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ABSTRACT 

   

In this thesis, the electronic and optical properties of Lead-free perovskites, CsPbI3 and Cs2AgBiBr6 were 

investigated. The stability of these modified crystals was verified through structural factors and formation 

energy. We studied the projected density of states, band structure plot, absorption coefficient and refractive 

index graphs, hence verifying its credibility for photovoltaic application. 

Lead is renowned for its toxic nature and instability towards moisture, stress etc, thus dampening the 

commercialization of Lead halide perovskite. To subdue this limitation, lead-free materials are being 

promoted, two of the suggested alternatives have been discussed in this thesis. Some of the lead atoms in 

Caesium lead iodide were substituted by similar cations like Barium, Calcium, Magnesium and Strontium and 

their respective projected DOS were plotted. The second material inspected was halide double perovskite, to 

ascertain its stability the formation energy and structural factors were calculated. As we know the halide double 

perovskites do not exhibit Rashba Effect in the 3D system, we reduced the dimensionality by introducing 

vacuum along a particular direction, as for 2D we increased the lattice parameter along (001) direction. On 

increasing separation between lattices, a reduction in van Der Wall interaction between the two layers is 

observed, hence transforming the 3D structure to 2D. The projected DOS, bandstructure plot, absorption 

coefficient and refractive index plots were observed with and without the spin-orbit coupling in materials. 

There is a substantial decrease in bandgap observed as 2D structure shows metallic bandstructure while the 

3D material corresponds to IR bandgap with SOC and Visible region without SOC. 

Therefore we infer that on reducing dimensionality we observe narrowing of the bandgap of the crystal but the 

reduction can be done only to a limit as it fragments the crystal structure, 1D and 0D materials were found 

unstable. 
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Chapter 1  

Introduction 

Energy has always been the driving force for the continuous and rapid development of science and technology. 

For several centuries we had been majorly dependent on energy resources from fossil fuels because of high 

energy efficiency and abundance in nature. However, the overexploitation of these resources has led to 

depleting reservoirs, drastic emission of CO2 hence Global warming. After nearly destroying nature, we turned 

towards alternative energy sources along with a sustainable development perspective. Numerous attempts have 

been made to explore and develop technologies for harvesting renewable energy from natural sources such as 

solar, wind, and geothermal. In 1954 Daryl Chapin, Calvin Fuller, and Gerald Pearson developed the silicon 

photovoltaic (PV) cell at Bell Labs. It was the first solar cell capable of converting solar energy into an adequate 

amount of power to run standard electronic equipment. With global growing energy demands, the search for a 

material that exhibits high power conversion efficiency, ease in fabrication and better stability became 

prevalent. We have witnessed the evolution of solar cells from Si to Hybrid Perovskite, and the search has yet 

not come to an end. 

1.1 Perovskites and Evolution 

In the history of minerals, perovskite was discovered by the Prussian mineralogist Gustav Rose in 1839 and 

was named after the renowned Russian mineralogist Count Lev A. Perovskiy. 

The mineral had the composition of CaTiO3, and perovskites represent a class 

of crystal structure with the chemical formula ABX3, where A and B are 

cations while X is an anion. In an ideal cubic structure, the B cation has 6-fold 

coordination at the body-centre position, surrounded by an octahedron of 

anions at face-centred sites, and the A cation has 12-fold coordination at corner 

positions.  

The first class of perovskite considered for study was oxide; they are used for various ferroelectric, 

piezoelectric, dielectric, and pyroelectric applications. Most of the metal oxide perovskites do not exhibit good 

semiconducting properties hence, are not suitable for PV applications.  

The next class we considered was halide perovskites (ABX3; A = cation, B = divalent metal cation, X = halogen 

anion). They exhibit semiconducting properties that are desirable for PV applications.  
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The crucial factors that support superior performance and high efficiency of halide perovskite solar cells are 

high optical absorption coefficient, long carrier diffusion length, suppressed recombination (defect tolerance), 

and well-balanced charge transfer. The defect-tolerant nature of halide perovskites leads to the generation of 

high voltage, which is most important in PV applications. 

1.2 Stability 

Both the structural/intrinsic stability and the long-term environmental stability of perovskites have become the 

most critical issues in present times. Several key developments have been implemented in the engineering of 

perovskites 

One significant development has been incorporating different cations in the A-site and halides in the B-site. 

The cations in the A-site are considered not to contribute directly toward the band structure. However, they 

provide structural stability by charge compensation within the PbI6 octahedra, primarily based on their 

electrostatic (van der Waals) interactions with the inorganic cage. Changing the size of cations in the A-site 

leads to a contraction or expansion of the crystal lattice, thereby altering the optical properties of the perovskite. 

Smaller cations like Cs and Rb contract the lattice hence increase the bandgap. In contrast, larger cations 

expand the lattice resulting in decreased Pb−I bond distance, therefore lowering the bandgap. The inclusion of 

cations like Cs also improves the moisture stability in the perovskite.  

Goldschmidt tolerance factor (t) is used for verifying structural stability of perovskite compounds, it predicts 

the formation of different crystal structures of perovskites. The value of τ varies with the size of the ions in 

ABX3 formulated as  

𝑡 =
𝑅𝐴 + 𝑅𝑋

√2 (𝑅𝐵 + 𝑅𝑋)
 

RA corresponds to the ionic radius of A cation, RB to B cation, while RX to the ionic radius of X anion. 

Specifically, 0.9 < t < 1 favors a cubic perovskite structure while for 0.8 < t < 0. 9, a distorted perovskite 

structure is formed. Values of t < 0.8 and t > 1 diminish the possibility for the formation of perovskite 

structures. τ lying in the middle of range 0.8 to 1, is away from both the non-perovskite zones, hence forming 

a stable perovskite. Other structural stability indicators are octahedral factors (μ) and tolerance factor (τ) given 

by the following formulae, where RB is the average of B’ and B” 

μ =
𝑅𝐵

𝑅𝑋
                           τ =

𝑅𝑋

𝑅𝐵
−  𝑛𝐴( 𝑛𝐴 −

𝑅𝐴/𝑅𝐵

𝑙𝑛(𝑅𝐴/𝑅𝐵)
 ) 
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The acceptable range of octahedral and tolerance factor is 0.44 < μ < 0.90 and τ < 4.18, respectively, indicating 

a perovskite structure.  

The long-term stability and toxicity of Pb are two formidable obstacles to the commercialisation of PSCs 

(Perovskite solar cells). For outdoor installation like Si PV panels, PSCs must guarantee stable power 

production at operating conditions of natural sun radiation, raised temperature due to heating, under 

atmospheric moisture and oxygen for a longer duration, thus are of the inevitable characteristics.  
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CHAPTER 2 

THEORETICAL AND COMPUTATIONAL METHODOLOGY 

Density Functional Theory 

DFT is a computational quantum mechanical modelling method used to investigate the various properties of 

atoms, molecules, and condensed phases using spatially dependent electron density functionals. This segment 

gives an overview of fundamental principles and methods applied to conduct all of the studies in this thesis. 

We start the calculation by considering a many-body problem, using approximations and theorems to simplify 

our problem. 

