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ABSTRACT

Abstract

Understanding the transverse energy production in heavy-ion collisions is of

paramount importance, in order to characterize the produced system and en-

sure the minimum energy density requirement for the formation of a deconfined

system of quarks and gluons, called Quark-Gluon Plasma (QGP). In this work,

we have studied the transverse energy (ET ) distributions for Au-Au collisions

at RHIC energies and fitted a two parameter gamma distribution function to

centrality-wise ET distributions. We clearly observe that the shape parameter

(α) is centrality dependent but, it does not depend on center-of-mass energy of

the colliding nuclei. However, the rate parameter (β ) is energy dependent. β

also shows very little variation when seen as a function of centrality. A com-

parative study of convolution and summation of centrality-wise ET distributions

is also performed. It is found that, the minimum-bias ET distribution can be

obtained from bin-wise summation of the individual centrality-wise ET distribu-

tions.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

In particle physics, elementary particles are those, which do not have any sub-

structure. To study the elementariness of a particle, we need to know the spatial

resolution of the probe. If two particles are separated by a distance Δr, then it

can just be resolved with resolution Δr. If the probing beam itself consists of

point-like objects, then the resolution is limited by the de Broglie wavelength

of these beam particles i.e λ = h/p, where p is the beam momentum and h

is the Planck’s constant. So to resolve the shorter de Broglie wavelength, we

need high momentum beam [1].

The theory of strong interaction called as Quantum Chromodynamics (QCD)

states that at extreme conditions i.e at very high temperature and energy den-

sity, a phase transition occurs from normal hadronic matter to a deconfined state

of quarks and gluons, called as the Quark-Gluon Plasma (QGP) [2, 3]. The ex-

treme conditions of temperature and energy density for the formation of Quark-

Gluon Plasma (QGP) phase are T = 150-160 MeV and ε = 0.4 - 1 GeV/ f m3

respectively [4]. For the first time, QGP was detected at the CERN laboratory

in the year 2000. In heavy-ion collision experiments, nuclei collide at relativis-

tic speeds by forming extreme conditions of very high temperature and energy

density at the collision point.

The properties of the matter formed in heavy-ion collisions could be stud-
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CHAPTER 1. INTRODUCTION

ied through the transverse energy and charged-particle multiplicity distributions.

These two observables also describe the particle production mechanisms in heavy-

ion collisions. The transverse energy and charged-particle production depend on

the impact parameter (i.e. transverse distance between the centers of the collid-

ing nuclei) and the collision geometry. The information on the initial entropy

and its subsequent evolution in the hot and dense matter could be found from

the charged-particle multiplicity [5].

1.1 Heavy-ion Collisions

According to the big-bang theory, it is believed that, just after a few micro-

seconds of the big-bang, the universe was filled with a state of matter known

as the QGP. Scientists were curious to understand the properties of QGP. One

of the ways to study the QGP is through heavy-ion collisions in the laborato-

ries at extreme conditions of high temperature and energy density. When the

two Lorentz contracted nuclei collide with each other, then the overlapping re-

gion looks like an almond shaped and nuclei release a large fraction of energy

into a tiny volume of a fire ball. This tiny volume of fire ball consists of

quarks and gluons in a deconfined state. The created fire ball expands and

cools down until the produced particles reach kinetic freeze-out. These colli-

sions provide information about the global properties, particle production mech-

anisms and macroscopic properties of QGP. Figure 1.1 shows the schematic rep-

resentation of heavy-ion collisions.

The first relativistic heavy-ion collision experiment was studied at Brookhaven

and Super Proton Synchrotron (SPS) at the European Laboratory with the cen-

ter of mass energies of 33 GeV and 400 GeV respectively in the 1970s and

80s. Now most of the experiments are performed at the Relativistic Heavy-Ion

Collider (RHIC), BNL, USA and A Large Ion Collider Experiment (ALICE)

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Relativistic heavy-ion collisions. (Source : Online)

detector at the Large Hadron Collider (LHC) at CERN, Switzerland [6].

