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                                          Abstract      

It is well known that the solution of the Schrodinger equation beyond the hydrogen atom is a 

non-trivial problem. Our main objective in the thesis is to use machine learning techniques to 

solve Schrodinger equation. In the study we considered one dimensional Schrodinger wave 

equation in Gaussian potential well and also in harmonic potential well as a case study to use 

machine learning techniques. Since the 1- dimensional Schrodinger equation in Gaussian 

potential well has no analytical solution, we used the Numerov method to solve it. Similarly, the 

Numerov method is used to solve the 1- dimensional Schrodinger wave equation in harmonic 

potential well. Using the numerov method, we calculated wave functions, probability densities 

and energies for systems with single electrons, 2 electrons, 3 electrons and 4 electrons. Now our 

aim is to map the probability densities to energies using artificial neural networks. For this we 

made a dataset of about 5000 probability densities using the Numerov method and train these 

probability densities to the known energies obtained. The dataset is obtained by randomly 

changing the parameters of Gaussian potential well and the force constant values in harmonic 

potential well. The inputs for the artificial neural networks will be probability densities and the 

output will be total energies of the system. Such models can be used to calculate energies of 1-

dimensional Schrodinger equation in a similar but unknown potential energy well without really 

solving the Schrodinger equation analytically. 
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Chapter 1  

                                     Introduction 

1.1General Introduction: 

It is well known that the solution of the Schrodinger equation beyond hydrogen is a non –

trivial problem due to the presence of an inter-electronic repulsion term, and there is no 

analytical way to solve it. The Born-Oppenheimer approximation [1] also justified this 

because the Hamiltonian or the ground state potential energy is completely defined by the 

atomic positions, nuclear charges, and the total charge of the system. From here, we 

observe that a well-defined relationship exists between the atomic structure and its 

potential energy. It seems like that for reliable computer simulations in chemistry, 

physics, and material science, the accurate description of the atomic interactions is of 

vital importance. Based on quantum mechanical laws [2], various electronic structure 

methods can calculate the potential energy and the nuclear forces for a given atomic 

configuration using the Born- Oppenheimer approximation.  

But in the calculation of energies and forces of any system, the choice of the electronic 

structure [3] method plays a significant role. The choice of the electronic structure 

method depends on the system. It usually requires an acceptable compromise between 

efficiency and accuracy for the problem of interest because we want to calculate the exact 

solution of the Schrodinger equations. And we know that it is impossible for essentially 

all problems beyond the hydrogen atom. The calculation of each electronic structure then 

provides a particular point on the multidimensional potential-energy surface (PES), 

which is a real-valued function and depending upon the atomic coordinates which are 

used to determine the potential energy of the system. The number of electronic structure 

energies that can be calculated and stored is limited. Consequently, in abinitio MD [4], 

density functional theory (DFT) [5, 6], naturally "on the fly," is used to calculate the 

energies and forces. Alternatively, an analytic expression for the PES can be constructed 

and used in the simulations, allowing performing MD simulations more efficiently. The 

estimation of such types of expressions is much faster than solving the quantum 

mechanical problem. The Born-Oppenheimer approximation also justifies this approach. 

From the above discussion, we observe that a well-defined relationship exists between 

the atomic structure and its potential energy. So, suppose we do not have any information 

about the atomic structure, inter-electronic repulsion, nuclear charges, and the total 

charges. In that case, we cannot calculate the potential energy of any system.  

         Artificial neural network (ANN) [7], which is inspired by the biological neural 

network, is one of the most important machine learning theory methods. Just like our 

brain, an artificial neural network consists of a network of neurons. We can say that an 

artificial neural network is an attempt to make a computer model of the brain. The 
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working of an artificial neural network is inspired by but not identical to the biological 

neurons. Examples of ANN are feed-forward neural network [8], radial basis function 

network [9], and restricted Boltzmann machine [10]. As a universal approximator [11], 

an ANN can be used to represent functions. Naturally, it is possible to use ANN to 

describe the wave function in a quantum system [12]. Researchers have been trying to 

combine neural network theory and quantum mechanics [13]. For example, using neural 

network in the real space to solve differential equations, especially the Schrodinger 

equation with some specific potential [14].On using neural network, there is no need to 

change the input to get the desired output. In this method, input values are not changing 

for a particular result. Only the modification of weights connection between the neurons 

of a specified network is required. The NNs energy expression is unbiased, which means 

it does not require any type of system modifications generally applicable to all types of 

bonding [15]. In this project, we are using machine learning technique, artificial neural 

networks to map probability densities with energies. Here, we are using probability 

density as input for artificial neural networks, and the output will be the total energies of 

the system.  

Our main motive in this thesis is to use machine learning techniques to solve Schrodinger 

equation. In this study we considered one-dimensional Schrodinger wave equation in 

gaussian potential well and in harmonic potential well as a case study to use machine 

learning techniques. For our project we selected one-dimensional Schrodinger equation in 

gaussian potential well. Because 1-dimensional Schrodinger equation in a gaussian 

potential well has no analytical solution. This project has been taken as a prototype for 

typical problems.    

