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The reward for work well done is the

opportunity to do more . . .

Jonas Salk

1
Standard Model And The Flavor Puzzle

The Standard Model of particle physics, a triumph of 20th-century physics, provides a remark-

ably successful framework for explaining three of the four known forces of nature. These forces

or interactions are described by specifying the particles which mediate the interactions. And the

number of mediators of an interaction is equal to the number of generators of the corresponding

gauge group.

In the Standard Model, we have to following gauge group:

SU(3)c ◊ SU(2)L ◊ U(1)Y , (1.1)

where SU(3)c is the Quantum chromodynamics or QCD gauge group and SU(2)L ◊ U(1)Y is

the electroweak part. This symmetry is spontaneously broken into,

SU(3)c ◊ SU(2)L ◊ U(1)Y � SU(3)c ◊ U(1)Q. (1.2)

1
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Here Y and Q denote the weak hypercharge and the electric charge generators respectively.

The QCD part of the gauge group describes the strong interactions. These interactions are

mediated by eight gluons Ga. The SU(2)L ◊ U(1)Y is called electroweak part of the Standard

Model, because it describes both electromagnetic and weak interactions. These interactions are

mediated by ⇥, W±, Z0 and the neutral Higgs boson H. This breaking is induced by the Vacuum

expectation value(VEV) of Higgs field. It is an electroweak doublet given as

⇤ =

!

" ⇤+

v+H(x)+i�
2

#

$ . (1.3)

⇤+ and ⌅ are the unphysical modes which are eaten up by the W and Z in the process of

symmetry breaking. H is the physical scalar mode called as the Higgs bosons. v is the VEV of

H whose value is 246 GeV.

The flavor puzzle that we are dealing with comes from the Standard electroweak model. We will

only focus on it from now on.

1.1 Standard Electroweak Model

Weak interactions are parity-violating. This means that the left chiral projection of the fermion

field and the right chiral projection of the fermion field should have di⇥erent transformation prop-

erties under an internal symmetry, that is, di⇥erent interactions. These fermions are supposed

to transform like the following gauge multiplets:

QjL ⇥

!

" p1L

n1L

#

$ ,

!

" p2L

n2L

#

$ ,

!

" p3L

n3L

#

$ : (2, 1/6) , (1.4a)

pjR ⇥
%
p1R

&
,

%
p2R

&
,

%
p3R

&
: (1, 2/3) , (1.4b)

njR ⇥
%
n1R

&
,

%
n2R

&
,

%
n3R

&
: (1,⇤1/3) , (1.4c)

LjL ⇥

!

" ⇧E1L

E1L

#

$ ,

!

" ⇧E2L

E2L

#

$ ,

!

" ⇧E3L

E3L

#

$ : (2,⇤1/2) , (1.4d)

EjR ⇥
%
E1R

&
,

%
E2R

&
,

%
E3R

&
: (1,⇤1) . (1.4e)

The quark and lepton fields are written in gauge basis here. We will see more about it in later

section. On the right, we have shown the gauge transformation properties of the multiplets. The



Chapter 1. Standard Model And The Flavor Puzzle 3

first term in the bracket indicates whether it is a doublet or a singlet, and the second term is the

U(1) hypercharge Y . The left-handed fields transform non-trivially under SU(2)L, that’s why

the subscript L is written. No right-handed neutrinos were observed when the Standard Model

was being constructed and also they have not been observed yet. And they were not needed

because, at that time, neutrinos were believed to be massless. We can get the mass terms for

the quarks and charged leptons when we consider the Yukawa interactions, but the left-handed

neutrinos have nothing to get couple to in order to get the mass. So at the renormalizable level

of SM Lagrangian, the neutrino’s stay massless.

1.1.1 The Pure Gauge Lagrangian

The SU(N) group has N2 ⇤ 1 generators. Therefore, SU(2) gauge group has three generators

(Ta = ⌃a/2) and U(1) has one generator. Corresponding to the four generators, there are four

gauge bosons in this theory. The pure gauge Lagrangian can be written as

L gauge = ⇤
1

4
W a

µ⇥W
†µ⇥
a ⇤ 1

4
Bµ⇥B

µ⇥ , (1.5)

where W a
µ are the SU(2) gauge bosons, and Bµ is the U(1) gauge boson. None of these gauge

bosons are physical particles. The linear combinations of these bosons make up photon, W±

and Z bosons.

1.1.2 Spontaneous Symmetry Breaking

The gauge bosons mediating weak interactions are massive but the above Lagrangian did not

contain any mass term because such a term would not be gauge invariant. However, since we

ultimately we want massive weak gauge bosons, we will have to break the SU(2)L◊U(1)Y gauge

group spontaneously, by introducing some type of Higgs scalar field. We take SU(2) doublet of

scalar, and write this as:

⇤ ⇥

!

" ⇤+

⇤0

#

$ : (2, 1/2) . (1.6)

where the subscript denotes the hypercharge. The terms of Lagrangian which contain ⇤ are

L = (Dµ(⇤))
†(Dµ(⇤))⇤ V (⇤) . (1.7)
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Here, Dµ is the covariant derivative given as

Dµ = ⌥µ + ig
⌃a
2
W a

µ + ig!Y Bµ, (1.8)

where g and g! are gauge the coupling corresponding to SU(2)L and U(1)Y , respectively.

The scalar potential is given as

V (⇤) = µ2⇤†⇤+ �(⇤†⇤)2 . (1.9)

Choosing µ2 < 0 and � > 0 leads to the required spontaneous symmetry breaking. The minimum

of this potential is obtained for

|⌅⇤1⇧|2 + |⌅⇤2⇧|2 =
v2

2
, (1.10)

where ⇤1 and ⇤2 are the scalar fields which transform like a doublet of SU(2) symmetry (which is

denoted by ⇤+ and ⇤0 after assigning the hypercharge as done in Eq. (1.6)), the angular bracket

denotes the value at the minimum, and

v =

’
⇤µ2

�
. (1.11)

We will consider our system is in the minimum when

⌅⇤⇧ =

!

" 0

v/
⌃
2

#

$ , (1.12)

i.e.,

⌅⇤1⇧ = 0 , ⌅Re⇤2⇧ = v/
⌃
2 , ⌅Im⇤2⇧ = 0 . (1.13)

For an unbroken generator (Combination of T a + Y ) that leaves the vacuum invariant, there

will be no goldstone boson and the corresponding gauge boson remains massless. If a bro-

ken generator non-trivially transforms the vacuum, then there exist a goldstone boson and the

corresponding gauge boson is massive.
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Claim: Q ⇥ T 3 + Y is the unbroken generator.

Q =

!

" 1/2 0

0 ⇤1/2

#

$ +

!

" 1/2 0

0 1/2

#

$ =

!

" 1 0

0 0

#

$ . (1.14)

Now, the field ⇤ transforms as

⇤ � ei⇤Q⇤ = ⇤+ i Q⇤+O( 2) , (1.15a)

⌅⇤⇧ � ⌅⇤⇧+ i 

!

" 1 0

0 0

#

$ ⌅⇤⇧ , (1.15b)

!

" 0

v/
⌃
2

#

$ �

!

" 0

v/
⌃
2

#

$ + i 

!

" 1 0

0 0

#

$

!

" 0

v/
⌃
2

#

$ =

!

" 0

v/
⌃
2

#

$ . (1.15c)

Thus there is one diagonal generator which annihilates the vacuum or leaves the vacuum invari-

ant. Thus, the original symmetry is therefore broken down to a U(1) symmetry generated by Q.

This is the U(1) group of QED, which we can denote by writing U(1)em. We can expand around

the minimum and that expansion will give us the mass terms for W± and Z gauge bosons,

photon remains massless.

1.1.3 Gauge Interaction Lagrangian

The kinetic energy terms for the fermions are given as:

L Fermion =
3(

j=1

Q̄L,ji⇥
µDµQL,j + p̄R,ji⇥

µDµpR,j + n̄R,ji⇥
µDµnR,j +

L̄L,ji⇥
µDµLL,j + ĒR,ji⇥

µDµER,j . (1.16)

The covariant derivatives acting on various fermion fields are given by

DµQL,j = (⌥µ +
i

2
g⌦aW a

µ +
i

6
g!Bµ)QL,j , (1.17a)

DµuR,j = (⌥µ +
2i

3
g!Bµ)uR,j , (1.17b)

DµdR,j = (⌥µ ⇤
i

3
g!Bµ)dR,j , (1.17c)

DµLL,j = (⌥µ +
i

2
g⌦aW a

µ ⇤
i

2
g!Bµ)LL,j , (1.17d)

DµER,j = (⌥µ ⇤ ig!Bµ)ER,j . (1.17e)
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1.1.4 Yukawa Interaction Lagrangian

The Yukawa couplings are the couplings of fermions with scalar fields. It is known that there

are three generations of quarks and leptons. The left-chiral components of quarks/leptons comes

in SU(2) doublet and the right-chiral components in singlets for any generation. Since all the

generations have the same group transformation properties, the Yukawa couplings can connect

any two generations. The Lagrangian is given as:

L Yuk = ⇤
3(

i,j=1

(Y d

ijQiL⇤njR + Y u

ijQiL⇤̃pjR + Y l

ijLiL⇤EjR + h.c.) , (1.18)

where ⇤̃ = i⌃2⇤" . The terms in the Lagrangian are gauge invariant. Both ↵L and ⇤ are SU(2)

doublets, so the combination of them is SU(2) singlet. The field ER is a SU(2) singlet, so the

overall term transforms trivially under SU(2). For the U(1) part of the gauge group, the sum

of hypercharges of the combination of the fields comes out to be zero. Hence, the interaction is

invariant under the SU(2)L ◊ U(1)Y gauge group.

1.2 Fermion Masses From Yukawa Couplings

Gauge interactions are flavor universal, which means they do not care whether they are talking to

the first, the second, or the third generation. These flavor universal couplings are broken in the

Standard Model once we introduce the Yukawa couplings. And then, via the Higgs mechanism,

inserting the VEV into the Yukawa coupling, we can get the fermion masses.

The Yukawa Lagrangian(from Eq. (1.18)) is given as

L Y = ⇤
3(

i,j=1

(Y d

ijQiL⇤njR + Y u

ijQiL⇤̃pjR + Y l

ijLiL⇤EjR + h.c.) , (1.19)

where ⇤̃ = i⌃2⇤" = �⇤" . QL, LL are the left-handed SU(2) quark and lepton doublets. nR and

pR are right-handed quark singlets. And ER is the right handed quark singlet. Now,

� =

!

" 0 1

⇤1 0

#

$ , ⇤̃ =

!

" 0 1

⇤1 0

#

$

!

" ⇤+

⇤o

#

$

"

=

!

" ⇤o"

⇤⇤#

#

$ . (1.20)
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For producing fermion mass terms,

⌅⇤⇧ =

!

" 0

v$
2

#

$ . (1.21)

And the fermion mass matrix comes out to be

mA =
v⌃
2
YA , (1.22)

where A denotes u, d and l. These matrices are 3◊ 3 square matrices. They do not have to be

diagonal. And in reality, this is what happens.

1.2.1 Quark Sector

For the quark sector, the Yukawa Lagrangian is written as

L Yuk = ⇤(Y d

11Q̄1L⇤n1R + Y d

12Q̄1L⇤n2R + Y d

13Q̄1L⇤n3R + Y d

21Q̄2L⇤n1R + Y d

22Q̄2L⇤n2R

+Y d

23Q̄2L⇤n3R + Y d

31Q̄3L⇤n1R + Y d

32Q̄3L⇤n2R + Y d

33Q̄3L⇤n3R

+Y u

11Q̄1L⇤̃p1R + Y u

12Q̄1L⇤̃p2R + Y u

13Q̄1L⇤̃p3R + Y u

21Q̄2L⇤̃p1R + Y u

22Q̄2L⇤̃p2R

+Y u

23Q̄2L⇤̃p3R + Y u

31Q̄3L⇤̃p1R + Y u

32Q̄3L⇤̃p2R + Y u

33Q̄3L⇤̃p3R

+h.c.) , (1.23)

where Q is SU(2)L doublet given as

QiL =

!

" piL

niL

#

$ . (1.24)

Using Eq. (1.21), writing the mass terms:

L mass = ⇤
v⌃
2
(Y d

11n̄1Ln1R + Y d

12n̄1Ln2R + Y d

13n̄1Ln3R + Y d

21n̄2Ln1R + Y d

22n̄2Ln2R

+Y d

23n̄2Ln3R + Y d

31n̄3Ln1R + Y d

32n̄3Ln2R + Y d

33n̄3Ln3R

+Y u

11p̄1Lp1R + Y u

12p̄1Lp2R + Y u

13p̄1Lp3R + Y u

21p̄2Lp1R + Y u

22p̄2Lp2R

+Y u

23p̄2Lp3R + Y u

31p̄3Lp1R + Y u

32p̄3Lp2R + Y u

33p̄3Lp3R

+h.c.) . (1.25)
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The above equation can also be written like this

L mass = ⇤ v⌃
2

%
n̄1L n̄2L n̄3L

&

!

)))"

Y d

11 Y d

12 Y d

13

Y d

21 Y d

22 Y d

23

Y d

31 Y d

32 Y d

33

#

***$

!

)))"

n1L

n2L

n3L

#

***$
+

⇤ v⌃
2

%
p̄1L p̄2L p̄3L

&

!

)))"

Y u

11 Y u

12 Y u

13

Y u

21 Y u

22 Y u

23

Y u

31 Y u

32 Y u

33

#

***$

!

)))"

p1L

p2L

p3L

#

***$
+ h.c. . (1.26)

Here,

Md =
v⌃
2

!

)))"

Y d

11 Y d

12 Y d

13

Y d

21 Y d

22 Y d

23

Y d

31 Y d

32 Y d

33

#

***$
, Mu =

v⌃
2

!

)))"

Y u

11 Y u

12 Y u

13

Y u

21 Y u

22 Y u

23

Y u

31 Y u

32 Y u

33

#

***$
(1.27)

are called the mass matrices for the down-type and up-type quark, respectively. These matrices

are not diagonal. The fields pi, ni do not correspond to physical particles. We have to diagonalize

the above matrices to get the physical fields.

Bi-unitary Transformation: For any matrix A, we can find two unitary matrices UL and

UR such that ULAU
†
R

is diagonal, with real non-negative entries along the diagonal.

This means that to go from gauge eigenbasis to mass eigenbasis, we do the unitary transformation

of fields, in which the left-chiral and right-chiral fields change by di⇥erent amounts. Hence, the

matrix sandwich between them is diagonal. Therefore,

mA = U †
L

Æmdiag
A

ÆUR . (1.28)

The left-handed down-type fields transform as

!

)))"

n1L

n2L

n3L

#

***$
= U †

L

!

)))"

dL

sL

bL

#

***$
=⌥

%
n̄1L n̄2L n̄3L

&
=

%
d̄L s̄L b̄L

&
UL . (1.29)
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Similarly, for the right-handed down-type field

!

)))"

n1R

n2R

n3R

#

***$
= U †

R

!

)))"

dR

sR

bR

#

***$
. (1.30)

And for the left-chiral up-type fields,

!

)))"

p1L

p2L

p3L

#

***$
= V †

L

!

)))"

uL

cL

tL

#

***$
=⌥

%
p̄1L p̄2L p̄3L

&
=

%
ūL c̄L t̄L

&
VL . (1.31)

Right-chiral feild transforms as

!

