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ABSTRACT

We observe complex interacting systems on a daily basis. The vast in-

ternet itself, the network of roads, the network of neurons comprising our

nervous system, and so on. Their behaviors have been a matter of inter-

est for decades. Much of what is understood about the dynamics of these

complex systems comes from mathematical estimations and continuous ob-

servations of their time series. To the same effect, there has been recent

developments in machine learning techniques to better understand and pre-

dict behaviours of these dynamical systems. The main idea behind these

techniques is to observe patterns in the data generated from these complex

systems, and allow the machine to learn them in order to make certain

predictions about the network. In this work, we explore one such novel

application of machine learning techniques to unravel some fundamental

structure-to-dynamics relations that better help understanding these com-

plex systems. We classify different types of networks based on their inherent

structural differences by training a CNN model on the time-series of a few

highest degree nodes. The novelty of our work lies in the observation that

using only a limited time-series information of a large network, we make

extremely accurate classifications, and prove that with increasing the size

of the networks, the number of time-series required remains the same.
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Chapter 1

Introduction

1.1 Complex systems

Every system of entities can be expressed as a network of nodes connected

by edges. The term “entity” here can be used to describe any type of

tangible or intangible unit that can in some way interact with another

equal or unequal entity. Thus, in the network of social media, every user

using a particular platform to interact with other users can be considered as

a node of that network. The interaction between users can be considered as

an edge, which can be further quantified by the strength of interactions by

assigning weights to these edges. For example, user A interacts with user

B on a daily basis, but not quite as often with user C. Thus a weight of the

edge between A and B would be higher than the weight between the user

A and user C. This abstraction of data in a manner where the nodes and

edges and their dynamics can be used to model a whole system, is called

a complex system. Thus, virtually any system can be broken down into

a set of units and interactions between them. The larger the system gets,

the more complex their interactions and their dynamics become. Network

science exists precisely to deal with this very complexity in systems by

reducing their behavior down to a scale of interactions between only a pair

of nodes.
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1.2 Dynamics of complex systems

Nodes and edges carry valuable information about the entities and their

interactions. However, these nodes often have more data associated with

them that changes over time. For example, different regions in the brain

output EEG signals that change with time. This information about the

regions of the brain are extremely important in studying epileptic seizures.

Thus it is not only important to know the connectivity structure of the

networks, but also their dynamics. Nodes and edges make up the structural

basis of the system, or the spatial data, and the dynamics of the nodes make

up the temporal data. The most interesting question that hereby arises,

is, how might they be related? This is where the concepts of predicting

the dynamics of the network, given its structure, and vice versa come into

play. It’s an easy question to answer if we look at really small systems.

For example, consider two friends who go to school together. One day,

friend A decides to call up his friend B and they decide to skip school that

day. On this scale, the presence or absence of B in the school is completely

dependent on the presence or absence of A in the school. Thus, given the

attendance record of A, it may be very easy to predict the same for B. On a

larger scale however, with a group of 50 or more students, with each student

having multiple friends, the prediction becomes much more complicated.

Every student is influenced by his/her friends, who in turn are influenced

by their other friends. This creates a complex series of uncertain values

that we call dynamics of complex systems.

1.3 Different types of networks

Networks can be directed, undirected, multi-edged, or multilayered. These

can be further divided based on their structural properties such as degree

distributions, clustering coefficients, shortest path lengths, density, etc.

The main types of networks based on structural differences are detailed

below:
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1.3.1 Erdős–Rényi random networks

Erdős–Rényi random networks are generated by connecting labeled nodes

randomly. The existence of an edge between any two nodes has a proba-

bility p. Thus, the value of p decides the average degree of the network,

and thereby the density of the network.

Networks generated in this manner tend to have a very uniform distribution

of degrees, i.e., the difference in the degrees of the node with the highest

degree and the node with the lowest degree is relatively low. Thus the

degree distribution graph of these random networks, assuming sufficiently

large network size, has the shape of a Poisson distribution.

