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Abstract

Clustering is a very popular approach in machine learning for unlabelled data. Twin

support vector clustering (TWSVC) and the twin bounded support vector clustering

(TBSVC), plane-based clustering algorithms introduced recently, work on twin support

vector machine (TWSVM) principles and are used in widespread clustering problems.

However, both TWSVC and TBSVC are sensitive to noise and su↵ers from low re-

sampling of data stability due to the use of hinge loss. The pinball loss features noise

insensitivity and stability for re-sampling of data. Within this thesis, we first present

basic formulations of the previous methods in plane based clustering and discuss their

shortcomings. Then we propose two plane-based clustering methods, twin bounded

support vector clustering using pinball loss (pinTBSVC) and sparse twin bounded sup-

port vector clustering using pinball loss (pinSTBSVC) which inherits various attributes

from previous plane based clustering algorithms. Sparse solutions help to create better

generalized solutions in the clustering problems; hence we attempt to use maximum

margin regularization term to propose pinSTBSVC. The proposed pinTBSVC and pin-

STBSVC solve the singularity problem and improve the aforementioned plane-based

clustering algorithms. Experimental results performed on benchmark UCI datasets

indicate that the proposed methods outperform other existing plane-based clustering

algorithms. Additionally, we also give the application of the proposed method to bio-

medical image clustering and marketing science. Numerical experiments on real world

benchmark datasets show that the proposed models give better generalization perfor-

mance.
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Chapter 1

Introduction

Machine Learning (ML) is a branch of artificial intelligence wherein we study some

advance computer algorithms that improve by themselves with the help of the data

provided i.e. by finding some patterns or trends in the data. Vapnik and Cortes [1]

developed the concept of support vector machine (SVM), one of the most widely used

and easy to interpret machine learning model that works well in solving classification

and regression problems [1, 2]. SVM is useful in a number of challenging areas like

medical [3], face detection [4], etc. Twin support vector machine (TWSVM) [5] is a

variant of SVM which reduces the complexity of SVM and improves the classification

accuracy. Both SVM and TWSVM are supervised learning algorithms i.e. they are

used for the datasets in which class of each data point is known.

Among the unsupervised learning techniques, clustering is one of the most famous

technique that finds the pattern in the data by grouping it into di↵erent clusters. It

works in the manner that the points having similar properties or attributes are grouped

in one cluster. After the formation of clusters in the given dataset, a new datapoint can

be easily assigned a label by using some appropriate function. Recently, clustering has

gained popularity in a variety of domains, including web analysis [6], facial recognition

[7, 8], etc.

In the last few decades, many clustering techniques were proposed such as point-based

clustering techniques like k-means [9] that aims to divide the given data into k-clusters

by minimizing the Euclidean distance of data points within clusters from the cluster
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Chapter 1. Introduction

mean, and k-median [10], which uses median instead of mean to form clusters within

the dataset. Although point based clustering algorithms are e↵ective in clustering the

data, they fall short in some non-standard datasets. So, plane based clustering were

introduced to cluster datasets around cluster center planes instead of clustering around

single points like k-plane clustering (kPC) [11] and proximal plane clustering (PPC)

[12]. Clustering implementation varies from method to method, for example, the kPC

formulates the similarity within a cluster whereas the PPC formulates the dissimilarity

between the various clusters. As it turns out, the shortfall of these methods come from

the inherent implementation; the kPC algorithm ignores the influence of other nearby

clusters, meaning that two non spherical clusters that are placed relatively closeby will

not be labeled correctly.

Jayadeva et al. [5] proposed an e�cient twin support vector machine (TWSVM) [5]

algorithm for the pattern classification. TWSVM uses two non-parallel hyperplanes,

each of which is closest to one class and farthest from the other. Shao et al. [13] pro-

posed twin bounded SVM (TBSVM) [13] that added an extra regularization term in

primal QPPs and implemented structural risk minimization principle. In 2014, further

improvements were proposed by Tanveer in [14], the formulation incorporated the reg-

ularization term in each objective function of TWSVM and use two smoothening tech-

niques to solve the proposed formulation. It solves two system of linear equations unlike

two QPPs in TWSVM, leading to reduced computation cost and a straightforward and

fast algorithm. The robust energy-based least squares twin SVM (RELS-TSVM) [15]

proposed in 2016 was an improved approach for implementing the structural risk min-

imisation principle in TWSVM, with use of a regularization term along with an energy

parameter in each problem, and as a result got a positive definite matrix in the dual

problem. In the recent comprehensive evaluation of 187 classifiers including eight vari-

ants of TWSVM on 90 University of California Irvine (UCI) datasets [16], RELS-TSVM

classifier outperformed all other TWSVM variants [17].

Inspired from TWSVM [5], the twin support vector clustering (TWSVC) [18] method

was proposed by Wang et al. [18], that uses both the similarity within a cluster

and the dissimilarity between clusters. This allowed TWSVC to outperform both

the previous plane-based clustering methods. Several developments were made in the
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Chapter 1. Introduction

nature of TWSVC to resolve numerous issues and complaints with the procedure, such

as computing the inverses of potentially singular matrices and ignoring the large margin

concept when generating the proximal planes. Even after disregarding the algorithmic

problems, TWSVC takes a long time to converge to an optimal solution [19]. Twin

bounded support vector clustering (TBSVC) [20] succeeded TWSVC and introduced

a maximum margin regularization terms in the formulation of TWSVC making the

gap between parallel planes and proximal plane to be as large as possible. TBSVC also

resolves the singularity issue of the matrix in dual problem. Another notable method is

the Ramp-based twin support vector clustering (rampTSVC) [21] which introduced the

ramp function to measure the within-cluster and between-cluster scatter; this ensured

insensitivity towards samples far from the cluster centres. This approach of utilizing

within-class and between-class improves noise-insensitivity. Least squares projection

twin support vector clustering (LSPTSVC) [22] is another plane based clustering model

which clusters the dataset by finding a projection axis for each cluster such that it

minimizes the within class scatter. Also, it’s solution involves solving system of linear

equations which take lesser training time.

