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Abstract

It is well known that the solution of the Schrodinger equation beyond the hydrogen atom is a
non-trivial problem. Our main objective in the thesis is to use machine learning techniques to
solve Schrodinger equation. In the study we considered one dimensional Schrodinger wave
equation in Gaussian potential well and also in harmonic potential well as a case study to use
machine learning techniques. Since the 1- dimensional Schrodinger equation in Gaussian
potential well has no analytical solution, we used the Numerov method to solve it. Similarly, the
Numerov method is used to solve the 1- dimensional Schrodinger wave equation in harmonic
potential well. Using the numerov method, we calculated wave functions, probability densities
and energies for systems with single electrons, 2 electrons, 3 electrons and 4 electrons. Now our
aim is to map the probability densities to energies using artificial neural networks. For this we
made a dataset of about 5000 probability densities using the Numerov method and train these
probability densities to the known energies obtained. The dataset is obtained by randomly
changing the parameters of Gaussian potential well and the force constant values in harmonic
potential well. The inputs for the artificial neural networks will be probability densities and the
output will be total energies of the system. Such models can be used to calculate energies of 1-
dimensional Schrodinger equation in a similar but unknown potential energy well without really
solving the Schrodinger equation analytically.
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Chapter 1

Introduction

1.1General Introduction:

It is well known that the solution of the Schrodinger equation beyond hydrogen is a non —
trivial problem due to the presence of an inter-electronic repulsion term, and there is no
analytical way to solve it. The Born-Oppenheimer approximation [1] also justified this
because the Hamiltonian or the ground state potential energy is completely defined by the
atomic positions, nuclear charges, and the total charge of the system. From here, we
observe that a well-defined relationship exists between the atomic structure and its
potential energy. It seems like that for reliable computer simulations in chemistry,
physics, and material science, the accurate description of the atomic interactions is of
vital importance. Based on quantum mechanical laws [2], various electronic structure
methods can calculate the potential energy and the nuclear forces for a given atomic
configuration using the Born- Oppenheimer approximation.

But in the calculation of energies and forces of any system, the choice of the electronic
structure [3] method plays a significant role. The choice of the electronic structure
method depends on the system. It usually requires an acceptable compromise between
efficiency and accuracy for the problem of interest because we want to calculate the exact
solution of the Schrodinger equations. And we know that it is impossible for essentially
all problems beyond the hydrogen atom. The calculation of each electronic structure then
provides a particular point on the multidimensional potential-energy surface (PES),
which is a real-valued function and depending upon the atomic coordinates which are
used to determine the potential energy of the system. The number of electronic structure
energies that can be calculated and stored is limited. Consequently, in abinitio MD [4],
density functional theory (DFT) [5, 6], naturally "on the fly," is used to calculate the
energies and forces. Alternatively, an analytic expression for the PES can be constructed
and used in the simulations, allowing performing MD simulations more efficiently. The
estimation of such types of expressions is much faster than solving the quantum
mechanical problem. The Born-Oppenheimer approximation also justifies this approach.
From the above discussion, we observe that a well-defined relationship exists between
the atomic structure and its potential energy. So, suppose we do not have any information
about the atomic structure, inter-electronic repulsion, nuclear charges, and the total
charges. In that case, we cannot calculate the potential energy of any system.

Avrtificial neural network (ANN) [7], which is inspired by the biological neural
network, is one of the most important machine learning theory methods. Just like our
brain, an artificial neural network consists of a network of neurons. We can say that an
artificial neural network is an attempt to make a computer model of the brain. The



working of an artificial neural network is inspired by but not identical to the biological
neurons. Examples of ANN are feed-forward neural network [8], radial basis function
network [9], and restricted Boltzmann machine [10]. As a universal approximator [11],
an ANN can be used to represent functions. Naturally, it is possible to use ANN to
describe the wave function in a quantum system [12]. Researchers have been trying to
combine neural network theory and quantum mechanics [13]. For example, using neural
network in the real space to solve differential equations, especially the Schrodinger
equation with some specific potential [14].0On using neural network, there is no need to
change the input to get the desired output. In this method, input values are not changing
for a particular result. Only the modification of weights connection between the neurons
of a specified network is required. The NNs energy expression is unbiased, which means
it does not require any type of system modifications generally applicable to all types of
bonding [15]. In this project, we are using machine learning technique, artificial neural
networks to map probability densities with energies. Here, we are using probability
density as input for artificial neural networks, and the output will be the total energies of
the system.

