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Abstract

The work done in this note falls under the regime of semiclassical

gravity. Semiclassical gravity involves the description of the way in

which classical gravitational fields interacts with matter fields which

are quantized. It is in fact a model, which is an attempt for finding

a unification between general relativity and quantum mechanics,

which is one of the ultimate goals of physics. The prediction of

black holes and their characteristic horizons were one of the most

incredible contribution of Einstein’s general theory of relativity. But

when we analyze their behaviour in the framework of semiclassical

gravity, interesting scenarios might come up. For instance, classi-

cal solutions are no longer solutions and wormholes arise. In this

thesis, I calculate the sub-leading terms in the classical black hole

solution and check whether the classical solution with subleading

terms can be considered as a solution to the semiclassical gravita-

tional equations. I have checked 1-loop e↵ective action does yield a

solution. A numerical approach has been made to look for possible

solutions that satisfy the semiclassical equations. Also, a numerical

solution for the exact semiclassical equations has been found. I have

discussed open questions at the end.
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Chapter 1

Introduction

1.1 The Schwarzschild solution

Einstein’s General Theory of Relativity is considered as one of the

greatest scientific accomplishments we have ever made. It com-

pletely reformulated our concept of gravity. According to Newton,

gravity was nothing but a force. But through his field equations

in General Relativity, Einstein proved that gravity is a property of

the spacetime itself. However, in the weak-field limit and when the

speeds of objects are very small compared to the speed of light,

it will naturally reduce to Newtonian gravity. The Einstein field

equation is a tensorial equation, and is given as

Gµ⌫ =
8⇡GN

c4
Tµ⌫ (1.1)

where Gµ⌫ is known as the Einstein tensor and is given by

Gµ⌫ = Rµ⌫ −
1

2
Rgµ⌫ (1.2)

where Rµ⌫ , R, gµ⌫ and Tµ⌫ stands for Ricci tensor, Ricci scalar,

metric tensor and energy-momentum tensor respectively. GN is the

Newtonian gravitational constant and c is speed of light. In this

note, all the computations are done in units where c = 1.

A static and spherically symmetric vacuum solution of Ein-
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stein’s field equations is given by the Schwarzschild metric

ds2 = −

✓

1−
2GM

c2r

◆

c2dt2+

✓

1−
2GM

c2r

◆

−1

dr2+r2d✓2+r2sin2✓dφ2

(1.3)

Here the last two terms give a 2-sphere S2. M is the mass of the

spherical body and r, ✓,φ are the usual spherical coordinates. In

fact, it is the only black hole solution which is spherically symmetric

and static and are solutions to vacuum Einstein’s equation. The

Schwarzschild black hole is described by this metric. The black hole

is characterized by a surrounding spherical boundary, called the

event horizon, with horizon radius given by rh = 2GM
c2

. Horizons are

typical signature of black holes. There are no causal connections

between the inside and outside of the black hole horizon. Inside

the horizon, the escape velocity for an object is greater than the

speed of light. At the horizon, the time component gtt in (1.3) goes

to zero. A horizon must be there, to protect an otherwise naked

sigularity [1].

1.2 Semiclassical gravity

In the semiclassical picture, we consider the gravitational field as

classical, but the matter fields as quantized [2]. This treatment

gives us the modified Einstein equations, which may be called semi-

classical equations of motion. The existence of black holes is no

longer evident once we take the quantum modifications into con-

sideration. No-horizon scenarios might arise. The back reaction of

matter fields could lead to new solutions that might possess sig-

nificantly di↵erent properties compared to classical solution. Two

important observations regarding semiclassical black holes in 4-D

spacetime were made in [3]

1) A leading order static spherically symmetric classical solution is

not a solution in semiclassical theory.

2



2) In semiclassical gravity, a minimal 2-sphere is not a horizon,

rather it is a throat of a wormhole.

Some other results on semiclassical black holes can be found in [4–11]

In this note, I have done the analysis of the next to leading

order terms in the semiclassical equations. It is in principle possi-

ble that addition of subleading terms somehow makes the classical

solutions obey the semiclassical equations of motion. It’s seen that

for general field content of scalar, spin-1
2
and spin-1 fields, even the

classical solution with sub-leading terms is not a solution in semi-

classical gravity. So it is not an artifact of considering near-horizon

expansion of classical spacetime. However, it can be observed that

for a fraction of above fields, a black hole solution might exist. We

look for possible solutions to the modified gravitational equations,

and see that in fact there exists a solution, which is satisfied by all

the equtions. To be precise, the solution should take the classical

contribution also into account and we expect it to be of the form

⌦ = ⌦class +⌦semi−class. Here ⌦
2 is the time component of the met-

ric. ⌦class is the classical solution and ⌦semi−class is the semiclassical

correction. This means that when ⌦class = 0 (i.e, in the would be

classical horizon case), gtt is still 6= 0. In fact ⌦semi−class turns out

to be a positive quantity. This implies a wormhole [1].