The extensions of TWSVC discussed so far use hinge loss as the loss or the cost function.

Hinge loss has a central goal of maximizing the shortest distance between clusters. This

goal makes hinge loss highly sensitive towards outliers, making it susceptible to noise

and re-sampling. A statement can be made that all real-world datasets su↵er from

some degree of noise, making hinge loss a weaker candidate for real-life clustering

applications. Comparing to hinge loss, pinball loss SVM proposed by Huang et al. [23]

is robust in both noise insensitivity and re-sampling stability. Pinball loss has been

extensively used for classification problems, however not much development has been

made for clustering. The pinball loss twin support vector clustering (pinTSVC) [24] was

the first approach to incorporate pinball loss in TWSVC. The pinTSVC is a TWSVC-

based method that uses pinball loss for optimization. Tanveer et al. [24] concluded that

pinTSVC performs better than previous clustering algorithms for datasets with noise.

However, pinTSVC does not implement the structural risk minimization principle.

Thus, pinTSVC’s performance can be further improved by implementing the structural

risk minimization principle. A consequence of the pinball loss function is that a penalty

3



Chapter 1. Introduction

is also imposed on correctly classified points and it negatively influence the sparsity of

the solution. Recently, Tanveer et al. introduced the sparse version of pinTSVC known

as SPTSVC [25] which make the solution of problem in pinTSVC more sparse. It is

shown that classifiers with higher sparsity tend to have better generalization [26].

Motivated by the recent pinTSVC algorithm [24], two novel and e�cient algorithms are

proposed, pinball loss twin bounded support vector clustering and it’s sparse version,

pinTBSVC and pinSTBSVC, to improve the performance of clustering algorithms on

noisy datasets and make them stable for re-sampling of data. Recognizing the short-

comings of pinball loss, sparse version of pinTBSVC uses pinball loss with a ✏-insensitive

zone, that helps in providing sparsity to the solution of pinTBSVC.

Throughout this thesis, we consider all vectors to be column vectors. Suppose that we

havem samples in Rn (n-dimensional real space), and that these samples are segregated

into k-clusters, this is represented by a m ⇥ n matrix A = (x1, x2, ..., xm)T . The data

samples in ith cluster is denoted by Ai and those not in the ith cluster is denoted by the

matrix Âi 2 R(m�mi)⇥n for i 2 1, 2, ..., k. ||.|| denotes the L2 norm and e represents a

vector of ones of appropriate dimension.
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Chapter 2

Background

Classical support vector machine constructs two parallel planes for data classification,

and maximize the margin between them to make the classification more accurate,

by solving one large Quadratic Programming Problem (QPP). Jayadeva et al. [5]

proposed twin support vector machine that generates two non-parallel hyperplanes for

classification of data, by solving two smaller sized QPPs, unlike SVM. In TWSVM [5],

the primary goal is to generate two hyperplanes in such a way that each plane is as

close as possible to its class and far away as possible to another. With this idea of

generating two planes for two classes of data, TWSVM showed better performance in

classifying the datasets.

Based on the principle of TWSVM, a plane based clustering technique was developed

by Wang et al. in 2015 known as twin support vector clustering (TWSVC) [18]. In this

chapter, we discuss the previous and similar works done in the plane based clustering

algorithms.

2.1 TWSVC

Twin support vector clustering (TWSVC) [18], a plane-based clustering method, works

on the principles of TWSVM and performs clustering by seeking k-cluster center planes
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Chapter 2. Background

for k clusters in the data samples as follows:

wT
i x+ bi = 0 for each i = 1, 2, ..., k (2.1)

where wi 2 Rn, bi 2 R, by solving the following optimization problem for each i =

1, 2, ..., k

min
wi,bi,⌘i

1

2
||Aiwi + bie||2 + ceT⌘i (2.2)

s.t. |Âiwi + bie| � e� ⌘i, ⌘i � 0,

where c > 0 is a penalty parameter, ⌘i is an error bounding variable. The ith problem

(2.2) can be decomposed into a series of sub-problems by using CCCP (concave-convex

procedure) [27] with initial w0
i and b0i as:

min
wj+1

i ,bj+1
i ,⌘j+1

i

1

2
||Aiw

j+1
i + bj+1

i e||2 + ceT⌘j+1
i (2.3)

s.t. T (|Âiw
j+1
i + bj+1

i e|) � e� ⌘j+1
i , ⌘j+1

i � 0,

where T (.) denotes the first order Taylor expansion.

For the expansion of Taylor series, we need sub-gradient of |Âiw
j
i + bjie| w.r.t. w

j
i and

bji , which is defined as r(|Âiw
j
i + bjie|)=diag(sign(Âiw

j
i + bjie))[Âi, e], and also we have

that |Âiw
j
i + bjie|=diag(sign(Âiw

j
i + bjie))(Âiw

j
i + bjie).

So, we have Taylor expansion as:

T (|Âiw
j+1
i + bj+1

i e|) = |Âiw
j
i + bjie|+r(|Âiw

j
i + bjie|)([w

j+1
i ; bj+1

i ]� [wj
i ; b

j
i ]) (2.4)

Solving, we get

T (|Âiw
j+1
i + bj+1

i e|) = Di(Âiw
j+1
i + bj+1

i e), (2.5)

Di = diag(sign(Âiw
j
i + bjie)). (2.6)
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Chapter 2. Background

So, problem (2.3) can be written as:

min
wj+1

i ,bj+1
i ,⌘j+1

i

1

2
||Aiw

j+1
i + bj+1

i e||2 + ceT⌘j+1
i (2.7)

s.t. diag(sign(Âiw
j
i + bjie))(Âiw

j+1
i + bj+1

i e) � e� ⌘j+1
i , ⌘j+1

i � 0.