Our main motive in this thesis is to use machine learning techniques to solve Schrodinger
equation. In this study we considered one-dimensional Schrodinger wave equation in
gaussian potential well and in harmonic potential well as a case study to use machine
learning techniques. For our project we selected one-dimensional Schrodinger equation in
gaussian potential well. Because 1-dimensional Schrodinger equation in a gaussian
potential well has no analytical solution. This project has been taken as a prototype for
typical problems.

Potential formula for both systems given below:-

Harmonic Potential well, V(x) = %kx2

Gaussian Potential well [16], V(X) = — ¥3_, a;el=(—b0?/2¢f]

The well-known fact that the One- Dimensional box for a free particle is easily solvable
and has an analytical solution. But with potential it is not solvable analytically. So here,
we examined Schrodinger equation with gaussian potential well by using Numerical
method i.e. Numerov method. Here, the values of potential energy parameters a, b, and ¢
vary froml <a< 20, 0.2 <b< 0.8, and 0.01 <c< 0.3. [17]. Solving real problems using
numerical methods is costly. So here, we are using machine learning method (Artificial
neural networks) to map density with total energy. For this we made a dataset of about
5000 probability densities using the Numerov and train these probability densities to the
known energies obtained. The dataset is obtained by randomly changing the parameters
of gaussian potential (a, b, and c¢) and the force constant values in harmonic oscillator
potential.



1.2 Organization of the Thesis:
Chapter 2: Theory

Chapter 3: FORTRAN Code
Chapter 4: Results and Discussion

Chapter 5: Conclusion



Chapter 2

Theory

2.1 Time Independent Schrodinger Equation:-

—h2 d2Y(x)

o T V(x)Y(x) =EY(x) (1)
- - —1’12 dZ
Kinetic energy operator (K.E) = P

Potential energy operator (P.E) = V(X)

It can rewrite as:-

—h? d?
2m dx?

( +V(x)) Y() =EY(X) )
(KEE+P.E) Y(x) =E Y(x) (3)
Where, Y(x) is the wave function
Or,
HY(x) = EY(x) (4)

Here, H is the Hamiltonian operator which is equal to the sum of kinetic energy and
potential energy. E is the eigenvalue and represents total energy of the system.

2.1.1Schrodinger Equation for Particle in box:-

In case of free particle [16] V(x) = 0 because free particle means that, the particle
experience no potential energy.

For free particle in 1-D box, equation (1) can write as

d?y(x) 2mE
dx? h2
(where x is vary from 0 to 1 (0 <x <1)

Y = 0 (%)

The particle is restricted to the region 0 < x <1. The probability of finding the particle
outside this reason is zero. It means Y (x) = 0 outside the region. To fulfill the conditions
that the wave function should be continuous and restricted within the given region, the
elementary point is that it should follow given conditions.:-

Y0)=Y(1)=0
Above equation is easily solvable and the general solution is —

4



Y (X) = A cos kx + B sin kx (6)
With,

2mE

2 =
k—hz

On applying boundary conditions and solving, we find that

h2%n?

8ma?2

E,= J wheren=1,2,3......

2.1.2 Schrodinger Equation for Harmonic Oscillator:-
From equation (1)-
T VY() =EYE)
Here, V(x) = %kx2
Above equation can rewrite as -
Y= 2 (B ) Y() = 0 )

dx?2 h2

For adimensional results we are introducing adimensional variables x and e.

Where,
4 k
x= (3"
_E _ |k
And e =— w= )

k, denotes the force constant and w frequency of classical oscillator.

equation (2) can rewrite by using adimensional variables a and b and the formula is given
below:-

d?y x? _
S -2e-2)Y(0)=0 (8)
On solving above we get the eigenvalues for harmonic oscillator:-
e=(n+) N=0,1,2.0ccc......

Here, n is the quantum number and the value of n is vary from 0 to oo . There is no unit
of energy.



2.1 Necessity of Numerov’s method for integrating the one-dimensional Schrodinger
equation:-

Equation for 1-D box with potential is shown in equation (1), and it can rewrite as given
below-

X4 I2Y(0) =0 9)
Where,
K2(x)=  Z2[E—V(x)]

On analyzing the Schrodinger equation for particle in box with some potential it was
found that, we are not able to solve the second order differential equation. There is no
analytical or straightforward method to solve so, here we are using numerical method.
Firstly here we are explaining about numerov’s method and then gives the description
and final equation which is used to calculate wave function and probability density.

