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The reward for work well done is the

opportunity to do more . ..

Jonas Salk

Standard Model And The Flavor Puzzle

The Standard Model of particle physics, a triumph of 20th-century physics, provides a remark-
ably successful framework for explaining three of the four known forces of nature. These forces
or interactions are described by specifying the particles which mediate the interactions. And the

number of mediators of an interaction is equal to the number of generators of the corresponding

gauge group.

In the Standard Model, we have to following gauge group:
SU@3). x SU((2)L xU(1)y, (1.1)

where SU(3), is the Quantum chromodynamics or QCD gauge group and SU(2)r x U(1)y is

the electroweak part. This symmetry is spontaneously broken into,

SU(3)e x SU2)1 x U(1)y — SU(3)e x U(1)g. (1.2)
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Here Y and Q denote the weak hypercharge and the electric charge generators respectively.
The QCD part of the gauge group describes the strong interactions. These interactions are
mediated by eight gluons G,. The SU(2)r x U(1)y is called electroweak part of the Standard
Model, because it describes both electromagnetic and weak interactions. These interactions are
mediated by v, W*, Zy and the neutral Higgs boson H. This breaking is induced by the Vacuum
expectation value(VEV) of Higgs field. It is an electroweak doublet given as

! #
+
n ¢ $ )
v+H (x)+1iC

2

b= (1.3)
¢T and ¢ are the unphysical modes which are eaten up by the W and Z in the process of

symmetry breaking. H is the physical scalar mode called as the Higgs bosons. v is the VEV of
H whose value is 246 GeV.

The flavor puzzle that we are dealing with comes from the Standard electroweak model. We will

only focus on it from now on.

1.1 Standard Electroweak Model

Weak interactions are parity-violating. This means that the left chiral projection of the fermion
field and the right chiral projection of the fermion field should have different transformation prop-
erties under an internal symmetry, that is, different interactions. These fermions are supposed

to transform like the following gauge multiplets:

! # ! # ! #
Q]L = n p1L$ ’ n p2L$ 7 n p3L$ . (2’ 1/6)7 (143)
nir nar, nar
% & % & % &
PijR = pig > per - p3r :(1,2/3), (1.4b)
% & % & % &
an = | NR #, ?2}2 ;# n?R : (;, —1/3), (140)
. v . v . v
LjL = 1L$ ) 2L$ ) 3L$ : (27 _1/2) ) (14(1)
Eqr Eap E3p,
% & % & % &
E]’R = EIR , E2R , E3R : (1, —1) . (146)

The quark and lepton fields are written in gauge basis here. We will see more about it in later

section. On the right, we have shown the gauge transformation properties of the multiplets. The
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first term in the bracket indicates whether it is a doublet or a singlet, and the second term is the
U(1) hypercharge Y. The left-handed fields transform non-trivially under SU(2), that’s why
the subscript L is written. No right-handed neutrinos were observed when the Standard Model
was being constructed and also they have not been observed yet. And they were not needed
because, at that time, neutrinos were believed to be massless. We can get the mass terms for
the quarks and charged leptons when we consider the Yukawa interactions, but the left-handed
neutrinos have nothing to get couple to in order to get the mass. So at the renormalizable level

of SM Lagrangian, the neutrino’s stay massless.

1.1.1 The Pure Gauge Lagrangian

The SU(N) group has N? — 1 generators. Therefore, SU(2) gauge group has three generators
(T, = 04/2) and U(1) has one generator. Corresponding to the four generators, there are four

gauge bosons in this theory. The pure gauge Lagrangian can be written as
1 a tuv 1 Iy
L gauge = —ZWqua - ZB/NB ) (1.5)

where W are the SU(2) gauge bosons, and By, is the U(1) gauge boson. None of these gauge
bosons are physical particles. The linear combinations of these bosons make up photon, W=+

and Z bosons.

1.1.2 Spontaneous Symmetry Breaking

The gauge bosons mediating weak interactions are massive but the above Lagrangian did not
contain any mass term because such a term would not be gauge invariant. However, since we
ultimately we want massive weak gauge bosons, we will have to break the SU(2)y x U(1)y gauge
group spontaneously, by introducing some type of Higgs scalar field. We take SU(2) doublet of
scalar, and write this as:

! #

v Pty

o = £ (2,1/2). (1.6)
o

where the subscript denotes the hypercharge. The terms of Lagrangian which contain ¢ are

L = (Du(¢)(D"(¢) = V(¢). (1.7)
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Here, D,, is the covariant derivative given as
. 0 .1
D,=0,+ Zg?aWﬁ +1ig'Y By, (1.8)

where g and ¢' are gauge the coupling corresponding to SU(2)z and U(1)y, respectively.

The scalar potential is given as

V(p) = 120To + A(8'9)?. (1.9)

Choosing ;2 < 0 and A > 0 leads to the required spontaneous symmetry breaking. The minimum

of this potential is obtained for

[(o1)? + 1) = = (1.10)

where ¢ and ¢4 are the scalar fields which transform like a doublet of SU(2) symmetry (which is
denoted by ¢4 and ¢g after assigning the hypercharge as done in Eq. ()), the angular bracket

denotes the value at the minimum, and

v= (1.11)

() = $, (1.12)

($1) =0, (Repy) =v/V2, (Imgg)=0. (1.13)

For an unbroken generator (Combination of 7% 4+ Y') that leaves the vacuum invariant, there
will be no goldstone boson and the corresponding gauge boson remains massless. If a bro-
ken generator non-trivially transforms the vacuum, then there exist a goldstone boson and the

corresponding gauge boson is massive.
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Claim: Q =72 +Y is the unbroken generator.

[ # 1 I
. 1/2 0 . 1/2 0 w10
Q= / $ / $ = $ . (1.14)
0 -1/2 0 1/2 00
Now, the field ¢ transforms as
¢ — 99p= b+ iozgqb +0(a?), (1.15a)
.10
@) = (o) +ia” O$ (0), (1.15b)
! # ! # ! # 1 #
. 0 . 0 w1l O0p. O . 0
$ $ Lia $ $ — $ . (1.15¢)

v/V2 v/V2 0 0 v/V2 v/V2

Thus there is one diagonal generator which annihilates the vacuum or leaves the vacuum invari-
ant. Thus, the original symmetry is therefore broken down to a U(1) symmetry generated by Q.
This is the U(1) group of QED, which we can denote by writing U(1)em. We can expand around
the minimum and that expansion will give us the mass terms for W* and Z gauge bosons,

photon remains massless.

1.1.3 Gauge Interaction Lagrangian

The kinetic energy terms for the fermions are given as:

3
L Fermion =  QLjiv"DuQrLj + Priiv"Duprj + fir;iv" Dung,; +
j=1
Ly jiv*D,Ly j + Eg jiv'D,Eg; . (1.16)

The covariant derivatives acting on various fermion fields are given by

{ ?

D,Qr; = (Ou+ 2gT“Wﬁ + 69!B,u)QL,j , (1.17a)
Dyug; = (9u+ %Q!BH)URJ : (1.17b)
Dudr; = (8, — %g!Bu)dRJ : (1.17¢)
D,Lp; = (0,+ %gfawg — %g!BM)LLJ , (1.17d)

DuErj = (Ou— iQ!Bu)ER,j . (1.17e)
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1.1.4 Yukawa Interaction Lagrangian

The Yukawa couplings are the couplings of fermions with scalar fields. It is known that there
are three generations of quarks and leptons. The left-chiral components of quarks/leptons comes
in SU(2) doublet and the right-chiral components in singlets for any generation. Since all the
generations have the same group transformation properties, the Yukawa couplings can connect

any two generations. The Lagrangian is given as:

(? — — - -
L yuk = — (Yi?QiLéban +Yi5Qiopir + Yz'é'LiLéf)EjR + h.c.), (1.18)

ij=1
where qg = io3¢ . The terms in the Lagrangian are gauge invariant. Both 17 and ¢ are SU(2)
doublets, so the combination of them is SU(2) singlet. The field ER is a SU(2) singlet, so the
overall term transforms trivially under SU(2). For the U(1) part of the gauge group, the sum
of hypercharges of the combination of the fields comes out to be zero. Hence, the interaction is

invariant under the SU(2); x U(1)y gauge group.