2.1 The Many-Body Problem 

The nature of matter is defined by its fundamental particles, i.e., electrons and nuclei.  One can find a vast 

range of material properties if we describe the complexity of interactions between a large number of these 

particles in matter, also known as the many-body problem. A crystal has several lattices; each lattice plane 

consists of atoms arranged periodically; they contain nuclei and electrons. Based on quantum mechanics, it is 

theoretically possible to tackle such complexity in the form of the wave function for the coupled motion of 

these particles. The ground state energy of the crystal can be calculated by solving the Schrodinger Equation 

of the coupled motion of electron and nuclei. The Hamiltonian of this system can be represented as, where RI 

is the position vector for the nucleus and ri is the position vector for the electron. The total number of electrons 

is represented by Ne and nuclei by N. 

 

                                                                 

The Hamiltonian is t sum of the following terms, kinetic energy operators of electrons and nucleus, Coulombic 

interaction between nuclei-nuclei, electron-nuclei and electron-electron, respectively.  

 

2.1.1 Born Oppenheimer Approximation  

This approximation is based on the fact that the nucleus has a much larger mass than an electron. The distance 

travelled by a nucleus during the time taken by an electron to reach its ground state is negligible; hence, nuclei 

appear to be relatively stationary. We, therefore, consider a system where the nuclei are fixed, hence neglecting 

Ĥ =
−ħ2

2𝑚𝑒
∑ 𝛻𝑖

2

𝑁𝑒

𝑖

−
ħ2

2𝑀
∑ 𝛻𝐼

2

𝑁

𝐼

+
1

2
∑

𝑍𝐼𝑍𝐽𝑒2

𝑅𝐼 − 𝑅𝐽 ∨
− ∑

𝑍𝐼𝑒2

𝑟𝑖 − 𝑅𝐼 ∨
+

1

2
∑

𝑒2

𝑟𝑖 − 𝑟𝑗 ∨
𝑖≠𝑗𝑖,𝐼𝐼≠𝐽
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the corresponding Kinetic energy of nuclei; also, the electrons experience an external potential due to these 

static nuclei particles. This consideration thus decouples the motion of these particles. We can now represent 

the total wave function as the product of two individual wavefunctions. 

 

 We are solving the Schrodinger equation for the motion of electrons only. 

  

 

In this purely electronic Hamiltonian Ĥ, Coulombic interaction U and Kinetic energy T are the universal 

operators. At the same time, Vext is the static external potential observed by electrons, which is system 

dependent. 

2.1.2 Hartree Approximation 

The above approximation still couldn't wholly simplify the problem to solve the many-body wavefunction due 

to the correlation of electrons. The Hartree approximation is based on the assumption that the electrons are 

uncorrelated; the motion of the ith electron and its interactions with the fixed nuclei are no longer influenced 

by the Coulomb repulsion from the other Ne-1 electrons in the Ne-electron system. This approximation, 

therefore, converts the many-body problem with U to a singular body problem without U. This method takes 

into account an average of the electron-electron interaction. 

The total electronic wavefunction can now be represented as the product of individual electron wavefunctions 

known as the Hartree product, while the single electron wavefunction is called Molecular orbital.  

 

The limitation here is that it doesn't hold for the spin of the electrons; hence, the Hartree-Fock 

Approximation was introduced where the Slater determinant gives the antisymmetric wavefunction. 

Therefore, the wavefunction of the electrons should consist of 4 coordinates rather than just three spatial 

coordinates, where the fourth is the spin of the electron, hence obeying Pauli’s Exclusion Principle. 

The Hartree-Fock (HF) method defines the wavefunction in a Slater determinant (ΨHF) of single-electron 

wavefunctions ψj(xj) as given below,  

𝛹(𝑟i, 𝑅i) = 𝛹𝑒(𝑟𝑖)𝛹𝑁(𝑅𝑖) 

Ĥ =
−ħ2

2𝑚𝑒
∑ 𝛻𝑖

2

𝑁𝑒𝑙

𝑖

+ ∑ 𝑉𝑒𝑥𝑡

𝑁𝑒𝑙

𝑖

(𝑟𝑖) + ∑ ∑ 𝑈(𝑟𝑖, 𝑟𝑗)

i≠j 

𝑁𝑒

𝑖=1

 Ĥ𝛹 = (𝑻 + 𝑼 + 𝑉𝑒𝑥𝑡)𝛹 

𝛹(𝑟1, 𝑟2, 𝑟3. . . 𝑟𝑁) = 𝛹(𝑟1)𝛹(𝑟2)𝛹(𝑟3). . . 𝛹(𝑟𝑁) 
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In the determinant, ψj(xj) is a product of a function of the position ψ(rj) and the spin variable ϕi(σj). Based on 

this approximation, one can obtain the Hartree-Fock equation by using the variation principle to minimise the 

expectation value of the Hamiltonian. 

2.2 DFT 

The approximate solution of the Hartree-Fock approximation is not exact, the true wavefunction is not a 

product of two orbitals but is a complicated function of both variables simultaneously. The true wavefunction 

satisfies the exact Schrodinger equation and minimises the ground state energy functional for external 

potential.  

To overcome the shortcomings of this approach, that is, to replace 4 Ne variable wavefunction (three spatial 

and one spin variables for each of Ne electrons) with a simpler 3-variable function of the electron density was 

proposed in the remarkable theorems, known as the density functional theory. However, it is challenging to 

solve the Schrodinger equation because of the complicated electron-electron interactions. Density functional 

theory (DFT) can simplify this complex problem. Therefore, in this thesis, DFT has been performed through 

the Vienna Ab-initio simulation package (VASP) code. 

2.2.1 Thomas Fermi Model 

In 1927, Thomas and Fermi proposed the approximate functional for electronic energy. 

E𝑇𝐹[𝑛] = 𝐶1 ∫ 𝑛(𝒓)5/3𝑑𝒓 +  
1

2
∬

𝑛(𝒓)𝑛(𝒓′)𝑑𝒓𝑑𝒓′

|𝒓 −  𝒓′|
+ ∫ 𝑉 𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓   

This model replaces the atom's nuclei with a uniform background of positive charge. At the same time, the 

electrons are still treated as quantum particles, moving in this medium, thus forming Uniform Electron Gas 

(UEG). The Kinetic Energy functional was approximated using the UEG model, as the kinetic energy of 

electrons in the system is proportional to n(r)5/3. In the Local density approximation, we assume that in an 

actual molecule, the contribution to the electronic kinetic energy from an infinitesimal volume element is 

proportional to n(r)5/3 dr. Dirac corrected this in 1930, adding the exchange energy proportional to n(r)4/3 dr 

to the energy functional.  
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E𝑇𝐹𝐷[𝑛] = 𝐶1 ∫ 𝑛(𝒓)5/3𝑑𝒓 +  
1

2
∬

𝑛(𝒓)𝑛(𝒓′)𝑑𝒓𝑑𝒓′

|𝒓 −  𝒓′|
 + 𝐶2 ∫ 𝑛(𝒓)4/3𝑑𝒓 + ∫ 𝑉 𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓  

2.2.2 Hohenberg-Kohn Theorem 

Density functional theory was proposed to simplify a many-body problem into a practical single-particle 

problem that also includes correlations among particles. Instead of dealing with the 4Ne - variable 

wavefunction, the ground state is uniquely described based on a simpler 3-variable electron density function 

(n[r]). This formulation of DFT was first proved to be valid in any interacting particle system under the effect 

of Vext(r) by Hohenberg and Kohn (HK). They proposed the core foundation for DFT, stating the two most 

important theorems. 