1.2 QGP and Space time-evolution

Quark gluon plasma is the deconfined state of quarks and gluons. This state

exists at very high temperatures and very high energy densities. It is believed

that the whole universe is filled with QGP before any matter was created. This

state of matter can also be produced in the laboratories by providing enough

heat and pressure to the collisions, which is done at the RHIC and LHC ener-

gies. For the first time QGP was observed at CERN in the year of 2000.

In figure 1.2, the temperature is plotted against the net baryon density of the

system. In this figure, high temperature and low baryon density corresponds to

early universe that might have existed billions of years ago and the other one

low temperature and high baryon density correspond to different astrophysical

objects like neutron stars. The first order phase transition separates the decon-

3



CHAPTER 1. INTRODUCTION

Figure 1.2: A schematic of the QCD phase diagram [7].

fined QGP from confined hadronic matter, which ends with a possible critical

end-point (CP). So we observe a crossover transition in the RHIC and LHC

energy regimes. The energy density and temperature required for such phase

transition from deconfined QGP to confined hadronic matter is εc = 1 GeV/ f m3

and Tc = 150−170 MeV respectively [8].

The space-time evolution in the hadronic and heavy-ion collisions are shown in

figure 1.3, which are complex phenomena involving various degrees of freedom

at different space-time coordinates. When two nuclei collide with each other,

then a large amount of energy and temperature are produced in a tiny fireball.

Initially in the system deconfined partons (quarks and gluons) are produced,

called pre-equilibrium phase followed by a thermalised deconfined QGP medium

and then a possible mixed phase occurs which should follow first order phase

transition signatures. After that hadronization occurs, where composite hadrons

are produced from quarks and gluons. The point at which possible phase tran-

sition occurs from deconfined QGP to hadron gas is called critical temperature

4



CHAPTER 1. INTRODUCTION

Figure 1.3: A schematic diagram space-time evolution in hadronic collisions,
compared with heavy-ion collisions [7]).

(Tc). After that, chemical freeze-out occurs where inelastic collisions cease to

exist. This is characterized by the chemical freeze-out temperature (Tch) and

the baryochemical potential (µB) of the system. The produced particles undergo

inelastic collisions among themselves and exchange momentum. At a certain

temperature known as the kinetic freeze-out (Tf o), as the mean free path of the

particles becomes larger than system size, elastic collisions stops and particles

move towards the detectors and get detected.

The left part of figure 1.3 represents the space-time evolution of collisions with-

out QGP formation. Generally the low multiplicity pp collisions show this char-

acter. After the collision, the system goes through preequilibrium phase followed

by chemical freeze-out without a QGP phase. After that produced hadrons at-

tend kinetic freeze-out, and finally get detected by the detector.

5



CHAPTER 1. INTRODUCTION

1.3 Motivation

It is believed that a few microseconds after the Big Bang the whole universe

was filled with a hot dense matter, called Quark-Gluon Plasma (QGP). Since

the universe cooled down gradually, the quarks and gluons combined to pro-

duce hadrons such as protons and neutrons which are the building blocks of

atoms of the elements. So it is important to study the early states of mat-

ter i.e. QGP, to understand the evolution of the universe from the beginning.

Ultra-relativistic heavy-ion collisions produce this sate of matter for a very short

duration. Observables like transverse energy and transverse momentum are cru-

cial in such collisions. Transverse energy is related to the collision geometry.

Since ET production were the result of the creation of particles according to

the semi-inclusive multiplicity distribution followed by the random assignment

of transverse momentum to each particle, so the process would be described by

the below equation,

dσ
dET

= σ
nmax

∑
n=1

fNBD(n,1/k,µ) fΓ(ET ,α,β ) (1.1)

where fNBD (negative binomial distribution ) represents the multiplicity distribu-

tion of the collisions and fΓ (gamma distribution) represents the ET distribution

of the particles. So to study the ET production, one can fit gamma distribution

function to centrality-wise ET distribution curves [9].