1.2 Fermion Masses From Yukawa Couplings

Gauge interactions are flavor universal, which means they do not care whether they are talking to
the first, the second, or the third generation. These flavor universal couplings are broken in the
Standard Model once we introduce the Yukawa couplings. And then, via the Higgs mechanism,
inserting the VEV into the Yukawa coupling, we can get the fermion masses.
The Yukawa Lagrangian(from Eq. ( )) is given as
3 ~
Ly=— " (YjQuénir+Y;Quepin + YiLiLoEjr + h.c.), (1.19)
ij=1

where ¢ = iga¢ = €d . Qr, Ly are the left-handed S U(2) quark and lepton doublets. nr and
pr are right-handed quark singlets. And Eg is the right handed quark singlet. Now,

! # ! # oo ! #
+ o"
ct 0 1$’ Q;:,, 0 1$,,¢$ o 10} $

L Lo g (1.20)
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For producing fermion mass terms,
!
m 0
(@o)=" "% (1.21)
A
2
And the fermion mass matrix comes out to be
v
ma = —=Yy, (1.22)

V2

where A denotes u, d and [. These matrices are 3 x 3 square matrices. They do not have to be

diagonal. And in reality, this is what happens.

1.2.1 Quark Sector

For the quark sector, the Yukawa Lagrangian is written as

L vk = —(Y{Q1ronir + Yi5Q16n2r + Yi3Q1r0n3k + Y Qordnig + YshQardnor
+Y5hQordnsr + Y Qsrénig + YasQardnor + YisQsronsr

Y Q1LopiR + Yi5Q10p2r + Yi5Q10p3R + Y51 Qardpik + YaaQardpor
+Y3Q210p3R + Y41 Qs10p1r + YasQsrdp2r + YisQsLopsr

the), (1.23)

where @ is SU(2)1 doublet given as
! #
w Dil
Q="""%.
n;rL
Using Eq. (), writing the mass terms:
v

L mass = —E(Yﬁﬁmnm + Yairnog + Vs + Yéifiornig + Yabfornar
+Yghnornar + Yiifizrnig + Yisharnag + Yaksrnar
+Y{1P1p1r + Y{5D10p2r + Y(3P1L03R + Yo1P20p1R + YosD2rp2R

+Y93D21.p3r + Y31D3L01R + Y35P3102R + Y33D3LP3R

(1.24)

(1.25)
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The above equation can also be written like this

! # 1 #
% &; }/16[1 Yl% Yl%* i N1Lx
v * *
L mass = _E niy MNor N3L Y2dl YQ% Y;é% nng +
Vi Y Y nar
! # | #
u u U
y % &i Yii Y Y13I i plL:
7 DiL D2r D3 » Y51 Yo Yz%g Png + h.c.. (1.26)

Yii Yi Yo psr

Here,
! # ! #
Ye YE Y Y4 Y Y
i 11 Y12 13« i 11 Y12 T13x
v * v *
Ma = V2 Yii Y3 YQ%% , M= NG Yoi Yo Yﬁég (1.27)
Vi v Y Yii Y3 Y

are called the mass matrices for the down-type and up-type quark, respectively. These matrices

are not diagonal. The fields p;, n; do not correspond to physical particles. We have to diagonalize

the above matrices to get the physical fields.

Bi-unitary Transformation: For any matrix A, we can find two unitary matrices Uy, and

Upg such that ULAU;% is diagonal, with real non-negative entries along the diagonal.

This means that to go from gauge eigenbasis to mass eigenbasis, we do the unitary transformation
of fields, in which the left-chiral and right-chiral fields change by different amounts. Hence, the

matrix sandwich between them is diagonal. Therefore,
ma = Ul A Ay . (1.28)

The left-handed down-type fields transform as

! # I #
i mLI Ti dL: % & % e
TLQL% = UL SL% — ﬁ’lL ’ﬁQL ﬁ’3L = dL ‘§L bL UL- (129)
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Similarly, for the right-handed down-type field

! # I #
an* dR*
* *
§ nma‘s ZURi ng : (1.30)
n3R br
And for the left-chiral up-type fields,
! # I #
i 101LI Ti UL: % & % &
szg =V CLES = piL Por P3r = ur ¢r tr Vi (1.31)
3L tr
Right-chiral feild transforms as
! # ! #
le* U’R*
QTS 1
p2R$ R CR$ : .

D3R tr

The mass terms for the down-type and up-type quarks can then be rewritten as

! #
b % & | s
L mass = -—— d S b, Up Ml; A *
\/§ dL S, bL L d R SR$
br
! #
v % & : e

~ 5w e G VAL AR crg + e (1.33)

tRr

Here, Dy = U, A, /Ef; and D, =V A1, A, ; are diagonal matrices.

1.2.2 Lepton Sector

Writing explicitly the Yukawa interaction Lagrangian for the lepton sector:

L yvak = —(YLLin¢E1R + Yis L1z Eor + Yis L1 ¢ Fsp + Yo Lap ¢ E1g 4 Yas Lo ¢ Ear
+YdLor¢Fsp + Vi Lap ¢ Eig + Yo Lap ¢ For + YasLap ¢ Esg + h.c), (1.34)
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where L is the SU(2)r, doublet of the form
! #
n VZ
La="""% (1.35)
Ep

After spontaneous symmetry breaking, using Eq. (), the mass terms are

v

Lmass:_\/é

(YLEILE\R + Y5 E1L Bop + Yl By Fsp + Y4 Ear E1r + Yas Ear Eap

+YisEar Bsp + Y4, Es By g + Yay B3 Fop + Yas B3 Esp + hoc.),  (1.36)

3
v ( _
L =—— (YLELEjr+he). (1.37)

V2

ij=1

In the generation indices Y is a matrix. We can redefine our fields in a way such that the matrix

Y! becomes diagonal.

! # ! # ! # ! #
El* €Ly El* €R«
iEi :ETiMi iEI :ETiui. (1.38)
2$ L L$ ) 2$ R R$
Es . TL Es R TR

Here, e, u and 7 represent physical fields. After changing the basis, the mass terms are written

as
! #
v & . e
TR

As we can see, there are no mass terms for neutrinos because right-handed neutrinos do not
exist in the Standard Model. There is only one kind of mass term, and those are for the charged

leptons as given in Eq. ( ). We could work in the basis of generations where these terms are

diagonal.

There was no need to write the lepton fields as defined in Eq. (). We could have started with
the physical fields. But we did it the same way for quarks and leptons to show the difference

between the quark sector and the lepton sector.
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1.3 Gauge Interactions

We have rotated our fermion fields with unitary transformation. Let’s see what happens to the

rest of the Standard Model lagrangian, in particular gauge interaction.

Rotation of right-handed quark Pelds: Rotation of right-handed quark fields leaves the

Lagrangian invariant. To see this, consider the gauge interaction term for pg:

L o 2 L 2
iprY"Dyupr = iprRY" (O) + Zgg!Bu)pR = ippy*(OupR + 1§Q!BMPR)
- 2, _
= ippy"Oupr — §g’pR’y“BupR- (1.40)

pr transforms as
PR = V;UR = PR =URVR. (1.41)
Therefore,

. 2 o 2
ipRY" Oupr — gg!pm”BupR = iURY" O up — gg!um“BwR : (1.42)

Whether we choose the gauge eigenbasis or mass eigenbasis, the gauge interaction term looks

the same for the right-handed quark field.

Gauge interaction term for left-handed quark Peld:  The matrix M, and M, is not
necessarily be diagonalized by the same matrix. This mismatch between the left-handed up-type
and down-type quark sector is accounted by the Cabibbo—Kobayashi-Maskawa(CKM) matrix
[1,2]. It enters the charged current interaction term mediated by le gauge bosons as shown

below

g P Wing,. (1.43)

Lint = E

After rotating the fields, Eq. () is written as

Li = —%u*LVLv“W:UzdL,
__9

ﬁu*LVLUzwwjdL ,
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= —iu_LVCKM’y“WJdL . (1.44)

V2

CKM matrix is sometimes also referred to as the quark mixing matrix because the charged
current gauge interactions couples any up-type quark to a down-type quark of any generation.
Note that the mixing does not appear in neutral currents involving the Z boson. The neutral
current interactions do not change quark flavor. There are no flavor-changing interactions in the
SM in the lepton sector because we don’t have any rotation matrices that don’t drop out from

the rest of the Lagrangian.

