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Abstract

Parallel advancements in the fields of system identification and machine learn-

ing have been occurring for years now, but only recently have both the concerned

communities realized how they been have trying to address fundamentally similar

types of problems more often than not. Not only have almost all the major research

fields started exhibiting a significant bias towards machine learning techniques for

solving complex problems, but also a whole new market for machine learning based

technology has emerged with the rise of powerful computer systems.

To summarize the research work done in this thesis, an Artificial Neural Net-

work (ANN)-based approach has been proposed to identify the mechanical properties

an orthotropic composite plate, modelled using Finite Element Analysis (FEA) and

sampled using Latin Hypercube Sampling (LHS), in frequency as well as time do-

main. The two networks employed for the same are Multi-Layer Perceptron (MLP)

and Radial Basis Function Network (RBFN), both of which predict, to a certain

degree of error, the four parameters characteristic of any composite plate: Young’s

moduli in two directions, Poisson’s ratio, and shear modulus. Eventually, frequency

domain identification using the MLP network was accepted as a much superior model

as compared to the RBFN with an accuracy of 2.7% and a training time of less than

7 minutes averaged over the said parameters.

Keywords: System Identification; Finite Element Analysis (FEA); Latin

Hypercube Sampling (LHS); Artificial Neural Network (ANN).
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Chapter 1

Introduction

Even before the term composite was coined, common man, although uncon-

scious of the science behind the remarkable characteristics of composite materials,

had already put them to great use. The blades of Japanese sabers forged from steel

and soft iron showed better resistance to impact as opposed to pure steel swords.

For construction purposes, Israelites reinforced clay bricks with straw as the straw

fibers majorly improved the structure’s strength. Wood was replaced with plywood

by Egyptians for wood frameworks in order to avoid expansion and swelling, to the

maximum possible extent, in extreme thermal and humid conditions.

A composite material is formed when two or more two materials are combined

on a macroscopic level to achieve qualities superior than its constituent materials

(Jones, 1999). Major revolution was seen in automobile, marine and aerospace in-

dustries when composite materials started replacing conventionally reliable materials

such as steel and aluminium. Their great resistance to corrosion, low wear and tear

as well as high strength-to-weight ratio made them exceptional materials to be used

in aircraft and buildings as opposed to traditionally used homogeneous materials.

Composites are tailor-made and are specifically designed for the task at hand.

1



A number of ingredients and recipes can be used to prepare them and for this very

reason, generally, composite materials are both inhomogeneous and orthotropic (or

anisotropic). Not only this, the mechanical properties of composites are signifi-

cantly a↵ected during the manufacturing process and thereafter the properties of

the original composite are altered altogether. This makes the task of determining

the mechanical properties of composites, both e�ciently and accurately, an active

research area in today’s date.

These mechanical properties can be measured using direct methods like ten-

sile test, four-point bending test, or by vibration-based indirect methods which can

be further sub-categorized as follows: classical methods derived from mathemati-

cal statistics, and non-classical methods based on heuristic concepts. Least squares

method, maximum likelihood method and extended Kalman filter method come

under the umbrella of classical methods while evolutionary algorithms such as Par-

ticle Swarm Optimization, and Artificial Neural Networks come under non-classical

methods (Imai et al., 1989; Koh et al., 2003).

Time and again researchers encounter problems where ample amount of input

and output data from a system is known to them but the actual model of the

system is completely unknown. Similarly, above mentioned techniques essentially

use the dynamic response of an unknown system to determine its properties, and

are therefore grouped under a major subject of research, in almost all engineering

and scientific fields, called system identification.

Lying at the intersection of computer science and statistics, machine learn-

ing is one of the most flourishing technical fields nowadays. Image classification,

spam detection, speech recognition, stock market trading, drug discovery and med-

ical diagnosis can be considered as only the tip of the iceberg when it comes to

the applications of machine learning (Witten et al., 2011; Crawford et al., 2015;

Patel et al., 2015; Lavecchia, 2015). Machine learning as a technique has received
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even more impetus in the recent years owing to the increasing data availability and

economical high-speed computational resources.

Not only are the traditionally used classical system identification paradigms

not much reliable for multi-degree-of-freedom systems but also they are computa-

tionally very expensive. Here comes the need to explore this problem using various

non-classical techniques such as hybrid response surface methodology and particle

swarm optimization (Sankar et al., 2014) and convolutional neural networks (Ye

et al., 2019; Abueidda et al., 2019), which have recently proved to be very handy in

predicting the mechanical properties of composite materials. Pillonetto et al. (2014)

have also surveyed machine learning assisted system identification techniques for

linear systems.

The motivation behind the investigation presented in this thesis is given as

follows:

1. When a structure made up of composite materials gets damaged, the mechan-

ical properties of the structure get significantly altered, which in turn alters

the structure’s vibration response. If some reliable techniques are available

to measure these structural properties e�ciently using the vibration response,

countless hazardous situations can be anticipated, and hence avoided. A quick

regular monitoring of these mechanical properties can eliminate such risks

which have the potential of causing major danger to economy as well as life.

2. From the design perspective, it is important to know whether a structure can

withstand certain environmental conditions or not. If the structural proper-

ties are known one can easily calculate the structure’s strength and hence its

breaking point. Again, a good parameter identification technique definitely

assists this process.

3. The classical methods described above are extremely susceptible to converging
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to a local minima instead of a global one because their implementation involves

point-to-point search technique.

The thesis predominantly involves three main objectives:

1. To simulate the response of a composite plate in both frequency and time

domain using Finite Element Analysis (FEA) and Newmark integration, and

then sample the input-output signals using Latin Hypercube Sampling (LHS).

2. To develop two neural network models: Multi-Layer Perceptron (MLP) and

Radial Basis Function Network (RBFN) for system identification of the com-

posite plate. This involves accurate prediction of the following four properties

of any orthotropic composite plate: Young’s moduli in two directions (E1 and

E2), Poisson’s ratio (⌫12), and shear modulus (G12).

3. To compare the performance of the two said models in terms of prediction

accuracy and the computational e↵ort required.

Organization of this thesis has been done in the following manner. The impor-

tance of system identification as a technique and its classification has been discussed

in Chapter 2. In Chapter 3, the entire procedure of modelling a composite plate,

to generate its set of natural frequencies and its forced acceleration response, has

been described in a systematic manner using FEA and Newmark integration. Chap-

ter 4 presents a variety of sampling techniques, out of which the methods for Simple

Random Sampling and LHS have been given in depth. The basic concepts behind

Artificial Neural Networks have been dealt with comprehensively in Chapter 5, and

two networks: MLP and RBFN have been described thoroughly. The whole research

work has been summarized in Chapter 6 along with the results and the future di-

rection. Finally, in Chapter 7 all the important observations and conclusions drawn

from the investigation conducted have been discussed in detail.
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Chapter 2

System Identification

Drawing valuable inferences from the observations made while studying dy-

namic systems have led to revolutionary discoveries in the field of science and tech-

nology over and over again. Right from our childhood, even before we acquire any

knowledge about science and how the nature around us works, we as humans are

accustomed to making observations and most certainly drawing conclusions. It is ba-

sically one of those things which comes without saying. However, in strict scientific

terms, system identification is finding solutions to scientific problems by develop-

ing mathematical models while studying the inputs and the corresponding outputs

of the system under consideration as has been summarised in Figure 2.1. Least

square method is one the earliest forms of system identification techniques. Later

techniques such as maximum likelihood method and extended Kalman filter were

introduced which proved to be much more e�cient than the least square method.

Among the various types of identification problems, there exists a set of

problems where the primary goal is to find the characteristics of an unknown system

and may involve determining one or more parameters of the said system. This

summarises the main objective behind this thesis, which will be more and more
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apparent in the upcoming chapters.

Figure 2.1: Block diagram representation of the process of system identification.