2.1.1 What is numerov’s method?

A numerical method is a method which is used to solve the second-order ordinary
differential equation in which the first-order term does not appear. Numerov’s method
[17] is a suitable algorithm to determine this type of problem because numerov method is
simpler and one order higher (fifth) than RK4.

From equation (9)

d?Y(x)
dx2

+k?2(x) Y(X) =0

The above equation is linear in Y, and there is no term involving the first derivative. So,
Numerov’s method is a suitable algorithm for this type of problem. So, we have used this
method to calculate wave functions and densities.

2.1.2 Description of Numerov’s method:-

To describe the Numerov’s method [18], firstly, we will write the Talor series for
Y(x+h).

So,
Y(eHh) = Y(0) +h Y'(0) +o Y () + 5 Y)Y ) (10)

On adding Y (x+h) and Y(x-h) all the h of odd powers will be terminate



Y(x+h) + Y(x-h) = 2Y(x) + h Y"(x) + ’2‘—4 Y™(x) + O (h®) (11)

Subsequently, we can write second order Schrodinger equation as given below-

(Y(x+h)+Y(x—h)-2Y(x))
h2 i

') = LY -0 () (12)

We want to estimate the term including the 4th derivative so, for this; we will work on
. h2 d?y . .
Eq. (1) with 1 + PEpe] which gives

YUY 0+ (Y () + = L[k (x) Y(x)] = 0 (13)
Here,
_ -V(x)2m
2= LE th 2m

Substituting for Y"(x) +;L—: Y"™(x) from equation 13 in to 12

hdY

Y (x+h)+Y (x-h)-2Y (x)+h2k? (X)Y (X) + 5

—=K* ()Y (X)] + O(h?) =0 (14)

So, now we evaluate [k2 (x) Y(X)] by using elementry difference formula

(k? (x+h)Y(x+h)+k?(x—h)Y(x—h)-2k? (x)Y(x))
h2

LIk ()Y ()]~ (15)

Now equation (12) is substituting in equation (11) and rearranging, after that on assuming
X = x,= x_+nhh and defining k,,= k (x,,) we get

Final equation:-

5 1
_ 2(1-2h2kE Y- (14 R kA )Yy
Yh+1_

(16)

1 2
1+Eh2k‘n+1

Equation (13) which is given above is used to determine Y,, for n= 2, 3, 4...But there is
a condition two initial values Y;, and Y; should be given.

2.2 Working of Artificial neural network-

An artificial neural network consists of a network of artificial neurons, or we can say that
artificial neural networks are parallel computing devices, which is basically an attempt to
make a computer model of the brain. A simple example of a feed-forward neural network

that consists of three layers of artificial neurons is given below [6]. Each neuron is



represented by a circle. Suppose we have N inputs denoted by x{Y. i= 1, 2... N. These
inputs are represented by N neurons in the input layer. The input layer can be fed to the

hidden layer through the relation.

Hidden
layer

Figl. Feed- forward three layer neural network.

vi=Towd x + b (17)

Here, wS is called weight and b" is called bais. j=1,2,....M is the index labeling the
hidden layer and M is the number of neurons in the hidden layer. In the hidden layer,

eacth(l) is transformed to the input of the next layer through the activation function
x® = ax(y®) (18)

It has been reported that mostly sigmoid function is used as activation function.

1

Sigmoid () =o(x) = = (19)
After the activation function, x;®) is fed to the output layer through
rP=%wx? +b? (20)

Here, k labeling the output layer. Then Yk(z) is trans-formed to the final output of the
neural network through the activation function

7 =o*(¥?) (21)

The learning process can be carried out by minimizing the error function



E (W, b) = 2 X312 (i w, b) — Zo ()| V2 (22)

In this equation w, b are the weights and biases in the neural network. N; denotes the
number of elements in the training set, and Z, Z, is the output of the neural network and

the measured value in the training set respectively. The main objective of the learning

process is to find out the optimal w and b so that the error function E(w,b) become less.



