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Abstract

A well-known way to study clusters of galaxies is the Inverse-Comptonization of Cosmic Microwave
Background(CMB) photons by Intra-Cluster medium(ICM), popularly known as Sunyaev-Zel’dovich
effect(SZE). For hot ICM gas, relativistic effects must be taken into account. In this work, we have used
SZpack!, a numerical library takes into account of these effects and allows high-speed and accurate
calculations of SZ signals(0.001% at frequencies~1000GHz) up to high temperatures(>75KeV). We
have simulated SZ flux maps of galaxy clusters with a given morphology of thermal electron population
and temperature, in order to compare them with actual observations made in cm-wave range using the
current generation of radio telescopes. The combination of these simulations and observed data will
allow the mapping of pressure in the ICM, which is especially useful for studying the dynamics of

cluster mergers

lwww.jb.man/SZpack


http://www.jb.man.ac.uk/~jchluba/Science/SZpack/SZpack.html
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Chapter 1
Introduction

The possibility of distortion(spectral and spatial) in the most energetic planckian radiation field(Cosmic
Microwave Background) aroused ever since the discovery of the radiation by .The
comptonization of these CMB photons by hot electron in ICM called Sunyaev-Zel’dovich effect
which is complementary to the X-Ray studies of the cluster of galaxies provides a unique and
independent cosmological probe.Calculations of this distortion by hot ICM plasma were first
calculated years ago ( ).The theory and significance of this process were
extensively discussed in , , and

more recently by

1.1 Motivation:SZ effect as a tool to probe cluster physics

Galaxy cluster being the largest stuctures present in the observable universe provides important
constraints on the cosmological parameters such as Hubble’s constant and that is why it is of
cosmological interest in studying these structures.

The integrated thermal pressure can be directly obtained from SZ signals of galaxy clusters(% oc
f n.T.dl), hence it serves as a critical tool to probe cluster and IC plasma physics.

Since SZ distortion is not a function of red-shift therefore it renders it as a critical tool in probing
ICM gas dynamics at high red-shift cosmos where along with X-Ray studies,ICM gas parameters

and the integrated pressure profile can be constrained.

1



1.2 Thesis Organization

In chapter 2, a review of how to calculate SZ distortions produced by a thermal population of
electrons is given and concluded with simulation of thermal SZ intensity maps for various cluster
types; chapter 3 will discuss the non-thermal SZ effect and its importance concluding with the
mixing of different SZ effects and its effect on total SZ signal. In chapter 4, we will demonstrate the
use of SZpack by redoing the analysis done by and also we will prepare
non-thermal SZ maps at different frequencies that can be used for parameter estimation just as in
the case of the thermal SZ effect. In chapter 5, the application of simulations done so far,to bullet
cluster, is concluded by preparing the thermal SZ distortion map for bullet cluster and comparing

it with the actual interferometric observation of thermal SZ across the bullet cluster shock.



Chapter 2

Thermal and Kinetic SZ Effect

2.1 Physics of the SZ Effect

The CMB photons when passes through the hot dense plasma that is found in the clusters of galaxies
gets scattered and gains or loses energy in the line of sight of the cluster,this can be easily understood
realizing that in the frame of reference of CMB when electron are at rest they produces no net effect,
as the photon number is conserved. However, when electron are moving they can transfer some
of their energy to the CMB photons and thereby changing the whole spectrum. Therefore the it
is the distribution of electrons that governs the outgoing spectrum of CMB photons imparting the

distortion that varies with frequency.

2.1.1 Thermal SZ Effect

When the dynamics of electrons is described by an isotropic (relativistic) Maxwell-Boltzmann
distribution(thermal electrons),and photons gets up-scattered by these thermal electrons this gives
rise to the so-called thermal SZ (tSZ) effect.