Theorem I states that for a system of interacting particles in an external potential Vext(r), the potential is a 

unique functional of the electron density n(r). The ground state energy E can be written as a functional of 

ground-state electron density. Considering ng(r) is the ground-state electron density, we can determine the 

electron number, external potential, Hamiltonian. 

                                        

Theorem II states that a universal functional for the energy E[n(r)] in terms of the density n(r) can be defined, 

for any external potential Vext (r). The electron density minimizing the overall energy functional is the true 

electron density. The exact ground state is the global minimum value of this functional. This universal 

functional consists of the Kinetic Energy of Ne electrons and the inter electronic interaction and not the external 

potential. 

 

The Electronic energy and Hohenberg and Kohn functional are written as: 

EKin: Kinetic energy; ECoul: Coulomb energy Ex: Exchange energy EC: Correlation energy Eext: External 

energy 

The limitation here is the attempt of computing energy of interacting particles as a functional of density also 

the inaccuracy in the approximations of Kinetic energy functional. 

 

 

 Ev[n(r)] = F[n] + ∫d3r ng(r)V(r) ≥ Eg 

Eel = FHK[n] + Eext[n] FHK[n] = Ekin[n] + Ecoul[n] + EX[n] + EC[n] + Eext[n] 
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2.2.3 Kohn-Sham Equations  

HK theorems hence proved that the electron density could be a fundamental variable to determine the ground 

state wavefunction of many-particle systems, allowing the formulation of energy functional with the help of 

variational principle. Kohn-Sham proposed a simple approach to deal with the complex interacting system by 

replacing it with an auxiliary system of non-interacting electrons having the same electron density. The 

wavefunction of the non-interacting particles is different from that of the interacting particles; similarly, the 

density would also vary for the two systems. This approach removes the limitation of HK theorems as the 

expression for Kinetic energy of non-interacting electrons is known; hence no approximation is required. 

The KS Hamiltonian is as follows.  

                                                                                                VH: Hartree potential, VXC: Exchange correlation 

In the Kohn Sham approach, the exact electron density is obtained from the molecular orbitals of the non-

interacting electrons. 

𝑛(𝑟) = 2 ∑ 𝛹𝑗
∗(𝑟)𝛹𝑗(𝑟)

𝑗

 

The energy functional of the Kohn Sham Molecular orbitals is given as  

𝐸𝐾𝑆[𝑛] = 2 ∑ ∫ 𝛹𝑖
∗(𝒓)

𝑁𝑒/2

𝑖=1

(−
1

2
𝛻2)𝛹𝑗(𝒓)𝑑𝒓 + 𝐸𝑐𝑜𝑢𝑙[𝑛] + 𝐸𝑒𝑥𝑡[𝑛] + 𝐸𝑋𝐶[𝑛] 

If the exact VXC(r) is known, then the 

ground state wavefunction and energy 

can easily be determined by solving the 

KS equation using the SCF procedure. 

Self-Consistent (SCF) procedure  

• An iterative approach is followed 

to obtain the true charge density. 

A trial charge density is selected 

initially.  

• Then KS Hamiltonian and the 

effective potential are 

[
−ħ2

2𝑚𝑒
𝛻2 + 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑋𝐶] 𝛹𝑗 = Є𝑗𝛹𝑗 
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constructed and operated on the trial density, giving new KS wavefunctions. 

• A new charge density is determined from these obtained wavefunctions and is refined by mixing the 

previous density. 

• If the energy difference between this mixed density and the previous analogue satisfies the expected 

tolerance (energy convergence criteria), we obtain the true ground state wavefunction; otherwise, the 

process mentioned earlier will be iteratively repeated based on the mixed density.                                      

2.3 Exchange-correlation Functionals 

In KS method, the exchange-correlation functional EXC(r) is introduced by integrating the unknown terms 

accounting for the difference between the interacting and non-interacting systems. This term cannot be 

expressed in an exact form due to the complexity of the electron correlation of the many-body system. 

However, we can represent it with the help of several approximations. 

2.3.1 Local Density Approximation  

LDA assumed that the electrons in a solid could be represented as uniform electron gas (UEG), such that the 

electron density at any point in space is constantly expressed as n(r) = n0. The exchange-correlation functional 

under LDA is dependent on electronic density only. 

𝑬𝑿𝑪
𝑳𝑫𝑨[𝒏(𝒓)] = ∫ 𝒏(𝒓) 𝜺𝒙𝒄

𝑼𝑬𝑮[𝒏(𝒓)]𝒅𝒓 

The LDA has been a very successful method to simulate various material properties in several systems, 

especially the ones resembling UEG model like valence electrons in metals. However, it is problematic while 

dealing with highly inhomogeneous systems, such as atoms and molecules. 

2.3.2 Generalised Gradient Approximations 

In GGA, an approximation of exchange-correlation energy for inhomogeneous systems was made in the form 

of a generalised gradient approximation GGA. It proposed to add the gradient of electron density ∇n(r) to 

incorporate the effect of inhomogeneities.  

𝐸𝑋𝐶
𝐺𝐺𝐴[𝑛(𝒓)] = ∫ 𝑛(𝒓) 𝜀𝑋𝐶[𝑛, ∇𝑛]𝑑𝒓 

As a result of the inclusion of the density gradient, the GGA functionals can give us better information 

regarding the electron exchange and correlation hence correcting the LDA functional, especially for systems 

with fluctuating electron density. We can't clearly state that results provided by GGA are always accurate as 
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there can be a situation where due to self-interaction error or absence of van der Waals interaction, both LDA 

and GGA might not provide accurate results. The self-interaction errors refer to the unphysical interaction of 

electrons with themselves in Hartree term, resulting in the delocalisation of electrons in both solids and 

molecules. This error leads to the wrong prediction of the material's nature as the underestimated bandgap in 

LDA and GGA functionals because of weak localisation of electrons. The energy level corresponding to the 

valence band maximum becomes excessively high. This situation can be even worse for systems with strongly 

correlated and highly localised electrons. 

2.3.3 DFT+U Approach  

In this approach, we apply the Hubbard Hamiltonian to selectively correct the strongly correlated electronic 

states (like d and f orbitals), while other states are treated with LDA and GGA functionals.  

