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Abstract

Page 332 of Ramanujan’s Lost Notebook contains a compelling identity for ⇣(1/2),

which has been studied by many mathematicians over the years. On the same page,

Ramanujan also recorded the series,

1r

exp(1sx)� 1
+

2r

exp(2sx)� 1
+

3r

exp(3sx)� 1
+ · · · ,

where s is a positive integer and r� s is any even integer. Unfortunately, Ramanujan

doesn’t give any formula for it. This series was rediscovered by Kanemitsu, Tanigawa,

and Yoshimoto [17] although they studied it only when r � s is a negative even

integer. Recently, Dixit and Maji [13] generalized the work of Kanemitsu et al. [17]

and obtained a transformation formula for the aforementioned series with r�s is any

even integer. While extending the work of Kanemitsu et al., Dixit and Maji obtained a

beautiful generalization of Ramanujan’s formula for odd zeta values. Motivated by the

work of Dixit and Maji, in the current thesis, we investigate transformation formulas

for an infinite series, and interestingly, we derive Ramanujan’s formula for ⇣(1/2),

Wigert’s formula for ⇣(1/k), k � 2 even, and Ramanujan’s formula for ⇣(2m + 1).

Furthermore, we obtain a new identity for ⇣(�1/2) in the spirit of Ramanujan.
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Chapter 1

Introduction

The inception of the theory of the Riemann zeta function was done by the German

mathematician Bernhard Riemann in his seminal paper [22] in 1859. Over the years,

this theory has been a constant source of motivation for mathematicians to produce

many beautiful results. The Riemann zeta function is defined by

⇣(s) :=
1X

n=1

1

ns for Re(s) > 1.

Riemann showed that ⇣(s) can be analytically continued to the whole complex plane

except at s = 1. He also established the following beautiful functional equation for

⇣(s):

⇡�s/2�
⇣s
2

⌘
⇣(s) = ⇡�(1�s)/2�

✓
1� s

2

◆
⇣(1� s). (1.1)

In the same paper, he conjectured that all the non-trivial zeros of ⇣(s) will lie on

Re(s) = 1/2. This conjecture is known as the famous Riemann Hypothesis, which is

one of the Millennium Prize Problems. Before Riemann, Euler studied ⇣(s) for even

positive integers. In 1735, Euler established the following elegant formula for ⇣(2m).

For every positive integer m,

⇣(2m) = (�1)m+1 (2⇡)
2mB2m

2(2m)!
, (1.2)

where B2m denotes the 2mth Bernoulli number. These are certain rational numbers,

defined by the generating function:

z

ez � 1
=

1X

n=0

Bn
zn

n!
, |z| < 2⇡.

Euler’s formula along with the transcendence of ⇡, proved by F. Lindemann, immediately

tells us that all even zeta values are transcendental. However, the arithmetic nature of

the odd zeta values is yet to be determined. Surprisingly in 1979, Roger Apéry [1, 2]

proved the irrationality of ⇣(3). But till today we do not know about the algebraic
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nature of ⇣(3), that is, whether ⇣(3) is algebraic or transcendental. In 2001, Rivoal

[25] Ball and Rivoal [4] made a breakthrough by proving that there exist infinitely

many odd zeta values which are irrational, but their result does not tell us anything

about the algebraic nature of a specific odd zeta value. Around the same time, Zudilin

[29] proved that at least one of the members of ⇣(5), ⇣(7), ⇣(9) or ⇣(11) is irrational,

which is the current best result in this direction.

Before going to England, Ramanujan, in his second notebook [23, p. 173, Ch.

14, Entry 21(i)], noted down the following remarkable formula for odd zeta values

⇣(2m+ 1).

Let ↵ and � be two positive numbers such that ↵� = ⇡2. For any non-zero

integer m,

1

(4↵)m

 
1

2
⇣(2m+ 1) +

1X

n=1

n�2m�1

(e2n↵ � 1)

!
+

(�1)m+1

(4�)m

 
1

2
⇣(2m+ 1) +

1X

n=1

n�2m�1

(e2n� � 1)

!

=
m+1X

k=0

(�1)k�1 B2k

(2k)!

B2m+2�2k

(2m+ 2� 2k)!
↵m+1�k�k.

(1.3)

This formula can also be found in Ramanujan’s Lost Notebook [24, pp. 319-320,

formula (28)]. In sharp contrast to Euler’s formula, it falls short of providing an

explicit formula for odd zeta values, but it is indeed another wonderful discovery

of Ramanujan that has attracted the attention of several mathematicians. The first

published proof was given by Malurkar [19] in 1925, who had no idea about its presence

in Ramanujan’s Notebook. Lerch [18], in 1901, proved a particular case of the formula

(1.3), namely, corresponding to ↵ = � = ⇡ and m an odd positive integer. Replacing

m by 2m+ 1 in (1.3), it reduces to

⇣(4m+ 3) + 2
1X

n=1

n�4m�3

(e2⇡n � 1)
= ⇡4m+324m+2

2m+2X

j=0

(�1)j+1B2jB4m+4�2j

(2j)!(4m+ 2� 2j)!
. (1.4)

Note that the infinite series present in the left side of (1.4) is a rapidly convergent

series, which indicates that ⇣(4m+3) is almost a rational multiple of ⇡4m+3. Moreover,

one can say that atleast one of the expressions ⇣(4m + 3) or
P1

n=1
n
�4m�3

(e
2⇡n�1)

must be

transcendental since the right side expression is transcendental. A folklore conjecture

is that ⇡ and odd zeta values do not satisfy any non-zero polynomial with rational

coe�cients, which implies that all odd zeta values must be transcendental.

Ramanujan’s formula (1.3) has a deep connection with the theory of modular

forms. In 1977, Bruce Berndt [6] obtained a modular transformation formula for

a generalized Eisenstien series from which he was able to derive Euler’s formula

for ⇣(2m) as well as Ramanujan’s formula for ⇣(2m + 1). Over the years, many

2



mathematicians found generalizations of (1.3) in various directions. Readers are

encouraged to see the paper of Berndt and Straub [11] for more information on the

history of Ramanujan’s formula for odd zeta values.

1.0.1 Work of Kanemitsu, Tanigawa, and Yoshimoto

In 2001, three Japanese mathematicians Kanemitsu, Tanigawa and Yoshimoto [17]

studied a generalized Lambert series defined by
1X

n=1

nN�2h

exp(nNx)� 1
, (1.5)

where h,N 2 N such that 1  h  N/2. They established an important modular

transformational relation for this generalized Lambert series which enabled them to

find a formula for the Riemann zeta function at rational arguments. Recently, Dixit

and Maji [13] pointed out that the above generalized Lambert series is in fact present

on page 332 of Ramanujan’s Lost Notebook [24] with more general conditions on the

parameters. At the end of page 332, Ramanujan wrote
1r

exp(1sx)� 1
+

2r

exp(2sx)� 1
+

3r

exp(3sx)� 1
+ · · · , (1.6)

where s is a positive integer and r� s is any even integer. Unfortunately, Ramanujan

does not give any formula for the series (1.6). Comparing (1.5) and (1.6), one can

observe that Kanemitsu et al. [17] studied (1.6) with the restriction that r � s is

a negative even integer that lies in a restricted domain. This motivated Dixit and

Maji [13] to generalize the main result of Kanemitsu et al. [17, Theorem 1.1] and

find a formula for (1.6). While extending the main result of Kanemitsu et al., Dixit

and Maji [13, Theorem 1.2] obtained the following beautiful generalization of the

Ramanujan’s formula for ⇣(2m+ 1).

Let N � 1 be an odd positive integer and ↵, � be two positive real numbers

such that ↵�N = ⇡N+1. Then for any integer non-zero integer m 6= 0, we have

↵� 2Nm
N+1

0

@1

2
⇣(2Nm+ 1) +

1X

n=1

n�2Nm�1

exp
⇣
(2n)N↵

⌘
� 1

1

A =
⇣
��

2N
N+1

⌘�m 22m(N�1)

N

⇥
 
1

2
⇣(2m+ 1) + (�1)

N+3
2

N�1
2X

j=�(N�1)
2

(�1)j
1X

n=1

n�2m�1

exp
⇣
(2n)

1
N �e

i⇡j
N

⌘
� 1

!

+ (�1)m+N+3
2 22Nm

bN+1
2N +mcX

j=0

(�1)jB2jBN+1+2N(m�j)

(2j)!(N + 1 + 2N(m� j))!
↵

2j
N+1�N+ 2N

2
(m�j)

N+1 . (1.7)

This formula is of interest as it establishes a relation between two distinct odd zeta

values, namely ⇣(2m + 1) and ⇣(2Nm + 1) when N > 1. To derive the above

3



generalization of Ramanujan’s formula for ⇣(2m + 1), Dixit and Maji studied the

following line integration representation of (1.5):
1X

n=1

nN�2h

exp(nNx)� 1
=

1

2⇡i

Z c0+i1

c0�i1
�(s)⇣(s)⇣(Ns� (N � 2h))x�sds, (1.8)

where c0 > max{1, (N � 2h+ 1)/N}.
In the current thesis, we would like to investigate the following line integration:

1

2⇡i

Z c+i1

c�i1
�(s)⇣(ks)⇣(s� r)x�sds, (1.9)

where k 2 N, r 2 Z and c > max {1/k, 1 + r}. Surprisingly, when k � r is an

even integer, we obtain nice transformation formulas which allow us to derive many

well-known formulas in the literature, for example, Ramanujan’s formula for ⇣(1/2),

Wigert’s formula for ⇣(1/k) for k � 2 even, and Ramanujan’s formula for odd

zeta values. Furthermore, we also obtain a new identity for ⇣(�1/2) analogous to

Ramanujan’s formula for ⇣(1/2).
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Chapter 2

Preliminaries

The study of the well-known divisor function d(n), which counts the number of

positive divisors of n, plays an important role in analytic number theory. This function

has been generalized in many directions, and one of the important generalizations is

defined by

�k(m) :=
X

d|m

dk,

where k 2 Z. In this thesis, we encountered two new divisor functions that are defined

by

Dk,r(n) :=
X

d
k|n

✓
n

dk

◆r

, and Sk,r(n) :=
X

d
k|n

✓
n

dk

◆�r

dk�1, (2.1)

where k 2 N and r 2 Z. At this point, it may look artificial to define the above two

divisor functions, but in due time we will see that these divisor functions naturally

arise with the theory. One can easily observe that

D1,r(n) = �r(n), and S1,r = ��r(n). (2.2)