Potential formula for both systems given below:-                                     

 Harmonic Potential well,   V(x) = 
 

 
    

Gaussian Potential well [16], V(x) =  ∑    
        

     
   

    

The well-known fact that the One- Dimensional box for a free particle is easily solvable 

and has an analytical solution. But with potential it is not solvable analytically. So here, 

we examined Schrodinger equation with gaussian potential well by using Numerical 

method i.e. Numerov method. Here, the values of potential energy parameters a, b, and c 

vary from1 <a< 20, 0.2 <b< 0.8, and 0.01 <c< 0.3. [17]. Solving real problems using 

numerical methods is costly. So here, we are using machine learning method (Artificial 

neural networks) to map density with total energy. For this we made a dataset of about 

5000 probability densities using the Numerov and train these probability densities to the 

known energies obtained. The dataset is obtained by randomly changing the parameters 

of gaussian potential (a, b, and c) and the force constant values in harmonic oscillator 

potential. 
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                                                                        1.2 Organization of the Thesis: 

                                                                         Chapter 2: Theory 

                                                                         Chapter 3: FORTRAN Code 

                                                                         Chapter 4: Results and Discussion 

                                                                          Chapter 5: Conclusion 
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                                              Chapter 2 

                                                         Theory 

 2.1 Time Independent Schrodinger Equation:- 

                                        
   

  

      

   
           =                                            (1)             

                             Kinetic energy operator (K.E) =    
   

  

  

   
 

                             Potential energy operator (P.E) =   V(x) 

It can rewrite as:-               

                                     ( 
   

  

  

         ) Y(x) = EY(x)                                          (2) 

                                          (K.E + P.E) Y(x) = E Y(x)                                          (3) 

Where, Y(x) is the wave function  

   Or, 

                                                  HY(x) = EY(x)                                                    (4)       

Here, H is the Hamiltonian operator which is equal to the sum of kinetic energy and 

potential energy. E is the eigenvalue and represents total energy of the system. 

2.1.1Schrodinger Equation for Particle in box:- 

In case of free particle [16] V(x) = 0 because free particle means that, the particle 

experience no potential energy.  

 For free particle in 1-D box, equation (1) can write as  

                                             
      

    +
    

   Y(x) = 0           (5)                                                       

(where x is vary from 0 to 1 (0 ≤ x ≤1)                       

The particle is restricted to the region 0 ≤ x ≤1. The probability of finding the particle 

outside this reason is zero. It means Y(x) = 0 outside the region. To fulfill the conditions 

that the wave function should be continuous and restricted within the given region, the 

elementary point is that it should follow given conditions.:-  

                                                  Y (0) = Y (1) = 0 

  Above equation is easily solvable and the general solution is – 
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                               Y(x) = A       + B                                      (6)                                                  

With, 

                                                 =  
   

  
     

On applying boundary conditions and solving, we find that  

                                =    
    

    
   J                     where n = 1, 2, 3 …… 

2.1.2 Schrodinger Equation for Harmonic Oscillator:- 

      From equation (1)-                   

                                    
   

  

   

   
           = EY(x)                        

              Here,               V(x)   = 
 

 
k   

 Above equation can rewrite as -               

                          
   

    = - 
  

   (E- 
 

 
k  ) Y(x) = 0                                       (7) 

For adimensional results we are introducing adimensional variables x and e. 

Where, 

                          x =      √
  

  

 
)*x                                                                      

  And                 e   = 
 

  
                     (w   √

 

 
 )                                       

k, denotes the force constant and w frequency of classical oscillator. 

equation (2) can rewrite by using adimensional variables a and b and the formula is given 

below:- 

                              
   

     - 2(e - 
  

 
) Y(x) = 0                                  (8) 

        On solving above we get the eigenvalues for harmonic oscillator:-                 

                                  e = (n +
 

 
)               n = 0, 1, 2……….. 

 Here, n is the quantum number and the value of n is vary from 0 to   . There is no unit 

of energy. 
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2.1 Necessity of Numerov’s method for integrating the one-dimensional Schrodinger 

equation:- 

Equation for 1-D box with potential is shown in equation (1), and it can rewrite as given 

below- 

                                                      
   

    +   Y(x) = 0                                         (9) 

Where, 

                                                     (x) =     
  

                          

 On analyzing the Schrodinger equation for particle in box with some potential it was 

found that, we are not able to solve the second order differential equation. There is no 

analytical or straightforward method to solve so, here we are using numerical method. 

Firstly here we are explaining about numerov’s method and then gives the description 

and final equation which is used to calculate wave function and probability density. 

2.1.1 What is numerov’s method? 

A numerical method is a method which is used to solve the second-order ordinary 

differential equation in which the first-order term does not appear. Numerov’s method 

[17] is a suitable algorithm to determine this type of problem because numerov method is 

simpler and one order higher (fifth) than RK4.   

 From equation (9) 

                                                      
      

     +   (x) Y(x) = 0                    

The above equation is linear in Y, and there is no term involving the first derivative. So, 

Numerov’s method is a suitable algorithm for this type of problem.  So, we have used this 

method to calculate wave functions and densities. 

 2.1.2 Description of Numerov’s method:- 

 To describe the Numerov’s method [18], firstly, we will write the Talor series for 

Ψ(x+h). 