In chapter 2, I have done a review of the theoretical back-

ground of my project. In section 3.1, we study subleading terms in

the classical solution and analyze the corresponding modifications

to the semiclassical equations. In section 3.2, we make a numerical

approach to study the existence of possible solutions to the semiclas-

sical equations. An exact numerical solution for the equations has

been found in section 3.3. Finally in 4, we conclude the results and

discuss open questions. Some additional content including equations

can be found in appendix A.
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Chapter 2

Theoretical Background

2.1 Horizons in General relativity

There are two fundamental features of classical horizons. Firstly,

they are surfaces in a static and spherically symmetric metric, on

which the time component of the metric vanishes. Secondly, in GR,

a minimal 2-sphere embedded in a 4-D static spacetime is a horizon.

Consider a static spherically symmetric metric with the gen-

eral form

ds2 = ⌦
2(z)gµ⌫dx

µdx⌫

= ⌦
2(z)

�

dt2 +N2(z)dz2 +R2(z)(d✓2 + sin2✓dφ2)
�

(2.1)

We work in the Euclidean signatue so that the notion of black hole

temperature and entropies are well defined. Euclideanization gives

rise to black hole temperature [12]. Now, the geometric radius of a

2-sphere is given by r(z) = R(z)⌦(z). Consider the gauge N(z) = 1.

Assuming there exists a horizon at r = rh with a finite temperature

T = 1/β, we get the near horizon behavior, comparing it with the

near horizon limit of (1.3)

⌦(z) = e
−2⇡z

β + ..., R(z) = rhe
2⇡z

β + .... (2.2)

where ... stands for the subleading terms. Here z is the new ra-

dial coordinate. The relation between z and the previous radial

4



coordinate r is given by

z = −

β

4⇡
ln(r − rh) (2.3)

In the z coordinate, at r = rh, we have z = 1. Also, we can see

from (2.2) that ⌦(z) goes to zero at z = 1 , which is nothing but

the horizon condition.

By varying the Einstein-Hilbert action with respect to ⌦(z)

and N(z), we obtain the equations of motion

2rr00 + r02 − 1 = 0

⌦(r02 − 1) + 2rr0⌦0 = 0 (2.4)

Here we have used the gauge N(z) = 1/⌦(z). Now, suppose that

the 2-sphere at z = ⇢ = ⇢h is a surface of minimal area, i.e. r0 = 0

at ⇢ = ⇢h. It readily follows from (2.4) that ⌦(⇢h) vanishes and

hence the surface is a horizon, since ⌦ = 0 means that the time

component of the metric Gµ⌫ = ⌦
2gµ⌫ is zero. i.e. Gtt = 0

Now we may analyze the same aspects in the framework of

semiclassical gravity.

2.2 The semiclassical treatment

2.2.1 Semiclassical equations of motion

The semiclassical gravitational action is obtained by adding a quan-

tum e↵ective action Γ(G) to the Einstein-Hilbert action WEH(G).

Writing the metric (2.1) in the form Gµ⌫ = e2σgµ⌫ , the semiclassical
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gravitational action Wgrav = WEH(G) + Γ[G] is given by [2, 13, 14]

Wgrav =−

1

2

Z

d4x
p
GR(G)−

a

(4⇡)2

Z

d4x
p
gσC2

−

2b

(4⇡)2

Z

d4x
p
g

✓

2Eµ⌫rµσr⌫σ + 2⇤σrµσrµσ

+ (rµσrµσ)2
◆

+
b

(4⇡)2

Z

d4x
p
gσE + Γ0[gµ⌫ ]

(2.5)

Here  = 8⇡GN is the classical gravitational coupling, Eµ⌫ is the

Einstein tensor corresponding to the metric g, E is the Euler density

and C is the weyl tensor and these are also with respect to the metric

g. Also a and b are given by

a =
n0

120
+

n1/2

20
+

n1

10
, b =

n0

360
+

11n1/2

360
+

31n1

180
(2.6)

