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Abstract

We review pedagogically non-Abelian discrete groups, which play an important role
in the particle physics. We show group-theoretical aspects for S3 and A4 concrete
groups, such as representations, their tensor products. We explain how to derive,
conjugacy classes, characters, representations, and tensor products for these groups
(with a finite number).We also present typical flavor models by using A4 group.
Breaking patterns of discrete groups and decompositions of multiplets are important
for applications of the non-Abelian discrete symmetry. We discuss these breaking
patterns of the non-Abelian discrete group, which are a powerful tool for model

buildings.
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Chapter 1

Introduction

We have demonstrated group-theoretical aspects for A4 group explicitly, such as
representation and their tensor products. We have shown them explicitly for non-
Abelian discrete group Ay , and discussed how to drive conjugacy classes, character
tables, representations and tensor products for these groups ( Ay).

A4 (discrete group of even permutations of four items) emerged as a unique dis-
crete group that can duplicate the TBM (tribimaximal mixing) pattern in a very
cost-effective manner among all the discrete groups explored in the literature. It’s a
smalles group with a three-dimensional representation that can accommodate three
flavours of leptons and explain the textures of fermion mass matrices. | Karmakar,
2018 In the quark sector, models based on the A4 symmetry as a possible family
symmetry were first introduced in Refs. [ Wyler, |1979| Branco, Nilles and Ritten-
berg, |1980|. After the impact of the symmetry on the Yukawa matrices is known,
some structure for the vacuum expectation values (vev) has to be assumed before
moving on to the mass matrices and respective phenomenological predictions.
Degee, Ivanov, and Keus[ Degee, Ivanov and Keus, [2013| have introduced a geo-
metrical procedure to minimize highly symmetric scalar potentials, and solved the
problem for a three Higgs doublet model (3HDM) potential with an A4 or an Sy sym-
metry. In this thesis, we consider models with three Higgs doublets ¢; in a triplet
representation of A4 and The models contain only three generations of left-handed
quark doublets @), , right-handed up-type quark singlets ug , and right-handed
down-type quark singlets  dg.[ Felipe, Serodio and Silva, 2013|



Chapter 2

Group theory

Group Theory is the study of symmetry, whenever an object or a system’s property
is invariant under a transformation than we can analyze the object using group

theoretic methods.

2.1 GROUP

2.1.1 Definition of a Group

A group G consists of a set of entities g, called group elements. Which we could

compose together. Composition or multiplication satisfies the following axioms :

1. Closure :- Given any two elements g, and gg , the product g,.gs is equal to

another element g in G.

Ja-98 = G~

2. Associativity: Composition is associative

(9a-98)-9y = Ya-(98-94)

3. Existence of the identity: There exists a group element, known as the identity

and denoted by I, such that



['ga = gaand ga'[ = Ya-

4. Existence of the inverse: For every group element g,there exists a unique group

element, known as the inverse of g, and denoted by g_! , such that

o' -ga=Tand  go.g;' =1.

2.1.2 Abelian nonabelian groups

A group for which the composition rule is commutative is said to be abelian.

9a-98 = 98-9a

And a group for which the composition rule is not commutative is said to be nona-

belian.

9a-98 F 98-9a

Examples of group :- 1. The two square roots of 1, (1,—1), form the group Z,

under ordinary multiplication.

2. Similarly, the three cube roots of 1 form the group 73 = 1,w,w? with w =
exp(zb?”). and the four fourth roots of 1 form the group Z4=1,t,—1,—t, where
famously (or infamously) ¢ = exp(4). More generally, the N, Nth roots of
1 form the group Zy = exp(ﬁ—]\’;i) : j7=0,...,N —1. The composition of group

elements is defined by  exp(2%).exp(22k) = exp(w).

Group theory 3



2.1.3 Multiplication table

A finite group with n elements can be characterized by its multiplication table . We
construct a square n ® n table, writing the product g;g; in the square in the i row

and the j%* column:

gj

gi gig;

Table 2.1: Multiplication table

2.1.4 Homomorphism and isomorphism

A map f: G — G of a group G into the group G’ Is called a homomorphism If it

preserves the multiplicative structure of G,

Liff(g1) f(92) = f(9192) (2.1)

2.f(I) = I( the identity of G is mapped to the identity of G’). (2.2)

A homomorphism becomes an isomorphism if the map is one-to-one and onto.

