

MACHINE LEARNING APPROACH TO SOLVE

SCHRODINGER EQUATION FOR A ONE

DIMENSIONAL SYSTEM IN A GAUSSIAN POTENTIAL

WELL AND IN A HARMONIC POTENTIAL WELL

 CH-800

 M.Sc Thesis

 By

 APARNA GANGWAR

 (1903131014)

 DEPARTMENT OF CHEMISTRY

 INDIAN INSTITUTE OF TECHNOLOGY INDORE

 June 2021

 MACHINE LEARNING APPORACH TO SOLVE

SCHRODINGER EQUATION FOR A ONE

DIMENSIONAL SYSTEM IN A GAUSSIAN POTENTIAL

WELL AND IN A HARMONIC POTENTIAL WELL

 A THESIS

 Submitted in partial fulfillment of the

 requirement for the award of the degree

 of

 Master of Science

 by

 APARNA GANGWAR

 DEPARTMENT OF CHEMISTRY

 INDIAN INSTITUTE OF TECHNOLOGY INDORE

 June 2021

i

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

 CANDIDATE’S DECLARATION

 I hereby certify that the work which is being presented in the Thesis entitled

Machine learning approach to solve Schrodinger Equation for a One Dimensional System

in a Gaussian Potential Well and in a Harmonic Potential Well in the partial fulfillment of

the requirements for the award of the degree of MASTER OF SCIENCE and submitted in the

DISCIPLINE OF CHEMISTRY, Indian Institute of Technology Indore, is an authentic

record of my own work carried out during the time period from July 2020 to June 2021 under the

supervision of Dr. Satya S. Bulusu, Associate Professor, Department of Chemistry, Indian

Institute of Technology, Indore.

The matter presented in this Thesis has not been submitted by me for the award of any other

degree of this or any other institute.

 (Aparna Gangwar)

This is to certify that the above statement made by the candidate is correct to the best of my/our

knowledge.

 (Dr. Satya S. Bulusu)

APARNA GANGWAR has successfully given his/her M.Sc. Oral Examination held on

08/06/2021.

Signature of Supervisor of MSc thesis Convener, DPGC

Date: Date:

Signature of PSPC Member Signature of PSPC Member

Date: 10-06-2021 Date: 09-06-2021

ii

iii

iv

 Acknowledgments

I would like to thank my supervisor, Dr. Satya S. Bulusu, for his constant support, guidance, and

encouragement. He has assisted me throughout my one-year master's project. I have been

extremely lucky to have a supervisor who cared so much about my work and promptly

responded to my questions and queries. I would also like to thank my PSPC members Dr. Anjan

Chakraborty and Dr. Tridib Kumar Sharma.

 I would like to acknowledge this assistance given to me by my lab senior, Mr. Abhishek Ojha.

They helped me a lot by giving me guidance and encouragement whenever I was stuck in some

problem. Their contribution was precious to me in this project.

I would like to thank all my classmates and friends. Finally, I would like to thank my parents

who have always been a constant source of support for me throughout my life.

 Aparna Gangwar

v

vi

 Abstract

It is well known that the solution of the Schrodinger equation beyond the hydrogen atom is a

non-trivial problem. Our main objective in the thesis is to use machine learning techniques to

solve Schrodinger equation. In the study we considered one dimensional Schrodinger wave

equation in Gaussian potential well and also in harmonic potential well as a case study to use

machine learning techniques. Since the 1- dimensional Schrodinger equation in Gaussian

potential well has no analytical solution, we used the Numerov method to solve it. Similarly, the

Numerov method is used to solve the 1- dimensional Schrodinger wave equation in harmonic

potential well. Using the numerov method, we calculated wave functions, probability densities

and energies for systems with single electrons, 2 electrons, 3 electrons and 4 electrons. Now our

aim is to map the probability densities to energies using artificial neural networks. For this we

made a dataset of about 5000 probability densities using the Numerov method and train these

probability densities to the known energies obtained. The dataset is obtained by randomly

changing the parameters of Gaussian potential well and the force constant values in harmonic

potential well. The inputs for the artificial neural networks will be probability densities and the

output will be total energies of the system. Such models can be used to calculate energies of 1-

dimensional Schrodinger equation in a similar but unknown potential energy well without really

solving the Schrodinger equation analytically.

vii

 TABLE OF CONTENTS

 LIST OF FIGURES VII

 LIST OF TABLES VIII

 SYMBOLS/UNITS IX

 ACRONYMS X

 Chapter 1: Introduction 1-3

 1.1 General introduction 1-2

 1.2 Organization of Thesis 3

 Chapter 2: Theory 4-9

2.1 Time Independent Schrodinger equation 4

2.1.1 Schrodinger equation for 1-d box 4-5

2.1.2 Schrodinger equation for harmonic oscillator 5

2.2 Necessity of Numerov’s method for integrating the one-dimensional Schrodinger equation 6

2.2.1 What is numerov method? 6

2.2.2 Description and formula of numerov method 6-7

2.3 Working of Artificial neural network 7-9

Chapter 3: FORTRAN code 10-17

 3.1 Main Code (code for Gaussian potential) 10-15

 3.2 Code for Harmonic potential 15-16

 3.3 Explanation 16-17

 Chapter 4: Result and discussion 18- 30

 Chapter 5: Conclusions 31

 REFRENCES 32

viii

 LIST OF FIGURES

 Figure no. Description Page no.

