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Abstract 

The basics of Application of Machine Learning in Density functional Theory (DFT) to help us in 

electronic structure calculations for ultrathin 2D materials, and the quest of new ultrathin 2D materials 

have become a new field of research. To explain how we are approaching and progressing in this 

project and what will be the motivation, we will start by drawing an analogy. Let us suppose that, this 

DFT is my car, and we need to learn how to drive a car.  So, to start with this, I will first get myself 

acquainted with the working principle of the car. For instance, the role of engine, gear box, shaft, 

handbrakes inside my car. Until we do not know these stuffs, we would not be able to understand why 

we drive the car in lower gear on steep hills and on higher gear on a flat road. So, before we start 

doing electronic calculations for different materials, we must know the functioning and the physics 

phenomena working behind DFT. So, the first phase of our project was to understand the working 

principle of DFT. The second phase is to drive the car, under the supervision of an experienced and 

learned person who knows driving. And to indentify what modifications are needed to be done in my 

car to optimize it. In this  case, right now we are studying  the things which can modify my car aka. 

DFT and getting used to the tools required to add those things in my car, such as programming/coding 

in different languages (for example: c++ and Python). That thing is called Machine learning. The third 

phase is to make use of my car for different purposes. For instance, going to the office, or grocery 

store, or hospital. In our case, we will use DFT for calculating electronic structures of ultrathin 2D 

materials. And then we will think of a process to apply Machine Learning (ML) in my car (DFT) to 

speed up our car so that we can reach our desired location (where we use to go very often) quickly. 

ML methodologies have capability to speed up our electronic structure calculation. we will also think 

of a way to make use of ML methodologies to predict new ultrathin 2D materials as well. We have 

made a Machine Learning model, which takes the different energy band gaps of corresponding 2D 

materials, and have successfully screened them on the basis of band gap between 1.2 eV to 1.3 eV. 
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CHAPTER 1: INTRODUCTION TO DENSITY FUNCTIONAL 

THEORY. 
 

1.1 BASIC HAMILTONIAN FOR INTERACTING 

ELECTRONS AND NUCLIE: 
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This is a Hamiltonian (


H ) for many-body systems where ‘ em ’ is mass of an electron, ‘ iM ’ 

is mass of nucleus, ‘ r


’ is position vector of electrons and ‘ R


’ is position vector of 

nucleus, ‘ z


’is the charge associated to the nuclei and M & N are the number of electrons 

and ions. First term represent the kinetic energy associated to the electron, second term 

represent kinetic energy associated to the nuclei, third term represent the interaction between 

electron and the nuclei/ion, fourth term is inter electronic interaction, and the last term is 

inter-nuclear interaction. The Hamiltonian in use is very complex and therefore extracting 

any experimental data from this Hamiltonian is impossible. So, we use an assumption called 

Born Oppenheimer (or adiabatic) approximation which states that the nuclear motion and the 

electronic motion in molecules can be separated. According to this approximation, the 

nuclear motion is so much slower than the electron motion that nucleus can be considered to 

be fixed and their kinetic energies can be neglected. This is because, the approximation in 

picture assumes the mass of nucleus is very very greater than the mass of an electron, 

therefore nucleus are going to move much slowly than electrons. Hence Kinetic energies of 

nucleus and inter-nuclear interaction are neglected. So, we are going to consider that 

position vector of nucleus ( R


) is fixed. R


is assumed to be parameters which reduced 

complexity of the system and interaction between nuclei is going to be constant. 

( ) ( )NNNKNNNK RRRrrrERRRrrr


...,......,...,......,H 212211212211  =

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Our aim is to characterize the eigen state K  and eigen value E  of the Hamiltonian we 

have here. This is eigen equation of many body systems where ‘ ’ is spin states of that 

corresponding electron. Since electrons are fermions, so the wave-function we have to deal 

with needs to be anti-symmetric. 

( ) ( )

  /10N

&

..................

324

1111

cme

rrrrrrrr NNiijjNNjjii

−

−= 


 

And number of electron we have in a solid is very large. This is extremely complex. 

Therefore, It is impossible to have accurate wave function or eigen value for the above eigen 

equation of the system. All the calculation has to be based on variational methods (of 

quantum mechanics) or approximations. [1] 

1.2 SYMMETRIC AND ANTI-SYMMETRIC WAVE FUNCTION: 

 

Let us suppose we have a system with two electrons ( a helium atom). Both the electrons 

occupy different quantum states BA  & . Eigen states will determine the energy in which 

electrons are present and they are not dependent of 21 r ,r


 here. Because, for the first electron, 

the eigen state is A ,  then the position will determine the probability distribution of the 

electron and the probability distribution will only give a range of different values of r in 

which the electron can be present. Therefore, electrons of eigen state A  can be present in 

N number of locations.  determines eigen state, which determines energy levels. 

       1.2.3   Combined wave functions solution: 

 

 

( ) ( ) ( )   2121 rrr ,r BA


= ---(1),  electrons are identical in nature therefore probability 

distribution for exchanged system and probability for previous system will exactly be the 

same. Suppose both these two electrons are at two distinct energy levels, what if they 

suddenly swap places and the electron in one of the energy level changes place with electron 

in another energy level ? There is not going to be any overall change in the configuration in 

energy level and in the probability distribution either. 

B

A

r

r

→

→
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  :electron Second

      :electronFirst 

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1.2.4 Combined wave function solution after exchange of particles: 

B

A

r

r
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1
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  :electron Second

      :electronFirst 

:particle of exchange After the#




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,
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,
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Probability distribution is invariant under exchange of electrons. This leads to fundamental 

classification of elementary particle. 

( ) ( )
1

,
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( ) ( )
1
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-:(BOSONS)  c1.Symmetri
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   ( ) ( )
1

,
22

,
1

-:(FERMIONS) symmetric-2.Anti

rrrr


−=
 

Both these two wave function solutions ( (1) & (2)) are possible if you are making 

measurement of system consisting two particles and both the two particle underwent 

some kind of exchange, you would not know from your measurement. So, both these 

wave function solutions are possible. Linear combination of both the equation (1) and (2) 

gives us the general solution of the two electron system. 