2.2 Representation Theory

Given a group, the idea is to associate each element g with a d ® d matrix D(g)such

that

D(g1)D(g2) = D(g192)

Group theory 4



for any two group elements g; and g,. The matrix D(g) is said to represent the
element ¢, and the set of matrices D(g) for all g € G is said to furnish or provide
a representation of GG. The size of the matrices, d, is known as the dimension of the

representation.

2.2.1 Equivalent representations

Two representations,D(g) and D’(g), are really the same representation (more form-
ally, the two representations are equivalent) if they are related by a similarity trans-

formation.

D'(g) = S™'D(9)S

As explained in the review of linear algebra, D(g) and D’(g) are essentially the same
matrix, merely written in two different bases, with the matrix S relating one set of
basis vectors to the other set. Then given a representation D(g) , define D’(g) by
similarity transformation with some S whose inverse exists. Then D(g) is also a

representation, since

D'(g1)D'(g2) = (S7'D(91)S) (S D(g2)5)

=5"'D(g1)D(g2)S
= Sle(9192)S

= D/(glgz)- (2.3)

2.2.2 Reducible or irreducible representation

The vector space v; , on which representation matrices act, is called a representation
space such as D(g);;v; (j =1,...,n). The dimension n of the vector space v; (j =
1,...,n) is called as a dimension of the representation.A subspace in the representation
space is called invariant subspace if D(g);;v; for any vector v; in the subspace and any

element g € (G also corresponds to a vector in the same subspace. If a representation

Group theory 5



has an invariant subspace, such a representation is called reducible. A representation
is irreducible if it has no invariant subspace. In particular, a representation is called
completely reducible if D(g) for g € G are written as the following block diagonal

form,

where each D,(g) for « = 1,...,r is irreducible. This implies that a reducible

represen- tation  D(g) is the direct sum of  D,(g),

z_jr @ Da(g). (2.4)

Group theory 6



Chapter 3

S3 Group

Sy GROUP

All possible permutations among N objects x; with ¢ = 1, ..., N, form a group,

(1, ey Tp) = (Ti1y ooey Tin) (3.1)

This group is the so-called Sy with the order N!, and Sy is often called as the
symmetric group. In the following we show concrete aspects on Sy for smaller V.

The simplest one of Sy except the trivial S; is So,which consists of two permutations,

(Il,xz) — (Il,l’g), (ZL’1,$2) — (Z’Q,Il)

This is nothing but Zs, that is Abelian. Thus, we start with S3.[ Ishimori et al.,
2009]

3.1 53 Group

Ss consists of all permutations among three objects, (x1, x5, x3) and its order is equal

to 3! = 6. All of six elements correspond to the following transformations,

e: (.1'1,1'2,1’3) — (x1,$2,l'3),
ar : (21,22, 23) = (T2, 21, 23),

as : (r1, 9, 23) = (23,29, 1),



as : (fL‘l,.Z'Q,.I‘g) — (x17x3ax2)a
ay : (@1, 22, 3) = (23,21, T2),

as : (w1, 12,73) — (22,23, 21).

Their multiplication forms a closed algebra, e.g.

ajas : (r1,x2,3) = (1, T2, T3)
asay : (w1, %2, x3) — (T3, 71, T2),
asay : (1, T2, x3) — (1,3, 22),
ie.,
a102 = Qas,
aoa1 = Qq,

Q409 = Q20109 = ag,

Thus, by defining a1 = a,ay = b, all of elements are written as

e,a,b,ab, ba, bab

Note that aba = bab. The S5 group is a symmetry of an equilateral triangle as shown
in Figure . The elements a and ab correspond to a reflection and the 27/3 rotation,

respectively.

S5 is the group of all permutations of three objects and it has 6 elements divided

into three irreducible representation, namely, two singlets 1, 1" and one doublet 2.

S3 Group 8



The orthogonality relation
> alCi)? =D mun® =mq +4ma+9mz + - =6 (3.2)

[e%

and

Zmnzi%

where m,, > 0, then (my,my) = (2,1).Thus, irreducible representation of S3 include

two singlets 1, 1’ and a doublet 2.