 Figure 1. Feed-forward three-layer artificial neural network 8

 Figure 2. Ground state wave function for harmonic potential well 19

 Figure 3. Ground state probability density for harmonic potential well 20

 Figure 4. Ground state wave function for Gaussian potential well 20

 Figure 5. Ground state probability density for Gaussian potential well 21

 Figure 6. First excited state wave function for harmonic potential well 21

 Figure 7. First excited state probability density for harmonic potential well 22

 Figure 8. First excited state wave function for Gaussian potential well 22

 Figure 9. First excited state probability density for Gaussian potential well 23

 Figure 10. Probability density plot for one electron and zero node system 27

 Figure 11. Probability density plot for two electrons and one node system 28

 Figure 12. Probability density plot for three electrons and one node system 29

 Figure 13. Probability density plot for four electrons and one node system 30

ix

 LIST OF TABLES

 Table No. Description Page No.

 Table 1. State and Energy for harmonic potential well 18

 Table 2. State and Energy for Gaussian potential well 19

 Table 3. Electronic system and energy for harmonic potential well 24

 Table 4. Electronic system and energy for harmonic potential well 25

 Table 5. Fitted coefficients for 1electron zero node system. 26

 Table 5. Fitted coefficients for 1electron zero node system 27

 Table 5. Fitted coefficients for 1electron zero node system 28

 Table 5. Fitted coefficients for 1electron zero node system 29

x

 SYMBOLS/ UNITS

 J Joule (Kgm
2
s

-2
)

 V Potential

 Y Wave function

 E Energy

 m Kg

 h Planck constant (Js)

 Kg (Js)

-2

xi

 ACRONYMS

MD – Molecular Dynamics

PES – Potential Energy Surface

DFT – Density Functional Theory

ANN – Artificial Neural Network

NN – Neural Network

1

Chapter 1

 Introduction

1.1General Introduction:

It is well known that the solution of the Schrodinger equation beyond hydrogen is a non –

trivial problem due to the presence of an inter-electronic repulsion term, and there is no

analytical way to solve it. The Born-Oppenheimer approximation [1] also justified this

because the Hamiltonian or the ground state potential energy is completely defined by the

atomic positions, nuclear charges, and the total charge of the system. From here, we

observe that a well-defined relationship exists between the atomic structure and its

potential energy. It seems like that for reliable computer simulations in chemistry,

physics, and material science, the accurate description of the atomic interactions is of

vital importance. Based on quantum mechanical laws [2], various electronic structure

methods can calculate the potential energy and the nuclear forces for a given atomic

configuration using the Born- Oppenheimer approximation.

But in the calculation of energies and forces of any system, the choice of the electronic

structure [3] method plays a significant role. The choice of the electronic structure

method depends on the system. It usually requires an acceptable compromise between

efficiency and accuracy for the problem of interest because we want to calculate the exact

solution of the Schrodinger equations. And we know that it is impossible for essentially

all problems beyond the hydrogen atom. The calculation of each electronic structure then

provides a particular point on the multidimensional potential-energy surface (PES),

which is a real-valued function and depending upon the atomic coordinates which are

used to determine the potential energy of the system. The number of electronic structure

energies that can be calculated and stored is limited. Consequently, in abinitio MD [4],

density functional theory (DFT) [5, 6], naturally "on the fly," is used to calculate the

energies and forces. Alternatively, an analytic expression for the PES can be constructed

and used in the simulations, allowing performing MD simulations more efficiently. The

estimation of such types of expressions is much faster than solving the quantum

mechanical problem. The Born-Oppenheimer approximation also justifies this approach.

From the above discussion, we observe that a well-defined relationship exists between

the atomic structure and its potential energy. So, suppose we do not have any information

about the atomic structure, inter-electronic repulsion, nuclear charges, and the total

charges. In that case, we cannot calculate the potential energy of any system.

 Artificial neural network (ANN) [7], which is inspired by the biological neural

network, is one of the most important machine learning theory methods. Just like our

brain, an artificial neural network consists of a network of neurons. We can say that an

artificial neural network is an attempt to make a computer model of the brain. The

2

working of an artificial neural network is inspired by but not identical to the biological

neurons. Examples of ANN are feed-forward neural network [8], radial basis function

network [9], and restricted Boltzmann machine [10]. As a universal approximator [11],

an ANN can be used to represent functions. Naturally, it is possible to use ANN to

describe the wave function in a quantum system [12]. Researchers have been trying to

combine neural network theory and quantum mechanics [13]. For example, using neural

network in the real space to solve differential equations, especially the Schrodinger

equation with some specific potential [14].On using neural network, there is no need to

change the input to get the desired output. In this method, input values are not changing

for a particular result. Only the modification of weights connection between the neurons

of a specified network is required. The NNs energy expression is unbiased, which means

it does not require any type of system modifications generally applicable to all types of

bonding [15]. In this project, we are using machine learning technique, artificial neural

networks to map probability densities with energies. Here, we are using probability

density as input for artificial neural networks, and the output will be the total energies of

the system.