It is well-known that

⇣(s)⇣(s� k) =
1X

n=1

�k(n)

ns

is absolutely convergent for Re(s) > max{1, k + 1}. We now look for the Dirichlet

series associated to Dk,r(n) and Sk,r(n) in terms of the Riemann zeta function. Using

5



the definition (2.1), we see that

1X

n=1

Dk,r(n)

ns =
1X

n=1

0

@
X

n
k
1 |n

✓
n

nk
1

◆r
1

A 1

ns =
1X

n=1

0

@
X

n
k
1n2=n

nr
2

1

A 1

ns

=
1X

n1=1

1

nks
1

1X

n2=1

1

ns�r
2

= ⇣(ks)⇣(s� r), (2.3)

valid for Re(s) > max{ 1
k , 1 + r}. Similarly, with the help of the definition (2.1), one

can show that, for Re(s) > max{1, 1� r},
1X

n=1

Sk,r(n)

ns = ⇣(1 + ks� k)⇣(s+ r). (2.4)

Now we observe that the Lambert series
P1

m=1 �k(m)e�mx associated to the divisor

function �k(m) is in fact present in Ramanujan’s formula (1.3) as it can be clearly

seen from the relation that
1X

m=1

�k(m)e�mx =
1X

m=1

0

@
X

d|m

dk

1

A e�mx =
1X

m=1

1X

d=1

dke�mdx =
1X

n=1

nk

enx � 1
. (2.5)

Let us try to find a similar expression for the Lambert series
P1

n=1 Dk,r(n)e
�nx

associated to the new divisor function Dk,r(n). We know that, for x > 0,
1X

m=1

e�n
k
mx =

1

en
k
x � 1

.

Now di↵erentiating both sides of this series r times, and then taking sum over n, we

obtain
1X

m=1

(�1)r(nkm)re�n
k
mx =

dr

dxr

 
1

en
k
x � 1

!

)
1X

n=1

1X

m=1

mre�n
k
mx =

1X

n=1

(�1)r

nkr

dr

dxr

 
1

en
k
x � 1

!

)
1X

n=1

Dk,r(n)e
�nx =

1X

n=1

(�1)r

nkr

dr

dxr

 
1

en
k
x � 1

!
, for r � 0. (2.6)

Unfortunately, a similar alternative expression can not be obtained for the Lambert

series
P1

n=1 Dk,r(n)e
�nx when r < 0.

The gamma function �(s) is one of the most important special functions in

mathematics. It is defined by

�(s) =

Z 1

0

e�xxs�1dx, for Re(s) > 0.

It satisfy the functional equation �(s+ 1) = s�(s) and can be analytically continued

to the whole complex plane except for simple poles at s = 0,�1,�2, · · · .

6



Next, we state another important special function, the Meijer G-function, which

is the generalization of many well-known special functions in the literature.

Let m,n, p, q be four integers such that 0  m  q, 0  n  p. Let us consider

a1, · · · , ap and b1, · · · , bq complex numbers such that ai � bj 62 N for 1  i  n and

1  j  m. Then the Meijer G-function [21, p. 415, Definition 16.17] is defined by

the line integral:

Gm,n
p,q

 
a1, · · · , ap
b1, · · · , bq

���z
!

=
1

2⇡i

Z

L

Qm
j=1 �(bj + s)

Qn
j=1 �(1� aj � s)z�s

Qq
j=m+1 �(1� bj � s)

Qp
j=n+1 �(aj + s)

ds, (2.7)

where the vertical line of integration L, going from �i1 to +i1, separates the poles

of the factors �(bj +s) from those of the factors �(1�aj �s). This integral converges

if p+ q < 2(m+ n) and | arg(z)| < (m+ n� p+q
2 )⇡.

The main results of this thesis are stated in the next chapter.
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Chapter 3

Main results

Theorem 3.1. Let k � 2 and r be an even integers. Let Dk,r(n) and Sk,r(n) be

defined as in (2.1). Then for any x > 0, we have

1X

n=1

Dk,r(n)e
�nx =� 1

2
⇣(�r) +

1

k
�

✓
1

k

◆
⇣

✓
1

k
� r

◆
x� 1

k +R1+r +
(�1)

k+r�2
2 (2⇡)

k+1�2r
2

x k
2k�1

2

⇥
(k�1)X

j=�(k�1)

00
1X

n=1

Sk,r(n) G
k,0
0,k

 
{}

r,� 1
k , · · · ,�

(k�1)
k

���X(j)

!
,

where
00
means summation runs over j = �(k� 1),�(k� 3), · · · , (k� 3), (k� 1), and

X(j) := Xx,n,k(j) :=
e�

i⇡j
2 (2⇡)k+1n

kkx
, (3.1)

and

R1+r =

8
<

:
r!⇣(k(1 + r))x�(1+r), if r � 0,
(�1)

1+r

(�(1+r))!k⇣
0(k(1 + r))x�(1+r), if r < 0.

(3.2)

As an immediate consequence of the above identity, we obtain Ramanujan’s

formula for ⇣(12).

Corollary 3.2. Let ↵ and � be two positive numbers such that ↵� = 4⇡3
.Then

1X

n=1

1

en
2
↵ � 1

=
1

4
+

⇡2

6↵
+

p
�

4⇡
⇣

✓
1

2

◆
+

p
�

4⇡

1X

m=1

cos(
p
m�)� sin(

p
m�)� e�

p
m�

p
m(cosh(

p
m�)� cos(

p
m�))

.

(3.3)

Ramanujan1 recorded this formula on the page 332 of his Lost Notebook [24],

where Dixit and Maji encountered the series (1.6). On the same page, Ramanujan

mentioned another form of this identity, which can also be found in Ramanujan’s

second notebook [23, Entry 8, Chapter 15] and in [7, p. 314]. The formula (3.3) has

1Ramanujan [24, p. 332] missed the factor 1/
p
m on the right side series expression of (3.3).

9



been generalized by many mathematicians, for more information readers can see [3,

pp. 191-193] and [10, p. 859, Theorem 10.1].

More generally, substituting r = 0 in Theorem 3.1, we obtain the following

Wigert’s formula [28] for ⇣( 1k ), for k � 2 even.

Corollary 3.3. For any x > 0 and k � 2 even, we have

1X

n=1

1

en
k
x � 1

=
⇣(k)

x
+

1

k
�

✓
1

k

◆
⇣

✓
1

k

◆✓
1

x

◆ 1
k

+
1

4
+

(�1)
k
2�1

k

✓
2⇡

x

◆ 1
k

⇥
k
2�1X

j=0

(
e

i⇡(2j+1)(k�1)
2k L̄k

 
2⇡

✓
2⇡

x

◆ 1
k

e�
i⇡(2j+1))

2k

!

+ e�
i⇡(2j+1)(k�1)

2k L̄k

 
2⇡

✓
2⇡

x

◆ 1
k

e
i⇡(2j+1)

2k

!)
, (3.4)

where

L̄k(x) :=
1X

n=1

n
1
k�1

exp(xn
1
k )� 1

.

This formula has been generalized by Dixit and Maji [13, Theorem 1.5] and

further a two-variable generalization obtained by Dixit et al. [15, Theorem 2.12].

Theorem 3.4. Let k � 2 be an even integer and r 6= �1 be an odd integer. Let

Dk,r(n) and Sk,r(n) be defined as in (2.1). Then for any x > 0, we have

1X

n=1

Dk,r(n)e
�nx = �1

2
⇣(�r) +

1

k
�

✓
1

k

◆
⇣

✓
1

k
� r

◆
x� 1

k +R1+r +
(�1)

2k+r�1
2 (2⇡)

k+1�2r
2

x k
2k�1

2

⇥
(k�1)X

j=�(k�1)

00
ij

1X

n=1

Sk,r(n)G
k,0
0,k

 
{}

r,� 1
k , · · · ,�

(k�1)
k

���X(j)

!
,

where X(j) and R1+r are defined as in (3.1) and (3.2) respectively.

Substituting k = 2 and r = 1 in the above result, we derive an interesting

identity for ⇣
�
�1

2

�
.

Corollary 3.5. For ↵, � > 0 such that ↵� = 4⇡3
,

1X

n=1

1

n2

d

d↵

 
1

1� en
2
↵

!
=

1

24
+

p
�

4⇡
⇣

✓
�1

2

◆
+

⇡4

90↵2

� ⇡

4↵

1X

m=1

1

m

( 
cos(

p
m�) + sin(

p
m�)� e�

p
m�

p
m�

�
cosh(

p
m�)� cos(

p
m�)

�
!

+
2 sin(

p
m�) sinh(

p
m�)

(cos(m�) cosh(
p
m�)� 1)2 + (sin(

p
m�) sinh(

p
m�))2

)
.

10



Note that, Theorem 3.4 does not hold for r = �1, so we present the next result

corresponding to r = �1.

Theorem 3.6. Let k � 2 be an even integer. Then for x > 0, we have
1X

n=1

Dk,�1(n)e
�nx =

1

2
log

✓
x

(2⇡)k

◆
+

1

k
�

✓
1

k

◆
⇣

✓
1 +

1

k

◆
x� 1

k

+ (�1)k
(k�1)X

j=�(k�1)

00
ei⇡j

1X

m=1

log


1� exp

✓
�e�

i⇡j
2k (2⇡)1+

1
k

⇣m
x

⌘ 1
k

◆�
.

Till now, we have stated identities when k � 2 is even. From the next result

onwards we dealt with k � 1 odd. It turns out that, Ramanujan’s formula for

⇣(2m+ 1) can be derived as a special case of our result when k is an odd integer.

Theorem 3.7. Let k � 1 be an odd integer and r 6= �1 be an odd integer. Let Dk,r(n)

and Sk,r(n) be defined as in (2.1). Then for x > 0, we have

1X

n=1

Dk,r(n)e
�nx =� 1

2
⇣(�r) +

1

k
�

✓
1

k

◆
⇣

✓
1

k
� r

◆
x� 1

k +R1+r +R +
(�1)

2k+r�1
2 (2⇡)

k+1�2r
2

x k
2k�1

2

⇥
(k�1)X

j=�(k�1)

00
ij

1X

n=1

Sk,r(n)G
k,0
0,k

 
{}

r,� 1
k , · · · ,�

(k�1)
k

���X(�j)

!
,

(3.5)

where X(j) and R1+r are defined as in (3.1) and (3.2) respectively, and

R =

8
<

:
0, if r � 1,

(�1)
1+r
2

2

P�(1+r)
2

i=0
(�1)

i+1
Bk(2i+1)+1

(2i+1)!(k(2i+1)+1)
B�2i�1�r(2⇡)

�r

(�(2i+1+r))!