 

 

 

Fig 1.1: Bosons Fig 1.2: Fermion 

FFEFermions 
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Special case:   Both the particle exist in same quantum state :-  
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Not possible as it implies that these two particles simply do not exist at all.. But electrons are 

existing somewhere, therefore there must be some probability distribution, otherwise, how 

does it vanish. The two particle cannot exist in the same given quantum state, this leads to 

pauli-exculsion principle. For certain class of particles, called fermions, which follow anti-

symmetric wave function condition, it is not possible for them to exist in same quantum 

state, but it is possible for bosons. [2 

 

 

1.3 UNIFORM ELECTRON GAS SYSTEM: 

(Example of simple approximation) 
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  is ionic charge density.  First step in this approximation is substituting all ions and 

nucleus into uniform positive background.  Hamiltonian of this gas is :-  
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Where is I eH  inter electronic interaction, is i-eH  electrons and ions interaction and is i-iH  

ion-ion interaction.  If electrons are also distributed, then, =n , Where n is electronic 

charge density, then our Hamiltonian becomes :- 

 

 

 

 

Fig 1.3: Uniform electron gas system 
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 All the contribution in interaction potential are cancelled and only term left is Kinetic 

energy associated to electron (shaded in blue). Charge density of uniform positive 

background is equal to  , which is equal to electronic charge density, so as to maintain 

neutrality, 
V

N
= , where N is number of electron.[3] 

1.4 HARTREE APPROXIMATION: 

 

Now, free electron gas approximation was not enough to analyze physical properties of 

solid.  First approximation we consider is Hartree approximation. 
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First term in the above equation is Kinetic energy associated with electrons, second term is 

electron-ion interaction and last term is electron-electron interaction. First goal is to get 

eigen states and eigen values of the Hamiltonian. 

1.4.1 Hartree Approximation condition: 
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(a). Within this Hamiltonian, we cannot apply independent electron picture, since the last 

term cannot be considered independent. But, considering that within this approximation, we 

are looking for some kind of effective potential that each electron is feeling, this effective 

potential could be affected by all the rest of the electrons and considering that effective 

potential, the electron could be moving like indefinitely for the others. This is the idea 

behind Hartree-Approximation. And considering independent electron picture, it means that 
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the wave function we are going to try here is the product of the wave functions of the 

individual electron. 

(b). Variational Approximation: 

If we cannot find an analytic solution to the Schrödinger equation, this trick allows us to 

estimate the energy of the ground state of a system. 
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We are looking for stationary states (or eigen state with all observable independent of time) 

of the Hamiltonian of unconstrained wave function that is wave function of multi-particle 

Schrödinger equation. Now, first step is to calculate the average Hamiltonian considering 

wave function. 
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Basically, what we have here in the last term of average Hamiltonian is the interaction 

energy, which means, whenever we have a system which is characterized by a charge 

density and R, the interaction potential of a system or its electron density is given by this 

expression. Now to avoid self  interaction, that is electron A cannot interact with itself, we 

have   i ≠ j, therefore we have to minimize that contribution or that expression. But wave 

function we are going to use here have a constraint, they have to be normalized. Basically, it 

means that the wave function for each electron has to be normalized. 

1),(
23 =
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 rrd i
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Whenever we are doing minimization with constraints, we have to use Lagrange multipliers 

method. We have to define a new function,  

    









−−=




i

iiii rrdr 1),(Ĥ),,(F

 smultiplier lagrange using
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Now, we will do minimization with respect to Lagrange multipliers (used to find local 

maxima and minima subject to equality constraint), therefore doing minimization:- 
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We need to solve the second term of left and side of the equation. This term is giving us 

electronic charge density so this is like interaction potential that electron ‘i’ can see and can 

cast or induced by all the rest of the electrons we have in the system.  This is effective 

potential  that electron ‘i’ can see and the system encamped by all the rest of the electrons. 

This effective potential here is doing the screening. All the electrons are screening the 

potential created by the ions, which is complicated to solve.  Now we start with initial guess 

for all the wave functions ),(
0

 ri
 and we plug it in ),(  rj

  and solving it, we get a new 

),(  ri
  and use it again.[4] 
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1.5 HARTREE-FOCK APPROXIMATION: 
This time, we change one thing, that is, we considered wave function to be anti-symmetric, 

and for describing such system, we will have to use Slater determinant. It is an expression 

that describes the wave function of a multi-fermionic system. It satisfies anti-symmetric 

requirements. 
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The last term of average Hamiltonian given above is the exchange term due to anti-

symmetric. This third contribution exists if spin states of ‘i’ and ‘j’ states are same. 

Therefore, having same state and negative sign, so it is lower in the energy, basically it 

means, it is favouring the states having same spin. Therefore it favour ferromagnetic state, so 

spins are aligned. 

),(),(),(),(
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Now, we can see that this Hartree Fock equation is not corresponding to solving eigen value 

and eigen state. They look like Hamiltonian but this does not look like equation for solving 

wave function and eigen value, so what actually does this Lagrange multiplier physical 

significance is? Answer comes from Koopmans equation. 



19 
 

έK = E(N) – E(N-1) 

έK  is energy difference between the states with N electron and system with N-1 electrons. 

Considering that electron we are removing is in state ψK. [5] 

1.6 THOMAS-FERMI MODEL: 

 

This model includes electron density as key ingredient to solve the problem. Semi classical 

approximation for electron in an external potential, extV i.e., Quantum calculations with 

classical approximation. They thought instead of looking for wave function, it could be more 

efficient to look for directly electron charge density. 

 

 

 

 

• The first expression on the right hand side of the above equation is based on 

uniform electron gas approximation. 

 

• Expression for the total energy of the electron was: 
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• And therefore the total energy is: 
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• In uniform electron gas, the ‘n'  was constant, but here it depends on (r). 

Hence, 
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( ) ( ) ( ) rdrnrn
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   

• Second term/expression is inter-electronic electrostatic potential. If electronic 

charge density is given by ( )rn


 , then electrostatic charge potential associated 

with that charge distribution is given by this expression: 
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• Third term is electrostatic potential associated with external potential. Now, 

we don’t know the expression for ( )rn


, so how do we do that. 

Total energy that the system is going to take is where it minimizes the energy of the system. 

( ) ( ) Nrdrnnrn =
 3 subject to )E( minimizes that for Search  

The last integral is the constraint (keeping the number of electron fixed). 

Applying Lagrange multipliers: 
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New functional is equal to the energy we defined before ‘ − ’  times constraint. 
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4V2 =    Hence, we can ultimately sum this up as: 
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And once we calculate electron density, we can find energy of the system. 

 

 

Pair Density and electron correlation: 
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1.7 HOHENBERG-KOHN THEOREM: 

 

This theorem established the basis of Density Functional Theory. DFT: considering electron 

density to be the key ingredients  is determining the exact theory of many body system. 
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Ĥ

e-e

ext

→



−
++−= 

= 

i

N

i

N

ji jii

i

i

i

e

rn

rr
r

m



  






 

If we explicitly determine extV , so we are précising our Hamiltonian, then, we could 

calculate eigen states i  of this Hamiltonian and with that we can calculate the ground state 

0 , and having the 0 , we can have the electron density associated to that ground state. 