EDFT+U [n] = EDFT [n] + EHub[l
σ

mm’] − Edc[l
σ

mm’]  

EDFT [n] is the KS energy functional, EHub[l
σ

mm’] is the Hubbard Energy correction for the localised state, 

Edc[l
σ

mm’] is the correction to remove the double-counting of the strongly localised states in EDFT[n]. Edc and 

EHub are functions of occupation numbers [lσ
mm’] defined by the projections of occupied KS orbitals on 

localised states. Different formulations have treated this functional like rotationally-invariant formulation 

proposed by Lichtenstein et al. and another simplified formulation proposed by Dudarev et al. where a 

spherical average replaces the orbital-dependent interactions. Therefore enabling us to use an effective 

potential Ueff = U – J, where U is the Hubbard Coulomb repulsion and J is the Hund exchange interaction. The 

energy functional is modified as  

EDFT+U [n] = EDFT [n] + Ueff /2 ∑ Tr [ nσ (1−nσ ) ] 

The correction for this functional is controlled by Ueff parameter but, determining an appropriate value for this 

parameter is difficult. 

2.3.4 Hybrid Functional 

Integrating the exchange-correlation energy based on two different methods is the central ideology behind 

Hybrid functionals. As we know, GGA functional provides us good prediction at affordable computational 

resources but suffers inaccuracy due to self-interaction error. But if we consider the HF approach, this error is 

completely eradicated in the exact exchange energy formalism as the electron correlation is excluded, but it 

requires high computational resources. Some of the proposed formulations for this functional are PBE0, 

B3LYP and Heyd-Scuseria-Ernzerhof (HSE) functionals. The HSE functional is represented as a linear 



20 
 

combination of energies. LR and SR refer to long-range and short-range respectively, α is a mixing parameter, 

and ω is the screening parameter controlling the short ranges of exchange interaction.   

Exc
HSE = α Ex

HF,SR (ω)+(1−α)Ex
PBE,SR(ω) +Ex

PBE,LR (ω) +EPBE 

2.4 Plane-wave basis sets and Bloch’s Theorem 

DFT methods provide us with a solution to our many-interacting electron system problem. However, it is still 

too difficult to handle an infinite number of electrons moving under the influence of a static potential due to 

an infinite number of ions. This leads to an infinite expansion of wavefunctions over an entire space in the 

crystalline solid system, requiring many basis sets. The periodicity of the crystal makes it possible for the 

wavefunctions to be represented on a plane-wave basis set with a periodic function by Bloch’s theorem. By 

this theorem, the electronic wavefunction at the ith band index is defined as product of a periodic cell term and 

wavelike function. 

𝛹𝑖,𝒌(𝒓) = 𝑢𝑖,𝒌(𝒓)𝑒𝑖𝒌.𝒓 

k represents the reciprocal lattice vector of a Bravais lattice in the first Brillouin zone (in k-space) and u i,k(r) 

is the periodic function of the crystal lattice such that ui,k(r) = ui,k(r+T) for all lattice vectors T. The uk(r) can 

be written in Fourier series as, 

𝑢𝑖,𝒌(𝒓) = ∑ 𝑪𝒊,𝐆

𝑮

𝑒(𝑖𝑮.𝒓) 

Where Ci,G are plane wave expansion coefficients and G represent reciprocal lattice vectors satisfying the 

condition G.T= 2mπ (m is an integer). 

2.5 Projector-augmented wave method  

The unique characteristics of wavefunctions show that electrons near the nuclei experience strong Coulombic 

interactions, resulting in highly rapid oscillations of the wavefunction in the nuclear region, requiring a vast 

number of plane waves for accurate representation. Due to the Screening effect, the wavefunctions vary slowly 

outside this region. Therefore, we can categorise these regions as core and valence that are separated at a 

certain cutoff radius (rc). The core electrons are tightly bound in the vicinity of the nucleus, while valence 

electrons are outside and are responsible for the physical properties, thereby introducing the concept of 

pseudopotential approximation where the electrons in different regions are treated separately, hence reducing 

the number of required plane waves.  
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We used the Vienna Ab initio Simulation Package (VASP), implementing the plane-wave basis within 

Projector-augmented wave (PAW), one of the most efficient methods for DFT calculations. An all-electron 

single-particle wavefunction is mapped into a smooth auxiliary wavefunction in the PAW method, which is 

more computationally convenient, known as a pseudo wavefunction.  

2.6 Force Theorem 

The equilibrium of crystal structure can be justified by force acting on each atom in the system. The ground-

state structure is achieved when during the process of geometry optimisation, we achieve zero total interatomic 

force. We can evaluate the force acting on the ith atom at position Ri with total energy E of the system as, 

Fi = - ∇Ri E 

2.7 Computational Details 

Geometrical optimization and total energy computations of CsPbI3 were done using the VASP package by 

solving Kohn-Sham equations within the DFT framework. To define the electronic exchange-correlation 

effects, the projector augmented wave (PAW) method was used in conjunction with the PBE parameterization 

and Hybrid functional. The PAW pseudopotentials of Cs, Pb, I, Ba, Ca, Mg and Sr were analysed for 6s1, 

6s24f145d106p2, 4d105s25p5, 6s2 ,4s2, 3s2 and 5s2 respectively. For all the substituted system studied kinetic 

energy cut off of 500 eV was defined.  

The unit cell of four compounds was constructed with 90 atoms (18 Cs, 17 Pb, 54 I, 1[Ba, Ca, Mg, Sr]). The 

mesh was sampled using Monkhorst-pack mesh (5 x 5 x 5). The self-consistent electronic steps have an energy 

convergence criterion of 10 -4 eV.  

Geometrical optimization and total energy computations of Cs2AgBiBr6 were done using the VASP package 

by solving Kohn-Sham equations within the DFT framework. To define the electronic exchange-correlation 

effects, the projector augmented wave (PAW) method was used in conjunction with the PBE parameterization 

and Generalised Gradient Approximation (GGA). The PAW pseudopotentials of Cs, Bi, Br and Ag were 

analysed for 6s1, 4f145d106s26p3, 4s23d104p5 and 4d105s1 respectively. For all the substituted system studied 

kinetic energy cut off of 100 eV was defined.  

The unit cell of four compounds was constructed with 40 atoms (8 Cs, 4 Bi, 4 Ag, 24 Br). The mesh was 

sampled using a Monkhorst-pack mesh (5 x 5 x 5) for Bulk and (5 x 5 x 1) for 2D. The self-consistent electronic 

steps have an energy convergence criterion of 10 -5 eV.  
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• ALGO 

The ALGO tag is used to specify the electronic minimisation algorithm and to select the type of GW 

calculations. We have used ALGO = Normal, which selects IALGO = 38. 

• EDIFFG  

By default, the tag is defined as EDIFFG = EDIFF×10. EDIFFG tag defines the break condition for the ionic 

relaxation loop. When EDIFFG is positive, the relaxation stops when the change of the system's total energy 

is smaller than EDIFFG between successive ionic steps. In contrast, for negative value, the relaxation is 

contained when norms of all forces are smaller than |EDIFFG|.  

• ENCUT  

ENCUT specifies the cutoff energy for the plane-wave basis set in eV. The plane waves with kinetic energy 

smaller than Ecut are included in the basis set and components greater are removed. 