Chapter 3
FORTRAN Code

3.1 Main Code
Code for 1-D system with Gaussian Potential

program Gaussian

implicit none

integer, parameter :: dp = selected_real_kind(14,200)
integer, parameter:: n =3

integer i, j, kkk, icl, G

integer nodes, hnodes, ncross, kkk, n_iter
real(dp) a(n),b(n),c(n)

real(dp) xmax, dx, ddx12, norm, arg, djump, fac
real(dp) eup, elw, e, V

real(dp), allocatable :: x(3), y(:), p(:), V1(:), f()
character (Ien=80) :: fileout

integer, parameter :: k = 1 'k = m/hbar”2

C

read(15,*)G

read(15,*)

read(15,*)xmax

C

doj=1,n

read(15,*) a(j),b(j),c(j)

end do

C

dx = xmax/G

ddx12=dx*dx/12.0_dp

C

allocate (x(0:G),V1(0:G),p(0:G),Y(0:G),F(0:G))
C

doi=0,G

V1(i)=0.0d0

x(i) =1 *dx

doj=1n

V = -a(j)*exp(-(x(1)-b())**2/(2.0*c(j)**2))
V1(i)=V1@i) +V

10



end do
write(3,*) x(i),V1(i)
end do

write(*,*)"(‘output file name > )"
read (*,*) fileout
open (2, file=fileout, status="unknown’, form='formatted")

Initially, like all other FORTRAN codes, we have here the declaration of variables. Here,
icl denotes the classical inversion point, and ncross indicates the number of times solution
changes sign. Array controlling the value of the potential at different values of x. Code
first asks the value of xmax and integrates from —xmax to +xmax, but in reality, we do
only from 0 to xmax and then take according to whether we want an even number of
nodes or an odd number of nodes. G is the number of grid points we want to do the
integration on, and then using that, we determined grid size. The division of xmax by G
gives the difference between the two consecutive values of x. After that, we will allocate
the array, set the potential, and also give the name of the output file to store the data.

search_loop: do

C

write(*,"('nodes (type -1 to stop) >")")

read (*,*) nodes

if (nodes < 0) then

close(2)

deallocate (f, V1, p,y, X)

stop

end if

C

c INITIALLY SET LOWER AND UPPER BOUNDS TO THE EIGENVALUE
eup=maxval (V1(:))

elw=minval (V1(:))

C

¢ SET TRIAL ENERGY

C

write(*,"(‘'Trial energy (O=search with bisection) > ")")
read (*,*) e

If (e ==0.0_dp) then

¢ SEARCH EIGENVALUES WITH BISECTION METHOD (max 1000 iterations)
e=0.5_dp * (elw + eup)

n_iter = 1000

else

¢ TEST A SINGLE ENERGY VALUE (no bisection)

11



n_iter=1
end if

Now, this is the time to set the entry point for the search of eigenvalue. So, firstly we will
write the no. of nodes. If the given value of the node is less than zero, then deallocate,
and the code will stop. After setting nodes, we will set eup (upper bound) and elw (lower
bound) for energy. Where eup is the maximum value of potential and elw is the minimum
value of potential. If we do not give any guess energy or set it zero, the code will start
with the initial guess, which is the mid-point of eup and elw. It will keep on bisection
until it finds the energy. If we want to evaluate results for a single value of energy, then
input the energy value, and the code will give the wave function.

iterate: do kkk = 1, n_iter

c
f(0)=ddx12*k*(2.0_dp*(V1(0)-e))
icl=-1

doi=1,G
f(i)=ddx12*k*2.0_dp*(V1(i)-e)

if (f(i) ==0.0_dp) f(i)=1.d-20

if (f(i) /= sign(f(i),f(i-1)) ) icl=i
end do

if (icl >= G-2) then

deallocate (f, V1, p, Y, X)

print *, 'Error: last change of sign too far'

stop 1

else if (icl < 1) then

deallocate (f, V1,p, Y, X)

print *, 'Error: no classical turning point' stop 1

end if

C

¢ f(x) AS REQUIRED BY THE NUMEROV ALGORITHM
C

f=10 dp-f

y=0.0_dp

C

¢ BEWARE THE INTEGER DIVISION: 1/2 = 0!