Theorem 1: Vext is determined uniquely, except for constant, by ( )rn


0  (the ground state 

particle density). 

Corollary 1: Since the Hamiltonian is fully determined (expect for a constant shift for the 

energy) it follows that many body wave-functions for all the states (ground and excited). 

Therefore, all the properties of the system are completely determined given only the ground 

state density, ( )rn


0 . 

The theorem states that if we have a ground state electron density, then this ( )rn


0  uniquely 

determines extV , therefore we are determining the Hamiltonian, and once we have 

Hamiltonian, we can calculate ground state and eigen state. And once we have i , we can 

calculate everything we want. If this i  is uniquely determined by this ground state ( )rn


0 , 

then, in principle, everything could be determined by this ground state electronic density. 

This is the main conclusion. 

Theorem 2 : A universal functional for the energy E(n) in terms of the density  ( )rn


 can be 

defined, for  any Vext. . The exact ground state energy of the system is the global minimum, 

and the density that minimizes this functional is the exact ground state density. 

Corollary 2: E(n) alone is sufficient to determine the exact ground state energy and 

density. In general, excited state of electron must be determined by other means. [6] 
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1.8 KOHN-SHAM METHOD: 

 

In the Hohenberg-Kohn Theorem, we saw that if we have this universal functional, we have 

this universal functional, we can get the ground state electronic density. Getting a universal 

functional is extremely difficult , there is no successful expression for that in terms of the 

density. Now  the strategy which Kohn-Sham followed in order to have good expression for 

universal functional was this method. They divided or decomposed F(n)  into two different  

terms. 

][E]T[]F[

:sham-kohn F[n],directly  ingapproximat of difficulty  with theFaced

 functional universal ofion Decomposit

HXC nnn +=

 

]T[n  is the non-interacting Kinetic energy functional (this is not the functional of kinetic 

energy of a real system).  Idea was basically to substitute the real system with non-

interacting system. And we know that the wave function of non-interacting system can be 

described by slater-determinants. 
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Kinetic energy is defined this way. For fixed electronic density, we minimize the kinetic 

energy of that non-interacting system, so that here, the wave function    we have are 

different slater determinant. So, we minimize Kinetic energy for different slater determinant 

that have the electronic density ‘n’. This minimizing wave function is called Kohn-Sham 

wave function and is denoted by ][n  . Of course it is going to be the functional of the 

density because, for fixed density, we minimize with respect to different slater determinants 

that give electron density.
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The advantage of Kohn-Sham method is that  a  major part of the kinetic energy can be 

treated explicitly with the single determinant wave function ][n  and only ][EHXC n  needs 

to be approximated as a functional of the density. 

 

1.8.1 Hohenberg-Kohn and Kohn-sham schematics: 

 

 

  

 

 

Once we specify ( ) Vext r


that inter electronic system is feeling, we specify the total 

Hamiltonian. Once we have Hamiltonian H , we can calculate eigen states which is 

extremely difficult  to calculate. And Hohenberg-Kohn Theorem states that this ground state 

wave function uniquely specifies the external potential. Therefore,  ground state electron 

density ( )rn


0  uniquely specifies total Hamiltonian H and then we can calculate  ( )r
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According to Hohenberg-Kohn theorem, once we have the ( )rn
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0  of the system, we can get 

any other property of the system. In principle, we have to define a functional of the ( )rn


0  in 

order to get any property of the system. Problem is that we don’t know how to calculate this 

ground state density ( )rn


0 . This is extraordinarily difficult task because the system involves 

many interacting electrons. This is where Kohn-Sham method enters. Kohn-Sham proposed 
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following approach.  The Kohn-Sham approach is to replace the original difficult 

interacting-particle Hamiltonian with a different one which could be solved more easily: a 

non-interacting particle Hamiltonian with an effective potential (vs) assumed to have  the 

same density as the true interacting system. 

 

 

 

 

 

In the Hohenberg-Kohn Theorem, everything could be determined as a function of the 

( )rn


0
.  For the same ground state electronic density, we have a non-interacting system. That 

is, we have defined a non-interacting  system for the same ( )rn


0 . If  we apply Hohenberg-

Kohn theorem for the non-interacting system, then according to that, ( )rn


0  uniquely 

specifies the external potential that each electron is feeling. Somehow, that is the effective 

potential associated to each electron. And this is what we call Kohn-Sham potential. And 

once we have Kohn-Sham potential, we can calculate any eigen state associated to that 

Hamiltonian { ( ) ( )  rr ii


 }. Once we have this one particle wave function, we can deal 

therefore, with slater-determinant    of the N particle system in order to anti-symmetrizing 

those eigen states. Once we have  , that is going to be the wave function of this non-

interacting system. Now, this   can give us ground state electron density, which is same as 

that obtained from Hohenberg-Kohn theorem for interacting system. Any property of this 

real system could be derived as a function of this slater determinant. 

1.8.2 Kohn-Sham Method says: 
1).  In order to calculate ground state density, we are not going to solve the complex real 

system, but we are going to substitute which is non-interacting system,  and it is much more 

easier to calculate.  AIM: Aim is to get good approximation for that effective potential ( that 

is Kohn-Sham Potential) in order to have  .[7], [8] 
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CHAPTER 2. MACHINE LEARNING: 

2.1 Introduction to Machine Learning: 
 

Humans have a tendency to gain an understanding from their past experiences 

and machines obeys the  instructions given by humans. Now, what if humans can 

train the machines to learn from their past data and do what humans can do, 

much faster, that is , machine learning is about understanding and reasoning. 

Suppose, taking  me as an example, and  I  love exploring music and listen new songs. I 

either like it or dislike it. I decide this on the basis of Tempo, Genre, Intensity 

                                                                                                          

                                                                                                                                                                                            

 

 

                                                                                                                                                     

 

 

 

 

 

 

 

 

Now,  you see that I like songs with fast tempo and soaring intensity, whereas, dislike the 

song with relaxed tempo and light intensity. Now, you know my choices. Now , suppose I 

listen to a new song, which has a fast tempo and a soaring intensity, therefore it will lie 

somewhere in the group with green dots. 

 

 Fast Relaxed 

Intensity 

         Light  

souring 

Fig 2.1: An example of Classification of data in machine 

learning 
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Now, looking where it lies, can you guess whether I would like the song or not? Yes, I 

would like the song. Looking at my past choices, you were able to classify the unknown 

song very easily. Now, suppose I listen to a song which lies somewhere between the two 

groups (as shown in the figure 5 above). Now, how do you classify, whether I like it or not. 