�
x
2⇡

�2i+1
, if r  �3.

The next result provides a relation between two odd zeta values, namely, ⇣(2m+

1) and ⇣(2km+ 1), and a zeta value at rational argument ⇣
�
1
k + 2m+ 1

�
.

Corollary 3.8. Let k � 1 be an odd integer and m be a positive integer. For any

11



x > 0, we have
1X

n=1

Dk,�(2m+1)(n)e
�nx = �1

2
⇣(2m+ 1) +

1

k
�

✓
1

k

◆
⇣

✓
1

k
+ 2m+ 1

◆
x� 1

k

+
(�1)m

2

k(2km)!⇣(2km+ 1)

(2m)!

✓
x

(2⇡)k

◆2m

+
(�1)m(2⇡)2m+1

2

mX

i=0

(�1)i+1Bk(2i+1)+1B2m�2i

(2i+ 1)!(k(2i+ 1) + 1)(2m� 2i)!

⇣ x

2⇡

⌘2i+1

+
(�1)m(2⇡)

k+1
2 +2m+1

x kk� 1
2

(k�1)X

j=�(k�1)

00
ij

1X

n=1

Sk,�(2m+1)(n)

⇥G k,0
0,k

 
{}

�(2m+ 1),� 1
k , · · · ,�

(k�1)
k

���X(�j)

!
.

Substituting k = 1 in Corollary 3.8, and simplifying, we derive Ramanujan’s

formula for odd zeta values.

Corollary 3.9. Let m be a positive integer. For any x > 0,
1X

n=1

��(2m+1)(n)e
�nx +

1

2
⇣(2m+ 1) = (�1)m

⇣ x

2⇡

⌘2m
 
⇣(2m+ 1)

2
+

1X

n=1

��(2m+1)(n)e
� 4⇡

2
n

x

!

+
1

2

m+1X

i=0

(�1)i+1B2iB2m+2�2ix
2m+1

(2i)!(2m+ 2� 2i)!

✓
2⇡

x

◆2i

.

(3.6)

One can easily show that the above identity is equivalent to (1.3) under the

substitution x = 2↵ and ↵� = ⇡2. Again, letting k = 1 and r = 2m + 1, for m � 1,

in Theorem 3.7, one can obtain the following interesting identity.

Corollary 3.10. Let m be a positive integer. For ↵, � > 0 with ↵� = ⇡2
, we have

↵m+1
1X

n=1

n2m+1

e2n↵ � 1
� (��)m+1

1X

n=1

n2m+1

e2n� � 1
= (↵m+1 � (��)m+1)

B2m+2

4m+ 4
. (3.7)

This formula is a special case of (1.3) and it can be found in [23, Vol. 1, p. 259].

Note that Theorem 3.7 is not valid for r = �1. Corresponding to r = �1 and

k � 1 odd, we obtain the next result.

Theorem 3.11. Let k � 1 be an odd integer. Then for x > 0, we have
1X

n=1

Dk,�1(n)e
�nx =

1

2
log

✓
x

(2⇡)k

◆
+

1

k
�

✓
1

k

◆
⇣

✓
1 +

1

k

◆
x� 1

k +
⇣(�k)x

2

�
(k�1)X

j=�(k�1)

00
1X

m=1

log


1� exp

✓
�e

i⇡j
2k (2⇡)1+

1
k

⇣m
x

⌘ 1
k

◆�
. (3.8)
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Plugging k = 1 in the above identity, we obtain an interesting identity.

Corollary 3.12. For ↵, � > 0 and ↵� = ⇡2
,

1X

n=1

1

n(e2n↵ � 1)
�

1X

n=1

1

n(e2n� � 1)
=

� � ↵

12
� 1

4
log

✓
↵

�

◆
. (3.9)

Remark 1. This identity is popularly known as the transformation formula for the

logarithm of the Dedekind eta function ⌘(z), defined as e
⇡iz
12
Q1

n=1(1 � e2n⇡iz), which

is an important example of a half-integral weight modular form. Ramanujan recorded

this identity twice in his second notebook [23, Ch. 14, Sec. 8, Cor. (ii) and Ch. 16,

Entry 27(iii)]. For more information, one can see [7, p. 256], [8, p. 43], [24, p. 320,

Formula (29)].

In the next chapter we state a few important results which will be useful

throughout the thesis. We provide the proof of those results which are not well-

known.
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Chapter 4

Well-known results

The theory of Riemann zeta function ⇣(s) and the theory of gamma function �(s) are

intimately connected with each other. In (1.1), we mentioned the symmetric form of

the functional equation of ⇣(s). An asymmetric form of the functional equation of

⇣(s) can be written as

⇣(s) = 2s⇡s�1⇣(1� s)�(1� s) sin
⇣⇡s
2

⌘
. (4.1)

We know that ⇣(s) has a simple pole at s = 1 with residue 1 and the Laurent series

expansion is

⇣(s) =
1

s� 1
+ � +

1X

n=1

(�1)n�n(s� 1)n

n!
, (4.2)

where �n’s are called the Stieltjes constants and defined by

�n = lim
i!1

 
iX

j=1

(log j)n

j
� (log i)n+1

n+ 1

!
,

and � is the well-known Euler–Mascheroni constant.

For any n 2 N [ {0}, one can show that

Res
s=�n

�(s) = lim
s!�n

(s+ n)�(s) =
(�1)n

n!
. (4.3)

The Laurent series expansion of �(s) at s = 0 is

�(s) =
1

s
� � +

1

2

✓
�2 +

⇡2

6

◆
s� 1

6

✓
�3 + �

⇡2

2
+ 2⇣(3)

◆
s2 + · · · . (4.4)

More generally, �(s) has Laurent series expansion at every negative integer.

Lemma 4.1. For r  �2, we have

�(s) =
a�1

s� (1 + r)
+ a0 + a1(s� (1 + r)) + · · · ,

where a�1 =
(�1)

r+1

(�(1+r))! and a0 =
(�1)

r+1

(�(1+r))!

⇣
�� +

P�(1+r)
k=1

1
k

⌘
.
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Euler proved that �(s) satisfies the following beautiful reflection formula:

�(s)�(1� s) =
⇡

sin(⇡s)
, 8s 2 C� Z. (4.5)

The multiplication formula for the gamma function stated as

Lemma 4.2. For any positive integer k,

�(ks) =
kks

p
k(2⇡)

k�1
2

k�1Y

l=1

�(s)�

✓
s+

l

k

◆
. (4.6)

In particular, substituting k = 2, we have

�(2s) =
22s�1

⇡
�(s)�

✓
s+

1

2

◆
. (4.7)

This is known as duplication formula.

The next result gives an important information about the asymptotic expansion

of the gamma function, popularly known as Stirling’s formula.

Lemma 4.3. For s = � + iT in a vertical strip ↵  �  �,

|�(� + iT )| =
p
2⇡|T |��1/2e�

1
2⇡|T |

✓
1 +O

✓
1

|T |

◆◆
, (4.8)

as |T | ! 1.

Proof. The proof of this result can be found in [16, p. 151].

Lemma 4.4. For � � �0, there exist a constant C(�0), such that

|⇣(� + iT )| ⌧ |T |C(�0) (4.9)

as |T | ! 1.

Proof. One can see the proof in [27, p. 95].

Next, we shall mention a few important special cases of the Meijer G-function.

An immediate special case is the following result. Putting m = q = 1 and n = p = 0

in (2.7), one can see that

G 1,0
0,1

 
{}
b

���z
!

=
1

2⇡i

Z c+i1

c�i1
�(b+ s)z�sds = e�zzb, (4.10)

provided Re(s) = c > �Re(b) and Re(z) > 0. Again, plugging m = q = 2 and

n = p = 0 in the definition (2.7) of the Meijer G-function, we will have the following

result.

Lemma 4.5. For | arg(z)| < ⇡, we have

G 2,0
0,2

 
{}

b1, b2

���z
!

= 2z
1
2 (b1+b2)Kb1�b2(2

p
z), (4.11)
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where K⌫(z) is the modified Bessel function. In particular,

K 3
2
(2
p
z) =

e�2
p
zp⇡

⇣
1 + 1

2
p
z

⌘

2z
1
4

. (4.12)

Lemma 4.6. Let k � 2 be a positive integer. Then

G k,0
0,k

 
{}

b, b+ 1
k , b+

2
k , · · · , b+

(k�1)
k

���z
!

=
(2⇡)

k�1
2

p
k

zbe�kz
1/k

, (4.13)

provided | arg(z)| < k⇡
2 .

Proof. With the help of the definition (2.7) of the Meijer-G function, we write

G k,0
0,k

 
{}

b, b+ 1
k , · · · , b+

(k�1)
k

���z
!

=
1

2⇡i

Z

L

kY

l=1

�(s+ b)�

✓
s+ b+

l

k

◆
z�sds,

provided the poles of each of these gamma factors lie on the left of the line of

integration. Replacing s by s + b in the multiplication formula (4.6) for �(s), we

have

�(k(s+ b)) =
kk(s+b)

p
k(2⇡)

k�1
2

k�1Y

l=1

�(s+ b)�

✓
s+ b+

l

k

◆
.

Plugging this expression, one can see that

G k,0
0,k

 
{}

b, b+ 1
k , · · · , b+

(k�1)
k

���z
!

=
p
k(2⇡)

k�1
2

1

2⇡i

Z

L

�(k(s+ b))

kk(s+b)
z�sds

=
p
k(2⇡)

k�1
2

1

2⇡i

Z

L
0
�(s1)z

� s1
k +b ds1

ks1+1

=
(2⇡)

k�1
2

p
k

1

2⇡i

Z

L
0
�(s1)(kz

1
k )�s1zbds1

=
(2⇡)

k�1
2 zbp
k

e�kz
1
k
,

the last step is possible only when | arg(z)| < k⇡
2 .

Dixit and Maji [13, Lemma 3.1] used the below lemma to prove (1.7), a generalization

of Ramanujan’s formula for ⇣(2m+ 1).