Now, using the Karush-Kuhn-Tucker (K.K.T.) conditions [28],we get the dual problem

as:

min
�

1

2
�TG(HTH)�1GT� � eT� (2.8)

s.t. 0  �  ce

where Di =diag(sign(Âiw
j
i + bjie)), H = [Ai e], G = Di[Âi e] and � 2 Rm�mi is the

Lagrange multiplier.

Nonlinear TWSVC:

Linear TWSVC can easily be extended for datasets that are non-linearly separable and

center-manifolds are generated instead of center-planes by using kernel trick. So, for

k-clusters in the dataset, we get k-cluster center-manifolds as:

center-manifoldi := K(x,A)yi + bie = 0, (2.9)

where K(., .) is an appropriate kernel function chosen according to the problem. So,

the optimization problem is as follows:

min
yi,bi,⌘i

1

2
||K(Ai, A)yi + bie||2 + c1e

T⌘i (2.10)

s.t. |K(Âi, A)yi + bie| � e� ⌘i, ⌘i � 0.

We can solve the above problem similar to linear case i.e. by first using CCCP to

decompose the ith problem into the series of sub-problems and then using K.K.T.
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Chapter 2. Background

conditions to give the dual as follows:

min
�

1

2
�TG(HTH)�1GT� � eT�

s.t. 0  �  ce, (2.11)

where H = [K(Ai, A) e], G = Di[K(Âi, A) e].

2.2 TBSVC

TWSVC [18] has an assumption of the existence of (HTH)�1 appearing in the dual

problem, however, this is not always the case as the matrix can be ill-conditioned.

Bai et al. [20] proposed an improved version of TWSVC, known as twin bounded

support vector clustering (TBSVC), which implements the structural risk minimization

principle by including an extra regularization term in the objective function of TWSVC

and resolves the issue of invertibility of matrix HTH. So, the formulation of TBSVC

[20] is given as:

min
wi,bi,⌘i

1

2
||Aiwi + bie||2 + c1e

T⌘i +
1

2
c2||wi||2 (2.12)

s.t. |Âiwi + bie| � e� ⌘i, ⌘i � 0,

where c1, c2 are two positive parameters and ⌘i is the error bounding variable. Now

similar to TWSVC, problem (2.12) is decomposed into series of sub-problems using

CCCP and we get the following problem as:

min
wj+1

i ,bj+1
i ,⌘j+1

i

1

2
||Aiw

j+1
i + bj+1

i e||2 + c1e
T⌘j+1

i +
c2
2
||wi||2

s.t. diag(sign(Âiw
j
i + bjie))(Âiw

j+1
i + bj+1

i e) � e� ⌘j+1
i , (2.13)

⌘j+1
i � 0.
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Chapter 2. Background

Consider Di=diag(sign(Âiw
j
I+bjie)), the Lagrangian of the above problem is as follows:

L =
1

2
||Aiw

j+1
i + bj+1

i e||2 + c1e
T⌘j+1

i +
1

2
c2||wj+1

i ||2

+ �T (e� ⌘j+1
i �Di(Âiw

j+1
i + bj+1

i e))� �T⌘j+1
i , (2.14)

where � and � are Lagrange multipliers. Using the K.K.T. conditions, we get the

following equations

@L

@wj+1
i

= AT
i (Aiw

j+1
i + bj+1

i e) + c2w
j+1
i � (�TDiÂi)

T = 0, (2.15)

@L

@bj+1
i

= eT (Aiw
j+1
i + bj+1

i e)� (�TDie)
T = 0, (2.16)

@L

@⌘j+1
i

= (c1e
T )T � � � � = 0, (2.17)

�T (e� ⌘j+1
i �Di(Âiw

j+1
i + bj+1

i e)) = 0, (2.18)

�T⌘j+1
i = 0, (2.19)

�, � � 0. (2.20)

Now again by using K.K.T. conditions, we get the dual for problem (2.13) as:

min
�

1

2
�TG(HTH + C)�1GT� � eT� (2.21)

s.t. 0  �  c1e,

where C =

0

@c2In 0

0 0

1

A ,

Di=diag(sign(Âiw
j
i + bjie)), G = Di[Âi e] and H = [Ai e].

It is easy to verify that the matrix (HTH + C) is positive definite in comparison to

HTH which is just positive semi-definite [20].
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Chapter 2. Background

2.3 pinTSVC

The loss function used in the above algorithms is hinge loss whereas pinTSVC [24] is

formulated using the pinball loss, an unsymmetrical loss function defined as:

L⌧ (x) =

8
<

:
x, if x � 0,

�⌧x, if x < 0,
(2.22)

where ⌧ 2 [0, 1] is the pinball loss parameter. The pinball loss function assigns a

penalty to misclassified data points and correctly classified points. So, the formulation

of pinTSVC is given as:

min
wi,bi,⌘i

1

2
||Aiwi + bie||2 + ceT⌘i (2.23)

s.t. |Âiwi + bie| � e� ⌘i,

|Âiwi + bie|  e+
⌘i
⌧
,

where ⌘i is the error bounding variable. Using CCCP, the ith problem can be broken

down into a series of convex quadratic sub-problems to give the following problem:

min
wj+1

i ,bj+1
i ,⌘j+1

i

1

2
||Aiw

j+1
i + bj+1

i e||2 + ceT⌘j+1
i (2.24)

s.t. T (|Âiw
j+1
i + bj+1

i e|) � e� ⌘j+1
i ,

T (|Âiw
j+1
i + bj+1

i e|)  e+
⌘j+1
i

⌧
.