This is where machine learning comes in. 

 

 

 

 

 

 

 

 

 

Fig 2.2 : A new data point is introduced 

Fig 2.3: Predicting output  of new data input. 
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Now, if I draw a circle around this song C,  we see that there are 5 votes for like whereas 1 

vote for dislike. Going for majority votes, you can definitely say that I will definitely like it. 

When choices become complicated, it learns the data, builds the prediction model. And, 

when new data point comes in, it can easily predict for it. This is basic Machine Learning 

algorithm called K-nearest neighbors. The data that you provide to a machine learning 

algorithm can be just inputs or input-output pairs. Supervised learning algorithms require 

input-output pairs (i.e. they require the output). Unsupervised learning requires only the 

input data (not the outputs) . 

 

 

 

 

2.1.1 Here is how, in general, supervised algorithms work:  
 

You feed it an example input, then the associated output. You repeat the above step 

many many times. Eventually, the algorithm picks up a pattern between the inputs and 

outputs. It uses labelled data to train the model. Now, you can feed it a brand new input, 

and it will predict the output for you . 

Fig 2.4: Machine learning and its type 
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2.1.2 Here is how, in general, unsupervised algorithms work:  
 

You feed it an example input (without the associated output). You repeat the above step 

many times. Eventually, the algorithm clusters your inputs into groups. Now, you can feed it 

a brand new input, and the algorithm will predict which cluster it belongs with. 

 

 

 

 

 

 

   

  

 Supervised learning has to do with the fact that we gave the algorithm a data set in which 

the “right answer” were given. In regression, the model predicts continuous valued output, 

whereas in classification, the model predicts discrete valued output. In supervised learning, 

we are provided with a dataset and already know what our correct output should look like, 

more formally, this data set is called training set. [9] 

Fig 2.5: Supervised Machine Learning. 

Fig 2.6: Unsupervised Machine Learning. 
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2.2 MODEL REPRESENTATION: 

 

 

 

 

X’s = “input” variable/features 

 

Y’s = “output” variable/ “target” variable 

 

m= number of training examples 

 

We feed our training set (x,y) to our learning algorithm. The job of learning algorithm is 

then to output a function which by convention is usually denoted by ‘h’,  and ‘h’ stands for 

hypothesis . The job of hypothesis is a  function that takes as input the value of ‘x’ (feature), 

and it tries to give the predicted value of ‘y’ for the corresponding ‘x’.  So ‘h’ is a function 

that maps X’s to Y’s .   A pair 
( ) ( )( )ii yx ,  is called training example, and the dataset that 

we’ll be using to learn –a list of “m” training examples 
( ) ( )( )ii yx , : mi ,....1= -- is called a 

training set.  To describe the supervised learning problem more briefly an correctly, our goal 

is, to learn a function h: X to Y , given  a training set, so that h(x) is a “good” predictor for 

the corresponding value of y. This function is called hypothesis. 

Fig 2.7: Basic algorithm of a machine learning model  
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When the target/input variable we are trying to estimate/predict is continuous, then this 

learning problem is defined as regression problem. When y can input only a small number of 

discrete values, it will be called as classification problem. When designing the learning 

algorithm, the next thing we need to decide is how do we represent this hypothesis h. To 

explain the basic model, we will predict that y is a linear function of x. That is the dataset, 

and what this function is doing, is predicting that y is some straight line function of x. 

( ) xxh 10  +=  

Why a linear function? Well, sometimes we will want to fit more complicated , perhaps non-

linear function as well, but since this case which is linear is the basics and simple, we will 

explain with this example first of fitting linear functions. How to choose  s? How do we 

come up with a value of 0 and 1  that corresponds to a good fit to the data.  The idea is, we 

get to choose our parameters 0 and 1  so that ( )xh  (meaning the value we predict on 

input x) is at least close to the values y for the examples in our training set. For ( )xh  to be 

close to y, we must minimize the difference between ( )xh  and y. 

 

2.3 COST FUNCTION: 

( )( ) ( )( )
=

−
m

i

ii yxh
m 1

2

2

1
 minimize

10,




 

This finds us the value of 0 and 1  so that average over 1/2m times the sum of square 

errors between my prediction on the training set minus the actual values of the houses on the 

training set is minimized. That is cost function:- 

( )( ) ( )( )
=

−=
m

i

ii yxh
m

J
1

2

10
2

1
 ), (   

),(  minimize 10
, 10




J    This J is our cost function (or squared error function). Why do 

we square the error? Squared error function is a reasonable choice and work well for most 

regression problems. By using a cost function we can calculate the accuracy of our 

hypothesis function. This takes an average difference of all the results of hypothesis with 
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inputs from x’s and the actual output y’s. To break it apart, it is x
2

1
 where x  is the mean of 

the squares of 
( )( ) ( )ii yxh − , or the difference between the actual value and the predicted 

value. This function is also called the “mean squared error” or “Squared error function”. For 

the smoothness in calculation of gradient descent the mean is halved (1/2), so that the square 

function’s derivative term (containing a factor of 2)  will cancel out the ½ term. [10], [11]. 

So now, our goal is to minimize cost function J with respect to the parameters . 

2.4 GRADIENT DESCENT: 
Now we will talk about an algorithm called gradient descent for minimizing the cost 

function J. It turns out that gradient descent is not just used in linear regression, but in many 

of general algorithms, wherever we need to minimize a function. It is actually used all over 

the place in machine learning.  Now we are going to assume that we have some function 

),( 10 J . Maybe it is the cost function or some other function we want to minimize. And 

we want to find out an algorithm for minimizing this as a function of ),( 10 J . So we have 

a hypothesis function and we know a way of computing this function which can fit perfectly 

into the data.  Now we need to predict the parameters in the hypothesis function. That is 

where gradient descent helps us. Suppose that we graph our hypothesis function based on its 

parameter 0 and 1 (actually we are plotting the cost function as a function of the 

approximated parameter). We are not plotting x and y itself, rather we are plotting cost 

function coming out from selecting a particular set of parameters and the hypothesis 

function’s parameter range.  

Fig 2.8: Gradient descent. 
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Now suppose we are trying to minimize our function ),( 10 J . So notice the axes, that are 

0 and 1  on the horizontal axis and J is the vertical axis and so the height of the facet 

shows J and we want to minimize this J. So, we are going to start off with 0 and 1  at some 

point. So imagine picking some value for 0 , 1  and that corresponds to starting at some 

point on the surface of this function. So whatever value of 0 , 1  gives you some point here. 

