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Abstract

If such AdS/CFT conjecture was valid, the boundary CFT can solve any bulk

physics question. However, we still don’t know how to convert all of the bulk

physics concerns into boundary CFT questions.We build boundary operators

to represent local bulk operators inserted behind the Poincare’ patch’s hori-

zon.Here we write boundary representation of the free field in bulk. We rep-

resent the free field in anti-de Sitter space and after that discuss free field

reconstruction in mode sum approach.
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Chapter 1

Introduction

Every Conformal Field Theory inside a d-dimensional spacetime is equivalent

to a theory of quantum gravity inside a d + 1-dimensional spacetime, as per the

AdS/CFT conjecture. As a result, it should also be possible to gain knowledge

of bulk physics from the boundaries. If indeed the bulk boundary theories are

equal, then the boundary CFT can theoretically answer any issue concerning

bulk physics. The bulk quantum theory of gravity is indeed the CFT inside

the boundary!

The boundary theory, in principle, understands the solutions to all the issues

that remain unsolved, such as:

• What happens when a person passes through the horizon of a black

hole?[1]

• How does the black hole information loss paradox handled in general?[13]

• What happens when classical general relativity breaks down at singular-

ities.

We should have solutions to all of these bulk physics concerns if we can just

resolve the boundary CFT properly.

In the bulk, semiclassical observables can be translated to the boundary CFT.

Quantum gravity concerns, on the other hand, remain a long way off. Even

when gravity isn’t present.

First, we present a brief recall of the concept of quantum field theory. Then
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in chapter-3, we discuss the Einstein field equation and maximally symmetric

universes. And we derive metrics for de Sitter space and anti-de Sitter space.

After that, we draw the conformal diagram for de Sitter space and anti-de

Sitter space. After that in chapter-4, we discuss the free field in anti-de Sitter

space and calculate the smearing function for the free field.
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Chapter 2

Quantum Field Theory

2.1 Noether’s Theorem:

Some Lagrangians are well-known in physics. However, a system may not

be well known in general, and we must create a Lagrangian that expects to

describe it. In such cases, symmetry, i.e. transformations that leave the system

invariant, is typically useful. A conserved quantity happens to be connected

with each symmetry of a system. Thus, if we know a system’s conserved

quantity, we can work backwards to identify the system’s symmetries and then

guess the form of a useful Lagrangian. The conclusion that tied symmetries to

conserved quantities is known as Noether’s theorem. The conserved quantities

are known as Noether’s charges and Noether’s current.[11]

The equations of motion suggests that each and every continuous symmetry of

the Lagrangian leads to a conserved current.

∂µµ = 0 (2.1)

where µ is 0,1,2,3 .The equations of motion suggest that each and every con-

tinuous symmetry of the Lagrangian leads to a conserved current. Equation

(2.1) is called Noether’s theorem.

For symmetry transformation

δL = ∂µF µ and δφa(x) = Xa(φ)

4



µ = ∂L
∂(∂µφa) − F µ(φ) (2.2)

The conservation law can also be stated as follows:

Q ≡
�

all space

0d3x

where Q is Noether’s charge.Q is constant in time.

2.2 Quntum Field Theory

2.2.1 Propagator:

Quantum field theory aims to explain particle interactions. Calculating cross-

sections, transition probabilities, decay rates, and so on will be of interest to us.

We need to understand how particles move in space-time to do this. A particle’s

amplitude when propagating from y to x is �0|φ(x)φ(y)|0�. This quantity will

be referred to as D(x − y) .

�0|φ(x)φ(y)|0� =
� d3pd3ṕ

(2π)6
�

4E�pE�́p

�0|a−→p a†−→
p‘

|0�e−ιp.x+ιṕ.y

D(x − y) = �0|φ(x)φ(y)|0� =
� d3p

(2π)32E�p

e−ιp.(x−y)

D(x − y) =
� d3p

(2π)32E�p

e−ιp.(x−y) (2.3)

The function D(x-y) is called propagator.