In the next chapter we discuss some kinetmatic variables relevant to study the

heavy-ion collisions. All the particles are treated as relativistic due to their

speed being nearly close to the speed of light.
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Chapter 2

Basic Kinematics

2.1 Rapidity

Since velocity is not an additive quantity in Lorentz boosted frames, so in suc-

cessive transformations, velocity becomes non-linear and it is difficult to handle.

So a new kinematic variable was introduced, called the rapidity. Rapidity is

a dimensionless quantity and additive in successive transformations in boosted

Lorentz frames. It is defined as,

y =
1
2

ln
�

E + pz

E − pz

�
= ln

�
E + pz

mT

�
(2.1)

where, mT is the transverse mass, defined as mT =
�

m2 + p2
T , pT is the trans-

verse momentum, defined as pT =
�

p2
x + p2

y , pz is the longitudinal momen-

tum of the particle and E is the total energy of the particle, defined as E =�
p2

x + p2
y + p2

z +m2c4.

7



CHAPTER 2. BASIC KINEMATICS

2.2 Pseudorapidity

When the particle is emitted at an angle θ from the primary vertex (point of

collision), then the longitudinal momentum can be written as pz = |�p|cosθ . Now

the rapidity becomes,

y =
1
2

ln
�

E + pzc
E − pzc

�

=
1
2

ln

��
p2c2 +m2c4 + pzc�
p2c2 +m2c4 − pzc

�

At higher energies p2c2 >> m2c4,

y =
1
2

ln




pc
�

1+ m2c4

p2c2 + pzc

pc
�

1+ m2c4

p2c2 − pzc




≈ 1
2

ln


 pc+ pzc+ m2c4

2pc + ...

pc− pzc+ m2c4

2pc + ...




≈ 1
2

ln


1+ pz

p + m2c4

2p2c4 + ...

1− pz
p + m2c4

2p2c4 + ...




y ≈ 1
2

ln
�

1+ cosθ
1− cosθ

�

y ≈ η =− ln
�

tan
θ
2

�
(2.2)

Hence in ultra-relativistic domain, rapidity (y) is approximately same as the

pseudorapidity (η).

The relation between rapidity and pseudorapidity is as follows,

dN
dη

=

�
1− m2

m2
T + cosh2 y

dN
dy

(2.3)

For massless particles both η and y are the same.

8



CHAPTER 2. BASIC KINEMATICS

Figure 2.1: A schematic decomposition of detector co-ordinate system [1].

2.3 Detector co-ordinate system

A schematic representation of a detector co-ordinate system is shown in Fig 2.1.

Here θ is the angle of inclination of �p along beam axis and φ is the azimuthal

angle. In collider experiments, particles could be tracked by having their mo-

mentum components (px, py, pz). From their momentum components, θ , φ , pT

and η could be estimated.

φ = tan−1(py/px) (2.4)

θ = cos−1(pz/|�p|) (2.5)

where pz is called longitudinal momentum and pT =
�

p2
x + p2

y is called trans-

verse momentum.

y =
1
2

ln
�

E + pz

E − pz

�
= ln

�
E + pz

mT

�
(2.6)

where mT is the transverse mass, which is defined as mT =
�

m2 + p2
T , m is the

rest mass of the particle. In ultra-relativistic collisions, rapidity is approximated

9
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Figure 2.2: Variations of pseudorapidity η with polar angle θ [1].

as the pseudorapidity,

y ≈ η =− ln
�

tan
θ
2

�
(2.7)

Figure 2.2 shows the variation of pseudorapidity (η) with the polar angle (θ ).

2.4 Multiplicity

Multiplicity refers to the total number of particles detected in a collision. Colli-

sions producing a large number of charged particles, correspond to central col-

lisions where the number of nucleon participants is also high. And collisions

with the smaller number of produced charged particles correspond to peripheral

collisions where the number of nucleon participants is also low. Multiplicity dis-

tribution measurements provide idea about the particle-production models. The

multiplicity distribution can be used to study the underlying physics of high en-

ergy collision experiments. A more detailed discussion [10] on the multiplicity

distribution is also given in the next section.

