOCK APPROXIMATION:
This time, we change one thing, that is, we considered wave function to be anti-symmetric,

and for describing such system, we will have to use Slater determinant. It is an expression
that describes the wave function of a multi-fermionic system. It satisfies anti-symmetric

requirements.

1 V/Z(ﬁ’al) Wz(rwo-z)

JNI

a)¥(fo,...F oy )=

l//N(ﬁ’Gl) ‘//N(ngz) ‘//N(FNfUN)
(Independent electron picture and anti - symmetry)

b) Variational approximation = Minimize <H> = (¥ |H|¥)

¥

<I:I> = K.E term +e-ion interaction term +e—e interaction term

S5 o¥i (F, o)y (F,aWi(F, )y (F,0)

__Zj'dfﬂ*' _

r—r'

Fly. (F,0), =<H> Zg Zjd Fly, (o) -1

The last term of average Hamiltonian given above is the exchange term due to anti-
symmetric. This third contribution exists if spin states of ‘i’ and ‘j’ states are same.
Therefore, having same state and negative sign, so it is lower in the energy, basically it
means, it is favouring the states having same spin. Therefore it favour ferromagnetic state, so

spins are aligned.

Hartreefock equation: il =0
oy
same termsasin hartreeequation

—Zjds / Q,a

F r

eV (F 0 (F oW (F07) = a1 (7, 0)

Now, we can see that this Hartree Fock equation is not corresponding to solving eigen value
and eigen state. They look like Hamiltonian but this does not look like equation for solving
wave function and eigen value, so what actually does this Lagrange multiplier physical

significance is? Answer comes from Koopmans equation.
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&= E(N) — E(N-1)

€K is energy difference between the states with N electron and system with N-1 electrons.

Considering that electron we are removing is in state \JK_ [5]

1.6 THOMAS-FERMI MODEL.:

This model includes electron density as key ingredient to solve the problem. Semi classical

approximation for electron in an external potential, Vext i.e., Quantum calculations with

classical approximation. They thought instead of looking for wave function, it could be more

efficient to look for directly electron charge density.

)= 2 o+ [oom ™)+ 2 jd"’FdSF'—n‘(:)_ng) + [d*rVqn(r)

e The first expression on the right hand side of the above equation is based on

uniform electron gas approximation.

e Expression for the total energy of the electron was:

I%(3ﬂ2)% n%

e And therefore the total energy is:
3 2 2L N () (3
IE(BEZ)AnA(r)n(r)d%

e In uniform electron gas, the ‘n' was constant, but here it depends on (r).

Hence,
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V., IS the potential experienced by the electron
[t on"s (e

e Second term/expression is inter-electronic electrostatic potential. If electronic

charge density is given by n(F) , then electrostatic charge potential associated

with that charge distribution is given by this expression:

E 337/ n(F)n(F')
ZHd rder ‘F

_ r"

e Third term is electrostatic potential associated with external potential. Now,
we don’t know the expression for n(F), so how do we do that.

Total energy that the system is going to take is where it minimizes the energy of the system.

Search for n(F) that minimizes E(n) subject to _[ d3F =N

The last integral is the constraint (keeping the number of electron fixed).

Applying Lagrange multipliers:

F(n)= ,u[[ F)d r—N]and—:
New functional is equal to the energy we defined before © — 4’ times constraint.

Thomas - Fermi equation for n(F) in mtegral form:
n(F

2
gAKn/( + Vext jd = uWwhere y = % — chemical potential

F

E . (F’)
- _ 0 and|d’F =V
o YT I /

(related with poison’s equation)

v 2y(F .
.V V(I’ ) = 47Zﬂ(l’) Hence, we can ultimately sum this up as:



Thomas - fermleqn for n(F)in differerntial form:

jd?’ ' —>V V(F) = 42n(7 ) [Poisson's eqn.]

. NERG 3
From Thomas—Fermleqn:n(r):(Ej (104 Ve (F)+ V(7)) 2

%
j (14 Vo (1) V)2

This is differential eqn. for V/(F)

VaV(r)= 47{%

And once we calculate electron density, we can find energy of the system.

Pair Density and electron correlation:

A(Fo,F'o’)
Joint probability = of finding and electron of spin o at point r,
and anotherelectron of spin ¢’ at point r’
A(Fo,F'o’)=n(Fo)n,(Fo,F'o’)
\ \
probability of finding conditional probability of
anelectronof spin o finding the second electron
at point ¥ of spino’atr’
2

correlation

1.7 HOHENBERG-KOHN THEOREM:

This theorem established the basis of Density Functional Theory. DFT: considering electron

density to be the key ingredients is determining the exact theory of many body system.
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) 1 , L1y g
H=——— > Vi+ ) Vo) +2D > ——
2m, 5 i 237 ri—rj‘
v
ext V

e-e

The approach: DFT as an exact theay of many body systems.

Vext n0 (F)
J T
Y, —> Y,

If we explicitly determine V,, , so we are précising our Hamiltonian, then, we could
calculate eigen states \V; of this Hamiltonian and with that we can calculate the ground state

¥, , and having the ‘¥, , we can have the electron density associated to that ground state.

Theorem 1: Ve is determined uniquely, except for constant, by nO(F) (the ground state
particle density).

Corollary 1: Since the Hamiltonian is fully determined (expect for a constant shift for the
energy) it follows that many body wave-functions for all the states (ground and excited).

Therefore, all the properties of the system are completely determined given only the ground

state density, n,(F).

The theorem states that if we have a ground state electron density, then this n, (F) uniquely
determines V,, , therefore we are determining the Hamiltonian, and once we have
Hamiltonian, we can calculate ground state and eigen state. And once we have ‘¥;, we can
calculate everything we want. If this ‘P; is uniquely determined by this ground state nO(F),

then, in principle, everything could be determined by this ground state electronic density.

This is the main conclusion.

Theorem 2 : A universal functional for the energy E(n) in terms of the density n(F) can be

defined, for any Ve« . The exact ground state energy of the system is the global minimum,

and the density that minimizes this functional is the exact ground state density.