where ns is the number of fields of spin s. Γ0[gµ⌫ ] is the quantum

e↵ective action computed on the optical metric gµ⌫ . After calcu-

lating Wgrav for our metric (2.1) and varying the resulting action

with respect to σ(z) and N(z), we get the semiclassical equations

of motion given by

0 =
2e2σ





2RR00

N
+

6RR0σ0

N
−

2RR0N 0

N2
+

R02

N
+

3R2σ00

N
−

3R2σ0N 0

N2

+
3R2σ02

N
−N

�

+
a

6⇡2



−

R00

RN
−

R002

2N3
−

R03N 0

RN4
−

R02N 02

2N5

+
R0N 0

RN2
−

R04

2R2N3
+

R02

R2N
+

R0R00N 0

N4
+

R02R00

RN3
−

N

2R2

�

+
b

⇡2N4



RNR00σ02 +
1

2
NR02σ00

− 3RR0σ02N 0
−

3

2
R02σ0N 0

+RNR0σ03 +NR02σ02 + 2RNR0σ0σ00 +NR0R00σ0
−

3

2
R2σ03N 0

+
3

2
R2Nσ02σ00

−

1

2
N3σ00 +

1

2
N2σ0N 0

�

(2.7)
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0 =
e2σ

N2



(R0 +Rσ0)(R0 + 3Rσ0)−N2

�

+
bσ02

8⇡2N4



− 2N2 + 8RR0σ0 + 6R02 + 3R2σ02
�

+
a

12⇡2R2



R2σR002

N4
+

2R2R02σ0N 0

N5
+

2RR03σ0

N4
−

2RR0σ0

N2

+
2R2σR02N 00

N5
−

5R2σR02N 02

N6
+

σR04

N4
−

2R2R000σR0

N4

−

2R2R0R00σ0

N4
+

4R2σR0R00N 0

N5
− σ

�

+
1

4⇡β
δNΓ0

(2.8)

The e↵ective action Γ0 is given by [14–17]

(4⇡β)−1δNΓ0 = −

⇡2cH
90β4

R2(z)−
λH

72β2

�

R02N−2
− 1

�

(2.9)

where cH = n0 +
7
2
n1/2 + 2n1 and λH = n1/2 + 4n1. (2.9) should be

used in equation of motion (2.8).

2.2.2 Leading order classical solution for

semiclassical equations

Now, we proceed to check whether a static black hole solution satisfy

the semiclassical equations. We use the gauge N(z) = 1. To leading

order, we have the near horizon behaviour of σ(z) and R(z) as

σ(z) = −

2⇡z

β
+ ..., R(z) = rhe

2⇡z

β + ... (2.10)

We use (2.10) in the equations of motion (2.7) and (2.8), and they

respectively give

σ variation: 0 = O
⇣

e−
4⇡z

β

⌘

(2.11)

N variation: 0 = −

�

n0 + 6n1/2 − 18n1

� ⇡2

180β4
R2(z) (2.12)

Here (2.11) is satisfied to leading order. But the RHS of (2.12)

contains a divergent term. The divergent term may go to zero for

a particular field content, e.g. if n0 = 6, n1/2 = 2 and n1 = 1. But

in general, the divergent term is non-vanishing. Thus (2.12) is not

7



satisfied in general. Therefore we can see that a static spherically

symmetric metric with a finite temperature horizon is not a solution

in semiclasssical gravity.

2.2.3 Horizons in semiclassical gravity

We proceed to check whether a minimal sphere is necessarily a

horizon in the theory of semiclassical gravity. We use the gauge

N(z) = 1/⌦(z). Two minimality conditions r0(⇢h) = 0 and

⌦
0(⇢h) = 0 are imposed at the turning point ⇢ = ⇢h. Now (2.7)

and (2.8) will respectively become

2⌦


(1− 2rr

00

− r2
⌦

00

⌦
) +

ā

r2⌦
(⌦+ ⌦rr

00

− r2⌦
00

)2 + b̄⌦
00

= 0 (2.13)

−

⌦
2


−

ā

r2
ln⌦−1[(⌦rr

00

− r2⌦
00

)2 − ⌦
2]−

γr2

β4⌦2
+

λ

β2
= 0 (2.14)

where ā = a
12⇡2 , b̄ =

b
2⇡2 , γ = cH⇡2

90
, λ = λH

72
. For simplicity, we con-

sider the special case λ = 0 (only scalar fields are present). Further

analysis of (2.13) and (2.14) gives a bound on ⌦ given by

⌦ < ⌦0 = e−
r
2

ā ⇠ e−SBH (2.15)

(2.15) shows that the value of ⌦ at the turning point is bounded

by the exponential of negative of the Bekenstein-Hawking Entropy

SBH . The value of temperature is also bounded and is given by

T 4 <
ā⌦4

0

4γr4
(2.16)

Then it follows from these results that the minimal 2-sphere is not

a horizon as in the classical theory, but a wormhole.