1.3.2 Scale-free networks

Scale-free networks are the most commonly observed type of networks. The

social network, the internet, the network of roads, the telephone network,

all have scale-free structures. Scale-free networks are constructed by the

method of preferential attachment. Thus, starting with 2 connected nodes,

further nodes are attached to the existing nodes preferentially to nodes

with higher degrees. This creates a network where very few nodes have

very high degrees and most nodes have very low degrees. Thus, the de-

gree distribution of these networks have the typical shape of a power-law

distribution.

1.3.3 Small-world networks

Small-world networks are characterised by their large clustering coefficients

and small average path lengths. Put another way, nodes in these networks

tend to form clusters, with each cluster having high densities of edges be-

tween the members of the cluster, and likewise, a very low number of hops

to get from one node to another. The construction of these networks is

through a mechanism called the Watts-Strogatz mechanism.
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1.4 Dynamical models

There are various mathematical models to mimic the dynamics of real

world networks as closely as possible. Some of these models are Kuramoto

oscillators model, Rössler attractors model, Lorentz oscillators model, and

so on. In this work, I explore two of these models: the Kuramoto model

and the Rössler model.

1.4.1 Kuramoto model

Consider a network of N nodes, represented by an adjacency matrix A.

Then, for each node of the network, an initial phase and a frequency is

assigned. The network then evolves according to the governing equations

of the Kuramoto model.

The governing differential equations for this model are as below:

θ̇i = ω̇i + λ
N�

j=1

Aij sin (θj − θi) (1.1)

Here, ωi is the frequency of the ith node of the network, θi is the phase

of the ith node and λ is the coupling strength of the nodes.

1.4.2 Rössler model

The Rössler oscillator model is a system of 3 differential equations that

exhibit chaotic dynamics of the nodes. Each node is assigned a vector of 3

dimensions, x, y and z. Each node is given a frequency ωi. The equations

governing these oscillators are:

ẋi = −ωiyi − zi + �

N�

j=1

Aij(xj − xi)

ẏi = ωixi + ayi

żi = f + zi(xi − b)

(1.2)

Here, � is the coupling constant in the x dimension. The variables

x, y and z together represent the dynamic state of the nodes. Solving the
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above numerically for the values of x, y and z gives us the chaotic time

series of the nodes.

1.5 Problem statement

We aim to use the Kuramoto model time-series information of the nodes of

the networks to classify them based on differences in their basic structural

properties such as degree distribution. Consider a complex network con-

taining N nodes and average degree m. We intend to classify the networks

as Erdős–Rényi random, scale-free or small-world network, based on the

time-series of only a few highest degree nodes. To achieve this, we employ

a CNN machine learning model. The model takes in as input the time-series

of the nodes and gives as output the label of the network, whether ER, SF

or SW. The important point to note here is that the time-series supplied

to the machine learning model here does not include the transient time

required for the network to reach a steady state, and that the time-series

is generated for such a value of the coupling strength λ, that the nodes are

neither completely synchronized, nor completely non-synchronized.

To further explore our success of machine learning in predicting un-

derlying structure from dynamics, we examine the prediction of the corre-

lation matrices formed by the Rössler time-series of the nodes of a network,

again using only a limited number of nodes time-series as input.
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Chapter 2

Previous work

The study of complex networks and their dynamics has been a hot area of

scientific research. Most recently, machine learning techniques have been

constantly applied to study the dynamics of complex networks and have

provided deeper insights into the rich information contained in these com-

plex systems. Studying the network structure and its dynamics and find-

ing the relationship between the two has been the center of attention in

this field. State of the art machine learning techniques such as reservoir

computing has been methodically applied for predictions of various dy-

namical parameters. For example, reservoir computing was successfully

applied to estimate the lyapunov exponents of chaotic dynamics by using

the reservoir to forecast long time-series[1], and in another instance, was

applied to predict the spiking and bursting dynamics of globally coupled

networks[2]. In predicting phase transitions of epidemic spreading dynam-

ics of complex networks, [3] employed a framework combining supervised

and unsupervised machine learning techniques. More than 96% accuracy

was achieved for identifying the chimera states using machine learning in

Kuramoto dynamical model applied to complex networks[4]. In a similar

domain, successful forecasting of turbulent chimeras in simulated arrays of

coupled superconducting quantum interference devices (SQUIDs) or lasers

have been made using LSTMs[5]. [6] have shown the success of simple

feed forward neural networks in detecting multiple types of order param-

eters from raw state configurations. In this space, convolutional neural
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networks have shown great applicability specifically in classification prob-