2.1.2 The kinetic SZ effect (kSZ)

When the cluster moves as a whole with a bulk velocity with respect to the CMB rest frame,it
will see a natural dipole term for the scattered CMB radiation as first deduced by

, this dipole term produces is what is defined as kinetic SZ effect that purely
depends upon whether there is an angle between cluster’s bulk velocity and the CMB frame.Using
relativistic transformation,see the distortion due to this bulk

motion of cluster can be obtained.
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Figure 2.2: Figure from Mroczkowski et al. 2019 showing the up-scattering of incoming photon

when it interacts with hot plasma electron characterized by a bulk velocity

2.2 Representation of thermal SZ signals

Athigh temperature plasma dynamics of ICM gas it is important to represent SZ signals accurately as

earlier concluded and approached by (Rephaeli 1995b;Challinor et al. 1998;Itoh et al. 1998;5azonov
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using a Taylor series approximation.However at cluster bulk velocities as high as
(v =~ 1000Kms~") and temperature greater than kTe > 10keV the Taylor series approximation fails
and to solve this problem a new approach was developed in and

that we discuss briefly.

2.2.1 Computing the SZ signal for hot and fast moving galaxy clusters

In this work we use the formulation developed in in which the
disentanglement between frequency dependent function and spatial function that decides the SZ
distortion is done and applied in the form of SZpack library that can run on a standard laptop to
calculate the distortion in a few seconds.

SZpack allows fast and precise computation of the SZ signal for hot, moving clusters of galaxies.

The signal can defined using line of sight temperature and velocity moment described as below:

yo) = f&é‘” dr, b(()k) = fﬁg@é‘ dr

2.1)
b = [ BePy (ue) 65 dr, b = [ B2Ps (ue) 6F dr

Where y(¥) is now the generalised compton-y parameter that dictates the thermal SZ, 6, is the
temperature,P; and P, are Legendre polynomial, u. and dt are are cluster velocity and optical
depth along line of sight respectively.Now we can write full relativistically correct SZE as a simple

multiplication of the set of these moment with the spectral functions.

tSZ(AD) = F +m 2.2)

where m is the set of spatial function in 2.1 and F is the spectral function. This formulation
takes care of the kinematic signals as well, as shown in fig. 2.3 Calculation in SZpack are done
by neglecting polarization effects and in single scatterring approximation with a Maxwell-Jiittner

distribution of electrons.
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Figure 2.3: Figure from showing the kinematic distortions with cluster
temperature 6, = 0.05,bulk velocity S, = 0.01 and direction u. = 1,0, noting the higher order
kinematic effect than just the dipole term.

2.2.2 SZ signals for continuous temperature and electron population profiles

As described in we can estimate SZ signals for electron density and
temperature that varies smoothly by expanding the moments around some average velocity , optical
depth and average temperature.

By defining To57(9) = (mec?/k) y©/y"D = 77! [ T.dr and for velocity components S| =

Beue and Be . = B {\/ 1- /ch} of the moving volume element,
we can similarly define

Bejsz =7 /,Bc7||d‘1' and since the SZ signal is only sensitive to 82, , = 7! f,Bg’L dr, but not

Be.1 sz directly.
Expanding around 7, Te;, B¢ 52> and B¢ 1 s, = 0, the mean SZ signal takes the form

6



S~ 8045200 4 cVg®y p2y W L D2y (23)

1S0 180 1S0

Where the signal vectors and dispersion variables are

k
CI(SO) (ktm!)~ lgel:{ Szage szaﬁc,u,szSiSO (T’ Te sz, IBC,II,SZ, IBC,J_,SZ)
k
Dl(go) (k)™ 13}; I stlso (T, Te,SZ, ﬁc,II,SZ, ﬁc,J_,SZ)
k
EY) = (k1) '05. | Siso (7. Te sz, Bel sz Be.1.57) 2.4)

Pt / (Be.l —,3c,||,sz)k+1 dr
1
(k) = (TkSZT) / (Te - Tc,SZ)k (ﬁc,II - IBC,H,SZ) dr

This boils down the paramter estimation problem for SZ signals to constraining the set of parameters

that descibes the ICM gas , these parameters are p = (T, Tesz, B sz, 0, oW kW, g2 SZ).

2.2.3 SZ signal for a two-temperature plasma

A two-temperature plasma model for cluster can be described as follows:

If we have plasma at two different temperature in separate region of space in cluster atmosphere
then we can take temperature in one region to be 7, 1 = 7T, and a high temperature region to be at
T,, =T,(1+A), where A is temperature difference in these region.