2.1 Stepwise breakdown of methodology

The formal introduction of system identification as major field was done by

the works of Åström and Wittenmark (1995), and Ljung (1987). According to

Lennart Ljung, the system identification procedure predominantly comprises of the

following three steps:

1. Recording the input and output data from the unknown system.

2. Designing a set of appropriate models.

3. Selecting the most e�cient model among the set.

To make it easier to stick to the flow of this thesis, it is extremely crucial

to mention here that these three steps have been realised one after the other in the

forthcoming chapters. To simulate the input and output signals of our dynamic

system, which is the first step, we have used dynamic Finite Element Analysis
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(FEA) along with Newmark integration as given in Chapter 3. Also, sampling of

this input and output data has been done using Latin Hypercube Sampling (LHS)

presented in Chapter 4. The second step above has been realized by designing two

types of Artificial Neural Networks: Radial Basis Function Network and Multi-Layer

Perceptron which have been discussed in Chapter 5. And finally, model e�ciencies

of both the networks have been discussed in Chapter 6.

2.2 Classification of system identification techniques

System identification is categorized into various types: parametric and non-

parametric system identification; black box, white box and grey box system iden-

tification; time domain and frequency domain system identification; classical and

non-classical system identification.

Non-parametric system identification results in curves, tables, etc. which are

characteristic of the system, while parametric system identification involves deter-

mining the system parameters themselves. Although parametric system identifica-

tion is a more accurate and reliable technique as compared to the non-parametric

system identification, it is a lot more computationally expensive as compared to the

later.

In white box system identification, a great deal about the system is known

beforehand for example the underlying equations, etc. whereas in black box sys-

tem identification, no characteristic information of the system is known and the

model is purely derived from the observations made. As obvious, grey box system

identification is a mixture of the two.

When the data provided by the system is in time domain, time domain system

identification is employed, however if observations are made in frequency domain we
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use frequency domain system identification. In time domain, the system’s dynamic

response is used, whereas in frequency domain, modal natural frequencies, modal

shapes and damping ratios of the system are used.

The last category has been already discussed in the introduction which is

classical system identification and non-classical system identification. Slowly but

surely non-classical methods of system identification such as evolutionary algorithms

and neural networks have started replacing the classical methods.
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Chapter 3

Finite Element Analysis (FEA)

Not every system in our surroundings is as simple to understand as a ball

rolling down a hill or a mass hanging from a spring. More or less, all of the systems

that we encounter in our daily lives behave in such a complex manner that it is

rather unreasonable to study them as a whole. A better way to approach such real

life complex problems is to first subdivide them into smaller components, whose be-

haviour is much easier to understand, then use this knowledge about these individual

components’ characteristics to reconstruct our original system, and finally explore

its characteristics as well. This method of simplifying the analysis of such elaborate

systems is called Finite Element Analysis (FEA), or more commonly Finite Element

Method (FEM). It has not only become general practice among scientists nowadays

in almost all engineering and scientific fields, but also is readily used by economists

for modelling purposes.

FEA can be seen as a computational technique which is used to find solutions

to field problems, also called boundary value problems. A su�ciently good solution

of a boundary value problem can be obtained by using finite number of such well-

defined components. This is termed as discretization. With the rise of computers,
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it has become quite convenient to use FEA for modelling complex structures.

In the field of solid mechanics, McHenry (1943), Hrenniko↵ (1941), Newmark

(1949), and Southwell (1946) in the early 1940s were the first to show how an

approximate solution of a continuous problem can be obtained by the discretization

of complex system. However, the first formal introduction to the term finite element

was done by Clough (1960) in his work on complex plane elasticity problems. A

detailed mathematical outline of this method has been presented in the following

sections.

3.1 Stepwise breakdown of methodology

Regardless of the type of system we choose to model, FEA as a technique

majorly involves a few universal steps as are given below:

1. Discretization: The first step is to subdivide the solution space into finite

number of elements. These elements can be of any shape and even the same

solution space can be divided into a variety of shapes.

2. Choosing interpolation function: Next step is to assign nodes to each element

and then select the interpolation function or the shape function which approx-

imates the value of the field variable over an element. Generally, interpolation

functions are chosen to be polynomials because of their simple di↵erentiation

and integration properties.

3. Determining individual element properties: In this step, matrix equations of

individual element properties are determined using either direct approach or

variational approach.

4. Assembling: Finally, the original system is reconstructed by assembling the
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properties of the individual elements it was divided into. This is done by

combining the matrix equations found out in the previous step for individual

element behaviour to form the matrix equations for the entire original system.

5. Applying boundary conditions: Next step is to apply the boundary conditions

of the given problem.

6. Solving equation of the system: In the final step, the equations of the system

are solved. These equations can be linear or nonlinear, algebraic or di↵erential

depending on whether the unknowns are dependent on time or not. Once

solved, the results can be studied in more understandable forms such as plots

and curves.

In this project, FEA has been used to model an in-plane bending rectangular

orthotropic plate and to determine its frequency and acceleration response to an

external sinusoidal force.

Figure 3.1: Slicing and discretization of the composite plate into 4 slices and 16
elements.

The plate was divided into 16 equal elements with each element having 4

nodes and each node having 3 degrees-of-freedom (DOFs) as shown in Figure 3.1.

All the 4 boundaries of the plate were fixed as boundary conditions. This implies

nodes [1, 2, 3, 4, 5, 6, 10, 11, 15, 16, 20, 21, 22, 23, 24, 25] were fixed nodes. Hence, in
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total there were 16 elements, 25 nodes, 75 total DOFs, 16 fixed nodes, 48 fixed

DOFs, and 27 variable DOFs. A brief walk-through of the process of FEA modelling

has been discussed below in a very simple manner:

Algorithm 1: Algorithm for Finite Element Analysis (FEA) of a composite plate.

Input: Values of Young’s moduli in two directions (E1 and E2), Poisson’s ratio

(⌫12), shear modulus (G12), density of the plate (⇢), length of the plate (Lx), width

of the plate (Ly), and thickness of the plate (h).

Output: Frequency response of the composite plate.

1. Discretization of the composite plate is done by constructing a mesh. The

plate is divided into 16 small elements by sectioning the plate into 4 equal

parts in the x-direction as well as in the y-direction. Also, the plate is sliced

in 4 equal parts, each of thickness t along the thickness.

2. An array of dimensions 16⇥4 is constructed where the four entries of each row

(ith row) are the four nodes of the corresponding element (ith element) counted

in anticlockwise direction. For example, the 3rd row for the 3rd element is

[3, 4, 9, 8].

3. Another array of dimensions 25⇥2 is constructed where the two entries of each

row (ith row) are the two length coordinates (x-coordinate and y-coordinate)

of the corresponding node (ith node) with the 1st node considered to be at the

origin. For example, the 3rd row for the 3rd node is [0.121375, 0].

4. Two more arrays of dimensions 1⇥48 and 27⇥1 are constructed. The first array
contains the indices of all the fixed DOFs while the second array contains the

indices of all the variable DOFs. Here, each node is assigned with 3 indices for

the 3 DOFs corresponding to it. These arrays will be used later for simulating

the acceleration response of the plate.

5. This step realizes one of the main results of the FEA modelling which is the

assembly of the global sti↵ness and the global mass matrices [KG] and [MG]

respectively of the plate using the elementary sti↵ness and elementary mass

matrices [Ke] and [Me] (their expanded forms) as given below:

[Ke] =

Z t

z=0

Z ly

y=0

Z lx

x=0

[B]T [Q] [B] dx dy dz ; [KG] =
16X

e=1

[Ke]
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[Me] =

Z t

z=0

Z ly

y=0

Z lx

x=0

[N ]T ⇢ [N ] dx dy dz ; [MG] =
16X

e=1

[Me]

where, [B] is the strain-displacement matrix, [Q] is the constitutive matrix

and [N ] is the shape function.

6. Boundary conditions are applied and the rows and columns corresponding to

fixed nodes in [KG] and [MG] are removed.

7. Natural frequencies and mode shapes of the structure are calculated by solving

the following eigenvalue equation:

([KG]� � [MG])� = 0

where, � is the eigenvalue or the square of the natural frequencies (!2) and �

is the eigenvector or mode shapes.

8. Global damping matrix [CG] is modelled by using Rayleigh damping:

[CG] = a [MG] + b [KG]

where, a and b are Rayleigh damping coe�cients which can be determined

using the following equation at two natural frequencies and taking assumed

damping ratios:

⇠r =
a

2!r
+

b!r

2

where, !r is natural frequency of the rth mode and ⇠r is the assumed damping

ratio.

9. Frequency response of the system (composite plate) is obtained by the follow-

ing equation:

f =
!