• IBRION 

IBRION tag determines how ions are updated and moved. For complex relaxation problems, it is better to use 

the conjugate gradient algorithm (IBRION=2). We have used IBRION = -1 which refers to no ions' movement, 

but NSW outer loops are performed. In each outer loop, the electronic degrees of freedom are re-optimised; if 

no ionic update is required, NSW=0 is used instead. 

• ISIF 

ISIF tag determines whether the stress tensor is calculated and which principal degrees of freedom  

(ionic positions, cell volume, and cell shape) are allowed to change in relaxation and molecular dynamics runs. 

• ISPIN   

ISPIN specifies spin polarisation. On selecting ISPIN=1 non spin-polarised calculations are performed while 

for SPIN=2 spin-polarized calculations (collinear) are performed. Collinear magnetism can be studied if we 

combine ISPIN with MAGMOM. 

• IVDW 

This tag controls whether van der Wal corrections are calculated or not and how they are to be calculated. 

Popular local and semilocal density functionals are unable to describe correctly the van der Waal interactions 

due to dynamical correlations between fluctuating charge distributions. A pragmatic method used to work 

around this problem is by adding a correction to the conventional Kohn-Sham DFT energy EKS-DFT: 
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EDFT-disp = EKS-DFT + Edisp 

The correction term Edisp is computed using some of the available approximate methods. We have used IVDW 

= 11 for zero dampings. 

• LOPTICS 

LOPTICS tag calculates the frequency-dependent dielectric matrix after the electronic ground state has been 

determined. If we select LOPTICS= TRUE, it requires a significant number of empty conduction band states. 

Usually, the parameter NBANDS is roughly doubled or tripled in the INCAR file with respect to the VASP 

default.  

• LSORBIT 

LSORBIT tag specifies if the spin-orbit coupling is taken into account. This option only works for PAW 

potentials and is not supported by ultrasoft pseudopotentials. If the spin-orbit coupling is not included, the 

energy becomes independent of the direction of the magnetic moment, i.e. rotating all magnetic moments by 

the same angle results in the same energy; therefore, no need to define the spin quantisation axis. Spin-orbit 

coupling, however, couples the spin to the crystal structure.  

VASP reads in the WAVECAR and CHGCAR files, aligns the spin quantisation axis parallel to SAXIS, 

implying that the magnetic field is parallel to SAXIS, and performs a non-self-consistent calculation. On 

comparing the energies for different orientations, magnetic anisotropy can be determined.   

Switching on spin-orbit coupling (SOC) in a conventional DFT calculation adds term  to the 

Hamiltonian that couples the Pauli-spin operator with the angular momentum operator L = r x p.[1] As a 

relativistic correction, SOC acts predominantly in the immediate vicinity of the nuclei, such that it is assumed 

that contributions of HSOC outside the PAW spheres are negligible. VASP, therefore, calculates the matrix 

elements of HSOC only for the all-electron one-centre contributions 

 

• PREC tag specifies how precise the real space projectors should be. 
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CHAPTER 3 

CASE STUDY I: CsPbI3 

As we already know, hybrid perovskites exhibit desirable properties for solar cell applications like broad 

absorption spectrum, fast charge separation, long carrier separation lifetime, exceptionally higher power 

conversion efficiency and easy fabrication. Even with such high qualities, the degradation of hybrid 

perovskites as the hydrogen bonding between monovalent organic cation and octahedral PbI2 is very weak 

hence degrades quickly to PbI2 under external stresses like the electric field, moisture, photo-oxidation, hinders 

commercialisation of the perovskite solar cells. Substituting the organic cation with inorganic Caesium 

improves the stability of the crystal, as an all-inorganic perovskite is effective under such conditions. The 

unique photovoltaic properties of the Pb halide perovskites, like suitable direct bandgaps, high optical 

absorption coefficients, balanced electron and hole effective masses, defect tolerance, super-long carrier 

diffusion lengths and lifetimes, and small exciton binding energies, all have contributed to record high PCEs. 

The development of Caesium lead halide perovskites also led to problems like the toxic nature of Pb and long-

term instability against moisture, heat and light; hence finding new, stable and Pb-free perovskites has been 

the recent research interest. Among the few suggested strategies, substituting lead atom with another similar 

in size and properties element was studied by us. 

We had substituted 5% of the Lead ions in the Caesium lead iodide crystal with Barium, Calcium, Magnesium 

and Strontium ions. We verified the structural and thermodynamical stability of the corresponding crystals 

structures.  

The octahedral and tolerance factors for the systems have been tabulated below: 

 

 

 

  

 

 

Element Coordination 

number 

Ionic Radius 

(Angstrom) 

Caesium 12 1.88 

Lead 6 1.19 

Iodine 6 2.2 

Barium 6 1.35 

Calcium 6 1 

Magnesium 6 0.72 

Strontium 6 1.18 

Crystal Tolerance 

Factor ( t ) 

Octahedral 

Factor ( μ ) 

CsPb0.95Ba0.05I3 0.832 0.578 

CsPb0.95Ca0.05I3 0.876 0.498 

CsPb0.95Mg0.05I3 0.915 0.434 

CsPb0.95Sr0.05I3 0.852 0.539 

Table 1(a) Coordination Numbers and ionic Radii, 1(b) Stability factors 
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It is observed that the Tolerance factor t for all the crystals was between the permissible range of 0.8 < t < 1 

and octahedral factor 0.44 < μ < 0.90 for stable perovskite structure. 

The formation energy verified the thermodynamic stability of the crystals. The formula used for calculating 

the formation energy is ECsPbI3_X = - (18ECs + 17EPb + 54EI + EX)/18 where (X= Ba, Ca, Mg, Sr) 

The following tables, Tables 2(a), represent the energies of isolate atoms, and Table 2(b) denotes the formation 

energy and formation energy per unit cell, respectively, for corresponding crystals.   

Element Energy (eV) 

Caesium -0.864 

Lead -3.88 

Iodine -1.49 

Barium -2.11 

Calcium -1.93 

Magnesium -1.53 

Strontium -1.64 

 

 

Projected DOS 

1. CsPb0.95Ca0.05I3 

    

Figure 3(a), 3(b) Dos and electronic structure of Calcium substituted CsPbI3 

Material Energy (eV) Formation 

Energy / unit 

cell (eV) 

CsPb0.95Ba0.05I3 -314.77191 -8.372 

CsPb0.95Ca0.05I3 -314.61109 -8.373 

CsPb0.95Mg0.05I3 -312.34554 -8.269 

CsPb0.95Sr0.05I3 -314.61237 -8.389 

Table 2(a) Elements Energy, 2(b) Energy of the crystal and corresponding formation energy 
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The DOS plot shows that 5p orbitals of Iodine contribute majorly in the Valence band while 6p orbitals of 

Lead and 4s orbitals of Calcium contribute in the conduction band. It is observed that there is a hybridisation 

between 6p orbital of Lead and 5p orbital of Iodine. Similarly, the 4s orbital of Calcium and 6s of Caesium 

hybridise, forming the octahedral configuration in the crystal. In the crystal structure, Cyan: Cs, Black: Pb, 

Purple: Iodine and Blue: Ca atoms. 