10
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2.5 Transverse energy (ET )

Transverse energy is one of the global observables to characterize the system

formed in heavy-ion collisions at extreme conditions of temperature and energy

density. The energy transverse to the beam direction is called transverse energy,

which is a multi-particle variable. It can be defined as

ET = ∑
i

Ei sinθi (2.8)

dET (η)/dη = sinθ(η)dE(η)/dη (2.9)

The sum is taken over all particles emitted into a fixed solid angle for each

event [11].

The energy of an individual particle can be determined by knowing its momenta

and particle identification by using a tracking detector and/or the total energy

deposited in a calorimeter .

The transverse energy is related to particle multiplicity distribution by the for-

mula
dET

dη
≈< pT >

dNch

dη
(2.10)

where pT is the transverse momentum [12].

It is ideal to study transverse energy production to probe the early stage of the

heavy-ion collisions because of the following reasons.

a) Before the collision of the two nuclei, the longitudinal phase space is filled

with the beam particles only whereas the transverse phase space is empty. But

after the collision, particles are produced in all directions hence populating the

transverse phase space. Therefore, the energy carried by the particles in the

transverse plane has completely emerged from the collision.

b) The initial energy density can be calculated by the Bjorken energy density

11
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formula from the ET distribution, which is described in the next section.

c) Comparison of this initial energy density calculated in the framework of

boost-invariant hydrodynamics from ET distribution, with that of estimated by

the lattice QCD calculations, gives indication of a possible formation of QGP

in the heavy-ion collisions.

d) The collision centralities can also be estimated from the minimum bias ET

distribution, the more detailed is described in the next chapter [10].

e) Transverse energy (ET ) production tells about the explosiveness of the inter-

action.

2.6 Bjorken Energy Density

The main aim of the relativistic heavy-ion collisions is to create the Quark-

Gluon Plasma (QGP) and study its properties. So it is important to find the

initial energy density including the time evolution of energy density in the over-

lap region. The initial energy density can be estimated in the central rapidity

window by the Bjorken energy density formula, given by:

εB j(τ) =
1

AT τ
dET

dy
. (2.11)

Here AT is the transverse overlap area of the colliding nuclei, dET
dy is the trans-

verse energy density at mid-rapidity and τ is called as the formation time which

is generally taken as 1 fm/c. Bjorken energy density becomes ∞, as τ −→ 0 .

We set the initial formation time as τF and can calculate the initially energy

density by Bjorken energy density formula at a finite formation time τF using

ET , < mT > and charged particle density of the collisions.

This formula is only valid for a mid-rapidity plateau, which occurs at high

collision energies mostly in a baryon-free region and when the duration time

(i.e. crossing time) is much smaller than the formation time τF ( i.e τF >>

12



CHAPTER 2. BASIC KINEMATICS

2R/γ) . Here R is the rest frame radius of the nucleus and γ is the Lorentz

[15].

As already mentioned, transverse energy production can be studied to estimate

the centrality of the collisions. In the next chapter we proceed to discuss the

same.

13
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Chapter 3

Collision Centrality

When two nuclei collide with each other, the impact parameter (which is the

perpendicular distance between the two centers of the nuclei) varies from 0 to

R1 +R2, where R1 and R2 are the radii of the nuclei. Figure 3.1 shows the

schematic representation of collision centrality. For small impact parameter, the

collision is called as central collision, where the number of participants nucleon

is high and for large impact parameter, the collision is called as peripheral

collision, where the number of participants nucleon is low [13].