Character Table of S3 representations

Conjugacy class | Order | x1 | x1v | X2
Cy 1 1112
Cy 3 111 ]-1
Cs 2 11-110

Table 3.1: Character table of Ss

3.1.1 Matrix representation of S3

10 10 B Y
e = ,a = b= y , ,
0 1 0 -1 - 3
_1 3 _1 3 _1 V3
_ 2 2 o 2 2 o 2 2
ab = G 1 ,ba = A ,bab = G o1
2 2 2 2 2 2

3.1.2 Tensor products of S;3

Tensor products of irreducible representation for S3. Two one-dimensional repres-
entation denoted by 1 and 1’, and one two-dimensional representation denoted by 2.

Then,

Tensor products of two doublets (z1, x2), (Y1, y2)

Lxi"(9) ® Flﬁxzﬁﬁ(g) =T, xzazﬁred' (9) = ®aT* (3.3)

S3 Group 9



Dsy2%(9) ® D2x26(9) = Dy (9) (3.4)

T1 A
x x Bix1
( 1) ® ( yl) = 1 = reduciblevectorspace = .
C
T2 oyl Y2 9yl T2Y1
T2l2 4x1 D 2x2

Direct product of S3 group representation

1000 1 0 0 0
0100 0 -1 0 0
lle)=e®e= JTa)=a®a= :
0010 0 0 —-10
0001 0 0 0 1
L 3 B 3 L ¥3 M3 3
1 1 1 1 1 1 1 1
¥vi L 3 _\3 _¥3 1 3 3
_ _| = T 1 ) _ _ 1 1 i1
I'(b) = bwb = g s oA ,[(ab) = ab®ab = A s Lol
1 1 4 1 1 4 1 1
3 _V3 _¥3 L 3 _¥3 _v3 1
1 1 1 1 1 1 1 1
L V38 3 3 L M3 M3 3
1 1 4 4 4 4 1 1
¥zl _3  _3 3 1 3 V3
_ _| "2 4 1 1 _ _ 1 1 1 1
['(ba) = ba®ba = G5 1 v ,I'(bab) = bab®bab = I
1 1 1 1 1 1 171
3 M3 B 1 3 ¥3 31
1 1 1 4 4 1 1 1
Projection matrices for S; irreducible representation
l @ —_]
Pa=253"X (9)T(9) (3.5)
|G|
geG

here, [, and |G|is order 6.

S3 Group 10



T1Y1 Aixa

PXO‘ x1y2 — BIXI
T2l ¢
T2Y2 D 252
1
Py, = £[0(€) + T(ab) + D(ba) + T(a) + T(b) + T(bab)] (3.6)

3003 100 2

110 0 0 O 0 0 0 O

0 00O 0 00O

3003 100 %

T1Y1 % 00 % T1Y1 I12 L + x22 2
T1Yo 0 0 0 O T1Yo 0
P, = =
T2Y1 0 0 0 0 T2Y1 O
Toyo % O O % Tl x12 1 + x22 2
1 = (z1y1 + x2y2) linear combination.
Similarly,
1
P, = E[F(e) + I'(ab) + I'(ba) — I'(a) — I'(b) — I'(bab)] (3.7)

0 O 0 0 0 0 0 O
110 3 =3 0 0 % —% 0
PeTEl g s s ol o or 1o

- -2 32
0 O 0 0 0 0 0 O

S3 Group 11



11 0
T1Y2 0
Px1/ =
Talh 0
T2Y2 0

o= O

I
N =

1'= (z1y2 — x2y;) linear combination.

S =

[N

and
1
P, =-
X2 6
3 0 0
P 1 0 3 3
6| 0 33
-3 00
T1Y1 % 0 0
p ry2 0 % %
X2 . - 0 1 1
2Y1 5 3
T2Y2 —% 0 0
Tols — T
2= 22 th linear combination.
T1Yo + ToY1

0 T1Y1 0
0 T1Y2 %ﬂ - %ﬂ
0 T2Y1 - —%ﬂz + £22_1u.
0 T2Y2 0

[2T(e) — I'(ab) — I'(ba)]

-3 L o0 —4
0| [ o &1 o0
o | o 11 o0
3 -3 00 1
=3\ [ Ty il
0 T1Y2 . %ﬂ‘i‘%ﬂ
0 || 2o | | z2+op
3 ) \ w2 — 4 e

1. Tensor products of two doublets (z1,z2) (y1,¥y2)

The linear combinations corresponding singlets and doublet

L xan + 2ay2 , 1 210 — Xotn

and

S3 Group

(3.8)
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T2Y2 — 11

T1Y2 + ToY1

€ Y1
® = (1151 + T2y2) D(x1Y2 — Tay1) D

Ta Yo T1Y2 + X2

TaY2 — T1Y1

22=101¢2

2. Tensor products of singlet (y) and doublet (x1,x2)

X1 —YIy
(y)1r ® =
X2 ) Yyry
1'"®2=2

3.Tensor products of singlet (z) and (y)

()1 @ () = (vyh

'el =1

, and

1 ® any = any

S3 Group
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Chapter 4

Ay Group

A,Group:

Ay is the group of even permutations of four objects and it has 12 elements divided

into four irreducible representation, namely, three singlets 1, 17, 1" and one triplet 3.