lems such as in distinguishing various random electron states in quantum

phase transitions[7, 8]. Classification of time-series based on its chaotic or

non-chaotic nature [9] using CNN machine learning model has shown that

deep underlying nature of the behavior of the dynamics of networks can

be learnt and successfully applied to identify key features of the dynam-

ics. Conversely, attempts have been made at forecasting the time-series

of networks by studying the network structure. The hypothesis that the

dynamics of a complex system largely depends on the underlying intricate

structure of the network was successfully proven by [10] by estimating the

outbreak size of an epidemic starting from a single node using machine

learning techniques. The immense success of machine learning in studying

complex systems becomes clear from the above results. In an opposite di-

rection to that of [10], we explore a highly sought after problem of detecting

the network structure from its dynamics. We employ a CNN model as well,

to classify different types of networks, by using the time-series information

of only the top few highest degree nodes, which prove to carry sufficient

information required to make predictions on a global scale. We emphasise

on the fact that indeed only a limited number of highest degree nodes is

sufficient to distinguish between different classes of networks, irrespective

of the size of the network. In the classical domain, this problem has been

approached using the statistical similarity measures of the time-series gen-

erated from the networks, for example, a measure of the mutual informa-

tion rate of the time-series for identifying the connectivity structure of the

network has been applied[11]. In another attempt, a statistical similarity

matrix was constructed using the time-series generated from coupled Ku-

ramoto and Rössler oscillatos to find missing links in the networks[12], and

was argued that the missing links were found with perfect accuracy under

suitable controlled parameters. Other classical methods such as calculat-

ing a score function from structural variables such as common neighbors,

Adamic/Adar, path lengths, density, etc., combined with supervised and

unsupervised machine learning techniques have been applied to predict the

8



connectivity structures [13] and have shown better accuracy than previously

known methods without machine learning. In a more recent attempt, time-

series data of the networks has been used as input for a reservoir computing

model, which is trained to replicate the dynamics of the networks from the

given input for then inferring the missing links in the networks [14]. Mo-

tivated by the active research being done in the field, we explored another

possible advantage of machine learning techniques in identifying the un-

derlying network structure, by allowing the machine to learn only from a

small subset of the time-series of the nodes. We established in this work

that a small number of time-series of the nodes with the highest degrees

could be used to identify with high accuracy, the underlying structure of

the network. Even more surprisingly, the number of time-series required to

achieve the same level of accuracy is independent of the size of the network,

and hence can be extended to larger networks without affecting the error

rates. We consider the Kuramoto oscillators for generating the time-series

of the nodes, which is an excellent model for mimicing the time-series of

real world networks such as the brain [15, 16], power-grid systems [17],

epidemic spreading networks, transport systems, networks of pacemaker

cells in the heart [18], congregations of synchronously flashing fireflies [19],

chirping of crickets in unison [20], an array of lasers [21], superconducting

Josephson junctions [22].
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Chapter 3

Methodology

3.1 Data generation of the Kuramoto oscil-

lators

In equations given in 1.1, the values of θi can obtained by solving them

using the fourth order Runge-Kutta method. To generate the data, we first

determine a suitable value of the coupling constant λ such that we make

sure that the nodes are not completely synchronized or non-synchronized.

The reason for this is that, after synchronization, the time-series of each

node becomes completely identical. Thus no useful information can be

extracted from it since the dynamical interactions between the nodes is

lost. On the other extreme, in the completely non-synchronized region,

the nodes have very weak interactions, and thus exhibit almost random

behaviour in their dynamics. Thus, most of the information of the nodes

is contained in the semi-synchronized region. That is, when after a long

time, the nodes tend to synchronize only partially.

