
Some aspects A4 flavor symmetry

Sita Ram Meena

IIT Indore

Submitted in partial satisfaction of the requirements for the
Degree of M.Sc.

in Physical Science

Supervisor Dr. Dipankar Das

June, 2021



i



Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor Dr.

Dipankar Das not only for his support and guidance throughout the project but

also for allowing me the opportunity to undertake this exciting project. He has in-

troduced me to the wonderful world of theoritical physics. I am thankful to him

for sharing his valuable time. I would like to thank my PSPC committee members

Dr. Ankhi Roy and Dr. Debajyoti Sarkar for their support and motivation. I am

very grateful to the Physics Department of IIT Indore for providing me the required

facilities. I would like to express my humble gratitude to my family and friends for

their blessing and support.

ii



Indian Institute of Technology

Indore

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled

“Some aspects A4 flavor symmetry” in the partial fulfillment of the re-

quirements for the award of the degree of MASTER OF SCIENCE and

submitted in the DISCIPLINE OF PHYSICS, Indian Institute of Tech-

nology Indore, is an authentic record of my own work carried out during

the time period from july 2020 to june, 2021 under the supervision of Dr.

Dipankar Das, Assistant Professor.The matter presented in this thesis has

not been submitted by me for the award of any other degree of this or any

other institute.

Signature of student with date

Sita Ram Meena

————————————————————————————————————-

This is to certify that the above statement made by the candidate is correct to the

best of my/our knowledge.

Signature of the Supervisor of M.Sc. Thesis

(with date)

Dr. Dipankar Das

iii



————————————————————————————————————-

Sita Ram Meena has successfully given his/her M.Sc. Oral Examination held on

June 2021

Signature(s) of Supervisor(s) of M.Sc. Thesis Covener,DPGC

Date: Date:

Signature of PSPC 1 Signature of PSPC 2

Date: Date:

————————————————————————————————————-

iv

24-06-2021



Abstract

We review pedagogically non-Abelian discrete groups, which play an important role

in the particle physics. We show group-theoretical aspects for S3 and A4 concrete

groups, such as representations, their tensor products. We explain how to derive,

conjugacy classes, characters, representations, and tensor products for these groups

(with a finite number).We also present typical flavor models by using A4 group.

Breaking patterns of discrete groups and decompositions of multiplets are important

for applications of the non-Abelian discrete symmetry. We discuss these breaking

patterns of the non-Abelian discrete group, which are a powerful tool for model

buildings.

v



List of Tables

2.1 Multiplication table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Character table of S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Character table of A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1 Possible representation of the left-handed quark doublets (QL), the
right-handed up quark singlets (uR), and the right-handed down quark
singlets (dR), when the three Higgs doublets are in a triplet repres-
entation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



Table of Contents

1 Introduction 1

2 Group theory 2
2.1 GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Definition of a Group . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2 Abelian nonabelian groups . . . . . . . . . . . . . . . . . . . 3
2.1.3 Multiplication table . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 Homomorphism and isomorphism . . . . . . . . . . . . . . . . 4

2.2 Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Equivalent representations . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Reducible or irreducible representation . . . . . . . . . . . . . 5

3 S3 Group 7
3.1 S3 Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Matrix representation of S3 . . . . . . . . . . . . . . . . . . . 9
3.1.2 Tensor products of S3 . . . . . . . . . . . . . . . . . . . . . . 9

Direct product of S3 group representation . . . . . . . . . . . 10
Projection matrices for S3 irreducible representation . . . . . 10

4 A4 Group 14
4.0.1 Tensor Products of A4 . . . . . . . . . . . . . . . . . . . . . . 15
4.0.2 Matrix representation of A4 . . . . . . . . . . . . . . . . . . . 16

Direct product of A4 group representation . . . . . . . . . . . 17
Projection matrices for A4 irreducible representation . . . . . 17

5 Model with three Higgs doublets in the triplet representation of A4

29
5.1 The potential of the three Higgs fields . . . . . . . . . . . . . . . . . . 29
5.2 Yukawa Lagrangian terms and quark mass matrices . . . . . . . . . . 31

6 Conclusions 35

vii



Chapter 1

Introduction

We have demonstrated group-theoretical aspects for A4 group explicitly, such as

representation and their tensor products. We have shown them explicitly for non-

Abelian discrete group A4 , and discussed how to drive conjugacy classes, character

tables, representations and tensor products for these groups ( A4).

A4 (discrete group of even permutations of four items) emerged as a unique dis-

crete group that can duplicate the TBM (tribimaximal mixing) pattern in a very

cost-effective manner among all the discrete groups explored in the literature. It’s a

smalles group with a three-dimensional representation that can accommodate three

flavours of leptons and explain the textures of fermion mass matrices. [ Karmakar,

2018] In the quark sector, models based on the A4 symmetry as a possible family

symmetry were first introduced in Refs. [ Wyler, 1979, Branco, Nilles and Ritten-

berg, 1980]. After the impact of the symmetry on the Yukawa matrices is known,

some structure for the vacuum expectation values (vev) has to be assumed before

moving on to the mass matrices and respective phenomenological predictions.