2. CsPb0.95Ba0.05I3 

  

Figure 4(a), 4(b) Dos and electronic structure of Calcium substituted CsPbI3 

The DOS plot shows that 5p orbitals of Iodine contribute majorly in the Valence band while 6p orbitals of 

Lead and 4s orbitals of Barium contribute in the conduction band. It is observed that there is a hybridisation 

between 6p orbital of Lead and 5p orbital of Iodine. Similarly, the 4s orbital of Barium and 6s of Caesium 

hybridise, forming the octahedral configuration in the crystal. In the crystal structure, Cyan: Cs, Black: Pb, 

Purple: Iodine and Green: Ba atoms. 

3. CsPb0.95Mg0.05I3 
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Figure 5(a) Dos, 5(b) Dos and electronic structure of Calcium substituted CsPbI3 

The DOS plot shows that 5p orbitals of Iodine contribute majorly in the Valence band while 6p orbitals of Lead and 3s 

orbitals of Magnesium contribute in the conduction band. It is observed that there is a hybridisation between 6p orbital 

of Lead and 5p orbital of Iodine. Similarly, the 3s orbital of Magnesium and 6s of Caesium hybridise, forming the 

octahedral configuration in the crystal. In the crystal structure, Cyan: Cs, Black: Pb, Purple: Iodine and Orange: Mg 

atoms. 

4. CsPb0.95Sr0.05I3 

 

   

Figure 6(a), 6(b) Dos and electronic structure of Calcium substituted CsPbI3 

The DOS plot shows that 5p orbitals of Iodine contribute majorly in the Valence band while 6p orbitals of 

Lead and 5s orbitals of Strontium contribute in the conduction band. It is observed that there is a hybridisation 

between 6p orbital of Lead and 5p orbital of Iodine. Similarly, the 5s orbital of Strontium and 6s of Caesium 

hybridise, forming the octahedral configuration in the crystal. In the crystal structure, Cyan: Cs, Black: Pb, 

Purple: Iodine and Green: Sr atoms. 
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CHAPTER 4 

CASE STUDY II: Cs2AgBiBr6 

We already know why there is a need to switch from lead halides; another proposed method was by replacing 

Lead cations with two different cations resulting in the formation of Halide double perovskites. 

Initially, it was proposed to substitute Pb(II) with similar divalent lone-pair cations Sn(II) and Ge(II) cations. 

However, this led to more severe instability issues as these two cations were oxidated to Sn(IV) and Ge(IV) 

states, thus losing optoelectronic properties. Then trivalent lone-pair cations Bi(III) and Sb(III) were employed 

for substitution, but obtained compound with formula A3B2X9 adopted a low-dimensional structure to maintain 

the charge neutrality, resulting in large bandgaps, high anisotropic carrier effective masses, defect intolerance 

which was all undesired characteristics for photovoltaic application. All these failed attempts led us to an 

essential inference that the material should exhibit high electronic dimensionality; therefore, high structure 

dimensionality became a necessary condition. It was now suggested that we substitute Pb with a combination 

of one monovalent and another divalent cation, resulting in a 3D double perovskite, A2B(I)B’(III)X6 

composition. The B(I) and B(III) cations usually adopt the rock-salt-ordered configuration due to the charge 

difference.  

Theoretical studies have shown that the 6s2 lone-pair states of Pb2+, that is, the B cation and X anion play a 

critical role in determining the optoelectronic properties of perovskites. In contrast, the A cation does not 

contribute to the band edges. 

Based on the presence or absence of lone pairs states in B(I) and B(III), they have been classified into three 

categories. 

Type I (s2 + s2): both the cations have lone pair electrons, exhibit 3D electronic dimensionality, high optical 

absorption, small effective masses as well as small exciton binding energies.  

Suitable for: Solar cell applications 

Type II (s0 + s2): only one of the cations have lone pair electrons, BX6 octahedra determine the band edges, 

Bi 6p states determine CBMs while VBMs comprise of antibonding of Bi 6s and X p orbitals and no 

contribution from B(I) cation. The highly ionic B(I) cation's octahedra [B(I)X6] results in passivation of the 

BiX6 octahedra hence disturbing the band edge-determining octahedra to connect 3 dimensionally, resulting 

in 0D electronic dimensionality. They exhibit characteristics like large bandgaps and carrier effective masses. 
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Suitable for: Light emission device (natural electronic confinement), solar cells 

Type III (s0 + s0): none of them has lone pair electrons, generally comprise of elements B(I) with occupied 

d10 states and B(III) with dispersive unoccupied s0 states. They show low bandgaps as the occupied d10 states 

raise the VBM energy levels and s0 states lower the CBM. The p orbitals of X anions and d orbitals of B(I) 

cations cannot connect 3D dimensionally in the valence band corresponding to 0D electronic dimensionality. 

At the same time, in CBM, there is a 3D connection between the antibonding s states of B(I) and p orbitals of 

X, signifying the mobility of electrons in 3D. 

Suitable for: Photodetector laser and light emission device  

 The halide double perovskites of type II do not possess suitable optoelectronic properties; their carrier 

transport property has been drastically affected by low electronic dimensionality, resulting in large bandgaps. 

Therefore, the substitution of monovalent cations like Ag(I), In(I), Cu(I) help in narrowing the bandgap as 

their filled s2 or d10 orbitals can elevate the VBM energy level.  

The material studied by us was Cs2AgBiBr6. The structure is formed by alternating Ag+- and Bi3+- centred 

octahedra of (AgBr6)
5– and (BiBr6)

5– in three crystallographic axes. Similar to single perovskites, 

Cs2AgBiBr6 single crystals also possess a cubic structure with a space group of Fm3m.  

The structural stability factors were obtained as Tolerance factor: 0.89, Octahedral factor: 0.56, and τ as 3.96 

thus, indicating reasonable structural stability. 

OBSERVATIONS 

CRYSTAL STRUCTURES 

          

      3D structure      2D structure  

 Figure 7(a) 3D structure, 7(b) 2D structure  
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1. Bulk Cs2AgBiBr6 with SOC 

1.1 Projected Density of States 

The projected Density of States denotes that 6s 

orbital of Caesium, 6p orbital of Bismuth together 

contribute to the conduction band while 4p orbital 

of Bromine has a major contribution in the valence 

band. We observe hybridisation between 6s orbital 

of Caesium and 4p orbital of Bromine overlapping 

states and undergoing hybridisation. Similarly, the 

5s orbital of Silver and 6p of Bismuth hybridise in 

the crystal.  

1.2 Optical Properties and Band structure  
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Figure 8(a) Dos, 8(b) Refractive Index, 8(c) Reflectivity 8(d) Absorption Cross-section 8(e) Band structure of 3D SOC 

 

Table 2(a) Elements Energy, 2(b) Energy of the crystal and corresponding formation energy 

2. Bulk Cs2AgBiBr6 without SOC 

2.2 Projected Density of States 

The projected Density of States denotes that 6s orbital 

of Caesium, 6p orbital of Bismuth together contribute 

to the conduction band while 4p orbital of Bromine 

has a significant contribution in the valence band. We 

observe hybridisation between 6s orbital of Caesium 

and 4p orbital of Bromine overlapping states and 

undergoing hybridisation. Similarly, the 5s orbital of 

Silver and 6p of Bismuth hybridise in the crystal. 

