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ABSTRACT 

The effect of the nature of the bare NPs surface in presence of the same ligands in 

the lipid bilayer and nanoparticles interaction (lipid corona formation) is not well 

studied in the literature. Therefore, we are interested to study the intermixing of 

the amino acid functionalized gold and silver nanoparticles with the lipid bilayer. 

In the present contribution, we have synthesized aromatic amino acid 

functionlized silver nanoparticles to look into the intermixing of these with the 

lipid membrane and compare this with our previous results with amino acid 

functionalized gold nanoparticles. Firstly, both the concentration of sodium 

hydroxide and amino acids play a crucial part in the formation of colloidal stable 

silver nanoparticles, These silver nanoparticles have well fluorescence properties 

because of clusterization of the amino acids on the NPs plane. The Ag-Tyr NPs at 

low lipid measurement of zwitterionic lipid vesicles are stable which is opposite 

to our previous results for Au-Tyr NPs. This specifies the part of bare NPs plane 

important part in the NPs and lipid bilayer interaction.    
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Chapter 1 

Introduction 

(1.1) Silver Nanoparticles: A nanoparticle is a small particle in the range 

between 1-100 nm. Silver nanoparticles (Ag NPs) have wide range of 

advancement in different fields of biomedical, catalysis, sensors, biology, 

antimicrobial activities [1-4]. The formation of  the silver nanoparticles is 

silver nitrate, reducing agent, and stabilizing agent [5-8]. Natural resources 

and their components are also used to synthesize the Ag NPs from plants and 

their extracts, bacteria, fungi, and biopolymers [9].  

(1.2) Amino acid functionalized silver nanoparticles: Amino acids 

possess both -NH2 and -COOH functional group and side chain (-R) group. It 

is well known that in most of the chemical transformation reaction –NH2 and –

COOH group play an important role while R group remain intact. Aromatic 

amino acids like phenylalanine, tryptophan, and tyrosine are essential aromatic 

amino acids that can be used to prepare the silver nanoparticles by on site 

conversation method. These aromatic amino acids behaving as reducing and 

capping agents and play important role in the preparation of different sized 

amino acid functionalized Ag NPs. It is well established that tryptophan and 

tyrosine can be used in electron/hydrogen transport via radical intermediates in 

biological systems [10-16]. So, different ligand functionalized silver 

nanoparticles are prepared using aromatic amino acids, AgNO3, NaOH. First, 

we optimized the reaction condition to form colloidal stable ag NPs by varying 

the concentration of aromatic amino acids, and NaOH. Although peptide 

functionalized (in end group tryptophan or tyrosine) fluorescence silver 

nanoparticles have been previously synthesized, however,  their fluorescence 

properties are unstable [17-18]. 

(1.3) Lipid Bilayers(Liposomes): Phospholipids and protein membrane 

are main constituents of the cell membrane [19]. The lipid bilayer is the barrier 

between the cell and extracellular components [20]. The lipid bilayer is 

composed of lipid. Lipid has two parts: the first one is a polar head group 

(phosphate and choline group) and another one is the hydrophobic tail part 
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which consists of a long hydrocarbon chain. When phospholipids are 

immersed in polar solvent like water, a second lipid layer is attached and lipid 

bilayer is formed so to seize the hydrophobic tail from water. 

 

 

Figure: Phospholipid bilayer [21] 

Long hydrocarbon chains group each other to form the lipid bilayer. 

Phospholipid formed liposomes are called PC liposomes. Recently, lipid 

membranes draw significant interest due to their interaction with metal ions, 

amino acids, polymer, nanoparticles [22-29]. Several methods are used to 

prepare the lipid bilayers from lipid molecules (i) reverse-phase evaporation 

[30] (ii) thin-film hydration [31] (iii) solvent injection [32]. lipid bilayers can 

be classified in terms of their size as), GUV- Giant Unilamellar Vesicle 

(>1µm), LUV- Large Unilamellar Vesicle (> 100 nm), MLV- Multi-Lamellar 

Vesicle (>0.5µm), and  SUV- Small Unilamellar Vesicle (20-100 nm).  

(1.4) Studying the nano-bio interaction of nanoparticles with 

lipid bilayer: Lipid bilayer and the metal nanoparticles interaction is an 
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emerging field as they usually produce biocompatible systems [33-38]. The 

interaction of inorganic nanoparticles and the different lipid bilayers is well 

studied in the literature [39-42]. In lipid the phosphate group head served as 

the most important role in metal oxide nanoparticles with lipid bilayer [43-45]. 