Lemma 4.7. Let a, u, v be three real numbers. Then

2Re

✓
eiuv

exp(ae�iu)� 1

◆
=

cos(a sin(u) + uv)� e�a cos(u) cos(uv)

cosh(a cos(u))� cos(a sin(u))
.

In a similar vein, we have the following lemma.

Lemma 4.8. Let a, u, v be three real numbers. Then

2Re

✓
ieiuv

exp(ae�iu)� 1

◆
=

� sin(uv + a sin(u)) + e�a cos(u) sin(uv)

cosh(a cos(u))� cos(a sin(u))
.
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Proof. The left hand side expression can be written as

2Re

✓
ieiuv

exp(ae�iu)� 1

◆
= 2Re

 
� sin(uv) + i cos(uv)

ea cos(u)(cos(a sin(u))� i sin(a sin(u)))� 1

!
,

now multiplying the numerator and the denominator by the conjugate of the denominator

reduces to

2Re

 
(� sin(uv) + i cos(uv))(ea cos(u) cos(a sin(u)) + iea cos(u) sin(a sin(u)))� 1)

e2a cos(u) � 2ea cos(u)(cos(a sin(u))) + 1

!

= 2

 
�ea cos(u)(cos(a sin(u)) sin(uv)) + sin(uv)� ea cos(u)(sin(a sin(u)) cos(uv))

e2a cos(u) � 2ea cos(u)(cos(a sin(u))) + 1

!

= 2

 
�ea cos(u)(sin(uv + a sin(u)) + sin(uv)

e2a cos(u) � 2ea cos(u)(cos(a sin(u))) + 1

!
,

=
� sin(uv + a sin(u)) + e�a cos(u) sin(uv)

cosh(a cos(u))� cos(a sin(u))
.

In the final step we divided by ea cos(u) on the numerator as well as on the denominator.

The next lemma will play a crucial role to obtain our main results.

Lemma 4.9. Let s 2 C and k 2 N. Then
sin(ks)

sin(s)
=

(k�1)X

j=�(k�1)

00
exp(ijs),

where
00
means summation runs over j = �(k � 1),�(k � 3), · · · , (k � 3), (k � 1).

Thus, for k even,

sin(ks)

cos(s)
= (�1)

k
2

(k�1)X

j=�(k�1)

00
ij exp(ijs), (4.14)

and for k odd,

cos(ks)

cos(s)
= (�1)

k�1
2

(k�1)X

j=�(k�1)

00
ij exp(�ijs). (4.15)
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Chapter 5

Proof of main results

Proof of Theorem 3.1. It is well-known that e�x is the inverse Mellin transform of

the gamma function �(s), that is, for any x > 0,

e�x =
1

2⇡i

Z c+i1

c�i1
�(s)x�sds, (5.1)

valid for any c > 0. Replacing x by nx in (5.1) and using the definition (2.1) of Dk,r,

one can easily show that
1X

n=1

Dk,r(n)e
�nx =

1

2⇡i

Z c+i1

c�i1
�(s)⇣(ks)⇣(s� r)x�sds, (5.2)

provided with Re(s) = c > max{ 1
k , 1 + r}. In order to evaluate this line integral we

choose a contour C in a way so that all the poles of the integrand function lie inside

the contour C, determined by the line segments [c� iT, c+ iT ], [c+ iT,��+ iT ], [��+

iT,�� � iT ], and [�� � iT, c � iT ], where we wisely take � > max{0,�r} and T is

some large positive real number. The essence of this choice of � is justified at the

later stage in our proof. Now applying Cauchy’s residue theorem, we have

1

2⇡i

Z c+iT

c�iT

+

Z ��+iT

c+iT

+

Z ���iT

��+iT

+

Z c�iT

���iT

�(s)⇣(ks)⇣(s� r)x�sds

=
X

⇢

Res
s=⇢

�(s)⇣(ks)⇣(s� r)x�s, (5.3)

where the sum over ⇢ runs through all the poles of �(s)⇣(ks)⇣(s � r)x�s inside the

contour C.
First, let us analyse the poles of the integrand function. We know that �(s) has

simple poles at s = 0 and negative integers. The poles at negative integers are getting

cancelled by the trivial zeros of ⇣(ks) as we are dealing with k even. Thus, the only

simple poles of the integrand function �(s)⇣(ks)⇣(s� r)x�s are at s = 0, 1
k and 1+ r,

due to the simple pole of ⇣(ks) at s = 1/k and the pole of ⇣(s� r) at s = 1+ r. Here

we would like to mention that, as we have considered r is any even integer, so it may
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happen that 1+ r is a negative integer, and in that case, it seems that 1+ r is a pole

of order 2 due to the factor �(s)⇣(s� r), but ⇣(ks) will have a zero at 1 + r since k

is even. This shows that 1 + r remains a simple pole of the integrand function as we

are dealing with k � 2 is even and r is even.

One can easily evaluate residues at s = 0 and s = 1
k . Let R⇢ denotes the residue

term at ⇢. Using residue calculation methods, we have

R0 = Res
s=0

�(s)⇣(ks)⇣(s� r)x�s = lim
s!0

s�(s)⇣(ks)⇣(s� r)x�s

= ⇣(0)⇣(�r)

= �1

2
⇣(�r). (5.4)

Similarly, we obtain

R 1
k
= Res

s= 1
k

�(s)⇣(ks)⇣(s� r)x�s = lim
s! 1

k

✓
s� 1

k

◆
�(s)⇣(ks)⇣(s� r)x�s

= lim
s! 1

k

(sk � 1)

k
�(s)⇣(ks)⇣(s� r)x�s

=
1

k
�

✓
1

k

◆
⇣

✓
1

k
� r

◆
x� 1

k . (5.5)

Here we note that while calculating the residue at s = 1 + r, we have to make two

di↵erent cases. First, if r � 0, then

R1+r = Res
s=1+r

�(s)⇣(ks)⇣(s� r)x�s = lim
s!1+r

(s� (1 + r))�(s)⇣(ks)⇣(s� r)x�s

= �(1 + r)⇣(k(1 + r))x�(1+r)

= r!⇣(k(1 + r))x�(1+r). (5.6)

Second, if r < 0 is a negative even integer, then 1+ r is also a negative integer. Thus,

�(s) satisfy the Laurent series expansion (4.1) at 1 + r. Therefore, we have

lim
s!1+r

(s� 1� r)�(s) =
(�1)1+r

(�(1 + r))!
. (5.7)

Again, ⇣(ks) has a trivial zero at s = 1 + r as k is even, so we have

lim
s!1+r

⇣(ks)

(s� 1� r)
= k⇣ 0(k(1 + r)). (5.8)

Combining (5.7) and (5.8) and together with the fact that 1 + r is a simple pole of

⇣(s� r), we obtain

R1+r = Res
s=1+r

�(s)⇣(ks)⇣(s� r)(x)�s = lim
s!(1+r)

(s� (1 + r))�(s)⇣(ks)⇣(s� r)x�s

=
(�1)1+r

(�(1 + r))!
k⇣ 0(k(1 + r))x�(1+r). (5.9)

We now proceed to show that the horizontal integrals

H1(T, x) :=
1

2⇡i

Z ��+iT

c+iT

�(s)⇣(ks)⇣(s� r)x�sds
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and

H2(T, x) =
1

2⇡i

Z c�iT

���iT

�(s)⇣(ks)⇣(s� r)x�sds

vanish as T ! 1. Replace s by � + iT in H1(T, x) to see

|H1(T, x)| =
����
1

2⇡i

Z d

c

�(� + iT )⇣(k� + ikT )⇣(� + iT � r)x��+iTd�

����

⌧
Z d

c

|�(� + iT )⇣(k� + ikT )⇣(� + iT � r)|x��d�

⌧ |T |A exp
⇣
�⇡

2
|T |

⌘
,

for some constant A. In the final step, we used Stirling’s formula for �(s) i.e., Lemma

4.3 and bound for ⇣(s) i.e., Lemma 4.4. This immediately implies that H1(T, x)

vanishes as T ! 1. Similarly, one can show that H2(T, x) also vanishes as T ! 1.

Now letting T ! 1 in (5.3) and collecting all the residual terms, we have
1

2⇡i

Z

(c)

�(s)⇣(ks)⇣(s� r)x�sds = R0 +R 1
k
+R1+r

+
1

2⇡i

Z

(��)

�(s)⇣(ks)⇣(s� r)x�sds. (5.10)

Here and throughout the thesis we denote
R
(c) by

R c+i1
c�i1 . Now one of our main

objectives is to evaluate the following vertical integral

Vk,r(x) :=

Z

(��)

�(s)⇣(ks)⇣(s� r)x�sds. (5.11)

Utilize the asymmetric form (4.1) of the functional equation of ⇣(s) to write

⇣(ks) = 2ks⇡ks�1⇣(1� ks)�(1� ks) sin

✓
⇡ks

2

◆
, (5.12)

⇣(s� r) = 2s�r⇡s�r�1⇣(1� s+ r)�(1� s+ r) sin

✓
⇡(s� r)

2

◆
. (5.13)

Substituting (5.12) and (5.13) in (5.11), the vertical integral becomes

Vk,r(x) =
1

(2⇡)r⇡2

1

2⇡i

Z

(��)

�(s)�(1� ks)�(1� s+ r)⇣(1� ks)⇣(1� s+ r)

⇥ sin

✓
⇡ks

2

◆
sin

✓
⇡(s� r)

2

◆ 
(2⇡)k+1

x

!s

ds.

Now to shift the line of integration, we replace s by 1� s. Then we have

Vk,r(x) =
(2⇡)k+1�r

⇡2x

1

2⇡i

Z

(1+�)

�(1� s)�(1� k + ks)�(s+ r)⇣(1� k + ks)⇣(s+ r)

⇥ sin

✓
⇡k(1� s)

2

◆
sin

✓
⇡(1� s� r)

2

◆ 
(2⇡)k+1

x

!�s

ds.