2⇡
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3.2 Newmark integration

Newmark integration method, developed by Newmark (1959), is a direct

numerical integration method which implies that the equations are not transformed

into any other form before carrying out the integration. In this method, velocity

and displacement are given by the following equations:

U̇t+�t = U̇t+�t +
h
(1� �)Üt + �Üt+�t

i
�t (3.1)

Ut+�t = Ut + U̇t�t+

✓
1

2
� ↵

◆
Üt + ↵Üt+�t

�
�t2 (3.2)

where, ↵ and � are Newmark integration parameters, and Ut, U̇t and Üt are

the displacement, velocity and acceleration vectors at time t.

Also, along with the above two equations, equation of motion at time t+�t

as given below is also used to reach the solution:

MÜt+�t + CU̇t+�t +KUt+�t = Ft+�t (3.3)

Since the equation of motion (Equation 3.3) is combined with the velocity and

acceleration approximations (Equation 3.1 and Equation 3.2) to find the solution,

Newmark integration method is an implicit technique of direct integration.

This method of integration is unconditionally stable for the following two

conditions:

� � 1

2
; ↵ � 1

4

✓
1

2
+ �

◆2

(3.4)

The most commonly used values for these integration parameters are ↵ = 0.25

and � = 0.5, and the method is called the constant average acceleration method.

To obtain the acceleration response of a composite plate the following system
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of second order linear di↵erential equations need to be solved:

MÜ + CU̇ +KU = F (3.5)

where, M is the mass matrix, C is the damping matrix, K is the sti↵ness

matrix, F is the driving force vector, U is the displacement vector, U̇ = is the

velocity vector and Ü is the acceleration vector of the assembly of finite elements.

To solve this, Newmark integration has been used. A time step of 0.001 s is taken.

Sinusoidal force of 20 sin (2⇡50t) Newton is applied along the z-direction at 13th

node of the composite plate for 6 seconds. Initial displacement and initial velocity

are taken to be zero and the acceleration response of the plate at 14th node along

z-direction is obtained for a time period of 6 seconds. The following algorithm shows

in detail the process of Newmark integration (Bathe, 2006):

Algorithm 2: Algorithm for Newmark integration method.

Input: Mass matrix (M), damping matrix (C), sti↵ness matrix (K) of the dynamic

system, time vector for acceleration response (t), initial displacement vector (Ut=0),

initial velocity vector (U̇t=0), and initial driving force vector (Ft=0).

Output: Final desired acceleration vector (Üt=T ) of the system.

1. Initial calculations:

(a) Form K, M and C matrices.

(b) Initialize U0, U̇0 and Ü0.

(c) Choose appropriate �t, ↵ and � satisfying:

� � 1

2
; ↵ � 1

4

✓
1

2
+ �

◆2

(d) Calculate the following:

a0 =
1

↵�t2
; a1 =

�

↵�t
; a2 =

1

↵�t
;

a3 =
1

2↵
� 1 ; a4 =

�

↵
� 1 ; a5 =

�t

2

✓
�

↵
� 2

◆
;

15



a6 = �t (1� �) ; a7 = ��t

(e) Form e↵ective sti↵ness matrix:

bK = K + a0M + a1C

2. For each time step:

(a) Calculate e↵ective force vector at time t+�t:

bFt+�t = Ft+�t +M
⇣
a0Ut + a2U̇t + a2Üt

⌘
+ C

⇣
a1Ut + a4U̇t + a5Üt

⌘

(b) Calculate displacements at time t+�t:

bKUt+�t = bFt+�t

(c) Calculate accelerations and velocities at time t+�t:

Üt+�t = a0 (Ut+�t � Ut)� a2U̇t � a3Üt

U̇t+�t = U̇t + a6Üt + a7Üt+�t
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Chapter 4

Sampling Techniques

Long before machine learning caught the attention of scientists and proved

its worth for approximating functions, complex problems which are experimentally

impossible to solve, especially fluid flow problems, were solved numerically to get an

approximate solution. Even the calculation of a numerical solution computationally

results in a very complicated code and this code takes several inputs and outputs

to gather enough information required to model the problem much similar to the

training dataset that is provided to a neural network. So, to model the problem

not only should the dataset be a good representative of the function we want to

model, but also it should be small enough for making the code computationally

less expensive. This is called sampling, which in broader terms implies selecting

a smaller subset from a large population so as to make a good statistical estimate

of some desired attributes of the population, and it makes the modelling process

less expensive as compared to using data from the whole population. Several such

sampling techniques have been introduced over the years for selecting these input

datasets as have been presented below.

These sampling methods are generally classified into two types: probability
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sampling or random sampling, and non-probability sampling or non-random sam-

pling. Just as their names suggest, in probability sampling, each individual has an

equal probability to get selected in the sample, making it just a matter of chance,

however, in non-probability sampling, sampling is not performed randomly because

this kind of sampling is expected to study real-life phenomena and not to determine

a statistical estimate of the entire population. Simple random, stratified random,

systematic sampling, cluster sampling, and multi-stage sampling are some random

sampling methods, whereas quota sampling, judgement sampling, snowball sam-

pling, and convenience sampling come under non-random sampling methods.

In the coming sections, two of the most widely used probability sampling

techniques: simple random sampling and latin hypercube sampling, a type of strat-

ified sampling, have been discussed comprehensively.

4.1 Simple Random Sampling (SRS)

Before we try to understand some sampling methods, rather than stating

in layman terms like we did in the beginning of this chapter, an introduction to

some common terms frequently used in literature is called for. A single element

or a group of elements which can provide useful observations is called a sampling

unit. An assembly of all the sampling units at a certain point of time is called the

population. A collection of one or more sampling units chosen from the population

is called a sample. The process of determining a good representative sample from a

population is called sampling.

As has been already mentioned, in simple random sampling method there is

no bias for any sampling unit whatsoever, which gives every sampling unit equal

opportunity to be selected in the sample. However, this method can be again subdi-
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vided into two categories. When choosing a sample of m units out of a population of

M units, one at a time, if the chosen units are never placed back again into the pop-

ulation then it is called SRS without replacement, whereas if each unit after being

chosen is placed back into the population then it is called SRS with replacement.

4.2 Latin Hypercube Sampling (LHS)

To investigate and study an attribute of a population it is extremely impor-

tant to know beforehand whether the population is homogeneous or heterogeneous

with respect to that particular attribute. Also, as already mentioned, to avoid high

computational time while modelling a system it is always advised to keep the sample

size as small as possible. In case the population is homogeneous, SRS can produce a

representative sample with a comparatively smaller sample size, but fails miserably

when it is heterogeneous and the sample size is kept small. The main idea behind

stratified sampling is to divide a heterogeneous population into smaller subpopula-

tions so that each subpopulation, called stratum, is now homogeneous with respect

to the desired attribute, and then the collection of samples generated from each such

stratum will be a representative sample of the whole population.

Latin hypercube sampling was proposed by McKay et al. (1979) in his paper

in which di↵erent sampling methods are compared for sampling input dataset for

creating a mathematical model. LHS is a stratified sampling method which serves

basically as an extension to a Latin square (Raj, 1968) in any number of dimensions.

For one dimension only, to perform LHS, the input cumulative probability

distribution is divided into equal intervals and one and only one sample is randomly

taken from each interval (Figure 4.1(a)) and hence the number of intervals the

distribution is to be divided into is equal to the number of samples required to sample
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the whole population. Similarly, in two dimensions, a Latin square is constructed

which is essentially a stratified square grid with one and only one sample in each row

and in each column (Figure 4.1(b)) making the stratified sample size to be equal to

the number of intervals along any axis.

(a) One-dimensional stratified sampling. (b) Two-dimensional stratified sampling.

Figure 4.1: Stratified sampling in di↵erent dimensions.

Advantage of LHS over random sampling is that we need to use large sample

size in case of random sampling to get a good picture of the input distribution while

in LHS a rather smaller sample size is capable enough to give a good representation

and this in turn reduces the computational time required to build a model by a huge

amount. Monte Carlo simulations, which are popularly used for solving complex

problems statistically, run much faster if the input distribution is sampled using

LHS. An elaborate algorithm for stratified sampling is given below:

Algorithm 3: Algorithm for stratified sampling.

Input: An input dataset which needs to be sampled, minimum and maximum values

of all the parameters of the dataset and the number of strata.

Output: A stratified sample of the input dataset.