Experimentally, it is very difficult to calculate the impact parameter and colli-

sion centrality. But it is possible to calculate the impact parameter by relating it

with the final state particle multiplicity, transverse energy distribution, and also

from the number of spectator nucleons. The spectator nucleons are measured by

the zero-degree calorimeter (ZDC). From the spectator nucleons, we can calcu-

late the number of participant nucleons by the relation, Npart = N −Nspectators,

where N is the total number of nucleons. Particle multiplicity and transverse

energy both are proportional to the number of participant nucleons. We can

measure the particle multiplicity and transverse energy distribution for minimum-

bias collisions. Here high transverse energy (ET ) or high particle multiplicity

corresponds to central collision and low transverse energy or low particle mul-

tiplicity corresponds to the peripheral collision. Hence collision centrality can

14
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Figure 3.1: A schematic representation of collision centrality (Source : Online).

Figure 3.2: A cartoon that shows the definition of centrality [14].

be measured from minimum-bias transverse energy (ET ) or particle multiplicity.

Hence the impact parameter can be measured by relating with centrality and

the number of spectator nucleons by Glauber type Monte Carlo calculations. In

minimum-bias collisions, the collisions having any value of impact parameter

(0 < b < 2R) are considered. Figure 3.2 shows such an example.

Let us now discuss about some of the basics of gamma distribution, which will

be used to describe centrality dependence of ET -distribution. This we carry out

in the next chapter.

15
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Chapter 4

Gamma Distribution

4.1 Introduction

The gamma distribution is a two parameter continuous probability distribution.

There are mainly two different parametrizations :

1. With a shape parameter k and a scale parameter θ .

2. With a shape parameter α = k and an inverse scale parameter β = 1/θ ,

called rate parameter.

The gamma probability distribution function with shape-rate parametrizations is

f (x;α,β ) =
β (xβ )α−1exp(−xβ )

Γ(α)
(4.1)

where, α is the shape parameter, β is the scale parameter; α,β > 0

Γ(α) is the gamma function. For positive integers, Γ(α) = (α −1)!

The mean and variance of gamma probability distribution is given by

mean (µ) = α
β and variance (σ2) =

√
α

β .

The behaviour of shape parameter (α) and rate parameter (β ) is shown in fig-

ures 4.1 and 4.2.

16
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Figure 4.1: Gamma distribution functions at the same value of the rate param-
eter and different values of the shape parameter.
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Figure 4.2: Gamma distribution functions at the same value of the shape pa-
rameter and different values of the rate parameter.
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4.2 Approximation to the convolution of gamma distri-

butions

Let Xi, i = 1,2,3, ....n are independently distributed gamma distribution.

Xi ∼ G(αi,βi;xi) =
xαi−1

i exp(−xi/βi)

β α
i

iΓ(αi)
(4.2)

f (y) =
n

∑
i

Xi (4.3)

then

f (y)∼ G(ρ + k,βmin;y)

where,

ρ =
n

∑
i

αi > 0;

βmin = min(βi)

K is a random variable with prob (K=k)= ωk =Cdk, k = 0,1,2, ...., d0 = 1 And

C =
n

∏
i=1

(
βmin

βi
)αi

dk =
1
k

k

∑
i=1

igidk−i,

with

gi =
1
i

n

∑
j=1

α j(1−
βmin

β j
)i

Without loss of generality, we assume βmin = β1,

Therefore, the density of f (y) can be expressed as

f (y) =
k=∞

∑
k=0

ωk
yρ+k−1e−y/β1

β ρ+k
1 Γ(ρ + k)

(4.4)
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4.2.1 Case-1 (Convolution of two Gamma distribution functions):

In this case,

C = (
β1

β2
)

α2

gi =
1
i
α2(1−

β1

β2
)i

=
1
i
α2 pi, i = 1,2,3, ...,

where

p = (1− β1

β2
)

Now,Prob(K = k) =Cdk =
1
k!
(α2)k(1− p)α2 pk

Where (α2)k is the Pochhammer symbol, is given by

(α2)k = α2(α2 +1)(α2 +2).....(α2 + k−1) =
(α2 + k−1)!
(α2 −1)!

Now , Prob(K = k) =Cdk

=
1
k!
(α2 + k−1)!
(α2 −1)!