Corollary 2: E(n) alone is sufficient to determine the exact ground state energy and

density. In general, excited state of electron must be determined by other means. [6]
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1.8 KOHN-SHAM METHOD:

In the Hohenberg-Kohn Theorem, we saw that if we have this universal functional, we have
this universal functional, we can get the ground state electronic density. Getting a universal
functional is extremely difficult , there is no successful expression for that in terms of the
density. Now the strategy which Kohn-Sham followed in order to have good expression for
universal functional was this method. They divided or decomposed F(n) into two different

terms.

Decomposition of universal functional
Faced with the difficulty of approximating directly F[n], kohn -sham:
F[n]=TIn]+Exc [N]

T[n] is the non-interacting Kinetic energy functional (this is not the functional of kinetic

energy of a real system). ldea was basically to substitute the real system with non-
interacting system. And we know that the wave function of non-interacting system can be

described by slater-determinants.

1).First term s the non - interacting Kinetic energy functional defined by a constraint:

T[n]= gﬂ(@ T|®@) =(@[n]|T|®[n])
—N
Kinetic energy is defined this way. For fixed electronic density, we minimize the kinetic

energy of that non-interacting system, so that here, the wave function @® we have are
different slater determinant. So, we minimize Kinetic energy for different slater determinant
that have the electronic density ‘n’. This minimizing wave function is called Kohn-Sham

wave function and is denoted by ®[n] . Of course it is going to be the functional of the

density because, for fixed density, we minimize with respect to different slater determinants
that give electron density.
Tin] = min([|0) = (@[] | e[n])

d—n

\

Minimization is done over normalized slater - determinant
wave function @ which yields the fixed density n.
J
For a given density n, the minimizing slater — determinant wave fun.
is called the KS wave fun.and is denoted by ®[n]
2).Second termis the hartree- exchange- correlation functional.
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Decomposition of E . functional:
Enxc[Nl=Ey [N]+Exc [N
\ \

This is hartree Exchange- correlation energy functional

functional l
E «c [N]=E«[n]+E_ [n]:1st termsis exchange
functionalwhile 2nd termis correlation

The advantage of Kohn-Sham method is that a major part of the kinetic energy can be

treated explicitly with the single determinant wave function ®[n] and only E[n] needs

to be approximated as a functional of the density.

1.8.1 Hohenberg-Kohn and Kohn-sham schematics:

Once we specify V., (F) that inter electronic system is feeling, we specify the total

Hamiltonian. Once we have Hamiltonian H , we can calculate eigen states which is
extremely difficult to calculate. And Hohenberg-Kohn Theorem states that this ground state
wave function uniquely specifies the external potential. Therefore, ground state electron

density n,(F) uniquely specifies total Hamiltonian H and then we can calculate P, ({F})
According to Hohenberg-Kohn theorem, once we have the nO(F) of the system, we can get
any other property of the system. In principle, we have to define a functional of the n, (F) in

order to get any property of the system. Problem is that we don’t know how to calculate this

ground state density n,(F). This is extraordinarily difficult task because the system involves

many interacting electrons. This is where Kohn-Sham method enters. Kohn-Sham proposed
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following approach. The Kohn-Sham approach is to replace the original difficult
interacting-particle Hamiltonian with a different one which could be solved more easily: a
non-interacting particle Hamiltonian with an effective potential (vs) assumed to have the

same density as the true interacting system.

In the Hohenberg-Kohn Theorem, everything could be determined as a function of the

n,(F). For the same ground state electronic density, we have a non-interacting system. That
is, we have defined a non-interacting system for the same n, (F) If we apply Hohenberg-
Kohn theorem for the non-interacting system, then according to that, n, (F) uniquely

specifies the external potential that each electron is feeling. Somehow, that is the effective
potential associated to each electron. And this is what we call Kohn-Sham potential. And
once we have Kohn-Sham potential, we can calculate any eigen state associated to that

Hamiltonian { ¢, (F) »,(F) }. Once we have this one particle wave function, we can deal

therefore, with slater-determinant @ of the N particle system in order to anti-symmetrizing
those eigen states. Once we have @ , that is going to be the wave function of this non-
interacting system. Now, this @ can give us ground state electron density, which is same as
that obtained from Hohenberg-Kohn theorem for interacting system. Any property of this
real system could be derived as a function of this slater determinant.

1.8.2 Kohn-Sham Method says:
1). In order to calculate ground state density, we are not going to solve the complex real

system, but we are going to substitute which is non-interacting system, and it is much more
easier to calculate. AIM: Aim is to get good approximation for that effective potential ( that
is Kohn-Sham Potential) in order to have @ .[7], [8]



CHAPTER 2. MACHINE LEARNING:

2.1 Introduction to Machine Learning:

Humans have a tendency to gain an understanding from their past experiences
and machines obeys the instructions given by humans. Now, what if humans can
train the machines to learn from their past data and do what humans can do,
much faster, that is , machine learning is about understanding and reasoning.
Suppose, taking me as an example, and | love exploring music and listen new songs. |

either like it or dislike it. | decide this on the basis of Tempo, Genre, Intensity

® Like
souring @® Dislike
Intensity
Light
Relaxed Fast

Fig 2.1: An example of Classification of data in machine

Now, you see that I like songs with fast tempo and soaring intensity, whereas, dislike the
song with relaxed tempo and light intensity. Now, you know my choices. Now , suppose |
listen to a new song, which has a fast tempo and a soaring intensity, therefore it will lie

somewhere in the group with green dots.
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souring @® lLike
@ Dislike

Intensity

Light

v

Relaxed Fast

Tempo

Fig 2.2 : Anew data point is introduced

Now, looking where it lies, can you guess whether | would like the song or not? Yes, |
would like the song. Looking at my past choices, you were able to classify the unknown
song very easily. Now, suppose | listen to a song which lies somewhere between the two
groups (as shown in the figure 5 above). Now, how do you classify, whether | like it or not.

This is where machine learning comes in.

»
souring ® Like
@ Dislike
Intensity
C
Light
Relaxed Tempo Fast

Fig 2.3: Predicting output of new data input.
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Now, if | draw a circle around this song C, we see that there are 5 votes for like whereas 1
vote for dislike. Going for majority votes, you can definitely say that | will definitely like it.
When choices become complicated, it learns the data, builds the prediction model. And,
when new data point comes in, it can easily predict for it. This is basic Machine Learning
algorithm called K-nearest neighbors. The data that you provide to a machine learning
algorithm can be just inputs or input-output pairs. Supervised learning algorithms require
input-output pairs (i.e. they require the output). Unsupervised learning requires only the

input data (not the outputs) .