(5.14)
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Since k and r are both even, the following identities hold

sin

✓
⇡k(1� s)

2

◆
= (�1)

k
2�1 sin

✓
ks⇡

2

◆
, (5.15)

sin

✓
⇡(1� s� r)

2

◆
= (�1)

r
2 cos

⇣⇡s
2

⌘
. (5.16)

Using the above two expressions in (5.14), we see

Vk,r(x) =
(�1)

k+r
2 �1(2⇡)k+1�r

⇡2x

1

2⇡i

Z

(1+�)

�(1� s)�(1� k + ks)�(s+ r)⇣(1� k + ks)

⇥⇣(s+ r) sin

✓
⇡ks

2

◆
cos

⇣⇡s
2

⌘ (2⇡)k+1

x

!�s

ds

=
(�1)

k+r
2 �1(2⇡)k+1�r

2⇡2x

1

2⇡i

Z

(1+�)

�(1� s)�(1� k + ks)�(s+ r)⇣(1� k + ks)

⇥⇣(s+ r)
sin

�
⇡ks
2

�

sin
�
⇡s
2

� sin(⇡s)

 
(2⇡)k+1

x

!�s

ds

=
(�1)

k+r
2 �1(2⇡)k+1�r

2⇡x

1

2⇡i

Z

(1+�)

�(1� k + ks)�(s+ r)

�(s)
⇣(1� k + ks)

⇥⇣(s+ r)
sin

�
⇡ks
2

�

sin
�
⇡s
2

�
 
(2⇡)k+1

x

!�s

ds. (5.17)

Here in the ultimate step, we have used Euler’s reflection formula (4.5) for �(s) and

in the penultimate step we multiplied by sin
�
⇡s
2

�
in the denominator as well as in the

numerator. Now we notice that Re(s+r) = 1+�+r > 1 and Re(1�k+ks) = 1+k� > 1

as we have considered � > max{0,�r}. This explains our choice of �. Thus, we can

express ⇣(1�k+ks)⇣(s+r) as an infinite series, mainly, use (2.4) and then interchange

the summation and integration in (5.17) to deduce that

Vk,r(x) =
(�1)

k+r
2 �1(2⇡)k�r

x

1X

n=1

Sk,r(n)Ik,r(n, x), (5.18)

where

Ik,r(n, x) :=
1

2⇡i

Z

(1+�)

�(1� k + ks)�(s+ r)

�(s)

sin
�
⇡ks
2

�

sin
�
⇡s
2

�
 
(2⇡)k+1n

x

!�s

ds. (5.19)

Now our main goal is to simplify this integral. Invoking Lemma 4.9 in (5.19) we see

that

Ik,r(n, x) =
(k�1)X

j=�(k�1)

00 1

2⇡i

Z

(1+�)

�(1� k + ks)�(s+ r)

�(s)

 
e�

i⇡j
2 (2⇡)k+1n

x

!�s

ds.

(5.20)
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Employing multiplication formula (4.6) for �(s), one can derive that

�(1� k + ks)

�(s)
=

kks

kk� 1
2 (2⇡)

k�1
2

k�1Y

l=1

�

✓
s� l

k

◆
. (5.21)

Substituting (5.21) in (5.20) yields that

Ik,r(n, x) =
1

kk� 1
2 (2⇡)

k�1
2

(k�1)X

j=�(k�1)

00 1

2⇡i

Z

(1+�)

�(s+ r)
k�1Y

l=1

�

✓
s� l

k

◆
X(j)�sds,

(5.22)

where

X(j) =
e�

i⇡j
2 (2⇡)k+1n

kkx
(5.23)

is exactly same as defined in (3.1). Now we shall try to express, the line integral

in (5.22), in terms of the Meijer G-function and for that we have to verify all the

necessary conditions for the convergence of the integral. First, one can check that all

the poles of the integrand function lie on the left of the line of integration Re(s) = 1+�

since � > max{0,�r}. Now using the definition (2.7) of the Meijer G-function, with

m = q = k and n = p = 0 and b1 = r, b2 = � 1
k , b3 = � 2

k , · · · , bk = �k�1
k , we find that

1

2⇡i

Z

(1+�)

�(s+ r)
k�1Y

l=1

�

✓
s� l

k

◆
X(j)�sds = G k,0

0,k

 
{}

r,� 1
k , · · · ,�

(k�1)
k

���X(j)

!
,

(5.24)

convergent since p + q < 2(m + n) and | arg(X(j))| = |⇡j2 | < (m + n � p+q
2 ) = ⇡k

2 as

|j|  k � 1. Substituting (5.24) in (5.22), we arrive at

Ik,r(n, x) =
1

kk� 1
2 (2⇡)

k�1
2

(k�1)X

j=�(k�1)

00
G k,0

0,k

 
{}

r,� 1
k , · · · ,�

(k�1)
k

���X(j)

!
. (5.25)

Now plugging this final expression (5.25) of Ik,r(n, x) in (5.18), the left vertical integral

becomes

Vk,r(x) =
(�1)

k+r
2 �1(2⇡)

k+1
2 �r

kk� 1
2x

(k�1)X

j=�(k�1)

00
1X

n=1

Sk,r(n)G
k,0
0,k

 
{}

r,� 1
k , · · · ,�

(k�1)
k

���X(j)

!
.

(5.26)

At this moment, we must show that the infinite series
1X

n=1

Sk,r(n)G
k,0
0,k

 
{}

r,� 1
k , · · · ,�

(k�1)
k

���X(j)

!
(5.27)

is convergent for any fixed k � 1, r 2 Z, |j|  k � 1. To show the convergence of

this series, we shall use the integral representation (5.24) of the Meijer G-function.

Employing Stirling’s formula (4.3) on each gamma factor that is present in (5.24),
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letting s = 1 + �+ iT , we have

|�(s+ r)| = |�(1 + �+ r + iT ) = O
⇣
|T |�+r+ 1

2 e�
⇡
2 |T |

⌘
,

�����
✓
s� l

k

◆���� =
�����
✓
1 + �� l

k
+ iT

◆���� = O
⇣
|T |��

l
k+

1
2 e�

⇡
2 |T |

⌘
, for 1  l  k � 1,

as T ! 1. Using the definition (5.23) of X(j), we note that

|X(j)�s| =

������

 
e�

i⇡j
2 (2⇡)k+1n

xkk

!�1���iT
������
= Ok,x

✓
1

n1+� e
⇡|j||T |

2

◆
.

Utilizing the above bounds for gamma functions and the bound for X(j), and upon

simplification, we derive that�����G
k,0
0,k

 
{}

r,� 1
k , · · · ,�

(k�1)
k

���X(j)

!����� ⌧ Ok,x

✓
1

n1+�

Z 1

�1
|T |k�+r+ 1

2 e�
⇡
2 (k�|j|)|T |dT

◆

⌧ Ok,r,x

✓
1

n1+�

◆
. (5.28)

The integral present inside the above big-oh bound is convergent since |j|  k � 1

and k� + r + 3
2 is a positive quantity as we have � > max{0,�r}. Plugging (5.28)

in (5.27), we can see that the infinite series (5.27) is convergent since the Dirichlet

series
P1

n=1 Sk,r(n)n
�(1+�) is convergent.

Finally, combining (5.2), (5.10), (5.11), and (5.26), and together with all the

residual terms, we complete the proof of Theorem 3.1.

5.0.1 Recovering Ramanujan’s formula for ⇣(1/2)

Proof of Corollary 3.2. Substituting k = 2 and r = 0 in Theorem 3.1, one can see

that
1X

n=1

D2,0(n)e
�nx =

1

4
+

p
⇡

2
p
x
⇣

✓
1

2

◆
+

⇡2

6x

+
⇡3/2

x

1X

n=1

S2,0(n)

"
G 2,0

0,2

 
{}

0,�1
2

���
e�

i⇡
2 2n⇡3

x

!
+G 2,0

0,2

 
{}

0,�1
2

���
e

i⇡
2 2n⇡3

x

!#
.

Observe that the Meijer G-functions that are present in the above equation are

conjugate to each other. Thus, letting x = ↵ and ↵� = 4⇡3, and using (2.6), we

obtain
1X

n=1

1

en
2
↵ � 1

=
1

4
+

p
⇡

2
p
↵
⇣

✓
1

2

◆
+

⇡2

6↵

+
2⇡3/2

↵

1X

n=1

S2,0(n) Re

"
G 2,0

0,2

 
{}

0,�1
2

���
e�

i⇡
2 n�

2

!#
. (5.29)
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Recall Lemma 4.6 with k = 2 and b = �1
2 , to produce

G 2,0
0,2

 
{}

0,�1
2

���
e�

i⇡
2 n�

2

!
=

r
2⇡

n�
e

i⇡
4 exp

⇣
�
p

2n�e�
i⇡
4

⌘
. (5.30)

Now utilizing (5.30) in (5.29), and using the definition (2.1) of S2,0(n), we see that
1X

n=1

1

en
2
↵ � 1

=
1

4
+

p
⇡

2
p
↵
⇣

✓
1

2

◆
+

⇡2

6↵

+

r
2⇡

↵

1X

n=1

X

d
2|n

dp
n
Re

h
e

i⇡
4 exp

⇣
�
p
2n�e�

i⇡
4

⌘i
. (5.31)

Next aim is to simplify the infinite series
1X

n=1

X

d
2|n

dp
n
Re

h
e

i⇡
4 exp

⇣
�
p

2n�e�
i⇡
4

⌘i
. (5.32)

Writing n = d2m, one can simplify the infinite sum in a following way
1X

n=1

X

d
2|n

dp
n
Re

h
e

i⇡
4 exp

⇣
�
p

2n�e�
i⇡
4

⌘i

=
1X

m=1

1X

d=1

1p
m

Re
h
e

i⇡
4 exp

⇣
�
p

2m�de�
i⇡
4

⌘i

=
1X

m=1

1p
m

Re

2

4 e
i⇡
4

exp
⇣p

2m�e�
i⇡
4

⌘
� 1

3

5

=
1X

m=1

1

2
p
2m

 
cos(

p
m�)� sin(

p
m�)� e�

p
m�

(cosh(
p
m�)� cos(

p
m�))

!
. (5.33)

In the final step, we have used Lemma (4.7) with u = ⇡/4, v = 1, and a =
p
2m�.

Now substituting (5.33) in (5.31), one can finish the proof of (3.3).