)))"

p1R

p2R

p3R

#

***$
= V †

R

!

)))"

uR

cR

tR

#

***$
. (1.32)

The mass terms for the down-type and up-type quarks can then be rewritten as

L mass = ⇤ v⌃
2

%
d̄L s̄L b̄L

&
UL ÆMd ÆU †

R

!

)))"

dR

sR

bR

#

***$

⇤ v⌃
2

%
ūL c̄L t̄L

&
VL ÆMu ÆV †

R

!

)))"

uR

cR

tR

#

***$
+ h.c. . (1.33)

Here, Dd = UL ÆMd ÆU †
R

and Du = VL ÆMu ÆV †
R

are diagonal matrices.

1.2.2 Lepton Sector

Writing explicitly the Yukawa interaction Lagrangian for the lepton sector:

L Yuk = ⇤(Y l

11L̄1L⇤E1R + Y l

12L̄1L⇤E2R + Y l

13L̄1L⇤E3R + Y l

21L̄2L⇤E1R + Y l

22L̄2L⇤E2R

+Y l

23L̄2L⇤E3R + Y l

31L̄3L⇤E1R + Y l

32L̄3L⇤E2R + Y l

33L̄3L⇤E3R + h.c) , (1.34)
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where L is the SU(2)L doublet of the form

LiL =

!

" ⇧iL

EL

#

$ . (1.35)

After spontaneous symmetry breaking, using Eq. (1.21), the mass terms are

L mass = ⇤
v⌃
2
(Y l

11Ē1LE1R + Y l

12Ē1LE2R + Y l

13Ē1LE3R + Y l

21Ē2LE1R + Y l

22Ē2LE2R

+Y l

23Ē2LE3R + Y l

31Ē3LE1R + Y l

32Ē3LE2R + Y l

33Ē3LE3R + h.c.) , (1.36)

L = ⇤ v⌃
2

3(

i,j=1

(Y l

ijĒiLEjR + h.c.) . (1.37)

In the generation indices Y l is a matrix. We can redefine our fields in a way such that the matrix

Y l becomes diagonal.

!

)))"

E1

E2

E3

#

***$

L

= E†
L

!

)))"

eL

µL

⌦L

#

***$
,

!

)))"

E1

E2

E3

#

***$

R

= E†
R

!

)))"

eR

µR

⌦R

#

***$
. (1.38)

Here, e, µ and ⌦ represent physical fields. After changing the basis, the mass terms are written

as

L mass = ⇤
v⌃
2

%
ēL µ̄L ⌦̄L

&
EL ÆMd ÆE†

R

!

)))"

eR

µR

⌦R

#

***$
+ h.c. . (1.39)

As we can see, there are no mass terms for neutrinos because right-handed neutrinos do not

exist in the Standard Model. There is only one kind of mass term, and those are for the charged

leptons as given in Eq. (1.39). We could work in the basis of generations where these terms are

diagonal.

There was no need to write the lepton fields as defined in Eq. (1.4a). We could have started with

the physical fields. But we did it the same way for quarks and leptons to show the di⇥erence

between the quark sector and the lepton sector.
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1.3 Gauge Interactions

We have rotated our fermion fields with unitary transformation. Let’s see what happens to the

rest of the Standard Model lagrangian, in particular gauge interaction.

Rotation of right-handed quark Þelds: Rotation of right-handed quark fields leaves the

Lagrangian invariant. To see this, consider the gauge interaction term for pR:

ip̄R⇥
µDµpR = ip̄R⇥

µ(⌥µ + i
2

3
g!Bµ)pR = ip̄R⇥

µ(⌥µpR + i
2

3
g!BµpR)

= ip̄R⇥
µ⌥µpR ⇤

2

3
g!p̄R⇥

µBµpR . (1.40)

pR transforms as

pR = V †
R
uR =⌥ p̄R = ūRVR . (1.41)

Therefore,

ip̄R⇥
µ⌥µpR ⇤

2

3
g!p̄R⇥

µBµpR = iūR⇥
µ⌥µuR ⇤

2

3
g!ūR⇥

µBµuR . (1.42)

Whether we choose the gauge eigenbasis or mass eigenbasis, the gauge interaction term looks

the same for the right-handed quark field.

Gauge interaction term for left-handed quark Þeld: The matrix Mu and Md is not

necessarily be diagonalized by the same matrix. This mismatch between the left-handed up-type

and down-type quark sector is accounted by the Cabibbo–Kobayashi–Maskawa(CKM) matrix

[1, 2]. It enters the charged current interaction term mediated by W+
µ gauge bosons as shown

below

L int =
g⌃
2
p̄L⇥

µW+
µ nL . (1.43)

After rotating the fields, Eq. (1.43) is written as

L int = ⇤ g⌃
2
ūLVL⇥

µW+
µ U †

L
dL ,

= ⇤ g⌃
2
ūLVLU

†
L
⇥µW+

µ dL ,
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= ⇤ g⌃
2
ūLVCKM⇥

µW+
µ dL . (1.44)

CKM matrix is sometimes also referred to as the quark mixing matrix because the charged

current gauge interactions couples any up-type quark to a down-type quark of any generation.

Note that the mixing does not appear in neutral currents involving the Z boson. The neutral

current interactions do not change quark flavor. There are no flavor-changing interactions in the

SM in the lepton sector because we don’t have any rotation matrices that don’t drop out from

the rest of the Lagrangian.

1.4 CKM Matrix

The quark mixing matrix is given as

VCKM = VL ÆU †
L
=

!

)))"

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

#

***$
. (1.45)

1.4.1 Counting The Number Of Parameters Of VCKM

As we can see, CKM Matrix is unitary matrix. Number of parameters of N ◊N unitary matrix

is N2. Here, N corresponds to number of generations. If we allow only the real values of

mixing matrix, then this matrix would represent a rotation matrix in N⇤dimensional space.

The rotation matrix has 1
2N(N ⇤ 1) parameters. Then the remaining parameters of the unitary

matrix, N2 ⇤ 1
2N(N ⇤ 1) = 1

2N(N + 1), represent the phases.

A 3◊ 3 CKM matrix therefore have three real parameters and six phases. But not all of these

phases are physical and we can just rotate them away. Our interaction Lagrangian is insensitive

to the phases of left-handed field. Possible field redefinition:

ujL � ei⌅(ujL )ujL , djL � ei⌅(djL )djL . (1.46)

It therefore seems that we can absorb 6 phases from the CKM matrix. But this is not really

correct, because one of the phases will be fixed by redefining the other fields. Counting this one

exception out, we can now write the number of physically observable phases in the CKM matrix

to be 6⇤5 = 1. Hence, the CKM matrix has four parameters, three quark mixing angles and one
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CP-violating complex phase. It, therefore, seems that we can absorb 6 phases from the CKM

matrix. But this is not correct because one of the phases will be fixed by redefining the other

fields. Counting this one exception out, we can now write the number of physically observable

phases in the CKM matrix to be 6⇤ 5 = 1. Hence, the CKM matrix has four parameters, three

quark mixing angles, and one CP-violating complex phase.

1.4.2 Parametrization Of CKM Matrix

Many parametrizations of the CKM matrix have been proposed in the literature. We will discuss

here two parametrizations: the standard parametrization [3, 4] recommended by particle data

group [5] and Wolfenstein Parametrization [6].

1.4.2.1 Standard Parametrization

The standard parametrization is given by:

VCKM =

!

)))"

c12c13 s12c13 s13e# i⇧

⇤s12c23 ⇤ c12s23s13ei⇧ c12c23 ⇤ s12s23s13ei⇧ s23c13

s12s23 ⇤ c12c23s13ei⇧ ⇤c12s23 ⇤ s12c23s13ei⇧ c23c13

#

***$
, (1.47)

where cij = cos(�ij) and sij = sin(�ij) with (i, j = 1, 2, 3). And � is the phase necessary for

CP violation. The elements of CKM matrix modifies the strength of charged-current interaction

and by studying various processes, it is possible to estimate the magnitude of the elements. The

angles �ij can be chosen to lie in the first quadrant, so cij , sij � 0. The estimates of magnitudes

are given as [5]:

VCKM =

!

)))"

0.97370 – 0.00014 0.2245 – 0.0008 0.00382 – 0.00024

0.221 – 0.004 0.987 – 0.011 0.0410 – 0.0014

0.0080 – 0.0003 0.0388 – 0.0011 1.013 – 0.030

#

***$
. (1.48)

The matrix is almost unit matrix, with diagonal element close to unity and small o⇥-diagonal

elements. Also, the o⇥-diagonal elements involving the first two generations are greater than

all other o⇥-diagonal elements. More explicitly, we can write s13 << s23 << s12 << 1. This

hierarchy is conveniently described by the Wolfenstein parameterization.
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1.4.2.2 Wolfenstein Parameterization

Wolfenstein introduced a parameter � = s12 to denote the smallness of all elements of the mixing

matrix. s23 is then defined by A�2, which is another order of smallness down from s12. The

element Vub is called A�3(� ⇤ i✏), cubic in �. The factor � ⇤ i✏ ensures that this element is

complex. The rest of the elements are then found using the unitarity of the matrix. Traditionally,

the form of the matrix is

VCKM =

!

)))"

1⇤ 1
2�

2 � A�3(�⇤ i✏)

⇤� 1⇤ 1
2�

2 A�2

A�3(1⇤ �⇤ i✏) ⇤A�2 1

#

***$
. (1.49)

There are four parameters in this parametrization, as is there in Eq. (1.47). The Wolfenstein

parametrization is certainly more transparent than the standard parametrization. But Eq. (1.49)

is only an approximation. To achieve su⌅cient level of accuracy, one must include higher order

terms in �.

1.5 Why Would One Go Beyond SM?

The Standard Model is a tremendously successful theory. It’s probably the most predictive and

precise theoretical explanation for observations across a wide range of energies. So why would

one go beyond the Standard Model?

While we have learned a great deal in the 20th century, there are still many things that are not

known. The model provides a way to generate masses of quarks and leptons but it does not

explain the hierarchical masses of quarks and leptons (Flavor puzzle). The first generation quark

masses are of few MeVs and the third generation’s are in Gevs. The approximate masses [5] are

shown in the table below:

mu  2.16 mc  1279 mt  172760
md  4.67 ms  93 mb  4180
me  0.511 mµ  105.66 m⌃  1776.86

Table 1.1: Quarks and leptons masses in MeVs

As we can see from the table that there is about five orders of magnitude between the various

quark masses and similarly in the lepton sector. Therefore, the Yukawa couplings needed to
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generate the fermion masses spans six order of magnitude(he ⌦ 10# 6 to ht ⌦ 1), whereas the

gauge couplings do not exhibit such an apparent hierarchy. This is something that we do not

understand. These are just some free parameters in the standard model. Aside from the fermion

masses, CKM matrix also has a very hierarchical structure. This becomes clear if we look at the

Wolfenstein Parametrization(Eq. (1.49)).

These are the problems that we will explain by providing a model in which sources of generation

of masses for the third generation is di⇥erent from the first two generation. In the next chapter,

we will go through the basics of group theory. And then we will discuss some properties of

Dihedral groups, necessary for constructing models beyond Standard Model(BSM). In the last

chapter, we will discuss our model and its implications.





“Symmetry is a vast subject, signiÞcant in art and nature. Mathematics

lies at its root, and it would be hard to Þnd a better one on which to

demonstrate the working of mathematics intellect."

Hermann Weyl

2
The Group Of Dihedral Symmetries

Groups arise everywhere in nature, science, and mathematics, usually as collections of trans-

formations of some set that preserve some exciting structure. These transformations are the

symmetry operations that can be classified as either continuous or discrete. In each case, these

operations are represented by the group elements. For continuous symmetries, we have continu-

ous groups (Lie groups), and for discrete symmetries, we have discrete groups that can be both

finite and infinite. We can create a group from any geometric shape by looking at the symmetries

of the shape. The symmetries are the transformations where we flip and rotate the shape to

look the same before and after. The symmetries form a group called “The group of symmetries".

When the shape is a regular polygon, the group of symmetries is called the Dihedral Group.

The knowledge of group theory can serve as a powerful tool for simplifying the complex system

and has often been used in elementary particle physics to construct new theoretical models.

17
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2.1 Introduction To Group Theory

A group G is a set of elements under operation “*" that have the following properties:

1. CLOSURE : If a,b are the members of G then there exist c in G such that

c = a ↵ b . (2.1)

2. ASSOCIATIVITY : If a,b,c are the members of G then

a ↵ (b ↵ c) = (a ↵ b) ↵ c . (2.2)

3. EXISTENCE OF IDENTITY : There exist e in G such that

e ↵ a = a ↵ e = a . (2.3)

4. INVERSE : For every element a in G there is a corresponding inverse element a# 1 such

that

a ↵ a# 1 = a# 1 ↵ a = e . (2.4)

2.1.1 Abelian Group

If a group has a further property a ↵ b = b ↵ a for all a,b in the group G, the group is called

Abelian.

2.1.2 Subgroup

A subgroup is a set of elements in group G under operation * which satisfy all the properties of

the group under the same operation. Identity Element ‘e’ itself forms a group.

2.1.3 Types Of Group

Groups can be infinite or finite :-

InÞnite Groups contain infinite number of elements (Refer to example 1).
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Finite Groups contain finite number element in which every element a has a finite order n

such that an = e (Example 2).

2.1.4 Multiplication Table

The group multiplication table is a square grid with one row and one column for each element

in the set, the grid is filled in so that the element in the row belonging to a and belonging to

column b is a ↵ b. Construction of multiplication table is done in example 2.

2.1.5 Examples

1. Group of integers {Z, +}: This is an infinite group under addition operation.

(a) Integers are closed under addition.

(b) Addition is associative.

(c) Identity element: e=0.

(d) Inverse exist: For every element a in Z there exist -a in Z such that a+(⇤a) = 0 = e.

2. Fourth root of unity under multiplication: This is a finite group whose elements are

1,⇤1, i and ⇤i.

a ↵ b 1 -1 i -i
1 1 -1 i -i
-1 -1 1 -i i
i i -i -1 1
-i -i i 1 -1

Table 2.1: Multiplication table for fourth root of unity

(a) Elements are closed under multiplication.

(b) Multiplication of numbers is associative.

(c) Identity Element: e=1.

(d) Inverse Exist: For every element there exist its corresponding inverse which can be

found using multiplication table.

To find the inverse of ⇤1:

1. Locate ⇤1 in row 1.
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2. Check the corresponding column.

Here, the column corresponding to ⇤1 is

+

,,,,,,-

⇤1

1

⇤i

i

.

//////0

3. Stop at the row at which the identity element appears. The identity element in

this example is 1, which appears in the third row.

4. Check the corresponding element in the first column. The first column and third

row give the inverse of ⇤1, which is ⇤1.

Similarly, the inverse of i is ⇤i and ⇤i is i. Identity is its inverse.

3. Set of non singular matrices

Set of all matrices whose determinant is not zero forms a non-abelian group under matrix

multiplication, where the identity element is given as

+

,,,,,,-

1 0 Æ Æ Æ0

0 1 Æ Æ Æ0
...

... . . . ...

0 0 Æ Æ Æ1

.

//////0

for a n◊ n matrix.

2.1.6 Order

The order of a group is defined as the number of elements in the group.