 So,  

 Y(x+h) = Y(x) + h Y'(x) +
  

 
 Y"(x) + 

  

 
 Y'''(x) +

  

  
 Y''''(x) +……….        (10) 

 On adding Y(x+h) and Y(x-h) all the h of odd powers will be terminate  
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Y(x+h) + Y(x-h) = 2Y(x) + h Y''(x) + 
  

  
  Y''''(x) + O (h⁶)                           (11)  

 Subsequently, we can write second order Schrodinger equation as given below-  

         Y''(x) =  
                     

  
 - 

   

   
Y''''(x) - O (h⁴)                              (12)        

We want to estimate the term including the 4th derivative so, for this; we will work on 

Eq. (1) with 1 + 
  

  

   

     which gives 

  Y''(x)+
  

  
Y''''(x)+  (x)Y(x) + 

  

  

   

    [ 
  (x) Y(x)] = 0                               (13) 

 Here,  

                                                            =  
           

       

 Substituting for Y''(x) +
  

  
 Y''''(x) from equation 13 in to 12 

Y(x+h)+Y(x-h)-2Y(x)+    (x)Y(x) + 
  

  

   

   [  (x)Y(x)] + O(h⁶) = 0               (14)                       

 So, now we evaluate 
  

    [   (x) Y(x)] by using elementry difference formula  

         
  

   [  (x)Y(x)]~    
                                        

                             (15)  

Now equation (12) is substituting in equation (11) and rearranging, after that on assuming 

x˳=   = x˳+nh and defining   = k (  ) we get  

Final equation:- 

                             = 
 (  

 

  
    

 )      
 

  
      

      

  
 

  
      

 
                                           (16) 

 Equation (13) which is given above is used to determine     for n= 2, 3, 4…But there is 

a condition two initial values   , and   should be given. 

 2.2 Working of Artificial neural network-  

An artificial neural network consists of a network of artificial neurons, or we can say that 

artificial neural networks are parallel computing devices, which is basically an attempt to 

make a computer model of the brain. A simple example of a feed-forward neural network 

that consists of three layers of artificial neurons is given below [6]. Each neuron is 
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represented by a circle. Suppose we have N inputs denoted by x
(
i
1)

. i= 1, 2... N. These 

inputs are represented by N neurons in the input layer. The input layer can be fed to the 

hidden layer through the relation.                                     

                                                                    

                                         Fig1. Feed- forward three layer neural network. 

                                    
 = ∑     

   
   

   
    

   
                                                   (17) 

Here,    
   

 is called weight and   
   

 is called bais. j=1,2,...,M is the index labeling the  

hidden layer and M is the number of neurons in the hidden layer. In the hidden layer, 

each  
   

 is transformed to the input of the next layer through the activation function 

                                 
   

    =   a*(  
   

                                                                       (18) 

It has been reported that mostly sigmoid function is used as activation function.                

                        Sigmoid (x) = σ(x) =      
 

                                                                (19) 

After the activation function, xj
(2)

 is fed to the output layer through     

                         
   

 = ∑    
   

  
   

    
   

                      
                                                                

(20) 

Here, k labeling the output layer. Then   
   

 is trans-formed to the final output of the 

neural network through the activation function  

                                        = σ*   
   

                                                                       (21) 

The learning process can be carried out by minimizing the error function 
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          E (w, b) = 
 

 
∑ |                |  

  
   

2                                          
                          (22) 

In this equation w, b are the weights and biases in the neural network. Nt, denotes the  

number of elements in the training set, and Z, Z0 is the output of the neural network and  

the measured value in the training set respectively. The main objective of the learning  

process is to find out the optimal w and b so that the error function E(w,b) become less. 
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                                                               Chapter 3 

                                                FORTRAN Code    

3.1 Main Code 

 Code for 1-D system with Gaussian Potential                                    

program Gaussian                                                                                                                                                               

implicit none                                                                                                                                                        

integer, parameter :: dp = selected_real_kind(14,200)                                                                                              

integer, parameter:: n = 3                                                                                                                                      

integer i, j, kkk, icl, G                                                                                                                                               

integer nodes, hnodes, ncross, kkk, n_iter                                                                                                               

real(dp) a(n),b(n),c(n)                                                                                                                                                    

real(dp) xmax, dx, ddx12, norm, arg, djump, fac                                                                                                    

real(dp) eup, elw, e, V                                                                                                                                              

real(dp), allocatable :: x(:), y(:), p(:), V1(:), f(:)                                                                                                                            

character (len=80) :: fileout                                                                                                                                         

integer, parameter :: k = 1 !k = m/hbar^2                                                                                                              

c                                                                                                                                                                     

read(15,*)G                                                                                                                                                                       

read(15,*)                                                                                                                                                                

read(15,*)xmax                                                                                                                                                         

c                                                                                                                                                                                              

do j = 1, n                                                                                                                                                                                                                                                                                                                        

read(15,*) a(j),b(j),c(j)                                                                                                                                                                                                         

end do                                                                                                                                                                                                                                                                        

c                                                                                                                                                                              

dx = xmax/G                                                                                                                                          

ddx12=dx*dx/12.0_dp                                                                                                                                

c                                                                                                                                                                      

allocate (x(0:G),V1(0:G),p(0:G),Y(0:G),F(0:G))                                                                                                              

c                                                                                                                                                                        

do i = 0,G                                                                                                                                                                        

V1(i)=0.0d0                                                                                                                                                                    

x(i) = i * dx                                                                                                                                                                                     

do j = 1,n                                                                                                                                                                                                 

V = -a(j)*exp(-(x(i)-b(j))**2/(2.0*c(j)**2))                                                                                                            