5.0.2 Wigert’s formula for ⇣(1/k) for k � 2 even.

Proof. First, substituting r = 0 in Theorem 3.1, we find that
1X

n=1

Dk,0(n)e
�nx =

1

4
+

1

k
�

✓
1

k

◆
⇣

✓
1

k

◆
x� 1

k +
⇣(k)

x

+
(�1)

k�2
2 (2⇡)

k+1
2

k
2k�1

2 x

(k�1)X

j=�(k�1)

00
1X

n=1

Sk,0(n) G
k,0
0,k

 
{}

0,� 1
k , · · · ,�

(k�1)
k

���X(j)

!
,

(5.34)
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where X(j) = e
� i⇡j

2 (2⇡)
k+1

n

k
k
x

. Now we shall try to simplify the last term and to do that

we make use of Lemma 4.6, with b = �k�1
k , which gives rise to

(�1)
k�2
2 (2⇡)

k+1
2

k
2k�1

2 x
G k,0

0,k

 
{}

0,� 1
k , · · · ,�

(k�1)
k

���X(j)

!

=
(�1)

k
2�1

k

✓
2⇡

x

◆ 1
k

e
i⇡j(k�1)

2k n
1
k�1 exp

✓
�e�

i⇡j
2k (2⇡)

1
k+1

⇣n
x

⌘ 1
k

◆
.

Implement this simplification of the Meijer G-function in the last term of (5.34), and

use (2.6) and the definition (2.1) of Sk,0(n), then (5.34) becomes
1X

n=1

1

en
k
x � 1

=
1

4
+

1

k
�

✓
1

k

◆
⇣

✓
1

k

◆
x� 1

k +
⇣(k)

x
+

(�1)
k
2�1

k

✓
2⇡

x

◆ 1
k

⇥
(k�1)X

j=�(k�1)

00
1X

n=1

X

d
k|n

dk�1n
1
k�1e

i⇡j(k�1)
2k exp

✓
�e�

i⇡j
2k (2⇡)

1
k+1

⇣n
x

⌘ 1
k

◆
.

(5.35)

Now writing n = dkm and upon simplification, the last term reduces to

(�1)
k
2�1

k

✓
2⇡

x

◆ 1
k

(k�1)X

j=�(k�1)

00
1X

m=1

m
1
k�1e

i⇡j(k�1)
2k

1X

d=1

exp

✓
�e�

i⇡j
2k (2⇡)

1
k+1

⇣m
x

⌘ 1
k
d

◆

=
(�1)

k
2�1

k

✓
2⇡

x

◆ 1
k

(k�1)X

j=�(k�1)

00
e

i⇡j(k�1)
2k

1X

m=1

m
1
k�1

exp
⇣
e�

i⇡j
2k (2⇡)

1
k+1 �m

x

� 1
k

⌘
� 1

=
(�1)

k
2�1

k

✓
2⇡

x

◆ 1
k

k
2�1X

j=0

"
e

i⇡(2j+1)(k�1)
2k

1X

m=1

m
1
k�1

exp
⇣
e�

i⇡(2j+1)
2k (2⇡)

1
k+1 �m

x

� 1
k

⌘
� 1

+ e�
i⇡(2j+1)(k�1)

2k

1X

m=1

m
1
k�1

exp
⇣
e

i⇡(2j+1)
2k (2⇡)

1
k+1 �m

x

� 1
k

⌘
� 1

#
. (5.36)

Ultimately, plugging (5.36) in (5.35), we complete the proof of Wigert’s formula (3.4)

for ⇣( 1k ), k � 2 even.

Proof of Theorem 3.4. The proof goes in accordance with the proof of Theorem 3.1,

so we mention those steps where it di↵ers from Theorem 3.1. Note that, in this case,

we are dealing with k � 2 even and r 6= �1 is any odd integer. First, we point out

that, the analysis of poles will be exactly same as in Theorem 3.1, so won’t repeat it

here. The only changes will be in the calculation of the vertical integral of Vk,r(x).

One can recall that, while calculating Vk,r(x), the equation (5.14) depends on k and

r. Since k is even, the equation (5.15) will remain same. For clarity, we mention it
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once again. Mainly, the equation (5.15) is

sin

✓
⇡k(1� s)

2

◆
= (�1)

k
2�1 sin

✓
ks⇡

2

◆
, (5.37)

whereas the equation (5.16) changes to

sin

✓
⇡(1� s� r)

2

◆
= (�1)

r+1
2 sin

⇣⇡s
2

⌘
, (5.38)

as r is odd. In view of (5.37) and (5.38), the vertical integral (5.14) reduces to

Vk,r(x) =
(�1)

k+r+1
2 �1(2⇡)k+1�r

⇡2x

1

2⇡i

Z

(1+�)

�(1� s)�(1� k + ks)�(s+ r)⇣(1� k + ks)

⇥⇣(s+ r) sin

✓
⇡ks

2

◆
sin

⇣⇡s
2

⌘ (2⇡)k+1

x

!�s

ds.

(5.39)

Here we remark that the only changes happened in the power of �1 and cos
�
⇡s
2

�
got

replaced by sin
�
⇡s
2

�
. At this point, to simplify further, we multiply and divide by

cos
�
⇡s
2

�
in (5.39). Then using Euler’s reflection formula and simplifying, we arrive at

Vk,r(x) =
(�1)

k+r+1
2 �1(2⇡)k�r

x

1

2⇡i

Z

(1+�)

�(1� k + ks)�(s+ r)

�(s)
⇣(1� k + ks)

⇥⇣(s+ r)
sin

�
⇡ks
2

�

cos
�
⇡s
2

�
 
(2⇡)k+1

x

!�s

ds.

Now we shall make use of (4.14), that is,

sin
�
⇡ks
2

�

cos
�
⇡s
2

� = (�1)
k
2

(k�1)X

j=�(k�1)

00
ij exp

✓
i⇡js

2

◆
.

This is one of the crucial changes in this proof. Substituting this expression, one can

show that

Vk,r(x) =
(�1)

2k+r+1
2 �1(2⇡)k�r

x

(k�1)X

j=�(k�1)

00
ij

1

2⇡i

Z

(1+�)

�(1� k + ks)�(s+ r)

�(s)
⇣(1� k + ks)

⇥⇣(s+ r)

 
e�

i⇡j
2 (2⇡)k+1

x

!�s

ds.

From here onwards, the analysis of simplifying Vk,r(x) is exactly same as in Theorem

3.1, so we avoid reproducing the calculations. If we continue the calculations along

the same spirit of Theorem 3.1, then the vertical integral takes the shape of

Vk,r(x) =
(�1)

2k+r�1
2 (2⇡)

k+1�2r
2

x k
2k�1

2

(k�1)X

j=�(k�1)

00
ij

1X

n=1

Sk,r(n)G
k,0
0,k

 
{}

r,� 1
k , · · · ,�

(k�1)
k

���X(j)

!
.

(5.40)

Now (5.40) and along with all the residual terms in Theorem 3.1, one can complete
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the proof of Theorem 3.4.

5.0.3 A new identity for ⇣(�1/2).

First, let us state a lemma which will be useful in proving the next corollary.

Lemma 5.1. Let b and u be two real numbers. Then

Re

"
i exp(beiu)

�
exp(beiu)� 1

�2

#
=

1

2

sin(b sin u) sinh(b cos u)

(cos(b sin u) cosh(b cos u)� 1)2 + (sin(b sin u) sinh(b cos u))2
.

The proof of this lemma goes along the same vein as the proof of Lemma 4.8,

so we left to readers to verify.

Proof of Corollary 3.5. It is well-known that ⇣(�1) = � 1
12 and ⇣(4) = ⇡

4

90 . Letting

k = 2 and r = 1, Theorem 3.4 yields that
1X

n=1

D2,1(n)e
�nx =

1

24
+

p
⇡

2
p
x
⇣

✓
�1

2

◆
+

⇡4

90x2

+

p
⇡

2x

1X

n=1

S2,1(n)

"
iG 2,0

0,2

 
{}

1,�1
2

���X(1)

!
� iG 2,0

0,2

 
{}

1,�1
2

���X(�1)

!#
.

(5.41)

Recalling Lemma 4.5, with b1 = 1 and b2 = �1
2 , one can see that

G 2,0
0,2

 
{}

1, �1
2

���X(j)

!#
=

p
⇡e�2

p
X(j)

 
1 +

1

2
p
X(j)

!
, (5.42)

where

2
p

X(j) = 2⇡

r
2⇡n

x
e�

i⇡j
4 .

From (2.6), we see
1X

n=1

D2,1(n)e
�nx =

1X

n=1

1

n2

d

dx

 
1

1� en
2
x

!
. (5.43)

Simplifying the definition (2.1) of S2,1(n), one can write

S2,1(n) =
X

n=d
2
m

d

m
. (5.44)

Now plugging (5.42), (5.43), and (5.44) in (5.41), we derive that
1X

n=1

1

n2

d

dx

 
1

1� en
2
x

!
=

1

24
+

p
⇡

2
p
x
⇣

✓
�1

2

◆
+

⇡4

90x2

+
⇡

x

1X

m=1

1

m

1X

d=1

Re

"
ide�✓d

p
m

✓
1 +

1

✓d
p
m

◆#
, (5.45)
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where ✓ = 2⇡
q

2⇡
x e

� i⇡
4 . Next aim is to decipher the sum:

Re

"
i

1X

d=1

de�✓d
p
m +

i

✓
p
m
e�✓d

p
m

#
(5.46)

= Re

"
i e✓

p
m

⇣
e✓

p
m � 1

⌘2 +
i

✓
p
m
⇣
e✓

p
m � 1

⌘
#
. (5.47)

Let us write

A(✓) =
i e✓

p
m

⇣
e✓

p
m � 1

⌘2 , and B(✓) =
i

✓
p
m
⇣
e✓

p
m � 1

⌘ .

To extract real part of A(✓), we need to use Lemma 5.1. We write ✓
p
m = be�

i⇡
4 ,

where b = 2⇡
q

2⇡m
x . Then, employing Lemma 5.1, with u = �⇡

4 , we get

Re[A(✓)] = Re

"
i ebe

� i⇡
4

✓
ebe

� i⇡
4 � 1

◆2

#

= �1

2

sin
⇣

bp
2

⌘
sinh

⇣
bp
2

⌘

⇣
cos

⇣
bp
2

⌘
cosh

⇣
bp
2

⌘
� 1

⌘2

+
⇣
sin

⇣
bp
2

⌘
sinh

⇣
bp
2

⌘⌘2 . (5.48)

Again, to find the real part of B(✓), we shall use Lemma 4.8, with u = ⇡
4 and v = 1.