(1− p)α2 pk

Cdk =

�
k+α2 −1

k

�
(1− p)α2 pk = NB(k;α2, p) (4.5)

, is a negative binomial distribution. Hence the convolution of two Gamma

distribution becomes,

f (y) =
k=∞

∑
k=0

ωk
yρ+k−1e−y/β1

β ρ+k
1 Γ(ρ + k)

f (y) = NB(k;α2, p)G(ρ + k,β1;y) (4.6)
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4.2.2 Case-2 (nth Convolution of Gamma distribution function):

In this case

dk =
1
k!

k

∑
i=1

igidk−i

=
1
k!

k

∑
i=1

(
n

∑
j=1

α j(1−
β1

βi
)

i

)

=
1
k!

k

∑
i=1

ρ pi

=
1
k!
(ρ)k pk

when the shape parameters αi’s are too small, at that time the approximation

becomes very poor. To improve the approximation, a new third parameter p is

needed. And wk becomes a generalized negative binomial distribution with three

parameters, defined as

GNB(k;r, p,b) =

� ρ
ρ+bk

�
ρ +bk

k

�
(1− p)ρ+bk−k pk k = 0,1,2....

0 k ≥ µ, ρ +bµ < 0;
(4.7)

for b=1, the generalized negative binomial distribution becomes a negative bi-

nomial, and for 0 < b < 1, the generalized negative binomial does not exit.

Hence the Convolution becomes ,

f (y) = GNB(k;ρ, p,b)G(ρ + k,β1;y) (4.8)

In the next chapter all the results of our analysis are discussed.
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Chapter 5

Results and Discussion

We have fitted the gamma distribution function (eq. 4.1) to centrality-wise trans-

verse energy distributions for Au+Au collisions at
√

sNN = 62.4 and 200 GeV.

The data for this analysis is taken from PHENIX collaboration paper [16] and

STAR collaboration paper [17]. In fig. 5.1 a gamma distribution function is

fitted to (0-5)% central transverse energy distribution of Au+Au collisions at
√

sNN = 62.4 GeV and the extracted parameters α and β are written below.

α = 43.381, α(e) = 0.616

β = 8.276, β (e) = 0.060

Here, α(e) and β (e) denotes the uncertainties in the estimation of the param-

eters α and β respectively from the fitting. The uncertainties from the fitting

are small. From the fig. 5.1, it is clear that transverse energy distribution can

be nicely described by a two parameter gamma distribution function (eq. 4.1).

In fig. 5.2, the green coloured curves represent the centrality-wise ET distribu-

tions and the black curve is the minimum-bias curve for Au+Au collisions at
√

sNN = 62.4 GeV. The convoluted distribution is shown in blue coloured curve

whereas the red curve represent the bin-wise summation of the centrality-wise
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Figure 5.1: Fitting of a Gamma distribution function to (0-5)% central trans-
verse energy distribution for Au+Au collisions at

√
sNN = 62.4 GeV.

curves. Convolution is a mathematical operation, which interacts with two or

many input functions and produces a single function as an output. Since the

minimum-bias collisions take all the centrality-wise collisions into account, a

mathematical convolution of the centrality-wise curves was expected to repro-

duce the minimum-bias distribution. To check this hypothesis, we convoluted

all the centrality-wise ET distributions to reproduce the minimum-bias curve,

but unfortunately, we do not get the desired result. Since the mean of the

convoluted curve is the addition of all the means of centrality-wise ET distri-

bution curves, the convoluted curve shifts towards the right. On the other hand,

the bin-wise summation of all the centrality-wise ET distributions produces the

minimum-bias curve as shown by the red coloured curve.

The centrality-wise ET distributions, corresponding gamma distribution fit func-

tions, minimum-bias curve and the bin-wise summation of the centrality-wise

ET distribution curves for Au+Au collisions at
√

sNN = 62.4 and
√

sNN = 200
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Figure 5.2: Convolution and sum of centrality-wise ET distributions for Au+Au
collisions at

√
sNN = 62.4 GeV.