{7 . 2)

CLASSIFICATIONW
J

SUPERVISED |
LEARNING |
Develop predictive
model based on both | N
input and output data ( |
) | REGRESSION ‘

[ MACHINE LEARNING

C J
5
UNSUPERVISED lr
LEARNING
R '_’i CLUSTERING W
data based only L )

on input data |
J

Fig 2.4: Machine learning and its type

2.1.1 Here is how, in general, supervised algorithms work:

You feed it an example input, then the associated output. You repeat the above step
many many times. Eventually, the algorithm picks up a pattern between the inputs and
outputs. It uses labelled data to train the model. Now, you can feed it a brand new input,

and it will predict the output for you .
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Labeled Data

O Prediction
O I:I ‘.‘ _'_} I:I Square
Q o = —><.
A ) /N Triangle

Model Training

Lables

(D [ ] Test Data

Hexagon Square
Triangle

Fig 2.5: Supervised Machine Learning.

2.1.2 Here is how, in general, unsupervised algorithms work:

You feed it an example input (without the associated output). You repeat the above step

many times. Eventually, the algorithm clusters your inputs into groups. Now, you can feed it

a brand new input, and the algorithm will predict which cluster it belongs with.

sUnknown Qutput
=No Training Data Set

Fig 2.6: Unsupervised Machine Learning.

Supervised learning has to do with the fact that we gave the algorithm a data set in which
the “right answer” were given. In regression, the model predicts continuous valued output,
whereas in classification, the model predicts discrete valued output. In supervised learning,

we are provided with a dataset and already know what our correct output should look like,

more formally, this data set is called training set. [9]
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2.2 MODEL REPRESENTATION:

iy
- S

Training We feeded ou r\training setto
set (xy) learning algorithm ~ .

-

! Learning
't algorithm Job oflearning algorithm is to output a

functiﬁm ‘h’ (Hypothesis)

\ Predicted 'y’
. /estimated
value of 'y’

e ‘h'isafunctionthat mapsfrom x’s to
y's

Fig 2.7: Basic algorithm of a machine learning model

X’s = “input” variable/features
Y’s = “output” variable/ “target” variable

m= number of training examples

We feed our training set (x,y) to our learning algorithm. The job of learning algorithm is
then to output a function which by convention is usually denoted by ‘h’, and ‘h’ stands for
hypothesis . The job of hypothesis is a function that takes as input the value of ‘x” (feature),

and it tries to give the predicted value of ‘y’ for the corresponding ‘x’. So ‘h’ is a function
that maps X’sto Y’s . A pair (x(i), y(i)) is called training example, and the dataset that
we’ll be using to learn —a list of “m” training examples (X(i), y(i)): i=1..m-iscalleda

training set. To describe the supervised learning problem more briefly an correctly, our goal
is, to learn a function h: X to Y, given a training set, so that h(x) is a “good” predictor for

the corresponding value of y. This function is called hypothesis.
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When the target/input variable we are trying to estimate/predict is continuous, then this
learning problem is defined as regression problem. When y can input only a small number of
discrete values, it will be called as classification problem. When designing the learning
algorithm, the next thing we need to decide is how do we represent this hypothesis h. To
explain the basic model, we will predict that y is a linear function of x. That is the dataset,

and what this function is doing, is predicting that y is some straight line function of x.

Why a linear function? Well, sometimes we will want to fit more complicated , perhaps non-
linear function as well, but since this case which is linear is the basics and simple, we will

explain with this example first of fitting linear functions. How to choose € s? How do we

come up with a value of ,and 6, that corresponds to a good fit to the data. The idea is, we
get to choose our parameters &,and &, so that he(x) (meaning the value we predict on
input X) is at least close to the values y for the examples in our training set. For hg(x) to be

close to y, we must minimize the difference between he(x) andy.

2.3 COST FUNCTION:

m

minimize LZ(hg(x(i))— y(i))2

66  2mig

This finds us the value of ,and 6, so that average over 1/2m times the sum of square

errors between my prediction on the training set minus the actual values of the houses on the

training set is minimized. That is cost function:-

3(60,6) =3 (V) f

i=1

minimize J (‘90 d ‘91) This J is our cost function (or squared error function). Why do

90' 1
we square the error? Squared error function is a reasonable choice and work well for most
regression problems. By using a cost function we can calculate the accuracy of our

hypothesis function. This takes an average difference of all the results of hypothesis with
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. . N -
inputs from x’s and the actual output y’s. To break it apart, it is 2 X where X is the mean of

the squares of h, (x(i))— y(i), or the difference between the actual value and the predicted

value. This function is also called the “mean squared error” or “Squared error function”. For
the smoothness in calculation of gradient descent the mean is halved (1/2), so that the square
function’s derivative term (containing a factor of 2) will cancel out the % term. [10], [11].

So now, our goal is to minimize cost function J with respect to the parameters .

2.4 GRADIENT DESCENT:

Now we will talk about an algorithm called gradient descent for minimizing the cost
function J. It turns out that gradient descent is not just used in linear regression, but in many
of general algorithms, wherever we need to minimize a function. It is actually used all over

the place in machine learning. Now we are going to assume that we have some function

J (6, 6,) . Maybe it is the cost function or some other function we want to minimize. And
we want to find out an algorithm for minimizing this as a function of J(6,,6;) . So we have

a hypothesis function and we know a way of computing this function which can fit perfectly
into the data. Now we need to predict the parameters in the hypothesis function. That is
where gradient descent helps us. Suppose that we graph our hypothesis function based on its

parameter 6, and 6, (actually we are plotting the cost function as a function of the
approximated parameter). We are not plotting x and y itself, rather we are plotting cost

function coming out from selecting a particular set of parameters and the hypothesis

function’s parameter range.

Fig 2.8: Gradient descent.
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Now suppose we are trying to minimize our function J (6,,6,) . So notice the axes, that are
0, and 6, on the horizontal axis and J is the vertical axis and so the height of the facet
shows J and we want to minimize this J. So, we are going to start off with 6, and &, at some
point. So imagine picking some value for 6, 6, and that corresponds to starting at some

point on the surface of this function. So whatever value of 6,6, gives you some point here.