Using the K.K.T. conditions, we can write

v = �(HTH)�1GT (� � �), (2.25)

where v =

2

4w
j+1
i

bj+1
i

3

5, G = Di[Âi e] and H = [Ai e].

Again using K.K.T. conditions and solving similarly as in TWSVC, we get the dual of

10



Chapter 2. Background

(2.24) as:

min
���

1

2
(� � �)TG(HTH)�1GT (� � �)� (� � �)T e (2.26)

s.t. �, � � 0, ce = � +
�

⌧
.

For a new data point xt, the label is assigned as follows:

y(xt) = arg min
i=1,2,...,k

|wT
i xt + bi|, (2.27)

among the k-clusters in the dataset.

2.4 SPTSVC

The loss function used in pinTSVC [24] has non-zero sub-derivative in the entire do-

main except for the origin, leading to the solution’s loss of sparsity. So, to overcome

this problem, sparse version of pinTSVC employing pinball loss (SPTSVC) [25] was

introduced in which ✏-insensitive loss function [23] is used, which is defined as:

L✏
⌧ (x) =

8
>>><

>>>:

x� ✏, if x > ✏,

0, if � ✏
⌧  x  ✏,

�⌧(x+ ✏
⌧ ), if x < � ✏

⌧ ,

(2.28)

which gives us that no penalty is assigned to the data points lying in the width ✏(1+ 1
⌧ )

and we also achieved sparsity as the sub-gradient of the above function is 0 in the range

[� ✏
⌧ , ✏]. So, SPTSVC can be formulated as:

min
wi,bi,⌘i

1

2
||Aiwi + bie||2 + ceT⌘i (2.29)

s.t. |Âiwi + bie| � e� ⌘i � e✏,

|Âiwi + bie|  e+
⌘i
⌧
+ e

✏

⌧
,

⌘i � 0, for i = 1, 2, ..., k,

11



Chapter 2. Background

where ⌘i is the error bounding parameter, ✏, ⌧ 2 [0, 1], are the various parameters of

the loss function used.

Similar to TWSVC, we can use the CCCP to break the ith problem into a sequence of

convex quadratic sub-problems as:

min
wj+1

i ,bj+1
i ,⌘j+1

i

1

2
||Aiw

j+1
i + bj+1

i e||2 + ceT⌘j+1
i (2.30)

s.t. T (|Âiw
j+1
i + bj+1

i e|) � e� ⌘j+1
i � e✏,

T (|Âiw
j+1
i + bj+1

i e|)  e+
⌘j+1
i

⌧
+ e

✏

⌧
,

⌘j+1
i � 0,

and using K.K.T. conditions, we get the dual of (2.30) as follows:

min
���

1

2
(� � �)TG(HTH)�1GT (� � �)� (� � �)T e+ e✏(�T +

�T

⌧
), (2.31)

s.t. �, �, � � 0, ce = � +
�

⌧
+ �,

which can also be written as

min
�

1

2
�TG(HTH)�1GT�� �T e(

✏

⌧
+ 1) + �T e(✏+

✏

⌧
), (2.32)

s.t. �,� � 0, �(1 +
1

⌧
)� �

⌧
 ce,

where � = ���, Solving the above dual, we get the solution to our problem and any

new data point xt can be assigned a cluster by following equation:

y(xt) = arg min
i=1,2,...,k

|wT
i xt + bi|. (2.33)

12



Chapter 3

Proposed Algorithms

In this chapter, we discuss two proposed algorithms given in the below sections and

also provide some theoretical justifications of the proposed models.

3.1 Proposed pinball loss TBSVC (pinTBSVC)

In this section, we propose an e�cient pinball loss twin bounded support vector clus-

tering (pinTBSVC).

3.1.1 Linear pinTBSVC

The proposed linear pinTBSVC finds k-clusters center-planes with parameters [wi, bi]

for i = 1, 2, ..., k by solving the following formulation:

min
wi,bi,⌘i

1

2
||Aiwi + bie||2 + c1e

T⌘i +
1

2
c2||wi||2 (3.1)

s.t. |Âiwi + bie| � e� ⌘i,

|Âiwi + bie|  e+
⌘i
⌧
,

where ⌘i is the error bounding parameter and ⌧ 2 [0, 1] is the pinball loss parameter.

The first term of the objective function in problem (3.1) is to minimize the squared

13



Chapter 3. Sparse pinball loss TBSVC

distances of the points in ith cluster from the ith hyperplane. The second term reduces

the error caused by data points from clusters other than the ith cluster that is within a

unit distance of the ith cluster’s hyperplane, as well as correctly classified points that

are penalized based on the pinball loss function’s parameter ⌧ . The third term in the

objective function is the regularization term leading to maximizing the distance between

the optimal plane wTx+ b = 0 and the parallel planes wTx+ b = ±1. Our pinTBSVC

uses the large margin principle to obtain the proximal and its parallel planes, and the

use of pinball loss leads to feature noise insensitivity around the proximal plane.

We can decompose the ith problem (3.1) into a series of convex quadratic sub-problems,

with j as the index of sub-problem, by using the concave-convex procedure (CCCP)

as:

min
wj+1

i ,bj+1
i ,⌘j+1

i

1

2
||Aiw

j+1
i + bj+1

i e||2 + c1e
T⌘j+1

i +
1

2
c2||wj+1

i ||2 (3.2)

s.t. T (|Âiw
j+1
i + bj+1

i e|) � e� ⌘j+1
i ,

T (|Âiw
j+1
i + bj+1

i e|)  e+
⌘j+1
i

⌧
.

We can now use the Taylor expansion to write

T (Âiw
j+1
i + bj+1

i e) = Di(Âiw
j+1
i + bj+1

i e), (3.3)

where Di = diag(sign(Âiw
j
i + bjie)).