Degee, Ivanov, and Keus[ Degee, Ivanov and Keus, 2013] have introduced a geo-

metrical procedure to minimize highly symmetric scalar potentials, and solved the

problem for a three Higgs doublet model (3HDM) potential with an A4 or an S4 sym-

metry. In this thesis, we consider models with three Higgs doublets φi in a triplet

representation of A4 and The models contain only three generations of left-handed

quark doublets QL , right-handed up-type quark singlets uR , and right-handed

down-type quark singlets dR.[ Felipe, Serodio and Silva, 2013]
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Chapter 2

Group theory

Group Theory is the study of symmetry, whenever an object or a system’s property

is invariant under a transformation than we can analyze the object using group

theoretic methods.

2.1 GROUP

2.1.1 Definition of a Group

A group G consists of a set of entities gα called group elements. Which we could

compose together. Composition or multiplication satisfies the following axioms :

1. Closure :- Given any two elements gα and gβ , the product gα.gβ is equal to

another element g in G.

gα.gβ = gγ

2. Associativity: Composition is associative

(gα.gβ).gγ = gα.(gβ.gγ)

3. Existence of the identity: There exists a group element, known as the identity

and denoted by I, such that

2



I.gα = gαand gα.I = gα.

4. Existence of the inverse: For every group element g,there exists a unique group

element, known as the inverse of gα and denoted by g−1
α , such that

g−1
α .gα = Iand gα.g−1

α = I.

2.1.2 Abelian nonabelian groups

A group for which the composition rule is commutative is said to be abelian.

gα.gβ = gβ.gα

And a group for which the composition rule is not commutative is said to be nona-

belian.

gα.gβ �= gβ.gα

Examples of group :- 1. The two square roots of 1, (1, −1), form the group Z2

under ordinary multiplication.

2. Similarly, the three cube roots of 1 form the group Z3 = 1, ω, ω2 with ω =

exp(2ιπ
3 ). and the four fourth roots of 1 form the group Z4 = 1, ι, −1, −ι, where

famously (or infamously) ι = exp( ιπ
2 ). More generally, the N , Nth roots of

1 form the group ZN = exp( ι2πj
N

) : j = 0, ..., N − 1. The composition of group

elements is defined by exp( ι2πj
N

).exp( ι2πk
N

) = exp( ι2π(j+k)
N

).

Group theory 3



2.1.3 Multiplication table

A finite group with n elements can be characterized by its multiplication table . We

construct a square n ⊗ n table, writing the product gigj in the square in the ith row

and the jth column:

· · · · · · gj · · · · · ·
... . . .
... . . .
gi gigj
... . . .
... . . .

Table 2.1: Multiplication table

2.1.4 Homomorphism and isomorphism

A map f : G → G� of a group G into the group G� Is called a homomorphism If it

preserves the multiplicative structure of G,

1.iff(g1)f(g2) = f(g1g2) (2.1)

2.f(I) = I( the identity of G is mapped to the identity of G’). (2.2)

A homomorphism becomes an isomorphism if the map is one-to-one and onto.

2.2 Representation Theory

Given a group, the idea is to associate each element g with a d ⊗ d matrix D(g)such

that

D(g1)D(g2) = D(g1g2)

Group theory 4



for any two group elements g1 and g2. The matrix D(g) is said to represent the

element g, and the set of matrices D(g) for all g ∈ G is said to furnish or provide

a representation of G. The size of the matrices, d, is known as the dimension of the

representation.

2.2.1 Equivalent representations

Two representations,D(g) and D�(g), are really the same representation (more form-

ally, the two representations are equivalent) if they are related by a similarity trans-

formation.

D�(g) = S−1D(g)S

As explained in the review of linear algebra, D(g) and D �(g) are essentially the same

matrix, merely written in two different bases, with the matrix S relating one set of

basis vectors to the other set. Then given a representation D(g) , define D �(g) by

similarity transformation with some S whose inverse exists. Then D(g) is also a

representation, since

D�(g1)D�(g2) = (S−1D(g1)S)(S−1D(g2)S)

= S−1D(g1)D(g2)S

= S−1D(g1g2)S

= D�(g1g2). (2.3)

2.2.2 Reducible or irreducible representation

The vector space vj , on which representation matrices act, is called a representation

space such as D(g)ijvj (j = 1, ..., n). The dimension n of the vector space vj (j =

1, ..., n) is called as a dimension of the representation.A subspace in the representation

space is called invariant subspace if D(g)ijvj for any vector vj in the subspace and any

element g ∈ G also corresponds to a vector in the same subspace. If a representation

Group theory 5



has an invariant subspace, such a representation is called reducible. A representation

is irreducible if it has no invariant subspace. In particular, a representation is called

completely reducible if D(g) for g ∈ G are written as the following block diagonal

form,




D1(g) 0

0 D2(g)

.

.

Dr� (g)




where each Dα(g) for α = 1, ..., r is irreducible. This implies that a reducible

represen- tation D(g) is the direct sum of Dα(g),

�

α=1

r ⊕ Dα(g). (2.4)

Group theory 6



Chapter 3

S3 Group

SN GROUP

All possible permutations among N objects xi with i = 1, ..., N, form a group,

(x1, ..., xn) → (xi1, ..., xiN) (3.1)

This group is the so-called SN with the order N !, and SN is often called as the

symmetric group. In the following we show concrete aspects on SN for smaller N .