V1(i) = V1(i) + V                                                                                                                                                                      
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end do                                                                                                                                                                              

write(3,*) x(i),V1(i)                                                                                                                                                                            

end do  

write(*,*)"('output file name > ')"                                                                                                                         

read (*,*) fileout                                                                                                                                                             

open (2,file=fileout, status='unknown’, form='formatted')                                                                                                                                                                                                                                                              

Initially, like all other FORTRAN codes, we have here the declaration of variables. Here, 

icl denotes the classical inversion point, and ncross indicates the number of times solution 

changes sign. Array controlling the value of the potential at different values of x. Code 

first asks the value of xmax and integrates from –xmax to +xmax, but in reality, we do 

only from 0 to xmax and then take according to whether we want an even number of 

nodes or an odd number of nodes. G is the number of grid points we want to do the 

integration on, and then using that, we determined grid size. The division of xmax by G 

gives the difference between the two consecutive values of x. After that, we will allocate 

the array, set the potential, and also give the name of the output file to store the data. 

search_loop: do                                                                                                                                                                                       

c                                                                                                                                                                        

write(*,"('nodes (type -1 to stop) > ')")                                                                                                                   

read (*,*) nodes                                                                                                                                                                    

if (nodes < 0) then                                                                                                                                                                   

close(2)                                                                                                                                                                             

deallocate ( f, V1 , p, y, x )                                                                                                                                                         

stop                                                                                                                                                                                    

end if                                                                                                                                                                         

c                                                                                                                                                                            

c  INITIALLY SET LOWER AND UPPER BOUNDS TO THE EIGENVALUE                                    

eup=maxval (V1(:))                                                                                                                                       

elw=minval (V1(:))                                                                                                                                                        

c                                                                                                                                                                               

c  SET TRIAL ENERGY                                                                                                                                                     

c                                                                                                                                                               

write(*,"('Trial energy (0=search with bisection) > ')")                                                                                                          

read (*,*) e                                                                                                                                                                                   

If ( e == 0.0_dp ) then                                                                                                                                                                               

c  SEARCH EIGENVALUES WITH BISECTION METHOD (max 1000 iterations)                                                                                                                           

e = 0.5_dp * (elw + eup)                                                                                                                                                                                                                                                 

n_iter = 1000                                                                                                                                                                                     

else                                                                                                                                                                                                      

c  TEST A SINGLE ENERGY VALUE (no bisection)                                                                                                                                    
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n_iter = 1                                                                                                                                                                                 

end if     

Now, this is the time to set the entry point for the search of eigenvalue. So, firstly we will 

write the no. of nodes. If the given value of the node is less than zero, then deallocate, 

and the code will stop. After setting nodes, we will set eup (upper bound) and elw (lower 

bound) for energy. Where eup is the maximum value of potential and elw is the minimum 

value of potential. If we do not give any guess energy or set it zero, the code will start 

with the initial guess, which is the mid-point of eup and elw. It will keep on bisection 

until it finds the energy. If we want to evaluate results for a single value of energy, then 

input the energy value, and the code will give the wave function.                                                                                                                                                                                                                                                                                                                                  

iterate: do kkk = 1, n_iter                                                                                                                                       

c                                                                                                                                      

f(0)=ddx12*k*(2.0_dp*(V1(0)-e))                                                                                                                                            

icl=-1                                                                                                                                                                                             

do i=1,G                                                                                                                                              

f(i)=ddx12*k*2.0_dp*(V1(i)-e)                                                                                                                                                           

if ( f(i) == 0.0_dp) f(i)=1.d-20                                                                                                                                                                                                                                                   

if ( f(i) /= sign(f(i),f(i-1)) ) icl=i                                                                                                                                                        

end do  

if (icl >= G-2) then                                                                                                                                                                

deallocate ( f, V1, p, y, x )                                                                                                                                        

print *, 'Error: last change of sign too far'                                                                                                                        

stop 1                                                                                                                                                                                            

else if (icl < 1) then                                                                                                                                                        

deallocate ( f, V1,p, y, x )                                                                                                                                                            

print *, 'Error: no classical turning point' stop 1                                                                                                                    

end if                                                                                                                                                                              

c                                                                                                                                                                                     

c f(x) AS REQUIRED BY THE NUMEROV ALGORITHM                                                                   

c                                                                                                                                                                        

f = 1.0_dp – f                                                                                                                                                                                      

y = 0.0_dp                                                                                                                                                                     

c                                                                                                                                                                                                                                                                                                                                                                                                                              

c BEWARE THE INTEGER DIVISION: 1/2 = 0!                                                                                                                             

c  hnodes is thus the number of nodes in the x>0 semi-axis (x=0 excepted)                                                                    