Now suppose this is like a landscape of some grassy park , with two hills like so. And let us
imagine that we are physically standing at that point on the hill. In gradient descent , what
we are going to do is , we are going to rotate 360 degrees around, and look around us
everywhere, and think, if we were to take a little baby steps in a particular direction, and we
want to go downhill as quickly as possible, what direction do we take that small steps in? If |
want to go down, so | want to physically walk down this hill as quickly as possible. Turns
out that if we are standing at that point on the hill as shown in figure 11, we look all around
and we find that the best direction is to take a little step downhill in that particular direction
as shown. Now we are at a new point on the hill. We are going to do the same thing all over
again. And if we do that and take another step, we take a step in steepest descent. And then
we keep going. Take another step, another step, and so until we converge to this local
minimum. The point on our graph will be the result of cost function using our hypothesis
with those specific theta parameters. We will come to know that we have reached our
minimum when our cost function is at the bottom of the surface in our graph. We did this by

calculating the derivative of our cost function. The slope of the tangent at that point is the

derivative and it will tell us a path to move towards. We will move down the J(6,,6,) in

the direction with the steepest descent. The size of each of this step is decided by the

parameter ¢« , which is known in this case as the learning rate.

0 : .
0; =0, —aﬁJ(ao,el) for(j=0& j=1)
J

The distance between each point in the plot represents a step decided by the parameter ¢ . A

smaller o will give us smaller step and a large o will give us large steps. The step taken in

that particular path is decided by the partial derivative of J(6,,6,) . At each iteration j, we

should update the parameter 6,,6,,0,,....6,, simultaneously. Correct simultaneous update:
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temp0 := 0y — )0 J(6o,0,)
templ := 6, — azg- ](0(, 0,)
6y := temp0
6, := templ

Incorrect simultaneous update:

temp0 := 6y — azg- ](00 0,)
0y := temp0
templ := 0, — a%.](ﬁ().()l)
0, := templ

[12]

2.5 MODEL REPRESENTATION IN NEURAL NETWORKS:

Now we will understand how to represent hypothesis function using neural network. At a
very basic level, neurons are computational unit and it takes electrical impulse (called

spikes) as a inputs (that is dendrites) which are then directed to outputs (called axons). In our

model, input features Xy, X;, X, ,...X,, are dendrites, and the hypothesis function gives output

as a result. In this neural network model, X, input is called bias unit, and it is equal to 1. The

1

functions we use in classification, we will use them here as well. —1 0T x which is also
+€

called as sigmoid activation function. Here, our 8 parameters are known as weights.
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2.5.1 Sigmoid function and ReLU function as activation function:

Sigmoid Function

=1
1+exp(-2)

Fig 2.9: sigmoid function

RelLU Function

a=max(0, 2)

\
SO
i

o‘o}o

(
3

\‘“' tput layer

hidden layer 1  hidden layer 2

4
O
<

)

input layer

Fig 2.11: Neural network structure
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The input nodes which has the value 1 (bias unit) which are also called input layer goes into
another layer (another node) which is called hidden layer, and after passing these hidden
layers which are laid down according to the problem we have, the output gives us the
hypothesis function, which is called output layer. We will label these hidden layer nodes as

aZ,....aand call them activation unit. a'¥) = activation of unit I in layer j. @) = matrix of

weight which controls the function mapping from layer j to j+1. If we make neural network
with one hidden layer:

2 2 2
[X0X1X2X3]—> [a<() )al( )aé )]_> hy (X)
The values for each activation node are calculated as:

(@%)330 + @gll)sm + @g )2y + @ x3)
@m%+@mm+®um+@ z3)
z3)
2)

ANk
I
Q v

2
agz) 9(@);(})530 + @:(%1)37 + @( )«’E — 633
ho(z) = al® = g(@Pa® + 0?a® + oD@ 1 0¥y

We can see that we have calculated our activation nodes by using matrix of parameters of
3x4 dimension. Each row of the parameter is multiplied with our inputs to obtain the value
for one activation node. The main output, that is the hypothesis function is equal to the

activation function (g) multiplied to the sum of values of the activation nodes, each of which
are multiplied by another parameter matrix ®Y which contains the weights for the second
layer of nodes. Each layer get its own matrix weight ®¥ . Now we will implement
something. We will vectorize the above functions. We will define a new variable ziﬁj) ,

which encloses the parameter inside our g (activation) function :

2 2
a® =9(z”)
2 2
af? =9(zf")
2 2
af? =9(z{?)

Or, we can say that, for layer j=2 and node k, the variable z will be :

200 = O, + O +...00x,
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The vector representation is :

X, 20
0}

X ; yA

x=| 1] 20 ="
X, 2,0

2.6 FORWARD PROPAGATION ALGORITHM:

al) =2

»(2) — (1) (1)

a® = g(2(?) (add a(()Q))
23) = ©(2)4(2)

a® = g(>®) (add a”)
L(4) — ©(3)4(3)

Layer1 Layer2 Layer 3 Layer 4 a(4) _ h@(x) _ (2(4))

Fig 2.12: Forward and backward
propagation

M _
Intuition: 51 — “error” of node j in the layer “I”. For each output unit (layer L=4):
5 =a® —y.
J J Y
The first term (activation of unit j in layer 4) can also be written as:-

(o))

J

This delta term is just the difference between a hypotheses output and what was the value of

y inour training set , where Y ; is the jth element of the vector value in our labelled training

set.

2.1 BACKPROPAGATION ALGORITHM:

For minimizing our cost function, we used gradient descent in linear regression, but when
we are dealing with neural networks, we use Backpropagation for minimizing the function.

Therefore, our goal is to calculate:
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m(;n J(©®)

That is, we are minimizing the function J using an optimal set of parameters in ® . Now we

will see the equations we used to calculate the partial derivative of J(®):

Set A(i")j =0 forall (1,i,j) (hence, we end up having matrix full of zeros).

For training example t= 1 to m:

1. Set a® :=x®
2. Perform forward propagation to compute a" for 1=2,3,...L
3. Using, compute 5% =a®) —y®

Where total number of layer is L and atis the outputs of activation unit for the last layer or
we can ay hypothesis, and it is a vector. So, simply, the last layer’s error values are the

difference of true results (output of activation unit) and the correct outputs of y.