Our main motive in this thesis is to use machine learning techniques to solve Schrodinger

equation. In this study we considered one-dimensional Schrodinger wave equation in

gaussian potential well and in harmonic potential well as a case study to use machine

learning techniques. For our project we selected one-dimensional Schrodinger equation in

gaussian potential well. Because 1-dimensional Schrodinger equation in a gaussian

potential well has no analytical solution. This project has been taken as a prototype for

typical problems.

Potential formula for both systems given below:-

 Harmonic Potential well, V(x) =

Gaussian Potential well [16], V(x) = ∑

The well-known fact that the One- Dimensional box for a free particle is easily solvable

and has an analytical solution. But with potential it is not solvable analytically. So here,

we examined Schrodinger equation with gaussian potential well by using Numerical

method i.e. Numerov method. Here, the values of potential energy parameters a, b, and c

vary from1 <a< 20, 0.2 <b< 0.8, and 0.01 <c< 0.3. [17]. Solving real problems using

numerical methods is costly. So here, we are using machine learning method (Artificial

neural networks) to map density with total energy. For this we made a dataset of about

5000 probability densities using the Numerov and train these probability densities to the

known energies obtained. The dataset is obtained by randomly changing the parameters

of gaussian potential (a, b, and c) and the force constant values in harmonic oscillator

potential.

3

 1.2 Organization of the Thesis:

 Chapter 2: Theory

 Chapter 3: FORTRAN Code

 Chapter 4: Results and Discussion

 Chapter 5: Conclusion

4

 Chapter 2

 Theory

 2.1 Time Independent Schrodinger Equation:-

 = (1)

 Kinetic energy operator (K.E) =

 Potential energy operator (P.E) = V(x)

It can rewrite as:-

 (

) Y(x) = EY(x) (2)

 (K.E + P.E) Y(x) = E Y(x) (3)

Where, Y(x) is the wave function

 Or,

 HY(x) = EY(x) (4)

Here, H is the Hamiltonian operator which is equal to the sum of kinetic energy and

potential energy. E is the eigenvalue and represents total energy of the system.

2.1.1Schrodinger Equation for Particle in box:-

In case of free particle [16] V(x) = 0 because free particle means that, the particle

experience no potential energy.

 For free particle in 1-D box, equation (1) can write as

 +

 Y(x) = 0 (5)

(where x is vary from 0 to 1 (0 ≤ x ≤1)

The particle is restricted to the region 0 ≤ x ≤1. The probability of finding the particle

outside this reason is zero. It means Y(x) = 0 outside the region. To fulfill the conditions

that the wave function should be continuous and restricted within the given region, the

elementary point is that it should follow given conditions.:-

 Y (0) = Y (1) = 0

 Above equation is easily solvable and the general solution is –

5

 Y(x) = A + B (6)

With,

 =

On applying boundary conditions and solving, we find that

 =

 J where n = 1, 2, 3 ……

2.1.2 Schrodinger Equation for Harmonic Oscillator:-

 From equation (1)-

 = EY(x)

 Here, V(x) =

k

 Above equation can rewrite as -

 = -

 (E-

k) Y(x) = 0 (7)

For adimensional results we are introducing adimensional variables x and e.

Where,

 x = √

)*x

 And e =

 (w √

)

k, denotes the force constant and w frequency of classical oscillator.

equation (2) can rewrite by using adimensional variables a and b and the formula is given

below:-

 - 2(e -

) Y(x) = 0 (8)

 On solving above we get the eigenvalues for harmonic oscillator:-

 e = (n +

) n = 0, 1, 2………..

 Here, n is the quantum number and the value of n is vary from 0 to . There is no unit

of energy.

6

2.1 Necessity of Numerov’s method for integrating the one-dimensional Schrodinger

equation:-

Equation for 1-D box with potential is shown in equation (1), and it can rewrite as given

below-

 + Y(x) = 0 (9)

Where,

 (x) =

 On analyzing the Schrodinger equation for particle in box with some potential it was

found that, we are not able to solve the second order differential equation. There is no

analytical or straightforward method to solve so, here we are using numerical method.

Firstly here we are explaining about numerov’s method and then gives the description

and final equation which is used to calculate wave function and probability density.

2.1.1 What is numerov’s method?

A numerical method is a method which is used to solve the second-order ordinary

differential equation in which the first-order term does not appear. Numerov’s method

[17] is a suitable algorithm to determine this type of problem because numerov method is

simpler and one order higher (fifth) than RK4.

 From equation (9)

 + (x) Y(x) = 0

The above equation is linear in Y, and there is no term involving the first derivative. So,

Numerov’s method is a suitable algorithm for this type of problem. So, we have used this

method to calculate wave functions and densities.

 2.1.2 Description of Numerov’s method:-

 To describe the Numerov’s method [18], firstly, we will write the Talor series for

Ψ(x+h).