Then we can specify separate optical depths as well as, 7 = 7(1 — f;) and 75 = f; * T, where 7 is
the total optical depth.And we can now define average SZ weighted temperature and the deviations

in temperatures as,

Te,SZ =T (1 + fTA)

1-f;)A?
w® = fT—EHf)Az (2.5)

) _ p U=f)(1-2fr)A°
W= =

Later we will use this model in constraining these parameters and if they non-zero that would

suggest the plasma present in cluster contains two temperature.

2.3 Impact of bandwidth on SZ spectrum

As formulated in the effect of frequency resolution can be calculated
if we define the average frequency ¥ and dispersion o2 = x2 — &2 over the filter, to lowest order we
have ,S ~ Si (X) + %(’)%Siso (X)o2. In figure 2.5 we show the first and second order derivatives w.r.t

frequency ,



104 ... second order derivative w.r.t frequency, d*5/dv?
first order derivative w.r.t frequency,ds/dv
051 .-10Kev-soKev
o
\ ]
DG | '""’"””""“'r'r‘rrrr‘.llI""'II..."I'-“"‘“'-
I
5
8
A
= 05
-1.0 -
_]_5 i
[}I.I 1 D.IE- 1 IIl] lﬂl.ﬂ- 3Dl.f.]
X =hwv/KTa

Figure 2.4: First and second derivatives w.r.t frequency , where the second order derivative

represents the correction term that arises due to frequency resolution.(cf.,

)

2.4 Results:

2.4.1 Simulation of thermal SZ signals for different cluster models
Here we demonstrate the use of SZpack for simulating SZ maps given some electron density profile
and temperature profile.In reality these profile can be obtained by fitting X-Ray observations with

models.And usually what is done is a complimentary X-Ray and SZ study of galaxy clusters.

2.4.2 SZ signal for isothermal clusters

Model:

We use the simple isothermal- S-model( ) for modelling of temperature profile
and electron density profile that then we can integrate to obtain a map of thermal optical depth
map, this optical depth map and temperature then defines our observational parameters that will go

in SZpack functions to calculate the distorted radiation in MJy/Sr.

] -38/2

Ne = Nep [1 + (r/rc)2 and T = const (2.6)

8



For a typical cluster e.g.Coma like cluster ,using N o ~ 1073 cm™3 as the central density of electron
profile and for cluster core radius using r. ~ 100kpc ,and 8 =~ 2/3. Here we are assuming that
cluster does not have any bulk velocity therefore the SZ morphology will be entirely depend upon
optical depth(7 (7)) and temperature map given.

Simulation results:

Here we make projections by integrating the electron density in small region of space and thereby
obtain the corresponding compton-y and prepare the SZ projections in these regions to get the final

results as shown in figures below.
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Figure 2.5: Projection of electron Figure 2.6: Projection of Compton-y according
density according to Isothermal S-model to Isothermal S-model.

Using a constant temperature of 7, = 14K eV for iso-thermal cluster SZ maps are obtained as shown
in 2.7
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Figure 2.7: Projection of SZ intensity(Al) in Mly at two different frequencies for 7, = 14KeV

In figure 3.3 the frequency used is such that at which SZ signal peaks which remains a constant

since for constant temperature peak signal remains the same.

2.4.3 SZ signal for non-isothermal cluster

For such cluster we have used the same variation of temperature as the isothermal -model to
illustrate that such projections can be made where the temperature varies.

From the expression 2.1 we can easily notice that the cluster morphology depends upon temperature
and as soon as it is not a constant it cannot be taken out of the integral for generalized Compton-y ,
and here we show this fact by simulating SZ maps for a given spatial varying temperature map,as
we show in simulations below.

each small regions of space the temperature is calculated assuming it follows the same isothermal
B-model variation.

In fig. 2.9 we have used electron density profile as same as above, however as the temperature
varies in each region of space the SZ signal varies and is calculated using SZpack for different
frequencies and the peak SZ signal is found for each such frequency in a particular region of space,

as we show in figures below.