In our case, we chose 2 values of the coupling strength λ such that

the nodes remain semi-synchronized after the transient time. We then

used these values of λ to solve the Kuramoto differential equations using

the Runge-Kutta method with an increment of h = 0.01.

11



3.1.1 Order parameter vs lambda

The order parameter of Kuramoto oscillators defines the amount of syn-

chronization in the network. That is, it gives a measurable quantity to

represent how synchronized the network is for a given time. It is defined

as the following:

reiψ =
1

N

N�

j=1

eiθj (3.1)

where r is the order parameter, ψ is the average phase of the oscil-

lators, N is the number of nodes in the network, and θj is the phase of

the jth node. Taking the time average of the order parameter values for a

sufficiently long time-series length, just after the transient time gives the

degree of synchronization in the system for a given value of λ. r becomes 0

when the nodes are completely incoherent, and 1 when the nodes become

completely synchronized. Thus, in order to find the semi-synchronized re-

gion, we choose the value of λ such that the value of r lies somewhere

between 0 and 1. Thus, by varying λ and calculating the values of order

parameter, we can plot r vs. λ graph. From this graph, we can find the

value of λ which gives us the semi-synchronized region.

3.1.2 Generation of networks

We generate 3 types of networks outlined in 1.3. We denote these three

networks as ER, for Erdős–Rényi random network, SF, for scale-free net-

works, and SW, for small-world networks. The ER networks are generated

by randomly making connections between nodes, with a probability p, such

that N ∗ p determines the average degree of the network. We generate the

SF networks by the Barabasi-Albert model, which follows the method of

preferential attachment. Each new node is added to the network by con-

necting to �k� nodes, �k� being the average degree of the network. The

probability that the new node connects to the ith node is �ki� /
�M

j=1�kj�,
where M is the number of nodes already included in the network. The SW

networks are generated by the Watts Strogatz algorithm. First, a regu-

12



lar ring network of N nodes is created with each node having �k� degree,

connected to �k�/2 nodes on either side. The nodes are then rewired with

a probability pr, where pr lies between 0 and 1, 0 corresponding to the

original ring lattice, and 1 corresponding to a completely random network.

3.1.3 Generation of time-series

We generate the time-series of the Kuramoto oscillators by solving the

Kuramoto differential equations numerically using the fourth order Runge-

Kutta method. We take the step size to be h = 0.01 and run the simulation

for a total number of 50,000 iterations, i.e., for a total time of 500. Then,

we flush out the initial transient of 300 and store the remaining 200 phase

values of the nodes. We then create two sets of data: (i) by taking the

actual time-series of the nodes for a total of 200 after transient, and (ii)

by taking the symbolic time-series, s(t), of the nodes by course-graining

the actual time-series using the following logic: s(t) is taken as 1 when

θ(t) < θ(t+ 0.01), and otherwise 0.

3.2 Convolutional neural networks (CNN)

We employ a convolutional neural network model to classify the networks

using the time-series. The structure of the CNN model used is as follows:

the first layer is the input layer, having the shape of the input time-series.

Then we have 3 convolutional layers, having 80, 80 and 40 filters consec-

utively. After the convolutional layers, there is an average graph pooling

layer, which is followed by 2 fully connected layers with 80 neurons each. Fi-

nally, we have the output layer with the shape of the desired output, which

in our case is the number of classes in which the networks are getting classi-

fied. A rough overall structure of the CNN model is given diagrammatically

below (Fig. 3.1).

We divide the input into the training and testing set, in the ratio

of 4:1. Thus, generating the time-series data for 500 networks, we train

the model on 400 networks and test for the remaining 100 networks. The

13



Figure 3.1: Outline of the machine learning model used

results provided are an average of the test data sets. Each sample provided

to the machine learning model has the shape of (t, n), where t is the length

of the time-series (i.e. the time-series recorded after transient time) and

n is the number of nodes for which the time-series is being provided. We

do not provide the input for one shape of the sample, but instead vary the

sample shape by increasing the number of nodes and the length of time-

series used. Thus, we can analyze the change in error of classification with

different sample shapes.
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Chapter 4

Experimentation and results

4.1 Classification of ER and SF networks

We begin by finding the values of λ for which the nodes are in the semi-

synchronized region. Thus, we plot the r vs λ graphs (Fig. 4.1) for networks

of size N = 100, average degree �k� = 20 and N = 500, �k� = 10. From

the plots, 2 values of λ are chosen for each network size. For the case of

N = 100, these values are 0.085 and 0.09, and for N = 500, the values are

0.15 and 0.17. We generate 250 realisations of the ER and SF networks.