c                                                                                                                                                                                                

if (2*hnodes == nodes) then                                                                                                                                                         

c even number of nodes: wavefunction is even                                                                                                                     

y(0) = 1.0_dp                                                                                                                                                                              
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c  assume f(-1) = f(1)                                                                                                                                                                                 

y(1) = 0.5_dp*(12.0_dp-10.0_dp*f(0))*y(0)/f(1)                                                                                                                    

else                                                                                                                                                                                                                                       

c  odd number of nodes: wavefunction is odd                                                                                                                                          

y(0) = 0.0_dp                                                                                                                                                                                

y(1) = dx                                                                                                                                                                                       

end if 

In this part of the program, we will set up the f- function used by the Numerov algorithm 

and determine the position of its last crossing i.e. change of sign. Change of sign is 

observed when potential energy becomes equal to the total energy. If f < 0, it means 

potential energy is less than total energy. This condition is known as classically allowed 

region, and here kinetic energy will be positive. But when f > 0, it means potential energy 

is greater than total energy. It is known as classically forbidden region; here, kinetic 

energy will be negative, so according to classical mechanics, particles cannot present in 

the forbidden region. Now we will integrate over the whole grid to calculate f (i). If the 

potential energy is greater than total energy, then f (i) will be positive either f(i) will be 

negative. The product of these two changes the sign and the point at which change in sign 

is taking place is called the classical point of inversion. It determines the value of i, and 

also, we will check how far it is from G. If the condition shown in the code is not 

satisfied the move to the Numerov algorithm. Firstly, we will check for even and then for 

odd no. of nodes. 

                                                                                                                                                                                                                                                                                                                                                                

OUTWARD INTEGRATION AND COUNT NUMBER OF CROSSING                                                      

ncross=0                                                                                                                                                                                                                                                

do i =1,icl-1                                                                                                                                                                 

y(i+1)=((12.0_dp-10.0_dp*f(i))*y(i)-f(i-1)*y(i-1))/f(i+1)                                                                                                                          

if ( y(i) /= sign(y(i),y(i+1)) ) ncross=ncross+1                                                                                                                                

end do                                                                                                                                                                                              

fac = y(icl)                                                                                                                                                                                                                 

if (2*hnodes == nodes) then                                                                                                                                                                    

c  even number of nodes: no node in x=0                                                                                                                                    

ncross = 2*ncross                                                                                                                                                                      

else                                                                                                                                                                                                     

c  odd number of nodes: node in x=0                                                                                                                  

ncross = 2*ncross +1                                                                                                                                                                   

end if                                                                                                                                                                                                                                                       

c   check number of crossings                                                                                                                                                                

if ( n_iter > 1 ) then                                                                                                                                                                 

if (ncross /= nodes) then                                                                                                                                                                                                                                                                                                



14 
 

c  Incorrect number of crossings: adjust energy                                                                               

if(kkk ==1) print'("Bisection    Energy    Nodes    Discontinuity")'                                                                                                                                                                     

print '(i5,f25.15,i5)', kkk, e, ncross                                                                                                                        

if (ncross > nodes) then                                                                                                                                                                                 

c  CURRENT ENERGY IS TOO HIGH, LOWER THE UPPER BOUND                                                                                                    

eup = e                                                                                                                                                                                                                                

else                                                                                                                                                                                                         

c CURRENT ENERGY IS TOO LOWER, RAISE THE LOWER BOUND                                                           

elw = e                                                                                                                                                                                             

end if                                                                                                                                                                                       

c  NEW TRIAL VALUE :                                                                                                                                                                              

e = 0.5_dp * (eup+elw)                                                                                                                                                                                                              

c  GO TO BEGINNING OF DO LOOP, DON’T PERFORM INWARD INTEGRATION                                      

cycle                                                                                                                                                                                                     

end if                                                                                                                                                                                   

else                                                                                                                                                                                                  

print *, e, ncross, nodes                                                                                                                                                                   

end if                                                                                                                                                           

c                                                                                                                                                                                                                      

c  IF CORRECT NUMBER OF CROSSINGS: PROCEED TO INWARD 

INTEGRATION                                                                                                                                                

c  assuming y(G+1) = 0  

y(G) = dx                                                                                                                                                                                           

y(G-1) = (12.0_dp-10.0_dp*f(G))*y(G)/f(G-1)                                                                                                                       

norm = 1.0d100                                                                                                                                                                                      

do i = G-1,icl+1,-1                                                                                                                                                                             

y(i-1)=((12.0_dp-10.0_dp*f(i))*y(i)-f(i+1)*y(i+1))/f(i-1)                                                                                                                             

c THE FOLLOWING LINES PREVENT OVERFLOWS IF STARTING FROM TOO                                          

c FAR                                                                                                                                                                           

if ( abs(y(i-1)) > norm ) then                                                                                                                                                           

y(i-1:G) = y(i-1:G) / norm                                                                                                                                                                 

end if                                                                                                                                                                                                    

end do  

After setting initial conditions in the above part of program, we started outward 

integration and examined the no. of crossings. If the number of crossings is not correct, 

then we will adjust the energy and not performed inward integration. If ncross is greater 

than nodes, the current is too high than eup, replace with guess energy e (eup = e) and 

bracketing the region go to the lower half. If ncross is less than nodes, elw replace with 

guess energy e (elw = e) and go to the upper half. 