10
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Chapter 3

Non-Thermal SZ Effect

We discussed and computed SZ maps assuming scattering from only single thermal population
of electrons in the cluster environment, however the real situation is far more complicated and
what we have is a mixture of different electron population. Due to scattering from the convoluted
thermal and non-thermal population, what we get is the contamination in the thermal SZ effect.In
general due to scattering from this convoluted distribution of electron population it is challenging
to disentangle these effects from the total SZ intensity map without certain approximations see
3.2.The non-thermal SZ(ntSZ) signals provides us with a way to probe the cluster dynamics related
to high energy phenomenons like shocks,cluster merger events,AGN etc., that are proposed to be
responsible for non-thermal injection of electrons see for a review of non-thermal
emission in clusters of galaxies.For the origin and physics of these non-thermal electron population
injection that impacts large scale structure formation see , and
references therein.
An excellent example of a merging system is the bullet clusters of galaxies,for which if non-thermal
pressure support was not accounted in Magneto-Hydrodynamic(MHD) simulation study by

, it lead to minor inconsistencies in X-Ray observations but huge discrepancy between SZ
observations and simulated model(3.1), making it a prefect verified source of non-thermal electron

population in the cluster atmosphere and to conduct such SZ simulation studies.

12
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Figure 3.1: Impact of non-thermal pressure on total SZ in Bullet cluster ,image from Lage et al.
2014

While theoretical progress has been made in computing the ntSZ accurately (e.g.,Colafrancesco
et al. 2002,Palladino et al. 2002) the observational aspects have been quite challenging; for the first

unambiguous detection of ntSZ in a radio galaxy jet/lobe see Malu et al. 2017.

We will now calculate ntSZ signals for a non-thermal electron distribution defined by a single power
law which is the characteristic of synchrotron energy spectrum.The energetics of this spectrum is
determined by a natural low energy cut-off called p,,;, (O Dell et al. 1970,Malu et al. 2017).By
preparing ntSZ maps at different frequencies the non-thermal pressure profile and p,,;, can be
inferred and constrained more accurately when compared with the observations.Such an inference
on integrated pressure profile and p,,;,, which is directly related to magnetic fields in the ICM of
galaxy clusters, will help in more accurate description and origin of such magnetic fields at high
red-shifts (see, Govoni and Feretti 2004 for a review on cluster magnetic fields,Govoni, Murgia,
et al. 2006 for a specific example on Abell 2255).We will conclude with the simulations of total SZ
maps assuming the linear combination model for thermal and non-thermal contributions in single

scattering approximation.

3.1 Exact Total SZ Effect

In general situation is complex as discussed in the beginning of the chapter and eq.3.14 no longer

approximates the total signal well. The probability that a CMB photons gets scattered by, with a

13



frequency shift s = log(%’) is given by ,

P = [ dpfp)Pisip) G.)
0
Py (s; p) is defined in eq.3.6 Then,the spectrum of scattered CMB photons is then given by,
+00
I(x) = / dsly (xe™) P(s) (3.2)

3
Where,lp(x) = 2(1223)2) effil is the incident spectrum of photons,and x = hv/KTcyp is the

dimensionless frequency parameter.

The probability P;,,(s) of scattering from a mix population of electron is given by the convolution

of the respective probability functions in eq. 3.1 as( ),
Pror(s) = Pa(s) ® Pp(s). (3.3)

The exact spectral distortion produced by two electron populations on the CMB radiation is given
by:
+00
fa = [ I 5™ P 51 (34)

3.2 Approximation of Non-Thermal SZ distortion

Distortion in CMB intensity due to a normalised electron distribution f(p), where p is the

dimensionless electron momentum(i.e,. p = ppuys/mec) in first order in optical depth can

represented as( ),
; oo 5 sm(p)
Al, ~ Iyx Trelf f(p)p dp/ P(s, p) [npp (xe’) — npp(x)] ds (3.5)
0 —sm(p)
Where np, = 1/(e* — 1),and maximal logarithmic energy shift ,s,,(p) = In[(1 + 8)/(1 — B)] with
B(p) = p//1+ p%.The scattering kernel,P(s,p), is given by(e.g, )
_ 3] edte’) [342p? _ 3+3p%+p?
P(s,p) = 3{ ‘ps 2p (Is] = sm) + W ] (3.6)
L 14+ (104897 +4p*) ¢ + ]|
We will use single power law distribution for f(p) i.e.,
(@—-1) iy
feret(PiP1,p2) = Ta  1-a ! 3.7
1 P2
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Where p; < p < p> and « is spectral index and can be found from radio halo studies of galaxy
clusters for e.g see , , .And throughout this
work we will take @ = 2.5 which is consistent with synchrotron-radio spectra of many clusters.