Lagrange’s theorem: If a subset H of the group G is also a group, H is called the subgroup

of G. Then according to this theorem order of the subgroup H must be a divisor of the order of

G.

The order of an element a is the number h for which ah = e.
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2.1.7 Conjugacy Class

The elements g# 1ag for g � G are called elements conjugate to the element a. The set including

all elements to conjugate to an element a of G, { g# 1ag, �g � G} , is called a conjugacy class.

The order of all the elements in a conjugacy class is same since

(gag# 1)h = ga(g# 1g)a(g# 1g)Æ Æ Æag# 1 = gahg# 1geg# 1 = e . (2.5)

The conjugacy class of the identity element e consist of a single element e.

2.1.8 Characters And Orthogonality Relations

The character ⇣ of the a representation D(g) is given as the trace of that representation and

they follow the following orthogonality relations:-

(

g%G

⇣D! (g) ↵ ⇣D" (g) = NG�⇤⌥ , (2.6a)

(

⇤

⇣D! (gi ) ↵ ⇣D! (gj ) =
NG

ni

�Ci Cj , (2.6b)

where D⇤, D⌥ denotes the irreducible representation, NG is the number of elements in the group,

Ci represents the conjugacy class and ni is the number of the elements in the conjugacy class.

2.1.9 Homomorphism And Isomorphism

Homomorphism: Homomorphism is a map between two groups such that the group operation

is preserved. A function f : G� H between two groups is a homomorphism when it f satisfies

the following property for all x, y � G

f(x ↵ y) = f(x) � f(y). (2.7)

Let’s see an example of homomorphism. Suppose we have a map f : (R,+)� (R+, ↵). For it to

be a homomorphism, it should satisfy eqn(2.7).

f(x) = ex , (2.8)

f(y) = ey , (2.9)
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f(x+ y) = ex+y = ex Æey = f(x) ↵ f(y) . (2.10)

Therefore, from above equations we can see that f is a homomorphism.

Isomorphism: Two groups are said to be isomorphic if they have the same multiplication

table. If G is isomorphic to H then there is one-to-one correspondence between the elements of

G and H.

For gi � hi to be an isomorphism, the elements of H should satisfy hi � hj = hk if gi ↵ gj = gk.

Example of isomorphism: The permutation group S3 is isomorphic to symmetry operations that

take an equilateral triangle into itself that is group D3.

2.2 Representations

A set of square, non-singular matrices T(g) associated with the elements of a group g � G such

that if g1g2 = g3 then T (g1)T (g2) = T (g3). That is, T is a homomorphism.

2.2.1 Identity Representation Matrix

If e is the identity element of the group, then T (e) = 1 (Identity matrix).

2.2.2 Identity Representation

T (g) = 1 for all g in G, also known as trivial representation.

2.2.3 Faithful Representation

All T (g) are distinct. That is, T is isomorphism.

2.2.4 Example

Group of integers under addition modulo 4 : (Z4 = { 0, 1, 2, 3} ,+4).

Matrix representation: We will represent each of the above mentioned element as matrices.
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a+4 b 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table 2.2: Multiplication table for Z4

Element 0 is represented by the matrix ⇤(0), element 1 is represented by the matrix ⇤(1), element

2 is represented by the matrix ⇤(2) and element 3 is represented by the matrix ⇤(3). We can

think of these matrices as rotation matrices and they are given as following:

⇤(1) : Rotates R2 by 90 degree.

⇤(1) =

+

- 0 ⇤1

1 0

.

0 (2.11)

⇤(2): Rotates R2 by 180 degree.

⇤(2) =

+

- 0 ⇤1

1 0

.

0 ↵

+

- 0 ⇤1

1 0

.

0 =

+

- ⇤1 0

0 ⇤1

.

0 (2.12)

⇤(3): Rotates R2 by 270 degree.

⇤(3) =

+

- ⇤1 0

0 ⇤1

.

0 ↵

+

- 0 ⇤1

1 0

.

0 =

+

- 0 1

⇤1 0

.

0 (2.13)

⇤(0): Rotates R2 by 360 degree or identity.

⇤(0) =

+

- 0 1

⇤1 0

.

0 ↵

+

- 0 ⇤1

1 0

.

0 =

+

- 1 0

0 1

.

0 (2.14)

⇤(x) ↵ ⇤(y) ⇤(0) ⇤(1) ⇤(2) ⇤(3)

⇤(0) ⇤(0) ⇤(1) ⇤(2) ⇤(3)
⇤(1) ⇤(1) ⇤(2) ⇤(3) ⇤(0)
⇤(2) ⇤(2) ⇤(3) ⇤(0) ⇤(1)
⇤(3) ⇤(3) ⇤(0) ⇤(1) ⇤(2)

Table 2.3: Multiplication table of the rotation matrices
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As we can see that table 2 and 3 are similar. Therefore we can conclude that the above-given

example is an example of faithful representation or one-to-one representation.

2.2.5 Equivalent Representation

If T is a representation then

T ! = S# 1TS (2.15)

is also a representation where S can be any arbitrary non-singular matrix because

T !(A)T !(B) = S# 1T (A)SS# 1T (B)S = S# 1T (A)T (B)S = S# 1T (AB)S = T !(AB) (2.16)

T and T ! are equivalent. By choosing di⇥erent S we can get di⇥erent representations of the same

matrix.

Example: Consider T and S as given below. S# 1 is also given for convenience.

T =

+

- 0 ⇤1

1 0

.

0 , S =

+

- 1 1

1 2

.

0 , S# 1 =

+

- 2 ⇤1

⇤1 1

.

0 (2.17)

Then one can easily find the similarity transformation of T as

T ! = S# 1TS =

+

- ⇤3 ⇤5

2 3

.

0 (2.18)

2.2.6 Inequivalent Representations

Representations T and T ! for which it is impossible to find a similarity transform S relating

them.
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2.2.7 Reducible And Irreducible Representation

A representation T is Reducible Representation if it’s equivalent representation T ! has the form

T ! =

+

,,,,,,-

T1 0 Æ Æ Æ0

0 T2 Æ Æ Æ0
...

... . . . ...

0 0 Æ Æ ÆTn

.

//////0
(2.19)

where Tn are square matrices. If a representation cannot be reduced in the above form then it

is called Irreducible Representation. A reducible representation can be reduced into a number of

irreducible representations.

2.3 Dihedral Groups

The dihedral group Dn (n � 3) is the group of symmetries of a regular polygon with n vertices.

The order of dihedral group is 2n.

Dihedral group notation : Dn = { a, b|an = b2 = (ab)2 = 1} where a, b represents rotation(by

a multiple of 2⌘ radians around the center) and reflection(about an axis), respectively, which

takes the regular polygon back to itself.

2.3.1 Group Structure Of D4

This group is the symmetry group of square. The eight symmetries of a square:

1. R0 = e = 0& Rotation(Identity)

1 4

32

1 4

32

2. R90 = 90& Rotation(Counter Clockwise)
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1 4

32

4 3

21

3. R180 = 180& Rotation(Counter Clockwise)

1 4

32

3 2

14

4. R270 = 270& Rotation(Counter Clockwise)

1 4

32

2 1

43

5. FX = Reßection about horizontal axis

1 4

32

2 3

41

6. FY = Reßection about vertical axis

1 4

32

4 1

23

7. FD1 = Reßection about diagonal
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1 4

32

1 2

34

8. FD2 = Reßection about other diagonal

1 4

32

3 4

12

Characteristic Table for the above group of symmetries G = {e,R90,R180,R270,FX ,FY ,FD1,FD2,}

ab e R90 R180 R270 FX FY FD1 FD2

e e R90 R180 R270 FX FY FD1 FD2

R90 R90 R180 R270 e FD2 FD1 FX FY

R180 R180 R270 e R90 FY FX FD2 FD1

R270 R270 e R90 R180 FD1 FD2 FY FX

FX FX FD1 FY FD2 e R180 R90 R270

FY FY FD2 FX FD1 R180 e R270 R90

FD1 FD1 FY FD2 FX R270 R90 e R180

FD2 FD2 FX FD1 FY R90 R270 R180 e

Table 2.4: Multiplication table for D4

2.3.2 Finding Representation Matrices : Method 1

Consider a square on x-y plane with vertices A,B,C,D and corresponding position vectors rA,

rB, rC , rD.

rA =

+

- ⇤1

1

.

0 , rB =

+

- 1

1

.

0 , rC =

+

- 1

⇤1

.

0 , rD =

+

- ⇤1

⇤1

.

0 . (2.20)

1. Matrix for identity transformation

rA � rA, rB � rB, rC � rC , rD � rD
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A(-1,1) B(1,1)

C(1,-1)D(-1,-1)

A(-1,1) B(1,1)

C(1,-1)D(-1,-1)

The position coordinates are transformed by the matrix T1 as following

+

- u v

w x

.

0 ↵

+

- ⇤1

1

.

0 =

+

- ⇤1

1

.

0 , (2.21a)

+

- u v

w x

.

0 ↵

+

- 1

1

.

0 =

+

- 1

1

.

0 , (2.21b)

+

- u v

w x

.

0 ↵

+

- 1

⇤1

.

0 =

+

- 1

⇤1

.

0 , (2.21c)

+

- u v

w x

.

0 ↵

+

- ⇤1

⇤1

.

0 =

+

- ⇤1

⇤1

.

0 . (2.21d)

Solving eqn 2.21, we can find the matrix T1 as

T1 =

+

- u v

w x

.

0 =

+

- 1 0

0 1

.

0 . (2.22)

2. Matrix for 90& rotation

rA � rD, rB � rA, rC � rB, rD � rC

A(-1,1) B(1,1)

C(1,-1)D(-1,-1)

B(-1,1) C(1,1)

D(1,-1)A(-1,-1)

The position coordinates are transformed by the matrix T2 as following

+

- u v

w x

.

0 ↵

+

- ⇤1

1

.

0 =

+

- ⇤1

⇤1

.

0 , (2.23a)
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+

- u v

w x

.

0 ↵

+

- 1

1

.

0 =

+

- ⇤1

1

.

0 , (2.23b)

+

- u v

w x

.

0 ↵

+

- 1

⇤1

.

0 =

+

- 1

1

.

0 , (2.23c)

+

- u v

w x

.

0 ↵

+

- ⇤1

⇤1

.

0 =

+

- 1

⇤1

.

0 . (2.23d)

Solving eqn 2.23, we can find the matrix T2 as

T2 =

+

- u v

w x

.

0 =

+

- 0 ⇤1

1 0

.

0 . (2.24)

3. Matrix for 180& transformation

rA � rC , rB � rD, rC � rA, rD � rB

A(-1,1) B(1,1)

C(1,-1)D(-1,-1)

C(-1,1) D(1,1)

A(1,-1)B(-1,-1)

The position coordinates are transformed by the matrix T3 as following

+

- u v

w x

.

0 ↵

+

- ⇤1

1

.

0 =

+

- 1

⇤1

.

0 , (2.25a)

+

- u v

w x

.

0 ↵

+

- 1

1

.

0 =

+

- ⇤1

⇤1

.

0 , (2.25b)

+

- u v

w x

.

0 ↵

+

- 1

⇤1

.

0 =

+

- ⇤1

1

.

0 , (2.25c)

+

- u v

w x

.

0 ↵

+

- ⇤1

⇤1

.

0 =

+

- 1

1

.

0 . (2.25d)
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Solving eqn 2.25, we can find the matrix T3 as

T3 =

+

- u v

w x

.

0 =

+

- ⇤1 0

0 ⇤1

.

0 . (2.26)

4. Matrix for 270& transformation

rA � rB, rB � rC , rC � rD, rD � rA

A(-1,1) B(1,1)

C(1,-1)D(-1,-1)

D(-1,1) A(1,1)

B(1,-1)C(-1,-1)

The position coordinates are transformed by the matrix T4 as following

+

- u v

w x

.

0 ↵

+

- ⇤1

1

.

0 =

+

- 1

1

.

0 , (2.27a)

+

- u v

w x

.

0 ↵

+

- 1

1

.

0 =

+

- 1

⇤1

.

0 , (2.27b)

+

- u v

w x

.

0 ↵

+

- 1

⇤1

.

0 =

+

- ⇤1

⇤1

.

0 , (2.27c)

+

- u v

w x

.

0 ↵

+

- ⇤1

⇤1

.

0 =

+

- ⇤1

1

.

0 . (2.27d)

Solving eqn 2.27, we can find the matrix T4 as

T4 =

+

- u v

w x

.

0 =

+

- 0 1

⇤1 0

.

0 . (2.28)

5. Matrix for reßection about horizontal axis

rA � rD, rB � rC , rC � rB, rD � rA
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A(-1,1) B(1,1)

C(1,-1)D(-1,-1)

D(-1,1) C(1,1)

B(1,-1)A(-1,-1)

The position coordinates are transformed by the matrix TX as following

+

- u v

w x

.

0 ↵

+

- ⇤1

1

.

0 =

+

- ⇤1

⇤1

.

0 , (2.29a)

+

- u v

w x

.

0 ↵

+

- 1

1

.

0 =

+

- 1

⇤1

.

0 , (2.29b)

+

- u v

w x

.

0 ↵

+

- 1

⇤1

.

0 =

+

- 1

1

.

0 , (2.29c)

+

- u v

w x

.

0 ↵

+

- ⇤1

⇤1

.

0 =

+

- ⇤1

1

.

0 . (2.29d)

Solving eqn 2.29, we can find the matrix TX as

TX =

+

- u v

w x

.

0 =

+

- 1 0

0 ⇤1

.

0 . (2.30)

6. Matrix for reßection about vertical axis

rA � rB, rB � rA, rC � rD, rD � rC
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A(-1,1) B(1,1)

C(1,-1)D(-1,-1)

B(-1,1) A(1,1)

D(1,-1)C(-1,-1)

The position coordinates are transformed by the matrix TY as following

+

- u v

w x

.

0 ↵

+

- ⇤1

1

.

0 =

+

- 1

1

.

0 , (2.31a)

+

- u v

w x

.

0 ↵

+

- 1

1

.

0 =

+

- ⇤1

1

.

0 , (2.31b)

+

- u v

w x

.

0 ↵

+

- 1

⇤1

.

0 =

+

- ⇤1

⇤1

.

0 , (2.31c)

+

- u v

w x

.

0 ↵

+

- ⇤1

⇤1

.

0 =

+

- 1

⇤1

.

0 . (2.31d)

Solving eqn 2.31, we can find the matrix TY as

TY =

+

- u v

w x

.

0 =

+

- ⇤1 0

0 1

.

0 . (2.32)

7. Matrix for reßection about diagonal

rA � rA rB � rD, rC � rC , rD � rB

A(-1,1) B(1,1)

C(1,-1)D(-1,-1)

A(-1,1) D(1,1)

C(1,-1)B(-1,-1)

The position coordinates are transformed by the matrix TD1 as following

+

- u v

w x

.

0 ↵

+

- ⇤1

1

.

0 =

+

- ⇤1

1

.

0 , (2.33a)
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+

- u v

w x

.

0 ↵

+

- 1

1

.

0 =

+

- ⇤1

⇤1

.

0 , (2.33b)

+

- u v

w x

.

0 ↵

+

- 1

⇤1

.

0 =

+

- 1

⇤1

.

0 , (2.33c)

+

- u v

w x

.

0 ↵

+

- ⇤1

⇤1

.