8



Chapter 3

Results and Discussions

3.1 Subleading terms in classical

solution

In the results that are mentioned in 2 , the entire calculations are

based on the leading order terms and all the subleading terms have

been neglected (.... in (2.2) indicate that). It is a matter of great

interest to check whether a classical solution can be considered as

a solution to semiclassical equations, by also taking the subleading

terms in the classical solution into account. Now, the semiclassical

equations will contain additional subleading terms and we may look

for any further modifications to the results that arise due to the

presence of additional terms. Consider the general metric

ds2 = g(r)dt2 +
dr2

g(r)
+R2(r)d⌦2

2 (3.1)

where d⌦2
2 is the metric of a 2-sphere S2. In our analysis, we are

interested in the near horizon behaviour of the metric. So we Taylor

expand g(r) around the horizon radius r = rh to get

g(r) =
4⇡

β
(r − rh) +

g00(rh)

2
(r − rh)

2 (3.2)

where we have used g(rh) = 0 which is nothing but the horizon

condition. Also, from [12] we have g0(rh) = 4⇡
β
, where β is the

inverse of horizon temperature. g00(rh) is an unknown variable which

9



we want to compute here.

Our next aim is to write the metric (3.1) in the form

ds2 = e2σ
�

dt2 + dz2 +R2(z)d⌦2
2

�

(3.3)

so that it is of the form (2.1) in N = 1 gauge.

The new radial coordinate z = −

R

dr
g(r)

can be found to be

z = −

β

4⇡
ln

"

r − rh
8⇡
β
+ (r − rh)g00(rh)

#

(3.4)

At r = rh, z goes to infinity. Therefore in our new coordinate, the

horizon is at z ! 1. (3.4) can be rearranged to get

r − rh =
8⇡

β
⇣

e
4⇡z

β − g00(rh)
⌘ (3.5)

Comparing (3.1) and (3.3), we have

σ(z) =
1

2
ln g(r) (3.6)

where g(r) is given by (3.2). Now substituting for (r − rh) from

(3.5), σ is found to be

σ(z) = −

2⇡z

β
− ln

⇣

1− g00e−
4⇡z

β

⌘

(3.7)

Also from (3.1) and (3.3) we have

R2(r) = e2σR2(z) (3.8)

Calculating R(z) we get

R(z) = rhe
2⇡z

β − rhg
00e−

2⇡z

β (3.9)

where we have used R2(r) = r2h. By taking g00 = 0, equations (3.7)

10



and (3.9) gives us back (2.10). Now we proceed to check the validity

of the semiclassical equations of motions, when σ(z) and R(z) are

given by (3.7) and (3.9) respectively. We have chosen the gauge

N = 1. The first equation (2.7) now becomes

0 =
e

4⇡z

β

⇣

e
4⇡z

β − g00
⌘2



1

1440β4
(46080g00r2h⇡

2β2
− 2880β4)

−

g00

9β2
(n1/2 + 10n1)−

1

1440r2h⇡
2β4

✓

256g002r4h⇡
4(n0

+ 6n1/2 + 12n1) + β4(n0 + 6n1/2 + 12n1)

◆�

(3.10)

Analysis of the second equation of motion (2.8) gives

0 =−

e
12⇡z

β

⇣

e
4⇡z

β − g00
⌘2

r2h⇡
2

180β4



n0 + 6n1/2 − 18n1

�

+
e

8⇡z

β

⇣

e
4⇡z

β − g00
⌘2



1

360β2
(n0 + 6n1/2 − 18n1)−

g00r2h⇡
2

45β4
(n0

+ 6n1/2 − 18n1)

�

−

g003r2h⇡
2

⇣

e
4⇡z

β
−g00

⌘2

β4



n0 + 6n1/2 − 18n1

�

+
g002

360β2
⇣

e
4⇡z

β
−g00

⌘2



n0 + 6n1/2 − 18n1

�

−

g004r2h⇡
2

180β4

e−
4⇡z

β

⇣

e
4⇡z

β
−g00

⌘2



n0 + 6n1/2 − 18n1

�

+
e

4⇡z

β

⇣

e
4⇡z

β − g00
⌘2



�

n0 + 6n1/2 + 12n1

�

1440r2h⇡
2

ln
⇣

1− g00e−
4⇡z

β

⌘

+
z
�

n0 + 6n1/2 + 12n1

�

720r2h⇡β

+
g00

180β2

�

n0 − 4n1/2 − 58n1

�

−

g002r2h⇡
2

1440β4

✓

16(19n0 + 74n1/2

− 22n1) + 256(n0 + 6n1/2 + 12n1) ln
⇣

1− g00e−
4⇡z

β

⌘

◆

−

16zg002r2h⇡
3

45β5
(n0 + 6n1/2 + 12n1)

�

(3.11)
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Now let’s analyze these semiclassical equations of motion. As z !
1 (near horizon), (3.10) gives

0 = O(e−
4⇡z

β ) (3.12)

Thus near the horizon, the equation of motion resulting from the

variation with respect to σ is still satisfied, as shown in [3].