Now suppose this is like a landscape of some grassy park , with two hills like so. And let us 

imagine that we are physically standing at that point on the hill. In gradient descent , what 

we are going to do is , we are going to rotate 360 degrees around, and look around us 

everywhere, and think, if we were to take a little baby steps in a particular direction, and we 

want to go downhill as quickly as possible, what direction do we take that small steps in? If I 

want to go down, so I want to physically walk down this hill as quickly as possible. Turns 

out that if we are standing at that point on the hill as shown in figure 11, we look all around 

and we find that the best direction is to take a little step downhill in that particular direction 

as shown. Now we are at a new point on the hill. We are going to do the same thing all over 

again. And if we do that and take another step, we take a step in steepest descent. And then 

we keep going. Take another step, another step, and so until we converge to this local 

minimum. The point on our graph will be the result of cost function using our hypothesis 

with those specific theta parameters. We will come to know that we have reached our 

minimum when our cost function is at the bottom of the surface in our graph. We did this by 

calculating the derivative of our cost function. The slope of the tangent at that point is the 

derivative and it will tell us a path to move towards. We will move down the ),( 10 J   in 

the direction with the steepest descent. The size of each of this step is decided   by the 

parameter  , which is known in this case as the learning rate. 

)1&0(for    ),(: 10 ==



−= jjJ

j

jj 


  

The distance between each point in the plot represents a step decided by the parameter  . A 

smaller  will give us smaller step and a large   will give us large steps. The step taken in 

that particular path is decided by the partial derivative of ),( 10 J .  At each iteration j, we 

should update the parameter n ,....,, 210  simultaneously. Correct simultaneous update: 
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Incorrect simultaneous update: 

[12] 

 

 

2.5 MODEL REPRESENTATION IN NEURAL NETWORKS: 

 

Now we will understand how to represent hypothesis function using neural network. At a 

very basic level, neurons are computational unit and it takes electrical impulse (called 

spikes) as a inputs (that is dendrites) which are then directed to outputs (called axons). In our 

model, input features nxxxx ,...,, 210  are dendrites, and the hypothesis function gives output 

as a result. In this neural network model, 0x  input is called bias unit, and it is equal to 1. The 

functions we use in classification, we will use them here as well.  
xT

e −+1

1
, which is also 

called as sigmoid activation function. Here, our   parameters are known as weights. 
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2.5.1 Sigmoid function and ReLU function as activation function: 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig 2.9: sigmoid function 

Fig 2.10: ReLU activation function 

Fig 2.11:  Neural network structure 
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The input nodes which has the value 1 (bias unit) which are also called input layer goes into 

another layer (another node) which is called hidden layer, and after passing these hidden 

layers which are laid down according to the problem we have, the output gives us the 

hypothesis function, which is called output layer.  We will label these hidden layer nodes as 

22
0 ,.... naa and call them activation unit. 

)( j
ia = activation of unit I in layer j. 

)( j = matrix of 

weight which controls the function mapping from layer j to j+1. If we make neural network 

with one hidden layer: 

    )()2(
3

)2(
1

)2(
03210 xhaaaxxxx →→  

The values for each activation node are calculated as: 

 

 

We can see that we have calculated our activation nodes by using matrix of parameters of 

3×4 dimension. Each row of the parameter is multiplied with our inputs to obtain the value 

for one activation node. The main output, that is the hypothesis function is equal to the 

activation function (g) multiplied to the sum of values of the activation nodes, each of which 

are multiplied by another parameter matrix 
)( j which contains the weights for the second 

layer of nodes. Each layer get its own matrix weight 
)( j . Now we will implement 

something. We will vectorize the above functions. We will define a new variable 
)( j

kz , 

which encloses the parameter inside our g (activation) function : 

)(

)(

)(

)2(
3

)2(
3

)2(
2

)2(
2

)2(
1

)2(
1

zga

zga

zga

=

=

=

 

Or, we can say that, for layer j=2 and node k, the variable z will be : 

nnkkk
j

k xxxz )1(
,1

)1(
1,0

)1(
0,

)( ....++=  
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The vector representation is : 





















=



















=

(j)
3

(j)
2

(j)
1

(j)1

0

....
   

....

z

z

z

z

x

x

x

x

n

 

2.6 FORWARD PROPAGATION ALGORITHM: 

  

 

 

Intuition: =)(l
j   “error” of node j in the layer “l”. For each output unit (layer L=4): 

        

  The first term (activation of unit j in layer 4) can also be written as:-    

        

This delta term is just the difference between a hypotheses output and what was the value of 

y in our training set , where jy is the jth element of the vector value in our labelled training 

set. 

2.7 BACKPROPAGATION ALGORITHM: 

For minimizing our cost function, we used gradient descent in linear regression, but when 

we are dealing with neural networks, we use Backpropagation for minimizing the function. 

Therefore, our goal is to calculate: 

Fig 2.12: Forward and backward 

propagation 
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)(  min 


J  

That is, we are minimizing the function J using an optimal set of parameters in  . Now we 

will see the equations we used to calculate the partial derivative of )(J : 

)(
)(

,





J

l
ji

. Given training set, ( ) ( ) )()()1()1( ,...., mm yxyx  

Set 0:)(
, = l
ji  for all (l,i,j) (hence, we end up having matrix full of zeros). 

For training example t= 1 to m: 

1. Set )()1( : txa =  

2. Perform forward propagation to compute 
)(la  for l=2,3,…L 

3. Using , compute )()()( tlL ya −=  

Where total number of layer is L and 
)(La is the outputs of activation unit for the last layer or 

we can ay hypothesis, and it is a vector. So, simply, the last layer’s error values are the 

difference of true results (output of activation unit) and the correct outputs of y. 

4. Compute 
)1( −L , )2( −L ,… )2( , using ( ) )1(*.*. )()()1()()( lllTll aa −





 = +  

Where )1(*.)( )()()( lll aazg −=  

5. )1()()(
,

)(
, : ++= l

i
l

j
l

ji
l

ji a   

Hence we update our new matrix  : 

0j if ),(
1

: )(
,

)(
,

)(
, += l

ji
l

ji
l
ji

m
D   

)(
1

: )(
,

)(
,

l
ji

l
ji

m
D =  if j=0 .  Thus we get  

)(
,)(

,

)( l
jil

ji

DJ =



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2.8 K- NEAREST NEIGHBOUR (KNN) CLASSIFICATION: 

 

The KNN algorithm is one of the very basic supervised machine learning algorithm which 

can do both multi-class and binary classification. When we say it is a basic supervised 

algorithm, we mean that the data we will use for training this KNN model will be a labelled 

one. In the classification problem, we have to find the discrete values which are possible 

estimated outcomes. And the thing which model does is that it finds out to which target class 

does a given data point belongs to. The number of possible target classes is 2 in binary 

classification problem. Whereas, when there are more than two possible target classes, it is 

called multi-class classification problem. Since, we know that KNN is a non-parametric 

algorithm, which means while training a KNN classifier, we don’t need to train our model 

by iterating over the training set which makes our set of parameter optimized, where we 

apply mathematical equations to minimize the error between the training set and the 

predicted outcome.  Rather, in a KNN classifier model, we will train it by fitting or saving 

all the training data points in the computer memory, which requires only one training cycle. 