We take the frequency values ωi of the nodes from a Gaussian distribution

with mean 0 and variance 1, unique for each network.

For each network, we assign an initial uniformly selected random

phase value to each node from a range of [-π, π].
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Figure 4.1: Order parameter (r) (Eq. 3.1) as a function of coupling strength

λ. (a) ER random network N = 100, �k� = 20, (b) SF network N =

100, �k� = 20 (c) ER network N = 500, �k� = 10 (d) SF network N =

500, �k� = 10
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Figure 4.2: Classification error of ER and SF using actual time-series for

N = 100, �k� = 20 and (left) λ = 0.085 and (right) λ = 0.09

We then run the simulations using the 4th order Runge-Kutta method for

all the networks. For the networks of size N = 100, we store 100 θ values

after an initial transient of 300, and for the networks of size N = 500, we

store 200 θ values after an initial transient of 300. The reason for this is

to speculate whether a longer length of time-series improves accuracy. We

also store the symbolic time-series for the above networks. We take the

time-series as input in decreasing order of the degree of the nodes. Thus,

the first time-series provided corresponds to the highest degree node, and

consecutive time-series belong to nodes with lesser degree. We then classify

the networks of size N = 100 using our CNN machine learning model.

Fig. 4.2 clearly indicates the decrease in error with increasing the

length of the time-series. However, the accuracy does not improve signifi-

cantly with the increase in the number of nodes used for the classification.

This proves that the length of time-series is far more important than the

number of time-series provided. Thus, we require clearly, only the time-

series of the top few highest degree nodes. Next, we classify the networks

using the symbolic time-series for the networks of size N = 100.

Surprisingly, even with such coarse-grained data, the classification

results are just as good as when the actual time-series were used. The

trends of decrease in the error remains the same, i.e., the error decreases
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Figure 4.3: Classification error of ER and SF using symbolic time-series

for N = 100, �k� = 20 and (left) λ = 0.085 and (right) λ = 0.09

significantly with increase in the length of time-series used, but remains

almost same with the increase in the number of nodes.

We learn from the above results that our model is capable of clas-

sifying the networks based on only a limited number of time-series of the

network. To further investigate the effectiveness of our model, we classify

the networks of size N = 500 for only the top 10 nodes using 200 length of

time-series (Fig. 4.4)

4.2 Classification of ER, SF and SW net-

works

We have established that we only require a small number of time-series of

the top 10 nodes to classify two types of networks, even for a larger size

of the network. In this section, we extend our results to the case of three

different types of networks, namely, ER, SF and SW networks. Thus, we

take 250 realisations of each type, ER, SF and SW. For SW networks, we

take the rewiring probability to be 0.1 and λ values as 0.28 and 0.3. Thus,

we train the CNN model for 200 networks each of ER, SF and SW and test

for 50 networks each. Fig. 4.5 shows the error rate of the classification.

Clearly, the results are just as good as for the classification of two different
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Figure 4.4: Classification error for ER and SF networks using symbolic

time-series for N = 500, �k� = 10, for (left) λ = 0.15 and (right) λ = 0.17

types. Thus, our model has successfully derived a clear correlation between

the time-series and the structure of the networks based on observations of

only a few highest degree nodes.

4.3 Classification of larger network

As we have seen, our results remained just as good for N = 500 as for

N = 100, without any requirement for additional information of the number

of nodes. We emphasise on this result by classifying ER and SF networks

of size N = 1000, �k� = 10.