1. Divide the population containing M sampling units into j strata. such that:
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(a) no stratum overlaps with any other stratum.

(b) the ith stratum has Mi number of sampling units where i = 1, 2, 3, ..., j

which implies
Pj

i=1 Mi = M .

(c) each stratum is in itself homogeneous with respect to the attribute under

study.

2. Using simple random sampling, generate a sample from each stratum indepen-

dently such that the size of the sample from ith stratum is mi.

3. Generate a collective stratified sample for the whole population of size m =
Pj

i=1 mi, by merging all the individual samples drawn from each stratum.
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Chapter 5

Artificial Neural Networks

(ANNs)

Over the years scientists have thought of several ways to make computers

evolve by experience, that is, to make them learn from data, without relying com-

pletely on hard-coded software designed by humans. They believed that if somehow

computers could be made to achieve even a fraction of human level intelligence, then

they would have the potential to revolutionize the current state of each and every

existing field, be it medical, technical, scientific, industrial, financial, etc. And it has

not been long since their intense belief has started turning into reality owing com-

pletely to the rise of the field of machine learning. The science of making machines

which can automatically learn from experience is called machine learning.

Machine learning has emerged as an amalgamation of a bunch of other fields:

computer science, statistics and probability, biology, control theory, and many more.

The ever growing field encompasses uncountable number of di↵erent algorithms

to model input data: k-means: a clustering algorithm, Support Vector Machines

(SVM): an instance-based algorithm, random forest: an ensemble algorithm, naive
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bayes: a Bayesian algorithm, linear and logistic regression: regression algorithms,

Multi-Layer Perceptron (MLP) and Radial Basis Function Network (RBFN): Arti-

ficial Neural Network (ANN) algorithms, etc.

There is already a lot to talk about machine learning concepts, however it

must be briefly mentioned that machine learning techniques are broadly classified

into three categories: supervised learning, unsupervised learning and reinforcement

learning. While in supervised learning the model trains on a labelled dataset, in

unsupervised learning a dataset without any labels is provided to the model for

training. Reinforcement learning is when a model learns to maximize its reward by

taking appropriate measures in complex circumstances.

At present, while working with extremely complex datasets, one of the most

widely preferred machine learning frameworks are Artificial Neural Networks (ANNs),

simply because their architecture is such that it allows them to recognize complex

patterns in the dataset pretty accurately, eventually leading to much precise predic-

tions of real-valued as well as discrete-valued data, as compared to other frameworks.

The term neural network came from the numerous studies conducted to un-

derstand the mathematics behind the information processing in a nervous system

(McCulloch and Pitts, 1943; Rosenblatt, 1962). A nervous system can be funda-

mentally defined as a densely-connected network of neurons, and this particular

definition makes it somewhat analogous to the modern day neural network. The

thought of being able to replicate a biological system was quite fascinating on its

own, and was solely enough to make the study of neural networks gain the much

required momentum in the beginning. Although, artificial neural networks have not

evolved enough to be capable of performing all the complex functions of a neurolog-

ical system, they already have countless real life applications in today’s date.
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5.1 Maximum Likelihood Estimation (MLE)

A very accurate definition for what learning means for a computer program

has been presented by Mitchell (1997) in his book: “A computer program is said

to learn from experience E with respect to some class of tasks T and performance

measure P , if its performance at tasks in T , as measured by P , improves with

experience E”. For example, for a binary image classification problem with two

classes: cats and dogs, the task T is to identify whether a given image is of a dog

or a cat, performance measure P can be the fraction of images correctly recognized,

and the experience E is a collection of labelled cat and dog images.

Although the performance of a machine is evaluated simultaneously along

with the learning process, the data used for the two tasks should not be the same,

but should be drawn from the same distribution. The dataset used for learning is

called the training data while the one used to evaluate performance is called the

testing data. The primary role of the machine is to fit unseen data accurately.

This is called generalization. For the machine to generalize over the testing data

it is extremely important to assume the complete dataset to be independent and

identically distributed (i.i.d.) which means that all the data points in the dataset

are drawn independently and are from the same distribution (Bishop, 2006). In this

case the probability of our i.i.d dataset X = (x1, x2, ..., xN)
T with N number of data

points all drawn from a Gaussian distribution with mean µ and variance �2 can be

given as:

p
�
X|µ, �2

�
=

NY

n=1

N
�
xn|µ, �2

�
(5.1)

Random variables can be drawn from a number of di↵erent distributions such

as bernoulli, exponential, uniform, normal, etc. Each such distribution has its own

set of parameters, for example, a normal distribution has two parameters mean µ and

variance �2. While understanding the key concepts of statistics it is generally made
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clear that the variables have been drawn from a particular distribution and hence

the distribution’s parameters are known, as has been done above for explaining the

i.i.d assumption. However, vaguely speaking, in machine learning problems, instead

of random variables we have a dataset generated from an unknown distribution

with unknown parameters, and the solution to such problems are this distribution’s

parameters. The two most popularly used methods to find these parameters are:

Maximum Likelihood Estimation (MLE) and Maximum a Posteriori (MAP) given

that all the data points are i.i.d. samples.

To fully understand the main idea behind MLE, the di↵erence between prob-

ability and likelihood should be clear. Let X be a data of N i.i.d. samples:

X1, X2, ..., XN . Likelihood is the joint probability of the data if the data belongs to

a discrete distribution whereas it is the joint probability density of the data if the

distribution is continuous. Since all the samples are i.i.d., the likelihood of our data

given parameters ✓ is given by the product of the likelihood of each individual data

point:

L (✓) =
NY

i=1

p (Xi|✓) (5.2)

which is a basically a generalized representation of Equation 5.1. Now that

finally the likelihood of the data has been framed as a function of ✓, the MLE

method can be defined as the process of the finding the parameters (✓) from a set of

allowed values (⇥) which maximize the likelihood function L (✓) because the correct

parameters ✓̂ as given below will make the data much more probable as compared

to incorrect parameters:

✓̂ = argmax
✓2⇥

L (✓) = argmax
✓2⇥

NY

i=1

p (Xi|✓) (5.3)

To avoid the problem arithmetic underflow because of very small values of

likelihood, the monotonically increasing property of the logarithm function is taken

advantage of and instead of maximizing the likelihood, the log likelihood is maxi-
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mized as both give the same value of ✓:

✓̂ = argmax
✓2⇥

logL (✓) = argmax
✓2⇥

l (✓) = argmax
✓2⇥

log
NY

i=1

p (Xi|✓)

= argmax
✓2⇥

NX

i=1

log p (Xi|✓)

(5.4)

where, l (✓) is the log likelihood function. This is crux of almost all machine

learning algorithms. The maximization this log likelihood function can be posed as

an optimization problem which will discussed in the coming sections.

5.2 Gradient descent: An optimization technique

The maximum of the log likelihood can at times be found analytically:

r✓l (✓) = 0 (5.5)

However, in the majority of cases, there exist no closed-form solution to

the above equation and in such cases the most frequently used method to find the

correct parameters is gradient ascent. For a function f , the gradient r✓f (✓) gives

the direction in which the function increases most quickly and shows steepest ascent

and for obvious reasons, �r✓f (✓) gives the direction of steepest descent. This

property of gradient has been used to formulate the iterative method of gradient

ascent where on tth iteration ✓ is updated as follows:

✓(t) = ✓(t�1) + ↵ (t)r✓l (✓) (5.6)

where, ↵ is a small positive value which determines the step size of each

iteration and is called the learning rate. The positive sign implies that we are

maximizing our function. But in practice, rather than maximizing the log likelihood

function, another function called the cost function which can be derived easily using
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MLE in some cases, is minimized to determine the correct parameters and this

method is appropriately named as gradient descent. The terms: cost function, loss

function and error function are used alternatively in case of neural networks. The

learning rule for gradient descent is:

✓(t) = ✓(t�1) � ↵ (t)r✓J (✓) (5.7)

where, J (✓) is the cost function. As already mentioned, the fact that�r✓f (✓)

gives the direction of steepest descent of a function f makes this learning rule feasi-

ble. Both of these techniques: gradient ascent of log likelihood and gradient descent

of cost function coincide with each other and can be used alternatively to provide the

solution. The cost function depends on the type of machine learning problem. Till

now, a generalized approach has been followed to understand how a machine learns

from data but since a regression problem has been solved in this thesis, the cost

function for regression and its minimization in the case of neural networks has been

discussed in detail in the upcoming sections of this chapter. Before that, mentioning

some advanced optimization algorithms seems much more appropriate as has been

done in the next section.