The simplest one of SN except the trivial S1 is S2,which consists of two permutations,

(x1, x2) → (x1, x2), (x1, x2) → (x2, x1)

This is nothing but Z2, that is Abelian. Thus, we start with S3.[ Ishimori et al.,

2009]

3.1 S3 Group

S3 consists of all permutations among three objects, (x1, x2, x3) and its order is equal

to 3! = 6. All of six elements correspond to the following transformations,

e : (x1, x2, x3) → (x1, x2, x3),

a1 : (x1, x2, x3) → (x2, x1, x3),

a2 : (x1, x2, x3) → (x3, x2, x1),

7



a3 : (x1, x2, x3) → (x1, x3, x2),

a4 : (x1, x2, x3) → (x3, x1, x2),

a5 : (x1, x2, x3) → (x2, x3, x1).

Their multiplication forms a closed algebra, e.g.

a1a2 : (x1, x2, x3) → (x1, x2, x3)

a2a1 : (x1, x2, x3) → (x3, x1, x2),

a4a2 : (x1, x2, x3) → (x1, x3, x2),

i.e.,

a1a2 = a5,

a2a1 = a4,

a4a2 = a2a1a2 = a3,

Thus, by defining a1 = a, a2 = b, all of elements are written as

e, a, b, ab, ba, bab

.

Note that aba = bab. The S3 group is a symmetry of an equilateral triangle as shown

in Figure . The elements a and ab correspond to a reflection and the 2π/3 rotation,

respectively.

S3 is the group of all permutations of three objects and it has 6 elements divided

into three irreducible representation, namely, two singlets 1, 1’ and one doublet 2.

S3 Group 8



The orthogonality relation
�

α

[χα(C1]2 =
�

α

mnn2 = m1 + 4m2 + 9m3 + · · · = 6 (3.2)

and
�

n

mn = 3

where mn ≥ 0, then (m1, m2) = (2, 1).Thus, irreducible representation of S3 include

two singlets 1, 1’ and a doublet 2.

Character Table of S3 representations

Conjugacy class Order χ1 χ1� χ2
C1 1 1 1 2
C2 3 1 1 -1
C3 2 1 -1 0

Table 3.1: Character table of S3

3.1.1 Matrix representation of S3

e =




1 0

0 1


 , a =




1 0

0 −1


 , b =




−1
2 −

√
3

2

−
√

3
2

1
2


 ,

ab =




−1
2 −

√
3

2
√

3
2 −1

2


 , ba =




−1
2

√
3

2

−
√

3
2 −1

2


 , bab =




−1
2

√
3

2
√

3
2

1
2




3.1.2 Tensor products of S3

Tensor products of irreducible representation for S3. Two one-dimensional repres-

entation denoted by 1 and 1’, and one two-dimensional representation denoted by 2.

Then,

Tensor products of two doublets (x1, x2), (y1, y2)

Γlα×lα
α(g) ⊗ Γlβ×lβ

β(g) = Γlαlβ×lαlβ
red.(g) = ⊕aαΓα (3.3)

S3 Group 9



D2×2
α(g) ⊗ D2×2

β(g) = D4×4
red.(g) (3.4)




x1

x2




2×1

⊗




y1

y2




2×1

=




x1y1

x1y2

x2y1

x2y2




4×1

= reduciblevectorspace =




A1×1

B1×1


C

D




2×2




Direct product of S3 group representation

Γ(e) = e ⊗ e =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, Γ(a) = a ⊗ a =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




,

Γ(b) = b⊗b =




1
4

√
3

4

√
3

4
3
4

√
3

4 −1
4

3
4 −

√
3

4
√

3
4

3
4 −1

4 −
√

3
4

3
4 −

√
3

4 −
√

3
4

1
4




, Γ(ab) = ab⊗ab =




1
4

√
3

4

√
3

4
3
4

−
√

3
4

1
4 −3

4

√
3

4

−
√

3
4 −3

4
1
4

√
3

4
3
4 −

√
3

4 −
√

3
4

1
4




,

Γ(ba) = ba⊗ba =




1
4 −

√
3

4 −
√

3
4

3
4

√
3

4
1
4 −3

4 −
√

3
4

√
3

4 −3
4

1
4 −

√
3

4
3
4

√
3

4

√
3

4
1
4




, Γ(bab) = bab⊗bab =




1
4 −

√
3

4 −
√

3
4

3
4

−
√

3
4 −1

4
3
4

√
3

4

−
√

3
4

3
4 −1

4

√
3

4
3
4

√
3

4

√
3

4
1
4




,

Projection matrices for S3 irreducible representation

Pχα = lχα

|G|
�

g∈G

χΓα(g)Γ(g) (3.5)

here, lχα and |G|is order 6.

S3 Group 10



Pχα




x1y1

x1y2

x2y1

x2y2




=




A1×1

B1×1


C

D




2×2




Pχ1 = 1
6[Γ(e) + Γ(ab) + Γ(ba) + Γ(a) + Γ(b) + Γ(bab)] (3.6)

Pχ1 = 1
6




3 0 0 3

0 0 0 0

0 0 0 0

3 0 0 3




=




1
2 0 0 1

2

0 0 0 0

0 0 0 0
1
2 0 0 1

2




Pχ1




x1y1

x1y2

x2y1

x2y2




=




1
2 0 0 1

2

0 0 0 0

0 0 0 0
1
2 0 0 1

2







x1y1

x1y2

x2y1

x2y2




=




x1y1
2 + x2y2

2

0

0
x1y1

2 + x2y2
2




1 = (x1y1 + x2y2) linear combination.