The orthogonality relation
Z[Xa(01]2 = Zman =mq +4my +9ms +--- =12 (4.1)

«

and

Zmnzél

where m,, > 0, then (mq,ms, m3) = (3,0, 1).Thus, irreducible representation of A,

include three singlets 1, 1’ 1" and a triplet 3.

Character Table of S3 representations

Conjugacy class | Order | x1 | x1v | x17 | X3
@] 1 T 113
Cs 2 1 1 1 |-1
Cy 3 1| wlw]|O
Cy 3 1 [w? ] w 0

Table 4.1: Character table of Ay

14



4.0.1 Tensor Products of A,

Tensor products of irreducible representation for A4. Three one-dimensional repres-

entation denoted by 1, 1" and, 1", and one three-dimensional representation denoted

by 3. Then,

(1.) First, the alternating group A4 can be defined in terms of two generators S, T

satisfying the representation rules.

S?=T%=(ST)* =1

1 0 0 010
S=10 -1 0|,T=]1001
0 0 -1 1 00

Conjugacy classes

Cl L€
Cy:S,TST? T?ST

Cy:T.,7TS,5T,STS

Cy:T? ST? T*S, TST

Ay Group
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4.0.2 Matrix representation of A,
1 00 1 0 0 -1 0 0
e=1010[,5=|0 -1 0 |,tst*=

010 -1

t=100 1], —1|,St=| 0 0 —-1|,5tS=
100 -1 0 0
0

0 0 |,tSt=

010 -1 0

0

0

1
001 0 1 0
=110 0f,St*= 2SS =11
-1 0 0

Tensor products of irreducible representions.

Lioxta®(9) @ Tiyst, (9) = Tityxin, ™" (9) = ®a°T

Tensor products of two triplets (aq, as, as), (b1, ba, bs)

D353%(9) ® D3x3”(g) = Doxo™*(9)

a1b1
a,lbg
&1[)3
aq b1 (Igbl
s | by = | aby = reducible vector space =
as bg G,ng

3x1 3x1

asby

asby

agbg 9x1

0 —1 0f,t3St=
00 1 0 0 -1 0 0 1
0 [

10 0
0 1 0
0 0 —1
0 -1 0
0 0 1
-1 0 0
0 0 -1
-10 0
0 1 0
(4.2)
(4.3)

A

By

Oy

D

E

F

3s

G

H

I 3a/ 9x1

Ay Group 16



Direct product of A, group representation

100000000
010000000
001000000
000100000

I'(e)=e®e=|00001000 0
000001000
000000100
000000010
000000001/
10 0 0 00 0 00

0 -1 0 0 00 0 00
000 -1 0 00 0 00
00 0 -1 00 0 00
[(s)=s®s=[0 0 0 0 10 0 00
00 0 0 01 0 00
000 0 0 00 1200
00 0 0 00 0 10
00 0 0 00 0 01

9%x9

Similarly,

[(tst?), T (t*st), T(t),T(ts),[(st),[(t?),T(st?),T(t*s), [ (tst), [(sts)

Projection matrices for A, irreducible representation

Lo = _pe
Pra = a g%x (9)T(9) (4.4)

Ay Group 17



here, [ o is dim. and |G|is order 12.

Py, = %[F(e)—i—F(s)+F(tst2)+F(t25t)+F(t)+F(ts)+F(st)+F(st5)+F(t2)+F(st2)+F(t2s)—|—F(tst)]
(4.5)
400040004 310003000 3
000000000 0000000O0O0O
00000000 O 00000DO0DO0O0O
000000000 00000D0O0O0O
PX1—1—12400040004=§000§000§
00000000 O 00000D0O0O0O
00000000 O 000000O0O0O
000000000 00000000 O
400040004 50003000 3
aib; £ 0002000 %)\(ab sa1by + 3asby + ashs
a1by 00000000 O] ab 0
a1bs 00000000 O] abs 0
ashy 000000000 O0]] abh 0
Pol aba[=]132 000 % 00 0 5|/ asba| =1 2arbi + $asbs + 1asbs
asbs 000000000 Of][ aks 0
asby 0000000O0O0 O[] ash 0
azby 00000000 0] ash 0
asbs 00035000 % asbs sa1by + 5asby + 3asbs

1= (a1by + azby + azbs) linear combination.