GeV are shown in fig. 5.3 and fig. 5.4 respectively. As one can see, the sum-

mation curve exactly matches with the minimum-bias curve from data for both

cases of center-of-mass energy of collisions. The values of the extracted param-

eters after fitting the gamma distribution function to each of the centrality-wise

transverse energy distributions of Au+Au collisions at
√

sNN= 62.4 and
√

sNN

= 200 GeV, are written in table 5.1 and table 5.2 respectively. The extracted

parameters α (shape parameter) and β (rate parameter) noted in table 5.1 and

table 5.2 are plotted against centrality, which is shown in fig. 5.5 and fig. 5.6

respectively.

Figure 5.5 shows that the shape parameter (α) is centrality dependent but in-

dependent of energy. The value of the shape parameter is more for central

collisions and becomes less for peripheral collisions. Since in central collisions,

more particles are produced, so the transverse energy distribution curve is more

symmetric and shape parameter is more. And in peripheral collisions less parti-

cles are produced, so the transverse energy distribution curve is less symmetric
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Figure 5.3: Centrality-wise transverse energy distributions for Au+Au collisions
at

√
sNN = 62.4 GeV.
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Figure 5.4: Centrality-wise transverse energy distributions for Au+Au collisions
at

√
sNN = 200 GeV.
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Centrality α β Normalization constant χ2/NDF
0%-05% 49.8303 0.860795 0.00657135 13.2225

05%-10% 34.5663 0.725434 0.00668155 1.49976
10%-15% 29.6400 0.765566 0.00667507 1.90562
15%-20% 24.8026 0.786424 0.00667926 1.86309
20%-25% 20.5691 0.803856 0.00668392 1.91201
25%-30% 17.0561 0.826612 0.00668134 2.01292
30%-35% 14.0841 0.855453 0.00668310 2.23491
35%-40% 11.5666 0.891681 0.00668310 2.67953
40%-45% 9.37822 0.931122 0.00668916 3.65557
45%-50% 7.51861 0.977753 0.00668191 5.38846
50%-55% 5.95291 0.803169 0.00666475 10.4639

Table 5.1: Fit results of ET distributions for Au+Au collisions at
√

sNN = 62.4
GeV.

Centrality α β Normalization constant χ2/NDF
0%-05% 48.2946 0.478431 18571.3 10.9661

05%-10% 43.8709 0.522836 18940.1 8.92791
10%-20% 25.1522 0.38315 35202.8 9.90973
20%-30% 18.7188 0.409616 37020.8 8.7833
30%-40% 13.3436 0.433682 35515.6 10.9293
40%-50% 10.3071 0.456527 35869.2 9.9223
50%-60% 5.48672 0.452796 35819.4 11.5936
60%-70% 3.34994 0.474283 38728.9 10.065
70%-80% 1.69271 0.44344 38007.9 9.25383

Table 5.2: Fit results of ET distributions for Au+Au collisions at
√

sNN = 200
GeV.
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Figure 5.5: Variation of α with centrality for Au+Au collisions at
√

sNN = 62.4
and 200 GeV.
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Figure 5.6: Variation of β with centrality for Au+Au collisions at
√

sNN = 62.4
and 200 GeV.
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and shape parameter is less. Figure 5.6 shows that the rate parameter (β ) is

energy dependent but shows a little variation as a function of centrality.

5.1 Summary and Conclusions

To understand the paramount dependence of transverse energy production, we

have fitted a gamma distribution to the centrality-wise ET distribution for Au+Au

collisions at
√

sNN = 62.4 GeV and
√

sNN = 200 GeV and we get the follow-

ing results.

1. The sum of all the centrality-wise transverse energy distributions gives the

minimum bias distribution.

2. The shape parameter (α) is centrality dependent and energy independent.

3. The shape parameter is more for central collisions owing to the symmet-

rical shape of the distribution and decreases towards the peripheral colli-

sions.

4. The rate parameter (β ) is energy dependent but shows a little variation as

one moves from central to peripheral collisions.
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