Similarly,

Pχ1� = 1
6[Γ(e) + Γ(ab) + Γ(ba) − Γ(a) − Γ(b) − Γ(bab)] (3.7)

Pχ1� = 1
6




0 0 0 0

0 3 −3 0

0 −3 3 0

0 0 0 0




=




0 0 0 0

0 1
2 −1

2 0

0 −1
2

1
2 0

0 0 0 0
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Pχ1�




x1y1

x1y2

x2y1

x2y2




=




0 0 0 0

0 1
2 −1

2 0

0 −1
2

1
2 0

0 0 0 0







x1y1

x1y2

x2y1

x2y2




=




0
x1y2

2 − x2y1
2

−x1y2
2 + x2y1

2

0




1�= (x1y2 − x2y1) linear combination.

and

Pχ2 = 1
6[2Γ(e) − Γ(ab) − Γ(ba)] (3.8)

Pχ2 = 1
6




3 0 0 −3

0 3 3 0

0 3 3 0

−3 0 0 3




=




1
2 0 0 −1

2

0 1
2

1
2 0

0 1
2

1
2 0

−1
2 0 0 1

2




Pχ2




x1y1

x1y2

x2y1

x2y2




=




1
2 0 0 −1

2

0 1
2

1
2 0

0 1
2

1
2 0

−1
2 0 0 1

2







x1y1

x1y2

x2y1

x2y2




=




x1y1
2 − x2y2

2
x1y2

2 + x2y1
2

x1y2
2 + x2y1

2

−x1y1
2 + x2y2

2




2=




x2y2 − x1y1

x1y2 + x2y1


 linear combination.

1. Tensor products of two doublets (x1, x2) (y1, y2)

The linear combinations corresponding singlets and doublet

1: x1y1 + x2y2 , 1� : x1y2 − x2y1

and

S3 Group 12



2 :




x2y2 − x1y1

x1y2 + x2y1







x1

x2


⊗




y1

y2


 = (x1y1 + x2y2) ⊕(x1y2 − x2y1) ⊕




x2y2 − x1y1

x1y2 + x2y1




2 ⊗ 2 = 1 ⊕ 1� ⊕ 2

2. Tensor products of singlet (y) and doublet (x1, x2)

(y)1� ⊗




x1

x2




2

=




−yx2

yx1




1� ⊗ 2 = 2

3.Tensor products of singlet (x) and (y)

(x)1� ⊗ (y)1� = (xy)1

1� ⊗ 1� = 1

, and

1 ⊗ any = any

S3 Group 13



Chapter 4

A4 Group

A4Group:

A4 is the group of even permutations of four objects and it has 12 elements divided

into four irreducible representation, namely, three singlets 1, 1’, 1" and one triplet 3.

The orthogonality relation
�

α

[χα(C1]2 =
�

α

mnn2 = m1 + 4m2 + 9m3 + · · · = 12 (4.1)

and
�

n

mn = 4

where mn ≥ 0, then (m1, m2, m3) = (3, 0, 1).Thus, irreducible representation of A4

include three singlets 1, 1’ 1" and a triplet 3.

Character Table of S3 representations

Conjugacy class Order χ1 χ1� χ1” χ3
C1 1 1 1 1 3
C3 2 1 1 1 -1
C4 3 1 ω ω2 0
C4� 3 1 ω2 ω 0

Table 4.1: Character table of A4

14



4.0.1 Tensor Products of A4

Tensor products of irreducible representation for A4. Three one-dimensional repres-

entation denoted by 1, 1’ and, 1", and one three-dimensional representation denoted

by 3. Then,

(1.) First, the alternating group A4 can be defined in terms of two generators S, T

satisfying the representation rules.

S2 = T 3 = (ST )3 = 1

S =




1 0 0

0 −1 0

0 0 −1




, T =




0 1 0

0 0 1

1 0 0




Conjugacy classes

C1 : e

C3 : S, TST 2, T 2ST

C4 : T, TS, ST, STS

C �
4 : T 2, ST 2, T 2S, TST

A4 Group 15



4.0.2 Matrix representation of A4

e =




1 0 0

0 1 0

0 0 1




, S =




1 0 0

0 −1 0

0 0 −1




, tst2 =




−1 0 0

0 −1 0

0 0 1




, t2St =




−1 0 0

0 1 0

0 0 −1




, t =




0 1 0

0 0 1

1 0 0




, tS =




0 −1 0

0 0 −1

1 0 0




, St =




0 1 0

0 0 −1

−1 0 0




, StS =




0 −1 0

0 0 1

−1 0 0




, t2 =




0 0 1

1 0 0

0 1 0




, St2 =




0 0 1

−1 0 0

0 −1 0




, t2S =




0 0 −1

1 0 0

0 −1 0




, tSt =




0 0 −1

−1 0 0

0 1 0




Tensor products of irreducible representions.