We find the dual of the problem (3.2) by considering the Lagrangian as:

L =
1

2
||Aiw

j+1
i + bj+1

i e||2 + c1e
T⌘j+1

i +
1

2
c2||wj+1

i ||2

+ �T (e� ⌘j+1
i �Di(Âiw

j+1
i + bj+1

i e)) + �T (Di(Âiw
j+1
i + bj+1

i e)� e� ⌘j+1
i

⌧
),

(3.4)

14



Chapter 3. Sparse pinball loss TBSVC

where �, � � 0 are the Lagrange multipliers. Applying the K.K.T. conditions as:

@L

@wj+1
i

= AT
i (Aiw

j+1
i + bj+1

i e) + c2w
j+1
i � (�TDiÂi)

T + (�TDiÂi)
T = 0, (3.5)

@L

@bj+1
i

= eT (Aiw
j+1
i + bj+1

i e)� (�TDie)
T + (�TDie)

T = 0, (3.6)

@L

@⌘j+1
i

= (c1e
T )T � � � �

⌧
= 0, (3.7)

�T (e� ⌘j+1
i �Di(Âiw

j+1
i + bj+1

i e)) = 0, (3.8)

�T (Di(Âiw
j+1
i + bj+1

i e)� e� ⌘j+1
i

⌧
) = 0. (3.9)

From the above equations, we can write

v = �(HTH + C)�1GT (� � �), (3.10)

where G = Di[Âi e], H = [Ai e] and v = [wj+1
i bj+1

i ]T and

C =

0

@c2In 0

0 0

1

A .

It can easily be shown that the matrix (HTH +C)�1 is non-singular by considering its

determinant and showing it to be strictly positive.

Now, using the K.K.T. conditions, we modify our Lagrangian function to get the fol-

lowing dual problem for (3.2) as:

min
���

1

2
(� � �)TG(HTH + C)�1GT (� � �)� (� � �)T e,

s.t. �, � � 0, c1e = � +
�

⌧
. (3.11)

After solving the above dual problem, we can give a label to a new data point xt by:

y(xt) = arg min
i=1,2,...,k

|wT
i xt + bi|. (3.12)
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Chapter 3. Sparse pinball loss TBSVC

3.1.2 Nonlinear pinTBSVC

Linear pinTBSVC is extended to the cases where data is not linearly separable by using

the kernel method to get k-clusters manifolds as:

Center-manifoldi := K(x,A)yi + bi = 0, (3.13)

where K(., .) is an appropriate kernel function chosen according to the problem, yi 2

Rm, bi 2 R. So, we have our problem as:

min
yi,bi,⌘i

1

2
||K(Ai, A)yi + bie||2 + c1e

T⌘i +
1

2
c2||yi||2 (3.14)

s.t. |K(Âi, A)yi + bie| � e� ⌘i,

|K(Âi, A)yi + bie|  e+
⌘i
⌧
,

where ⌘i is the error bounding parameter and ⌧ 2 [0, 1] is the pinball loss parameter.

Proceeding similarly to the linear case, i.e. using CCCP to decompose the ith problem

into convex quadratic sub-problems and then using K.K.T. conditions, we can get the

following equations:

v = �(HTH + C)�1QT (� � �), (3.15)

where H = [K(Ai, A) e], Q = Di[K(Âi, A) e], v = [yj+1
i bj+1

i ]T

and Di = diag(sign(K(Âi, X)yji + bjie)).

So, the dual of (3.14) is obtained as:

min
���

1

2
(� � �)TQ(HTH + C)�1QT (� � �)� (� � �)T e,

s.t. �, � � 0, c1e = � +
�

⌧
. (3.16)
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Chapter 3. Sparse pinball loss TBSVC

3.2 Proposed sparse pinball loss TBSVC (pinSTB-

SVC)

In this section, we propose sparse pinball twin bounded support vector clustering (pin-

STBSVC) for both linear and non-linear cases. The proposed pinSTBSVC is the sparse

version of pinTBSVC.

3.2.1 Linear pinSTBSVC

Our proposed linear pinSTBSVC finds k-cluster center-planes i.e. the vectors [wi, bi]T

for i = 1, 2, ..., k by solving the following optimization problem:

min
wi,bi,⌘i

1

2
||Aiwi + bie||2 + c1e

T⌘i +
1

2
c2||wi||2 (3.17)

s.t. |Âiwi + bie| � e� ⌘i � e✏,

|Âiwi + bie|  e+
⌘i
⌧
+ e

✏

⌧
,

⌘i � 0.

Here, ✏, ⌧ 2 [0, 1] are parameters for the sparse pinball loss function and ⌘i is the error

bounding variable. The first term of the objective function in problem (3.17) minimize

the squared distance of the ith hyperplane from the ith cluster points. The second term

represents the error term minimization with ⌘i as the slack variable. The third term is

the regularization term which maximizes the margin between the proximal plane and

its parallel hyperplanes. The first constraints of our problem minimize the penalty

coming from the data points of Âi whose distances are at most (1 � ✏) from the ith

hyperplane. The second constraint minimizes the penalty of the points in Âi which are

farther than (1 + ✏
⌧ ) distance away from the ith hyperplane.

Now, using the convex-concave procedure (CCCP), we can decompose the ith problem

17



Chapter 3. Sparse pinball loss TBSVC

in (3.17) into a series of convex quadratic sub-problems as shown:

min
wj+1

i ,bj+1
i ,⌘j+1

i

1

2
||Aiw

j+1
i + bj+1

i e||2 + c1e
T⌘j+1

i +
1

2
c2||wj+1

i ||2 (3.18)

s.t. T (|Âiw
j+1
i + bj+1

i e|) � e� ⌘j+1
i � e✏,

T (|Âiw
j+1
i + bj+1

i e|)  e+
⌘j+1
i

⌧
+ e

✏

⌧
,

⌘j+1
i � 0.