P, = %[F(e) + I(s) 4+ T (tst?) + T'(t?st) + wl(t) + wI(ts)

+ wl(st) + wl(sts) + w?T(#?) + WT(st?) + W?T(#%s) + w?T(tst)] (4.6)

Ay Group 18



4w?

4 000 4w 000 31 000 3w 00 0 jw
0000 0 000 O 0 000 0 000 0
0000 0 000 O 0 000 0 000 0
0000 0 000 O 0 000 0 000 0
PX1,=%4w200040004w=%wQOOOé000§w
0000 0 000 O 0 000 0 000 0
0000 0 000 O 0 000 0 000 O
0000 0 000 0 0 000 0 000 0
4w 0 0 0 4? 0 0 0 4 3w 000 20?000 3
a1by 3 000 3w 00 0 a1by ra1by + swasby + swlasbs
a1by 0 000 0 000 O a1by 0
aibs 0 000 0 000 0 a1bs 0
ashy 0 000 0 000 0 ashy 0
Polabo[=] %2 00 0 1 00 0 fw || abe|=| fw?aibs + Lashs + twasbs
asbs 0 000 0 000 0 asbs 0
asby 0 000 0 000 0 ashy 0
asby 0 000 0 000 0 azby 0
asbs 3w 000 30> 000 3 asbs fwarby + swasbs + zasbs

1'= (a1by + w?asby + wazbs) linear combination.

P, = —=[T(e) + ['(s) + [(tst?) + T'(#*st) + W' (2)

+ w?T(ts) + W' (st) + w?T(sts) + wl'(t?)

+ wl(st?) + wl(#?s) + wl(tst)] (4.7)

Ay Group 19




4 000 4?2 00 0 4w 100

0 000 0 000 O 0 00

0 000 0 000 O 0 00

0 000 0 000 O 0 00

PXI,,zl—l2 4w 000 4 000 4?|[=] 3w 00

0 000 0 000 O 0 00

0 000 0 000 O 0 00

0 000 0 000 0 0 00

4w 0 0 0 4w 00 0 4 sw? 0 0
aiby 2 000 302000 tw) ([ ab
aybs 0000 0 000 0 || ab
aybs 0 000 0 000 0 || abs
ashy 0 000 0 000 0 || ab

Pol agbo | =] 3w 000 + 00 0 1w ashy | =
asbs 0 000 0 000 0 || abs
ashy 0 000 0 000 0 || ash
asbs 0 000 0 000 0 || ash
asbs w02 000 3w 000 3 asbs

17= (a1b; + wagby + w?azbs) linear combination.
P, — 1—32[3r<e) ~T(s) — D(tst?) — T(2st)]

o O o o o o o o o

%wOOO%w
0 000 O
0 000 O
0 000 O
500 0 i
0 000 O
0 000 O
0 000 O
3w 000 3

sa1by + swashy + twasbs
0
0
0

1

3wa1b1 + %agbz + §w2a3b3

0
0
0

1

3w2a1b1 + %wang + %&3()3

(4.8)

Ay Group 20




=] =

X3

o O o o o o o o o

a1b1
&1b2
a1b3
a2b1
a2b2
&ng
a3b1
asbs

asbs

o O o o o O o = O

[a) ] o] (@] (@) ] e~ o =}

(a) ] ] [a] [a) =~ [aw] o =}

] (aw] (@) ] [aw] (@] (] ] e

aiby
a1b3

asby

a2b3
asby

asbs

[a) @] ] (a] [a) @] [a] [a) @]

] (a] [e) ] (ew] (a] ] — (a]

o O O k= O O o o O

o O o o o o - o O

S O B~ O O O o o o

o o o o O — o O O

o e~ o e} (@) ] ] [a) (-

o] (@] (@) ] ] (@) (] o] e

(a) (] ] (aw] [e) o] [aw] [a) ]