Γlα×lα
α(g) ⊗ Γlβ×lβ

β(g) = Γlαlβ×lαlβ
red.(g) = ⊕aαΓα (4.2)

Tensor products of two triplets (a1, a2, a3), (b1, b2, b3)

D3×3
α(g) ⊗ D3×3

β(g) = D9×9
red.(g) (4.3)




a1

a2

a3




3×1

⊗




b1

b2

b3




3×1

=




a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3




9×1

= reducible vector space =




A1

B1�

C1”


D

E

F




3s


G

H

I




3a




9×1

A4 Group 16



Direct product of A4 group representation

Γ(e) = e ⊗ e =




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1




9×9

Γ(s) = s ⊗ s =




1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1




9×9

Similarly,

Γ(tst2), Γ(t2st), Γ(t), Γ(ts), Γ(st), Γ(t2), Γ(st2), Γ(t2s), Γ(tst), Γ(sts)

,

Projection matrices for A4 irreducible representation

Pχα = lχα

|G|
�

g∈G

χΓα(g)Γ(g) (4.4)
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here, lχα is dim. and |G|is order 12.

Pχ1 = 1
12[Γ(e)+Γ(s)+Γ(tst2)+Γ(t2st)+Γ(t)+Γ(ts)+Γ(st)+Γ(sts)+Γ(t2)+Γ(st2)+Γ(t2s)+Γ(tst)]

(4.5)

Pχ1 = 1
12




4 0 0 0 4 0 0 0 4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

4 0 0 0 4 0 0 0 4

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

4 0 0 0 4 0 0 0 4




=




1
3 0 0 0 1

3 0 0 0 1
3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3 0 0 0 1

3 0 0 0 1
3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3 0 0 0 1

3 0 0 0 1
3




Pχ1




a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3




=




1
3 0 0 0 1

3 0 0 0 1
3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3 0 0 0 1

3 0 0 0 1
3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3 0 0 0 1

3 0 0 0 1
3







a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3




=




1
3a1b1 + 1

3a2b2 + 1
3a3b3

0

0

0
1
3a1b1 + 1

3a2b2 + 1
3a3b3

0

0

0
1
3a1b1 + 1

3a2b2 + 1
3a3b3




1= (a1b1 + a2b2 + a3b3) linear combination.

Pχ1� = 1
12[Γ(e) + Γ(s) + Γ(tst2) + Γ(t2st) + ωΓ(t) + ωΓ(ts)

+ ωΓ(st) + ωΓ(sts) + ω2Γ(t2) + ω2Γ(st2) + ω2Γ(t2s) + ω2Γ(tst)] (4.6)
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Pχ1� = 1
12




4 0 0 0 4ω 0 0 0 4ω2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

4ω2 0 0 0 4 0 0 0 4ω

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

4ω 0 0 0 4ω2 0 0 0 4




=




1
3 0 0 0 1

3ω 0 0 0 1
3ω2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3ω2 0 0 0 1

3 0 0 0 1
3ω

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3ω 0 0 0 1

3ω2 0 0 0 1
3




Pχ1�




a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3




=




1
3 0 0 0 1

3ω 0 0 0 1
3ω2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3ω2 0 0 0 1

3 0 0 0 1
3ω

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3ω 0 0 0 1

3ω2 0 0 0 1
3







a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3




=




1
3a1b1 + 1

3ωa2b2 + 1
3ω2a3b3

0

0

0
1
3ω2a1b1 + 1

3a2b2 + 1
3ωa3b3

0

0

0
1
3ωa1b1 + 1

3ω2a2b2 + 1
3a3b3




1�= (a1b1 + ω2a2b2 + ωa3b3) linear combination.

Pχ1” = 1
12[Γ(e) + Γ(s) + Γ(tst2) + Γ(t2st) + ω2Γ(t)

+ ω2Γ(ts) + ω2Γ(st) + ω2Γ(sts) + ωΓ(t2)

+ ωΓ(st2) + ωΓ(t2s) + ωΓ(tst)] (4.7)
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Pχ1” = 1
12




4 0 0 0 4ω2 0 0 0 4ω

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

4ω 0 0 0 4 0 0 0 4ω2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

4ω2 0 0 0 4ω 0 0 0 4




=




1
3 0 0 0 1

3ω2 0 0 0 1
3ω

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3ω 0 0 0 1

3 0 0 0 1
3ω2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3ω2 0 0 0 1

3ω 0 0 0 1
3




Pχ1”




a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3




=




1
3 0 0 0 1

3ω2 0 0 0 1
3ω

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3ω 0 0 0 1

3 0 0 0 1
3ω2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1
3ω2 0 0 0 1

3ω 0 0 0 1
3







a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3




=




1
3a1b1 + 1

3ω2a2b2 + 1
3ωa3b3

0

0

0
1
3ωa1b1 + 1

3a2b2 + 1
3ω2a3b3

0

0

0
1
3ω2a1b1 + 1

3ωa2b2 + 1
3a3b3




1”= (a1b1 + ωa2b2 + ω2a3b3) linear combination.