Expanding the first-order Taylor series, we obtain:

T (|Âiw
j+1
i + bj+1

i e|) = Di(Âiw
j+1
i + bj+1

i e), (3.19)

where Di = diag(sign(Âiw
j
i + bjie)).

We now formulate the dual of the primal problem (3.18) by considering it’s Lagrangian

as:

L =
1

2
||Aiw

j+1
i + bj+1

i e||2 + c1e
T⌘j+1

i +
1

2
c2||wj+1

i ||2 + �T (e� ⌘j+1
i � e✏�Di(Âiw

j+1
i + bj+1

i e))

+ �T (Di(Âiw
j+1
i + bj+1

i e)� e� ⌘j+1
i

⌧
� e

✏

⌧
)� ↵T (⌘j+1

i ), (3.20)

where ↵, �, � � 0 are the Lagrange multipliers. Using the K.K.T. conditions, we can

write:

v = �(HTH + C)�1GT (� � �), (3.21)

where v = [wj+1
i bj+1

i ]T , G = Di[Âi e] and H = [Ai e]. The matrix (HTH + C)�1 is

invertible as it is non-singular, which can easily be shown by considering its determinant

and showing it to be strictly positive. We now apply K.K.T. conditions to get our dual

problem of (3.18) as follows:

min
���

1

2
(� � �)TG(HTH + C)�1GT (� � �)� (� � �)T e+ e✏(�T +

�T

⌧
),

s.t. ↵, �, � � 0, c1e = � + ↵ +
�

⌧
. (3.22)
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Solving the above dual we get [wi bi] for all i = 1, 2, ..., k i.e. k-cluster center planes

and we can easily assign a label to any new data point xt by the equation:

y(xt) = arg min
i=1,2,...,k

|wT
i xt + bi|. (3.23)

3.2.2 Nonlinear pinSTBSVC

Using the kernel trick, we can easily extend our model to non-linear cases, i.e. we

can generate non-linear surfaces K(x,A)yi + bi = 0; i = 1, 2, ..., k, where K(., .) is an

appropriate kernel-function, by solving the following optimization problem:

min
yi,bi,⌘i

1

2
||K(Ai, A)yi + bie||2 + c1e

T⌘i +
1

2
c2||yi||2 (3.24)

s.t. |K(Âi, A)yi + bie| � e� ⌘i � e✏,

|K(Âi, A)yi + bie|  e+
⌘i
⌧
+ e

✏

⌧
,

⌘i � 0.

In a similar way to the linear case, we can apply CCCP to break the problem into a

series of convex quadratic sub-problems and then apply K.K.T. conditions. We get the

following equations:

v = �(RTR + C)�1QT (� � �), (3.25)

where R = [K(Ai, A) e], Q = Di[K(Âi, A) e] and v = [yj+1
i bj+1

i ]T .

So, the dual of problem (3.24) can be formulated likewise linear case as:

min
���

1

2
(� � �)TQ(RTR + C)�1QT (� � �)� (� � �)T e+ e✏(�T +

�T

⌧
),

s.t. ↵, �, � � 0, c1e = � +
�

⌧
+ ↵. (3.26)
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3.3 Theoretical justifications

In this section, we discuss some theoretical aspects of the proposed algorithms.

3.3.1 Matrix (HTH + C) is invertible

Proof: The theorem is proved by evaluating the determinant of the above matrix as

follows:

det (HT
i Hi + C) =

������

AT
i Ai + c2In AT

i e

eTAi eT e

������

= |eT e||AT
i Ai + c2In � AT

i e(e
T e)�1eTAi|,

= m|AT
i Ai + c2In �

1

m
AT

i ee
TAi|,

= m

����A
T
i

✓
I � 1

m
eeT

◆
Ai + c2In

����. (3.27)

We have (I� 1
meeT ) is a symmetric and idempotent matrix i.e. (I� 1

meeT )2 = (I� 1
meeT ).

This gives us

AT
i

✓
I � 1

m
eeT

◆
Ai =

✓
I � 1

m
eeT

◆
Ai

�T✓
I � 1

m
eeT

◆
Ai, (3.28)

which is positive semi-definite and it gives that AT
i (I � 1

meeT )Ai + c2In is positive

definite as c2In is positive definite. Hence, the determinant in (3.27) is greater than 0.

So, (HTH + C) is an invertible matrix.

Thus, we get an advantage in pinTBSVC and pinSTBSVC over pinTSVC by adding

an extra regularization term.

3.3.2 Noise insensitivity and sparsity

The ✏-insensitive pinball loss function used in the proposed pinSTBSVC is not di↵er-

entiable at x = ✏ and x = �✏
⌧ . So, to solve the QPP of our problem, we need its
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Chapter 3. Sparse pinball loss TBSVC

sub-gradient, which is defined as

g✏⌧ (x) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

1, x > 0,

[0, 1], x = ✏,

0, �✏
⌧ < x < ✏,

[0, 1], x = �✏
⌧ ,

�⌧, x < �✏
⌧ .

(3.29)

Also we split the data-points belonging to the ith cluster into the five groups as shown

below:

T1 = {l : 1� |wT
i xl + bi| > ✏},

T2 = {l : 1� |wT
i xl + bi| = ✏},

T3 = {l : � ✏

⌧
< 1� |wT

i xl + bi| < ✏},

T4 = {l : 1� |wT
i xl + bi| = � ✏

⌧
},

T5 = {l : 1� |wT
i xl + bi| < � ✏

⌧
}.