5.3 Advanced optimization techniques

Training a neural network is a highly iterative procedure as it takes a large

number of small iterations to attain a good prediction. In general to achieve good

results huge training datasets are used which undoubtedly make the training pro-

cess very slow. Hence, a continuous search for faster optimization algorithms exists.

Although the standard gradient descent optimization works well for a lot of regres-

sion as well as classification problems and in most cases does reach a global or a

local minima, however since the neural network model has to go through the entire

training dataset before taking a small little step of gradient descent, it is a highly
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time consuming optimization algorithm.

To overcome this limitation, a modified version of gradient descent called

Stochastic Gradient Descent (SGD) has been proposed in which the weights of the

neural network can be either optimized after each training sample or after a few

training samples. Because of this, many updates are performed before processing

the whole training dataset and hence the network trains a lot faster. Mathematically,

the learning rule can be written as:

✓(t) = ✓(t�1) � ↵ (t)r✓Jm (✓) (5.8)

where, Jm is the cost function computed for only m number of samples,

instead of the entire dataset. If the weights are updated after each sample, the

updates become very noisy, however, if the training dataset is divided into small

batches of some fixed size, called the batch size, and the weights are optimized after

the model processes all the samples in a single batch, then the noise issue gets

eliminated and this particular method is referred to as mini-batch gradient descent.

One major disadvantage of SGD with batch size = 1 is that because of regular

updates after each training sample the computational time that could have been

saved by doing vectorization of training samples is completely nullified.

Therefore, for a training dataset of size M , a batch size (m) of somewhere

between m = 1, and m = M is chosen, where the second case is of standard

gradient descent. Also, it is extremely important to randomly shu✏e the entire data

before doing SGD to avoid poor convergence in case the data is ordered in a specific

manner. SGD is almost always used as it provides a much faster convergence rate as

compared to the standard GD by minimizing unnecessary computations caused due

to possible redundancy in the dataset. Not only this, since huge datasets are used

for training neural networks, computing the cost function as well as the gradient for

the entire dataset may cause insu�cient memory issues in a single machine which
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SGD eliminates completely.

(a) batch size = 1, Xn represents one training sample.

(b) batch size = m, X{n}
represents one training mini-batch.

(c) batch size = M , X represents the entire training dataset.

Figure 5.1: Block diagram representation of how weights are updated in case of
Stochastic Gradient Descent (SGD) with di↵erent batch sizes.

Optimization algorithms with even better performance use the concept of

exponentially moving average (EMA), also called exponentially weighted moving

average (EWMA). In layman’s terms, it is simply a method of smoothening noisy

data. Scientifically speaking, bias-corrected EMWA v(t) at time t of a time series ✓

is given by:

v(t) =
�v(t�1) + (1� �) ✓(t)

(1� �t)
(5.9)

where, ✓(t) is the value of our data at time t, v(0) is taken to be zero, and �

is a coe�cient whose value lies between 0 and 1. A value of � closer to 1 gives a

greater smoothening e↵ect. The denominator on the right hand side of the above

equation is introduced for bias-correction purposes, that is to avoid low values of

EWMA at the beginning of the time series.

To boost up the performance of SGD even further it can be coupled with

a technique called momentum (Polyak, 1964). In SGD with momentum, first the
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EWMA of the gradient of the cost functionr✓Jm (✓) is calculated using Equation 5.9

and this average is then used to update the weights.

v(t) = �v(t�1) + (1� �)r✓Jm (✓) (5.10)

✓(t) = ✓(t�1) � ↵v(t) (5.11)

Sometimes to avoid a redundant constant, the above two equations are writ-

ten as:
v(t) = �v(t�1) + ↵r✓Jm (✓) (5.12)

✓(t) = ✓(t�1) � v(t) (5.13)

Here, there is no need to do bias-correction because within a few iterations the

EWMA gets to the desired value. This SGD enhancing technique called momentum

is computationally inexpensive and leads to a quicker convergence by smoothening

out the oscillations of the steps of SGD.

At this point, it is important to discuss two more optimization algorithms:

Root Mean Square Propagation (RMS Prop) and Adaptive Moment Estimation

(ADAM) proposed by (Tieleman and Hinton, 2012) and (Kingma and Ba, 2014)

respectively. These two have gained much popularity over time, mainly because they

have been found to be e↵ective for a wide range of problems. For RMS Prop, EWMA

of the square of r✓Jm (✓) is calculated and the weights are updated accordingly:

s(t) = µs(t�1) + (1� µ) (r✓Jm (✓))2 (5.14)

✓(t) = ✓(t�1) � ↵
r✓Jm (✓)p
s(t) + ✏

(5.15)

where, ✏ is an extremely small positive number which avoids the algorithm

from running into numerical instability for values of s(t) very close to zero.

To combine the advantages of both RMS Prop and SGD with momentum,
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ADAM optimizer was designed. For this algorithm we calculate EWMA of both

r✓Jm (✓) and its square. The first one is to account for SGD with momentum and

the second one is from RMS Prop. Also, unlike the previous optimizers, in the

original algorithm of ADAM, bias-corrected EWMA has been used. The learning

rule for ADAM is given below:

v(t)corr =
�v(t�1) + (1� �)r✓Jm (✓)

1� �t
(5.16)

s(t)corr =
µs(t�1) + (1� µ) (r✓Jm (✓))2

1� µt
(5.17)

✓(t) = ✓(t�1) � ↵
v(t)corrq
s(t)corr + ✏

(5.18)

where, v(t)corr and s(t)corr are the corrected EWMAs of r✓Jm (✓) and its square

respectively.

To summarize the advantages of all the advanced optimizers discussed, as

compared to the vanilla SGD without momentum, a popularly used analogy is of

a ball rolling down a hill, where the hill surface represents the cost function and

therefore, the bottom of the hill represents the minimum value of the cost function,

and the rolling of the ball downhill vaguely represents the model learning process. In

SGD with momentum, in the beginning the ball starts rolling down in the direction

of the gradient of the cost function, but once it gains some velocity it no longer

follows the path of steepest descent as its momentum forces it to continue in the

previous direction. This slows down learning in the directions in which gradient

is oscillating and speeds it up in the directions where gradient remains relatively

consistent. Whereas, in RMS Prop, the ball slows down in the directions along

which the ball has already taken a significant number of steps, and speeds up in the

directions along which the ball has taken only a few steps. Both of these qualities
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significantly improve the optimization process, but inevitably, the learning e�ciency

gets enhanced even more when both are combined as in the case of the ADAM

optimizer.

5.4 Perceptron: A single layer neural network

The building block of almost all existing neural networks is called the percep-

tron. The perceptron algorithm was presented by Rosenblatt (1962) and was later

implemented in both hardware as well as software. By convention, while counting

the number of layers in a neural network the input layer is not added up, hence, a

perceptron is simply a single layer neural network which outputs a single real value

when a vector of real numbers x = {x1, x2, ..., xN} is given as an input (Figure 5.2).

Figure 5.2: The building-block of neural networks, perceptron.

A function called the activation function (f) plays a key role in determining

the output of the perceptron or neuron. These activation functions will be discussed
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in detail in the next section. Mathematically speaking, the perceptron attaches

di↵erent weights (w = {w1, w2, ..., wN}) to each value of the input vector and de-

termines a constant called the bias (b) to finally perform the following operation to

get the output:

y = f

 
NX

i=1

(wixi) + b

!
(5.19)

In the original paper, this activation function was taken to be the step func-

tion such that the output of the perceptron could be either +1 or �1:

f (a) =

8
>><

>>:

+1, a � 0

�1, a < 0

(5.20)

A perceptron can learn to determine an appropriate weight vector and a

constant bias in several ways, one of which is called the perceptron rule. Before

that, consider the bias of the perceptron to be a weight itself corresponding to

an additional entry of input vector equal to 1 as given in Figure 5.2. Hence, the

input vector now becomes x = {x1, x2, ..., xN , 1} and the weight vector becomes

w = {w1, w2, ..., wN , b}.