Our group recently studied the interaction so to functionalized the gold 

nanoparticles with the aromatic amino acid(Au-AA NPs) with different 

concentrations of different surface charged lipid bilayers [46]. The results 

showed that at high value of the concentration of lipid, the Au-AA NPs form 

lipid corona whereas lower value of l, the Au-AA NPs undergo lipid-induced 

aggregation with not only positive charged vesicles but also with the neutral 

charged vesicles. In this present contribution, we are interested to investigate 

the consequence of the nature of the nanoparticles (hydrophilic Ag and 

hydrophobic Au) in the lipid corona formation and lipid-induced aggregation 

where capping and stabilizing ligands (amino acids) are the same.  
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Chapter2 

EXPERIMENTAL SECTION 

(2.1) Chemicals and Reagents:. Silver nitrate (AgNO3), Phenylalanine 

(Phe), tryptophan (Trp), tyrosine (Tyr), and 4-(2-hydroxyetyl)-1-

piperazineethanesulfonic acid (HEPES) were purchased from Sigma-Aldrich. 

The neutral phospholipid DMPC ( 1,2-dimyristoyl-sn-glycero-3-

phosphocholine) was purchased from Avanti Polar Lipids. Sodium Hydroxide( 

NaOH) and Milli-Q water were purchased from Merck. all these chemicals 

were used as received without further purification. Milli-Q water is used to 

prepared all the solutions. We kept all the glassware in 3:1 HCl/HNO3 (aqua 

regia) overnight and cleaned it properly before doing any experiments. 

 (2.2) Synthesis of amino acid functionalized Silver 

nanoparticles:  We have taken a green synthesis in situ technique to 

prepare the silver nanoparticles (Ag NPs) by using aromatic amino acids with 

slight modification. We have varied the concentration of the amino acids (0.2 

× 10
-3

 to 2.0 ×10
-3

 M) and sodium hydroxide (5 × 10
-3

 to 50 ×10
-3

 M)to 

optimize the reaction condition to synthesize the colloidal and stable AgNPs. 

Briefly, 0.125 mL of 7.5×10
-4

 M aqueous metal ion solution was mixed in 

3.875 mL of Milli-Q the resulting solutrion with water was heated to 80 °C for 

30 min. At last the required value of amino acid added with concentration of 

NaOH and the final solution was kept under stirring for 2 hours. The 

formation of colloidal Ag NPs was initially studied by the color changes (from 

colorless to yellow) of the solution. 

(2.3) Preparation of three Silver Nanoparticles with the 

optimized condition:  We have optimized the condition of the formation 

of stable and colloidal Ag NPs by varying the concentration of amino acids 

and NaOH. AgNO3 solution (0.75 mM) was mixed in 3.875 mL of Milli-Q 

water and finally the solution was heated at 80 °C for 30 min. Then, 1 mL of 5 
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mM amino acid solution (solution concentration 1mM) (for all the three amino 

acids) was added followed by 5 mM NaOH (for Trp and Tyr) and 10 mM 

NaOH (for Phe) under vigorous stirring for 2 hours. The formation of colloidal 

and stable Ag NPs was primarily observed by changing the colour of 

solution(from colorless to yellow). All the solutions were first put at room 

temperature then 4 °C for the further experimental work.  

(2.4) Fluorescence spectrum of Nanoparticles: We have taken the 

fluorescence emission and excitation spectrum of both the stock and diluted 

(diluted 10 times of the stock solution) solution of tryptophan and tyrosine 

functionalized Ag NPs. We excited all these samples in the range of 280-400 

nm and the emission spectrum recorded. For the UV-Visible spectrum, we 

also diluted 10 times of all the stock solutions.  

(2.5) Preparation of Lipid Vesicles: We prepared the zwitterionic 

DMPC lipid vesicles in HEPES buffer solution (pH=7.0 ) following the 

ethanol injection method. At first, the buffer solution was heated at 70 °C at 

large value of trasition temperature of the DMPC lipid for 1 hour. Then the 

specific amount of lipid was dissolved in ethanol (0.01% of the hydrating 

solution) and injected into already heated buffer solution. For doing any 

experimental work, the solution was cooled for 4-5 hours after one hour of 

heating. The concentration of the final lipid solution was 0.8 mM. 

(2.6) Lipid Vesicle-Nanopartcle mixture preparation: To 

investigate the interaction of tryptophan and tyrosine functionalized silver 

nanoparticles ( Ag-Trp NPs and Ag-Tyr NPs) with the zwitterionic DMPC 

lipid vesicles, we have chosen two different lipid concentration. One is high 

lipid concentration (0.8 mM) and another is low lipid concentration (0.0125 

mM). Then, in a  fixed Ag NPs solution, two different concentrations (high 

and low) lipid vesicles were added and the mixture was kept overnight. 