] [aw] (@) — ] (@) (] ] e

] (a] — ] ] (a] ] ] (a]

(@)
] [a) (]

—_

o O o o o o o o o
o O o o o o o — o
o O o o o o

o O o o O

a1b1
&1b2
albg
a2b1
a2b2
a2b3
a3b1

azby

SO = O O O o o o o
o O o o o o o o o

&3b3

a2b3-+-a3b2
a3b1-+-a1b3
a1b2-+-a2b1

S

[a) ] ] (a] [a) ] [aw] [a) ]

o O O = O O o o O

o @] — e} [a) @] o o =}
(@) — o] (@] (@) @] @] (@) @]
[a) (] ] [aw] (@) ] ] [a) (]

a1by
a1 b3

asb;

asbs
asby

asbs

Ay Group
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a1y
a1b3

asby

a2b3
asb;

asby

1. Tensor products of two triplets (a1, as,as) (b1, ba, bs)

The linear combinations corresponding singlets and triplet

1: a161 + (IQbQ + a3b3 s 1/ . albl+w2a2b2+wa3b3 ,1” . albl+wagbg+w2a3b3

and

agbg + (Igbg (Izbg — agbg
35 : a3b1 + a1b3 ; 3a : CL3b1 — CL1b3

a162 + agbl a1b2 — a2b1

Ay Group
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ai by

as bs
agbg + Clgbg agbg — CL3b2

a3b1 + a1b3 ¥ a361 — (11b3

a1by + aghy a1by — asby

33=10101"3®3,®3,

2. Tensor products of singlet (a) and triplet (by, b, b3)

'®3=3

and

1"®3=3

3.Tensor products of singlet (a) and (b)

1®1=1
1/®177:1
and
1 ® any = any

a9 & b2 = (a1b1+a2b2+a363) @( a1b1+w2a2b2+wa3b3) @(a1b1+wa2b2+w2a3b3)€a

(2.) Another two generators s ,t satisfying the alternating group A, representation

rules,

sf=t=(st)*=1

Ay Group
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Conjugacy classes

Cl . €
Cs - s, tst? st
Cy:t,ts, st,sts

Cy 12, st? t2s, tst

Then representation matrix Ay

1 0 0 -1 2 2 -1 2w 2w?
e=10 1 0f,s=3|2 -1 2|, tst? = 3| 2® -1 2w
0 0 1 2 2 -1 2w 2w? —1
—1 2w? 2w? 1 0 O —1 2 2
2w -1 2?t=]0 W 0| ts=3] 2w? —w? W?|st=3
2w 2w -1 0 0 w 2w 2w —w
-1 2w 2w? 1 0 0 -1 2w 2uw?
sts =%+ 2w —w? 2 [fo=32l0 w O, sta=3] 2 —w 2w
2w? 2 —w 0 0 w? 2 2w —w?
-1 2 2 -1 2w? 2w
il 2w —w 2w |Ltst=3| 2? —w 2 |,
2w? 22 —w? 2w 2 —w?

Tensor product of Ay:

tensor product of two triplet (aq, s, a3) (B1, B2, 53)

D5, 5(g9) ® Dj,5(g) = Dyt(g) = ®@m*D(g)

(4.9)
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Qg Q| Oa

Qs ax1 Bs

I'le)=e®e=
1

-2

-2

-2
['(s)=s®s= % 4
4

-2
4

-2

3x1

o O O o o o o o =

a1
a1
13
oYoi!

- a3y

Qo33
asf

04352

asf33

o O o o o o o = o
o O o o o o = o O
o o o o o = o o o

| |
NN

|
AN

4 =2

9x1

o O o o = o o o ©
o o o = O o o o o©

_ o O O o o O

o O

=~

o = O O O o o o o

~ 0 Q = = o

o O O o o o o o

3s

3a

9x1

9%x9
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Similarly
[(tst?), T (t*st), T (t),[(ts),[(st),[(t?),T(st?),[(t*s), [ (tst), [(sts)

P = XS 5 ()T (g) (4.10)

here, lyoisdim. and |G|is order 12.