 So,

 Y(x+h) = Y(x) + h Y'(x) +

 Y"(x) +

 Y'''(x) +

 Y''''(x) +………. (10)

 On adding Y(x+h) and Y(x-h) all the h of odd powers will be terminate

7

Y(x+h) + Y(x-h) = 2Y(x) + h Y''(x) +

 Y''''(x) + O (h⁶) (11)

 Subsequently, we can write second order Schrodinger equation as given below-

 Y''(x) =

 -

Y''''(x) - O (h⁴) (12)

We want to estimate the term including the 4th derivative so, for this; we will work on

Eq. (1) with 1 +

 which gives

 Y''(x)+

Y''''(x)+ (x)Y(x) +

 [
 (x) Y(x)] = 0 (13)

 Here,

 =

 Substituting for Y''(x) +

 Y''''(x) from equation 13 in to 12

Y(x+h)+Y(x-h)-2Y(x)+ (x)Y(x) +

 [(x)Y(x)] + O(h⁶) = 0 (14)

 So, now we evaluate

 [(x) Y(x)] by using elementry difference formula

 [(x)Y(x)]~

 (15)

Now equation (12) is substituting in equation (11) and rearranging, after that on assuming

x˳= = x˳+nh and defining = k () we get

Final equation:-

 =
 (

)

 (16)

 Equation (13) which is given above is used to determine for n= 2, 3, 4…But there is

a condition two initial values , and should be given.

 2.2 Working of Artificial neural network-

An artificial neural network consists of a network of artificial neurons, or we can say that

artificial neural networks are parallel computing devices, which is basically an attempt to

make a computer model of the brain. A simple example of a feed-forward neural network

that consists of three layers of artificial neurons is given below [6]. Each neuron is

8

represented by a circle. Suppose we have N inputs denoted by x
(
i
1)

. i= 1, 2... N. These

inputs are represented by N neurons in the input layer. The input layer can be fed to the

hidden layer through the relation.

 Fig1. Feed- forward three layer neural network.

 = ∑

 (17)

Here,

 is called weight and

 is called bais. j=1,2,...,M is the index labeling the

hidden layer and M is the number of neurons in the hidden layer. In the hidden layer,

each

 is transformed to the input of the next layer through the activation function

 = a*(

 (18)

It has been reported that mostly sigmoid function is used as activation function.

 Sigmoid (x) = σ(x) =

 (19)

After the activation function, xj
(2)

 is fed to the output layer through

 = ∑

(20)

Here, k labeling the output layer. Then

 is trans-formed to the final output of the

neural network through the activation function

 = σ*

 (21)

The learning process can be carried out by minimizing the error function

9

 E (w, b) =

∑ | |

2
 (22)

In this equation w, b are the weights and biases in the neural network. Nt, denotes the

number of elements in the training set, and Z, Z0 is the output of the neural network and

the measured value in the training set respectively. The main objective of the learning

process is to find out the optimal w and b so that the error function E(w,b) become less.

10

 Chapter 3

 FORTRAN Code

3.1 Main Code

 Code for 1-D system with Gaussian Potential

program Gaussian

implicit none

integer, parameter :: dp = selected_real_kind(14,200)

integer, parameter:: n = 3

integer i, j, kkk, icl, G

integer nodes, hnodes, ncross, kkk, n_iter

real(dp) a(n),b(n),c(n)

real(dp) xmax, dx, ddx12, norm, arg, djump, fac

real(dp) eup, elw, e, V

real(dp), allocatable :: x(:), y(:), p(:), V1(:), f(:)

character (len=80) :: fileout

integer, parameter :: k = 1 !k = m/hbar^2

c

read(15,*)G

read(15,*)

read(15,*)xmax

c

do j = 1, n

read(15,*) a(j),b(j),c(j)

end do

c

dx = xmax/G

ddx12=dx*dx/12.0_dp

c

allocate (x(0:G),V1(0:G),p(0:G),Y(0:G),F(0:G))

c

do i = 0,G

V1(i)=0.0d0

x(i) = i * dx

do j = 1,n

V = -a(j)*exp(-(x(i)-b(j))**2/(2.0*c(j)**2))

V1(i) = V1(i) + V

11

end do

write(3,*) x(i),V1(i)

end do

write(*,*)"('output file name > ')"

read (*,*) fileout

open (2,file=fileout, status='unknown’, form='formatted')

Initially, like all other FORTRAN codes, we have here the declaration of variables. Here,

icl denotes the classical inversion point, and ncross indicates the number of times solution

changes sign. Array controlling the value of the potential at different values of x. Code

first asks the value of xmax and integrates from –xmax to +xmax, but in reality, we do

only from 0 to xmax and then take according to whether we want an even number of

nodes or an odd number of nodes. G is the number of grid points we want to do the

integration on, and then using that, we determined grid size. The division of xmax by G

gives the difference between the two consecutive values of x. After that, we will allocate

the array, set the potential, and also give the name of the output file to store the data.

search_loop: do

c

write(*,"('nodes (type -1 to stop) > ')")

read (*,*) nodes

if (nodes < 0) then

close(2)

deallocate (f, V1 , p, y, x)

stop

end if

c

c INITIALLY SET LOWER AND UPPER BOUNDS TO THE EIGENVALUE

eup=maxval (V1(:))

elw=minval (V1(:))

c

c SET TRIAL ENERGY

c

write(*,"('Trial energy (0=search with bisection) > ')")

read (*,*) e

If (e == 0.0_dp) then

c SEARCH EIGENVALUES WITH BISECTION METHOD (max 1000 iterations)

e = 0.5_dp * (elw + eup)

n_iter = 1000

else

c TEST A SINGLE ENERGY VALUE (no bisection)