0 =

+

- 1

1

.

0 . (2.33d)

Solving eqn 2.33, we can find the matrix TD1 as

TD1 =

+

- u v

w x

.

0 =

+

- 0 ⇤1

⇤1 0

.

0 . (2.34)

8. Matrix for reßection about other diagonal

rA � rC rB � rB, rC � rA, rD � rD

A(-1,1) B(1,1)

C(1,-1)D(-1,-1)

C(-1,1) B(1,1)

A(1,-1)D(-1,-1)

The position coordinates are transformed by the matrix TD2 as following

+

- u v

w x

.

0

+

- ⇤1

1

.

0 =

+

- 1

⇤1

.

0 , (2.35a)

+

- u v

w x

.

0 ↵

+

- 1

1

.

0 =

+

- 1

1

.

0 , (2.35b)

+

- u v

w x

.

0 ↵

+

- 1

⇤1

.

0 =

+

- ⇤1

1

.

0 , (2.35c)

+

- u v

w x

.

0 ↵

+

- ⇤1

⇤1

.

0 =

+

- ⇤1

⇤1

.

0 . (2.35d)
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Solving eqn 2.35a, we can find the matrix TD2 as

TD2 =

+

- u v

w x

.

0 =

+

- 0 1

1 0

.

0 . (2.36)

Matrix representation of the elements of D4 :

T1 = I =

+

- 1 0

0 1

.

0 , T2 =

+

- 0 ⇤1

1 0

.

0 , T3 =

+

- ⇤1 0

0 ⇤1

.

0 , T4 =

+

- 0 1

⇤1 0

.

0 ,

TX =

+

- 1 0

0 ⇤1

.

0 , TY =

+

- ⇤1 0

0 1

.

0 , TD1 =

+

- 0 ⇤1

⇤1 0

.

0 , TD2 =

+

- 0 1

1 0

.

0 . (2.37)

2.3.3 Finding 4◊ 4 Matrix Representation : Method 2

Here we are going to discuss another method for finding the matrix representation of the elements.

We will use the figures in subsection 4.1 and use the vertex numbering to find the permutations.

And corresponding to each permutation, we will put the entries as 0s and 1s in the matrix.

1. Identity Transformation
1 2 3 4

1 2 3 4

I =

+

,,,,,,-

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.

//////0
(2.38)

2. 90& Rotation
1 2 3 4

4 1 2 3

T90 =

+

,,,,,,-

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

.

//////0
(2.39)
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3. 180& Rotation
1 2 3 4

3 4 1 2

T180 =

+

,,,,,,-

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

.

//////0
(2.40)

4. 270& Rotation
1 2 3 4

2 3 4 1

T270 =

+

,,,,,,-

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

.

//////0
(2.41)

5. Reßection about x-axis
1 2 3 4

2 1 4 3

TX =

+

,,,,,,-

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

.

//////0
(2.42)

6. Reßection about y-axis
1 2 3 4

4 3 2 1

TY =

+

,,,,,,-

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

.

//////0
(2.43)
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7. Reßection about Diagonal D1
1 2 3 4

1 4 3 2

TD1 =

+

,,,,,,-

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

.

//////0
(2.44)

8. Reßection about Diagonal D2
1 2 3 4

3 2 1 4

TD2 =

+

,,,,,,-

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

.

//////0
(2.45)

2.3.4 Reducing 4◊ 4 Matrices

As we have seen in subsection 4.2, there is a 2◊ 2 representation of the elements of D4. So the

4 ◊ 4 matrix representation found out in subsection 4.3 must be reducible. Now our task is to

construct an orthogonal invertible matrix S which can decompose the above reducible matrices

into block-diagonal form.

Why are we constructing a orthogonal matrix?

Symmetries of square is composed of rotations and reflections and the class of orthogonal ma-

trices was defined in such a way so that they would represent rotations and reflections; this

property is what makes this class of matrices so useful in the first place.

What is an orthogonal matrix? A matrix is said to be orthogonal if its columns { q(1), q(2)...., q(n)}

form a orthonormal set in Rn. The below given matrix is an orthogonal matrix as it satisfies

ST ÆS = S ÆST = I.

S =

+

,,,,,,-

⇤0.5 0.5 0.5 0.5

⇤0.5 ⇤0.5 0.5 ⇤0.5

⇤0.5 0.5 ⇤0.5 ⇤0.5

⇤0.5 ⇤0.5 ⇤0.5 0.5

.

//////0
, ST =

+

,,,,,,-

⇤0.5 ⇤0.5 ⇤0.5 ⇤0.5

0.5 ⇤0.5 0.5 ⇤0.5

0.5 0.5 ⇤0.5 ⇤0.5

0.5 ⇤0.5 ⇤0.5 0.5

.

//////0
(2.46)
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The block diagonal matrices can be easily find out using the similarity transformation S# 1ÆIÆS =

ST ÆI ÆS as shown below

1. I

I ! = S# 1 ÆI ÆS =

+

,,,,,,-

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.

//////0
(2.47)

2. T90

T !
90 = S# 1 ÆT90 ÆS =

+

,,,,,,-

1 0 0 0

0 ⇤1 0 0

0 0 0 ⇤1

0 0 1 0

.

//////0
(2.48)

3. T180

T !
90 = S# 1 ÆT90 ÆS =

+

,,,,,,-

1 0 0 0

0 1 0 0

0 0 ⇤1 0

0 0 0 ⇤1

.

//////0
(2.49)

4. T270

T !
270 = S# 1 ÆT270 ÆS =

+

,,,,,,-

1 0 0 0

0 ⇤1 0 0

0 0 0 1

0 0 ⇤1 0

.

//////0
(2.50)

5. TX

T !
X = S# 1 ÆTX ÆS =

+

,,,,,,-

1 0 0 0

0 ⇤1 0 0

0 0 0 1

0 0 ⇤1 0

.

//////0
(2.51)
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6. TY

T !
Y = S# 1 ÆTY ÆS =

+

,,,,,,-

1 0 0 0

0 ⇤1 0 0

0 0 ⇤1 0

0 0 0 1

.

//////0
(2.52)

7. TD1

T !
D1 = S# 1 ÆTD1 ÆS =

+

,,,,,,-

1 0 0 0

0 1 0 0

0 0 0 ⇤1

0 0 ⇤1 0

.

//////0
(2.53)

8. TD2

T !
D2 = S# 1TD2S =

+

,,,,,,-

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

.

//////0
(2.54)

All the above matrices are in block diagonal form that means it can be further reduced into

smaller 1X1 and 2X2 matrices.

2.3.5 Conjugacy Classes

The elements are classified into five conjugacy classes,

C1 : { e} , C2 : { a, a3} , C !
1 : { a2} , C !

2 : { b, a2b} , C !!
2 : { ab, a3b} (2.55)

Here, the subscript of Cn, n, denotes the number of elements in the conjugacy class Cn.

Their order are found as

e = e , h = 1 , (2.56a)

a4 = (a3)4 = e , h = 4 , (2.56b)

(a2)2 = e , h = 2 , (2.56c)
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(b2) = (a2b)2 = e , h = 2 , (2.56d)

(ab)2 = (a3b)2 = e , h = 2 . (2.56e)

2.3.6 Characters And Representations Of D 4

Let us study the irreps(irreducible representation) of D4. The number of irreps of D4 must

be equal to the number of conjugacy classes, that is, five. We assume that there are mn

n⇤dimensional representations. mn must satisfy

(

n

mn = 5 . (2.57)

The orthogonality relation 2.6a requires,

(

⇤

[⇣D! (C1)]
2 =

(

n

mnn
2 = m1 + 4m2 + 9m3 + Æ Æ Æ= 8 , (2.58)

where mn � 0. This equation has two possible solutions, (m1,m2) = (4, 1) and (0, 2), but only

the former (m1,m2) = (4, 1) satisfies Eq. (2.57).

Thus, the irreps of D4 include four singlets and a doublet. Let us denote the singlets by 1++,

1+# , 1# + and 1## , and the doublet by 2. Their characters are denoted by ⇣1++ (g), ⇣1+ ! (g),

⇣1! + (g), ⇣1!! (g) and ⇣2(g), respectively.

First, we consider the characters of four singlets. Because b2=(a2) = e, (ab)2 = e, the characters

of C2, C !
2 and C !!

2 have two possibilities,

⇣D! (C2) = – 1 , ⇣D! (C
!
2) = – 1 , ⇣D! (C

!!
2 ) = – 1 , (2.59)

where D⇤ corresponds to four singlets 1±±. Obviously, ⇣D! (C1) = 1 and ⇣2(C1) = 2. Further-

more, one singlet corresponds to a trivial singlet, that is ⇣1++ (C2) = ⇣1++ (C !
1) = ⇣1++ (C !

2) =

⇣1++ (C !!
2 ) = 1.

2◊ 2 matrix representation for D4 can be generated by,

a =

!

" cos(⌘/2) ⇤ sin(⌘/2)

sin(⌘/2) cos(⌘/2)

#

$ =

!

" 0 ⇤1

1 0

#

$ , b =

!

" 1 0

0 ⇤1

#

$ . (2.60)
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From these generators, we can find out the characters of the representation of the elements as

⇣2(C2) = 0 , ⇣2(C
!
1) = ⇤2 , ⇣2(C

!
2) = 0 , ⇣2(C

!!
2 ) = 0 . (2.61)

We will now use the orthogonality relations, Eqs. (2.6a) and (2.6b), to find out the remaining

characters. Solving for ⇣1+ ! (Ci ), we get

(

g

⇣1++ (g)⇣1+ ! (g) = 1 + 2⇣1+ ! (C2) + ⇣1+ ! (C
!
1) + 2⇣1+ ! (C

!
2) + 2⇣1+ ! (C

!!
2 ) = 0 , (2.62)

(

g

[⇣1+ ! (g)]
2 = 1 + 2[⇣1+ ! (C2)]

2 + [⇣1+ ! (C
!
1)]

2 + 2[⇣1+ ! (C
!
2)]

2 + 2[⇣1+ ! (C
!!
2 )]

2 = 8 , (2.63)

⇣2(g)⇣1+ ! (g) = 1 Æ2 + 2 Æ0 Æ⇣1+ ! (C2) + (⇤2) Æ0 Æ⇣1+ ! (C
!
1) + 2 Æ0 Æ⇣1+ ! (C

!
2) +

2 Æ0 Æ⇣1+ ! (C
!!
2 ) = 0 . (2.64)

Eq. (2.63) implies ⇣1+ ! (Ci) = – 1 and Eq. (2.64) implies ⇣1+ ! (C
!
1) = 1. Following the same

procedure for ⇣1! + (Ci), we get

(

g

⇣1++ (g)⇣1! + (g) = 1 + 2⇣1! + (C2) + ⇣1! + (C
!
1) + 2⇣1! + (C

!
2) + 2⇣1! + (C

!!
2 ) = 0 , (2.65)

⇣1! + (Ci) = – 1 , (2.66)

⇣1! + (C
!
1) = 1 . (2.67)

For ⇣1!! (Ci), we get

(

g

⇣1++ (g)⇣1!! (g) = 1 + 2⇣1!! (C2) + ⇣1!! (C !
1) + 2⇣1!! (C !

2) + 2⇣1!! (C !!
2 ) = 0 , (2.68)

⇣1!! (Ci) = – 1 , (2.69)

⇣1!! (C !
1) = 1 . (2.70)
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And we can also write the following relations :-

1 + 2⇣1+ ! (C2)⇣1! + (C2) + 1 + 2⇣1+ ! (C
!
2)⇣1! + (C

!
2) + 2⇣1+ ! (C

!!
2 )⇣1! + (C

!!
2 ) = 0 , (2.71)

1 + 2⇣1+ ! (C2)⇣1!! (C2) + 1 + 2⇣1+ ! (C
!
2)⇣1!! (C !

2) + 2⇣1+ ! (C
!!
2 )⇣1!! (C !!

2 ) = 0 , (2.72)

1 + 2⇣1! + (C2)⇣1!! (C2) + 1 + 2⇣1! + (C
!
2)⇣1!! (C !

2) + 2⇣1! + (C
!!
2 )⇣1!! (C !!

2 ) = 0 , (2.73)

Solving the above equations, we can construct the character table as given below:

h ⇣1++ ⇣1+ ! ⇣1! + ⇣1!! ⇣2

C1 1 1 1 1 1 2
C2 4 1 ⇤1 ⇤1 1 0
C !
1 2 1 1 1 1 ⇤2

C !
2 2 1 1 ⇤1 ⇤1 0

C !!
2 2 1 ⇤1 1 ⇤1 0

Table 2.5: Character table for D4

2.3.7 Tensor Products

Now that we have constructed the character table and we know the irreducible representations

of d4, our next task is to find out the tensor product of the irreps. All the irreps of D4 are given

as follows:

1++ , 1+# , 1# + , 1## , 2 (2.74)

The singlet representation can be easily found out using the character table and the doublet

representation can be found out using the generator in Eq. (2.60).

Consider a doublet

+

- x1

x2

.

0 , (2.75)
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It transforms under D4 as following:

e :

+

- x1

x2

.

0 �

+

- 1 0

0 1

.

0

+

- x1

x2

.

0 =

+

- x1

x2

.

0 , (2.76a)

a :

+

- x1

x2

.

0 �

+

- 0 ⇤1

1 0

.

0

+

- x1

x2

.

0 =

+

- ⇤x2
x1

.

0 , (2.76b)

a2 :

+

- x1

x2

.

0 �

+

- ⇤1 0

0 ⇤1

.

0

+

- x1

x2

.

0 =

+

- ⇤x1
⇤x2

.

0 , (2.76c)

a3 :

+

- x1

x2

.

0 �

+

- 0 1

⇤1 0

.

0

+

- x1

x2

.

0 =

+

- x2

⇤x1

.

0 , (2.76d)

b :

+

- x1

x2

.

0 �

+

- 1 0

0 ⇤1

.

0

+

- x1

x2

.

0 =

+

- x1

⇤x2

.

0 , (2.76e)

ab :

+

- x1

x2

.

0 �

+

- 0 1

1 0

.

0

+

- x1

x2

.

0 =

+

- x2

x1

.

0 , (2.76f)

a2b :

+

- x1

x2

.

0 �

+

- ⇤1 0

0 1

.

0

+

- x1

x2

.

0 =

+

- ⇤x1
x2

.

0 , (2.76g)

a3b :

+

- x1

x2

.

0 �

+

- 0 ⇤1

⇤1 0

.

0

+

- x1

x2

.

0 =

+

- ⇤x2
⇤x1

.