(2.7) Instrumentation: The absorption spectra of the aromatic amino acid 

functionalized silver nanoparticles (Ag-AA NPs) was recorded by using 

Varian UV-vis spectrophotometer (Cary 100 Bio ) in a quartz cuvette (10 × 10 

mm
2
). FluoroMax-4p spectrofluorometer from Horiba Jobin Yvon (model: 
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FM100) was used to record the fluorescence spectra of the Ag-AA NPs. 

OriginPro 8.1 software was used to analyze all the absorption and fluorescence 

spectra. We maintained room temperature (25 °C) throughout. The DLS and ζ 

potential of the synthesized Ag-Trp NPs and Ag-Tyr NPs was measured using 

NanoPlus ζ/particle size analyzer (NanoPlus-3 model).  
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Chapter 3 

RESULTS AND DISCUSSION 

(3.1) Optimization and Characterization of differently amino 

acid functionalized Ag NPs: 

Herein, different amino which are aromatic acids namely a) Tryptophan b) 

Tyrosine c) Phenylalanine functionalized silver nanoparticles (Ag-AA NPs) 

was synthesized by an on site conservation in which aromatic amino acids act 

as  not only stabilizing but also reducing agent. The structure of the three 

aromatic amino acids is shown below (figure 2).  

 

Figure 2: Molecular structure of a) Tryptophan b) Tyrosine c) Phenylalanine. 

As mentioned earlier in the material section, we optimized the condition of the 

formation of colloidal and stable Ag NPs by varying the concentration of the 

amino acids and NaOH. Firstly, for synthesizing tryptophan functionalized 

silver nanoparticles (Ag-Trp NPs), the concentration of NaOH was varied at a 

constant concentration of AgNO3 (0.75 mM) and Trp (1 mM). With large 

concentrated of NaOH from 5 to 20 mM, we have observed a broad SPR peak 

of AgNPs, indicating the formation of larger Ag-Trp NPs (figure 3a). So, the 

optimized NaOH concentration is 5 mM. Then, see the changes in amino acid 

concentration in the formation of Au-Trp NPs, we have varied the 

concentration of tryptophan from 0.2 mM to 2 mM at given value of AgNO3 

(0.75 mM) and NaOH (5 mM). The UV-Visible spectra show that at a low 

concentration of tryptophan (0.2 mM and 0.5 mM) the SPR peak was 

broadened and in high concentration (2 mM), the SPR peak was shifted to a 

longer wavelength (figure 3b). So, at optimized concentration [AgNO3 (0.75 

mM), Trp (1 mM), and  NaOH (5 mM)], the SPR peak of the Ag-Trp NPs 

seen at ~ 409 nm. 
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Figure 3: UV-Visible absorption spectrum of Ag-Trp NPs at various 

concentrations of NaOH (a) and Trp (b) at a fixed concentration of AgNO3 

(0.75 mM). 

Similarly, for tyrosine functionalized silver nanoparticles (Ag-Tyr NPs), we 

have studied the effect of tyrosine and NaOH concentration. With the increase 

of the NaOH concentration, the SPR peak of the Ag-Tyr NPs is broadened 

(figure 4a). Also, at low concentration (0.2 mM and 0.5 mM) and high 

concentration (2 mM) of Tyr, the SPR peak of the Ag-Tyr NPs is broadened 

and shifted in longer wavelengths respectively (figure 4b). So, at optimized 

concentration [AgNO3 (0.75 mM), Tyr (1 mM), and  NaOH (5 mM)], the SPR 

peak of the Ag-Tyr NPs was observed at ~ 416 nm. 

 

Figure 4: UV-Visible absorption spectrum of Ag-Tyr NPs at various 

concentration of NaOH (a) and Tyr (b) at a fixed concentration of AgNO3 

(0.75 mM). 
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Now, to synthesize phenylalanine functionalized silver nanoparticles (Ag-Phe 

NPs), we again varied the concentration of the phenylalanine and NaOH. The 

UV-Visible spectra show that with the increase of the concentration of the 

phenylalanine from 0.5 to 2 mM, a secondary peak is observed along with the 

presence of the primary SPR peak which indicates the less colloidal stability 

of Ag-Phe NPs (figure 5a). At optimized concentration [AgNO3 (0.75 mM), 

Phe (1 mM), and  NaOH (10 mM)], the SPR peak of the Ag-Phe NPs was 

observed at ~ 414 nm (figure 5b). 