12

n_iter = 1

end if

Now, this is the time to set the entry point for the search of eigenvalue. So, firstly we will

write the no. of nodes. If the given value of the node is less than zero, then deallocate,

and the code will stop. After setting nodes, we will set eup (upper bound) and elw (lower

bound) for energy. Where eup is the maximum value of potential and elw is the minimum

value of potential. If we do not give any guess energy or set it zero, the code will start

with the initial guess, which is the mid-point of eup and elw. It will keep on bisection

until it finds the energy. If we want to evaluate results for a single value of energy, then

input the energy value, and the code will give the wave function.

iterate: do kkk = 1, n_iter

c

f(0)=ddx12*k*(2.0_dp*(V1(0)-e))

icl=-1

do i=1,G

f(i)=ddx12*k*2.0_dp*(V1(i)-e)

if (f(i) == 0.0_dp) f(i)=1.d-20

if (f(i) /= sign(f(i),f(i-1))) icl=i

end do

if (icl >= G-2) then

deallocate (f, V1, p, y, x)

print *, 'Error: last change of sign too far'

stop 1

else if (icl < 1) then

deallocate (f, V1,p, y, x)

print *, 'Error: no classical turning point' stop 1

end if

c

c f(x) AS REQUIRED BY THE NUMEROV ALGORITHM

c

f = 1.0_dp – f

y = 0.0_dp

c

c BEWARE THE INTEGER DIVISION: 1/2 = 0!

c hnodes is thus the number of nodes in the x>0 semi-axis (x=0 excepted)

c

if (2*hnodes == nodes) then

c even number of nodes: wavefunction is even

y(0) = 1.0_dp

13

c assume f(-1) = f(1)

y(1) = 0.5_dp*(12.0_dp-10.0_dp*f(0))*y(0)/f(1)

else

c odd number of nodes: wavefunction is odd

y(0) = 0.0_dp

y(1) = dx

end if

In this part of the program, we will set up the f- function used by the Numerov algorithm

and determine the position of its last crossing i.e. change of sign. Change of sign is

observed when potential energy becomes equal to the total energy. If f < 0, it means

potential energy is less than total energy. This condition is known as classically allowed

region, and here kinetic energy will be positive. But when f > 0, it means potential energy

is greater than total energy. It is known as classically forbidden region; here, kinetic

energy will be negative, so according to classical mechanics, particles cannot present in

the forbidden region. Now we will integrate over the whole grid to calculate f (i). If the

potential energy is greater than total energy, then f (i) will be positive either f(i) will be

negative. The product of these two changes the sign and the point at which change in sign

is taking place is called the classical point of inversion. It determines the value of i, and

also, we will check how far it is from G. If the condition shown in the code is not

satisfied the move to the Numerov algorithm. Firstly, we will check for even and then for

odd no. of nodes.

OUTWARD INTEGRATION AND COUNT NUMBER OF CROSSING

ncross=0

do i =1,icl-1

y(i+1)=((12.0_dp-10.0_dp*f(i))*y(i)-f(i-1)*y(i-1))/f(i+1)

if (y(i) /= sign(y(i),y(i+1))) ncross=ncross+1

end do

fac = y(icl)

if (2*hnodes == nodes) then

c even number of nodes: no node in x=0

ncross = 2*ncross

else

c odd number of nodes: node in x=0

ncross = 2*ncross +1

end if

c check number of crossings

if (n_iter > 1) then

if (ncross /= nodes) then

14

c Incorrect number of crossings: adjust energy

if(kkk ==1) print'("Bisection Energy Nodes Discontinuity")'

print '(i5,f25.15,i5)', kkk, e, ncross

if (ncross > nodes) then

c CURRENT ENERGY IS TOO HIGH, LOWER THE UPPER BOUND

eup = e

else

c CURRENT ENERGY IS TOO LOWER, RAISE THE LOWER BOUND

elw = e

end if

c NEW TRIAL VALUE :

e = 0.5_dp * (eup+elw)

c GO TO BEGINNING OF DO LOOP, DON’T PERFORM INWARD INTEGRATION

cycle

end if

else

print *, e, ncross, nodes

end if

c

c IF CORRECT NUMBER OF CROSSINGS: PROCEED TO INWARD

INTEGRATION

c assuming y(G+1) = 0

y(G) = dx

y(G-1) = (12.0_dp-10.0_dp*f(G))*y(G)/f(G-1)

norm = 1.0d100

do i = G-1,icl+1,-1

y(i-1)=((12.0_dp-10.0_dp*f(i))*y(i)-f(i+1)*y(i+1))/f(i-1)

c THE FOLLOWING LINES PREVENT OVERFLOWS IF STARTING FROM TOO

c FAR

if (abs(y(i-1)) > norm) then

y(i-1:G) = y(i-1:G) / norm

end if

end do

After setting initial conditions in the above part of program, we started outward

integration and examined the no. of crossings. If the number of crossings is not correct,

then we will adjust the energy and not performed inward integration. If ncross is greater

than nodes, the current is too high than eup, replace with guess energy e (eup = e) and

bracketing the region go to the lower half. If ncross is less than nodes, elw replace with

guess energy e (elw = e) and go to the upper half.