 

2.3 Optical Properties and Band Structure 

    

Materials mh
* me

* 

Γ→L Γ→X L→ Γ L→ W 

Cs2AgBiBr6 

(3D) 

-0.455 -1.476 0.260 0.184 

Cs2AgBiBr6 eV 

Indirect Band Gap 0.297 

Direct Band Gap 1.136 

Conduction band 

minima 

1.034 

Valence band maxima 0.737 
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Fig 9(a) Dos, 9(b) Refractive Index, 9(c) Reflectivity 9(d) Absorption Cross-section 9(e) Band structure of 3D No SOC 

 

 

Table 3(a) Elements Energy, 3(b) Energy of the crystal and corresponding formation energy 

 

 

 

 

 

 

 

 

 

Materials mh
* me

* 

Γ→L Γ→X L→ Γ L→ W 

Cs2AgBiBr6 

(3D) 

-0.445 -0.768 0.406 0.322 

Cs2AgBiBr6 eV 

Indirect Band Gap 1.297 

Direct Band Gap 2.200 

Conduction band 

minima 

1.998 

Valence band maxima 0.701 
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3. 2D Cs2AgBiBr6 with SOC 

We synthesised the 2D structure from bulk by increasing the separation by 50 Å along the miller indices (001). 

The Vander wall force effect reduces due to this increase in separation hence lowering the interaction between 

the layers, converting the 3D bulk to 2D. 

3.2 Projected Density of States 

The projected Density of States denotes that 6s orbital of Caesium, 6p orbital of Bismuth together 

contribute to the conduction band while 4p orbital 

of Bromine has a significant contribution in the 

valence band. We observe hybridisation between 

6s orbital of Caesium and 4p orbital of Bromine 

have overlapping states and undergo 

hybridisation. Similarly, the 5s orbital of Silver 

and 6p of Bismuth hybridise in the crystal. 

 

 

 

 

3.2 Optical Properties and Band Structure 
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Fig 10(a) Dos, 10(b) Refractive Index, 10(c) Reflectivity 10(d) Absorption Cross-section 10(e) Band structure of 2D 

SOC 

4. 2D Cs2AgBiBr6 without SOC 

4.1 Projected Density of States  

 The projected Density of States denotes that 6s 

orbital of Caesium, 6p orbital of Bismuth 

together contribute to the conduction band 

while 4p orbital of Bromine has a significant 

contribution in the valence band. We observe 

hybridisation between 6s orbital of Caesium 

and 4p orbital of Bromine overlapping states 

and undergoing hybridisation. Similarly, the 5s 

orbital of Silver and 6p of Bismuth hybridise in 

the crystal. 

4.2 Optical Properties and Band Structure 

   

C 
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                            Fig 

11(a) Dos, 11(b) Refractive Index, 11(c) Reflectivity 11(d) Absorption Cross-section 11(e) Band structure of 2D No 

SOC 
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CHAPTER 5 

CONCLUSIONS 

   5.1 SUMMARY  

Hybrid perovskites exhibit intrinsic properties like broad absorption spectrum, fast charge separation, long 

carrier separation lifetime, exceptional power conversion efficiencies, enhanced stability and relative ease of 

fabrication.  

The first approach for reducing the lead content in halide perovskite that has been discussed in this thesis is 

lead substituted by Calcium, Barium, Magnesium and Strontium in CsPbI3. Based on structural and 

thermodynamic stability it was observed that Strontium doped CsPbI3 was most stable.  

The second material studied was halide double perovskite Cs2AgBiBr6 at different dimensionalities. It was 

observed that 1D and 0D material are not stable hence, their electronic and optical properties have not been 

studied. There is a reduction in bandgap observed on incorporating the spin-orbit coupling. The 3D material 

without SOC exhibits a direct bandgap of 2.2 eV corresponding to the visible region (Green). The 3D material 

with SOC corresponds to a direct bandgap of 1.136 eV, near the IR region. 

On reducing the dimension of the sample, we observe a decrease in band gap as there is a transition from a 3D 

semiconductor to a 2D metallic system.  

5.2 FUTURE OUTLOOK 

We plan to study the effect of the Rashba and Dresselhaus phenomenon on halide double perovskite's 

electronic and optical properties. 

RASHBA AND DRESSELHAUS EFFECT 

Spin-Orbit Coupling 

An electron with momentum p moving across a magnetic field B experiences a Lorentz force in the direction 

perpendicular to its motion F = −e(p×B)/m. It also possesses Zeeman energy µB σ ⋅ B, where σ is the vector 

of Pauli spin matrices, m and e are mass and charge of the electron, and µB = 9.27 × 10-24 J/T is the Bohr 

magnetron. Similarly, when traversing in the presence of an electric field E, it experiences an effective 

magnetic field Beff ~ E × p / mc2 in its rest-frame, a field inducing a momentum-dependent Zeeman energy 

Hso ~ µB (E × p)⋅σ /mc2, known as SO coupling. In crystals, the electric field is defined by the gradient of the 
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crystal potential, E = −∇V. The breaking of inversion symmetry also results in the splitting of energy bands. 

This band splitting was explained by Bychkov and Rashba, where they considered an electric field E = Ez z 

resulting in an effective SO coupling of the form  

HR = αR /ħ (z × p)⋅σ 

where αR is called the Rashba parameter. This form is derived for 2D plane waves, does not apply to realistic 

systems. Theoretical investigations show that the lack of inversion symmetry creates an additional electric 

field, Ez and distorts the electron wave function close to the nuclei where the plane wave approximation is not 

valid. In other words, in the solid-state, the Dirac gap mc2 ≈ 0.5 MeV is replaced by the energy gap ≈ 1 eV 

between electrons and holes and αR /ħ >> µB Ez/mc2. The inversion symmetry breaking implies that the SO 

coupling is odd in electron momentum p, i.e., HSO = w (p)⋅σ, where w(−p) = − w(p). 

The inherent spin-orbit coupling effect in the non-centrosymmetric crystal structure is responsible for 

discovering the Rashba splitting phenomenon. The presence of heavy atoms in the crystal results in the spin-

orbit coupling, which, when combined with a break in inversion or crystal symmetry, leads to Rashba-type 

effects. The symmetry in three-dimensional centrosymmetric perovskite crystal structures can be broken by 

several means like an octahedral tilting of the inorganic lead-halide cage or by dynamic rotation of organic 

cation on the timescale of few picoseconds. The Rashba splitting governs the charge carrier recombination, 

eventually monitoring the carrier lifetime and diffusion length hence the solar cell efficiency of the perovskite 

materials. 

In hybrid perovskites, the thermodynamically stable inorganic substructure exhibiting excellent charge carrier 

mobility when combined with the organic part with fine-tuning of optoelectronic properties makes these 

materials ideal for solar cells, light-emitting diodes and spintronics. However, the presence of a hydrogen bond 

in the material gives rise to octahedral tilting, resulting in structural distortion and broken inversion symmetry, 

transforming the crystal structure of hybrid perovskites into non-centrosymmetric. Furthermore, these 

structural re-arrangements cause the transformation of electronic band structures (conduction and valence band 

maxima). 