P, = 1—12[r(e) +T(s) + T(tst?) + D(Est) + T(¢) + T(ts)
+ T(st) 4+ T(sts) + D(t?) + T(st?) + T(#%s) + T(tst)] (4.11)
P, = %[F(e) + I'(s) + [(tst?) + D(t%st) 4+ wl(t) + wl'(ts)

+ wI(st) + wl(sts) + wWT(#?) + W T (st?) + T (#%s) + wT(tst)] (4.12)
P,. = —=[T(e) + [(s) + D(tst?) + ['(t*st) + w?T'(t) + w’T(ts)

+ w?T(st) + w?T(sts) + wl(t?) + wl(st?) + wl(t*s) + wl(tst)] (4.13)

P, = =[3T(e) — T'(s) — T'(tst?) — D(t*st)] (4.14)

=~ =

1. Tensor products of two triplets (avy, ag, a3) (51, P2, B3)

The linear combinations corresponding singlets and triplet

L 181 4+ aofls +asfBy, 1t asfs + a1 fo + o 17 1 anfa + asfi + o s

and
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20001 — aafs — a3y
3s 1| 20303 — a1 fr — azfh
208y — agf — aq 3

o ff3 — a3 Bs
3ot | a1 —

asf — a1 fs

Qg B
as |® | By | = (P + aafis + asfa)1 B(asfs + aqfa + b)) B(azfs + azf +
as B3
200101 — azfl3 — azfa o3 — a3
a1f3)r @ | 2a365 — arfs — By | B | a1fe — afh
2007 — a3 — a1 B3 azf — a1 3

33=101e1"03,¢3,

2. Tensor products of singlet («) and triplet (81, 2, f3)

I3 a3

(@@ | G| =] ap

B3 afy
'®3=3

and

Ay Group
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1"®3 =3

3.Tensor products of singlet () and ()

1 ® any = any
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Chapter 5

Model with three Higgs doublets in

the triplet representation of A,

5.1 The potential of the three Higgs fields

The three Higgs doublets fields — ¢; = (¢1, @2, ¢3) transform in a triplet representa-

tion of A4 symmetry,

P1
3:| ¢
®3

Or products of the  ¢; = (61, da, ¢3) and @] = (4], &5, 41) |

096 = (0300 + 0ly00, 01361 + 61160, 6100 + 61a0) 3,
+ (650 = 0160, 6150n = 61160, 6 100 = 010 13,
" %(Ml T 6hs + ols) 1 1
<¢T¢1 + W Pldy + wles) :

<¢*¢1 + Wby + wiBlds) :

SIH%I

(5.1)
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Here w = exp(m?’r), and s, a stand for the symmetric and anti-symmetric

triplet components.

The Ay -symmetric 3HDM can be represented by the following potential| Degee,
Ivanov and Keus, 2013|

Mo

A
V= =7 (6161+ 6l6s + 9ln) + (6161 + 8l + ¢len)’

+ %[(aﬁ«blf + (0462)" + (¢h03)” — (6161) (L) — (8h) (8hs) — (¥hs) (9101)]
+ M[(Regidn)® + (Redhds)” + (Redlon)’]
+ Ao[(Imeia)* + (Imghes)® + (Imelr)’]
+ Ma[(Red] o) (Imdl o) + (Redhds)(Imesos) + (Redion)(Imein)] (5.2)

Here parameters M, and A; are assumed to take generic values.

Degee, Ivanov, and Keus have introduced a geometrical procedure to minimize highly
symmetric scalar potentials, and solved the problem for a three Higgs doublet model
(3HDM) potential with an A4 or an Sy symmetry. And it is found that the possible
vev(vacuum expectation values) alignments for the A, symmetric potential which

may correspond to a global minimum are[ Degee, Ivanov and Keus, [2013]

v(1,0,0),

v(1,1,1)
v(l,m,n*),with n=expin/3,
v(1,expic,0), with any a. (5.3)

Possible representation of the left-handed quark doublets (@), the right-handed up
quark singlets (ug), and the right-handed down quark singlets (dg), when the three

Higgs doublets are in a triplet representation 3.
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Qr UR dr
3 3 3
3 3 three singlets
3 three singlets 3
3 three singlets | three singlets
three singlets 3 3

Table 5.1: Possible representation of the left-handed quark doublets (@), the right-
handed up quark singlets (ug), and the right-handed down quark singlets (dg), when
the three Higgs doublets are in a triplet representation 3

The notation "three singlets" stands for the following independent possibilities for

the fields in each of the three generations:

(1,1,1),(1,1/,17),(1,1,17), (1, 1", 1), (1, 1", 1"),

(1/’ 1/7 177)7 (17 17 177>’ (1/7 177, 177)’ (1’ 177’ 177)7 (1777 1777 177)'

5.2 Yukawa Lagrangian terms and quark mass matrices

We are now ready to construct the Yukawa matrices for the various cases. As a
first example, let us consider the case ¢~3, (Qr1, Qra, Qrs) ~ (1,1,1"),dg ~ 3 and
ug ~ 3. We start with the down sector. Since Qp; is in the 1 representation, it must
couple to the (¢ ® dg); combination from Eq.(5.1).The same is true for Qro, with

an independent coefficient.