0 . (2.76h)

Singlet
1
w

2

1++
transforms under D4 as follows

e :
1
w

2
� D(e)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,
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a :
1
w

2
� D(a)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a2 :
1
w

2
� D(a2)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a3 :
1
w

2
� D(a3)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

b :
1
w

2
� D(b)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

ab :
1
w

2
� D(ab)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a2b :
1
w

2
� D(a2b)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a3b :
1
w

2
� D(a3b)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
. (2.77)

Singlet
1
w

2

1+ !

transforms under D4 as follows

e :
1
w

2
� D(e)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a :
1
w

2
� D(a)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
,

a2 :
1
w

2
� D(a2)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a3 :
1
w

2
� D(a3)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
,

b :
1
w

2
� D(b)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

ab :
1
w

2
� D(ab)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
,

a2b :
1
w

2
� D(a2b)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a3b :
1
w

2
� D(a3b)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
. (2.78)

Singlet
1
w

2

1! +
transforms under D4 as follows

e :
1
w

2
� D(e)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a :
1
w

2
� D(a)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
,

a2 :
1
w

2
� D(a2)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a3 :
1
w

2
� D(a3)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
,

b :
1
w

2
� D(b)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
,

ab :
1
w

2
� D(ab)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a2b :
1
w

2
� D(a2b)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
,

a3b :
1
w

2
� D(a3b)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
. (2.79)
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Singlet
1
w

2

1!!

transforms under D4 as follows

e :
1
w

2
� D(e)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a :
1
w

2
� D(a)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a2 :
1
w

2
� D(a2)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

a3 :
1
w

2
� D(a3)

1
w

2
=

1
1
2 1

w
2
=

1
w

2
,

b :
1
w

2
� D(b)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
,

ab :
1
w

2
� D(ab)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
,

a2b :
1
w

2
� D(a2b)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
,

a3b :
1
w

2
� D(a3b)

1
w

2
=

1
⇤1

2 1
w

2
=

1
⇤w

2
. (2.80)

2.3.7.1 Tensor Product Of Doublets

Take first doublet whose components are x1 and x2, and second doublet whose components are

y1 and y2. If we take the tensor product of these two, we get

+

- x1

x2

.

0 ✏

+

- y1

y2

.

0 =

+

,,,,,,-

x1y1

x1y2

x2y1

x2y2

.

//////0
. (2.81)

Now we know how a doublet transforms under di⇥erent elements of D4, Eq. (2.76). From that

we can easily find out how each element xiyj transforms.

Element e:

x!
1y

!
1 = x1y1 , (2.82a)

x!
1y

!
2 = x1y2 , (2.82b)

x!
2y

!
1 = x2y1 , (2.82c)

x!
2y

!
2 = x2y2 . (2.82d)

Element a:

x!
1y

!
1 = x2y2 , (2.83a)
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x!
1y

!
2 = ⇤x2y1 , (2.83b)

x!
2y

!
1 = ⇤x1y2 , (2.83c)

x!
2y

!
2 = x1y1 . (2.83d)

It is found that following linear combinations transforms like di⇥erent singlets for element a.

x!
1y

!
1 + x!

2y
!
2 = [D(a)]1++ [x1y1 + x2y2] , (2.84a)

x!
1y

!
1 ⇤ x!

2y
!
2 = [D(a)]1+ ! [x1y1 ⇤ x2y2] , (2.84b)

x!
1y

!
2 + x!

2y
!
1 = [D(a)]1! + [x1y2 + x2y1] , (2.84c)

x!
1y

!
2 ⇤ x!

2y
!
1 = [D(a)]1!! [x1y2 ⇤ x2y1] . (2.84d)

Element a2:

x!
1y

!
1 = x1y1 , (2.85a)

x!
1y

!
2 = x1y2 , (2.85b)

x!
2y

!
1 = x2y1 , (2.85c)

x!
2y

!
2 = x2y2 . (2.85d)

It is found that following linear combinations transforms like di⇥erent singlets for element a2.

x!
1y

!
1 + x!

2y
!
2 = [D(a2)]1++ [x1y1 + x2y2] , (2.86a)

x!
1y

!
1 ⇤ x!

2y
!
2 = [D(a2)]1+ ! [x1y1 ⇤ x2y2] , (2.86b)

x!
1y

!
2 + x!

2y
!
1 = [D(a2)]1! + [x1y2 + x2y1] , (2.86c)

x!
1y

!
2 ⇤ x!

2y
!
1 = [D(a2)]1!! [x1y2 ⇤ x2y1] . (2.86d)

Element a3:

x!
1y

!
1 = x2y2 , (2.87a)

x!
1y

!
2 = ⇤x2y1 , (2.87b)

x!
2y

!
1 = ⇤x1y2 , (2.87c)

x!
2y

!
2 = x1y1 . (2.87d)
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It is found that following linear combinations transforms like di⇥erent singlets for element a3.

x!
1y

!
1 + x!

2y
!
2 = [D(a3)]1++ [x1y1 + x2y2] , (2.88a)

x!
1y

!
1 ⇤ x!

2y
!
2 = [D(a3)]1+ ! [x1y1 ⇤ x2y2] , (2.88b)

x!
1y

!
2 + x!

2y
!
1 = [D(a3)]1! + [x1y2 + x2y1] , (2.88c)

x!
1y

!
2 ⇤ x!

2y
!
1 = [D(a3)]1!! [x1y2 ⇤ x2y1] . (2.88d)

Element b:

x!
1y

!
1 = x1y1 , (2.89a)

x!
1y

!
2 = ⇤x1y2 , (2.89b)

x!
2y

!
1 = ⇤x2y1 , (2.89c)

x!
2y

!
2 = x2y2 . (2.89d)

It is found that following linear combinations transforms like di⇥erent singlets for element b.

x!
1y

!
1 + x!

2y
!
2 = [D(b)]1++ [x1y1 + x2y2] , (2.90a)

x!
1y

!
1 ⇤ x!

2y
!
2 = [D(b)]1+ ! [x1y1 ⇤ x2y2] , (2.90b)

x!
1y

!
2 + x!

2y
!
1 = [D(b)]1! + [x1y2 + x2y1] , (2.90c)

x!
1y

!
2 ⇤ x!

2y
!
1 = [D(b)]1!! [x1y2 ⇤ x2y1] . (2.90d)

Element ab:

x!
1y

!
1 = x2y2 , (2.91a)

x!
1y

!
2 = x2y1 , (2.91b)

x!
2y

!
1 = x1y2 , (2.91c)

x!
2y

!
2 = x1y1 . (2.91d)

It is found that following linear combinations transforms like di⇥erent singlets for element ab.

x!
1y

!
1 + x!

2y
!
2 = [D(ab)]1++ [x1y1 + x2y2] , (2.92a)

x!
1y

!
1 ⇤ x!

2y
!
2 = [D(ab)]1+ ! [x1y1 ⇤ x2y2] , (2.92b)

x!
1y

!
2 + x!

2y
!
1 = [D(ab)]1! + [x1y2 + x2y1] , (2.92c)
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x!
1y

!
2 ⇤ x!

2y
!
1 = [D(ab)]1!! [x1y2 ⇤ x2y1] . (2.92d)

Element a2b:

x!
1y

!
1 = x1y1 , (2.93a)

x!
1y

!
2 = ⇤x1y2 , (2.93b)

x!
2y

!
1 = ⇤x2y1 , (2.93c)

x!
2y

!
2 = x2y2 . (2.93d)

It is found that following linear combinations transforms like di⇥erent singlets for element a2b.

x!
1y

!
1 + x!

2y
!
2 = [D(a2b)]1++ [x1y1 + x2y2] , (2.94a)

x!
1y

!
1 ⇤ x!

2y
!
2 = [D(a2b)]1+ ! [x1y1 ⇤ x2y2] , (2.94b)

x!
1y

!
2 + x!

2y
!
1 = [D(a2b)]1! + [x1y2 + x2y1] , (2.94c)

x!
1y

!
2 ⇤ x!

2y
!
1 = [D(a2b)]1!! [x1y2 ⇤ x2y1] . (2.94d)

Element a3b:

x!
1y

!
1 = x2y2 , (2.95a)

x!
1y

!
2 = x2y1 , (2.95b)

x!
2y

!
1 = x1y2 , (2.95c)

x!
2y

!
2 = x1y1 . (2.95d)

It is found that following linear combinations transforms like di⇥erent singlets for element a3b.

x!
1y

!
1 + x!

2y
!
2 = [D(a3b)]1++ [x1y1 + x2y2] , (2.96a)

x!
1y

!
1 ⇤ x!

2y
!
2 = [D(a3b)]1+ ! [x1y1 ⇤ x2y2] , (2.96b)

x!
1y

!
2 + x!

2y
!
1 = [D(a3b)]1! + [x1y2 + x2y1] , (2.96c)

x!
1y

!
2 ⇤ x!

2y
!
1 = [D(a3b)]1!! [x1y2 ⇤ x2y1] . (2.96d)

From the above equations we can conclude that [x1y1+x2y2] transforms as 1++ singlet, [x1y1⇤

x2y2] transforms as 1+# singlet, [x1y2 + x2y1] transforms as 1# + and [x1y2 ⇤ x2y1] transforms

as 1## singlet under each element of D4.
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Hence, the tensor product of two doublets can be written as

+

- x1

x2

.

0 ✏

+

- y1

y2

.

0 = [x1y1 + x2y2]1++ + [x1y1 ⇤ x2y2]1+ ! + [x1y2 + x2y1]1! + + [x1y2 ⇤ x2y1]1!! .(2.97)

2.3.7.2 Tensor Product Of Doublet And Singlet

1
w

2
✏

+

- x

y

.

0 =

+

- wx

wy

.

0 (2.98)

Case 1: Consider the following singlet and doublet:

1
w

2

1++
,

+

- x1

x2

.

0

2

. (2.99)

The tensor product is trivial and is given as

1
w

2

1++
✏

+

- x1

x2

.

0

2

=

+

- wx1

wx2

.

0

2

(2.100)

Case 2: The singlet and doublet for this case are

1
w

2

1+ !

,

+

- x1

x2

.

0

2

. (2.101)

Element a

w!x!
1 = wx2 , (2.102)

w!x!
2 = wx1 . (2.103)

It is found that

+

- wx1

⇤wx2

.

0 �

+

- w!x!
1

⇤w!x!
2

.

0 =

+

- wx2

⇤wx1

.

0 =
1
D(a)

2

2

+

- wx1

⇤wx2

.

0 . (2.104)

Element a2

w!x!
1 = ⇤wx1 , (2.105)
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+

- x1

x2

.

0

22

✏

+

- y1

y2

.

0

22

= [x1y1 + x2y2]1+ ⇣ [x1y2 ⇤ x2y1]1! ⇣

+

- x2y2 ⇤ x1y1

x1y2 + x2y1

.

0

21

, (2.176b)

+

- x1

x2

.

0

21

✏

+

- y1

y2

.

0

22

=

+

- x1y1 + x2y2

x1x!
2 ⇤ x2x!

1

.

0

21

⇣

+

- x1x
!
1 ⇤ x2x!

2

x1y2 + x2y1

.

0

22

. (2.176c)

Product of doublet and singlet

1
w

2

1+
✏

+

- x1

x2

.

0

21,2

=

+

- wx1

wx2

.

0

21,2

,
1
w

2

1!

✏

+

- x1

x2

.

0

21,2

=

+

- ⇤wx2
wx1

.

0

21,2

. (2.177)

Product of singlets

1
w

2

1s1

✏ [w2]1s2
= [w1w2]1s1s2

. (2.178)

where 1s is either 1+ or 1# .





I have not failed. I’ve just found 10,000

ways that won’t work . . .

Thomas A. Edison

3
Attempts Using D5 symmetry

Now that we are equipped with the knowledge of group theory, we will use it to construct models

using D5 symmetry. This can be done by extending the SM scalar sector by adding SU(2) scalar

doublets. We will start by writing the tensor products as found out in the previous chapter.

Then we will build two Higgs doublet model(2HDM) and three Higgs doublet model(3HDM) in

the upcoming sections.

D5 has four irreducible representations. Two two-dimensional representations denoted by 21 and

22, and two one-dimensional representations denoted by 1+ and 1# . Tensor product of irreps

in real basis is found out in Chapter-2. The results are summarized here again for reference.

Product of doublets

+

- x1

x2

.

0

21

✏

+

- y1

y2

.

0

21

= [x1y1 + x2y2]1+ ⇣ [x1y2 ⇤ x2y1]1! ⇣

+

- x1y1 ⇤ x2y2

x1y2 + x2y1

.

0

22

, (3.1a)

59
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+

- x1

x2

.

0

22

✏

+

- y1

y2

.

0

22

= [x1y1 + x2y2]1+ ⇣ [x1y2 ⇤ x2y1]1! ⇣

+

- x2y2 ⇤ x1y1

x1y2 + x2y1

.

0

21

, (3.1b)

+

- x1

x2

.

0

21

✏

+

- y1

y2

.

0

22

=

+

- x1y1 + x2y2

x1x!
2 ⇤ x2x!

1

.

0

21

⇣

+

- x1x
!
1 ⇤ x2x!

2

x1y2 + x2y1

.

0

22

. (3.1c)

Product of doublet and singlet

1
w

2

1+
✏

+

- x1

x2

.

0

21,2

=

+

- wx1

wx2

.

0

21,2

,
1
w

2

1!

✏

+

- x1

x2

.

0

21,2

=

+

- ⇤wx2
wx1

.

0

21,2

. (3.2)

Product of singlets

1
w

2

1s1

✏ [w2]1s2
= [w1w2]1s1s2

. (3.3)

where 1s is either 1+ or 1# .

3.1 Two Higgs Doublet Model

D5 has two two-dimensional representations, so we have the freedom of assigning the three

generations of fermions to di⇥erent two-dimensional representations. One of the ways of assigning

is putting the first generation in the one-dimensional representation, and the second and third

generations in the two-dimensional representation as done in this paper [8]. Or we can multiply

with the permutation matrices to get the required fields at the end.

We have tried other ways of transforming quark fields. Using one Higgs doublet is a trivial case.

Shown below are di⇥erent ways of transforming fields using two SU(2) Higgs doublet. We can

either put all the fields in the same doublet of D5 or put di⇥erent fields in di⇥erent doublets of

D5.

Case 1: All the fields in the same doublet, say 21. The quark field transform as di⇥erent

representation of D5 in the following way:

1+ : Q3 , n3R , 1# : p3R , (3.4a)

21 :

+

- Q1

Q2

.

0 ,

+

- p1R

P2R

.

0 ,

+

- n1R

n2R

.

0 , (3.4b)
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where QA’s (A = 1, 2, 3) are the left handed SU(2) quark doublets and pAR’s and nAR’s are the

right handed up-type and down-type quark fields, respectively.

The two Higgs fields ⇤1 and ⇤2, which are SU(2) doublets transform as

21 :

+

- ⇤1

⇤2

.

0 . (3.4c)

The fermion mass matrix arises from the coupling yij Qi ⇤ njR for down-type quarks and

yij Qi ⇤̃ pjR for up-type quarks. ⇤ is the Higgs field and ⇤̃ is ⇤̃ = i⌃2⇤" .

Using Eq. (2.176), Eq. (2.177) and Eq. (2.178), we can write the Yukawa Lagrangian, which will

be invariant under D5 symmetry(as done in section 4).

⇤ L = Ad(Q1⇤1n3R +Q2⇤2n3R) +Bd(Q3⇤1n1R +Q3⇤2n2R)

+Au(Q1⇤̃2p3R ⇤Q2⇤̃1p1R) +Bu(Q3⇤̃1p1R +Q3⇤̃2p2R) + h.c. . (3.5)

where Au„ Ad, Bu and Bd are the Yukawa couplings. Let ⌅⇤k⇧ = vk$
2

represents the vacuum

expectation values of ⇤k, k = 1, 2. The mass matrices arising from the above Lagrangian are

written as

Md =
1⌃
2

!

)))"

0 0 Adv1

0 0 Adv2

Bdv1 Bdv2 0

#

***$
, (3.6a)

Mu =
1⌃
2

!