Looking at the near horizon behaviour of equation (3.11), the

first term in the RHS of (3.11) is divergent (O(e
4⇡z

β )), while the

second term will be a constant term. All the other terms will go to

zero near the horizon. Clearly, since the RHS6= 0, the equation is

not satisfied. Just out of interest, we may consider the case when the

divergent term and the constant term in the RHS of (3.11) cancel

out. i.e, the RHS goes to zero so that (3.11) is satisfied. In this

case, we see that g00(rh) is given by

g00(rh) =
45β2

r2h⇡
2
−

e
4⇡z

β

4
(3.13)

which negatively diverges near the horizon, but we expect it to be

a finite positive quantity. In conclusion, we can say that even if

we take the subleading terms in (2.2) into account, it still remains

that a static spherically symmetric metric with finite temperature

horizon is not a solution in semi-classical gravity.

It was suggested in [3] that for a particular set of fields, the

divergent terms in the RHS of N variation equation will vanish. For

instance, if n0 = 6, n1/2 = 2 and n1 = 1, the equation was found to

be satisfied. Surprisingly, this is the multiplet of N = 4 super-Yang-

Mills theory in 4 dimensions. It could mean that in this case, a black

hole solution might exist. But the demonstration of it needed the

analysis of subleading terms in the semi-classical equations, which is

precisely what has been done in the above calculations. Looking at

the RHS of (3.11), it is clear that for the particular case of n0 = 6,

12



n1/2 = 2 and n1 = 1, the divergent term will vanish. In addition,

the second term which is a constant term also goes to zero, for this

particular field content. All the remaining terms obviously go to

zero in the near horizon limit. Therefore, it is clear that there could

be a black hole solution for this particular interesting case and that

the divergences will keep on vanishing for this field content for higher

and higher order terms.

3.2 A numerical approach to study the

existence of solution

Here I use a numerical approach to look for possible solutions to the

semiclassical equations of motions. We find certain bounds from

the equations and later plot them to analyze the nature of possible

solutions.

Equations (2.13) and (2.14) can be rewritten respectively as

a0

3

✓

1 + rr00 − r2
⌦

00

⌦

◆2

+ b0
r2⌦00

⌦
= −

2r2



✓

1− 2rr00 − r2
⌦

00

⌦

◆

(3.14)

and

c0H
⌦2r2

+
⌦

2


= −

a0

3r2
log⌦−1

⇥

(⌦rr00 − r2⌦00)2 − ⌦
2
⇤

(3.15)

where we have assumed λ = 0 (sclar fields only, i.e only n0 6= 0) and

β2 = γr2. Also a0 = a
4⇡2 , b

0 = b
2⇡2 and c0H = cH⇡2

90γ2 .

We expect r00 > 0 and 0 < ⌦ < 1. Now, irrespective of whether

⌦
00 is positive or negative, the LHS of (3.14) is always is positive.

So, the RHS of (3.14) also has to be +ve. Now we can consider two

cases. First we assume ⌦
00 < 0 and get

1− 2rr00 + r2
|⌦00|
⌦

< 0 (3.16)
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or

1− 2P̃ + f̃ < 0 (3.17)

where P̃ = rr00 and f̃ = r2 |⌦
00|
⌦

. Also (3.15) gives

⇣

P̃ + f̃
⌘2

< 1 (3.18)

Below we plot above inequalities (3.17) and (3.18).

0 1 2 3 4

0

1

2

3

4

p
˜

f˜

Figure 3.1: Plot of (3.17) together with the condition (3.18)

We can see that the allowed values of P̃ and f̃ appear to be really

constrained. Now suppose we consider the ansatz ⌦ = e−r2 , for

which ⌦
00 < 0. This ansatz is inspired from the bound that we

found in (2.15). In this case, we get 2 relations

1− 2P̃ + 2r2P̃ < 0 and
⇣

P̃ + 2r2P̃
⌘2

< 1 (3.19)

0 1 2 3 4

0

1

2

3

4

p
˜

r

Figure 3.2: Plot of inequalities (3.19)
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From figure 3.2, we can see that the allowed values of r are

really small. But in reality, r could be arbitrarily large. So we

can say that the semiclassical correction alone is not a good ansatz

that could possibly serve as a solution to the semiclassical equations.

Rather, we also have to take the classical part into account. Also, we

can rule out the possibility of ⌦00 being negative. Now lets consider

the case when ⌦
00 > 0. Here from (3.14) and (3.15) we have

1− 2P̃ − f̃ < 0 and
⇣

P̃ − f̃
⌘2

< 1 (3.20)

Figure 3.3: Plot of inequalities (3.20)

Figure 3.3 shows that the values of P̃ and f̃ are not limited, as it

was observed in the ⌦00 < 0 case. So we come to the solid conclusion

that ⌦00 has to be a positive quantity.