In eq. 3.5 we have replaced the optical depth with relativistic optical depth 7,.; which is related to

integrated non-thermal pressure as,

ar
rel = — o o+ Py dl 3.8
Trel <KBTe>/ ! (3.8)

Now the spatial features of ntSZ are captured by eq.3.8 Where the term < Kp7T, > is given
by( )

o0 1
< KpT, >= /O dpfe(p)ng(p)mec (3.9)

And for a single power law this term is evaluated to be,

2 p1
mec(a—1 a—-2 33—«

(kpTe) = % [B L (T, T) (3.10)

6 [p ]p2 |+P p2

And the frequency dependent term can written separately as,
3 o ) Sm(p)
g0 =10 [ 1ot ap [P e ) - malds 61D
0 —Sm(p

Therefore for single electron population there is a direct separation between frequency dependent
and spatially varying functions, however both these function are connected by the low energy
cut-off p,,;, for non-thermal distribution thereby allowing better constraints on it if the analysis
uses a two-dimensional approach.However instead of using the whole SZ map we can use the most
significant line of data realising cluster symmetry and reduce the dimensionality of the problem for
MCMC analysis and saving the computational cost.

For instance we have calculated the spatial term i.e integrated non-thermal pressure using a fitting

function that is red-shift and mass independent,given by ,

Prand (H=1-4 {1 +exp [_ (r/rzoom)y]} (3.12)

total B

Where P, ;4 is the non-thermal pressure and P01 = Pii + Prand, Pin = f ne(1)KgT,(l)dl is the

thermal pressure. Now the ntSZ distortion can be represented more conveniently as ,

Al = Tpep + §(X) (3.13)
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3.3 Results:

Using eq. 3.12 we have first numerical calculated the integral by writing our own code in python
then this will be an input in accordance with eq.3.13, we separately then wrote codes for numerically
computing the spectral features defined by eq. 3.11 and calculated the non-thermal distortion profile
for A = 0.5,B = 0.8,y = 1.5 taking ry00,, = 150k pc as halo radius,throughout we will use the

same values for simulation of ntSZ.

200 1le-29 200 1le-29 _
150 8 150 B_%
v 2
100 7 100 1 =
& s
50 6% 50 4 5;
[~ E [~ a
< 0 = 2 o g
- 25 > 4%
50 = 50 1 E
-100 zg -100 - 2%
-150 ~150 - E
—200 —200 T T T T T T T ElE
—200 -150 -100 -50 o 50 100 150 200 —200 -150 -100 -50 o 50 100 150 200
x Kpc x Kpc
Figure 3.2: Integrated non-thermal pressure Figure 3.3: Calculation only in diagonally
using eq. 3.12 significant region

3.4 Impact of ntSZ on total SZ

Here we show the impact of ntSZ on total SZ both spectral and spatial. The entanglement of various

SZ effect can be clearly seen in fig. 3.4
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T=15KeV, Pmin =1, Prmax= 1000
GHz

5 28 56 568 1704
0104 ... ntSZ using the integral
----- thSZ using 5Zpack
0ongq k5Z using SZpack
0.06
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5 002
0.00
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—0.04
-0.06
01 05 10 o0 e
X =K T cpes

Figure 3.4: Spectral features of ntSZ (by plotting g(x)), thSZ and kSZ, each effect is multiplied by

a certain factor to match the magnitude for comparison.

From fig.3.4 we can also see that a multi-wavelength study of SZ effect is necessary to filter these
various components out from the total effect.
Assuming the electron density and temperature maps from X-Ray observations we have compared

the thSZ map and ntSZ map as shown below.

1e-28 1e-39
200 = 0.00 200 &
6
150 —0.25 150
100 050 100 3
] L}
- e
o] [l
50 -0.75 2 50 4s
= =
5 % I 8
b4 =3 o
- -1.00 2 z 3z
50 E 50 S
- ! ~
-125 8 7
= 2 =
-100 -100
-1.50
-150 -150 1
-1.75
-200 -200 . . T T T T T
-200 -150 -100 -50 0 50 200 -200 -150 -100 -50 O 50 100 150 200
% Kpc * Kpc