4. compute s, 542 5@ using 5O :((G('))T 6('+1)).*a(').*(1—a('))
Where g'(z")=a®.*@1-a®)

) . l I 1+1

Hence we update our new matrix A:

D) = (&} 20,1 =0

n._ 1 ..
Di(,j) = E(A(i’)j ifj=0. Thuswe get ~ (1)
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2.8 K- NEAREST NEIGHBOUR (KNN) CLASSIFICATION:

The KNN algorithm is one of the very basic supervised machine learning algorithm which
can do both multi-class and binary classification. When we say it is a basic supervised
algorithm, we mean that the data we will use for training this KNN model will be a labelled
one. In the classification problem, we have to find the discrete values which are possible
estimated outcomes. And the thing which model does is that it finds out to which target class
does a given data point belongs to. The number of possible target classes is 2 in binary
classification problem. Whereas, when there are more than two possible target classes, it is
called multi-class classification problem. Since, we know that KNN is a non-parametric
algorithm, which means while training a KNN classifier, we don’t need to train our model
by iterating over the training set which makes our set of parameter optimized, where we
apply mathematical equations to minimize the error between the training set and the
predicted outcome. Rather, in a KNN classifier model, we will train it by fitting or saving
all the training data points in the computer memory, which requires only one training cycle.
Now, at the inference stage, when the model will predict the target class for a new data
point, the model will normally compare the new data with the data instances which is being
saved in the computer memory. And finally, looking at this comparison, the model allocate
this new data point to its target. What is this comparison we are exactly talking about? The
algorithm name K-nearest neighbour in itself answers this question. In the first step, model
computes the distance of the new data from every single data point within the saved training
data in memory. The next step is, those training data points are selected which are nearest to
the new data on the basis of computed distance. The model select ‘k’ number of training
data. At the end, the model’s algorithm
compares the target class/label of these ‘k’
points which are closest neighbor to the new
data point. The label which has the maximum
frequency within these k-nearest neighbors is
allocated as the target class to this new data
point. While computing the distance between
training data point and new data point, we will

use the Euclidean distance formula. [13], [14]

Fig 2.13: Euclidean distance of every training dataset from new
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CHAPTER 3. APPLICATION OF MACHINE LEARNING IN
DFT:

3.1 Fundamental idea:

The idea is to make a Machine Learning model using neural networks architecture which is
trained on previously calculated labelled DFT results at millions of grid point. This
prototype gives a copy of Kohn-Sham DFT but of high quality, whose order of magnitude
faster than the solution which comes out form K-S DFT. In Machine Learning, we have
different models, or neural network architecture which we use to see the pattern within the
data. Either we can make use of model which is already being made, to study the data, or we
can make our own model, based upon the complexities of the data, and the predicted output
(target variable) we need. We can use Machine Learning based model to efficiently
understand the function of Kohn-Sham equation quickly, which we discussed in previous
chapters. Ultimately, we can make use of big databases of crystal structures for screening the
compounds which have the optimal properties using Machine Learning. Now, if we want to
predict electronic structure of 2D ultrathin materials accurately and to predict new materials
with desired properties, we must decide how to represent the crystal structure as a set of
numbers, which we also call fingerprints or descriptor, since the neural network algorithm

understands only numbers. These set of numbers are called fingerprints. [15], [16]

3.2 Bottleneck and problems which inspired us to use Machine
Learning :
We know that DFT consumes a lot of time since it has a lot of quantum calculation and

approximation methods. Every time we solve the Kohn-Sham equation separately, a huge
amount of data is being produced. For example, there are millions of grid points (points on
the Cartesian co-ordinate) for around 100 of aluminium atom, and when we calculate the
charge density of these 100 atoms, the data is produced for each of the grid point. A lot of
data gets evaluated but the use of it is not proportionate to the amount of data which is being
produced. Although, it gives accurate values for the corresponding input material, it is not
suitable for producing result for large database, as it takes a lot of computational time. [15],
[16], [17]

40



108

I DFT, O(N?)
10°F

3 Machine learning, O(N)
104 g

10% il Charge density &

density of states
[ prediction
L E — Fingerprinting

Computational time (sec)

2,304 Al atoms

i | 144 Al atoms

1 S :
100 200 500 1,000 2,000 3,000
Number of atoms, N

5.9 233 52.770.3 93.6
Number of grid points (millions)

Fig 3.1: Computational time and scaling of density functional theory (DFT)
vs machine learning (ML) for electronic structure predictions. DFT shows
near-quadratic scaling, whereas the ML prediction algorithm shows perfect
linear-scaling and is orders of magnitude faster than DFT.

3.3 Main idea of Machine Learning model:

The idea is to use the training data set, which contains the features, that is the input, with
already know outputs known as target or labels. We can pass the dataset through the model
and it optimizes its internal parameter, which are also called weights as discussed in second
chapter, which reduces the error to obtain correct results. Once the model gets trained, the
computation or calculation of the desired properties is instant. Internal parameters are
basically the patterns found inside the training dataset. Many, researchers have created a
substitute Machine Learning model to predict DFT’s primary and secondary outputs. The
goal is to create strict linear ML model which can predict the DFT’s primary output much
faster than what DFT itself could have calculated. As we increase the number of atoms, the
computational time increases quadratically (or squarely), but when we use ML models, the
computational time decreases remarkably, and as we increase the number of atoms, the
computational time increases linearly. The aim is to bypass the direct solution, and
understand the function of Kohn-Sham equation and learn the pattern between inputs and the
outputs calculated using Kohn-Sham equation. [19]
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Now, there are two ways to predict new materials, without performing trial and error
experiment, which can take a huge amount of time. Using crystal database, we can search
within existing materials. Or, by the means of computer algorithm, we can create a whole
new structures. And we also know that , if we want to use any prediction model, we must
specify the desired properties which we need to optimize. And once we specify this, we need
to have a method to evaluate them from crystal structure. A very basic and simple approach
is to represent the materials in terms of grid point of every atom or their Cartesian
coordinate. This technigue does not produce good results. Because, if we represent them this
way, the material’s structure which are actually equivalent might have different fingerprint.
A proper descriptor will remain same if we apply rotation, reflection or transmission. Such
fingerprint are complex and tough to make when the datasets have many atom type. The
descriptors are what actually being feed into the model, which then optimizes this and find

pattern within this.