Rashba-type effects lead to the possibility that the fundamental bandgap in hybrid perovskite systems may be 

indirect. The indirect band is shifted in k-space and has slightly lower energy than the direct band.  Due to the 

SOC effect, we observe splitting in the extrema edges of conduction and valence band along the reciprocal 

lattice k. This change of energy eigenvalue in the k direction with respect to band edge shift is quantified as 

Rashba splitting parameter, which drastically affects the dynamics of charge carriers as, under the visible light 

illumination, the electrons get excited and jump to the conduction band but create a hole in the valence band 
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region. This pair of excited electron and hole are called charge carriers or excitons. The recombination of these 

excitons governs the power conversion efficiency. The possibility of recombination is determined by the 

carrier lifetime and diffusion length, but these two depend on three factors. The rate of recombination can be 

altered by charge carrier trapping, that is, the nonradiative recombination by the conversion of electronic 

energy into heat energy. Other factors controlling this rate are the polaronic screening effect and one of the 

consequences of the Rashba effect. Even though light absorption occurs through direct transition, but the 

recombination of the cooled charge carriers gets delayed due to the shift of band extremes. The electron now 

is unable to follow the direct path. Instead, it gets captured in the secondary conduction minima before reaching 

the valence band, following an indirect transition.   

 

 

 

 

 

 

 

Figure 12 Rashba Effect 

 

 

 

 

 

 



39 
 

REFERENCES 

1.  P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864– B871.  

2.  W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133– A1138 

3.  P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953–17979. 

4.  G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169–11186. 

5.  J. P. Perdew, K. Burke and M. Ernzerhof,   Phys. Rev. Lett., 1996, 77, 3865–3868. 

6.  H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188– 5192. 

7.  Xue-Yu Ren, Xiao-Bo Feng, Energy Fuels 2020, 34, 9, 10513–10528 

8.  Gurudayal et al., “Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting,” Nano 

Lett., 2015, doi: 10.1021/acs.nanolett.5b00616. 

9.  D. Giovanni et al., “Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in 

CH3NH3PbI3 perovskite thin films,” Nano Lett., 2015, doi: 10.1021/nl5039314. 

10.  S. Chakraborty et al., “Rational Design: A High-Throughput Computational Screening and Experimental 

Validation Methodology for Lead-Free and Emergent Hybrid Perovskites,” ACS Energy Lett., vol. 2, no. 4, pp. 

837–845, 2017, doi: 10.1021/acsenergylett.7b00035. 

11.  P. Kanhere, S. Chakraborty, C. J. Rupp, R. Ahuja, and Z. Chen, “Substitution induced band structure shape 

tuning in hybrid perovskites (CH3NH3Pb1-xSnxI3) for efficient solar cell applications,” RSC Adv., 2015, doi: 

10.1039/c5ra19778c. 

12.  Z. Yang et al., “Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells,” Adv. Mater., 2016, 

doi: 10.1002/adma.201602696.  

13.  P. C. Harikesh et al., “Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution 

Processed Photovoltaics,” Chem. Mater., 2016, doi: 10.1021/acs.chemmater.6b03310.  

14.  A. Majumdar, S. Chakraborty, and R. Ahuja, “Emerging Metallic Phase of Transparent Rb 3 Bi 2 I 9 Perovskite 

Under the Influence of Piezochromism,” pp. 1–13. 

15.  Z. Cheng and J. Lin, “Layered organic-inorganic hybrid perovskites: Structure, optical properties, film 

preparation, patterning and templating engineering,” CrystEngComm, vol. 12, no. 10, pp. 2646–2662, 2010, doi: 

10.1039/c001929a. 

16.  A. Jaffe, Y. Lin, W. L. Mao, and H. I. Karunadasa, “Pressure-Induced Metallization of the Halide Perovskite 

(CH3NH3)PbI3,” J. Am. Chem. Soc., vol. 139, no. 12, pp. 4330–4333, 2017, doi: 10.1021/jacs.7b01162. 

17.  N. G. Park, “Perovskite solar cells: An emerging photovoltaic technology,” Mater. Today, vol. 18, no. 2, pp. 

65–72, 2015, doi: 10.1016/j.mattod.2014.07.007. 

18.  T. Maiti, M. Saxena, and P. Roy, “Double perovskite (Sr2B’B’’O6) oxides for hightemperature thermoelectric 

power generation - A review,” J. Mater. Res., vol. 34, no. 1, pp. 107–125, 2019, doi: 10.1557/jmr.2018.376. 



40 
 

19.  B. V. Prasad, B. V. Rao, K. Narsaiah, G. N. Rao, J. W. Chen, and D. S. Babu, “Dielectric studies of Fe doped 

SmCrO3 perovskites,” IOP Conf. Ser. Mater. Sci. Eng., vol. 73, no. 1, pp. 40 0–5, 2015, doi: 10.1088/1757-

899X/73/1/012061. 

20.  S. K. Shrivastava, “Crystal Structure of Cuprate based Superconducting Materials,” Int. J. Eng. Sci. Math., vol. 

7, no. May, pp. 151–159, 2018. 

21.  K. Uchino, “Glory of piezoelectric perovskites,” Sci. Technol. Adv. Mater., vol. 16, no. 4, 2015, doi: 

10.1088/1468-6996/16/4/046001.  

22.  D. Zhou, T. Zhou, Y. Tian, X. Zhu, and Y. Tu, “Perovskite-Based Solar Cells : Materials, Method, and Future 

Perspectives,” vol. 2018, 2018. 

23.  M. Gazda, P. Jasinski, and B. Bochentyn, “Perovskites in Solid Oxide Fuel Cells Perovskites in Solid Oxide 

Fuel Cells,” no. August 2019, 2011, doi: 10.4028/www.scientific.net/SSP.183.65. 

24.  T. Watcharatharapong, Defect Thermodynamics and Kinetics in Polyanionic Cathodes. 2019.  

25.  P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., 1964, doi: 

10.1103/PhysRev.136.B864. [19] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and 

correlation effects,” Phys. Rev., 1965, doi: 10.1103/PhysRev.140.A1133.  

26.  K. Capelle, “A Bird ’ s-Eye View of Density-Functional Theory,” vol. 36, no. 4, pp. 1318– 1343, 2006.  

27.  J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” no. 3, pp. 

3865–3868, 1996. 

28.  J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. 

Chem. Phys., 2003, doi: 10.1063/1.1564060. 

29.  P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 1994, doi: 10.1103/PhysRevB.50.17953.  

30.  R. P. Feynman, “Forces in molecules,” Phys. Rev., 1939, doi: 10.1103/PhysRev.56.340. 

31.  C. Nh, “Bromination-induced stability enhancement with a multivalley optical response signature in,” J. Mater. 

Chem. A Mater. energy Sustain., vol. 5, pp. 18561–18568, 2017, doi: 10.1039/C7TA03114A 

 

 