Figure 3.5: Thermal SZ map from simulated  Figure 3.6: ntSZ map at 170 GHz using same
X-ray data at 170GHz values of p;, A, B and y as in 4.4
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In fig.3.6 the thermal pressure and hence X-ray observations enter via equation 3.12 Using the
above we can prepare the total SZ map as a simple addition of these effects and check this simulated

data against the real observation to constrain the non-thermal parameters p, A, B and y
SZior = thSZ + ntSZ (3.14)

Using simulations of ntSZ at different frequencies we will show how we can infer the parameters

P1, A, B and y by simulating total SZ at different frequencies.
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Chapter 4
S7Z. parameter estimation

Here we demonstrates the use of SZ pack to estimate parameter using the model described in 3.0.3
and 3.0.4. Subsets of the model parameters {T, T. 57, w123 51.23) K(1’2’3),ﬁc,||,szaﬁ(2;J_ SZ} can

then be estimated from measurements of the SZ spectrum.

This estimations are done and suggested earlier in , here we use SZ
pack and MCMC ( ) to demonstrate the use of library in parameter
estimation.

We will conclude with how the non-thermal SZ parameters {p1, A, B, v} can be estimated assuming
a spectral index(a) from synchrotron studies of galaxy clusters and fitted electron density and

temperature maps from X-ray observations.

4.1 Data

We use SZ data compiled by , where observation frequency channels are 150,
275, 600, 857 GHz With mean intensity and errors A = 0.325 + 0.015,0.21 £ 0.077,0.268 + 0.031,0.097 + 0.016
We assume that 7 = 0.0138 + 0.0016 is known from ( ).

4.2 Models

4.2.1 Asymptotic Model:
Using the model used by Prokhorov described as below,

Al (kT.)

T go(x)

((*Te)*)
m3co

kT,)?
+g1(x>—<( 5 )4 ) +82(x) (4.1)
mgc

mec?
where go, g1 and g, are the functions of frequency that represents Taylor expansion by

.Calling the coeflicients of these spectral functions as w;, wy and w3, we take these as
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parameters for MCMC analysis.
The variation is temperature can be captured by estimating o> =< (KT,)> > — < KT, >2, by

fitting for the coefficients in 4.1 .

4.2.1.1 Results:

omega_l = 0.032333

omega_2 = 0.0UfS:SB 0.0020

|
|
|
|
| 0.0015

0.0010

1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
: 0.0005

omega_3 = 0.007333

Alfl,

1
1
1
: 0.0000
1

-0.0005

-0.0010

omega_1 omega_2 omega_3

Figure 4.1: Left: Posterior distribution for Prokhorov’s model after running the MCMC. Right:

Best fit according to Prokhorov’s model with 95 9% confidence interval shown.

* We find the variation in temperature to be(9.5 + 2.3) keV, that agrees with value of (9.5 +
2.6) keV reported by
* From X-Ray study by bullet cluster average temperature is reported to be
14.5 keV.Changing from moments defined above to temperature we have 7, = (12.9+0.5)KeV
and wV ~ 02/T? = (0.5 + 0.3)for this model.
However at high temperature we can see from figure 4.2 calculated with SZpack that this Taylor
series expansion approach breaks down and we cannot use this model.So this show that we can use

SZpack that can calculate these correction terms more accurately.
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Figure 4.2: Poor representation of SZ signals using asymptotic approach,similar to Prokhorov’s

model.

4.2.2 Two-Temperature Model:

Now we can redo the analyses by to apply the model in 2.2.3.
* Parameters to be inferred are some reference 7, a temperature difference AT , in the region

with second temperature?, + AT we take f; < 1.
* Now we can calculate SZ signals from these two different regions separately i.e one temperature

T, and second with 7, + AT using SZpack that calculates the relativistic corrections as well.

4.2.2.1 Results:

Here we find o = 0.8 + 0.5
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Figure 4.3: Left: Posterior distribution for model parameters for two-temperature model(cf.,
), on x-axis we have 7,f; and T,. Right: Best model fit for two-temperature

model.