Now, at the inference stage, when the model will predict the target class for a new data 

point, the model will normally compare the new data with the data instances which is being 

saved in the computer memory. And finally, looking at this comparison, the model allocate 

this new data point to its target. What is this comparison we are exactly talking about? The 

algorithm name K-nearest neighbour in itself answers this question. In the first step, model 

computes the distance of the new data from every single data point within the saved training 

data in memory.  The next step is, those training data points are selected which are nearest to 

the new data on the basis of computed distance. The model select ‘k’ number of training 

data. At the end, the model’s algorithm 

compares the target class/label of these ‘k’ 

points which are closest neighbor to the new 

data point. The label which has the maximum 

frequency within these k-nearest neighbors is 

allocated as the target class to this new data 

point. While computing the distance between 

training data point and new data point, we will 

use the Euclidean distance formula. [13], [14] 

 

 

 

Fig 2.13: Euclidean distance of every training dataset from new 

data point 
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CHAPTER 3. APPLICATION OF MACHINE LEARNING IN 

DFT: 

 

3.1 Fundamental idea:  

The idea is to make a Machine Learning model using neural networks architecture which is 

trained on previously calculated labelled DFT results at millions of grid point.  This 

prototype gives a copy of Kohn-Sham DFT but of high quality, whose order of magnitude 

faster than the solution which comes out form K-S DFT. In Machine Learning, we have 

different models, or neural network architecture which we use to see the pattern within the 

data. Either we can make use of model which is already being made, to study the data, or we 

can make our own model, based upon the complexities of the data, and the predicted output 

(target variable) we need. We can use Machine Learning based model to efficiently 

understand the function of Kohn-Sham equation quickly, which we discussed in previous 

chapters. Ultimately, we can make use of big databases of crystal structures for screening the 

compounds which have the optimal properties using Machine Learning. Now, if we want to 

predict electronic structure of 2D ultrathin materials accurately and to predict new materials 

with desired properties, we must decide how to represent the crystal structure as a set of 

numbers, which we also call fingerprints or descriptor, since the neural network algorithm 

understands only numbers. These set of numbers are called fingerprints. [15], [16] 

3.2  Bottleneck and problems which inspired us to use Machine 

Learning : 
We know that DFT consumes a lot of time since it has a lot of quantum calculation and 

approximation methods. Every time we solve the Kohn-Sham equation separately, a huge 

amount of data is being produced. For example, there are millions of grid points (points on 

the Cartesian co-ordinate) for around 100 of aluminium atom, and when we calculate the 

charge density of these 100 atoms, the data is produced for each of the grid point. A lot of 

data gets evaluated but the use of it is not proportionate to the amount of data which is being 

produced. Although, it gives accurate values for the corresponding input material, it is not 

suitable for producing result for large database, as it takes a lot of computational time. [15], 

[16], [17] 
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.  

 

 

 

 

3.3 Main idea of Machine Learning model: 

The idea is to use the training data set, which contains the features, that is the input, with 

already know outputs known as target or labels. We can pass the dataset through the model 

and it optimizes its internal parameter, which are also called weights as discussed in second 

chapter, which reduces the error to obtain correct results. Once the model gets trained, the 

computation or calculation of the desired properties is instant. Internal parameters are 

basically the patterns found inside the training dataset. Many, researchers have created a 

substitute Machine Learning model to predict DFT’s  primary and secondary outputs. The 

goal is to create strict linear ML model which can predict the DFT’s primary output much 

faster than what DFT itself could have calculated. As we increase the number of atoms, the 

computational time increases quadratically (or squarely), but when we use ML models, the 

computational time decreases remarkably, and as we increase the number of atoms, the 

computational time increases linearly. The aim is to bypass the direct solution, and 

understand the function of Kohn-Sham equation and learn the pattern between inputs and the 

outputs calculated using Kohn-Sham equation. [19] 

Fig 3.1: Computational time and scaling of density functional theory (DFT) 

vs machine learning (ML) for electronic structure predictions. DFT shows 

near-quadratic scaling, whereas the ML prediction algorithm shows perfect 

linear-scaling and is orders of magnitude faster than DFT. 
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Now, there are two ways to predict new materials, without performing trial and error 

experiment, which can take a huge amount of time. Using crystal database, we can search 

within existing materials. Or, by the means of computer algorithm, we can create a whole 

new structures.  And we also know that , if we want to use any prediction model, we must 

specify the desired properties which we need to optimize. And once we specify this, we need 

to have a method to evaluate them from crystal structure. A very basic and simple approach 

is to represent the materials in terms of grid point of every atom or their Cartesian 

coordinate. This technique does not produce good results. Because, if we represent them this 

way, the material’s structure which are actually equivalent might  have different fingerprint. 

A proper descriptor will remain same if we apply rotation, reflection or transmission. Such 

fingerprint are complex and tough to make when the datasets have many atom type. The 

descriptors are what actually being feed into the model, which then optimizes this and find 

pattern within this. 

  

 

 

From the molecular dynamics trajectory, they took some snapshots of aluminium atom. 

These snapshots displayed abundant varieties of structural environment, which were then 

used as an input or training set for training the ML model. Now, to map the surroundings 

around a grid point, fingerprints/descriptors which were taken into consideration were 

rotationally invariant. The mapping from the input to the labelled output was assimilated 

using neural network. Once the model or the neural network architecture is trained, we can 

feed the new dataset and then we can compute their  electronic structure. [18] 

 

Fig 3.2: Overview of the process used to generate surrogate models for the 

charge density and density of states. 
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The plots of figure 19,  shows the structured improvement in the accuracy of the 

model when we used the vector and tensor descriptor.  We can also see that, as we 

increased the number of Gaussians which were used to sample the local surrounding 

of each atom, the accuracy increased as well. The plot (b) shows that when we feed 

more grid points into our training dataset, the error within the model also reduced. 