15

RESCALE FUNCTION TO MATCH AT THE CLASSICAL TURNING POINT (icl)

fac = fac/y(icl)

y(icl:) = y(icl:)*fac

c NORMALIZE ON THE [-xmax, xmax] SEGMENT

c the x=0 point must be counted once

norm = (2.0_dp*dot_product (y, y) - y(0)*y(0))*dx

y = y / sqrt(norm)

if (n_iter > 1) then

c CALCULATE THE DISCONTINUITY IN THE FIRST DERIVATIVE

c

c y'(i;RIGHT) - y'(i;LEFT)

djump = (y(icl+1)+y(icl-1)-(14.0_dp-12.0_dp*f(icl))*y(icl))/dx

print '(i5,f25.15,i5,f14.8)', kkk, e, nodes, djump

if (djump*y(icl) > 0.0_dp) then

c Energy is too high --> choose lower energy range

eup = e

else

c Energy is too low --> choose upper energy range

elw = e

end if

e = 0.5_dp * (eup+elw)

c ---- convergence test

if (eup-elw < 1.d-10) exit iterate

end if

end do iterate

We rescaled the function to match at the classical inversion point and also normalized the

wave function. If iteration is greater than one, we calculate the discontinuity (djump) in

the first derivative. If the djump is equal to zero, then we get the correct energy.

Otherwise, we will adjust energy by setting new trial energy, and this process proceeds

till the difference between eup, and elw is less than or equal to (eup-elw < 1.d-10).

CALCULATION OF THE CLASSICAL PROBABILITY DENSITY FOR ENERGY e:

c

norm = 0.0_dp

p(icl:) = 0.0_dp

do i=0,icl

arg = (e - V1(i)) if (arg > 0.0_dp) then

p(i) = 1.0_dp/sqrt(arg)

else

16

p(i) = 0.0_dp

end if

norm = norm + 2.0_dp*dx*p(i)

end do

c THE POINT AT (x=0) MUST BE COUNTED ONCE:

norm = norm - dx*p(0)

c Normalize p(x) so that Int p(x)dx = 1

p(:icl-1) = p(:icl-1)/norm

c lines starting with # ignored by gnuplot

write (2,'(" # x y(x) y(x)^2 classical p(x) V")')

c x <0 region:

do i = G,1,-1

c if the exponent is > 99, the format X.Y-100 is misinterpreted by gnuplot

if (abs(y(i)) < 1.0D-50) y(i) = 0.0_dp

write (2,*)-x(i), (-1)**nodes*y(i), y(i)*y(i), p(i), V1(i)

end do

c x>0 region:

c do i= 0,G

write (2,*) x(i), y(i), y(i)*y(i), p(i), V1(i)

end do

c two blank lines separating blocks of data, useful for gnuplot plotting

write (2,'(/)')

end do search_loop

end program Gaussian

After that, we will calculate classical probability density for energy e and write the data

in output file for both positive and negative values of x. The code is the same for both the

systems harmonic potential well and Gaussian potential well, and there is the only change of

potential. After changing the potential in the main code, no other change will require for

harmonic potential well.

3.2 Code for Harmonic Potential

Program harmonic

implicit none

integer, parameter :: dp = selected_real_kind(14,200)

integer :: G, i, icl

integer :: nodes, hnodes, ncross, kkk, n_iter

real(dp) :: xmax, dx, ddx12, norm, arg, djump, fac

real(dp) :: eup, elw, e

real(dp), allocatable :: x(:), y(:), p(:), vpot(:), f(:)

17

character (len=80) :: fileout

c Adimensional units: x = (m*K/hbar^2)^(1/4)*X

c e = E/(hbar*omega)

c

Write(*,*)"('Max value for x (typical value: 10)')"

read (*,*) xmax

write(*,*)"('Number of grid points (typically=100)')"

read (*,*) G

allocate(x(0:N), y(0:N), p(0:N), vpot(0:N),f(0:N))

c

dx = xmax/G

ddx12= dx*dx/12.0_dp

c

do i = 0,G

x(i) = float(i) * dx

vpot(i) = 0.5_dp * x(i)*x(i)

end do

After that, the code will remain same for harmonic potential well as code for Gaussian

potential well. We have to replace only the V1 of the main code with vpot for harmonic

potential well. Here, V1 represents the potential for Gaussian potential well and vpot potential

for harmonic potential well.

18

 Chapter 4

 Result and Discussion

Here, we have solved the Schrodinger equation for a 1- dimensional system in a Gaussian

potential well and in a harmonic potential well by using the numerov method. We calculated

wave functions, probability densities, and energies for systems with single electron, 2 electrons,

3 electrons, and 4 electrons. Firstly we solved probability density for one set of potential energy

parameters. But as we want to map probability densities with energies using artificial neural

networks. So, for this, we made a dataset of about 5000 probability densities using the

Numerov method and trained these probability densities to the known energies obtained. The

calculated densities will be input for artificial neural networks, and output will be the total

energy of the system. Also, we evaluated fitting probability densities with analytical equations

and collected coefficients. Initially, we collected coefficients for one density and repeated this

process for many random densities to compare the results which is examined by using

Numerov method.