)))"

0 0 Auv2

0 0 ⇤Auv1

Buv1 Buv2 0

#

***$
. (3.6b)

The biunitary transformation to obtain the diagonal matrices are:

Du = VL Mu V †
R
, (3.7a)

Dd = UL Md U
†
R
. (3.7b)

Here, the matrices relate the gauge basis(n, p) to mass basis(u,d) in the following way:

uL = VL pL, uR = VR pR , (3.8a)

dL = UL nL, dR = UR nR . (3.8b)
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where u and d represent the physical up and down quark respectively. The Cabibbo-Kobayashi-

Maskawa(CKM) matrix is obtained from the gauge interaction term and given by

VCKM = VL ÆU †
L
. (3.9)

From Eq. (3.7b)

D†
d
= (UL ÆMd ÆU †

R
)† = UR ÆM †

d
ÆU †

L
, (3.10)

D2
d
= UL ÆM2

d
ÆU †

L
= diag(m2

d,m
2
s ,m

2
b), . (3.11)

Similarly,

D2
u = VL ÆM2

u ÆV †
L
= diag(m2

u,m
2
c ,m

2
t ), . (3.12)

From Eq. (3.6),

MdM
†
d
=

1

2

!

)))"

A2
d
v21 A2

d
v1v2 0

A2
d
v1v2 A2

d
v22 0

0 0 B2
d
v2

#

***$
, (3.13a)

MuM
†
u =

1

2

!

)))"

A2
uv

2
2 ⇤A2

uv1v2 0

⇤A2
uv1v2 A2

uv
2
1 0

0 0 B2
uv

2

#

***$
. (3.13b)

Diagonalizing the above matrices will give us the value of VL and UL which can be used to find

the CKM matrix. We define,

U⌥ =

!

)))"

cos✓ sin✓ 0

⇤ sin✓ cos✓ 0

0 0 1

#

***$
. (3.14)

where ✓ is defined as following:

tan✓ ⇥ v2/v1 =⌥ cos✓ = v1/v sin✓ = v2/v . (3.15)
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And v =
3
v21 + v22 is the total VEV. U⌥ diagonalizes the mass matrices as follows:

U⌥ ÆM2
u ÆU †

⌥ = diag(0,A2
uv

2/2,B2
uv

2
2/2) ⇥ diag(m2

p1 ,m
2
p2 ,m

2
p3 ) , (3.16a)

U⌥ ÆM2
d

ÆU †
⌥ = diag(A2

dv
2/2, 0,B2

dv
2
2/2) ⇥ diag(m2

d1
,m2

d2
,m2

d3
) . (3.16b)

We have the freedom to rearrange these eigenvalues to assign them to md, ms and mb according

to our convenience. We concisely take into account all such possibilities by writing

!

)))"

d

s

b

#

***$
= u

!

)))"

d1

d2

d3

#

***$
, (3.17)

where, u is a permutation matrix with 0s and 1s in the appropriate places. For example, if we

assign d ⇥ d1, s ⇥ d2 and s ⇥ d3, then u = I3, the 3 ◊ 3 identity matrix. Thus, using Eq.

(3.16b), the diagonal mass matrix in the (d, s, b) basis may be written as:

D2
d
= diag(m2

d
,m2

s,m
2
b
) = u ÆU⌥ ÆM2

d
ÆU †

⌥ Æu† . (3.18)

Take matrix u as

u =

!

)))"

0 1 0

1 0 0

0 0 1

#

***$
, (3.19)

such that lowest mass eigenvalue is assigned to the down quark.

And for the up-sector

D2
u = diag(m2

u,m
2
c ,m

2
t ) = U⌥ ÆM2

u ÆU †
⌥ (3.20)

Now, comparing Eqs. (3.18) and (3.11), and Eqs. (3.18) and (3.12)

VL = U⌥ , UL = u ÆU⌥ . (3.21)



Chapter 3. Attempts Using D5 symmetry 64

The CKM matrix is then calculated as follows:

VCKM = VL ÆU †
L
= U⌥ ÆU †

⌥ Æu† =

!

)))"

0 1 0

1 0 0

0 0 1

#

***$
(3.22)

And the mass of up quark and down quark is coming zero.

We will get the similar result if we put all the fields in the 22 doublet instead of 21. Also, there

will not be much change if we assign the down-type right-handed field to 1# instead of 1+.

Case 2: Di⇥erent fields in di⇥erent doublets. The quark fields are assigned to di⇥erent repre-

sentation of D5 in the following way:

1+ : Q3 1# : p3R, n3R (3.23a)

21 :

+

- Q1

Q2

.

0 ,

+

- p1R

P2R

.

0 22 :

+

- n1R

n2R

.

0 (3.23b)

where QA’s (A = 1, 2, 3) are the left handed SU(2) quark doublets and pAR’s and nAR’s are the

right handed up-type and down-type quark fields, respectively.

The two Higgs fields ⇤1 and ⇤2, which are SU(2) doublets, transform as

21 :

+

- ⇤1

⇤2

.

0 (3.23c)

The Yukawa Lagrangian which is invariant under D5 symmetry is then written as

L = Ad(Q1⇤2n3R ⇤Q2⇤1n3R) +Bd(Q1⇤1n1R ⇤Q2⇤2n1R +Q1⇤2n2R +Q2⇤1n2R)

+Au(Q1⇤̃2p3R ⇤Q2⇤̃1p1R) +Bu(Q3⇤̃1p1R +Q3⇤̃2p2R) + h.c. (3.24)

where Au„ Ad, Bu and Bd are the Yukawa couplings. Let ⌅⇤k⇧ = vk$
2

represents the vacuum

expectation values of ⇤k, k = 1, 2. The mass matrices arising from the above Lagrangian are

written as

Mu =
1⌃
2

!

)))"

0 0 Auv2

0 0 ⇤Auv1

Buv1 Buv2 0

#

***$
(3.25a)
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Md =
1⌃
2

!

)))"

Bd v1 Bd v1 Adv2

Bd v1 Bd v1 ⇤Adv1

0 0 0

#

***$
(3.25b)

Again after diagonalizing the mass matrices, we are getting the mass of up quark and down

quark to be zero. From the above cases, we can see that two SU(2) Higgs doublets are not

su⌅cient to get the required results, so we will introduce another Higgs doublet ⇤3 to our model

and see what happens.

3.2 Three Higgs Doublet Model

We have three SU(2) Higgs doublet ⇤i, three left-handed SU(2) quark doublet QAL, ad three

right-handed SU(2) quark singlet for the up and down sector, pAR and nAR, respectively. We

can transform the fields as D5 doublets and singlets. There are sixteen ways in which the fields

transform as doublet, 21 or 22 . They are shown below:

1111 :

!

" ⇤1

⇤2

#

$

21

,

!

" Q1

Q2

#

$

21

,

!

" p1

p2

#

$

21

,

!

" n1

n2

#

$

21

, (3.26a)

1112 :

!

" ⇤1

⇤2

#

$

21

,

!

" Q1

Q2

#

$

21

,

!

" p1

p2

#

$

21

,

!

" n1

n2

#

$

22

, (3.26b)

1121 :

!

" ⇤1

⇤2

#

$

21

,

!

" Q1

Q2

#

$

21

,

!

" p1

p2

#

$

22

,

!

" n1

n2

#

$

21

, (3.26c)

1122 :

!

" ⇤1

⇤2

#

$

21

,

!

" Q1

Q2

#

$

21

,

!

" p1

p2

#

$

22

,

!

" n1

n2

#

$

22

, (3.26d)

1211 :

!

" ⇤1

⇤2

#

$

21

,

!

" Q1

Q2

#

$

22

,

!

" p1

p2

#

$

21

,

!

" n1

n2

#

$

21

, (3.26e)

1212 :

!

" ⇤1

⇤2

#

$

21

,

!

" Q1

Q2

#

$

22

,

!

" p1

p2

#

$

21

,

!

" n1

n2

#

$

22

, (3.26f)

1221 :

!

" ⇤1

⇤2

#

$

21

,

!

" Q1

Q2

#

$

22

,

!

" p1

p2

#

$

22

,

!

" n1

n2

#

$

21

, (3.26g)

1222 :

!

" ⇤1

⇤2

#

$

21

,

!

" Q1

Q2

#

$

22

,

!

" p1

p2

#

$

22

,

!

" n1

n2

#

$

22

, (3.26h)
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2111 :

!

" ⇤1

⇤2

#

$

22

,

!

" Q1

Q2

#

$

21

,

!

" p1

p2

#

$

21

,

!

" n1

n2

#

$

21

, (3.26i)

2112 :

!

" ⇤1

⇤2

#

$

22

,

!

" Q1

Q2

#

$

21

,

!

" p1

p2

#

$

21

,

!

" n1

n2

#

$

22

, (3.26j)

2121 :

!

" ⇤1

⇤2

#

$

22

,

!

" Q1

Q2

#

$

21

,

!

" p1

p2

#

$

22

,

!

" n1

n2

#

$

21

, (3.26k)

2122 :

!

" ⇤1

⇤2

#

$

22

,

!

" Q1

Q2

#

$

21

,

!

" p1

p2

#

$

22

,

!

" n1

n2

#

$

22

, (3.26l)

2211 :

!

" ⇤1

⇤2

#

$

22

,

!

" Q1

Q2

#

$

22

,

!

" p1

p2

#

$

21

,

!

" n1

n2

#

$

21

, (3.26m)

2212 :

!

" ⇤1

⇤2

#

$

22

,

!

" Q1

Q2

#

$

22

,

!

" p1

p2

#

$

21

,

!

" n1

n2

#

$

22

, (3.26n)

2221 :

!

" ⇤1

⇤2

#

$

22

,

!

" Q1

Q2

#

$

22

,

!

" p1

p2

#

$

22

,

!

" n1

n2

#

$

21

, (3.26o)

2222 :

!

" ⇤1

⇤2

#

$

22

,

!

" Q1

Q2

#

$

22

,

!

" p1

p2

#

$

22

,

!

" n1

n2

#

$

22

. (3.26p)

And the ways in which the fields transform as singlets are

%
⇤3

&

1+

,
%
Q3

&

1+

,
%
p3

&

1+

,
%
n3

&

1+

, (3.27)
%
⇤3

&

1+

,
%
Q3

&

1+

,
%
p3

&

1+

,
%
n3

&

1-

, (3.28)
%
⇤3

&

1+

,
%
Q3

&

1+

,
%
p3

&

1-

,
%
n3

&

1+

, (3.29)
%
⇤3

&

1+

,
%
Q3

&

1+

,
%
p3

&

1-

,
%
n3

&

1-

, (3.30)
%
⇤3

&

1+

,
%
Q3

&

1-

,
%
p3

&

1+

,
%
n3

&

1+

, (3.31)
%
⇤3

&

1+

,
%
Q3

&

1-

,
%
p3

&

1+

,
%
n3

&

1-

, (3.32)
%
⇤3

&

1+

,
%
Q3

&

1-

,
%
p3

&

1-

,
%
n3

&

1+

, (3.33)
%
⇤3

&

1+

,
%
Q3

&

1-

,
%
p3

&

1-

,
%
n3

&

1-

, (3.34)
%
⇤3

&

1-

,
%
Q3

&

1+

,
%
p3

&

1+

,
%
n3

&

1+

, (3.35)
%
⇤3

&

1-

,
%
Q3

&

1+

,
%
p3

&

1+

,
%
n3

&

1-

, (3.36)
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%
⇤3

&

1-

,
%
Q3

&

1+

,
%
p3

&

1-

,
%
n3

&

1+

, (3.37)
%
⇤3

&

1-

,
%
Q3

&

1+

,
%
p3

&

1-

,
%
n3

&

1-

, (3.38)
%
⇤3

&

1-

,
%
Q3

&

1-

,
%
p3

&

1+

,
%
n3

&

1+

, (3.39)
%
⇤3

&

1-

,
%
Q3

&

1-

,
%
p3

&

1+

,
%
n3

&

1-

, (3.40)
%
⇤3

&

1-

,
%
Q3

&

1-

,
%
p3

&

1-

,
%
n3

&

1+

, (3.41)
%
⇤3

&

1-

,
%
Q3

&

1-

,
%
p3

&

1-

,
%
n3

&

1-

. (3.42)

(3.43)

Remember here 1, 2 and 3 do not represent the generations. We can always multiply with the

permutation matrix and put the generations in the desired place. For one set of doublet fields,

say 1111, there are sixteen ways of arranging the fields transforming as singlets. So we have

sixteen sets of doublet fields; therefore, we have 256 possible ways of transforming the fields.

Some examples are shown in the following subsections.

3.2.1 Case: 1221 ++++

The fields transforms as following:

!

" ⇤1

⇤2

#

$

21

,

!

" Q1

Q2

#

$

22

,

!

" p1

p2

#

$

22

,

!

" n1

n2

#

$

21

, (3.44a)

%
⇤3

&

1+

,
%
Q3

&

1+

,
%
p3

&

1+

,
%
n3

&

1+

. (3.44b)

Down type Yukawa Lagrangian:

⇤L d = Ad{ (Q̄1L⇤1 + Q̄2L⇤2)n1R + (Q̄2L⇤1 ⇤ Q̄1L⇤2)n2R} + (3.45)

BdQ̄3L(⇤1n1R + ⇤2n2R) + CdQ̄3L⇤3n3R .

Down type Yukawa Lagrangian:

⇤L u = Au{ (Q̄2L⇤̃2 ⇤ Q̄1L⇤̃1)p1R + (Q̄1L⇤̃2 + Q̄2L⇤̃1)p2R} + (3.46)

Bu{ Q̄1L⇤̃3p1R + Q̄2L⇤̃3p2R} + CuQ̄3L⇤̃3p3R .
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The mass matrices are then written as

Md =

!

)))"

Adv1 ⇤Adv2 0

Adv2 Adv1 0

Bdv1 Bdv2 Cdv3

#

***$
(3.47a)

Mu =

!

)))"

⇤Auv1 +Buv3 Auv2 0

Auv2 Auv1 +Buv3 0

0 0 Cuv3

#

***$
(3.47b)

Our mass squared matrices are:

M2
d

=

!

)))"

A2
d
(v21 + v22) 0 AdBd(v21 ⇤ v22)

0 A2
d
(v21 + v22) 2AdBdv1v2

AdBd(v21 ⇤ v22) 2AdBdv1v2 B2
d
(v21 + v22) + C2

d
v23

#

***$
, (3.48a)

M2
u =

!

)))"

A2
uv

2
2 + (Auv1 ⇤Buv3)2 2AuBuv2v3 0

2AuBuv2v3 A2
uv

2
2 + (Auv1 +Buv3)2 0

0 0 C2
uv

2
3

#

***$
. (3.48b)

Redefining the VEVs in terms of the total VEV and the polar angles:

v1 = v cos✓1 sin✓2 , v2 = v sin✓1 sin✓2, v3 = v cos✓2 . (3.49)

where total VEV, v =
3
v21 + v22 + v23 = 174 GeV in our case.

Diagonalizing Mass Matix In Down Sector After the redefinition, Eq. (3.48a) is written

as

M2
d
=

!

)))"

A2
d
sin✓2

2 0 AdBd cos 2✓1 sin
2 ✓2

0 A2
d
sin✓2

2 AdBd sin 2✓1 sin
2 ✓2

AdBd cos 2✓1 sin
2 ✓2 AdBd sin 2✓1 sin

2 ✓2 B2
d
sin2 ✓2 + C2

d
cos2 ✓2

#

***$
. (3.50)

We define,

Od =

!