Step 1 Step 2 Step 3 Step 4
Data generation Fingerprinting Machine learning Validation
Reference atomic Brid point based Unseen atomic
configurations & > apol DESO — Neural network — configuration &
electronic structures Rl istical feahwes electronic structures
S

T T i A e L
@ - ':: Charge "o‘
@ YA YO\ density C‘{ 57 J
v & va s
H H ! %) (.20
® : Ly 1 DOS S
Energy (eV)

Fig 3.2: Overview of the process used to generate surrogate models for the
charge density and density of states.

From the molecular dynamics trajectory, they took some snapshots of aluminium atom.
These snapshots displayed abundant varieties of structural environment, which were then
used as an input or training set for training the ML model. Now, to map the surroundings
around a grid point, fingerprints/descriptors which were taken into consideration were
rotationally invariant. The mapping from the input to the labelled output was assimilated
using neural network. Once the model or the neural network architecture is trained, we can

feed the new dataset and then we can compute their electronic structure. [18]
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Fig 3.3: Parity plot for the machine learning vs density
functional theory (DFT) charge density prediction for the
unseen snapshot of a polyethylene (PE) and b aluminum (Al).

The plots of figure 19, shows the structured improvement in the accuracy of the
model when we used the vector and tensor descriptor. We can also see that, as we
increased the number of Gaussians which were used to sample the local surrounding
of each atom, the accuracy increased as well. The plot (b) shows that when we feed

more grid points into our training dataset, the error within the model also reduced.
[15]
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Density of States (states/eV)

CHAPTER 4. RESULTS AND DISCUSSION:

4.1 Density of states and Band Structures:

We had considered vanadium oxide (V20s) as our material and calculated various properties,
to understand how DFT calculations work. The peak represents the available states for the
corresponding energy level. On observing the edge of the conduction band, the valence shell
electron of Vanadium (d orbital) and Oxygen (p orbital), undergo hybridization. The two
bands are separated by some empty space and this means that there are no states available
for occupancy within this range hence signifying the Band gap which comes out be 1.9 eV
which is nearly equal to the experimental value of 2.2 eV. The indirect band gap for V205
was observed as 1.7 eV and direct gap as 2.007 eV. The effective mass of electron (m¢*) and

holes (my*) was calculated 1.823 moand 4.584 mg respectively, in terms of rest mass of

electron (mg). The valence band maxima was observed at -1.183 eV and conduction band
minima at 0.0564 eV (Figure 4).

W

,_
o, o

Energy (eV)

Fig 4.1: Density of states

44



= . V(d)

4 * O(p)

Energy (eV)
o
|

GAVMA X S Y GAMMA

Fig 4.2: Band Structures of V,0s

4.1.1 Absorption spectra, Reflectivity and Refractive index
The absorption coefficient when extrapolated from the first peak gives the band gap of the

material. The energy ranges from 2-5 eV corresponds to the ultraviolet region of the Solar
Spectrum.
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Fig 4.3(A): The Absorption coefficient a(A)
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The Absorption coefficient a()) describes the intensity attenuation of the light passing
through a material. It can be understood as the sum of the absorption cross-sections per unit
volume of a material for an optical process. The higher a(L), the shorter length the light can
penetrate into a material before it is absorbed.

0.5

Reflectivity
(=1 (=1
%) =

=
t

0.1~ —
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Energy (eV)

Fig 4.3(B): Reflectivity is an optical property of material (in our case, it is V.0s),
which describes how much light is reflected from the material in relation to an
amount of light incident on the material.

Refrective Index

0 1
Energy (eV)

Fig 4.3(C): it can be seen that Refractive index gets negative as the energy
increases (or, we go beyond visible range).
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This is because widely used and a well-established thin-film technique called oblique angle
deposition can be used to deposit thin films that refract visible light negatively, and this

negative refraction can occur over a broad range of wavelength.

THEORY:

(ﬁ+i E)Z =g1ti g

f 2_ ((812+822)1/2+81)/2

k2= ((e12+€2?)Y%-€1)/2

Qabs=2*E* K/(P*c)

R = ((-1)%+ k?)/((f+1)*+k?)

L= Ez/(812+822)

where, €;+i €, is complex dielectric function, i is refractive index, kis Extinction
coefficient, Oabs is absorption coefficient, R is reflectivity, h*=6.58211951E-16eVs,
c=2.99792E8 m/s

4.2 Energy Band Gap screening :

In our project, we started with calculating different properties of V,0s to get our hands on
DFT calculations, and after that, we made a Machine learning model, which screened those
2D materials, which had a band gap between 1.2 to 1.3. Once the model got trained, it was
capable of classifying the new datasets, that is, the new 2D materials. The advantage we got

here due to our Machine Learning model is that, we were able to sort those materials whose
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Out[

[1]:

In [2]:

[4]:

band gaps lied between 1.2 to 1.3 eV very easily, and the model calculated the band gaps of
material without using any formula.

To train our model, we took inputs (features) and the labelled output from the material
database. The problem of converting the input datasets (that is the 2D materials ) into the set
of numbers called fingerprints was tackled in a unique way. We used already calculated
results of materials from the material database called C2DB (computational 2D database).
Instead of converting the materials in some set of numbers, we calculated their wavelengths
using their energy band gaps, and instead of giving materials as input, we made their
wavelengths as our input datasets. After that, we trained our model over the input datasets
(which was wavelengths of materials) and the corresponding outputs (that was the band
gaps), using K-nearest neighbour algorithm from SKLearn library in python. After the
model was trained, we gave new datasets as input, that is, we gave wavelengths of new
material (whose band gaps were not classified) as inputs, which were not involved in
training the model, and our model classified these new wavelength inputs into two different
classes. One is where the materials have a band gap between 1.2 to 1.3 eV and the other
class is of those materials whose band gap doesn’t lie in this range. So, the output is telling
us which input material’s band gap lies between 1.2-1.3 eV and which input material lies
outside of it. Ultimately, we were able to sort our materials, without using any pre-defined
formula, and just on the basis of the data we entered. The script we used and the scatter plot

are shown below.