 We will discuss the dataset for ground state and first excited state for both systems. Our

results showed the data for wave function, probability density, and energy before filling of

electrons and after filling of electrons. Here, we take four types of systems single electron, two

electrons, three electrons, and four electrons. And fill electrons according to the Pauli

Exclusion Principle to calculate energy. We found a good correlation between original and

fitted probability density shown in plots 10, 11, 12, and13. Table (1) having information about

state and energy for harmonic potential well, and table (2) having information about state and

energy for Gaussian potential well. Table 3 and 4 having energy data after filling electrons in

the system. Table 5 to 8 consists of fitted coefficients for a single, two, three, and four electrons

system. Fig.1 shows feed-forward three-layer artificial neural networks. Fig.2 to fig .9 shows

the plots for wave function and probability density for ground and first excited state.

 State Energy

 Ground State 0.50

 First Excited State 1.50

 Table 1. Represents state and energy for the harmonic potential well.

19

 State Energy

Ground State -2.05

First Excited State -0.19

 Table 2.Represents state and energy for Gaussian potential well.

 Ground State wave function and Probability density

 Fig 2. Wave function for harmonic Potential well.

20

 Fig3. Probability density for harmonic potential well.

 Fig4. Wave function for Gaussian potential well.

21

 Fig5. Probability density for gaussian Potential well.

 First Excited State wave function and probability density

 Fig6. First excited state wave function for harmonic potential well.

22

 Fig7. First excited state probability density for harmonic potential well.

 Fig8. First excited wave function for gaussian potential well.

23

 Fig9. First excited state probability density for Gaussian potential well.

24

 System Energies On filling up electrons

 Energy = no. of electrons present in particular state *Energy of the state

 For Harmonic potential well:-

 Energy for ground state = 0.50

 Energy for first excited state = 1.50

 System Energy

1.

One electron system electron

present in ground state.

 1*(0.50) = 0.50

2.

Two electron system both

electrons present in ground state.

2*(0.50) = 1.00

3.

Two electrons system one

electron present in ground one in

first excited state.

 1*(0.50)+1*(1.50) = 2.00

4.

Three electrons system two

electrons present in ground and

one in first excited state.

2*(0.50)+1*(1.50) = 2.50

5. Four electrons system two

electrons present in ground and

two in first excited state.

2*(0.50)+2*(1.50) = 4.00

 Table 3. Electronic system and energy for harmonic potential well.

25

For Gaussian potential well:-

Energy for ground state = -2.05

Energy for first excited state = -0.19

 System Energy

1.

One electron system electron

present in ground state.

1*(-2.05) = -2.05

2. Two electrons system both

electrons presents in first excited

state

2*(-2.05) = -4.10

3.

Two electrons system one in

ground state one in first excited

state

1*(-2.05) +1*(-0.19) = - 2.24

4.

Three electrons system two

electrons present in ground one in

first excited state

2*(-2.05) +1*(-0.19)= - 4.30

5. Four electrons system two electrons

present in ground two in first

excited state

2*(-2.05) + 2*(-0.19) = - 4.47

Table 4. Electronic system and energy for gaussian potential well.

26

 Fitting Equation and plots for all the systems

Here, we have established the general form of total probability density to use the

coefficients as an input for neural networks. We need to ensure that all the fitted

coefficients are relatively independent .Thus we choose hermite polynomial. Since, we

know Orthogonality is the important condition for independency. So, form harmonic

oscillator if two hermite polynomials are orthogonal to each other this means they are

independent.

The fitting equation for all the system considered in this study is of the form

n(x) = [a0 * H0(x) + a1 *H1(x) + a2 H2(x) + a3 * H3(x) + a4 * H4(x) + a5 * H5(x)] e
-(1.5*x*x)/2

Where n(x) is total probability density of all electrons in the system

a0, a1, a2, a3, a4, a5 are fitted coefficients.

H0(x), H1(x), H2(x), H3(x), H4(x), H5(x) are hermite polynomials up to order 5.

Values of a0, a1, a2, a3, a4, for 1 electron zero node system are

 Fitted coefficient Value of fitted coefficient

 a0 0.75

 a1 0.36

 a2 0.08

 a3 0.00

 a4 0.0008

 a5 0.0003

Table 5. Fitted coefficients for 1electron zero node system.

Total probability density equation for 1electron zero node system is -

n(x)=

Plot for 1 electron and zero node system

Here, fig. 10 shows the comparison between original probability density and fitted

probability density for 1 electron and 0 node systems.

27

 Fig10. Probability density graph for 1 electron and 0 nodes system.

Values of a0, a1, a2, a3, a4, a5 for 2electrons 1node system are

 Fitted coefficient Value of fitted coefficient

 a0 1.87

 a1 1.24

 a2 0.84

 a3 0.26

 a4 0.06

 a5 0.003

 Table6. Fitted coefficient for 2electrons 1 node system.

 Total probability density equation for 2electrons and one node system is -

n(x)=

Plot for 2 electrons and 1 node system

This graph represents the comparison between original probability density and fitted

probability density for 2 electrons and 1 node system.