1.4 CKM Matrix

The quark mixing matrix is given as

[ #
Vud Vus Vub*
*
Verm = Vi A] =§ Vea Ves Varg - (1.45)
Viae Vis Vi

1.4.1 Counting The Number Of Parameters Of Vcku

As we can see, CKM Matrix is unitary matrix. Number of parameters of N x N unitary matrix
is N2. Here, N corresponds to number of generations. If we allow only the real values of
mixing matrix, then this matrix would represent a rotation matrix in N —dimensional space.
The rotation matrix has %N (N — 1) parameters. Then the remaining parameters of the unitary

matrix, N2 — LN(N — 1) = $N(N + 1), represent the phases.

A 3 x 3 CKM matrix therefore have three real parameters and six phases. But not all of these
phases are physical and we can just rotate them away. Our interaction Lagrangian is insensitive

to the phases of left-handed field. Possible field redefinition:
Uil — €i(p(u“‘ )UjL, Cle — ei(p(d“‘ )djL . (1.46)

It therefore seems that we can absorb 6 phases from the CKM matrix. But this is not really
correct, because one of the phases will be fixed by redefining the other fields. Counting this one
exception out, we can now write the number of physically observable phases in the CKM matrix

to be 6—5 = 1. Hence, the CKM matrix has four parameters, three quark mixing angles and one
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CP-violating complex phase. It, therefore, seems that we can absorb 6 phases from the CKM
matrix. But this is not correct because one of the phases will be fixed by redefining the other
fields. Counting this one exception out, we can now write the number of physically observable
phases in the CKM matrix to be 6 —5 = 1. Hence, the CKM matrix has four parameters, three

quark mixing angles, and one CP-violating complex phase.

1.4.2 Parametrization Of CKM Matrix

Many parametrizations of the CKM matrix have been proposed in the literature. We will discuss
here two parametrizations: the standard parametrization [3,4| recommended by particle data

group [5] and Wolfenstein Parametrization |[6].

1.4.2.1 Standard Parametrization

The standard parametrization is given by:

H

# i
c12€13 512€13 s13e™"

: (1.47)

€0 *F %k

_ 1) i0
Vekm = i —512C23 — €12523513€"°  C€12C23 — 512523513€" 593C13

d

. 5
512823 — C12C23513€"°  —C12823 — 512€23513€"°  €23C13

where ¢;; = cos(6;;) and s;; = sin(f;;) with (4,5 = 1,2,3). And 6 is the phase necessary for
CP violation. The elements of CKM matrix modifies the strength of charged-current interaction
and by studying various processes, it is possible to estimate the magnitude of the elements. The
angles 0;; can be chosen to lie in the first quadrant, so ¢;j, s;; > 0. The estimates of magnitudes

are given as [5]:

! #
0.97370 — 0.00014 0.2245— 0.0008 0.00382 — 0.00024,
*

Verm =§ 0.221 — 0.004 0.987— 0.011  0.0410— 0.0014 % : (1.48)

0.0080 - 0.0003  0.0388 — 0.0011 1.013 - 0.030

The matrix is almost unit matrix, with diagonal element close to unity and small off-diagonal
elements. Also, the off-diagonal elements involving the first two generations are greater than
all other off-diagonal elements. More explicitly, we can write s13 << So3 << s12 << 1. This

hierarchy is conveniently described by the Wolfenstein parameterization.
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1.4.2.2 Wolfenstein Parameterization

Wolfenstein introduced a parameter A = s12 to denote the smallness of all elements of the mixing
matrix. So3 is then defined by AA?, which is another order of smallness down from sio. The
element V, is called AX3(p — in), cubic in A. The factor p — in ensures that this element is
complex. The rest of the elements are then found using the unitarity of the matrix. Traditionally,

the form of the matrix is

| #
1— 3\ A AN (p—in),
*
Veru =§ -\ 1—5X2 AN % (1.49)
AN(1 —p—in) —AN? 1
There are four parameters in this parametrization, as is there in Eq. ( ). The Wolfenstein

parametrization is certainly more transparent than the standard parametrization. But Eq. ( )
is only an approximation. To achieve sufficient level of accuracy, one must include higher order

terms in \.

1.5 Why Would One Go Beyond SM?

The Standard Model is a tremendously successful theory. It’s probably the most predictive and
precise theoretical explanation for observations across a wide range of energies. So why would

one go beyond the Standard Model?

While we have learned a great deal in the 20th century, there are still many things that are not
known. The model provides a way to generate masses of quarks and leptons but it does not
explain the hierarchical masses of quarks and leptons (Flavor puzzle). The first generation quark
masses are of few MeVs and the third generation’s are in Gevs. The approximate masses [5] are
shown in the table below:

| m.~216 || m.~1279 || m, ~ 172760
| mi~467 || m,~93 | my~4180
| me~0.511 || m, ~ 105.66 || m{ ~ 1776.86

Table 1.1: Quarks and leptons masses in MeVs

As we can see from the table that there is about five orders of magnitude between the various

quark masses and similarly in the lepton sector. Therefore, the Yukawa couplings needed to
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generate the fermion masses spans six order of magnitude(h, ~ 10#6 to hy ~ 1), whereas the
gauge couplings do not exhibit such an apparent hierarchy. This is something that we do not
understand. These are just some free parameters in the standard model. Aside from the fermion
masses, CKM matrix also has a very hierarchical structure. This becomes clear if we look at the

Wolfenstein Parametrization(Eq. ().

These are the problems that we will explain by providing a model in which sources of generation
of masses for the third generation is different from the first two generation. In the next chapter,
we will go through the basics of group theory. And then we will discuss some properties of
Dihedral groups, necessary for constructing models beyond Standard Model(BSM). In the last

chapter, we will discuss our model and its implications.






“Symmetry is a vast subject, signiPcant in art and nature. Mathematics
lies at its root, and it would be hard to Pnd a better one on which to

demonstrate the working of mathematics intellect."

Hermann Weyl

The Group Of Dihedral Symmetries

Groups arise everywhere in nature, science, and mathematics, usually as collections of trans-
formations of some set that preserve some exciting structure. These transformations are the
symmetry operations that can be classified as either continuous or discrete. In each case, these
operations are represented by the group elements. For continuous symmetries, we have continu-
ous groups (Lie groups), and for discrete symmetries, we have discrete groups that can be both
finite and infinite. We can create a group from any geometric shape by looking at the symmetries
of the shape. The symmetries are the transformations where we flip and rotate the shape to
look the same before and after. The symmetries form a group called “The group of symmetries".
When the shape is a regular polygon, the group of symmetries is called the Dihedral Group.
The knowledge of group theory can serve as a powerful tool for simplifying the complex system

and has often been used in elementary particle physics to construct new theoretical models.

17
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2.1 Introduction To Group Theory

A group Gis a set of elements under operation “*" that have the following properties:
1. CLOSURE: If a,b are the members of G then there exist ¢ in G such that

c=axb. (2.1)
2. ASSOCIATIVITY : If a,b,c are the members of G then
ax(bxc)=(axb)x*c. (2.2)
3. EXISTENCE OF IDENTITY : There exist e in G such that

exa=a*xe=a. (2.3)

4. INVERSE: For every element a in G there is a corresponding inverse element a*! such

that

axad’t'=d"lxa=c. (2.4)

2.1.1 Abelian Group

If a group has a further property a x b = b * a for all a,b in the group G, the group is called
Abelian.

2.1.2 Subgroup

A subgroup is a set of elements in group G under operation * which satisfy all the properties of

the group under the same operation. Identity Element ‘e’ itself forms a group.

2.1.3 Types Of Group

Groups can be infinite or finite :-

InPnite Groups contain infinite number of elements (Refer to example 1).
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Finite Groups contain finite number element in which every element a has a finite order n

such that a" = e (Example 2).

2.1.4 Multiplication Table

The group multiplication table is a square grid with one row and one column for each element
in the set, the grid is filled in so that the element in the row belonging to a and belonging to

column b is a x b. Construction of multiplication table is done in example 2.

2.1.5 Examples

1. Group of integers {Z, +}: This is an infinite group under addition operation.
(a) Integers are closed under addition.
(b) Addition is associative.
(c) Identity element: e=0.