Pχ3 = 3
12[3Γ(e) − Γ(s) − Γ(tst2) − Γ(t2st)] (4.8)
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Pχ3 = 1
4




0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0

0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 0




=




0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0




Pχ3




a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3




=




0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0







a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

a3b1

a3b2

a3b3




=




0

a1b2

a1b3

a2b1

0

a2b3

a3b1

a3b2

0







0

a1b2

a1b3

a2b1

0

a2b3

a3b1

a3b2

0




=




D

E

F




3s

=




a2b3 + a3b2

a3b1 + a1b3

a1b2 + a2b1




3s

,
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0

a1b2

a1b3

a2b1

0

a2b3

a3b1

a3b2

0




=




G

H

I




3a

=




a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1




3a

1. Tensor products of two triplets (a1, a2, a3) (b1, b2, b3)

The linear combinations corresponding singlets and triplet

1: a1b1 + a2b2 + a3b3 , 1� : a1b1+ω2a2b2+ωa3b3 ,1” : a1b1+ωa2b2+ω2a3b3

and

3s :




a2b3 + a3b2

a3b1 + a1b3

a1b2 + a2b1




, 3a :




a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1
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a1

a2

a3




⊗




b1

b2

b3




= (a1b1+a2b2+a3b3) ⊕( a1b1+ω2a2b2+ωa3b3) ⊕(a1b1+ωa2b2+ω2a3b3)⊕




a2b3 + a3b2

a3b1 + a1b3

a1b2 + a2b1




⊕




a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1




3 ⊗ 3 = 1 ⊕ 1� ⊕ 1” ⊕ 3s ⊕ 3a

2. Tensor products of singlet (a) and triplet (b1, b2, b3)

1� ⊗ 3 = 3

and

1” ⊗ 3 = 3

3.Tensor products of singlet (a) and (b)

1 ⊗ 1 = 1

,

1� ⊗ 1” = 1

and

1 ⊗ any = any

(2.) Another two generators s ,t satisfying the alternating group A4 representation

rules,

s2 = t3 = (st)3 = 1
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s = 1
3




−1 2 2

2 −1 2

2 2 −1




, t =




1 0 0

0 ω2 0

0 0 ω




Conjugacy classes

C1 : e

C3 : s, tst2, t2st

C4 : t, ts, st, sts

C �
4 : t2, st2, t2s, tst

Then representation matrix A4

e =




1 0 0

0 1 0

0 0 1




, s = 1
3




−1 2 2

2 −1 2

2 2 −1




, tst2 = 1
3




−1 2ω 2ω2

2ω2 −1 2ω

2ω 2ω2 −1




,t2st =

1
3




−1 2ω2 2ω2

2ω −1 2ω2

2ω 2ω −1




, t =




1 0 0

0 ω2 0

0 0 ω




, ts = 1
3




−1 2 2

2ω2 −ω2 2ω2

2ω 2ω −ω




,st = 1
3




−1 2ω2 2ω

2 −ω2 2ω

2 2ω2 −ω




,

sts = 1
3




−1 2ω 2ω2

2ω −ω2 2

2ω2 2 −ω




,t2 = 1
3




1 0 0

0 ω 0

0 0 ω2




, st2 = 1
3




−1 2ω 2ω2

2 −ω 2ω2

2 2ω −ω2




, t2s =

1
3




−1 2 2

2ω −ω 2ω

2ω2 2ω2 −ω2




, tst = 1
3




−1 2ω2 2ω

2ω2 −ω 2

2ω 2 −ω2




,

Tensor product of A4:

tensor product of two triplet (α1, α2, α3) (β1, β2, β3)

Dα
3×3(g) ⊗ Dβ

3×3(g) = Dred.
9×9(g) = ⊗mαD(g) (4.9)
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α1

α2

α3




3×1

⊗




β1

β2

β3




3×1

=




α1β1

α1β2

α1β3

α2β1

α2β2

α2β3

α3β1

α3β2

α3β3




9×1

=




A1

B1�

C1”


D

E

F




3s


G

H

I




3a




9×1

Γ(e) = e ⊗ e =




1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1




9×9

,

Γ(s) = s ⊗ s = 1
9




1 −2 −2 −2 4 4 −2 4 4

−2 1 −2 4 −2 4 4 −2 4

−2 −2 1 4 4 −2 4 4 −2

−2 4 4 1 −2 −2 −2 4 4

4 −2 4 −2 1 −2 4 −2 4

4 4 −2 −2 −2 1 −2 4 4

−2 4 4 −2 4 4 1 −2 −2

4 −2 4 4 −2 4 −2 1 −2

−2 4 4 −2 4 4 −2 −2 1




9×9
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Similarly

Γ(tst2), Γ(t2st), Γ(t), Γ(ts), Γ(st), Γ(t2), Γ(st2), Γ(t2s), Γ(tst), Γ(sts)

,

Pχα = lχα

|G|
�

g∈G

χΓα(g)Γ(g) (4.10)

here, lχαisdim. and |G|is order 12.

Pχ1 = 1
12[Γ(e) + Γ(s) + Γ(tst2) + Γ(t2st) + Γ(t) + Γ(ts)

+ Γ(st) + Γ(sts) + Γ(t2) + Γ(st2) + Γ(t2s) + Γ(tst)] (4.11)

Pχ1� = 1
12[Γ(e) + Γ(s) + Γ(tst2) + Γ(t2st) + ωΓ(t) + ωΓ(ts)

+ ωΓ(st) + ωΓ(sts) + ω2Γ(t2) + ω2Γ(st2) + ω2Γ(t2s) + ω2Γ(tst)] (4.12)

Pχ1” = 1
12[Γ(e) + Γ(s) + Γ(tst2) + Γ(t2st) + ω2Γ(t) + ω2Γ(ts)

+ ω2Γ(st) + ω2Γ(sts) + ωΓ(t2) + ωΓ(st2) + ωΓ(t2s) + ωΓ(tst)] (4.13)