4.2.1 Importing the data

import pandas as pd
import numpy as np

# Importing the Data
data = pd.read_csv(r‘....Eﬂergy_banj_gajs_ﬁ.csv',names = ['Formula’, 'Band_gap', ‘Crystal_type'],header=0)

3]: # Part of the Data imported

data.hea&()

Formula Band_gap Crystal_type

0 CadAs4 0.998 AB-14-e
1 Mn2Se2 0.000 AB-129-bc
2 08Ted 2.667 AB2-2-i
3  Ru2F8 0.628 AB4-14-ae
4 V2F8 0.597 AB4-14-ce

# checking if any null values in data
sum(data.isnull().values)

1: array([e, ©, 8])

Fig 4.4: Importing the data
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n [7]:

Here, we imported the data from our file named Energy_band_gaps_n.csv to our notebook,
where we were doing all the coding. In the 3" part, we imported a part of the data using
data.head() funciton, to see how is it arranged, and how many columns do we have and what
columns we require. And then in the 4™ part, we run a code to check whether there is any
null value somewhere in any row or ay column. And the output array contains nothing,

which means there is no null value in our data.

4.2.2 Calculation of the A using band gap from database

Converting the Bandwidth Values to Wavelenth Values by formula

lambda = (h*c)/B.W.

: lambdas = np.array([@.00000124/i for i in data['Band_gap'].values])

C:\Users\HP\Anaconda3\1lib\site-packages\ipykernel launcher.py:1: Runtimekarning: divide by zero encountered in double_scalars
"""Entry point for launching an IPython kernel.

1 | def get_y tags():

y_BW =[]
for i in data['Band_gap'].values:

# input: Nothing Output: Array with tag values List(int,int,int...)
# Converting BW between [1.2,1.3] to tag 1 and rest to tag @

if 1.200 <= i <= 1.300:
y_BW.append(1)
else:
y_BW.append(9)
return y_BW

y_BW = get_y tags()

Fig 4.5: Converting the Band gap value to wavelength values using formula.

In this code, we have taken the band gap values from the material database file, and we have
calculated the corresponding lambdas. After doing that, we have classified that the band gap
values which will lie between 1.2-1.3 eV will return value 1 and the band gap values which

lie outside this range, will return the value 0.
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4.2.3 Pre-processing or data wrangling:

In [8]: # Converting y tags into numpy array for future processing and removing the Lambdas which are having infinite values
# cause they are outliers

y_BW = np.array(y_BW)
y_BW = y BW[np.where(np.isfinite(lambdas))]

In [9]: # Converting lambda values into numpy array for future processing and removing the Lambdas which are having infinite values
# cause they are outliers
lambdas = lambdas[np.where(np.isfinite(lambdas))[@]]
lambdas = lambdas.reshape(-1, 1)

Checking number of records on

input: 'lambdas’
and
output: y_BW

which should be same

In [1@]: len(y_BW),len(lambdas)

out[18]: (832, 832)

Fig 4.6: Removing all those datasets which are outliers in our data

In this code, we have done something which is called data wrangling ore pre-processing, in
which, we analyze the data, and see if it requires any kind of sorting, cleaning or scaling so
that it can become ready to train the model without hustle and instability. The first thing
which we did here, while pre-processing, is that we checked if there are any null values
inside our data. Because if there is any value of band gap which is zero, then the
corresponding wavelength will come out to be infinite, and we are to give wavelengths as
our input. So these data point will become outliers in our dataset. Outliers are those extreme
instances inside the data which does not follow the general trend within the data and, can
confuse our algorithm. So, we removed all the band gap data which were zero. After doing
that, we checked whether the number of inputs (which are lambdas) and the output (which
are band gaps) are equal or not. If not, then we have done something wrong while pre-
processing, but if they are equal, then we have done the pre-processing of our data correctly.
So, at the end of the code, we can see that the number of outputs and inputs which will be

given as training set, are equal.
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In [11]:

Using Smote Oversampeling to make the Data of both the classes Balanced so that there is no Bias

before oversampelng: class distribution was 805 and 27

After over sampeling: class distribution is 805 and 805

def counter(y):
return '@ :' + str(len([i for 1 iny if i ==08])) +', 1 : ' + str(len([i for 1 in y if i == 1b))

import imblearn
from imblearn.over_sampling import SMOTE

smote = SMOTE()

# fit predictor and target variable
x_smote, y smote = smote.fit_resample(lambdas, y_Bl)

print('Original dataset shape', counter(y_BW))
print('Resample dataset shape', counter(y_smote))

Original dataset shape © :885, 1 : 27
Resample dataset shape © :885, 1 : 8@5

Fig 4.7: Smote oversampling is used to make the data of both the classes Balanced so
that there is no bias.

When we train our model, there are some problems we encounter, and those are bias and
variance of our model. Sometimes, when we are doing classified supervised learning, and
have 2 or more classes, the model gets over trained or under trained if the inputs are not
balanced. That is, for some classes, the model gets many datasets, and for the rest of the
classes, it gets comparatively few datasets, so the model gets biased towards the class which
had more datasets, and when we try to predict a class for new input, it classifies it into the
class which was overtrained, and predicts incorrectly. So before training the model, we must
balance our training set, and we must make sure that the model gets equal humber of dataset
for each class to train. So, the difference between the actual output and the predicted output
shows us the bias of the model. If the bias is high, then the model pays less attention to the
training data and oversimplifies the model, which leads to large error in training and test
data.

Whereas, variance is actually the variability of predicted output for a given data input or a
value which shows us the spread of predicted data. If we have less amount of data, and we
want to build an accurate model, then we are trying to build a linear model for non-linear
data. Due to this, underfitting happens and the model is not able to capture the hidden
pattern inside the data. Such models have high bias and low variance. Similarly, when we
train our model over a lot of data, even those extreme outlier datasets also, then overfitting
happens and our model catches the noise along with the hidden pattern of the data. So, we
must have low bias and low variance to make an accurate model. And for that, we use smote

oversampling.
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4.2.4 SMOTE Oversampling:

As we have discussed that, imbalance creates bias where the model tries to predict the class
with majority datasets. And therefore, we have used a technique to overcome this imbalance
problem called undersampling and oversampling. Undersampling decreases the amount of
the majority class until the number of inputs is equal to that of the minority class. Whereas,

oversampling resample the minority class and majority class.