(d) Inverse exist: For every element a in Z there exist -a in Z such that a+ (—a) =0 = e.

2. Fourth root of unity under multiplication: This is a finite group whose elements are

1,—1,% and —i.
axb || 1 [-1] 1 |-
1 11-1] 1] -
-1 11 A
i il-if-1]1
-1 1] 1]-1

Table 2.1: Multiplication table for fourth root of unity

(a) Elements are closed under multiplication.
(b) Multiplication of numbers is associative.
(c) Identity Element: e=1.

(d) Inverse Exist: For every element there exist its corresponding inverse which can be
found using multiplication table.
To find the inverse of —1:

1. Locate —1 in row 1.
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2. Check the corresponding column.

Here, the column corresponding to —1 is

3. Stop at the row at which the identity element appears. The identity element in
this example is 1, which appears in the third row.

4. Check the corresponding element in the first column. The first column and third
row give the inverse of —1, which is —1.

Similarly, the inverse of ¢ is —¢ and —q is ¢. Identity is its inverse.

3. Set of non singular matrices
Set of all matrices whose determinant is not zero forms a non-abelian group under matrix

multiplication, where the identity element is given as

oM
m
~F~

for a n X n matrix.

2.1.6 Order

The order of a group is defined as the number of elements in the group.
Lagrange’s theorem: If a subset H of the group G is also a group, H is called the subgroup
of G. Then according to this theorem order of the subgroup H must be a divisor of the order of

G.

The order of an element a is the number A for which a" = e.
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2.1.7 Conjugacy Class

The elements g* 'ag for g € G are called elements conjugate to the element a. The set including
all elements to conjugate to an element a of G, {g”lag,Vg € G}, is called a conjugacy class.

The order of all the elements in a conjugacy class is same since

(gag" )" = ga(g* ' g)alg” 'g) FE AR = ga"g" 'geg” ' = €. (2.5)

The conjugacy class of the identity element e consist of a single element e.

2.1.8 Characters And Orthogonality Relations

The character x of the a representation D(g) is given as the trace of that representation and

they follow the following orthogonality relations:-

(
XDi () ¥ XD-(9) = Ncoop (2.6a)
gYG
( N
XDy (g) ¥* XDy () = n—¢5ciq ) (2.6b)
a ()

where Dq, Dg denotes the irreducible representation, N is the number of elements in the group,

C; represents the conjugacy class and n; is the number of the elements in the conjugacy class.

2.1.9 Homomorphism And Isomorphism

Homomorphism: Homomorphism is a map between two groups such that the group operation
is preserved. A function f: G — H between two groups is a homomorphism when it f satisfies

the following property for all z,y € G

flxxy) = f(z)o f(y). (2.7)

Let’s see an example of homomorphism. Suppose we have a map f : (R,+) — (R", ). For it to

be a homomorphism, it should satisfy eqn( ).
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flaty) = & =c" B = fa)  f(y). (2.10)

Therefore, from above equations we can see that f is a homomorphism.

Isomorphism: Two groups are said to be isomorphic if they have the same multiplication
table. If G is isomorphic to H then there is one-to-one correspondence between the elements of
G and H.

For g; — h; to be an isomorphism, the elements of H should satisfy h; o h; = hy if g; * g; = gx.
Example of isomorphism: The permutation group Sj is isomorphic to symmetry operations that

take an equilateral triangle into itself that is group Ds3.

2.2 Representations

A set of square, non-singular matrices T(g) associated with the elements of a group g € G such

that if g1g2 = g3 then T'(g1)T(g2) = T'(g3). That is, T is a homomorphism.

2.2.1 Identity Representation Matrix

If e is the identity element of the group, then T'(e) = 1 (Identity matrix).

2.2.2 Identity Representation

T(g) =1 for all g in G, also known as trivial representation.

2.2.3 Faithful Representation

All T'(g) are distinct. That is, T is isomorphism.

2.2.4 Example

Group of integers under addition modulo 4 : (Z4 ={0,1,2,3},+4).

Matrix representation: We will represent each of the above mentioned element as matrices.
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a+4b||0O[1]2]3
0 0f1]12]3
1 1121310
2 23101
3 301112

Table 2.2: Multiplication table for Z,

Element 0 is represented by the matrix ¢(0), element 1 is represented by the matrix ¢(1), element
2 is represented by the matrix ¢(2) and element 3 is represented by the matrix ¢(3). We can
think of these matrices as rotation matrices and they are given as following;:

#(1) : Rotates R? by 90 degree.

+
¢(1) =~ " o (2.11)
1 0
#(2): Rotates R% by 180 degree.
+ + +
P(2) =" " oY ot Yo (2.12)
1 0 1 0 0 -1
#(3): Rotates R% by 270 degree.
+ + +
P(3) =" T Y0,-0 o0 o (2.13)
0 -1 1 0 -1 0
#(0): Rotates R% by 360 degree or identity.
+ + +
¢(0) =" " oL oot Y (2.14)
-1 0 1 0 0 1
¢(x) * o(y) || (0) [ ¢(1) | 9(2) | ¢(3)
¢(0) 9(0) | o(1) [ 6(2) | 6(3)
o(1) (1) | 6(2) [ (3) | ¢(0)
¢(2) $(2) | ¢(3) [ ¢(0) | &(1)
$(3) $(3) | 9(0) [ (1) | 6(2)

Table 2.3: Multiplication table of the rotation matrices
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As we can see that table 2 and 3 are similar. Therefore we can conclude that the above-given

example is an example of faithful representation or one-to-one representation.

2.2.5 Equivalent Representation
If T is a representation then
T = 5*1T8S (2.15)

is also a representation where S can be any arbitrary non-singular matrix because

T'(A)T(B) = S*1T(A)SS*1T(B)S = S*1T(A)T(B)S = S*'T(AB)S = T'(AB)  (2.16)

T and T" are equivalent. By choosing different S we can get different representations of the same
matrix.

Example: Consider T and S as given below. S#! is also given for convenience.
T=- 0, §=- 0 g#l_- 0 (2.17)

Then one can easily find the similarity transformation of T' as
+ .
-3 =5
T = S*178 = - 0 (2.18)
2 3

2.2.6 Inequivalent Representations

Representations T and T' for which it is impossible to find a similarity transform S relating

them.
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2.2.7 Reducible And Irreducible Representation

A representation T is Reducible Representation if it’s equivalent representation 7" has the form

+ .
0 EERE
. 0 /E/E,(-E;
T = / (2.19)
z 2
0 0 EEE

where T, are square matrices. If a representation cannot be reduced in the above form then it
is called Irreducible Representation. A reducible representation can be reduced into a number of

irreducible representations.

2.3 Dihedral Groups

The dihedral group D,, (n > 3) is the group of symmetries of a regular polygon with n vertices.
The order of dihedral group is 2n.

Dihedral group notation : D, = {a,bla™ = b*> = (ab)? = 1} where a, b represents rotation(by
a multiple of 27 radians around the center) and reflection(about an axis), respectively, which

takes the regular polygon back to itself.

2.3.1 Group Structure Of D,

This group is the symmetry group of square. The eight symmetries of a square:

1. Ry = e = 0% Rotation(Identity)
1 4 1 4

2. Rgy = 90% Rotation(Counter Clockwise)
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3. Rig0 = 180% Rotation(Counter Clockwise)
1 4 3

4. Rorg = 270% Rotation(Counter Clockwise)
1 4 2

5. F'x = Relection about horizontal axis
1 4 2

6. Fy = Relection about vertical axis

1 4 4

7. Fp1 — ReBection about diagonal
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8. Fpo — Relection about other diagonal

1

4

3

Characteristic Table for the above group of symmetries G = {e,Rqo,R180,R270,Fx,Fy,Fp1,Fp2,}

2.3.2 Finding Representation Matrices :

ab e Roo | Rigo | Rovo | Fix | Fy | Fp1 | Fpe
2 € Roo | Riso | Roro | Fx | Fy | Fp1 | Fpo
Roo || Roo | Riso | Roro | e Fpa | Fp1 | Fx | Fy
Rigo || Riso | Roro | e Roo | Fy | Fx | Fp2 | Fp1
Rorg || Roro | e Roo | Riso | Fp1 | Fp2 | Fy | Fx
Fx Fx | Fp1 | Fy | Fp2 e | Riso | Roo | Ra2ro
Fy Fy | Fps | Fx | Fp1 | Riso| e | Roro | Roo
Fp1 || Fp1 | Fy | Fp2 | Fx | Raro | Roo e | Riso
Fps || Fp2 | Fx | Fp1 | Fy | Roo | Roro | Riso | e
Table 2.4: Multiplication table for D,