As we increase the pinball loss parameter ⌧ , the number of points in the set T5 increase,

as the points in this set are 1+ ✏
⌧ distance far from ith plane as seen from the construction

of the sets. Now, since the sub-gradient g✏⌧ (x) for this interval is non-zero, gives us that

data points in set T5 leads to the final solution. As a result, larger values of ⌧ reduce

the model’s sensitivity to noise around hyper-plane.

Further, we can also observe that the points lying in the interval (� ✏
⌧ , ✏) i.e. the points

in the set T3, are non-e↵ective in the final solution as the sub-gradient g✏⌧ (x) = 0. So,

the solution attains sparsity due to the ✏-insensitive zone.

3.3.3 Time complexity analysis

Solving the optimization problem of the algorithms is the main source of computa-

tion cost. The proposed pinTBSVC has two components to its optimization problem:
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solving the QPP and computing the inverse of the matrix (HTH + C). These two

parts are repeated for each iteration until the convergence criteria is met. Let t be the

number of iterations required and the number of points in the QPP is m, the convex

QPP has a time complexity of O(m3/4), while the matrix inverse of a n ⇥ n matrix

has a time complexity of O(n3). Thus, the net time complexity of pinTBSVC will be

O(t(m3/4 + n3)). The convergence criteria is reached when ||[wj+1
i ; bj+1

i ] � [wj
i ; b

j
i ]||

is less than our chosen error tolerance value. Thus, for a lower tolerance value, the

number of iterations, i.e. t, will increase. In the cases of TWSVC [18] and pinTSVC

[24], we have a similar convex QPP with m points, the di↵erence being the Matrix

Inversion; Instead of HTH + C, we invert HTH in TWSVC [18]. The additional C

matrix doesn’t contribute to the time complexity as the resultant matrix is of the same

size. Similarly, in TBSVC [20], the di↵erence comes in the loss function, which doesn’t

play a significant role in the time complexity. Thus the time complexities of TWSVC

[18], TBSVC [20], pinTSVC [24] and pinTBSVC are equivalent.

The pinSTBSVC algorithm, like the previously mentioned pinTBSVC, uses a similar

QPP solution, with the exception being in the number of constraints. The number of

constraints in pinSTBSVC is double that of TWSVC, resulting in a time complexity

O((2⇥m)3/4) = O(2⇥m3). The matrix inversion step involves a matrix of the same

size; thus, time complexity to solve the matrix inverse remains the same, i.e. O(n3).

Thus, the net time complexity for pinSTBSVC is O(t(2⇥m3 + n3)).
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Chapter 4

Numerical Experiments and

Statistical Analysis

In this chapter, we will provide results of numerical experiments of the proposed model

and discuss the statistical analysis of the experimental results.

4.1 Experiments

In this section, we compare the performance of the proposed algorithms against the

existing plane based clustering algorithms like TWSVC [18], TBSVC [20] and pinTSVC

[24] on several benchmark UCI datasets [16]. The results are reported with accuracies

for real-world benchmark datasets having di↵erent levels of noise. we use the Gaussian

noise into the datasets with four values of standard deviation (�). 5 fold cross validation

has been used for all experiments with grid search method to find optimal parameters.

For non-linearly separable datasets, Gaussian kernel K(x, y) = exp(�||x� y||2/µ2) has

been used. Additionally, the initialization is done via Nearest Neighbour Graph (NNG)

[18]. All the methods were implemented on MATLAB® R2017a [29] and have been

tested on a High-Performance Computer with a Intel® Xeon® E5-2697 v4 Processor

@ 2.30 GHz speed and 128 GB RAM.
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4.1.1 Parameters selection

The range and values for the various parameters involved in the various methods have

been tabulated in Table 4.1.

Parameter Name Symbol Range/Value

Penalty Parameters c or c1 {2i|i = �5,�3,�1, 1, 3, 5}
c2 {2i|i = �5,�3,�1, 1, 3, 5}

Gaussian Kernel Parameter µ {2i|i = �5,�4, ...4, 5}
Pinball Loss Parameter ⌧ {0.25, 0.50, 0.75, 1}

✏ {0.1, 0.3, 0.5}
� 10�4

Table 4.1: Range of parameters for various methods.

Figures 4.1 and 4.2 give the plot of accuracy for various parameters. For a clear plot

with minimal clutter, we have plotted accuracy vs two parameters at a time; for the

other parameters (e.g. ⌧ and ✏ in case of the plot: accuracy vs c and µ) we choose the

respective overall optimal choice. This was done since we have a total of 4 parameters

in pinTBSVC and 5 parameters in pinSTBSVC.

4.1.2 Discussion of the results

The accuracy along with the rank for all the datasets are tabulated in Table 4.2.
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Chapter 3. Numerical Experiments and Statistical Analysis

Figure 4.1: Surface plots illustrating the e↵ectiveness of pinTBSVC with various
parameters
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Figure 4.2: Surface plots illustrating the e↵ectiveness of pinSTBSVC with various
parameters
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Table 4.3: Ranks of di↵erent methods on various datasets based on their perfor-
mance

Datasets � TWSVC [18] TBSVC [20] pinTSVC [24] PinTBSVC SPTBSVC

aa iris 0 4 5 3 2 1

0.05 1 5 4 3 2

0.075 5 3 4 1 2

0.1 3 2 4 1 5

aaa balloons 0 4 4 4 1.5 1.5

0.05 2 3 4.5 4.5 1

0.075 1.5 5 1.5 3.5 3.5

0.1 4.5 2 4.5 2 2

haberman 0 4 3 5 2 1

0.05 3.5 5 3.5 2 1

0.075 4 5 3 1 2

0.1 3.5 5 3.5 2 1

hepatitis 0 4 3 5 2 1

0.05 5 4 3 1 2

0.075 3.5 5 3.5 1 2

0.1 4 3 5 1 2

lense 0 5 2.5 4 2.5 1

0.05 3 2 4 5 1

0.075 5 2.5 2.5 4 1

0.1 5 4 1 2 3

new-thyroid 0 5 4 2 3 1

0.05 3.5 5 3.5 2 1

0.075 2 4 3 5 1

0.1 3 4 5 1 2

pathbased 0 3 5 2 1 4

0.05 2 4 3 1 5

0.075 4 5 1 2 3
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Table 4.3: Ranks of di↵erent methods on various datasets based on their perfor-
mance