[15] 

 

 

 

 

Fig 3.3: Parity plot for the machine learning vs density 

functional theory (DFT) charge density prediction for the 

unseen snapshot of a polyethylene (PE) and b aluminum (Al).  
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CHAPTER 4. RESULTS AND DISCUSSION: 

4.1 Density of states and Band Structures: 
 

We had considered vanadium oxide (V2O5) as our material and calculated various properties, 

to understand how DFT calculations work. The peak represents the available states for the 

corresponding energy level. On observing the edge of the conduction band, the valence shell 

electron of Vanadium (d orbital) and Oxygen (p orbital), undergo hybridization. The two 

bands are separated by some empty space and this means that there are no states available 

for occupancy within this range hence signifying the Band gap which comes out be 1.9 eV 

which is nearly equal to the experimental value of 2.2 eV. The indirect band gap for V2O5 

was observed as 1.7 eV and direct gap as 2.007 eV. The effective mass of electron (me*) and 

holes (mh*) was calculated 1.823 m0 and 4.584 m0 respectively, in terms of rest mass of 

electron (m0). The valence band maxima was observed at -1.183 eV and conduction band 

minima at 0.0564 eV (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 Fig 4.1: Density of states 
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4.1.1 Absorption spectra, Reflectivity and Refractive index 

The absorption coefficient when extrapolated from the first peak gives the band gap of the 

material. The energy ranges from 2-5 eV corresponds to the ultraviolet region of the Solar 

Spectrum. 

 

 

 

 

 

  

 

 

 

 

 
A 

Fig 4.3(A): The Absorption coefficient α(λ)  

 

Fig 4.2: Band Structures of V2O5 
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The Absorption coefficient α(λ)  describes the intensity attenuation of the light passing 

through a material. It can be understood as the sum of the absorption cross-sections per unit 

volume of a material for an optical process. The higher α(λ), the shorter length the light can 

penetrate into a material before it is absorbed. 

 

 

 

  

  

 

 

  

 

 

 
B 

Fig 4.3(B): Reflectivity is an optical property of material (in our case, it is V2O5 ), 

which describes how much light is reflected from the material in relation to an 

amount of light incident on the material.  

 

Tempo 
C 

Fig 4.3(C): it can be seen that Refractive index gets negative as the energy 

increases (or, we go beyond visible range).  
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This is because widely used and a well-established thin-film technique called oblique angle 

deposition can be used to deposit thin films that refract visible light negatively, and this 

negative refraction can occur over a broad range of wavelength. 

 

 

 

THEORY: 

(ñ+i k)̃2 = ε1+i ε2 

 

ñ 2= ((ε1
2+ε2

2)1/2+ε1)/2 

 

 k̃2= ((ε1
2+ε2

2)1/2-ε1)/2 

 

αabs=2*E* k/̃(ħ*c) 

 

R = ((ñ-1)2+ k̃2)/((ñ+1)2+k̃2) 

 

L = ε2/(ε1
2+ε2

2) 

 

where,   ε1 +i ε2  is complex dielectric function,  ñ is refractive index,  k̃ is Extinction 

coefficient,        αabs is absorption coefficient, R is reflectivity, ħ*=6.58211951E-16eVs, 

c=2.99792E8 m/s 

4.2 Energy Band Gap screening : 

 

In our project, we started with calculating different properties of V2O5  to get our hands on 

DFT calculations, and after that, we made a Machine learning model, which screened those 

2D materials, which had a band gap between 1.2 to 1.3. Once the model got trained, it was 

capable of classifying the new datasets, that is, the new 2D materials. The advantage we got 

here due to our Machine Learning model is that, we were able to sort those materials whose 
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band gaps lied between 1.2 to 1.3 eV  very easily, and the model calculated the band gaps of 

material without using any formula. 

To train our model, we took inputs (features) and the labelled output from the material 

database. The problem of converting the input datasets (that is the 2D materials ) into the set 

of numbers called fingerprints was tackled in a unique way. We used already calculated 

results of materials from the material database called C2DB (computational 2D database). 

Instead of converting the materials in some set of numbers, we calculated their wavelengths 

using their energy band gaps, and instead of giving materials as input, we made their 

wavelengths as our input datasets. After that, we trained our model over the input datasets 

(which was wavelengths of materials) and the corresponding outputs (that was the band 

gaps), using K-nearest neighbour algorithm from SKLearn library in python. After the 

model was trained, we gave new datasets as input, that is, we gave wavelengths of new 

material (whose band gaps were not classified) as inputs, which were not involved in 

training the model, and our model classified these new wavelength inputs into two different 

classes. One is where the materials have a band gap between 1.2 to 1.3 eV  and the other 

class is of those materials whose band gap doesn’t lie in this range. So, the output is telling 

us which input material’s band gap lies between 1.2-1.3 eV and which input material lies 

outside of it. Ultimately, we were able to sort our materials, without using any pre-defined 

formula, and just on the basis of the data we entered. The script we used and the scatter plot 

are shown below. 

4.2.1 Importing the data 

 

  
Fig 4.4:  Importing the data 
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Here, we imported the data from our file named Energy_band_gaps_n.csv to our notebook, 

where we were doing all the coding. In the 3rd part, we imported a part of the data using 

data.head() funciton, to see how is it arranged, and how many columns do we have and what 

columns we require. And then in the 4th part, we run a code to check whether there is any 

null value somewhere in any row or ay column. And the output array contains nothing, 

which means there is no null value in our data.   

4.2.2 Calculation of the λ using band gap from database 

 

  

In this code, we have taken the band gap values from the material database file, and we have 

calculated the corresponding lambdas. After doing that, we have classified that the band gap 

values which will lie between 1.2-1.3 eV will return value 1 and the band gap values which 

lie outside this range, will return the value 0. 

 

 

 

Fig 4.5: Converting the Band gap value to wavelength values using formula. 

B 
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4.2.3 Pre-processing or data wrangling:  

 
 

 

In this code, we have done something which is called data wrangling ore pre-processing, in 

which, we analyze the data, and see if it requires any kind of sorting, cleaning or scaling so 

that it can become ready to train the model without hustle and instability.  The first thing 

which we did here, while pre-processing, is that we checked if there are any null values 

inside our data. Because if there is any value of band gap which is zero, then the 

corresponding wavelength will come out to be infinite, and we are to give wavelengths as 

our input. So these data point will become outliers in our dataset. Outliers are those extreme 

instances inside the data which does not follow the general trend within the data and, can 

confuse our algorithm.  So, we removed all the band gap data which were zero. After doing 

that, we checked whether the number of inputs (which are lambdas) and the output (which 

are band gaps) are equal or not. If not, then we have done something wrong while pre-

processing, but if they are equal, then we have done the pre-processing of our data correctly. 

So, at the end of the code, we can see that the number of outputs and inputs which will be 

given as training set, are equal. 