To understand this rule take an example of a supervised binary classification

problem with one class represented by +1 and the other by �1. Hence, the input

will be a matrix of dimension: M ⇥ (N + 1) where M is the number of training

samples and N is length of each training sample vector also called the input feature

vector, whereas the output will be a matrix of dimension M ⇥ 1 in which each entry

can be either +1 or �1. The weights are initialized randomly in the beginning. Each

row of the input matrix, representing a single sample, is provided as input to the

perceptron one by one and the output of the perceptron is compared with the actual

output matrix entry. The weights are updated whenever the perceptron misclassifies

a sample and this process is continued till the perceptron classifies majority of the
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samples correctly. The update rule of the weights is given by:

wi  wi + ↵ (y � ŷ) xi (5.21)

However, it did not take much time before people started noticing the lim-

itations of the perceptron model. Minsky and Papert (1969) gave a very clever

demonstration as to how a perceptron with a single neural unit is only suitable

for linearly separable classes and can never solve the XOR problem. Later, it was

demonstrated how e�ciently the XOR problem can be solved by just adding one

more layer of neural units to our vanilla perceptron model. For a neural network

to learn more complex patterns and structures in a dataset, more layers with more

number of neurons per layer are required. Thus, began the era of Multi-Layer Per-

ceptron (MLP).

5.5 Multi-Layer Perceptron (MLP)

Multi-layer Perceptron (MLP) is a class of feed-forward neural networks

which, undoubtedly, is the most extensively used one in today’s date. In a feed-

forward neural network, perceptrons are arranged in multiple layers, each layer con-

sisting of several perceptrons. The first layer takes in the input and the last layer

produces the output, whereas the layers in the middle are completely disconnected

from the surroundings, and therefore are appropriately named as the hidden layers.

The name feed-forward comes from the fact that in such a network each neuron of a

particular layer is connected to every other neuron of the next layer but there exists

no connections between neurons of the same layer. This allows the transformed

input signal to be fed forward through all the layers.

MLPs can be customized a lot depending upon the problem at hand, not

only can they have any number of hidden layers more than one, but also one has
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a wide variety of non-linear activation functions to choose from in case of an MLP.

Traditionally, before the Rectified Linear Unit (ReLU) came into the picture, sig-

moid and tanh were the most popularly used activation functions in neural networks

(Figure 5.3). The hyperbolic tangent function ranges from �1 to +1 while the sig-

moid function also called the logistic function ranges from 0 to +1. However, both

of these activation functions made the neural network su↵er from the problem of

vanishing gradients.

Figure 5.3: Di↵erent types of activation functions used in neural networks.

During backpropagation, the cost function gradient is propagated backward

from the output layer to the input layer, as will be more clear when we talk about

backpropagation, so that after updating its weights, the model improves and makes

lesser error. If either tanh or sigmoid or both are used as activation functions in a

network with many layers, this error gradient diminishes significantly by the time

it reaches close to the input layer. This is because at very large or at very small

values of x the derivative or the slope of these activation functions becomes very

small as can be seen in Figure 5.3. This makes it rather di�cult for the network to

update its weights quickly and the gradient descent process of the entire network

slows down.

Output of ReLU function is the input itself if the input is positive and zero if

35



the input is negative. It solves our problem of vanishing gradients pretty e�ciently

as its derivative is either 0 or 1. ReLU has become the default activation function

for neural networks nowadays, in some cases hyperbolic tangent is still used but

sigmoid on the other hand is hardly used. Few other activation functions are Leaky

ReLU and linear activation functions.

The functioning of a feed-forward neural network can be studied in three

segments namely: forward propagation, backward propagation and optimization.

In this section, a three layer MLP for regression will discussed in detail from this

point onward, since the same has been used for system identification of a composite

plate.

In Figure 5.4, a three layer MLP is drawn where each bubble represents one

unit of the network. Let nl be the number of layers, Ll be the layer l. Also, for one

training sample, let W (l)
ij be the weight for the connection between unit j in layer l

and unit i in layer l + 1, b(l)i be the bias associated with unit i in layer l + 1, xi be

the ith entry of input feature vector of size N0, Nl be the number of units in layer l

excluding the bias unit, a(l)i be the output of unit i in layer l, z(l)i be the weighted

sum of the inputs to unit i in layer l including the bias, and h(x) be the single

valued output for regression. Also, for simplicity, let input layer be considered as

the layer 0. After vectorization, all the above values for a single training batch (x,y)

of size m, where each column represents one sample, can be compactly represented

by: W (l) and b(l) as the weight matrix and the bias vector, connecting layer l with

layer l + 1, respectively, z(l) as the weighted sum matrix input to the layer l, x as

the input matrix, y as the actual output vector, h(x) is the predicted output vector

for a batch size of m samples, and a(l) as the output of layer l.
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Figure 5.4: Three layer Multi-Layer Perceptron (MLP).

(1) Forward propagation: For a single training batch (x,y), a forward

pass through network is mathematically represented as:

z(1) = W (0)a(0) + b(0) = W (0)x+ b(0) (5.22)

a(1) = f(z(1)) (5.23)

z(2) = W (1)a(1) + b(1) (5.24)

a(2) = f(z(2)) (5.25)

z(3) = W (2)a(2) + b(2) (5.26)

h(x) = a(3) = z(3) (5.27)

where, f is the activation function used in the hidden layers. In this thesis,

the activation function for both the hidden layers is taken to be ReLU. Also, it is

important to mention that since regression is being performed the output layer has

no activation function.
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(2) Backward propagation: The most widely used cost function used for

regression problems is Mean Squared Error (MSE). In this network, for a training

batch (x,y), MSE cost function without any regularization term for some particular

values of W and b is given by:

J(W , b) =
1

m
(h(x)� y)T (h(x)� y) (5.28)

As already explained in Section 5.2, the main objective here is to minimize

this cost function which can be done using SGD, but before that the partial deriva-

tives of the cost function with respect to all the network weights and biases should

to be calculated. For each unit i in each layer l except the input layer and for one

sample only, define �(l)i representing how much that particular unit contributes to

any error in the output. In a compact manner, �(l) will denote the error term for a

whole layer l for a single training batch (x,y). Using the chain rule we can derive

the following:

�(3) =
@J(W , b)

@z(3)
=

@J(W , b)

@h(x)
=

2

m
(h(x)� y) (5.29)

�(2) =
@J(W , b)

@z(2)
=

@J(W , b)

@z(3)

@z(3)

@z(2)
= �(3) @

@z(2)

�
W (2)f(z(2)) + b(2)

�

=
⇣�

W (2)
�T

�(3)
⌘

· @f(z(2))

@z(2)

(5.30)

�(1) =
@J(W , b)

@z(1)
=

@J(W , b)

@z(2)

@z(2)

@z(1)
= �(2) @

@z(1)

�
W (1)f(z(1)) + b(1)

�

=
⇣�

W (1)
�T

�(2)
⌘

· @f(z(1))

@z(1)

(5.31)

where, (·) represents element-wise multiplication. Now, the partial deriva-

tives of the cost function with respect to the weights and bias of each layer can be
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given by:

�W (2) =
@J(W , b)

@W (2)
=

@J(W , b)

@z(3)

@z(3)

@W (2)
= �(3) @

@W (2)

�
W (2)a(2) + b(2)

�

= �(3)(a(2))T

(5.32)

�W (1) =
@J(W , b)

@W (1)
=

@J(W , b)

@z(2)

@z(2)

@W (1)
= �(2) @

@W (1)

�
W (1)a(1) + b(1)

�

= �(2)(a(1))T

(5.33)

�W (0) =
@J(W , b)

@W (0)
=

@J(W , b)

@z(1)

@z(1)

@W (0)
= �(1) @

@W (0)

�
W (0)x+ b(0)

�

= �(1)(x)T
(5.34)

�b(2) =
@J(W , b)

@b(2)
=

@J(W , b)

@z(3)

@z(3)

@b(2)
= �(3) @

@b(2)
�
W (2)a(2) + b(2)

�
= �(3)

(5.35)

�b(1) =
@J(W , b)

@b(1)
=

@J(W , b)

@z(2)

@z(2)

@b(1)
= �(2) @

@b(1)
�
W (1)a(1) + b(1)

�
= �(2)

(5.36)

�b(0) =
@J(W , b)

@b(0)
=

@J(W , b)

@z(1)

@z(1)

@b(0)
= �(1) @

@b(0)
�
W (0)x+ b(0)

�
= �(1) (5.37)

(3) Optimization: If all of the parameters are initialized as zeros, every

hidden layer neuron of the network will learn the same function of the input, hence,

before training is commenced, weights and biases are all initialized randomly. This

breaks the so-called symmetry. The weights and bias of any layer l are updated as

follows:

W (l)  W (l) � ↵ �W (l) (5.38)

b(l)  b(l) � ↵ �b(l) (5.39)

These three steps are repeated m times for the entire training set to complete

one epoch. Although the training process discussed here uses standard SGD without

momentum, any one of the advanced optimization algorithms can be used as given
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in Section 5.3.