¢ hnodes is thus the number of nodes in the x>0 semi-axis (x=0 excepted)
C

if (2*hnodes == nodes) then

c even number of nodes: wavefunction is even

y(0) =1.0_dp

12



c assume f(-1) = f(1)

y(1) =0.5_dp*(12.0_dp-10.0_dp*f(0))*y(0)/f(1)
else

¢ odd number of nodes: wavefunction is odd
y(0) =0.0_dp

y(1) =dx

end if

In this part of the program, we will set up the f- function used by the Numerov algorithm
and determine the position of its last crossing i.e. change of sign. Change of sign is
observed when potential energy becomes equal to the total energy. If f < 0, it means
potential energy is less than total energy. This condition is known as classically allowed
region, and here kinetic energy will be positive. But when f > 0, it means potential energy
is greater than total energy. It is known as classically forbidden region; here, kinetic
energy will be negative, so according to classical mechanics, particles cannot present in
the forbidden region. Now we will integrate over the whole grid to calculate f (i). If the
potential energy is greater than total energy, then f (i) will be positive either f(i) will be
negative. The product of these two changes the sign and the point at which change in sign
is taking place is called the classical point of inversion. It determines the value of i, and
also, we will check how far it is from G. If the condition shown in the code is not
satisfied the move to the Numerov algorithm. Firstly, we will check for even and then for
odd no. of nodes.

OUTWARD INTEGRATION AND COUNT NUMBER OF CROSSING
ncross=0

doi=1,icl-1
y(i+1)=((12.0_dp-10.0_dp*f(i))*y(i)-f(i-1)*y(i-1))/f(i+1)
if (y(i) /= sign(y(i),y(i+1)) ) ncross=ncross+1

end do

fac = y(icl)

if (2*hnodes == nodes) then

¢ even number of nodes: no node in x=0

NCross = 2*Nncross

else

¢ odd number of nodes: node in x=0

Ncross = 2*ncross +1

end if

¢ check number of crossings

if (n_iter>1) then

if (ncross /= nodes) then

13



¢ Incorrect number of crossings: adjust energy

if(kkk ==1) print'("Bisection Energy Nodes Discontinuity™)'

print '(i5,f25.15,i5)", kkk, e, ncross

if (ncross > nodes) then

¢ CURRENT ENERGY IS TOO HIGH, LOWER THE UPPER BOUND
eup =e

else

¢ CURRENT ENERGY IS TOO LOWER, RAISE THE LOWER BOUND
elw=e

end if

¢ NEW TRIAL VALUE :

e =0.5_dp * (eup+elw)

¢ GO TO BEGINNING OF DO LOOP, DON’T PERFORM INWARD INTEGRATION
cycle

end if

else

print *, e, ncross, nodes

end if

C

¢ IF CORRECT NUMBER OF CROSSINGS: PROCEED TO INWARD
INTEGRATION

¢ assuming y(G+1) =0

y(G) = dx

y(G-1) = (12.0_dp-10.0_dp*f(G))*y(G)/f(G-1)

norm =1.0d100

doi=G-1l,icl+1,-1
y(i-1)=((12.0_dp-10.0_dp*f(i))*y(i)-f(i+1)*y(i+1))/f(i-1)
¢ THE FOLLOWING LINES PREVENT OVERFLOWS IF STARTING FROM TOO
c FAR

if (abs(y(i-1)) > norm ) then

y(i-1:G) = y(i-1:G) / norm

end if

end do

After setting initial conditions in the above part of program, we started outward
integration and examined the no. of crossings. If the number of crossings is not correct,
then we will adjust the energy and not performed inward integration. If ncross is greater
than nodes, the current is too high than eup, replace with guess energy e (eup = e) and
bracketing the region go to the lower half. If ncross is less than nodes, elw replace with
guess energy e (elw = e) and go to the upper half.

14



RESCALE FUNCTION TO MATCH AT THE CLASSICAL TURNING POINT (icl)
fac = fac/y(icl)

y(icl:) = y(icl:)*fac

¢ NORMALIZE ON THE [-xmax, xmax] SEGMENT

¢ the x=0 point must be counted once

norm = (2.0_dp*dot_product (y, y) - y(0)*y(0))*dx

y =y /sqgrt(norm)

if (n_iter>1) then

¢ CALCULATE THE DISCONTINUITY IN THE FIRST DERIVATIVE
C

¢ Y'(i;RIGHT) - y'(i;LEFT)

djump = (y(icl+1)+y(icl-1)-(14.0_dp-12.0_dp*f(icl))*y(icl))/dx
print '(15,f25.15,i5,f14.8)", kkk, e, nodes, djump