)))"

sin 2✓1 ⇤ cos 2✓1 0

cos 2✓1 sin 2✓1 0

0 0 1

#

***$
. (3.51)
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Then, one can check

(M2
d
)Block = OdM

2
d
OT

d
=

!

)))"

Ad sin
2 ✓2 0 0

0 Ad sin
2 ✓2 AdBd sin

2 ✓2

0 AdBd sin
2 ✓2 Bd sin

2 ✓2Cd cos2 ✓2

#

***$
. (3.52)

For a symmetric 2◊ 2 matrix

K =

!

" a b

b c

#

$ , (3.53)

the orthogonal matrix which diagonalizes it, is given as

O =

!

" cos � sin �

⇤ sin � cos �

#

$ (3.54)

where � is

� =
1

2
tan# 1

4444
2b

a⇤ c

4444 . (3.55)

It will diagonalize the symmetric matrix in the following way:

D = OKOT (3.56)

So, we have

D2
d
= O (M

2
d
)BlockO

T

 =⌥ (M2
d
)Block = OT

 D
2
d
O (3.57)

where

O =

!

)))"

1 0 0

0 cos � sin �

0 ⇤ sin � cos �

#

***$
, D2

d
=

!

)))"

m2
x 0 0

0 m2
y 0

0 0 m2
z

#

***$
. (3.58)
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Now,

OT

 D
2
d
O =

!

)))"

m2
x 0 0

m2
y cos

2 � +m2
z sin

2 � (m2
y ⇤m2

z) cos � sin �

0 (m2
y ⇤m2

z) cos � sin � m2
z cos

2 � +m2
y sin

2 �

#

***$
. (3.59)

Comparing Eqs. (3.52) and (3.59), we get the following equations:

m2
x = Ad sin

2 ✓2 , (3.60a)

m2
y cos

2 � +m2
z sin

2 � = Ad sin
2 ✓2 , (3.60b)

m2
z cos

2 � +m2
y sin

2 � = Bd sin
2 ✓2Cd cos

2 ✓2 , (3.60c)

(m2
y ⇤m2

z) cos � sin � = AdBd sin
2 ✓2 . (3.60d)

From Eq. (3.60b), we can write

m2
y cos

2 � +m2
z sin

2 � = m2
x(cos

2 � + sin2 �) (3.61a)

(m2
y ⇤m2

x) cos
2 � + (m2

z ⇤m2
x) sin

2 � = 0 . (3.61b)

Notice that sin � and cos � can’t be simultaneously zero. Therefore, (m2
y ⇤m2

x) and (m2
z ⇤m2

x)

cannot have the same sign. This means mx must lie between my and mz. Thus we must have

mx = ms =mass of strange quark. This implies two possible hierarchies:

my < mx < mz =⌥ my = md , mz = mb . (3.62)

mz < mx < my =⌥ my = mb , mz = md . (3.63)

The full diagonalization looks like

D2
d
= O OdM

2
d
OT

d
OT

 . (3.64)

Reshu⇧ing of eigenvalues is done by the permutation matrix u. Thus, the left-handed diagonal-

izing matrix in the down sector is:

UL = uO Od . (3.65)



Chapter 3. Attempts Using D5 symmetry 71

Diagonalizing the mass matrix in the up-sector: Matrix M 2
u is a block diagonal matrix

which can be diagonalized using an orthogonal matrix Ou

 , where

Ou

 =

!

)))"

cos �u sin �u 0

⇤ sin �u cos �u 0

0 0 1

#

***$
(3.66)

The orthogonal rotation angle is found out using Eq. (3.55) as following:

tan 2�u =
2AuBuv2v3

{Auv22 + (Auv1 +Buv3)2} ⇤ {Auv22 + (Auv1 ⇤Buv3)2}
=

v2
v1

(3.67)

From Eq. (3.49),

v2
v1

= tan✓1 =⌥ �u =
✓1
2

(3.68)

Ou

 then becomes

Ou

 =

!

)))"

cos✓1/2 sin✓1/2 0

⇤ sin✓1/2 cos✓1/2 0

0 0 1

#

***$
(3.69)

One can easily check that

D2
u = OuT

 M2
uO

u

 =

!

)))"

(B2
u cos✓2 ⇤Au sin✓2)2 0 0

0 (B2
u cos✓2 +Au sin✓2)2 0

0 0 Cu cos2 ✓2

#

***$
. (3.70)

Again we will the permutation matrix u! to assign these eigenvalues to m2
u, m2

c and m2
t . The

left-handed diagonalizing matrix for the up-sector is then given as:

VL = u!OT

u . (3.71)

CKM Matrix The CKM matrix is given as

VCKM = VLU
†
L
= u!OuT

 (uO Od)
† . (3.72)
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Let’s try for the first hierarchy, mx = ms, my = md and mz = mb. For this case the permutation

matrix in the down sector is found out as

!

)))"

d

s

b

#

***$
=

!

)))"

0 1 0

1 0 0

0 0 1

#

***$

!

)))"

mx

my

mz

#

***$
=

!

)))"

my

mx

mz

#

***$
=⌥ u =

!

)))"

0 1 0

1 0 0

0 0 1

#

***$
. (3.73)

We have six permutation matrices, u!, in the up sector for this hierarchy. For the first case let

u! be the identity matrix. From Eq. (3.51),Eqs. (3.58) and (3.69), we get

VCKM =

!

)))"

cos(3✓1/2) cos � sin(3✓1/2) ⇤ cos(3✓1/2) sin �

cos � sin(3✓1/2) ⇤ cos(3✓1/2) ⇤ sin(3✓1/2) sin �

sin � 0 cos �

#

***$
. (3.74)

We are getting the 32 element of the matrix to be zero. We seem to get one of the CKM matrix

elements to be zero for all the possible permutations (6 + 6 = 12). Some of the CKM matrix

elements are close to zero but not exactly zero, so we moved onto trying other models.

3.2.2 Case: 1121 ++++

The fields transform as following:

!

" ⇤1

⇤2

#

$

21

,

!

" Q1

Q2

#

$

21

,

!

" p1

p2

#

$

22

,

!

" n1

n2

#

$

21

, (3.75a)

%
⇤3

&

1+

,
%
Q3

&

1+

,
%
p3

&

1+

,
%
n3

&

1+

. (3.75b)

The Yukawa Lagrangian is then written as

⇤L Y = Ad(Q̄1⇤1n3 + Q̄2⇤2n3) +Bd(Q̄1⇤3n1 + Q̄2⇤3n2) + Cd(Q̄3⇤1n1 + Q̄3⇤2n2)(3.76)

+DdQ̄3⇤3n3

+Au(Q̄1⇤̃1p3 + Q̄2⇤̃2p3) +Bu(Q̄1⇤̃1p1 ⇤ Q̄2⇤̃2p1 + Q̄1⇤̃2p2 + Q̄2⇤̃1p2)

+CuQ̄3⇤̃3p3 .
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The mass matrices that follows from the above equation are

Md =

!

)))"

Bdv3 0 Adv1

0 Bdv3 Adv2

Cdv1 Cdv2 Ddv3

#

***$
, Mu =

!

)))"

Buv1 Buv2 Auv1

⇤Buv2 Buv1 Auv2

0 0 Cuv3

#

***$
. (3.77)

Redefining the VEVs in terms of the total VEV and the polar angles:

v1 = v cos✓1 sin✓2 , v2 = v sin✓1 sin✓2, v3 = v cos✓2 . (3.78)

where total VEV, v =
3
v21 + v22 + v23 = 174 Gev in our case.

The mass squared matrices are then

M 2
d =

!

"
"
#

B 2
d cos 2 " 2 + A 2

d cos 2 " 1 sin 2 " 2 A 2
d cos " 1 sin " 1 sin 2 " 2 ( B d C d + A d D d ) cos " 1 cos " 2 sin " 2

A 2
d cos " 1 sin " 1 sin 2 " 2 B 2

d cos 2 " 2 + A 2
d sin 2 " 1 sin 2 " 2 ( B d c d + A d D d ) cos " 2 sin " 1 sin " 2

( B d c d + A d D d ) cos " 1 cos " 2 sin " 2 ( B d C d + A d D d ) cos " 2 sin " 1 sin " 2
1
2 ( C 2

d + D 2
d + ( ! C 2

d + D 2
d ) cos 2 " 2 )

$

%
%
& ,(3.79a)

M 2
u =

!

"
"
#

1
2 ( A 2

u + 2 B 2
u + A 2

u cos 2 " 1 ) sin 2 " 2 A 2
u cos " 1 sin " 1 sin 2 " 2 A u C u cos " 1 cos " 2 sin " 2

A 2
u cos " 1 sin " 1 sin 2 " 2 1/ 2( A 2

u + 2 B 2
u ! A 2

u cos 2 " 1 ) sin 2 " 2 A u C u cos " 2 sin " 1 sin " 2

A u C u cos " 1 cos " 2 sin " 2 A u C u cos " 2 sin " 1 sin " 2 ] C 2
u cos 2 " 2

$

%
%
& . (3.79b)

Diagonalizing The Mass Matrices Both M 2
d

and M2
u can be block diagonalized using O⌥1

as following:

(M2
d
)Block = O⌥1M

2
d
OT

⌥1
, (M2

u)Block = O⌥1M
2
d
OT

⌥1
(3.80)

where O⌥1 is given as

O⌥1 =

!

)))"

sin✓1 ⇤ cos✓1 0

cos✓1 sin✓1 0

0 0 1

#

***$
. (3.81)

And the block diagonal matrices are given as

(M2
d
)B =

!

)))"

B2
d
cos✓2

2 0 0

0 A2
d
sin2 ✓2 +B2

d
cos2 ✓2 (BdCd +AdDd) cos✓2 sin✓2

0 (BdCd +AdDd) cos✓2 sin✓2 C2
d
sin2 ✓2 +D2

d
cos2 ✓2

#

***$
,(3.82a)
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(M2
u)B =

!

)))"

B2
u sin✓

2
2 0 0

0 (A2
u +B2

u) sin
2 ✓2 AuCu cos✓2 sin✓2

0 AuCu cos✓2 sin✓2 C2
u cos

2 ✓2

#

***$
. (3.82b)

These block diagonal matrices can be further diagonalized using orthogonal matrices Od

⌅ and

Ou

⌅, respectively, as following:

D2
d
= Od

⌅(M
2
d
)BlockO

dT

⌅ , D2
u = Ou

⌅(M
2
u)BlockO

uT

⌅ . (3.83)

where,

Od

⌅ =

!

)))"

1 0 0

0 cos⇤d sin⇤d

0 ⇤ sin⇤d cos⇤d

#

***$
, Ou

⌅ =

!

)))"

1 0 0

0 cos⇤u sin⇤u

0 ⇤ sin⇤u cos⇤u

#

***$
. (3.84)

We can then write the left-handed diagonalizing matrix in the up and down sector as

UL = Od

⌅O⌥1 , VL = Ou

⌅O⌥1 (3.85)

CKM Matrix Using Eq. (3.85), we can write the CKM matrix as

VCKM = VLU
†
L
= Ou

⌅O⌥1 (O
d

⌅O⌥1 )
† = Ou

⌅O
d†
⌅ (3.86)

From Eq. (3.84), we get

VCKM =

!

)))"

1 0 0

0 cos(⇤u ⇤ ⇤d) sin(⇤u ⇤ ⇤d)

0 ⇤ sin(⇤u ⇤ ⇤d) cos(⇤u ⇤ ⇤d)

#

***$
(3.87)

3.3 Summary

• First, we constructed two Higgs doublet models using D5 symmetry. However, we were

not getting desired results for the 2HDM, so we moved onto 3HDM.

• For 3HDM, we found out that the CKM matrices that we were getting were either like Eq.

(3.74) or Eq. (3.87) for the cases in which we consider all the singlets to transform like 1+.



Chapter 4. 2 + 1 + 1 Model 75

Also, the results did not change much if the singlets transform as 1# . After considering

all the possibilities, we found no suitable transformation of fields for which we may get a

sensible result.

• We can see why we are getting these results from the tensor product of the D5 group.

Lets look at Eq. (3.1a) and Eq. (3.1b), the product of same doublets gives us a di⇥erent

doublet. This was a problem because, from Eq. (3.1c), we can see that the product of two

di⇥erent doublets did not result in a singlet. We could have gotten a di⇥erent Yukawa

Lagrangian if this was not the case, and then things would have turned out di⇥erently.





Success is stumbling from failure to failure

with no loss of enthusiasm . . .

Winston S. Churchill

4
2 + 1 + 1 Model

In the first chapter, we discussed SM and the need to go BSM. We discussed the flavor puzzle,

hierarchy in fermion masses, and mixings. This chapter will give an extension of SM with D4

symmetry, which can explain the mystery of masses and mixings. First, we will start with the

basics of the D4 group. The discrete group D4 has five irreducible representations: 1++, 1## ,

1# +, 1+# , and 2. We opt to work in the real basis of D4, where the tensor products are given

by [9]

+

- x1

x2

.

0

2

✏

+

- y1

y2

.

0

2

=
1
x1y1 + x2y2

2

1++
⇣

1
x1y2 ⇤ x2y1

2

1!!

⇣
1
x1y2 + x2y1

2

1! +
⇣

1
x1y1 ⇤ x2y2

2

1+ !

(4.1a)

1r,s ✏ 1r",s" = 1r·r",s·s" (4.1b)

These tensor products were obtained by choosing the following basis for the D4 symmetry:

77
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a =

+

- 0 ⇤1

1 0

.

0 , b =

+

- 1 0

0 ⇤1

.

0 (4.2)

where a is of order 4 and b is of order 2.

4.1 The Model

Here we will describe the D4 transformations of di⇥erent fields in our model. The i-th generation

of left-handed quark doublet is denoted by Qi. The right handed charged quark singlet is denoted

by pi in the up sector and by ni in the down sector. These fields transform under the D4

symmetry as follows:

2 :

+

- Q1

Q2

.

0 ,

+

- ⇤1

⇤2

.

0 , (4.3a)

1++ : n1 , 1## : n2 , n3 ,⇤u , 1# + : p2 , p3 ,⇤d , 1+# : Q3 , p1 , (4.3b)

where ⇤1, ⇤2, ⇤u and ⇤d are the four scalar doublets.

The D4 invariant Yukawa Lagrangian in the up quark and down quark sector is given by

⇤L u = Au(Q̄1⇤̃1 ⇤ Q̄2⇤̃2)p1 +Bu(Q̄1⇤̃2 + Q̄2⇤̃1)p2 + Cu(Q̄1⇤̃2 + Q̄2⇤̃1)p3

+XuQ̄3⇤up2 + YuQ̄3⇤up3 . (4.4a)

⇤L d = Ad(Q̄1⇤1 + Q̄2⇤2)n1 +Bd(Q̄1⇤2 ⇤ Q̄2⇤1)n2 + Cd(Q̄1⇤2 ⇤ Q̄2⇤1)n3

+XdQ̄3⇤dn2 + YdQ̄3⇤dn3 . (4.4b)

where Au,d, Bu,d, Cu,d, Xu,d and Yu,d are the Yukawa couplings. Let ⌅⇤k⇧ = vk represents the

vacuum expectation values of ⇤k, where k = 1, 2 ,u and d. The mass matrices arising from the

above Lagrangian in the up and down sector are written as

Mu =

!