We can see from Fig. 4.6, the classification results for larger net-

work size is remarkably just as good, without the need for increasing the

number of nodes. Even for the same length of time-series, the error drops

to nearly 0, when top 10 nodes time-series is provided. This result rein-

forces the fact that our model is able to capture the underlying structure

of the network based solely on the time-series of the top few nodes without

requiring additional information even as the size of the network increases

significantly.
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Figure 4.5: Classification error of ER, SF and SW networks using symbolic

time-series for N = 500, �k� = 10 and (left) λ = 0.15 for ER and SF, and

0.28 for SW, and (right) λ = 0.17 for ER and SF, and 0.3 for SW

Figure 4.6: Classification of ER and SF networks using symbolic time-series

of maximum length 400 for (left) N = 100, �k� = 20,λ = 0.085, (middle)

N = 500, �k� = 10,λ = 0.15 and (right) N = 1000, �k� = 10,λ = 0.18
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Figure 4.7: Classification error for SW networks generated for three differ-

ent values of rewiring probabilities, pr = 0.05, pr = 0.1, and pr = 1, and

N = 500, �k� = 10. (left) λ = 0.4 for pr = 0.05, 0.28 for pr = 0.1 and 0.15

for pr = 1, (right) λ = 0.45 for pr = 0.05, 0.3 for pr = 0.1 and 0.17 for pr

= 1

4.4 Classification of SW networks with dif-

ferent rewiring probabilities

We now classify three SW networks with different rewiring probabilities, pr

= 0.05, 0.1 and 1. As rewiring probability increases, the randomness in the

networks increase. Thus, a completely regular network is observed at pr =

0 and a completely random network at pr = 1, with a small-world transition

at pr = 0.1. Thus, in this section we test our model for the classification

between regular, small-world and random networks. In a similar manner as

previously, we generate 250 networks of each type and train the model. The

length of time-series remains same. The size of the networks is N = 500,

with average degree �k� = 10. The maximum number of nodes taken for

the classification is again 10, having the highest degrees.

The results in Fig. 4.7 show slightly poorer error rate. This can be

attributed to the fact that the SW networks with different pr values have

the same shape of their degree distributions, and hence are harder to dis-

tinguish. The model, as we have evidently observed, learns the underlying
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Figure 4.8: (left) Classification of ER networks of size N = 500 and average

degrees �k� = 10 and 50, using symbolic time-series, (right) Classification

of ER and SF networks using symbolic time-series for N = 500, �k� = 10,

for randomly selected 10 nodes

structure from the time-series of the highest degree nodes, and makes the

classification based on the structural differences. Thus, a poorer error can

be expected for networks having their underlying structure similar across

the different types. We substantiate this speculation by classifying ER

networks with different average degrees in the next section.

4.5 Classification of ER networks with dif-

ferent degrees

In this section, we provide results (Fig. 4.8 (left)) for the classification of

ER networks of size N = 500, and two different averages degrees �k� =

10 and 50. Thus, we test our model on networks with different densities.

For this, we again take 250 networks for each average degree and train the

model.
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4.6 Classification using random nodes

We now speculate our model’s accuracy when the time-series of randomly

selected 10 nodes is given. We find the accuracy of our model to be slightly

worse, as the highest degree nodes contain richer information of the under-

lying structure of the network compared to randomly selected nodes. The

networks used for this purpose are ER and SF of size N = 500, �k� = 10.

The results can be seen in Fig. 4.8 (right).

4.7 Classification of ER and SF for same

range of r

Our results so far have required time-series data of networks for a constant

value of λ for each network. However, for different classes of networks, for

example ER and SF, the amount of synchronization can be quite different

for the same value of λ. One might question the fact that our model learns

the underlying structure, independent of the differences in the level of syn-

chronization in the networks. Thus, to argue the fact that our model indeed

learns the difference in structure of the networks and does not depend on

the difference in the r values, we generate two sets of data for ER and SF

networks, this time taking the same range of r values for both classes. We

set the values of r to be between 0.45 and 0.55, and generate the time-series

for the networks for this range of r. We again take 250 networks of each

type and 200 length of the time-series. This way, we ensure that every

network in our input data set has the same level of synchronization.