if (djump*y(icl) > 0.0_dp) then

¢ Energy is too high --> choose lower energy range

eup=e

else

¢ Energy is too low --> choose upper energy range

elw=e

end if

e =0.5_dp * (eup+elw)

c ---- convergence test

if (eup-elw < 1.d-10) exit iterate

end if

end do iterate

We rescaled the function to match at the classical inversion point and also normalized the
wave function. If iteration is greater than one, we calculate the discontinuity (djump) in
the first derivative. If the djump is equal to zero, then we get the correct energy.
Otherwise, we will adjust energy by setting new trial energy, and this process proceeds
till the difference between eup, and elw is less than or equal to 10710 (eup-elw < 1.d-10).

CALCULATION OF THE CLASSICAL PROBABILITY DENSITY FOR ENERGY e:
C

norm =0.0_dp

p(icl:) =0.0_dp

do i=0,icl

arg = (e - V1(i)) if (arg > 0.0_dp) then

p(i) = 1.0_dp/sqrt(arg)

else
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p(i) = 0.0_dp

end if

norm = norm + 2.0_dp*dx*p(i)

end do

¢ THE POINT AT (x=0) MUST BE COUNTED ONCE:
norm = norm - dx*p(0)

¢ Normalize p(x) so that Int p(x)dx =1

p(:icl-1) = p(:icl-1)/norm

c lines starting with # ignored by gnuplot

write (2,'(" # x y(X) y(x)"2 classical p(x) V"))

c X <0 region:

doi=G,1,-1

c if the exponent is > 99, the format X.Y-100 is misinterpreted by gnuplot
if (abs(y(i)) <1.0D-50) y(i) =0.0_dp

write (2,%)-x(i), (-1)**nodes*y(i), y(i)*y(i), p(i), V1(i)
end do

¢ x>0 region:

cdoi=0,G

write (2,%) x(i), y(i), y(i)*y(i), p(i), V1(i)

end do

c two blank lines separating blocks of data, useful for gnuplot plotting
write (2,'(/)")

end do search_loop

end program Gaussian

After that, we will calculate classical probability density for energy e and write the data

in output file for both positive and negative values of x. The code is the same for both the
systems harmonic potential well and Gaussian potential well, and there is the only change of
potential. After changing the potential in the main code, no other change will require for

harmonic potential well.

3.2 Code for Harmonic Potential

Program harmonic

implicit none

integer, parameter :: dp = selected_real kind(14,200)
integer :: G, i, icl

integer :: nodes, hnodes, ncross, kkk, n_iter

real(dp) :: xmax, dx, ddx12, norm, arg, djump, fac
real(dp) :: eup, elw, e

real(dp), allocatable :: x(:), y(:), p(:), vpot(:), f(:)
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character (Ien=80) :: fileout

¢ Adimensional units: x = (m*K/hbar"2)"(1/4)*X

c e =E/(hbar*omega)

C

Write(*,*)"(‘Max value for x (typical value: 10)")"
read (*,*) xmax

write(*,*)"('"Number of grid points (typically=100)")"

read (*,*) G

allocate(x(0:N), y(0:N), p(0:N), vpot(0:N),f(0:N) )
C

dx = xmax/G

ddx12= dx*dx/12.0_dp

C

doi=0,G

x(i) = float(i) * dx
vpot(i) = 0.5 dp * x(i)*x(i)
end do

After that, the code will remain same for harmonic potential well as code for Gaussian
potential well. We have to replace only the V1 of the main code with vpot for harmonic
potential well. Here, V1 represents the potential for Gaussian potential well and vpot potential
for harmonic potential well.
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Chapter 4

Result and Discussion

Here, we have solved the Schrodinger equation for a 1- dimensional system in a Gaussian
potential well and in a harmonic potential well by using the numerov method. We calculated
wave functions, probability densities, and energies for systems with single electron, 2 electrons,
3 electrons, and 4 electrons. Firstly we solved probability density for one set of potential energy
parameters. But as we want to map probability densities with energies using artificial neural
networks. So, for this, we made a dataset of about 5000 probability densities using the
Numerov method and trained these probability densities to the known energies obtained. The
calculated densities will be input for artificial neural networks, and output will be the total
energy of the system. Also, we evaluated fitting probability densities with analytical equations
and collected coefficients. Initially, we collected coefficients for one density and repeated this
process for many random densities to compare the results which is examined by using
Numerov method.