)))"

Auv1 Buv2 Cuv2

⇤Auv2 Buv1 Cuv1

0 Xuvu Yuvu

#

***$
, Md =

!

)))"

Adv1 Bdv2 Cdv2

Adv2 ⇤Bdv1 ⇤Cdv1

0 Xdvd Ydvd

#

***$
. (4.5)
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Total VEV v is given as

v =
5

v212 + v2u + v2
d
= 174 GeV . (4.6)

Here, v212 = v21 + v22 is the total VEV responsible for light quark masses, as we will see in the

later section.

The diagonal mass matrices can be obtained via the following biunitary transformations:

Du = VLMuV
†
R
= diag(mu, mc, mt), (4.7a)

Dd = ULMdU
†
R
= diag(md, ms, mb), (4.7b)

The CKM matrix is then given by

VCKM = VLU
†
L
. (4.8)

The matrices, VL and UL can be obtained by diagonalizing MuM
†
u and MdM

†
d

respectively, which
can be calculated from Eq. (4.5) as follows:

MuM
 
u =

!

)))"

A2
uv

2
1 + (B2

u + C2
u )v

2
2 (⇤A2

u +B2
u + C2

u )v1v2 (CuYu +BuXu )v2vu

(⇤A2
u +B2

u + C2
u )v1v2 (B2

u + C2
u )v

2
1 +A2

uv
2
2 (CuYu +BuXu )v1vu

(CuYu +BuXu )v2vu (CuYu +BuXu )v1vu (Y 2
u +Xu

2)v2
u

#

***$
, (4.9a)

MdM
 
d =

!

)))"

A2
dv

2
1 + (B2

d + C2
d )v

2
2 (A2

d ⇤B2
d ⇤ C2

d )v1v2 (CdYd +BdXd)v2vd

(A2
d ⇤B2

d ⇤ C2
d )v1v2 (B2

d + C2
d )v

2
1 +A2

dv
2
2 ⇤(CdYd +BdXd)v1vd

(CdYd +BdYd⌘)v2vd ⇤(CdYd +BdXd)v1vd (Y 2
d +Xd

2)v2
d

#

***$
. (4.9b)

4.2 Diagonalization Procedure

Our next step is to diagonalize the matrices. If we define

v1 = v12 cos✓ , v2 = v12 sin✓ . (4.10)
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Then it is found that the following matrix O⌥ block diagonalizes the matrices in Eqs. (4.9a) and

(4.9b).

O⌥ =

!

)))"

cos✓ sin✓ 0

⇤ sin✓ cos✓ 0

0 0 1

#

***$
. (4.11)

This is possible because one of the eigenvectors of MuM
†
u is (⇤ cot✓, 1, 0) and MdM

†
d

is

(cot✓, 1, 0). The above found orthogonal matrix can then be easily constructed from the given

eigenvectors.

The block diagonal matrices in the up and down sector are given as

(MuM
 
u )Block = O 

! MuM
 
uO ! =

!

)))"

A2
uv

2
12 0 0

0 (B2
u + C2

u )v
2
12 (CuYu +BuXu )v12vu

0 (CuYu +BuXu )v12vu (Y 2
u +Xu

2)v2
u

#

***$
, (4.12a)

(MdM
 
d )Block = O ! MdM

 
dO !

  =

!

)))"

A2
dv

2
12 0 0

0 (B2
d + C2

d )v
2
12 ⇤(CdYd +BdXd)v12vd

0 ⇤(CdYd +BdXd)v12vd (Y 2
d +Xd

2)v2
d

#

***$
. (4.12b)

Diagonalization of 2◊ 2 orthogonal matrix A symmetric 2◊ 2 matrix is given as

K =

!

" a b

b c

#

$ . (4.13)

Let the orthogonal matrix which diagonalizes it is

O =

!

" cos � ⇤ sin �

sin � cos �

#

$ . (4.14)

Then, using similarity transformation, we can write

D = OKOT =⌥ K = OTDO , (4.15)
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where D is the diagonal matrix.

!

" a b

b c

#

$ =

!

" cos � sin �

⇤ sin � cos �

#

$

!

" �1 0

0 �2

#

$

!

" cos � ⇤ sin �

sin � cos �

#

$ . (4.16)

From the above equation, we get the following relations:

�1 cos
2 � + �2 sin

2 � = a , (4.17a)

⇤�1 sin � cos � + �2 sin � cos � = b , (4.17b)

�1 sin
2 � + �2 cos

2 � = c . (4.17c)

Solving Eq. (4.17) for �, we get

� =
1

2
tan# 1

4444
2b

c⇤ a

4444 . (4.18)

For diagonalizing the block diagonal matrices in Eqs. (4.12a) and (4.12b), we define

Ou

 =

!

)))"

1 0 0

0 cos �u ⇤ sin �u

0 sin �u cos �u

#

***$
, Od

 =

!

)))"

1 0 0

0 cos �d ⇤ sin �d

0 sin �d cos �d

#

***$
. (4.19)

Ou

 and Od

 are the orthogonal matrices which diagonalizes the block diagonal matrices as follows:

D2
u = Ou

 (MuM
†
u)BlockO

u†
 , D2

d
= Od

 (MdM
†
d
)BlockO

d†
 . (4.20)

�u and �d are found out using Eq. (4.18) as

| tan 2�u| =

4444
2(CuYu +BuXu)v12vu

(Y 2
u +Xu

2)v2u ⇤ (B2
u + C2

u)v
2
12

4444 , (4.21a)

| tan 2�d| =

4444
⇤2(CdYd +BdXd)v12vd

(Y 2
d
+Xd

2)v2
d
⇤ (B2

d
+ C2

d
)v212

4444 . (4.21b)

The full diagonalization of MuM
†
u and MdM

†
d

can be done as follows:

D2
u = Ou

 O
†
⌥MuM

†
uO⌥O

u

 
† = diag(m2

u,m
2
c ,m

2
t ) , (4.22a)

D2
d
= Od

 O⌥MdM
†
d
O⌥

†Od

 
†
= diag(m2

d
,m2

s,m
2
b
) . (4.22b)
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According to our convention in Eq. (4.7), the matrix VL should diagonalize MuM
†
u as follows:

diag(m2
u,m

2
c ,m

2
t ) = VLMuM

†
uV

†
L
. (4.23)

Comparing Eqs. (4.22a) and (4.23), we can extract VL as follows:

VL = Ou

 O
†
⌥ . (4.24)

Similarly, the matrix UL should diagonalize MdM
†
d

as follows:

diag(m2
d
,m2

s,m
2
b
) = ULMdM

†
d
U †
L
. (4.25)

Comparing Eqs. (4.22b) and (4.25), UL is written as follows:

UL = Od

 O⌥ . (4.26)

4.3 CKM Matrix

From Eq. (4.8), the CKM matrix is given as

VCKM = VLU
†
L
= Ou

 O
†
⌥(O

d

 O⌥)
†. (4.27)

Substituting the matrices from Eq. (4.11) and Eq. (4.19) in Eq. (4.27), we get

VCKM =

!

)))"

cos 2✓ ⇤ cos �d sin 2✓ ⇤ sin 2✓ sin �d

cos �u sin 2✓ cos 2✓ cos �d cos �u + sin �d sin �u cos 2✓ cos �u sin �d ⇤ cos �d sin �u

sin 2✓ sin �u ⇤ cos �u sin �d + cos 2✓ cos �d sin �u cos �d cos �u + cos 2✓ sin �d sin �u

#

***$
.(4.28)

CKM matrix in Wolfenstein parameterization(Eq. (1.49)) is given as

VCKM  

!

)))"

1⇤ �2/2 ⇤� O
6
�3

7

� 1⇤ �2/2 O
6
�2

7

O
6
�3

7
O

6
�2

7
1

#

***$
(4.29)

where �  0.22 is the Cabibbo mixing parameter.
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To make the connection between Eqs. (4.28) and (4.29) apparent, we assume that v12 is respon-

sible for the masses of the first two generations and vu and vd are accountable for the mass of

the third generation, then

v12 ✓ vu,d , v12 ⌦ O (1GeV) , vu,d ⌦ O (100GeV) . (4.30)

Therefore, from Eq. (4.21), we can write

tan 2�u  2�u  
2(CuYu +BuXu)v12vu

(Y 2
u +Xu

2)v2u
, (4.31a)

tan 2�d  2�d  
⇤2(CdYd +BdXd)v12vd

(Y 2
d
+Xd

2)v2
d

. (4.31b)

Also, if we take the order of the Yukawa couplings to be same then

�u  sin �u  
(CuYu +BuXu)v12

(Y 2
u +Xu

2)vu
 O

8
v12
vu

9
 O

6
�2

7
, (4.32a)

�d  sin �d  
⇤(CdYd +BdXd)v12

(Y 2
d
+Xd

2)vd
 O

8
v12
vd

9
 O

6
�2

7
. (4.32b)

Moreover, if we identify sin 2✓ as the Cabibbo mixing, namely,

sin 2✓ = � , (4.33)

then Eq. (4.28) resembles exactly to Eq. (4.29). These intuitive results are validated by finding

out the best fit values for ✓, �u and �d.

4.4 Best Fit Value

The CKM mixing angles �ij [10] extracted from the CKM matrix in standard parametriza-

tion(refer to Eq. (1.47)) are given as:

�13 = arcsin(|V13|) , (4.34a)

�12 =

:
;<

;=

arctan
%
V12
V11

&
if V11 ◆= 0

�
2 else

(4.34b)

�23 =

:
;<

;=

arctan
%
V22
V33

&
if V33 ◆= 0

�
2 else

(4.34c)
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Figure 4.1: Plot of sin �u versussin �d

The values of mixing angles are taken from the particle data group [5], listed as follows:

sin �12 = 0.22650 – (0.00096) , sin �13 = 0.00361+0.00022
# 0.00018 , sin �23 = 0.04053+0.00166

# 0.00122 . (4.35)

We used Eq. (4.34) for the CKM matrix in Eq. (4.28) to get the relation between the mixing

angles �12,13,23 and ✓, �u,d. We then generated a set of random numbers for ✓ and �u,d and

extracted out the values which satisfy the relation and for which the mixing angles lie within

the range given in Eq. (4.35).

sin 2✓  0.226 , sin �u  – 0.025 , sin �d  0.016 . (4.36)

4.5 Mass Eigenvalues

The first generation quark masses, given from Eq. (4.12), are

m2
u = A2

uv
2
12 , m2

d
= A2

d
v212 . (4.37)

Masses of second and third generation of quarks are found out by diagonalizing the remaining

2◊ 2 block. The traces in the up and down sector are written as:

m2
c +m2

t = (B2
u + C2

u)v
2
12 + (Y 2

u +Xu
2)v2u , (4.38a)
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m2
s +m2

b
= (B2

d
+ C2

d
)v212 + (Y 2

d
+Xd

2)v2
d
. (4.38b)

Keeping in mind the hierarchies, vu,d � v12, mt � mc and mb � ms, the above relations can

be approximated to express the top quark mass and bottom quark mass as

m2
t  (Y 2

u +Xu
2)v2u , (4.39)

m2
b
 (Y 2

d
+Xd

2)v2
d
. (4.40)

Again, from the determinant in Eq. (4.12), we can write

m2
cm

2
t = (BuYu ⇤ CuXu)

2v212v
2
u , (4.41a)

m2
sm

2
b

= (BdYd ⇤ CdXd)
2v212v

2
d
. (4.41b)

Using Eqs. (4.39) and (4.40) in Eq. (4.41a), we can find out the approximate mass eigenvalues

of charm quark and strange quark as following:

m2
c  (BuYu ⇤ CuXu)2

(Y 2
u +Xu

2)
v212 , (4.42)

m2
s  (BdYd ⇤ CdXd)2

(Y 2
d
+Xd

2)
v212 . (4.43)

At this point, we wish to emphasize that a natural outcome of our model is

mc

mt

 ms

mb

 v12
vu,d

⌦ O
6
�2

7
, (4.44)

which agrees with the observations.

4.6 Conclusion

• The hierachy of the Yukawa couplings is diluted by two orders of magnitude, at least.

Note that, in the SM, mt = 174 GeV and mu,d ⌦ O
6
10# 3 GeV

7
. This means, the quark

Yukawa couplings span five orders of magnitudes. We dampen this problem by assuming

that the first two generations of quarks receive their masses from v12 which is of O (1 GeV).

This implies, the first generation Yukawas are, at worst, of O
6
10# 3

7
whereas the third

generation Yukawas can be of O (1).
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• We have introduced ⇤u,d dedicated for masses of the third generation of quarks. Quite

naturally, we expect, vu,d ⌦ O (100 GeV) so that the top-Yukawa is of O (1). Thus,

we should have the ratio v12/vu,d ⌦ O
6
�2

7
. It is very interesting to note that, this

automatically conforms to m2/m3  v12/vu,d ⌦ O
6
�2

7
where mk is the mass for the k-th

generation of quark. Quite clearly, this is a natural upshot of our model.

• We have connected the quark mixings with the dynamics of the scalar sector. We have

shown that the Cabibbo part of the quark-mixing stems purely from the ratio v2/v1. The

smallness of the o⇥-Cabibbo elements of the CKM matrix is further connected to the VEV

hierarchy v12 ✓ vu,d. In other way, we are suggesting that the fact that the third generation

of quarks are much heavier than the first two generations, is intimately connected to the

smallness of the o⇥-Cabibbo elements.



Bibliography

[1] M. Kobayashi et al., M. kobayashi and t. maskawa, Prog. Theor. Phys 49 (1973) 652.

[2] N. Cabibbo, Unitary symmetry and leptonic decays, Physical Review Letters 10 (1963),

no. 12 531.

[3] L.-L. Chau and W.-Y. Keung, Comments on the parametrization of the

kobayashi-maskawa matrix, Physical Review Letters 53 (1984), no. 19 1802.

[4] H. Harari and M. Leurer, Recommending a standard choice of cabibbo angles and km

phases for any number of generations, Physics Letters B 181 (1986), no. 1-2 123–128.

[5] Particle Data Group Collaboration, P. Zyla, R. Barnett, J. Beringer, O. Dahl,

D. Dwyer, D. Groom, C.-J. Lin, K. Lugovsky, E. Pianori, et al., Review of particle physics,

Progress of Theoretical and Experimental Physics 2020 (2020), no. 8 083C01.

[6] L. Wolfenstein, Parametrization of the kobayashi-maskawa matrix, Physical Review Letters

51 (1983), no. 21 1945.

[7] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto,

Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183

(2010) 1–163, [ arXiv:1003.3552 ].

[8] C. Hagedorn, M. Lindner, and F. Plentinger, Discrete ßavor symmetry d 5, Physical

Review D 74 (2006), no. 2 025007.

[9] D. Das, Relating the Cabibbo angle to tan✓ in a two Higgs-doublet model, Phys. Rev. D

100 (2019), no. 7 075004, [ arXiv:1908.0396 ].

87



Bibliography 88

[10] S. Antusch, J. Kersten, M. Lindner, and M. Ratz, Running neutrino masses, mixings and

cp phases: Analytical results and phenomenological consequences, Nuclear Physics B 674

(2003), no. 1-2 401–433.