Method 1

Consider a square on x-y plane with vertices A,B,C,D and corresponding position vectors r 4,

B, T'C, 'D-

1. Matrix for identity transformation

A —TA,

rB — B,

rc — re,

D — TD

(2.20)
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A(-1,1) B(1,1) A(-1,1) B(1,1)

D(-1,-1) C(1,-1) D(-1,-1) C(1,-1)

The position coordinates are transformed by the matrix T3 as following

+ + +
U v -1 —1
- Ow- 0 = - 0 (2.21a)
w T 1 1
+ .+ +
U v 1 1
- O0x-0 = -0 (2.21b)
w T 1 1
+ .+ +
U v 1 1
- Oxw- 0 = - 0 (2.21c¢)
w T -1 -1
+ + . +
U v -1 -1
- Ow- 0 = - 0, (2.21d)
w T -1 -1
Solving eqn , we can find the matrix T} as
+ +
U v 1 0
T, =- 0—- 0, (2.22)
w T 0 1

2. Matrix for 90% rotation

rA—Tp, TB—>TA, TC —TB, D —TC

A(-1,1) B(1,1) B(-1,1) C(1,1)

D(-1,-1) C(1,-1) A(-1-1) D(1,-1)

The position coordinates are transformed by the matrix 75 as following

- Ow- 0 = - 0 (2.23a)
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Solving eqn

3. Matrix for 180% transformation

T4 —TC, TB—>TD, TC — TA,
A(-1,1) B(1,1)
D(-1,-1) C(1,-1)

The position coordinates are transformed by the matrix T3 as following

, we can find the matrix 75 as

"D = TB

C(-1,1)

D(1,1)

B(-1,-1)

A(1-1)

(2.23b)

(2.23¢)

(2.23d)

(2.24)

(2.25a)

(2.25b)

(2.25¢)

(2.25d)
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Solving eqn , we can find the matrix T3 as
+ ) +
(TR -1 0
T3 =- 0—- 0 (2.26)
w T 0 -1
4. Matrix for 270% transformation
A4 —7TB, "B —>TC, TC —TD, "D —>TA
A(-1,1) B(1,1) D(-1,1) A(1,1)
D(-1,-1) C(1,-1) C(-1,-1) B(1,-1)
The position coordinates are transformed by the matrix T as following
+ + +
U v -1 1
- Oxw- 0 = -0 (2.27a)
w T 1 1
+ + . +
U v 1 1
- Ox- 0 = - , (2.27b)
w T 1 -1
+ + . +
U v 1 -1
- Ox- 0 = - , (2.27¢)
w T -1 -1
+ + . +
U v -1 -1
- Ox- 0 = - (2.27d)
w T —1 1
Solving eqn , we can find the matrix Ty as
+ .+
u v 0 1
Ty=- 0—- 0 (2.28)
w T -1 0

5. Matrix for refRection about horizontal axis

A —Tp, "B —>TC, TC —TB, TD —TA
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A(-1,1) B(1,1) D(-1,1) C(1,1)

D(-1,-1) C(1,-1) A(-1-1) B(1,-1)

The position coordinates are transformed by the matrix Tx as following

+ + +
u v -1 -1
- 0 %~ O = - 0 , (229&)
w T 1 —1
+ + . +
u v 1 1
- O * O g - O s (229b>
w x 1 —1
+ + . +
u v 1 1
- 0 %~ O = - O , (2290)
w T -1 1
+ + . +
u v -1 -1
- Ox- 0 = - 0, (2.29d)
w T -1 1
Solving eqn , we can find the matrix T'x as
+ . +
u v 1 0
Ty =- 0—- 0. (2.30)
w 0 -1

6. Matrix for ref3ection about vertical axis

A —TB,TB—>TA,TC — TD, T TD —TC
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A(-1,1) B(1,1) B(-1,1) A(1,1)

D(-1,-1) C(1,-1) C(-1,-1) D(1,-1)

The position coordinates are transformed by the matrix Ty as following

+ + +
u v -1 1
- O«- 0 = -0 , (2.31a)
w T 1 1
+ + . +
U v 1 -1
- O04«-0 = - 70 , (2.31b)
w x 1 1
+ + +
u v 1 -1
- O4«- "0 = - 70 , (2.31c¢)
w T -1 —1
+ + +
u v -1 1
- O«- 0 — - "0 (2.31d)
w T -1 —1
Solving eqn , we can find the matrix Ty as
+ ) +
u v -1 0
Ty =- 0—- 0. (2.32)
w x 0 1

7. Matrix for reflection about diagonal

rAa—7TA TB—>Tp, Tc —>7TCc, "D —TB

A(-1,1) B(1,1) A(-1,1) D(1,1)

D(-1,-1) C(1,-1) B(-1-1) C(1,-1)

The position coordinates are transformed by the matrix Ty as following

- Ox- 0 = - 0 (2.33a)
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+ .+ +
u v 1 -1
- O«-0 = - , (2.33b)
w T 1 —1
+ .+ +
U v 1 1
- Ow- 0 = - , (2.33¢)
w T -1 -1
+ .+ + .
U v -1 1
- Ox- 0 = -0, (2.33d)
w T -1 1
Solving eqn , we can find the matrix Tpy as
+ . + .
U v 0 -1
Tpp =~ 0—- 0. (2.34)
w T -1 0
8. Matrix for reflection about other diagonal
rAa—7Tc "B —>TB, TCc —>TA, D —>TD
A(-1,1) B(1,1) C(-1,1) B(1,1)
D(-1,-1) C(1,-1) D(-1,-1) A(1,-1)
The position coordinates are transformed by the matrix Tps as following
+ .+ +
u v, —1 1
- 0- 0 = - , (2.35a)
w T 1 -1
+ .+ + .
u v 1 1
- 0«-0 = -0 (2.35b)
w T 1 1
+ .+ +
U v 1 -1
- Ow- 0 = - , (2.35¢)
w T -1 1
+ .+ +
U v —1 —1
- Ow- 0 = - (2.35d)
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Solving eqn , we can find the matrix Tpo as
+ +
U v 0 1
TD2 =" 0—- 0 . (236)
w T 1 0

+ + ) + +
1 0 0 -1 -1 0 0 1
Ti=I=- 0 Tp=- 0, 73=- 0, 7=- 0,
01 1 0 0 -1 -1 0
+ + . + +
1 0 -1 0 0 -1 0 1
TX:' O,Ty:' O,TDlz_ OyTD2:- 0 (237)
0 -1 0 1 -1 0 1 0

2.3.3 Finding 4 x 4 Matrix Representation : Method 2

Here we are going to discuss another method for finding the matrix representation of the elements.
We will use the figures in subsection 4.1 and use the vertex numbering to find the permutations.

And corresponding to each permutation, we will put the entries as Os and 1s in the matrix.

1 2 3 4
1. Identity Transformation
1 2 3 4
+
, 100 0¢
;0 1.0 0;
J = : / (2.38)
0 0 1 06
0 001
1 2 3 4
2. 90% Rotation
4 1 2 3
+
, 010 04
;0 0 1 0%
;0 0 0 16
10 00
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1 2 3 4
3. 180% Rotation
341 2
+ .
,0 0 1 0¢
0.0 0 1
Tigo = i (2.40)
;1.0 0 0f
0100
1 2 3 4
4. 270% Rotation
2 3 41
+ .
,0 00 1¢
;100 0%
Toro = 1 (2.41)
;0 1.0 0f
0 010
1 2 3 4
5. Rel3ection about x-axis
2 1 4 3
+ .
10 10 0;
;100 Of
Tx => i (2.42)
;0 0 0 16
0010
1 2 3 4
6. RelRection about y-axis
4 3 2 1
+
’O 0 0 1¢
;0 0 1 0f
Ty = / (2.43)
;0 1.0 0f
1 0 00
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1 2 3 4
7. RelRection about Diagonal D,
1 4 3 2
+
’1 00 0%
0.0 0 1
Tp) = / (2.44)
100 1 0f
0100
1 2 3 4
8. Relection about Diagonal D,
3 2 1 4
+
0 01 0/
:O 10 0;
Tpy = / (2.45)
»10 0 0f
00 01

2.3.4 Reducing 4 x 4 Matrices

As we have seen in subsection 4.2, there is a 2 x 2 representation of the elements of D4. So the

4 x 4 matrix representation found out in subsection 4.3 must be reducible. Now our task is to
construct an orthogonal invertible matrix S which can decompose the above reducible matrices
into block-diagonal form.