 

Figure 5: UV-Visible absorption spectrum of Ag-Phe NPs at various 

concentrations of Phe (a)and NaOH (b) at a fixed concentration of AgNO3 

(0.75 mM). 

The UV-Visible spectra of all the Ag-AA NPs in optimized condition are 

shown in figure 6. The less colloidal stability of the Ag-Phe NPs than Ag-Trp 

NPs and Ag-Tyr NPs proves that the secondary amine group of the Trp and 

the –OH group of Tyr important in nucleation and stabilization of the Ag-Trp 

NPs and Ag-Tyr NPs respectively.  

At last, we have successfully synthesized the Ag-AA NPs. The formation of 

the stable colloidal Ag-AA NPs was primarily established by UV-Visible 

spectroscopy.   

 



10 

 

 

Figure 6: UV-Visible absorption spectrum of Ag-AA NPs at an optimized 

concentration of the AgNO3, amino acids, and NaOH. 

(3.2) Fluorescence Emission and Excitation spectra of Ag NPs: 

The excitation wavelength-dependent fluorescence properties of the Ag-Trp 

and Ag-Tyr NPs were observed (figure 7a and 7c). Maximum emission for 

the Ag-Trp NPs was detected at 390 nm with a humped peak at 436 nm while 

for Ag-Tyr NPs, maximum emission peak seen at 405 nm with humped peak 

at 454 nm (figure 7b and 7d). The fluorescence of these blank amino acids is 

well reported in the literature. Tryptophan shows emission at 350 nm while 

tyrosine shows at 300 nm in a water medium. The distinct fluorescence 

properties indicate that the fluorescence property of the Ag-Trp and Ag-Tyr 

NPs is not coming from the blank amino acids. Our UV-Visible data suggest 

that size of the Ag NPs is in between 40-45 nm. It is well known that NPs in 

this size range is not fluorescent. So, the emission property of the Ag NPs is 

coming from the ligand (amino acids). The different fluorescence properties 

may be due to the different microenvironments of the aromatic amino acids on 

the silver nanoparticles surface [47].  
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Figure 7:  Excitation-wavelength-dependent fluorescence spectra of (a) Ag-

Trp NPs and (c) Ag-Tyr NPs. The fluorescence excitation and emission 

spectra of the blank amino acids and amino acid functionalized Ag NPs at 

maximum emission wavelength for (b) Trp and (d) Tyr. 

(3.3) Studying the interaction of Ag NPs with DMPC lipid 

vesicles: To check the interaction of the Ag-Trp NPs and Ag-Tyr NPs with 

zwitterionic lipid vesicles, the constant concentration of the Ag-AA NPs was 

incubated in various concentrations (0.4 mM and 12.5 μM) of the liposome 

overnight to reach the equilibrium. The UV-Visible absorption spectra of the 

Ag-Tyr NPs at high lipid (0.4 mM) of neutral (DMPC) lipid vesicles exhibited 

a red-shifted ( ~8 nm) SPR peak whereas, at low lipid concentration (0.0125 

mM), ~5 nm red-shifted SPR peak was observed (figure 8a). Our previous 

results for Au-Tyr NPs showed that low concentration of neutral DMPC lipid, 

visual aggregation of the NPs was observed [46]. This indicates that the nature 

of the NPs (Au or Ag) shows remarkable effect in the aggregation of the 

tyrosine functionalized nanoparticles. The UV-Visible studies states that the 

absorption spectra of the Au-Trp NPs in different lipid concentration has no 

spectral shift which is in accordance with our results for Au-Trp NPs (figure 
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8b).  

 

Figure 8: Normalized UV-Visible spectra of the Ag-Tyr NPs (a) and Ag-Trp 

NPs (b) in the variation of different DMPC lipid vesicles concentrations. 
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CONCLUSION 

In summary, different aromatic amino acids functionalized silver nanoparticles 

were made in optimum conditions and varying the concentration of amino 

acids and NaOH. We also studied the interaction of these with neutral DMPC 

lipid vesicles. Our results show that both the concentration of the amino acids 

and NaOH have a significant part in the formation of the colloidal stable Ag 

NPs. These amino acids functionalized silver nanoparticles have excellent 

fluorescence properties which suggest that these Ag NPs can be used in the 

bioimaging of the cells. The interaction of the Ag-Tyr NPs with DMPC lipid 

vesicles is different than that of the Au-Tyr NPs. This indicates that the bare 

NPs surface also show the crucial part in the NPs with the lipid bilayer.  
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