This leads to the Yukawa terms

061QL1[¢1dR1 + ¢odpy + ¢3dps] + CVQQL2[¢1CZR1 + ¢odps + P3dps] (5.4)

Since Q3 is in the 1’ representation, we can only obtain a singlet with the 1”

combination (¢ ® dg);” in Eq.(5.1) . This leads to the Yukawa term
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aa@L3[¢1dR1 + woadpy + w2¢3dR3] (5.5)

Once the fields ¢; are substituted by the vevs v;, these terms give the down-type

quark mass matrix, My

Qi gl a1V
Mg=1 asry oy  asrs |, with arbitrary complex constants a;.

asl] wasly wiasls

The up-quark Yukawa terms

B1Qr1[d1ur1 +drtpa+dsturs]+BaQro[drur +drtpa+dsturs]+BsQ L3[d1ur Fwdrt gy tw? P3ups]
(5.6)

A similar analysis of the up-type quark mass matrix, M,

by Bivs Bvs

M, = | Bov; Bovi  [Bovi |, Where B; are arbitrary complex constants.

Bsvi wlhsvy w?Bavi

We define the Hermitian matrices

H, = M,M,;", H, = M, M,", (5.7)

As a second example, let us consider the case ¢ ~ 3, (Qr1, Qra, Qrs) ~ (1,1/,17),

dr ~ 3, and ug ~ 3. We find Yukawa terms and quark mass matrix for down sector:
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alQL1[¢1dR1 + ¢adpa + P3dps] + QQQLQ [p1dR1 + wWhadpse + W2¢3dR3]

+ a3Qrald1dr1 + w dadps + wosdrs] (5.8)

a1l QU9 (05 %:!
Mg = | asrn wasry w?agys | , with arbitrary complex constants a;.
Qi3 w20[3V2 waogls

And for up-type quark sector yields:

51@L1[¢1UR1 + ¢otps + P3ups] + BaQra [p1urt + wortips + w2¢3uR3]

+ BsQr3[prurs + wdsgs + whsugs] (5.9)

By Bivs Bivs

M, = | Bov; whevi w?Byri |, where B; are arbitrary complex constants.

537/1‘ w253V§ wﬁng

If the Higgs potential is invariant under Ay, it has been shown of Eq.(5.3) the possible
vev alignment v(1,1,1) and v(1,7,7*) . In that case M, and M, are digonalized,

1 1 1 aq aq (051 1 1 1
1 1
M, — 1 2 — 2 —_ 1 2
73 wow ay  way Wl 73 W ow
1 w? w as wlas  was 1 w? w
3a; 0 0
1
= % 0 3ay 0 (5.10)
0 0 3as

and
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1 1
Muﬁ 1 w 2| =] By whs w?Bsy % 1 w w?
1 w? w Bs w?Bs wps 1 W w
361 0 0
1
:E 0 38, 0 (5.11)
0 0 303
|O[1|2 0 0
Hd = ]\4d]\4dJr = 37/2 0 ’042‘2 0 ’ (512)
0 0 |O[3|2
B> 00
H,=H,=MM, =3 0 (B2 0 |, (5.13)
0 0 |3

meaning that, in these cases, all quark masses are non-vanishing and non-degenerate.
Requiring non-vanishing quark by itself, restricts the representations of Q) ;ugr;dg

to the five possibilities s; 3; 3, 3;s; s, 3;5;3, 3;3;s,and  3;3;3, where s stands for
(1,17,17), with the vevs restricted to v(1,1,1) or v(1,n,7%).
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Chapter 6

Conclusions

We have studied the possibility of generating the quark masses in the context of
three Higgs doublet models extended by discrete A4 symmetry. Assuming that the
Higgs fields are in the triplet representation of the discrete group. We show that
none of the feasible vev alignments that correspond to a global minimum of the
scalar potential leads to phenomenologically feasible mass matrices for the Standard

Model’s three generations of quarks.
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