We have seen that the semiclassical correction for ⌦ alone

doesn’t serve as a good ansatz. Then a reasonable expectation for

a possible ansatz for ⌦ is of the form

⌦ = ⌦class + ⌦semi−class (3.21)
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We consider the ansatz

⌦ =

r

4⇡

β
(r − rh) + e−kr2 (3.22)

where the first term is the classical ansatz. For simplicity, we are

using k = 1 unit. Now for this ⌦, we have

⌦
00 = −2e−r2rr00 +

p
⇡r00

β
q

r−rh
β

(3.23)

⌦
00 is found to be positive for large r. Now in place of (3.20), we

have the relations

1− 2x00(x+ rh)−
x00(x+ rh)

2
⇣

−2e−(x+rh)
2

(x+ rh) +
1

2
p
x

⌘

e−(x+rh)2 +
p
x

< 0

(3.24)
0

@(x+ rh)x
00
−

x00(x+ rh)
2
⇣

−2e−(x+rh)
2

(x+ rh) +
1

2
p
x

⌘

e−(x+rh)2 +
p
x

1

A

2

< 1

(3.25)

where we have used β = 4⇡. Also we introduced a new variable

x = r − rh, as we want to study near-horizon behavior. Clearly, for

a particular rh, x is a measure of the radial distance from horizon.

Also note that x00 = r00. Below we plot above relations between x

and x00, for di↵erent values of rh.

rh = 10

Figure 3.4: Plot of condition (3.24) for rh = 10
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Figure 3.4 shows relation (3.24) holds for entire range of x and x00.

Figure 3.5: Plot of condition (3.25) for rh = 10

Figure 3.6: Overlap between inequalities (3.24) and (3.25) for rh =
10
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rh = 20

Figure 3.7: Overlap between inequalities (3.24) and (3.25) for rh =
20

rh = 30

Figure 3.8: Overlap between inequalities (3.24) and (3.25) for rh =
30
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In the above figures, the overlapping regions represent a possible

solution. A common feature of the plots is a spike at x ⇡ rh or at

r ⇡ 2rh. It can be seen that around x = rh, the LHS of (3.25) goes

to zero, which is the reason why we have a spike at this point. Un-

derstanding the physical implication of the spike is something that

needs further study.

The analysis done above is not a proof that (3.22) is the

correct form of ansatz. In fact, any ansatz of the form ⌦ =
q

4⇡
β
(r − rh) + rne−r2 will yield similiar results, where n can be

an integer or fraction. But n has to be less than 7, beacuse of our

requirement that the semiclassical correction has to be really small

(between 0 and 1). The above analysis helps us to understand the

overall nature of the solution.

3.3 An exact numerical solution for

the wormholes

In this section, we find a numeric solution for the exact semiclassical

equations of motion given by (2.7) and (2.8). We use the gauge

N(z) = 1/⌦(z). Also, σ and its derivatives are rewritten in terms

of ⌦, using the relation ⌦ = eσ. We know the geometric radius of a

2-sphere is given by r(z) = R(z)⌦(z). We also use this relation in

the exact semiclassical equations so that the final equations are in

terms of r(z) and ⌦(z). For simplicity, we consider the case when

there are only scalar fields. Choosing a trial value n0 = 360 (only

scalar fields), one gets

a = 3, b = 1, cH = 360, λH = 0 (3.26)

Additionally, we take  = 1 and β = 4⇡.

So far, we have been working in z coordinate and the horizon
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is at z ! 1. Just because of technical difficulty to implement the

initial conditions at 1, we make a change of coordinate y = e−z.

Now, the would be horizon will be at y = 0. The value of y will

keep on increasing as we move further and further away from the

horizon. So we may say that y behaves like r. The final semiclas-

sical equations in terms of y are given in appendix A. We tried to

numerically solve both equations simultaneously. The plots of the

numerical solutions are shown below.

Figure 3.9: Plot of r(y) vs y. Initial conditions were specified at
y = 0.5 (at y = 0.5 =) r = 50, ⌦ = 1.2, r0 = 0.5, ⌦0 = 0.5,
r00 = 0.1).

Figure 3.10: Plot of ⌦(y) vs y.
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In the above solutions, we start at a point slightly away from

the horizon (y = 0), because getting too close to the horizon leads

to diverging results. That is why we start at y = 0.5. The plot of

r(y) given in figure 3.9 is a sensible solution. The horizon, which is

at y = 0, is expected to have a radius slightly less than the value

r(0.5) = 50. As we move further and further away, i.e, as the value

of y increases, r(y) keeps on increasing in an exponentially small

manner. The value of r(y) is not getting saturated for higher and

higher y values, which is in agreement with our expectation. Since

we are solving the exact semiclassical equations, the solution must

be satisfied irrespective of how far away we are looking at. It can be

seen that the behaviour 3.9 will remain the same for even arbitrarily

higher values of y.