15 
 

RESCALE FUNCTION TO MATCH AT THE CLASSICAL TURNING POINT (icl)                                                                                                      

fac = fac/y(icl)                                                                                                                                                                                  

y(icl:) = y(icl:)*fac                                                                                                                                                                                      

c  NORMALIZE ON THE [-xmax, xmax] SEGMENT                                                                                                                                       

c   the x=0 point must be counted once                                                                                                               

norm = (2.0_dp*dot_product (y, y) - y(0)*y(0))*dx                                                                                                              

y = y / sqrt(norm)                                                                                                                                                                    

if ( n_iter > 1 ) then                                                                                                                                                                      

c CALCULATE THE DISCONTINUITY IN THE FIRST DERIVATIVE                                                                                          

c                                                                                                                                                                                         

c  y'(i;RIGHT) - y'(i;LEFT)                                                                                                                                         

djump = (y(icl+1)+y(icl-1)-(14.0_dp-12.0_dp*f(icl))*y(icl))/dx                                                                                                        

print '(i5,f25.15,i5,f14.8)', kkk, e, nodes, djump                                                                                                                                 

if (djump*y(icl) > 0.0_dp) then                                                                                                                                                              

c Energy is too high --> choose lower energy range                                                                                                                         

eup = e                                                                                                                                                                                      

else                                                                                                                                                                                                  

c  Energy is too low --> choose upper energy range                                                                                                                                     

elw = e                                                                                                                                                                                                                                              

end if                                                                                                                                                                                                      

e = 0.5_dp * (eup+elw)                                                                                                                                                                     

c  ---- convergence test                                                                                                                                                                                      

if ( eup-elw < 1.d-10) exit iterate                                                                                                                                        

end if                                                                                                                                                                              

end do iterate   

We rescaled the function to match at the classical inversion point and also normalized the 

wave function. If iteration is greater than one, we calculate the discontinuity (djump) in 

the first derivative. If the djump is equal to zero, then we get the correct energy. 

Otherwise, we will adjust energy by setting new trial energy, and this process proceeds 

till the difference between eup, and elw is less than or equal to       (eup-elw < 1.d-10). 

                                                                                                                                                                                                                                                                                                                         

CALCULATION OF THE CLASSICAL PROBABILITY DENSITY FOR ENERGY e:                                                                       

c                                                                                                                                                                          

norm = 0.0_dp                                                                                                                                                                          

p(icl:) = 0.0_dp                                                                                                                                                              

do i=0,icl                                                                                                                                                                                             

arg = (e - V1(i)) if ( arg > 0.0_dp) then                                                                                                                                                    

p(i) = 1.0_dp/sqrt(arg)                                                                                                                                                                  

else                                                                                                                                                                                                       
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p(i) = 0.0_dp                                                                                                                                                                                     

end if                                                                                                                                                                                            

norm = norm + 2.0_dp*dx*p(i)                                                                                                                                                    

end do                                                                                                                                                                                                            

c  THE POINT AT (x=0 ) MUST BE COUNTED ONCE:                                                                                                             

norm = norm - dx*p(0)                                                                                                                                                                                          

c  Normalize p(x) so that Int p(x)dx = 1                                                                                                                                         

p(:icl-1) = p(:icl-1)/norm                                                                                                                                                                                                                                                                                                                    

c  lines starting with # ignored by gnuplot                                                                                                                              

write (2,'(" #  x   y(x)  y(x)^2    classical p(x)     V")')                                                                                                   

c   x <0 region:                                                                                                                                                                   

do i = G,1,-1                                                                                                                                                                                 

c   if the exponent is > 99, the format X.Y-100 is misinterpreted by gnuplot                                                                                

if ( abs(y(i)) < 1.0D-50 ) y(i) = 0.0_dp                                                                                                                       

write (2,*)-x(i), (-1)**nodes*y(i), y(i)*y(i), p(i), V1(i)                                                                                                                   

end do                                                                                                                                                                                                

c   x>0 region:                                                                                                                                                                            

c do i= 0,G                                                                                                                                                                                                     

write (2,*) x(i), y(i), y(i)*y(i), p(i), V1(i)                                                                                                                                       

end do                                                                                                                                                                                                   

c two blank lines separating blocks of data, useful for gnuplot plotting                                                                         

write (2,'(/)')                                                                                                                                                                            

end do search_loop                                                                                                                                                                     

end program Gaussian 

After that, we will calculate classical probability density for energy e and write the data 

in output file for both positive and negative values of x. The code is the same for both the 

systems harmonic potential well and Gaussian potential well, and there is the only change of 

potential. After changing the potential in the main code, no other change will require for 

harmonic potential well.  