We used SMOTE technique to oversample our datasets. SMOTE or Synthetic Minority
Oversampling Technique is a technique of oversampling. In a normal or basic oversampling,
we create duplicate minority data from minority class population. This increases the number
of datasets, which have no new information or variance, and is not able to provide variety to
the model. SMOTE works by using k-nearest neighbour algorithm to create synthetic data.
First, it selects random data from minority class, then k-nearest neighbours from the data are
selected. Now the synthetic data is created between random selected data and their random
k-nearest neighbours. This process is repeated until the minority class has the same
population as that of majority class. So, in the code in figure 26, the class distribution was
805 and 27. If we were to feed this as our training and test data, then our model would have
definitely been biased. So we used SMOTE oversampling, and created synthetic data After

the oversampling , the class distribution became 805 and 805.

4.2.5 K neighbours classifier and SKLearn library:

Splitting the Data into Train and Test Set

In [12]: from sklearn.model_selection import train_test_split

x_train,x_val,y train,y_val = train_test_split(x_smote, y_smote, stratify = y_smote, random_state = 18)

We are Using KNeighboursClassifier from SKLearn to classify our Materials

Input: array of lambda value ( wave length )

Output: array of predicted tags ( If B.W. between [1.2,1.3] tag is 1 and for rest tag is 0)

In [13]: from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=2)

# Train the model using the training sets
model.fit(x_train,y_train)

Out[13]: KNeighborsClassifier(n_neighbors=2)

Fig 4.8: Splitting the data into train and test and, and applying the model
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In this code, we used SKLearn library to split our data into test data and train data. Our train
data will be given to the KNeighbourclassifier, or we can say, to our model, to get trained,
and once that is done, we will test our model using test data which will act as a new data for
our model. Now, to classify, we used KNeighbourClassifier from SKLearn library, and we
gave the tag equals to 1 to those materials whose band gap lies between 1.2 and 1.3 and the
rest of the materials are given tag equals to 0. The principle of this model is: After the
splitting of training data and test data is done, the training data is saved inside the memory.
After this, it calculates the distance which is an iterative process, where it calculated the
Euclidean distance between the data input in the test dataset and the data points inside the
training dataset. After this, the model optimizes and chooses a particular k-value which
decides the number of training data points which will be considered while choosing the class
of the test data point. Very low k-value makes the model sensitive to the outliers, and very
high k-value makes the model stable. After this is done, we need to check how our model

has performed. For that, we plotted the data.

4.2.6 Scatter plot of materials with particular band gap:

Plotting our predicted values with x axis as index and y axis as B.W. values
Color Coading is done according to prediction
Green are the elements with B.W. between 1.210 1.3

Red are the elements with B.W. between 1.2 t0 1.3

In [17]: import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(18, 6))
ax.scatter(range(len(y_val)), [0.00000124/x[8] for x in x_val],c= [‘red’ if 1 == @ else ‘green’ for 1 in model.predict(x_val)])
plt.ylim(min([©.00000124/x[€] for x in x_val]), max([©.008608124/x[8] for x in x_val]))
plt.xlabel("Test Sample Index")
plt.ylabel("Band Width")
plt.show()

Fig 4.9: Code for scatter plot.

We gave Green colour to those predicted elements whose Band gap was between 1.2 t0 1.3
and the rest of the elements were given Red colour. And then we plotted these test data, or
elements, and saw that, the predicted values were matching with the actual values, which is a
remarkable thing. This shows us that the model is absolutely accurate. We plotted our

predicted value, with x axis as index, and y axis as the band gap values.
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The plot in figure 29 shows a green line which lies between 1 eV and 2 eV. The dots are
actual output of the corresponding input wavelengths. The green colour shows that these
outputs are accurately predicted or classified. Because we gave green colour to the class 1
which was band gap with 1.2-1.3, therefore all the output coming inside this range have been
classified as green, where as all the elements outside this range were classified with red

colour, and therefore all the dots outside this particular range are red.
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Fig 4.10: Scatter plot of 2D materials screened on the basis of band
gap.

In the figure 30, we have zoomed the plot, and looking closely between the range 1.2 and 1.3
eV, there are some red dots as well, which tells us that those particular materials lies
between 1.2 -1.3 eV but are predicted or classified as materials which lies outside of this
range (that is why they are red). So our model is not perfect, and have a very few amount of

materials which are classified incorrectly, but these incorrect predictions are the ones which
lies near the class 1.
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In [15]: | fig, ax = plt.subplots(figsize=(1@, 6))

ax.scatter(range(len(y_val)), [©.00000124/x[0] for x in x val],c= ['red" if 1 == @ else 'green’ for 1 in model.predict(x_val)])
plt.ylim(1, 2)

plt.xlabel("Test Sample Index")

plt.ylabel("Band Width")

plt.show()
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Fig 4.11: Zoomed scatter plot, which shows some incorrect predictions.

So we calculated the F1 score.

Calculating F1 score to calculate our accuracy of model

In [16]: #model.predict(x_val) gives prediction values of our test data by inputing our inputs x_val into model trained

#y val are actual values of our test data

from sklearn.metrics import f1_score
print('f1l Score is : ' + str(fl_score(model.predict(x_val), y_val, average='micro')))

f1 Score is : ©.9975186104218362

F1 score came out to be 0.9975186, which shows that the model is very accurate, and the
error is really small.
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CHAPTER 5. CONCLUSION SCOPE FOR FUTURE WORK.

In this project, we have studied Density Functional Theory Machine Learning, and ways to
apply the Machine Learning into our DFT, thoroughly. We have done DFT calculations of
two materials to get our hands on DFT simulations as well, and we have made initial
progress in making a basic machine learning model, which is screening out 2D materials into
desired band gaps. Now our next step would be to calculate different properties of different
ultrathin materials using Density Functional Theory simulations, so that we can make our
own database of inputs and labelled outputs for training the machine learning model, which
can replace the function of Kohn-Sham equations mainly used in our DFT computation.
Once this is done, we will get our hands on deep learning, and neural networks and which
will be the basic architecture of our model, to replace the Kohn-Sham equations function.
While solving the problem using neural network, we must know a way to convert our input
into valid set of numbers, so we will study different descriptors as well, or we might create
our own, to represent our crystal structure Now that we have seen how our simple machine
learning model can make things easier for us, we can slowly and consciously apply more
complex models into our more complex datasets. And can compute the properties of

different crystal structure with large databases.
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