Thus, we have

Re[B(✓)] =
1

b
Re

"
ie

i⇡
4

ebe
� i⇡

4 � 1

#

= �1

4

sin
⇣

bp
2

⌘
+ cos

⇣
bp
2

⌘
� e�

bp
2

bp
2

⇣
cosh

⇣
bp
2

⌘
� cos

⇣
bp
2

⌘⌘ . (5.49)

Now in view of (5.48) and (5.49), the equation (5.45) becomes
1X

n=1

1

n2

d

dx

 
1

1� en
2
x

!
=

1

24
+

p
⇡

2
p
x
⇣

✓
�1

2

◆
+

⇡4

90x2

� ⇡

4x

1X

m=1

1

m

"
sin

⇣
bp
2

⌘
+ cos

⇣
bp
2

⌘
� e�

bp
2

bp
2

⇣
cosh

⇣
bp
2

⌘
� cos

⇣
bp
2

⌘⌘

+
2 sin

⇣
bp
2

⌘
sinh

⇣
bp
2

⌘

⇣
cos

⇣
bp
2

⌘
cosh

⇣
bp
2

⌘
� 1

⌘2

+
⇣
sin

⇣
bp
2

⌘
sinh

⇣
bp
2

⌘⌘2

#

Finally, replace x by ↵ and � = 4⇡
3

↵ , then one check that bp
2
=

p
m�. Plugging all

these variables, we complete the proof of Corollary (3.5).
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Proof of Theorem 3.6. In this theorem, we are concerned with k � 2 even and

r = �1, so the integrand function changes to

F (s) = �(s)⇣(ks)⇣(s+ 1)x�s. (5.50)

One can easily show that the only poles of this integrand function are at s = 1
k and

s = 0. We shall note that s = 0 is a pole of order 2, where as 1
k remains a simple

pole. Thus, the residue at 1
k will be

R1/k =
1

k
�

✓
1

k

◆
⇣

✓
1

k
+ 1

◆
x� 1

k .

And the residue at s = 0 will be

R0 = Res
s=0

�(s)⇣(ks)⇣(s+ 1)x�s = lim
s!0

d

ds

⇥
s2�(s)⇣(ks)⇣(s+ 1)x�s⇤ . (5.51)

Here we mention Laurent series expansion at s = 0 of each factor of the integrand

function:

�(s) =
1

s
� � +

1

2

✓
�2 +

⇡2

6

◆
s+ · · · ,

⇣(ks) = �1

2
+ k⇣ 0(0)s+ · · · ,

⇣(s+ 1) =
1

s
+ � � �1s+ · · · ,

x�s = 1� log(x)s+ · · · .
Multiplying these expansions, one can find that the coe�cient of s in s2�(s)⇣(ks)⇣(s+

1)x�s is k⇣ 0(0) + log(x)
2 . Thus, the residue R0 equals to

R0 =
1

2
log

✓
x

(2⇡)k

◆
, (5.52)

since ⇣ 0(0) = �1
2 log(2⇡). The remaining part of the proof is exactly same as in

Theorem 3.4, as we are dealing a particular case of when k is even and r is odd.

Hence, considering the above residual terms, Theorem 3.4, with r = �1, yields that
1X

n=1

Dk,�1(n)e
�nx =

1

2
log

✓
x

(2⇡)k

◆
+

1

k
�

✓
1

k

◆
⇣

✓
1

k
+ 1

◆
x� 1

k +
(�1)k�1(2⇡)

k+3
2

x k
2k�1

2

⇥
(k�1)X

j=�(k�1)

00
ij

1X

n=1

Sk,�1(n)G
k,0
0,k

 
{}

�1,� 1
k , · · · ,�

(k�1)
k

���X(j)

!
.

(5.53)

Here we invoke Lemma 4.6 with b = �1 to simplify that

G k,0
0,k

 
{}

�1,� 1
k , · · · ,�

(k�1)
k

���X(j)

!
=

(2⇡)
k�1
2

p
k

exp
⇣
�kX(j)

1
k

⌘

X(j)
. (5.54)
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Substituting it in (5.53), the right side infinite sum reduces to

(�1)k�1(2⇡)k+1

x kk

(k�1)X

j=�(k�1)

00
ij

1X

n=1

Sk,�1(n)
exp

⇣
�kX(j)

1
k

⌘

X(j)

= (�1)k�1
(k�1)X

j=�(k�1)

00
ije

i⇡j
2

1X

n=1

Sk,�1(n)

n
exp

✓
�e�

i⇡j
2k (2⇡)1+

1
k

⇣n
x

⌘ 1
k

◆

= (�1)k�1
(k�1)X

j=�(k�1)

00
ei⇡j

1X

m=1

1X

d=1

1

d
exp

✓
�e�

i⇡j
2k (2⇡)1+

1
k d
⇣m
x

⌘ 1
k

◆

= (�1)k
(k�1)X

j=�(k�1)

00
ei⇡j

1X

m=1

log


1� exp

✓
�e�

i⇡j
2k (2⇡)1+

1
k

⇣m
x

⌘ 1
k

◆�
. (5.55)

In the penultimate step, we have used the definition of Sk,�1(n), and in the final step

we used the identity � log(1 � y) =
P1

m=1
y
m

m when |y| < 1. Finally, in view (5.53)

and (5.55), we complete the proof of Theorem 3.6.

Proof of Theorem 3.7. Note that here we are dealing with k � 1 and r 6= �1 are

both as an odd integer. Let us recall that the integrand function is

F (s) = �(s)⇣(ks)⇣(s� r)x�s.

We shall divide the analysis of poles in two cases.

Case I: First, we consider r as an odd positive integer. We know that �(s)

has simple poles at 0,�1,�2,�3, · · · . The poles at even negative integers are getting

cancelled by the trivial zeros of ⇣(ks), whereas the poles at odd negative integers

will be cancelled by ⇣(s� r). Therefore, in this case, the only poles of the integrand

function are at s = 0, 1
k , and 1+r. These are all simple poles and their corresponding

residues have been already calculated in Theorem 3.1, so we won’t repeat it here.

Case II: We consider r 6= �1 as an odd negative integer. One can easily check

that 0 and 1
k are simple poles in this case too. As r  �3 is odd, so 1 + r is an even

negative integer. Thus, 1 + r is a pole of order 2 of the factor �(s)⇣(s� r). And we

also note that 1 + r is a trivial zero of ⇣(ks). Therefore, 1 + r remains as a simple

pole of the integrand function.

An important point is to note that, the poles of �(s) at s = �1,�3, · · · , r will

not get neutralized by ⇣(s � r), but the poles at the negative odd integers beyond

r, say r � 2, r � 4, · · · will be neutralized by ⇣(s � r) since they are trivial zeros of

⇣(s � r). Therefore, in this case, we have to take into account the residual terms

coming from the contribution of the poles at s = �1,�3, · · · , r.
To calculate the residual term corresponding to s = 1 + r, we have to use the

Laurent series expansion of �(s) i.e., Lemma 4.1, and the Laurent series expansion
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(4.2) of ⇣(s) with s replace by s� r. Thus, we will have

R1+r = lim
s!1+r

(s� (1 + r))�(s)⇣(ks)⇣(s� r)x�s

= lim
s!1+r

(s� (1 + r))�(s)
⇣(ks)

(s� (1 + r))
(s� (1 + r))⇣(s� r)x�s

=
(�1)1+r

(�(1 + r))!
k⇣ 0(k(1 + r))x�(1+r). (5.56)

LetR be the sum of the residual terms corresponding to the poles at s = �1,�3, · · · , r.
Then, we have

R =

� 1+r
2X

i=0

Res
s=�(2i+1)

�(s)⇣(ks)⇣(s� r)x�s

=

� 1+r
2X

i=0

�1

(2i+ 1)!
⇣(�k(2i+ 1))⇣(�2i� 1� r)x2i+1

=
(�1)

1+r
2

2

� 1+r
2X

i=0

(�1)i+1Bk(2i+1)+1

(2i+ 1)!(k(2i+ 1) + 1)

B�2i�1�r(2⇡)
�r

(�(2i+ 1 + r))!

⇣ x

2⇡

⌘2i+1

. (5.57)

The remaining part of the proof is in the same direction of the proof of Theorem 3.1,

so we briefly mention all the steps. Mainly, we will concentrate on the calculation of

the vertical integral Vk,r(x). From (5.14), we have

Vk,r(x) =
(2⇡)k+1�r

⇡2x

1

2⇡i

Z

(1+�)

�(1� s)�(1� k + ks)�(s+ r)⇣(1� k + ks)⇣(s+ r)

⇥ sin

✓
⇡k(1� s)

2

◆
sin

✓
⇡(1� s� r)

2

◆ 
(2⇡)k+1

x

!�s

ds.

(5.58)

Since k and r both odd, so we must use

sin

✓
⇡k(1� s)

2

◆
= (�1)

k�1
2 cos

✓
k⇡s

2

◆
, (5.59)

sin

✓
⇡(1� s� r)

2

◆
= (�1)

r+1
2 sin

⇣⇡s
2

⌘
. (5.60)

Use these two trigonometric identities to see

Vk,r(x) =
(�1)

k+r
2 (2⇡)k+1�r

⇡2x

1

2⇡i

Z

(1+�)

�(1� s)�(1� k + ks)�(s+ r)⇣(1� k + ks)⇣(s+ r)

⇥ cos

✓
k⇡s

2

◆
sin

⇣⇡s
2

⌘ (2⇡)k+1

x

!�s

ds.

Here we multiply and divide by cos
�
⇡s
2

�
and then use Euler’s reflection formula to
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deduce that

Vk,r(x) =
(�1)

k+r
2 (2⇡)k�r

x

1

2⇡i

Z

(1+�)

�(1� k + ks)�(s+ r)

�(s)
⇣(1� k + ks)⇣(s+ r)

⇥
cos

�
k⇡s
2

�

cos
�
⇡s
2

�
 
(2⇡)k+1

x

!�s

ds. (5.61)

Next, we shall use (4.15), that is,

cos
�
k⇡s
2

�

cos
�
⇡s
2

� = (�1)
k�1
2

(k�1)X

j=�(k�1)

00
ij exp

✓
� i⇡js

2

◆
.

This is one of the important changes in this proof. Plugging this expression in the

above integral, we obtain

Vk,r(x) =
(�1)

2k+r�1
2 (2⇡)k�r

x

(k�1)X

j=�(k�1)

00
ij

1

2⇡i

Z

(1+�)

�(1� k + ks)�(s+ r)

�(s)
⇣(1� k + ks)

⇥⇣(s+ r)

 
e

i⇡j
2 (2⇡)k+1

x

!�s

ds.