Fig. 4.9 nicely proves our hypothesis. Even for the same level of

synchronization in the networks, our model successfully classifies the dif-

ferent types of networks solely based on the structural differences, with no

additional information required.
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Figure 4.9: Classification of ER and SF networks having the same range

of r values for N = 500, �k� = 10, using symbolic time-series. λ varies for

each network.
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Chapter 5

Conclusion and discussions

We have shown, with high accuracy, that our machine learning model clas-

sified different types of networks by learning the underlying structure from

the dynamics of a few highest degree nodes, based solely on the structural

differences in the networks. Our model was able to distinguish between dif-

ferent types of network not only based on different degree distributions, but

also based on other structural properties such as different average degrees

and different degrees of randomness in the structure. The fact that the size

of the networks is irrelevant to the accuracy of our model, is remarkable in

itself and goes to show that a few high degree nodes contain sufficient in-

formation about the underlying network structure in their time-series data.

In addition to this, we have shown that simply the trends in the change

of the phase values in the time-series is enough information to trace back

the original network structure. Using only the symbolic time-series, our

model made classifications with equal accuracies as for when the actual

time-series were provided. The symbolic time-series provides significant ad-

vantage over actual time-series. The training time for the machine learning

model is greatly reduced in using the binary information of the symbolic

time-series as opposed to using the actual time-series. In addition, the

symbolic time-series is a more applicable form of input data in the real

world, where collection of time-series introduces a lot of noise in the data,

making the classification tasks prone to errors due to the noise in the in-

put. Eliminating this by taking only the difference in the phase values of
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the nodes and converting them to a symbolic form, greatly reduces our

model’s susceptibility to errors in the data collected. From a theoretical

standpoint, successful classification of networks from symbolic time-series

signifies the richness of structural information contained in the dynamics

of the networks. Extending our results to time-series generated from same

range of r values have discarded any doubts regarding the suspicion that

our model classified the networks based on the differences in the levels of

synchronization.

As we have shown, unquestionably, that our model can classify different

types of networks based solely on the difference in their connectivity struc-

tures, we have proven the massive success of machine learning in the study

of complex systems. Network science, as an evolving field in almost all areas

of science, has been an excellent abstraction of data, capturing the pair-

wise interactions of real world entities and providing immense dynamical

information. Having machine learning techniques successfully apprehend

the underlying correlations of the network structure and its dynamics not

only provides a great foundation of further research in the network science

space, but also in other areas of scientific research.
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Chapter 6

Future work

In view of the immense success of our machine learning model in classifying

the networks based on limited number of time-series of the highest degree

nodes, we explore further the applicability of machine learning in predicting

the correlation matrices of the time-series of chaotic oscillators. For this

purpose, we model ER, SF and SW networks on the Rössler oscillators (eq.

1.2). We generate the time-series of these oscillators in a similar manner

and provide the time-series in the x-dimension of the top 5 highest degree

nodes to our new supervised machine learning model. We train the model

on a few networks with varying coupling constants and network structures

by supplying the entire correlation matrices as output labels. With only

a few networks provided, our model is able to reconstruct the entire cor-

relation matrix with high accuracy. We intend to further investigate these

results by testing our model against various parameters such as degree,

rewiring probabilities, size of the networks, and so on.
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[9] N. Boullé, V. Dallas, Y. Nakatsukasa, D. Samaddar, Classification of

chaotic time series with deep learning, Physica D: Nonlinear Phenom-

ena 403 (2020) 132261.

[10] F. Rodrigues, T. Peron, J. Kurths, A machine learning ap-

proach to predicting dynamical observables from network structure,

arXiv:1910.00544.

[11] E. Bianco-Martinez, N. Rubido, C. G. Antonopoulos, M. S. Baptista,

Successful network inference from time-series data using mutual infor-

mation rate, Chaos 26 (2016) 043102.

[12] G. Tirabassi, R. Sevilla-Escoboza, J. M. Buldú, C. Masoller, Infer-
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