4.3 Non-Thermal parameter estimation

Referring to equation 3.13 and eq.3.8 the spatial dependence of ntSZ can be calculated separately
and taking the calculation along the diagonal element will save computational cost for running

MCMC chain.We can write eq.3.13 more conveniently as,

Al = Trel(pmin, A, B, 7) * g(x;pmin) (42)

For example we have modelled 7,.; as shown below fixing p,,i,,A,B and vy as before.
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significant region

Now we have simulated the total SZ maps at different frequencies.
In fig.4.6 the complex features of SZ distortions are clearly seen when both the thermal and non-
thermal populations are present in the galaxy clusters.At some particular map parameters can be

constrained better, however that both depends upon the spatial and spectral variation of both effects.
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Chapter 5
Conclusions and Future Prospects

Here an SZ view of cluster gas physics is shown by, using an accurate description of SZ signals
implied in SZpack, by preparing SZ maps .Discussion about various cluster models suggests it will
be instrumental to study complex clusters with variable temperature and velocity moments.

Following that we prepared SZ maps using SZpack demonstrating its importance in studying cluster
morphology.The importance of ntSZ signals are discussed and a way to calculate them is presented

that will be fruitful in analysing the real observations.

5.1 Thermal SZ simulations of Bullet cluster:

Data:

Bullet Cluster is one of the most studied galaxy clusters. There have been several X-ray observations
of Buller Cluster from which the X-ray surface brightness map and high fidelity temperature maps
have been created (Dattaetal. 2021 (in prep.)). Here, we have used the same X-Ray temperature map
and fitted double-beta density profile from X-Ray surface brightness map. These two observable

are used as input to predict the resultant thermal SZ signal for Bullet cluster at different frequencies.

Double-beta model fit values (n ~ VSx)

No. Name Value error

1. B 1.71495 1.08524x107!
2. Fel 1.07368 5.70285x1072
3. red 2.96665 1.37319x107!
4. ratio 9.56276x107! 2.8816372

5. norm 1.78157x107% 3.18138x1076
6. const 4.23959x1076 1.56013x1077
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Figure 5.1: Temperature map from X-Ray observations
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Figure 5.2: Optical depth 7 from eq. 5.1
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In table 5.1 the data is fitted with the double beta model! given by as,

5\ (-3B+0.5) 5\ (-3B+0.5)
S(r) = norm (1 +(r/re1) ) + ratio (1 +(r/rea) ) +const  (5.1)
5.1.1 Simulated tSZ map:
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Figure 5.3: Simulated SZ signals for bullet cluster at frequencies from upper left to right 18,33,100
and 750 GHz respectively.

"Himanshu would like to thank Majidul Rahman for the fitting
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Note thatin fig.5.3 because of approximation used in obtaining optical depth, the SZ intensity is only
proportional to true distortion and these are not up to scale, however spectral and morphological
features of bullet cluster are clear.And this allow us to compare this simulation with real observation
of SZ distortions for e.g from Di Mascolo, Luca et al. 2019, and here we compare the same

interferometric observation with our simulated map.
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25 6hSEM21* 18° 15° 12
RA (J2000)

=100

o
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Figure 5.5: SZ observation of bullet
cluster from Di Mascolo, Luca et al.

2019 at 100GHz
Figure 5.4: SZ map at 100 GHz with X-Ray temp-

erature contours shown

The interferometric observations are taken with ALMA+ACA at 100GHz. Comparing fig.5.4 and
fig.5.5 we can clearly see the matching morphology of SZ signal even though the value we have is
not absolute but frequency and spatial dependence is observable.

The applicability to estimate the parameters of thermal cluster physics is demonstrated using
SZpack and MCMC and that can be applied to the simulated bullet cluster SZ signal given we have
observational data for SZ distortion as well.But even without the real SZ observations the spectral
features allows us relate the relative magnitude of cluster parameters such temperature moments.
Finally, we simulated ntSZ and total SZ signals in sec.4.3 at different frequencies showing the
complex impact of thermal and non-thermal part on total signal,and a method to probe non-thermal
cluster parameters is suggested using these complex 3 dimensional features so that our primary
goal of probing non-thermal physics in galaxy clusters can be realized.

However, we have not yet applied these techniques to real SZ observation,for the future prospects,

28



though we can estimate the said parameter reducing the 2 dimensional data problem to 1 dimension
as described in 3.2, however a complete picture of SZ effect is a 3 dimension problem, two in
space and one in frequency, a more general approach that can take into account of the both spectral
and spatial features at the same time would better constraint the parameters and furthers our

understanding for these large scale structures called galaxy clusters and hence the Universe.
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