Pχ3 = 1
4[3Γ(e) − Γ(s) − Γ(tst2) − Γ(t2st)] (4.14)

1. Tensor products of two triplets (α1, α2, α3) (β1, β2, β3)

The linear combinations corresponding singlets and triplet

1: α1β1 + α2β3 + α3β2 , 1� : α3β3 + α1β2 + α2β1 ,1” : α2β2 + α3β1 + α1β3

and
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3s :




2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α3β1 − α1β3




3a :




α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3







α1

α2

α3




⊗




β1

β2

β3




= (α1β1 + α2β3 + α3β2)1 ⊕(α3β3 + α1β2 + α2β1)1� ⊕(α2β2 + α3β1 +

α1β3)1” ⊕




2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α3β1 − α1β3




⊕




α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3




3 ⊗ 3 = 1 ⊕ 1� ⊕ 1” ⊕ 3s ⊕ 3a

2. Tensor products of singlet (α) and triplet (β1, β2, β3)

(α)1� ⊗




β1

β2

β3




=




αβ3

αβ1

αβ2




1� ⊗ 3 = 3

and
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(α)1” ⊗




β1

β2

β3




=




αβ2

αβ3

αβ1




1” ⊗ 3 = 3

3.Tensor products of singlet (α) and (β)

(α)1� ⊗ (β)1” = (αβ)1

1� ⊗ 1” = 1

1 ⊗ any = any
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Chapter 5

Model with three Higgs doublets in

the triplet representation of A4

5.1 The potential of the three Higgs fields

The three Higgs doublets fields φi = (φ1, φ2, φ3) transform in a triplet representa-

tion of A4 symmetry,

3 :




φ1

φ2

φ3




Or products of the φi = (φ1, φ2, φ3) and φ†
i = (φ†

1, φ†
2, φ†

3) ,

φ† ⊗ φ = 1√
2

(φ†
3φ2 + φ†

2φ3, φ†
3φ1 + φ†

1φ3, φ†
1φ2 + φ†

2φ1) : 3s

+ 1√
2

(φ†
3φ2 − φ†

2φ3, φ†
3φ1 − φ†

1φ3, φ†
1φ2 − φ†

2φ1) : 3a

+ 1√
3

(φ†
1φ1 + φ†

2φ2 + φ†
3φ3) : 1

+ 1√
3

(φ†
1φ1 + ω2φ†

2φ2 + ωφ†
3φ3) : 1�

+ 1√
3

(φ†
1φ1 + ωφ†

2φ2 + ω2φ†
3φ3) : 1”

(5.1)
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Here ω = exp( 2ιπ
3 ), and s , a stand for the symmetric and anti-symmetric

triplet components.

The A4-symmetric 3HDM can be represented by the following potential[ Degee,

Ivanov and Keus, 2013]

V = −M0√
3

(φ†
1φ1 + φ†

2φ2 + φ†
3φ3) + Λ0

3 (φ†
1φ1 + φ†

2φ2 + φ†
3φ3)2

+ Λ3

3 [(φ†
1φ1)2 + (φ†

2φ2)2 + (φ†
3φ3)2 − (φ†

1φ1)(φ†
2φ2) − (φ†

2φ2)(φ†
3φ3) − (φ†

3φ3)(φ†
1φ1)]

+ Λ1[(Reφ†
1φ2)2 + (Reφ†

2φ3)2 + (Reφ†
3φ1)2]

+ Λ2[(Imφ†
1φ2)2 + (Imφ†

2φ3)2 + (Imφ†
3φ1)2]

+ Λ4[(Reφ†
1φ2)(Imφ†

1φ2) + (Reφ†
2φ3)(Imφ†

2φ3) + (Reφ†
3φ1)(Imφ†

3φ1)] (5.2)

Here parameters M0 and Λi are assumed to take generic values.

Degee, Ivanov, and Keus have introduced a geometrical procedure to minimize highly

symmetric scalar potentials, and solved the problem for a three Higgs doublet model

(3HDM) potential with an A4 or an S4 symmetry. And it is found that the possible

vev(vacuum expectation values) alignments for the A4 symmetric potential which

may correspond to a global minimum are[ Degee, Ivanov and Keus, 2013]

ν(1, 0, 0),

ν(1, 1, 1)

ν(1, η, η∗), with η = exp iπ/3,

ν(1, exp iα, 0), with any α. (5.3)

Possible representation of the left-handed quark doublets (QL), the right-handed up

quark singlets (uR), and the right-handed down quark singlets (dR), when the three

Higgs doublets are in a triplet representation 3.
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QL uR dR

3 3 3
3 3 three singlets
3 three singlets 3
3 three singlets three singlets

three singlets 3 3

Table 5.1: Possible representation of the left-handed quark doublets (QL), the right-
handed up quark singlets (uR), and the right-handed down quark singlets (dR), when
the three Higgs doublets are in a triplet representation 3

The notation "three singlets" stands for the following independent possibilities for

the fields in each of the three generations:

(1, 1, 1), (1, 1�, 1”), (1, 1, 1�), (1�, 1�, 1�), (1, 1�, 1�),

(1�, 1�, 1”), (1, 1, 1”), (1�, 1”, 1”), (1, 1”, 1”), (1”, 1”, 1”).