5.6 Radial Basis Function Network (RBFN)

Originally, Radial Basis Functions (RBFs) provided a simple yet e↵ective

approach to exact function interpolation for functions depending on two or more

variables, called multivariate functions (Micchelli, 1986; Powell, 1987). An RBF is

basically a function of the Euclidean distance between the input x and a fixed point

cj called the center of the RBF.

�j(x) = h(kx� cjk) (5.40)

For a set of input vectors {x1,x2, ...,xN}, and the corresponding set of
target scalars {yi, y2, ..., yN}, a function f which can fit all the data points, such

that the equation yn = f (xn) is satisfied for every (xn, yn) pair, can be expressed

as a linear combination of RBFs with each RBF having a di↵erent center:

f (x) =
NX

n=1

Wn�(kx� xnk) (5.41)

where Wn is the weight associated with a single RBF with center xn. These

weights can be very easily determined using the method of least squares which makes

the model exactly fit the given data but simultaneously leads to the major issue of

overfitting, where the models fails to generalize over unseen data (Bishop, 2006).

There are numerous types of RBFs and a few of them and their plots (Fig-

ure 5.5) are given below for one-dimensional input space:

Gaussian: � (x) = e�
x2

r2 (5.42)

Multi-quadric: � (x) =

r
x2

r2
+ 1 (5.43)
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Inverse multi-quadric: � (x) =
1q

x2

r2 + 1
(5.44)

Cauchy: � (x) =
1

x2

r2 + 1
(5.45)

where, r is a scalar called the spread of the RBF which determines how fast

the function decays to zero as one moves away from the centre of the RBF.

Figure 5.5: Di↵erent types of Radial Basis Functions for one-dimensional input
space.

Broomhead and Lowe (1988) were the first to develop a feed-forward non-

linear Radial Basis Function Network (RBFN) with explicit fitting and optimization

procedure. They also explained how the neural network training is synonymous to

solving a set of linear equations and similarly how generalization is analogous to data

interpolation between the training data points. Since RBFs were already established

functions used for solving interpolation problems in high dimensional spaces, as ex-

plained above, considering them useful as activation functions for neural networks

seemed to be a reasonable choice for modelling complex non-linear relationship be-

tween inputs and outputs.

Originally, RBFNs are two layer neural networks, consisting of only a single

hidden layer. The activation functions of the hidden layer neurons are individually
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centered RBFs. Among others, the most commonly used RBF activation function

for RBFNs is the Gaussian RBF (Equation 5.42). A major contrasting characteristic

of an RBFN as compared to an MLP is that in RBFN the input and the hidden

layer are weightlessly connected, and only the connections between the hidden layer

and the output layer are weighted.

Figure 5.6: Radial Basis Function Network (RBFN).

In Figure 5.6, the activation function of each unit j of the hidden layer is

taken to be a Gaussian RBF having spread rj, and center vector cj which has the

same length as that of a single input training sample xi, which is N0. Just as in

the case of MLP, here too a(l) and z(l) give the output of, and the input to layer

l, respectively. W (l) and b(l) are the weight matrix and the bias vector, connecting

layer l with layer l+ 1, and there exists only one set of these W (1) and b(1) in case

of RBFN. Let c and r be the vectorized centroids and spreads of the whole hidden

layer. Also, x is the input matrix, y is the actual output vector, and h(x) is the

predicted output vector for a batch size of m samples.

So basically, unlike MLP, in RBFN four parameters: W and b, c and r, need
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to be calculated or optimized. To determine the centroids, clustering algorithms,

such as k-means clustering are used. The number of neurons in the hidden layer

define the number of clusters that the training dataset needs to be divided into,

which is actually a design parameter. The centers of all these clusters form the

centroids of the hidden layer RBF neurons.

Now to determine the RBF spreads of the hidden layer neurons, k-nearest

neighbour heuristic is used and for each RBF neuron centroid cj , k nearest RBF

neuron centroids are determined. Finally to calculate the spread rj we use:

rj =

vuut1

k

KX

i=1

(cj � ci)
T (cj � ci) (5.46)

where, ci is the centroid of one of the k nearest neighbors of the centroid

cj . Since matrix c and vector r can now be assembled using vectorization, the only

thing left is to determine the hidden layer weights and bias which has been already

discussed in detail for an MLP, so keeping it brief, the three steps are:

Forward propagation: A complete pass through the whole network for a

training batch (x,y) looks like:

z(1) = x (5.47)

a(1) = f(z(1)) (5.48)

z(2) = W (1)a(1) + b(1) (5.49)

h(x) = a(2) = z(2) (5.50)

where, f is the Gaussian RBF activation functions of the hidden layer. Here

again it is important to mention that there is only one unit in the output layer

because we are performing regression in this thesis.

Backward propagation: The cost function used here too is MSE given in
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Equation 5.28. For calculating the derivative of the cost function with respect to

W and b, let �(l) be the error term for layer l for a single training batch (x,y), and

now using the chain rule:

�(2) =
@J(W , b)

@z(2)
=

@J(W , b)

@h(x)
=

2

m
(h(x)� y) (5.51)

where, (·) represents element-wise multiplication. Now, the partial deriva-

tives of the cost function with respect to the weights and bias of the hidden layer

can be given by:

�W (1) =
@J(W , b)

@W (1)
=

@J(W , b)

@z(2)

@z(2)

@W (1)
= �(2) @

@W (1)

�
W (1)a(1) + b(1)

�

= �(2)(a(1))T

(5.52)

�b(1) =
@J(W , b)

@b(1)
=

@J(W , b)

@z(2)

@z(2)

@b(1)
= �(2) @

@b(1)
�
W (1)a(1) + b(1)

�
= �(2)

(5.53)

(3) Optimization: After randomly initializing weights and bias, the model

can be updated as:

W (1)  W (1) � ↵ �W (1) (5.54)

b(1)  b(1) � ↵ �b(1) (5.55)

Repeating these steps m times will complete one epoch. For this thesis,

ADAM optimizer has been used instead of standard SGD.
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Chapter 6

Results and Discussion

Before jumping to the results and the subsequent discussion, it is important

to describe the proposed setup in depth. An orthotropic composite plate has four

independent material properties: E1 and E2 (Young’s moduli in two directions), ⌫12

(Poisson’s ratio), and G12 (shear modulus). To accomplish the final objective of

this thesis, which is to use machine learning techniques for system identification of a

composite plate, the very first step is to successfully generate the frequency as well

as the acceleration response of the composite plate for a set of these four parameter

values.

The algorithms for Finite Element Analysis of the composite plate (Algorithm

1) as well as for the Newmark integration method (Algorithm 2) were implemented in

python using the numpy library. For system identification, a carbon fiber reinforced

epoxy in-plane bending orthotropic plate was considered. The plate had a length

(Lx) of 0.5m, width (Ly) of 0.5m, thickness (h) of 0.005m and density (⇢) of

1846 kgm�3.

Recapitulating the thorough discussion done on the modelling process in

Chapter 3, the composite plate was divided into 16 equal elements as shown in
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Figure 3.1 and the boundary nodes [1, 2, 3, 4, 5, 6, 10, 11, 15, 16, 20, 21, 22, 23, 24, 25]

were kept fixed. A single node had 3 degrees-of-freedom (DOFs) and there were 4

nodes in each element. Altogether, the plate consisted of 16 elements, 25 nodes, 75

total DOFs, 16 fixed nodes, 48 fixed DOFs, and 27 variable DOFs. A sinusoidal

force of 20 sin (2⇡50t) Newton was applied along the z-direction on the 13th node of

the plate for 6 s and the acceleration values of the 14th node were recorded for these

6 s for a time step size of 0.001 s. The plot in Figure 6.1 shows the acceleration

response of the 14th node for two di↵erent sets of parameters for the first 0.6 s.