3.2 Code for Harmonic Potential 

Program harmonic  

implicit none

integer, parameter :: dp = selected_real_kind(14,200)                                                                                                              

integer :: G, i, icl                                                                                                                                                                       

integer :: nodes, hnodes, ncross, kkk, n_iter                                                                                                                                   

real(dp) :: xmax, dx, ddx12, norm, arg, djump, fac                                                                                                             

real(dp) :: eup, elw, e                                                                                                                                                                                                                                    

real(dp), allocatable :: x(:), y(:), p(:), vpot(:), f(:)                                                                                                                                            
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character (len=80) :: fileout                                                                                                                                                  

c  Adimensional units: x = (m*K/hbar^2)^(1/4)*X                                                                                                                                 

c   e = E/(hbar*omega)                                                                                                                                            

c                                                                                                                                                     

Write(*,*)"('Max value for x (typical value: 10)')"                                                                                                        

read (*,*) xmax                                                                                                                             

write(*,*)"('Number of grid points (typically=100)')"                                                                                                        

read

allocate(x(0:N), y(0:N), p(0:N), vpot(0:N),f(0:N) )                                                                                                                            

c                                                                                                                                                                                         

dx = xmax/G                                                                                                                                                              

ddx12= dx*dx/12.0_dp                                                                                                                                                            

c                                                                                                                                                                                       

do i = 0,G                                                                                                                                                                       

x(i) = float(i) * dx                                                                                                                                                         

vpot(i) = 0.5_dp * x(i)*x(i)                                                                                                                                               

end do

After that, the code will remain same for harmonic potential well as code for Gaussian 

potential well. We have to replace only the V1 of the main code with vpot for harmonic 

potential well. Here, V1 represents the potential for Gaussian potential well and vpot potential 

for harmonic potential well.    
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                                                         Chapter 4 

                                      Result and Discussion 

Here, we have solved the Schrodinger equation for a 1- dimensional system in a Gaussian    

potential well and in a harmonic potential well by using the numerov method. We calculated 

wave functions, probability densities, and energies for systems with single electron, 2 electrons, 

3 electrons, and 4 electrons. Firstly we solved probability density for one set of potential energy 

parameters. But as we want to map probability densities with energies using artificial neural 

networks. So, for this, we made a dataset of about 5000 probability densities using the 

Numerov method and trained these probability densities to the known energies obtained. The 

calculated densities will be input for artificial neural networks, and output will be the total 

energy of the system. Also, we evaluated fitting probability densities with analytical equations 

and collected coefficients. Initially, we collected coefficients for one density and repeated this 

process for many random densities to compare the results which is examined by using 

Numerov method.  

  We will discuss the dataset for ground state and first excited state for both systems. Our 

results showed the data for wave function, probability density, and energy before filling of 

electrons and after filling of electrons. Here, we take four types of systems single electron, two 

electrons, three electrons, and four electrons. And fill electrons according to the Pauli 

Exclusion Principle to calculate energy. We found a good correlation between original and 

fitted probability density shown in plots 10, 11, 12, and13. Table (1) having information about 

state and energy for harmonic potential well, and table (2) having information about state and 

energy for Gaussian potential well. Table 3 and 4 having energy data after filling electrons in 

the system. Table 5 to 8 consists of fitted coefficients for a single, two, three, and four electrons 

system. Fig.1 shows feed-forward three-layer artificial neural networks. Fig.2 to fig .9 shows 

the plots for wave function and probability density for ground and first excited state.  

 

 

             State      Energy 

    Ground  State        0.50 

   First Excited State        1.50 

               Table 1. Represents state and energy for the harmonic potential well.              
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          State       Energy 

Ground State      -2.05 

First Excited State      -0.19 

              Table 2.Represents state and energy for Gaussian potential well. 

              Ground State wave function and Probability density 

           

                        Fig 2. Wave function for harmonic Potential well. 
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                               Fig3. Probability density for harmonic potential well. 

                

                                    Fig4. Wave function for Gaussian potential well. 
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                            Fig5. Probability density for gaussian Potential well. 

      First Excited State wave function and probability density                            

 

    Fig6. First excited state wave function for harmonic potential well. 
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                      Fig7. First excited state probability density for harmonic potential well. 

             

                             Fig8. First excited wave function for gaussian potential well. 
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     Fig9. First excited state probability density for Gaussian potential well. 
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  System Energies On filling up electrons                               

   Energy = no. of electrons present in particular state *Energy of the state  

   For Harmonic potential well:- 

   Energy for ground state = 0.50 

   Energy for first excited state = 1.50 

 

 System                Energy 

1. 

 

One electron system electron 

present in ground state.  

 1*(0.50)  = 0.50 

2. 

 

Two electron system both 

electrons present in ground state.  

2*(0.50)    = 1.00 

3.  

 

Two electrons system one 

electron present in ground one in 

first excited state.  

 1*(0.50)+1*(1.50) =  2.00  

4. 

 

Three electrons system two 

electrons present in ground and 

one in first excited state.  

2*(0.50)+1*(1.50) = 2.50 

 

5. Four electrons system two 

electrons present in ground and 

two in first excited state.  

2*(0.50)+2*(1.50) = 4.00 

 

 

 Table 3. Electronic system and energy for harmonic potential well. 
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For Gaussian potential well:- 

Energy for ground state = -2.05 

Energy for first excited state = -0.19 

 System                   Energy  

1. 

 

One electron system electron 

present in ground state.  

1*(-2.05) =  -2.05 

2. Two electrons system both 

electrons presents in first excited 

state  

2*(-2.05) =   -4.10 

3. 

 

Two electrons system one in 

ground state one in first excited 

state  

1*(-2.05) +1*(-0.19)  =  - 2.24 

4. 