Datasets � TWSVC [18] TBSVC [20] pinTSVC [24] PinTBSVC SPTBSVC

0.1 4 3 2 1 5

spherical 4 3 0 2 2 5 2 4

0.05 4 3 2 1 5

0.075 4 3 1.5 1.5 5

0.1 3 1.5 5 1.5 4

spherical 5 2 0 3 4 5 1 2

0.05 5 4 3 2 1

0.075 5 4 2 3 1

0.1 5 3 2 1 4

zz-ionosphere 0 4 5 3 2 1

0.05 5 3 4 2 1

0.075 5 3 4 2 1

0.1 5 4 3 2 1

Average Rank 3.7750 3.6625 3.3375 2.0250 2.2000

4.2 Applications

To see the applications of the proposed algorithms in real world problems, we apply the

proposed model to real-world benchmark datasets and compare it with other baseline

models.

1. Breast cancer clustering - For application in breast cancer clustering, we used the

Wisconsin Diagnostic Dataset [16]. This dataset was made by extracting features

from digitized images of fine-needle aspirates (FNA) of a breast mass. It has 569

instances, of which 357 are benign, and 212 are malignant. The features describe

the cell nuclei present in the image in 3d space. From Table 4.4, we see that the

best performing model is pinTBSVC with accuracy of 87.839.
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2. Marketing data clustering [30]- This dataset consists of data regarding some su-

permarket mall customers, like their age, gender, annual income, and spending

score. We encoded the labels and divided the 0-100 spanning spending score into

4 sections 0-25, 26-50, 51-75 and 76-100; representing low, low-medium, medium-

high and high spenders. From Table 4.5, we see that the best performing model

is pinSTBSVC with accuracy of 58.5385.

TWSVC [18] TBSVC [20] pinTSVC [24] pinTBSVC pinSTBSVC
81.9717 86.3883 74.7674 87.839 86.9969

Table 4.4: Results for breast cancer clustering

TWSVC [18] TBSVC [20] pinTSVC [24] pinTBSVC pinSTBSVC
53.2564 56 56.4103 56.7692 58.5385

Table 4.5: Results for marketing data clustering

To illustrate the formation of clusters via di↵erent methods, we have also visualized

the dataset “spherical-5-2” which only has two features, for the convenience of a 2d

graph; the various clusters formed by the di↵erent methods are showcased in Figure 4.3.

4.3 Statistical analysis

For statistical analysis, we use the Friedman test [31] and the accompanying post-

hoc test to statistically analyse our experimental findings. We need average ranks of

the algorithms under consideration based on their accuracies on various datasets for

this. Average ranks of algorithms are tabulated in Table 2. First we consider the null

hypothesis that all algorithms have similar performance. Now, we calculate the �2 as

�2 =
12N

p(p+ 1)

 pX

i=1

R2
i �

p(p+ 1)2

4

�
, (4.1)

where N is the number of datasets, p is number of algorithms considered and Ri is the

average rank of ith algorithm.
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Figure 4.3: Formation of clusters by various methods

For N = 40, p = 5 and Ri from the Table-4.3, we get

�2 =
12⇥ 40

5⇥ 6


(3.7750)2 + (3.6625)2 + (3.3375)2 + (2.0250)2 + (2.2000)2 � 5⇥ 36

4

�

⇡ 43.905,

and FF =
(N � 1)�2

N(p� 1)� �2
=

(40� 1)⇥ 43.905

40⇥ 4� 43.905
(4.2)

⇡ 14.749.

F -distribution has degrees of freedom (p � 1, (p � 1)(N � 1)). For F (4, 156) with the

level of significance ↵ = 0.05 the critical value is 2.425. And since FF = 14.749 > 2.425,

we reject the null hypothesis.

Further, we use the Nemenyi post-hoc test [32] to look for statistically significant

di↵erences between algorithms. For this, we calculate the critical di↵erence (CD) with
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critical value as q↵

CD = q↵

r
p(p+ 1)

6N
(4.3)

CD = 2.728⇥
r

5⇥ 6

6⇥ 40
⇡ 0.9645

Therefore, if the average ranks of two algorithms di↵er by at least CD ⇡ 0.9645, the

Nemenyi test [32] indicates that there is a significant di↵erence between them. As a

result, we can say that the proposed algorithms di↵ers significantly from existing plane

based clustering algorithms.
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Conclusions and Future Directions

In this work, we introduced two novel plane based clustering algorithms, PinTBSVC

and PinSTBSVC, which significantly improves the performance of existing algorithms.

The pinball loss function used in both the proposed algorithms provides stability for

re-sampling of data and benefits the datasets with noise. Furthermore, we incorporated

the maximum margin regularization term that made the planes to be as far as possi-

ble and improved the accuracy of the algorithms. Numerical experiments on various

benchmark datasets demonstrate the advantage of the proposed models over existing

plane-based clustering algorithms.

In future, one can work on parameter selection techniques required to find the optimal

parameters for the algorithms. Currently, in order to optimize performance, one must

evaluate a large number of parameters, due to the lack of a convenient option for search-

ing parameters. Our proposed pinSTBSVC has excellent sparsity and performance, but

it comes at the cost of increasing its time complexity which is an impediment when

solving for large datasets. Thus, one can also look into ways to decrease this time

complexity.
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