In case of ⌦, its value at y = 0 will be exponentially small

(0 < ⌦ < 1), as can be seen from (2.15). Since we start at a

slightly far away point, we are using an initial value ⌦ = 1.2. It

can be observed from figure 3.10 that as the value of y increases,

⌦(y) continues to behave like r(y) as seen in figure 3.9. This is

reminiscent of the result we saw in section 3.2. As y increases, the

classical part of ⌦ given by ⌦ =
q

4⇡
β
(r − rh) will dominate. This

is the reason why ⌦(y) has a similar behaviour as r(y).

Below we give some solution plots, where we have also taken

n1/2 and n1 fields into account in our computation. We vary ns

value for a particular field, keeping the ns value of other fields as a

non-zero constant.
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Figure 3.11: Plot of r(y) vs y for di↵erent n0 values, keeping n1/2

and n1 constant.

Figure 3.12: Plot of ⌦(y) vs y for di↵erent n0 values, keeping n1/2

and n1 constant.
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Figure 3.13: Plot of r(y) vs y for di↵erent n1/2 values, keeping n0

and n1 constant.

Figure 3.14: Plot of ⌦(y) vs y for di↵erent n1/2 values, keeping n0

and n1 constant.
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Figure 3.15: Plot of r(y) vs y for di↵erent n1 values, keeping n0 and
n1/2 constant.

Figure 3.16: Plot of ⌦(y) vs y for di↵erent n1 values, keeping n0 and
n1/2 constant.
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Chapter 4

Conclusions and Scope for

Future Work

4.1 Conclusions and future work

It has been shown that the classical solution with next to leading

order terms taken into consideration cannot solve the semiclassical

equations of motion. In other words, a static spherically symmetric

metric with a finite temperature horizon still cannot exist in semi-

classical gravity. However, we saw that for a particular set of fields,

i.e for n0 = 6, n1/2 = 2 and n1 = 1, it is possible that a black

hole solution might exist. And surprisingly, this happens to be the

multiplet of N = 4 super-Yang-Mills theory in 4 dimensions.

We saw that the semiclassical correction for ⌦ alone is not

enough to solve the equations of motion. Rather, we also have to

take the classical part into consideration. Through some plots, we

found certain regions where a solution can exist. Also, we found

an exact numerical solution for the wormholes by solving equations

(2.13) and (2.14). To our knowledge, this numerical solution is the

first evidence of a wormhole in 4 dimensions, which we obtained by

rigorously solving the semiclassical equations. Although we couldn’t

find a unique ansatz as analytical solution, the analysis done helps to

provide a good understanding of the overall nature of the solution.

Pointing out again, the equations that need to be analytically solved
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are

2⌦


(1− 2rr

00

− r2
⌦

00

⌦
) +

ā

r2⌦
(⌦+ ⌦rr

00

− r2⌦
00

)2 + b̄⌦
00

= 0 (4.1)

−

⌦
2


−

ā

r2
ln⌦−1[(⌦rr

00

− r2⌦
00

)2 − ⌦
2]−

γr2

β4⌦2
+

λ

β2
= 0 (4.2)

4.2 Outlook

Black holes are one of the most mysterious objects in physics. The

physics of black holes is an extremely active field of research all

around the world. Recently, the 2020 Nobel Prize in Physics honored

the pioneering studies about the nature of black holes. Semiclassi-

cal gravitational theory, on which my project is based on, can have

profound implications on the nature of black holes. The semiclas-

sical gravitational equations are complicated non-linear di↵erential

equations. By analytically solving them, one will be providing ex-

act solutions of four dimensional Einstein equations with quantum

matter corrections, which is, as of yet, completely unknown. We

know it in 2 dimensional case, but not in four dimensions [18]. So

it will be an important addition to black hole literature. Works on

semiclassical black holes can have great significance in the study of

Hawking’s information loss problem. In addition, semiclassical grav-

itational study could be a foundation stone for an ultimate theory

of quantum gravity.
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Appendix A

Appendix 1

The exact semiclassical equations of motion in terms of y = e−z are

given below (for n0 = 360 so that a = 3, b = 1, cH = 360, λH = 0.

Also we take  = 1 and β = 4⇡). Here r = r(y) and ⌦ = ⌦(y).

The N variation equation is,

0 =
1

64⇡2r2⌦2



− r4 − 64⇡2r2⌦4 + 64⇡2y2r2⌦4r02 − 32y2r⌦3r0⌦0

+ 128⇡2y2r3⌦3r0⌦0
− 32y3r2⌦3r02⌦0 + 32y4r⌦3r03⌦0

+ 16y2r2⌦2
⌦

02 + 64y3r3⌦2r0⌦02
− 16y4r2⌦2r02⌦02 + 8y4r4⌦04

− 32y4r2⌦3r0⌦0r00 + 32y4r3⌦2
⌦

02r00 + 32y4r3⌦2r0⌦0
⌦

00

− 32y3r4⌦⌦02(⌦0 + y⌦00)