5.2 Yukawa Lagrangian terms and quark mass matrices

We are now ready to construct the Yukawa matrices for the various cases. As a

first example, let us consider the case φ∼3, (Q̄L1, Q̄L2, Q̄L3) ∼ (1, 1, 1�), dR ∼ 3 and

uR ∼ 3. We start with the down sector. Since Q̄L1 is in the 1 representation, it must

couple to the (φ ⊗ dR)1 combination from Eq.(5.1).The same is true for Q̄L2, with

an independent coefficient.

This leads to the Yukawa terms

α1Q̄L1[φ1dR1 + φ2dR2 + φ3dR3] + α2Q̄L2[φ1dR1 + φ2dR2 + φ3dR3] (5.4)

Since Q̄L3 is in the 1� representation, we can only obtain a singlet with the 1”

combination (φ ⊗ dR)1” in Eq.(5.1) . This leads to the Yukawa term
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α3Q̄L3[φ1dR1 + ωφ2dR2 + ω2φ3dR3] (5.5)

Once the fields φi are substituted by the vevs νi, these terms give the down-type

quark mass matrix, Md

Md =




α1ν1 α1ν2 α1ν3

α2ν1 α2ν2 α2ν3

α3ν1 ωα3ν2 ω2α3ν3




, with arbitrary complex constants αi.

The up-quark Yukawa terms

β1Q̄L1[φ1uR1+φ2uR2+φ3uR3]+β2Q̄L2[φ1uR1+φ2uR2+φ3uR3]+β3Q̄L3[φ1uR1+ωφ2uR2+ω2φ3uR3]

(5.6)

A similar analysis of the up-type quark mass matrix, Mu

Mu =




β1ν
∗
1 β1ν

∗
2 β1ν

∗
3

β2ν
∗
1 β2ν

∗
2 β2ν

∗
3

β3ν
∗
1 ωβ3ν

∗
2 ω2β3ν

∗
3




, where βi are arbitrary complex constants.

We define the Hermitian matrices

Hd = MdMd
†, Hu = MuMu

†, (5.7)

As a second example, let us consider the case φ ∼ 3, (Q̄L1, Q̄L2, Q̄L3) ∼ (1, 1�, 1”),

dR ∼ 3, and uR ∼ 3. We find Yukawa terms and quark mass matrix for down sector:

Model with three Higgs doublets in the triplet representation of A4 32



α1Q̄L1[φ1dR1 + φ2dR2 + φ3dR3] + α2Q̄L2[φ1dR1 + ωφ2dR2 + ω2φ3dR3]

+ α3Q̄L3[φ1dR1 + ω2φ2dR2 + ωφ3dR3] (5.8)

Md =




α1ν1 α1ν2 α1ν3

α2ν1 ωα2ν2 ω2α2ν3

α3ν1 ω2α3ν2 ωα3ν3




, with arbitrary complex constants αi.

And for up-type quark sector yields:

β1Q̄L1[φ1uR1 + φ2uR2 + φ3uR3] + β2Q̄L2[φ1uR1 + ωφ2uR2 + ω2φ3uR3]

+ β3Q̄L3[φ1uR1 + ω2φ2uR2 + ωφ3uR3] (5.9)

Mu =




β1ν
∗
1 β1ν

∗
2 β1ν

∗
3

β2ν
∗
1 ωβ2ν

∗
2 ω2β2ν

∗
3

β3ν
∗
1 ω2β3ν

∗
2 ωβ3ν

∗
3




, where βi are arbitrary complex constants.

If the Higgs potential is invariant under A4, it has been shown of Eq.(5.3) the possible

vev alignment ν(1, 1, 1) and ν(1, η, η∗) . In that case Md and Mu are digonalized,

Md.
1√
3




1 1 1

1 ω ω2

1 ω2 ω




=




α1 α1 α1

α2 ωα2 ω2α2

α3 ω2α3 ωα3




.
1√
3




1 1 1

1 ω ω2

1 ω2 ω




= 1√
3




3α1 0 0

0 3α2 0

0 0 3α3




(5.10)

and
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Mu.
1√
3




1 1 1

1 ω ω2

1 ω2 ω




=




β1 β1 β1

β2 ωβ2 ω2β2

β3 ω2β3 ωβ3




.
1√
3




1 1 1

1 ω ω2

1 ω2 ω




= 1√
3




3β1 0 0

0 3β2 0

0 0 3β3




(5.11)

Hd = MdMd
† = 3ν2




|α1|2 0 0

0 |α2|2 0

0 0 |α3|2




, (5.12)

Hu = Hu = MuMu
† = 3ν2




|β1|2 0 0

0 |β2|2 0

0 0 |β3|2




, (5.13)

meaning that, in these cases, all quark masses are non-vanishing and non-degenerate.

Requiring non-vanishing quark by itself, restricts the representations of QL; uR; dR

to the five possibilities s; 3; 3, 3; s; s, 3; s; 3, 3; 3; s, and 3; 3; 3, where s stands for

(1, 1�, 1”), with the vevs restricted to ν(1, 1, 1) or ν(1, η, η∗).
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Chapter 6

Conclusions

We have studied the possibility of generating the quark masses in the context of

three Higgs doublet models extended by discrete A4 symmetry. Assuming that the

Higgs fields are in the triplet representation of the discrete group. We show that

none of the feasible vev alignments that correspond to a global minimum of the

scalar potential leads to phenomenologically feasible mass matrices for the Standard

Model’s three generations of quarks.
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