 

 

Fig 4.6: Removing all those datasets which are outliers in our data 
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When we train our model, there are some problems we encounter, and those are bias and 

variance of our model. Sometimes, when we are doing classified supervised learning, and 

have 2 or more classes, the model gets over trained or under trained if the inputs are not 

balanced. That is, for some classes, the model gets many datasets, and for the rest of the 

classes, it gets comparatively few datasets, so the model gets biased towards the class which 

had more datasets, and when we try to predict a class for new input, it classifies it into the 

class which was overtrained, and predicts incorrectly. So before training the model, we must 

balance our training set, and we must make sure that the model gets equal number of dataset 

for each class to train. So, the difference between the actual output and the predicted output 

shows us the bias of the model. If the bias is high, then the model pays less attention to the 

training data and oversimplifies the model, which leads to large error in training and test 

data. 

Whereas, variance is actually the variability of predicted output for a given data input or a 

value which shows us the spread of predicted data. If we have less amount of data, and we 

want to build an accurate model, then we are trying to build a linear model for non-linear 

data. Due to this, underfitting happens and the model is not able to capture the hidden 

pattern inside the data. Such models have high bias and low variance. Similarly, when we 

train our model over a lot of data, even those extreme outlier datasets also, then overfitting 

happens and our model catches the noise along with the hidden pattern of the data. So, we 

must have low bias and low variance to make an accurate model. And for that, we use smote 

oversampling. 

Fig 4.7:  Smote oversampling is used to make the data of both the classes Balanced so 

that there is no bias. 
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 4.2.4 SMOTE Oversampling: 

 

As we have discussed that, imbalance creates bias where the model tries to predict the class 

with majority datasets. And therefore, we have used a technique to overcome this imbalance 

problem called undersampling and oversampling. Undersampling decreases the amount of 

the majority class until the number of inputs is equal to that of the minority class. Whereas, 

oversampling resample the minority class and majority class.  

We used SMOTE technique to oversample our datasets. SMOTE or Synthetic Minority 

Oversampling Technique is a technique of oversampling. In a normal or basic oversampling, 

we create duplicate minority data from minority class population. This increases the number 

of datasets, which have no new information or variance, and is not able to provide variety to 

the model. SMOTE works by using k-nearest neighbour algorithm to create synthetic data. 

First, it selects random data from minority class, then k-nearest neighbours from the data are 

selected. Now the synthetic data is created between random selected data and their random 

k-nearest neighbours. This process is repeated until the minority class has the same 

population as that of majority class. So, in the code in figure 26, the class distribution was 

805 and 27. If we were to feed this as our training and test data, then our model would have 

definitely been biased. So we used SMOTE oversampling, and created synthetic data After 

the oversampling , the class distribution became 805 and 805. 

4.2.5 K neighbours classifier and SKLearn library:  

Fig 4.8: Splitting the data into train and test and, and applying the model 
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In this code,  we used SKLearn library to split our data into test data and train data. Our train 

data will be given to the KNeighbourclassifier, or we can say, to our model, to get trained, 

and once that is done, we will test our model using test data which will act as a new data for 

our model. Now, to classify, we used KNeighbourClassifier from SKLearn library, and we 

gave the tag equals to 1 to those materials whose band gap lies between 1.2 and 1.3 and the 

rest of the materials are given tag equals to 0. The principle of this model is: After the 

splitting of training data and test data is done, the training data is saved inside the memory. 

After this, it calculates the distance which is an iterative process, where it calculated the 

Euclidean distance between the data input in the test dataset and the data points inside the 

training dataset. After this, the model optimizes and chooses a particular k-value which 

decides the number of training data points which will be considered while choosing the class 

of the test data point. Very low k-value makes the model sensitive to the outliers, and very 

high k-value makes the model stable.  After this is done, we need to check how our model 

has performed. For that, we plotted the data.  

4.2.6 Scatter plot of materials with particular band gap: 

 

 

 

 

We gave Green colour to those predicted elements whose Band gap was between 1.2 to 1.3 

and the rest of the elements were given Red colour. And then we plotted these test data, or 

elements, and saw that, the predicted values were matching with the actual values, which is a 

remarkable thing. This shows us that the model is absolutely accurate. We plotted our 

predicted value, with x axis as index, and y axis as the band gap values. 

Fig 4.9: Code for scatter plot. 
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The plot in figure 29 shows a green line which lies between 1 eV and 2 eV. The dots are 

actual output of the corresponding input wavelengths. The green colour shows that these 

outputs are accurately predicted or classified. Because we gave green colour to the class 1 

which was band gap with 1.2-1.3, therefore all the output coming inside this range have been 

classified as green, where as all the elements outside this range were classified with red 

colour, and therefore all the dots outside this particular range are red. 

 

 

 

In the figure 30, we have zoomed the plot, and looking closely between the range 1.2 and 1.3 

eV, there are some red dots as well, which tells us that those particular materials lies 

between 1.2 -1.3 eV but are predicted or classified as materials which lies outside of this 

range (that is why they are red). So our model is not perfect, and have a very few amount of 

materials which are classified incorrectly, but these incorrect predictions are the ones which 

lies near the class 1.  

 

 

Fig 4.10: Scatter plot of 2D materials screened on the basis of band 

gap. 



55 
 

 

 

 

So we calculated the F1 score. 

 

F1 score came out to be 0.9975186, which shows that the model is very accurate, and the 

error is really small. 

 

 

  

Fig 4.11: Zoomed scatter plot, which shows some incorrect predictions. 
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 CHAPTER 5. CONCLUSION SCOPE FOR FUTURE WORK. 

 

 In this project, we have studied Density Functional Theory Machine Learning, and ways to 

apply the Machine Learning into our DFT, thoroughly. We have done DFT calculations of 

two materials to get our hands on DFT simulations as well, and we have made initial 

progress in making a basic machine learning model, which is screening out 2D materials into 

desired band gaps.  Now our next step would be to calculate different properties of different 

ultrathin materials using Density Functional Theory simulations, so that we can make our 

own database of inputs and labelled outputs for training the machine learning model, which 

can replace the function of Kohn-Sham equations mainly used in our DFT computation. 

Once this is done, we will get our hands on deep learning, and neural networks and which 

will be the basic architecture of our model, to replace the Kohn-Sham equations function. 

While solving the problem using neural network, we must know a way to convert our input 

into valid set of numbers, so we will study different descriptors as well, or we might create 

our own, to represent our crystal structure Now that we have seen how our simple machine 

learning model can make things easier for us, we can slowly and consciously apply more 

complex models into our more complex datasets. And can compute the properties of 

different crystal structure with large databases.   
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