Figure 6.1: Acceleration response of the composite plate for two sets of parameter
values for the first 0.6 s.

The first five natural frequencies for the parameter values [5.17⇥1010 Nm�2,

5.38 ⇥ 109 Nm�2, 2.85 ⇥ 10�1, 5.16 ⇥ 109 Nm�2] were observed to be: [2843.04,

2631.54, 2520.79, 2006.57, 1880.22].

To choose an appropriate technique to sample a dataset, for any machine

learning model to learn upon, is as important as the model itself. For this purpose,

a stratified sampling technique called Latin Hypercube Sampling (LHS) has been

employed because of its obvious advantages over Simple Random Sampling as given
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in Chapter 4. Again, python’s numpy library was used to develop a code for LHS

(Algorithm 3).

Two datasets of sample sizes 2K and 200K were simulated with minimum

parameter values [50⇥ 109Nm�2, 5⇥ 109Nm�2, 0.25, 2⇥ 109Nm�2] and maximum

parameter values [150⇥ 109Nm�2, 10⇥ 109Nm�2, 0.45, 8⇥ 109Nm�2], where each

entry represents one of the following parameters: E1, E2, ⌫12, and G12 respectively.

Both of these datasets individually contain three matrices: first one is an s⇥4 matrix

P for the parameter values, second one is an s ⇥ 27 matrix F for the frequency

response and the last one is an s ⇥ 6001 matrix A for the acceleration response, s

being the sample size.

Finally, two Artificial Neural Network classes were designed: a three layer

MLP (Figure 5.4) and a two layer RBFN (Figure 5.6), both mathematically de-

scribed in detail in Chapter 5, using the highly equipped pytorch library of python.

The four parameters were modelled using four di↵erent networks to provide more

flexibility for hyperparameter tuning while training. Each of the four columns of

the matrix P described above serve as the four output vectors for the four said net-

works, matrix F is used as input vector for frequency domain system identification

and matrix A is the input matrix when identification is done in time domain.

All the input and output matrices were normalized using the min-max nor-

malization method given in the python’s sklearn library. Each output matrix column

was normalized to the range [0, 1] (Equation 6.1) while each column of both the input

matrices was scaled to the range [�1,+1] (Equation 6.2):

X 0 =
X �min(X)

max(X)�min(X)
(6.1)

X 0 = 2


X �min(X)

max(X)�min(X)

�
� 1 (6.2)
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where, min(X) and max(X) are the minimum-valued and the maximum-

valued entries of a single column, X is the vector of original entries of a column and

X 0 is the normalized column.

Talking about the network characteristics, for MLP the first hidden layer

was assigned 20 neurons while the second one had 10 neurons. And for RBFN,

300 neurons were assigned to its single hidden layer. The cost function used was

MSE loss and the optimization algorithm used for updating the network weights

and biases was ADAM optimizer as discussed in Section 5.3.

Now that almost all the intricacies have been dealt with thoroughly, the

results are as presented in Table 6.1, Figure 6.2, Table 6.2, Figure 6.3. The codes

were run on an Intel(R) Xeon(R) 1 Core 2.00GHz CPU. First of all, it should be

clearly mentioned that although the identification process was conducted in both

time and frequency domain, the results of only frequency domain identification have

been reported, mainly because of two reasons: first, a much higher average error was

recorded when the acceleration response matrix A was used as the input dataset as

opposed to the frequency response matrix F , and second, the computational time

required to train the model was very high for the time domain dataset because of

the large input feature vector size, 6001 to be precise.

It can concluded from the error values of the four parameters that the predic-

tions of both the networks were more accurate for the two values of Young’s moduli

as compared to Poisson’s ratio and shear modulus. Comparing the results of the

two networks, one can easily gather that an MLP performs way better as opposed

to an RBFN. Not only does the MLP demonstrate lower error values but also the

time required for its training is only a little over half the RBFN training time. All

the parameters show significantly decreased average error values on increasing the

sample size of the dataset as can be seen in the Table 6.3.
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Table 6.1: Table showing the performance the proposed three layer MLP with
200K sample size.

Parameter Training
Time (s)

Test Case
Actual
Value

Test Case
Predicted
Value

Test Case
Percentage
Error (%)

E1 (Nm�2) 424 1.21e+11 1.21e+11 0

E2 (Nm�2) 376 5.73e+09 5.61e+09 2.1

⌫12 402 0.297 0.309 4.0

G12 (Nm�2) 390 6.14e+09 6.44e+09 4.8

Figure 6.2: Learning curves of the proposed three layer MLP for the four param-
eters E1, E2, ⌫12 and G12 for two sample sizes 2K and 200K.
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Table 6.2: Table showing the performance the proposed RBFN with 200K sample
size.

Parameter Training
Time (s)

Test Case
Actual
Value

Test Case
Predicted
Value

Test Case
Percentage
Error (%)

E1 (Nm�2) 712 1.21e+11 1.23e+11 1.7

E2 (Nm�2) 717 5.73e+09 5.95e+09 3.8

⌫12 698 0.297 0.336 13.1

G12 (Nm�2) 711 6.14e+09 4.96e+09 19.4

Figure 6.3: Learning curves of the proposed RBFN for the four parameters E1,
E2, ⌫12 and G12 for two sample sizes 2K and 200K.
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Table 6.3: Table showing the average percentage error calculated over a larger test
dataset for di↵erent networks with di↵erent sample sizes.

Parameter MLP
(2K)

MLP
(200K)

RBFN
(2K)

RBFN
(200K)

E1 0.65% 0.44% 1.51% 1.40%

E2 3.58% 2.98% 8.26% 7.99%

⌫12 14.32% 11.25% 14.19% 12.32%

G12 11.31% 10.10% 29.11% 25.32%
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Chapter 7

Summary and Conclusions

The study of the relationship between the observed input and output signals

of an unknown system in order to develop its mathematical model is called system

identification. In this thesis, the unknown system is represented by a composite plate

on which parametric identification has been conducted to determine its mechanical

properties: Young’s moduli in two directions, Poisson’s ratio, and shear modulus.

A set of 27 natural frequencies of the composite plate were successfully com-

puted using FEA by dividing the plate into 16 small elements. On the 13th node

of the discretized plate a sinusoidal force was applied in the z-direction for 6 s and

the acceleration of the 14th node was recorded using Newmark integration. The fre-

quency and time domain input-output data was meticulously sampled using LHS,

a stratified sampling technique. An RBFN model with 300 hidden layer neurons,

and a three layer MLP model with 20 neurons in the first hidden layer and 10 in

the second one, were successfully designed for regression. The prediction of the four

parameters in both the domains was done in a systematic manner. Finally, the

entire investigation presented in this thesis can be concluded as follows:

1. The identification performed using frequency response showed a much superior
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accuracy and e�ciency as compared to time domain identification.

2. With increase in the training dataset size, from 2K to 200K, a significant

decrease in the average percentage error was observed.

3. The MLP model trained with 200K sample size predicted the four parameters

for the test case with an average error of 2.7% and an average training time

of less than 7 minutes. The individual percentage errors were 0% for E1, 2.1%

for E2, 4.0% for ⌫12, 4.8% for G12.

4. The RBFN model trained with 200K sample size predicted the four parameters

for the test case with an average error of 9.5% and an average training time

of less than 12 minutes. The individual percentage errors were 1.7% for E1,

3.8% for E2, 13.1% for ⌫12, 19.4% for G12.

Owing to a greater and more e�cient performance, the MLP network was

acknowledged as the better proposed model as opposed to the RBFN.

Scope for future work: Since Convolutional Neural Networks (CNNs) have

a history of outperforming MLPs in case of sequenced time series data, it can serve as

a great alternative to the proposed models for time domain identification. Another

statistical technique, especially popular for time series analysis, called Autoregressive

Integrated Moving Average (ARIMA) which is quite frequently used in economics,

can be tested for both frequency domain and time domain identification. Other than

these two, another option available is of ensemble learning which has wide industrial

applications in today’s date for regression analysis, and may also perform well for

the proposed parametric identification.
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