28

 Fig11. Probability density graph for 2 electrons and 1 node system.

 Values of a0, a1, a2, a3, a4, a5 for 3electrons 1node system are

 Fitted coefficient Value of fitted coefficient

 a0 2.62

 a1 1.60

 a2 0.93

 a3 0.26

 a4 0.06

 a5 0.003

 Table7. Fitted coefficient for 3 electrons 1 node system

 Total probability density equation for 3 electrons and 1 node system is -

 n(x)=

Plot for three electrons and one-node system

This graph represents the comparison between original probability density and fitted

probability density for 3 electrons and 1 node system.

29

 Fig.12 Probability density graph for 3 electrons and 1 node system.

Values of a0, a1, a2, a3, a4, a5 for 4 electrons 1 node system are-

 Fitted coefficient Value of fitted coefficient

 a0 3.74

 a1 2.65

 a2 1.71

 a3 0.50

 a4 0.12

 a5 0.00

 Table8. Fitted coefficient for 4 electrons 1 node system.

 Total probability density equation for 4 electrons and 1 node system is -

n(x)=

30

Plot for 4 electrons and 1nodes system

This graph represents the comparison between original probability density and fitted

probability density for four electrons and one node system.

 Fig.13 Probability density graph for 4 electrons and 1 node system.

31

 Chapter 5

 Conclusion

In this project, we evaluated Schrodinger Equation for one-dimensional system in a

Gaussian potential well and Harmonic potential well by using the Numerov method. Since one

-dimensional Schrodinger equation in Gaussian potential well has no analytical solution. We

want to map probability densities to energies using artificial neural networks. So, we made a

dataset of about 5000 probability densities using the numerov method for the training of neural

networks. The dataset is obtained by randomly changing the parameters of Gaussian potential

well and force constant values in the harmonic potential well. We examine results for total

probability density calculated by the numerov method and fitting probability density calculated

by using an analytical equation. After examining plots obtained using both methods, we found

good resemblance. So, from the future prospective, such models can be used to calculate

energies of 1- dimensional Schrodinger equation in a similar but for unknown potential energy

well without really solving the Schrodinger equation analytically.

32

 REFERENCES

1. Born, M.; Oppenheimer, R.; Ann. Phys., 1927, 389, 457.

2. Car, R.; Parrinello, M.; Phys. Rev. Lett., 1985, 55, 2471.

3. Behler, J.; “Constructing high dimensional neural network potentials: A tutorial

review”; International journal of Quantum Chemistry, 2015, DOI:

10.1002/qua.24890

4. Marx, D.; Hutter, J.; “Ab Initio Molecular Dynamics: Basic Theory and

Advanced Methods”; Cambridge University Press: Cambridge, 2009.

5. Parr, R. G.; Yang, W.; “Density Functional Theory of Atoms and Molecules”;

Oxford University Press: Oxford, 1989.

6. Koch, W.; Holthausen, M. C.; “A Chemist's Guide to Density Functional Theory

“; 2nd ed.; Wiley-VCH, 2001.

7. McCulloch, W. S.; Pitts, W.; “The bulletin of mathematical biophysics”; 1943,

5,115.

8. Bishop, C. M.; “Pattern recognition and machine learning”; 1
st

ed., Springer-

Verlag, New York, 2006.

9. Schwenker, F.; Kestler, H. A.; Palm, G.; “Neural Net-works”; 2001, 14, 439.

10. Scarselli, F.; Tsoi, A. C.; “Neural Networks”; 1998, 11, 15.

11. Park, J.; Sandberg, I. W.; “Neural Computation”; 1991, 3, 246,

http://dx.doi.org/10.1162/neco.1991.3.2.246.

12. Teng, P.; “Machine- learning quantum mechanics: Solving quantum mechanics

problems using radial basis function networks”; Phys. Rev. E98, 2018.

13. Lagaris, I.; Likas, A.; Fotiadis, D.; “Computer Physics Communications”; 1997,

104, 1.

14. Da Silva, A. J.; Ludermir, T. B.; De Oliveira, W.R.; “Neural Networks”; 2016,

76, 55.

15. Behler, J.; “Condensed Matter”; J. Phys., 2014, 26, 183001.

16. Synder, J. C.; Rupp, M.; Hansen, K.; Muller, K. R.; Burke, K.;”Finding Density

Functionals with Machine Learning”; Phys. Rev. Lett, 2012, 108, 253002.

17. Dreizler, R. M.; Gross, E. K. U.; “Density Functional Theory: An Approach to

the Quantum Many-Body Problem”; Springer, Berlin, 1990.

18. McQuarrie, D. A.; Simon, J. D.; “Physical Chemistry: a molecular approach”;J.

Chem. Educ., 1998, 75, 5, 545 .

19. Peter, Y.;”Numerov method for integrating the one dimensional Schrodinger

equation”; Phys. 115/242, 2009.

20. Hairer, E.; Nørsett, P.; Syvert Paul, P.; Wanner, G.; “Solving Ordinary

Differential Equations I: Nonstiff Problems”, Springer, New York, 1993.

http://dx.doi.org/10.1162/neco.1991.3.2.246