Why are we constructing a orthogonal matrix?

Symmetries of square is composed of rotations and reflections and the class of orthogonal ma-
trices was defined in such a way so that they would represent rotations and reflections; this
property is what makes this class of matrices so useful in the first place.

What is an orthogonal matrix? A matrix is said to be orthogonal if its columns { ¢V, ¢(?...., ¢(™}
form a orthonormal set in R”. The below given matrix is an orthogonal matrix as it satisfies

ST s =8AT =1.

+ . + .
-05 05 05 05 -05 —05 -05 -05
, =05 —05 0.5 —0.52 s o+ 05 =05 05 —0.52
S:v / 5 S == / (246)
;=05 05 0.5 —0.50 » 05 05 —0.5 —0.50

-0.5 —-05 —-0.5 0.5 05 —-05 —-05 0.5
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The block diagonal matrices can be easily find out using the similarity transformation S* ' A/ =

ST M A5 as shown below

1. I
+
'1 0 0 0¢
o 0 1.0 0f
I'=s"'mm= ! (2.47)
100 1 0f
0 0 0 1
2. Ty
+
’ 1 0 0 Of
D 0 -10 0f
100 0 -1
0O 0 1 O
3. T1s0
+
1 0 0 0
, /
ot 0L 00
90 = 90 A0 =" 1 (2.49)
100 -1 0
00 0 -1
4. Taro
+
1 0 0 0/
; /
;0 -1 0 o
Tyro = 571 Aloro A5 = / (2.50)
000 1
0O 0 -1 0
5. Tx
+
1 0 0 0
: /
D 0 -1 0 0
T\ = S*' Ay A5 =) ! (2.51)
000 1
0O 0 -1 0
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6. Ty
+
‘100 Of
, 01 0 -1 0 0
Ty =S ' Ay A5 = / (2.52)
;00 -1 0f
0 0 0 1
7. Tpy
+
‘Lo 0¢
\ 01 01 0 0/
Th =S Ap A= / (2.53)
;00 0 —1f
00 -1 0
8. Tpo
+ .
100 0;
\ . ;0 1.0 0f
TDZ =5 TDQS = / (254)
;00 0 1f
0010

All the above matrices are in block diagonal form that means it can be further reduced into

smaller 1X1 and 2X2 matrices.

2.3.5 Conjugacy Classes
The elements are classified into five conjugacy classes,
Ci:{e}, Cy:{a,a®}, C]:{a?®}, Ch:{b,a’b}, CY :{ab,a’b} (2.55)

Here, the subscript of C),, n, denotes the number of elements in the conjugacy class C),.

Their order are found as

e=e, h =1, (2.56a)
at=(@'=e, h = 4, (2.56b)

(a>)?=e, h = 2, (2.56¢)
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(V*) = (a*b)?=e, h = 2, (2.56d)

(ab)? = (a®b)? =e, h = 2. (2.56¢)

2.3.6 Characters And Representations Of D,

Let us study the irreps(irreducible representation) of D4. The number of irreps of D4 must
be equal to the number of conjugacy classes, that is, five. We assume that there are m,

n—dimensional representations. m,, must satisfy

(
my, =5. (2.57)
n
The orthogonality relation requires,
( 2 ( 2
[XD! (Cl)] = mpn® = mq + 4dmo + 9ms + £ £ &£ (2.58)
o n

where m,, > 0. This equation has two possible solutions, (mi,ma2) = (4,1) and (0,2), but only
the former (my,ms) = (4,1) satisfies Eq. ().

Thus, the irreps of Dy include four singlets and a doublet. Let us denote the singlets by 1.,
1:#, 144 and 14 , and the doublet by 2. Their characters are denoted by x1,, (9), x1., (9),
X1, . (9), x1, (g) and x2(g), respectively.

First, we consider the characters of four singlets. Because b?>=(a?) = e, (ab)? = e, the characters

of Oy, C4 and Cj have two possibilities,

xp, (C2) ==1, xp (C3)=-1, xp, (C3)=~1, (2.59)

where Dy corresponds to four singlets 1++. Obviously, xp, (C1) =1 and x2(C1) = 2. Further-

more, one singlet corresponds to a trivial singlet, that is x1,, (C2) = x1., (C}) = x1,. (C3) =

X1++ (CI2|) = ]‘
2 x 2 matrix representation for Dy can be generated by,
! # | # !
. cos(m/2) —sin(w/2 .0 =1 .1 0
a= (™/2) (/2 _ $ ., b= $ . (2.60)

sin(w/2)  cos(m/2) 1 0 0 -1
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From these generators, we can find out the characters of the representation of the elements as

X2(C2) =0, x2(C)) =—-2, x2(Cy) =0, x2(Cy)=0. (2.61)

We will now use the orthogonality relations, Eqs. () and ( ), to find out the remaining

characters. Solving for x1,, (), We get

( 1 1 1]
X1y (g)X1+! (g) =1+ 2X1+1 (CQ) + X1y (Cl) + 2X1+! (02) + 2X1+! (02) = 0’ (2'62)

(
[Xl+! (g)]2 =1+ 2[X1+! (02)]2 + [X1+! (Ci)]Q + 2[X1+! (C;)]Q + 2[X1+! (Cél)]Q =8, (2'63)

X2(9)x1,, (9) =1AR+2MAMA1., (C2) + (-2) A A1, (C) +2A A, (C3) +
2 A1, (C3)=0. (2.64)

Eq. () implies x1,, (C;) = —1 and Eq. () implies x1,, (Cj) = 1. Following the same

procedure for x1, , (C;), we get

( I I 1"
X1y (g)Xl! + (g) =1+4+2x1,, (02) + X1 . (Cl) +2x1, . (02) +2x1, . (02) =0, (2'65)

X1 . (Ci) =-1, (2.66)
X1 . (C)) =1. (2.67)
For x1, (Cj), we get
( 1 | I
X1 (X210 (9) =1+2x1, (C2) +x1, (C7) +2x1, (C3) +2x1, (C3)=0, (2.68)
X1y (Cz) =-1, (2.69)

X1y (Ci) =1. (2.70)
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And we can also write the following relations :-

1+ 2x1,, (Co)x1, 4 (C2) + 1+ 2x1,, (CH)x1, . (C) +2x1,, (CH)x1, . (CY) =0, (2.71)

1+ 2X1+1 (CQ)Xl!! (C2) +1+ 2Xl+! (Cé)Xlu (CIQ) + 2X1+! (C!Z!)Xl!! (CS) =0, (2-72>

L+2xa, . (Co)xa, (C2) + 1+ 2xa,, (Ca)xay (C) +2xa, . (Co)x, (C3) =0,  (2.73)

Solving the above equations, we can construct the character table as given below:

Al Xt | xae | xu. [ x| xe
i T1T 1 1 1 1 2
Cy, 4] 1 -1 [ =1 1 0
2T 1 1 1T [ -2
cy 2l 1 —1 1 |0
oy 2T 1 -1 1 B )

Table 2.5: Character table for D4

2.3.7 Tensor Products

Now that we have constructed the character table and we know the irreducible representations
of d4, our next task is to find out the tensor product of the irreps. All the irreps of D, are given

as follows:

1o, 14s, a4, 1ag, 2 (274)

The singlet representation can be easily found out using the character table and the doublet
representation can be found out using the generator in Eq. ( ).
Consider a doublet

X
-7l (2.75)

T2
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It transforms under D, as following:

+ + .+ +
T 1 0, =« x
e: - 0- 0-70 = -"0 (2.76a)
T2 0 1 xI9 T2
+ + .+ +
0 -1 —
a: -0 - o-"0 — -0 (2.76b)
T2 1 0 X9 T
+ + .+ +
9 I —1 0 I —X1
a® - O — - O' O g - O s (2760)
xI9 0 -1 i) —XT2
+ + + +
3 .’Elo 0 10 fL’lo o 0
a’: - — - - = - , (2.76d)
X2 -1 0 X2 —x1
+ + .+ +
T 1 0 T T
b: -0 - 0-"'o = - "o, (2.76e)
) 0o -1 xT9 — X9
+ + .+ +
il 0 1 I T2
ab: - 0 - 0-7°0 = -770 (2.76f)
) 1 0 To Tl
+ + .+ +
2 X1 -1 0 I —X1
a‘b : - 0_>' 0- 0 = - 0 , (276g)
o 0 1 xI9 )
+ + R + .
3 1 0 -1 1 —XI2
ab: - 0 - 0-"0 = - 770, (2.76h)
T9 -1 0 T2 —T
12
Singlet transforms under Dy as follows

12 12 1212 12
e: w =DEe) w =1 w=w,
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12 12 1212 12

2

12
Singlet transforms under D, as follows

+!

a:wﬁD(az)w=1
12 3121

w = w
212 12

12 12 1212 12

e: w —D(e) w =
12 12
a: w — D(a) w =

12 1
2

12 12

12
Singlet transforms under D, as follows

!+

1 w

1 212 1 2

-1

w
1212 12
a:w—>D(a2)w:1w

12 12 1212 12

e w —>D(6)w =
12 12
a: w — D) w =
) 12 12

N

12 1
a: w — D) w

12 172 1 21

12 12

a’b: w — D(a®b) w

a:w—>D(a2)w=1

-1

= w

w
1 212 1 2

w — —w )

1212 2
ab: w — D(ab) w = 1 )
12 12 1 212 1

w o= w

-1 w

= —w
12 12 1212 12

a’b: w — D(a®b) w

1 w = w

2

)

(2.77)

(2.78)

(2.79)
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12

Singlet transforms under D, as follows
1

a?’b: w —>D(a3b) w = -1 w = —w . (2.80)

2.3.7.1 Tensor Product Of Doublets

Take first doublet whose components are x1 and x2, and second doublet whose components are

y1 and yo. If we take the tensor product of these two, we get

+ .
+ + , CUI?/V
0 - Yo Ilyz? , (2.81)
z2 Y2 _ 562?}16
T2y

Now we know how a doublet transforms under different elements of Dy, Eq. (). From that

we can easily find out how each element x;y; transforms.

Element e:
Ty = iy, (2.82a)
Ty = 1y, (2.82b)
Tyl = oy, (2.82¢)
Thyy = Tay2. (2.82d)
Element a:

Ty = @y, (2.83a)



Chapter 2. The Group Of Dihedral Symmetries 45

1o
L1Y2
1o
Zal

1o
ZoYo

= —xU1, (2.83b)
= —x1Y2, (2.83¢)
1y - (2.83d)

It is found that following linear combinations transforms like different singlets for element a.

Element a?:

Ty + Ty

o Lo
T1Y1 — ToYs
Ty + Ty

1o 1o
T1Ys — Lol

Lo
1Y
Lo
T1Ys
Lo
T2Y1

Lo
T2Ys

[D(a)]1.. [w1y1 + @2y2], (2.84a)
[D(a)]1,, [z1y1 — z2y2], (2.84D)
[D(a)la, . [x1y2 + z211] (2.84c)
[D(a)]ay  [z1y2 — z231] . (2.84d)
= Tiy1; (2.85a)
= T1Yy2;, (2.85Db)
= Z2Y1, (2.85¢)
= Z2y2- (2.85d)

It is found that following linear combinations transforms like different singlets for element a?.

Element a®:

I | | |
T1Y1 + ToYs
1o 1o
T1Y1 — T2Y2
I | | |
T1Ys + ol

Lo Lo
L1Y2 — T2y

1o
191
1o
Z1Y2
oYy

1o
ZoYo

[D(a*)1., [z1y1 + 22y2] , (2.86a)
[D(a®)]1., [#1y1 — woys], (2.86b)
[D(a*)1, , [#192 + z231] (2.86¢)
[D(a®)]1y [z1y2 — 2201] (2.86d)
= Z2¥2, (2.87a)
= %1, (2.87b)
= —Z1Y2, (2.87c)
= Tiy1- (2.87d)
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It is found that following linear combinations transforms like different singlets for element a>.

2y +abyy = (D). [wy + zoyp] (2.88a)
2y — oYy = [D(a®)]1,, [w1y — zay) (2.88D)
Th +ahyy = [D(a), . [w1ye + zau], (2.88¢)
wiyy —xoyp = [D(a®)y, [r1ye — zap]. (2.88d)
Element b:
Ty = T, (2.89a)
Tiyy = —a1y2, (2.89b)
Tyl = —aau1, (2.89¢)
Thyy = Tay2. (2.89d)

It is found that following linear combinations transforms like different singlets for element b.

ziyi +aays = (DO, [21y1 + zag) (2.90a)
vy — ohyy = [DO)., [z1y1 — 2apa], (2.90b)
ziysy +aayy = (DO, . [21y2 + oy, (2.90c)
x'1y|2 - 33'29'1 = [DO)]1y [z1y2 — z21]. (2.90d)
Element ab:
Ty, = Tay2, (2.91a)
Ty = Tayn, (2.91b)
Ty = w1y, (2.91c)
Ty = Ty (2.91d)

It is found that following linear combinations transforms like different singlets for element ab.

Ty + gy = [D(ab),. [w1y1 + zayl (2.92a)
vy — Yy = [D(ab),, [z1y1 — zayel, (2.92b)

Ty +ahy; = [D(ab)ly, . [z1y2 + 2231 (2.92¢)
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Ty —woyy = [D(ab)]yy [w1y2 — zaun]. (2.92d)
Element a’b:
Ty = T, (2.93a)
Tiyy = —a1y2, (2.93b)
Ty = —Tayn, (2.93¢)
Ty = Taya. (2.93d)

It is found that following linear combinations transforms like different singlets for element a?b.

Ty + gy = [D(@D)1., [T1y1 + ways], (2.94a)
ziyy — oYy = [D(a®b)]1,, [z1y1 — zays] | (2.94b)
sy +abyy = [D(a®b)y, , [v1y2 + 221] (2.94c)
wyyy —xhyy = [D(a®b)]y, [w1y2 — 2ap1]. (2.94d)
Element a®b:
Ty, = Taye, (2.95a)
Ty = oy, (2.95b)
Tyyy = 1y, (2.95¢)
Thyy = T1y1- (2.95d)

It is found that following linear combinations transforms like different singlets for element a3b.

vy + ohyy = [D(@®D)]a., [w1y1 + 22y, (2.96a)
vyt —whyy = [D(@®D)]1,, [z1y1 — z2ys], (2.96b)
Ty +ayyy = (D), , [v1y2 + 2], (2.96c¢)
ziyy —xhyy = [D(@®b)]y, [r1y2 — au] . (2.96d)

From the above equations we can conclude that [x1y; + x2y2] transforms as 1 singlet, [z1y; —
x9ys2] transforms as 1,4 singlet, [z1y2 + zoy1| transforms as 14 4+ and [z1y2 — x2y] transforms

as 1gg singlet under each element of Dy.
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Hence, the tensor product of two doublets can be written as

+ .+

x1 1
- 0@ 70 = [2yy + 2oyelr,, + [Ty — Doyel1,, + [T1ye + 2oyl . + [M1y2 — zaun]1, (2.97)
Z2 Y2

2.3.7.2 Tensor Product Of Doublet And Singlet

+ .+
12 x we
w ® 0=-""0 (2.98)
Yy wy
Case 1: Consider the following singlet and doublet:
+
12 7
wo o ‘o, (2.99)
++ T9 )
The tensor product is trivial and is given as
+ . +
12 T wx
w  © ‘o =-"o (2.100)
+ o ’ w9 )
Case 2: The singlet and doublet for this case are
+
12 o
w T 0 (2.101)
Element a
w'e) = wzsy, (2.102)
w'eh = wry . (2.103)
It is found that
+ .+ .+ +
way w'e! wxy 1 2w
- 0 _,- 1o_ 0— D(a) 0 (2.104)
—wWxa —w'zh —wry 2 —wxy

Element a2

w'r) = —wz (2.105)
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+ . + . + i
L1 Y1 T2Y2 — T1Y1
-0 270 = [my + 2o, @ [m1ye — Teyi]y, ©° 0 (2.176Db)
Z2 2, Y2 2 T1Y2 + Tay1 2
+ . + . + i + )
1 | T1Y1 + T2yo T12) — Tt
Mo g-Yo - y' yl 0 g-"tM 0 (2.176¢)
Z2 21 Y2 2, T1Toy — T2Tq 2, T1Y2 + T2y1 2
Product of doublet and singlet
+ . + ) + . +
12 12
T wry T —wIr9
w  ® 0O =-"0 w  ®° 0 —- o . (2.177)
2 21,2 w2 21,2 . 2 21,2 Wi 21,2
Product of singlets
12
w o ®war,, = [wiwa]a,,, - (2.178)

where 14 is either 11 or 1y.