 

Three electrons system two 

electrons present in ground one in 

first excited state  

2*(-2.05) +1*(-0.19)=  - 4.30 

5. Four electrons system two electrons 

present in ground two in first 

excited state  

2*(-2.05) + 2*(-0.19) =  - 4.47 

Table 4. Electronic system and energy for gaussian potential well.  
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 Fitting Equation and plots for all the systems                

Here, we have established the general form of total probability density to use the 

coefficients as an input for neural networks. We need to ensure that all the fitted 

coefficients are relatively independent .Thus we choose hermite polynomial. Since, we 

know Orthogonality is the important condition for independency. So, form harmonic 

oscillator if two hermite polynomials are orthogonal to each other this means they are 

independent.  

The fitting equation for all the system considered in this study is of the form 

n(x) = [a0 * H0(x) + a1 *H1(x) + a2 H2(x) + a3 * H3(x) + a4 * H4(x) + a5 * H5(x) ] e
-(1.5*x*x)/2

 

Where n(x) is total probability density of all electrons in the system                                                                                                

a0, a1, a2, a3, a4,  a5  are fitted coefficients.                                                                                            

H0(x), H1(x), H2(x), H3(x), H4(x), H5(x) are hermite polynomials up to order 5. 

Values of a0, a1, a2, a3, a4,      for 1 electron zero node system are 

   Fitted coefficient     Value of fitted coefficient 

         a0      0.75                                                                                                                                 

         a1      0.36                                                                                                         

         a2      0.08                                                                                                        

         a3      0.00                                                                                                  

         a4      0.0008                                                                                                    

         a5      0.0003 

Table 5. Fitted coefficients for 1electron zero node system.  

Total probability density equation for 1electron zero node system is -                                                                                                                                                                                 

n(x)=                                                         

                                     
          

  

Plot for 1 electron and zero node system  

Here, fig. 10 shows the comparison between original probability density and fitted 

probability density for 1 electron and 0 node systems.  
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                      Fig10. Probability density graph for 1 electron and 0 nodes system. 

Values of a0, a1,  a2,  a3,  a4,  a5  for 2electrons 1node system are 

  Fitted coefficient Value of fitted coefficient 

           a0 1.87 

           a1 1.24 

           a2 0.84 

           a3 0.26 

           a4 0.06 

           a5 0.003 

 Table6. Fitted coefficient for 2electrons 1 node system.  

 Total probability density equation for 2electrons and one node system is -                          

n(x)=                                                          

                                      
          

  

Plot for 2 electrons and 1 node system 

This graph represents the comparison between original probability density and fitted    

probability density for 2 electrons and 1 node system. 
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                      Fig11. Probability density graph for 2 electrons and 1 node system. 

      Values of a0,  a1,  a2,  a3,  a4,  a5  for 3electrons 1node system are 

  Fitted coefficient  Value of fitted coefficient  

           a0 2.62                                                                                                              

           a1 1.60                                                                                                                

           a2 0.93                                                                                                         

           a3 0.26                                                                                                        

           a4 0.06                                                                                                        

           a5 0.003 

        Table7. Fitted coefficient for 3 electrons 1 node system                                                               

  Total probability density equation for 3 electrons and 1 node system is -  

     n(x)=                                                        

                                                          
          

                                                                                                                                                                

Plot for three electrons and one-node system                                                                                                            

This graph represents the comparison between original probability density and fitted  

probability density for 3 electrons and 1 node system. 
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                 Fig.12 Probability density graph for 3 electrons and 1 node system. 

Values of a0,  a1,  a2,  a3,  a4,  a5  for 4 electrons 1 node system are- 

        Fitted coefficient Value of fitted coefficient 

               a0 3.74                                                                                                        

               a1 2.65                                                                                                                 

               a2 1.71                                                                                                               

               a3 0.50                                                                                                                         

               a4 0.12                                                                                                                   

               a5 0.00 

     Table8. Fitted coefficient for 4 electrons 1 node system.    

 Total probability density equation for 4 electrons and 1 node system is -                                                                                                                                                                                                                          

n(x)=                                                        
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Plot for 4 electrons and 1nodes system 

This graph represents the comparison between original probability density and fitted 

probability density for four electrons and one node system.             

 

                

                        Fig.13 Probability density graph for 4 electrons and 1 node system. 
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                                              Chapter 5  

                                      Conclusion 

In this project, we evaluated Schrodinger Equation for one-dimensional system in a 

Gaussian potential well and Harmonic potential well by using the Numerov method. Since one 

-dimensional Schrodinger equation in Gaussian potential well has no analytical solution. We 

want to map probability densities to energies using artificial neural networks. So, we made a 

dataset of about 5000 probability densities using the numerov method for the training of neural 

networks. The dataset is obtained by randomly changing the parameters of Gaussian potential 

well and force constant values in the harmonic potential well. We examine results for total 

probability density calculated by the numerov method and fitting probability density calculated 

by using an analytical equation. After examining plots obtained using both methods, we found 

good resemblance. So, from the future prospective, such models can be used to calculate 

energies of 1- dimensional Schrodinger equation in a similar but for unknown potential energy 

well without really solving the Schrodinger equation analytically. 
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