We will discuss the dataset for ground state and first excited state for both systems. Our
results showed the data for wave function, probability density, and energy before filling of
electrons and after filling of electrons. Here, we take four types of systems single electron, two
electrons, three electrons, and four electrons. And fill electrons according to the Pauli
Exclusion Principle to calculate energy. We found a good correlation between original and
fitted probability density shown in plots 10, 11, 12, and13. Table (1) having information about
state and energy for harmonic potential well, and table (2) having information about state and
energy for Gaussian potential well. Table 3 and 4 having energy data after filling electrons in
the system. Table 5 to 8 consists of fitted coefficients for a single, two, three, and four electrons
system. Fig.1 shows feed-forward three-layer artificial neural networks. Fig.2 to fig .9 shows
the plots for wave function and probability density for ground and first excited state.

State Energy
Ground State 0.50
First Excited State 1.50

Table 1. Represents state and energy for the harmonic potential well.
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State Energy
Ground State -2.05
First Excited State -0.19

Table 2.Represents state and energy for Gaussian potential well.

Ground State wave function and Probability density

ground state wave function

Fig 2. Wave function for harmonic Potential well.
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Probability density for ground state

ground state wave function
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Fig3. Probability density for harmonic potential well.

Fig4. Wave function for Gaussian potential well.
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First excited state wave function

1.5 T T T T T

Ground state probability density
T
1

Fig5. Probability density for gaussian Potential well.

First Excited State wave function and probability density

L.5 T I T T T T T

Fig6. First excited state wave function for harmonic potential well.
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Fig8. First excited wave function for gaussian potential well.
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probability density for first excited state
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Fig9. First excited state probability density for Gaussian potential well.
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System Energies On filling up electrons

Energy = no. of electrons present in particular state *Energy of the state

For Harmonic potential well:-
Energy for ground state = 0.50

Energy for first excited state = 1.50

System

Energy

1. | One electron system electron
present in ground state.

1*(0.50) = 0.50

2. | Two electron system both
electrons present in ground state.

2%(0.50) =1.00

3. | Two electrons system one
electron present in ground one in
first excited state.

1%(0.50)+1*(1.50) = 2.00

4. | Three electrons system two
electrons present in ground and
one in first excited state.

2*(0.50)+1*(1.50) = 2.50

5. | Four electrons system two
electrons present in ground and
two in first excited state.

2*(0.50)+2*(1.50) = 4.00

Table 3. Electronic system and energy for harmonic potential well.
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For Gaussian potential well:-
Energy for ground state = -2.05

Energy for first excited state = -0.19

System

Energy

1. | One electron system electron
present in ground state.

1%(-2.05) = -2.05

2. | Two electrons system both
electrons presents in first excited
state

2*(-2.05) = -4.10

3. | Two electrons system one in
ground state one in first excited
state

1%(-2.05) +1*(-0.19) = - 2.24

4. | Three electrons system two

first excited state

electrons present in ground one in

2*(-2.05) +1*(-0.19)= - 4.30

present in ground two in first
excited state

5. | Four electrons system two electrons

2*(-2.05) + 2*%(-0.19) = - 4.47

Table 4. Electronic system and energy for gaussian potential well.
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Fitting Equation and plots for all the systems

Here, we have established the general form of total probability density to use the
coefficients as an input for neural networks. We need to ensure that all the fitted
coefficients are relatively independent .Thus we choose hermite polynomial. Since, we
know Orthogonality is the important condition for independency. So, form harmonic
oscillator if two hermite polynomials are orthogonal to each other this means they are
independent.

The fitting equation for all the system considered in this study is of the form
n(X) = [aO* HO(X) +a; *Hl(X) +a HZ(X) + as * H3(X) +ay * H4(X) + ag * H5(X) ] e-(l.5*x*x)/2

Where n(x) is total probability density of all electrons in the system
Qo a1 Ay az a4, as are fitted coefficients.
Ho(X), H1(x), H2(X), H3(X), Ha(X), Hs(x) are hermite polynomials up to order 5.

Values of ap, a; a,, as a4, a5 for 1 electron zero node system are

Fitted coefficient Value of fitted coefficient
ag 0.75
ay 0.36
a 0.08
as 0.00
as 0.0008
as 0.0003

Table 5. Fitted coefficients for lelectron zero node system.