I have not failed. I've just found 10,000

ways that won’t work ...

Thomas A. Edison

Attempts Using D symmetry

Now that we are equipped with the knowledge of group theory, we will use it to construct models
using D5 symmetry. This can be done by extending the SM scalar sector by adding SU(2) scalar
doublets. We will start by writing the tensor products as found out in the previous chapter.
Then we will build two Higgs doublet model(2HDM) and three Higgs doublet model(3HDM) in

the upcoming sections.

Ds has four irreducible representations. Two two-dimensional representations denoted by 21 and
25, and two one-dimensional representations denoted by 14 and 1x. Tensor product of irreps
in real basis is found out in Chapter- . The results are summarized here again for reference.
Product of doublets

+ . + . + .

_ $10 ®- ylo T — 1’2y20

= [my1 + 221, @ [Ty — zoy1]1, @ , (3.1a)

x x +x
2 2, Y2 2, 1Y2 291 2,

99
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+ . + . + )
1 Y1 T2Y2 — X1
-0 @70 = [z + 2o, @ [miye —2oyn]y, B° 0 , (31b)
2, v2 T1Y2 + T2Y1 2
+ . + . + . + .
1 1 T1Y1 + T2y T3] — T}
-0 g-"o = - y| yl 0 -7 0. (3.1c)
T2, b2, Tty =2ty T1Y2 + T2y1 2
Product of doublet and singlet
+ . + ) + . +
12 12
T wry T —wIr9
wl ® - 0 =" 0 , w]_ ® - 0 =" 0 . (3'2)
2 21,2 e 21,2 . 2 21,2 v 21,2
Product of singlets
12
w o ®wi, = [wiwi,s, - (3.3)

where 1 is either 11 or 1y.

3.1 Two Higgs Doublet Model

D5 has two two-dimensional representations, so we have the freedom of assigning the three
generations of fermions to different two-dimensional representations. One of the ways of assigning
is putting the first generation in the one-dimensional representation, and the second and third
generations in the two-dimensional representation as done in this paper [8]. Or we can multiply
with the permutation matrices to get the required fields at the end.

We have tried other ways of transforming quark fields. Using one Higgs doublet is a trivial case.
Shown below are different ways of transforming fields using two SU(2) Higgs doublet. We can
either put all the fields in the same doublet of D5 or put different fields in different doublets of
Ds.

Case 1: All the fields in the same doublet, say 2;. The quark field transform as different
representation of Dy in the following way:

Lot G, msr, 1w psr, (3.4a)

21: _62107 _p1R07 _anO’

Q2 PR NaR

(3.4b)
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where Q4’s (A = 1,2, 3) are the left handed SU(2) quark doublets and pag’s and n4gr’s are the
right handed up-type and down-type quark fields, respectively.
The two Higgs fields ¢1 and ¢2, which are SU(2) doublets transform as

(3.4¢)

The fermion mass matrix arises from the coupling y;; @Z ¢ njr for down-type quarks and
Yij @l g?)ij for up-type quarks. ¢ is the Higgs field and ¢ is ¢ = ioa¢ .
Using Eq. ( ), Eq. ( ) and Eq. ( ), we can write the Yukawa Lagrangian, which will

be invariant under D5 symmetry(as done in section 4).

—L = A4(Q 113k + Qap2nsr) + Ba(Qsd1nir + Qspanar)

+ Au(Q102p3r — Qad1P1R) + Bu(Qsb1p1r + Qsopar) + hc.. (3.5)

where A, A4, B, and By are the Yukawa couplings. Let (¢r) = % represents the vacuum

expectation values of ¢r, k = 1,2. The mass matrices arising from the above Lagrangian are

written as 1 #

0 0 Advl*
=4 Agv (3.68)
= — , .6a

d \/5 0 0 dUZ$

Bd’l)1 Bd’UQ 0

! #

0 0 Ayvg
M, = — % ’ 3.6b
u = E 0 0 —Auv1$ . (3.6b)

Bu’Ul BUUQ 0

The biunitary transformation to obtain the diagonal matrices are:
D, =V M, V}, (3.7a)

Dy=Up Mg UL . (3.7b)

Here, the matrices relate the gauge basis(n, p) to mass basis(u,d) in the following way:
ur = Vi pr, ur=VRpR, (3.8a)

dL:UL nr, dR:UR ngr. (3.8b)
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where u and d represent the physical up and down quark respectively. The Cabibbo-Kobayashi-

Maskawa(CKM) matrix is obtained from the gauge interaction term and given by

Verw = Vi, A (3.9)
From Eq. ()
D! = (U, 81, A} = Ug ML) AT (3.10)
D% =UL MI3 ﬁE/'z = diag(m3, m2, m?), . (3.11)
Similarly,
D} = Vi, A1 A = diag(m], mZ, my), . (3.12)
From Eq. (), | "

Agv% A?lvlvg 0

*
1 *
MM}, = §i AZvivy  A%03 0 % ) (3.13a)
0 0  B2?
! #
A%v% —A2v109 0 .,
1 *
MuMJ = éi —A2v109 AZy? 0 a‘; . (3.13b)
0 0 B2v?

u
Diagonalizing the above matrices will give us the value of Vi, and U, which can be used to find

the CKM matrix. We define,

! #
cosfB sinf 0,

*
Up;:i—sinﬁ cosff 0%

L (3.14)
0 0 1

where ( is defined as following:

tan S =v9/vy = cosfB=wv1/v sinf =wvy/v. (3.15)
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And v = vlz + vg is the total VEV. Ug diagonalizes the mass matrices as follows:

Up MIZ AT, = diag(0,A2v?/2,B2v3/2) = diag(m?, , m%,,m2), (3.16a)

U I AL = diag(A3v?/2,0,B3v3/2) = diag(m3,, m3, m3,). (3.16b)

We have the freedom to rearrange these eigenvalues to assign them to mg, ms and m; according

to our convenience. We concisely take into account all such possibilities by writing

I # ' #
d* dl*
* *
i 8& :U§ dz& s (317)
b ds

where, u is a permutation matrix with Os and 1s in the appropriate places. For example, if we
assign d = dy, s = do and s = ds, then v = I3, the 3 x 3 identity matrix. Thus, using Eq.

( ), the diagonal mass matrix in the (d, s,b) basis may be written as:
D3 = diag(m3, m2,m}) = u Mg AI; AET, A" (3.18)

Take matrix v as

! #
0 1 0,
i X
u= * 3.19
10 0f (3.19)
0 01
such that lowest mass eigenvalue is assigned to the down quark.
And for the up-sector
D? = diag(m?, m?,m?) = U A2 AL} (3.20)

Now, comparing Eqs. ( )and (  ),and Egs. ( )and ( )

Vi=Ug, Up=uAlg. (3.21)
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The CKM matrix is then calculated as follows:

! #
01 0,
*

VCKszLm*ngmg/ﬁ*:i 10 O

5 (3.22)

0 01

And the mass of up quark and down quark is coming zero.

We will get the similar result if we put all the fields in the 25 doublet instead of 2;. Also, there
will not be much change if we assign the down-type right-handed field to 14 instead of 1.
Case 2: Different fields in different doublets. The quark fields are assigned to different repre-

sentation of Ds in the following way:

1,: Qs 14 ' p3r, M3R (3.23a)
+ .+ +
n
2. -0 Mg 2: - 10 (3.23b)
Q2 PR N2R

where Q4’s (A = 1,2, 3) are the left handed SU(2) quark doublets and par’s and nag’s ar