Henceforth the simplification of the vertical integral Vk,r(x) is exactly same as in

Theorem 3.1. If we continue the calculations in the same spirit, then the final

expression of Vk,r(x) will be

Vk,r(x) =
(�1)

2k+r�1
2 (2⇡)

k+1�2r
2

x k
2k�1

2

(k�1)X

j=�(k�1)

00
ij

1X

n=1

Sk,r(n) G
k,0
0,k

 
{}

r,� 1
k , · · · ,�

(k�1)
k

���X(�j)

!
.

(5.62)

An important point is to note that the argument of the Meijer G-function is X(�j).

Finally, collecting all the residual terms (5.56), (5.57), and together with (5.62), one

can complete the proof of (3.5).

Proof of Corollary 3.7. Setting r = �(2m + 1), with m � 1, in Theorem 3.7, and

using the identity

⇣ 0(�2km) =
(�1)km

2

(2km)!⇣(2km+ 1)

(2⇡)2km
,

we complete the proof.

33



5.0.4 Derivation of Ramanujan’s formula for odd zeta values

Proof of Corollary 3.9. Plugging k = 1 in Corollary 3.8, we deduce that
1X

n=1

D1,�(2m+1)(n)e
�nx = �1

2
⇣(2m+ 1) +

⇣ (2m+ 2)

x
+

(�1)m

2
⇣(2m+ 1)

⇣ x

2⇡

⌘2m

+
(�1)m(2⇡)2m+1

2

mX

i=0

(�1)i+1B2i+2B2m�2i

(2i+ 2)!(2m� 2i)!

⇣ x

2⇡

⌘2i+1

+
(�1)m(2⇡)2m+2

x

1X

n=1

S1,�(2m+1)(n)G
1,0
0,1

 
{}

�(2m+ 1)

���
(2⇡)2n

x

!
.

(5.63)

From (2.2), we know

D1,�(2m+1)(n) = ��(2m+1)(n), and S1,�(2m+1)(n) = �2m+1(n). (5.64)

The equation (4.10) yields that

G 1,0
0,1

 
{}

�(2m+ 1)

���
(2⇡)2n

x

!
=

✓
x

4⇡2n

◆2m+1

e�
4⇡

2
n

x . (5.65)

Now substituting (5.64) and (5.65) in (5.63), one can derive that
1X

n=1

��(2m+1)(n)e
�nx +

1

2
⇣(2m+ 1) =

⇣ (2m+ 2)

x
+

(�1)m

2
⇣(2m+ 1)

⇣ x

2⇡

⌘2m

+
(�1)m(2⇡)2m+1

2

mX

i=0

(�1)i+1B2i+2B2m�2i

(2i+ 2)!(2m� 2i)!

⇣ x

2⇡

⌘2i+1

+ (�1)m
⇣ x

2⇡

⌘2m
1X

n=1

�2m+1(n)

n2m+1 e�
4⇡

2
n

x . (5.66)

Finally, invoking Euler’s formula (1.2) for ⇣(2m+2) and using the fact that
�2m+1(n)

n
2m+1 =

��(2m+1)(n) and upon simplification, one can derive (3.6).

Proof of Corollary 3.10. Letting k = 1 and r = 2m+1 with m � 1 in Theorem 3.7,

and with the fact that ⇣(�(2m+ 2)) = 0 and ⇣(�(2m+ 1)) = �B2m+2

2m+2 , we find that
1X

n=1

D1,2m+1(n)e
�nx =

B2m+2

4m+ 4
+ (2m+ 1)!

⇣(2m+ 2)

x2m+2

+ (�1)m+1 1

x(2⇡)2m

1X

n=1

S1,2m+1(n)

✓
x

4⇡2n

◆�(2m+1)

e�
4⇡

2
n

x

)
1X

n=1

�2m+1(n)e
�nx =

B2m+2

4m+ 4
+ (�1)m

✓
2⇡

x

◆2m+2 B2m+2

4m+ 4

+ (�1)m+1

✓
2⇡

x

◆2m+2 1X

n=1

�2m+1(n)e
� 4⇡

2
n

x . (5.67)
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Here we have used (2.2) to writeD1,2m+1(n) and S1,2m+1(n)n
2m+1 in terms of �2m+1(n).

Finally, to obtain (3.7), replace x = 2↵ and ↵� = ⇡2 in (5.67).

Substituting k = r = 1 in Theorem 3.7 and setting x = 2↵ and ↵� = ⇡2, one

can obtain the following identity of Schlömilch [26], and rediscovered by Ramanujan

[23, Ch. 14, Sec. 8, Cor. (i)], [24, p. 318].

Corollary 5.2. For ↵, � > 0 with ↵� = ⇡2
,

↵
1X

n=1

n

e2n↵ � 1
+ �

1X

n=1

n

e2n� � 1
=

↵ + �

24
� 1

4↵

In particular, if we consider ↵ = � = ⇡, then
1X

n=1

n

e2n⇡ � 1
=

1

24
� 1

8⇡
.

Proof of Theorem 3.11. The proof of this theorem travels in the same direction as

of Theorem 3.7 since we are dealing k odd and r = �1. In this case, the integrand

function is

F (s) = �(s)⇣(ks)⇣(s+ 1)x�s. (5.68)

One can easily check that the integrand function has poles are at s = 0, 1
k and �1.

At s = 0, we have a pole order 2, but the other two points are simple pole. In view

of (5.52), we know

R0 =
1

2
log

✓
x

(2⇡)k

◆
.

One can find that

R�1 =
⇣(�k)x

2
. (5.69)

Now along with the residue at 1
k , Theorem 3.7, with r = �1, leads to

1X
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Dk,�1(n)e
�nx =
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2
log
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x
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1

k
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◆
⇣

✓
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k
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x� 1
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⇣(�k)

2
+

(2⇡)
k+3
2

x k
2k�1

2

⇥
(k�1)X
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00
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1X

n=1

Sk,�1(n)G
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0,k

 
{}
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k , · · · ,�

(k�1)
k

���X(�j)

!
.

(5.70)

Calculations of the above right hand side sum goes along the same line of (5.53). For

completeness, we mention it briefly. First, employ Lemma 4.6 with b = �1 to see

G k,0
0,k

 
{}

�1,� 1
k , · · · ,�

(k�1)
k

���X(�j)

!
=

(2⇡)
k�1
2

p
k

exp
⇣
�kX(�j)

1
k

⌘

X(�j)
. (5.71)
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Substituting it in (5.70), together with definition (3.1) of X(j), the right side infinite

sum takes the shape of
(k�1)X

j=�(k�1)

00
ije�

i⇡j
2

1X

n=1

Sk,�1(n)

n
exp

✓
�e
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x
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1

d
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2k (2⇡)1+

1
k d
⇣m
x

⌘ 1
k

◆

= �
(k�1)X

j=�(k�1)
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1X

m=1
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�e
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Now substituting (5.72) in (5.70), one can finish the proof of (3.8).

Proof of Corollary 3.12. Plugging k = 1 in (3.8), we arrive at
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Finally, replacing x = 2↵ and � = ⇡2/↵ and simplifying we obtain (3.9).
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Chapter 6

Concluding remarks

On page 332, Ramanujan recorded an intriguing formula for ⇣(1/2) and also mentioned

an interesting infinite series
X

n=1

nr

exp(nNx)� 1
, (6.1)

where N 2 N, r 2 Z and N � r is any even integer. This infinite series can be written

as
1

2⇡i

Z c+i1

c�i1
�(s)⇣(s)⇣(Ns� r)x�sds, (6.2)

for c > max
�
1, 1+r

N

 
. Recently, Dixit and Maji [13] obtained a beautiful generalization

of Ramanujan’s formula for odd zeta values while studying the above integral.

In the current thesis, we have studied a variant of the above integral,
1X

n=1

Dk,r(n)e
�nx =

1

2⇡i

Z c+i1

c�i1
�(s)⇣(ks)⇣(s� r)x�sds, (6.3)

where for k 2 N, r 2 Z, and c > max {1/k, 1 + r}. The analysis of this integral can

be divided into the following four cases.

Case 1: When k and r are both are even integers, Theorem 3.1 gives us a

transformation formula, which allows us to derive Ramanujan’s formula for ⇣(1/2)

and Wigert’s formula for ⇣(1/k).

Case 2: When k is even and r is odd, i.e., k� r is an odd integer. In this case,

Theorem 3.4 allows us to obtain a new identity for ⇣(�1/2) analogous to Ramanujan’s

formula for ⇣(1/2).

Case 3: When k and r are both odd, i.e., k � r is an even integer. This is

the most interesting case. Theorem 3.7 allows us to derive Ramanujan’s formula

for odd zeta values. Corollary 3.8 can be conceived as a one-variable generalization

of Ramanujan’s formula for odd zeta values, which connects two odd zeta values

⇣(2m+ 1) and ⇣(2km+ 1), and a zeta value at a rational argument ⇣
�
1
k + 2m+ 1

�
.
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Case 4: When k odd and r even, i.e., k � r is an odd integer. In this case,

the integrand function will have infinitely many poles, namely, at all odd negative

integers. In the current thesis, we have not discussed this case. It would be interesting

to study this case too.

Ramanujan’s formula for ⇣(2m+1) has been generalized by many mathematicians

in various directions. Ramanujan himself gave a huge generalization [9, Entry 20,

p. 430]. Berndt [6] derived Euler’s formula for ⇣(2m) as well as Ramanujan’s formula

for ⇣(2m+1) from a single transformation formula for a generalized Eisenstein series.

The Dirichlet L-function L(s,�) and the Hurwitz zeta function ⇣(s, a) are natural

generalizations of the Riemann zeta function. A character analogue of Ramanujan’s

formula was obtained by Merrill [20] and more generally, for any periodic function

was obtained by Bradley [12]. Dixit, Kumar, Gupta and the second author [15] found

a generalization for Hurwitz zeta function, which allowed them to connect many odd

zeta values from a single formula. Dixit and Gupta [14] established an interesting

analogue of Ramanujan’s formula which connects square of odd zeta values. Very

recently, Banerjee and Kumar [5] found an analogue of Ramanujan’s formula (1.3)

over an imaginary quadratic fields. For more references on the generalizations of

Ramanujan’s formula, readers are encouraged to see [11].
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