�

+
ln⌦

64⇡2r2⌦2



− 16y2r2⌦4r02

+ 16⌦4(−1 + y4r04) + 32y2r3⌦3r0⌦0 + 32y3r2⌦3r02⌦0

− 64y4r⌦3r03⌦0
− 64y3r3⌦2r0⌦02 + 80y4r2⌦2r02⌦02

− 32y4r3⌦r0⌦03

− 32y4r2⌦3r0⌦0r00 + 32y4r3⌦2
⌦

02r00 + 16y4r2⌦4r002 + 64y4r2⌦3r02⌦00

− 96y4r3⌦2r0⌦0
⌦

00 + 32y3r4⌦⌦02(⌦0 + y⌦00)− 32y3r2⌦4r0(2r00

+ yr000) + 32y3r3⌦3

✓

− yr00⌦00 + ⌦
0(2r00 + yr000)

◆

+ 32y3r3⌦3r0(2⌦00

+ y⌦000)− 16y2r4⌦2

✓

⌦
02
− y2⌦002 + 2y⌦0(2⌦00 + y⌦000)

◆�

(A.1)

The σ variation equation is,
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0 =
1

4⇡2r2⌦



⌦
2

✓

(1 + 8⇡2r2 − y2r02)(−1 + y2r02) + 2yr(−1 + 8⇡2r2

+ y2r02)(r0 + yr00)− y2r2(r0 + yr00)2
◆

− y2r2
✓

yr0⌦0
− r⌦0

− yr⌦00
◆2

+ 2yr⌦

✓

yr0⌦0(−1 + 8⇡2r2 + y2r02 + yrr0 + y2rr00)

+ r2(4⇡2r + yr0 + y2r00)(⌦0 + y⌦00)

◆�

(A.2)

28



Bibliography

[1] Morris, M. S., and Thorne, K. Wormholes in spacetime

and their use for interstellar travel: A tool for teaching general

relativity. American Journal of Physics 56 (1988), 395–412.

[2] Birrell, N., and Davies, P. Quantum Fields in Curved

Space. Cambridge Monographs on Mathematical Physics. Cam-

bridge University Press, 1982.

[3] Berthiere, C., Sarkar, D., and Solodukhin, S. N. The

fate of black hole horizons in semiclassical gravity. Phys. Lett.

B 786 (2018), 21–27.

[4] Frolov, V. P., and Vilkovisky, G. A. Spherically sym-

metric collapse in quantum gravity. Physics Letters B 106, 4

(Nov. 1981), 307–313.

[5] Trivedi, S. P. Semiclassical extremal black holes. Phys. Rev.

D 47 (May 1993), 4233–4238.

[6] Strominger, A., and Trivedi, S. P. Information consump-

tion by reissner-nordström black holes. Phys. Rev. D 48 (Dec

1993), 5778–5783.

[7] Kazakov, D. I., and Solodukhin, S. N. On Quantum

deformation of the Schwarzschild solution. Nucl. Phys. B 429

(1994), 153–176.

[8] Frolov, V. P., Israel, W., and Solodukhin, S. N. One-

loop quantum corrections to the thermodynamics of charged

black holes. Phys. Rev. D 54 (Aug 1996), 2732–2745.

29



[9] Frolov, V. P. Information loss problem and a ’black hole‘

model with a closed apparent horizon. JHEP 05 (2014), 049.

[10] Ho, P.-M., and Matsuo, Y. Static Black Hole and Vacuum

Energy: Thin Shell and Incompressible Fluid. JHEP 03 (2018),

096.

[11] Ho, P.-M., and Matsuo, Y. Static Black Holes With Back

Reaction From Vacuum Energy. Class. Quant. Grav. 35, 6

(2018), 065012.

[12] Wald, R. General Relativity. University of Chicago Press,

1984.

[13] Solodukhin, S. N. Planckian AdS(2) x S(2) space is an exact

solution of the semiclassical Einstein equations. Phys. Lett. B

448 (1999), 209–217.

[14] Gusev, Y. V., and Zelnikov, A. I. Finite temperature

nonlocal e↵ective action for quantum fields in curved space.

Phys. Rev. D 59 (1999), 024002.

[15] Giombi, S., Maloney, A., and Yin, X. One-loop Partition

Functions of 3D Gravity. JHEP 08 (2008), 007.

[16] Zhou, Y. Universal Features of Four-Dimensional Supercon-

formal Field Theory on Conic Space. JHEP 08 (2015), 052.

[17] Huang, K.-W. Central Charge and Entangled Gauge Fields.

Phys. Rev. D 92, 2 (2015), 025010.

[18] Balbinot, R., Fabbri, A., and Shapiro, I. Vacuum po-

larization in schwarzschild space-time by anomaly induced ef-

fective actions. Nucl. Phys.B (1999), 301.

30