Total probability density equation for lelectron zero node system is -
n(x)= [0.75 * Hy(x) + 0.36 * H;(x) + 0.08 * H,(x) + 0.00 * H5(x) + 0.0008 *

—(1.5%X*X)

H,(x) + 0.0003 * Hg(x)]e™ 2

Plot for 1 electron and zero node system

Here, fig. 10 shows the comparison between original probability density and fitted
probability density for 1 electron and 0 node systems.

26



0.7 1
0.6 4
0.5 1
0.4 + ® original density from numerov
— fitted density

0.3 : T

0.2 4

0.1+

total density for 1 electrons and 0 nodes system

0.0 4

Fig10. Probability density graph for 1 electron and O nodes system.

Values of ap a1 @, az a4, as for 2electrons 1node system are

Fitted coefficient Value of fitted coefficient
do 1.87
a1 1.24
dy 0.84
az 0.26
as 0.06
as 0.003

Table6. Fitted coefficient for 2electrons 1 node system.
Total probability density equation for 2electrons and one node system is -

n(x)= [1.87 * Hy(x) + 1.24 * H;(x) + 0.84 * H,(x) + 0.26 * H3(x) + 0.06 * H,(x) +
—(1.5%x%x)

0.003 * Hg(x)]e™
Plot for 2 electrons and 1 node system
This graph represents the comparison between original probability density and fitted

probability density for 2 electrons and 1 node system.
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0.8 4

0.6 4

@ original density from numerov

0.4 1 — fittedl density

0.2 1

total density for 2 electrons and 1 nodes system

T T T T T T
—4 -2 0 2 4 6

Figl11. Probability density graph for 2 electrons and 1 node system.

Values of ap, a;, a,, as, a4, as for 3electrons 1node system are

Fitted coefficient Value of fitted coefficient
ao 2.62
ai 1.60
ay 0.93
as 0.26
as 0.06
as 0.003

Table7. Fitted coefficient for 3 electrons 1 node system
Total probability density equation for 3 electrons and 1 node system is -

n(xX)= [2.62 * Hy(x) + 1.60 * H;(x) + 0.93 * H,(x) + 0.26 * H3(x) + 0.06 *
—(1.5%x*X)

H,(x) + 0.003 * Hg(x)]e™ 2

Plot for three electrons and one-node system
This graph represents the comparison between original probability density and fitted

probability density for 3 electrons and 1 node system.
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1.4+

L2 A

L0+

0.8 ® original density from numerov
— fitted density

0.6 1

0.4 4

total density for 3 electrons and 1 node system

Fig.12 Probability density graph for 3 electrons and 1 node system.

Values of ay a;, a, as, a4 as for 4 electrons 1 node system are-

Fitted coefficient Value of fitted coefficient
do 3.74
a1 2.65
a 1.71
as 0.50
a 0.12
as 0.00

Table8. Fitted coefficient for 4 electrons 1 node system.
Total probability density equation for 4 electrons and 1 node system is -

n(xX)=[3.74 * Hy(x) + 2.65 * H;(x)1.71 * Hy(x) + 0.50 * H3(x) + 0.12 * H,(x) +
—(1.5%x*X)

0.00 x Hg (x)]e” =

29



Plot for 4 electrons and 1nodes system

This graph represents the comparison between original probability density and fitted
probability density for four electrons and one node system.
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1.00 7 ® original density from numerov |

— fitted density
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total density for 4 electrons and 1 node system

o o

[=] %)

o w
i 1

Fig.13 Probability density graph for 4 electrons and 1 node system.
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Chapter 5

Conclusion

In this project, we evaluated Schrodinger Equation for one-dimensional system in a
Gaussian potential well and Harmonic potential well by using the Numerov method. Since one
-dimensional Schrodinger equation in Gaussian potential well has no analytical solution. We
want to map probability densities to energies using artificial neural networks. So, we made a
dataset of about 5000 probability densities using the numerov method for the training of neural
networks. The dataset is obtained by randomly changing the parameters of Gaussian potential
well and force constant values in the harmonic potential well. We examine results for total
probability density calculated by the numerov method and fitting probability density calculated
by using an analytical equation. After examining plots obtained using both methods, we found
good resemblance. So, from the future prospective, such models can be used to calculate
energies of 1- dimensional Schrodinger equation in a similar but for unknown potential energy
well without really solving the Schrodinger equation analytically.
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