2.2.2 The Feynman propagator:

A time-ordered correlation function for two scalar fields with in vacuum state

is the Feynman propagator of such a free real scalar field. according to the

definition[14].

�F (x − y) = �0|T φ(x)φ(y)|0� (2.4)

Quantum Field Theory 5



�F (x − y) =





D(x − y) x0 > y0

D(y − x) y0 > x0
(2.5)

Where T denotes time ordering, all operators analyzed at later times are placed

to the left

T φ(x)φ(y) =





φ(x)φ(y) x0 > y0

φ(y)φ(x) y0 > x0
(2.6)

The Klein-Gordon equation has a Feynman propagator, as well as a Green’s

functions.It is Defined as follows:

�F (x − y) =
� d4p

(2π)4
ιe−ιp.(x−y)

p2 − m2 + ιε
(2.7)

The Feynman propagator is indeed the expression that we have used to rep-

resent the propagation of virtual particles on the interior lines of the Feynman

diagram.

2.2.3 Wick’s Theorem:

In normal ordering, all annihilation operators are placed on the right and all

creation operators on the left. So that it eliminates vacuum. But in time

ordering all operators analyzed at later times are placed to the left. So prior

times creation operators must’ve been further to the right than later times

annihilation operators. This is not same as of what is required for normal

ordering. So we’ll need to establish a link between time ordering and normal

ordering.

The Wick’s theorem explains how to transition from time-ordered to normally

ordered products. Wick’s theorem establishes a link between time-ordered and

normally ordered products.

For any collection of field φ1 = φ(x1), φ2 = φ(x2) etc. we have

T (φ1..............φn) =: φ1.............φn : + : all possible contraction : (2.8)

Quantum Field Theory 6



Contraction: The contraction of the pair of a field in a chain of operators

......φ(x1)......φ(x2)........ to signify that the Feynman propagator is used to re-

place those operators, keeping all other operators unaffected. We should use

the notation

...............
� �� �
φ(x1)........φ(x2) ..............

to denote contraction. So, for example
� �� �
φ(x)φ(y) = �F (x − y)

From Wick’s theorem

T [φ(x)φ(y)] =: φ(x)φ(y) : +�F (x − y) (2.9)

2.2.4 Feynman Diagram:

• To every particle within the initial state and for every particle in the

final state, draw an exterior line. For mesons, we’ll use dotted lines, and

for nucleons, we’ll use solid lines. Each line should be given a directed

momentum p. Add an arrow to solid lines to indicate their charge; inside

the initial state for ψ(ψ̄), we’ll use an incoming (outgoing) arrow. For

the final state, we use the contrary convention, with an outgoing arrow

denoting ψ .

• Use trivalent vertices to connect the exterior lines (Figure-1).

To find the scattering amplitude ιM, Feynman rule

• Draw all possible diagrams as you can with proper external legs and at

each vertex, apply 4-momentum conservation.

• At each vertex, jot down a (−ιg) factor.

• Take note of the propagator to every internal line.

Quantum Field Theory 7



Figure 2.1: Allow vertex

• Integrate across the flow of momentum k via each loop
� d4k

(2π)4

2.2.5 Clifford Algebra or Dirac Algebra:

{γµ, γν} = γµγν + γνγµ = 2ηµνI (2.10)

Where γµ is a group of four matrices, with µ = 0, 1, 2, 3 .

γµγν = −γνγµ When µ �= ν

(γ0)2 = 1, (γi)2 = −1 (2.11)

where i = 1, 2, 3.

γ0 =




0 1

1 0


 , γi =




0 σi

−σi 0




where each component is a 2×2 matrix on its own, with σi is the Pauli matrices.

This representation is referred to as the Weyl or chiral representation.

Chiral spinors:

In chiral representation, the spinor rotation matrix is S[Λrot] and boost matrix

is S[Λboost].Both are block diagonal

S[Λrot] =




eι−→ϕ .−→σ /2 0

0 e−ι−→ϕ .−→σ /2
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and

S[Λboost] =




e
−→χ .−→σ /2 0

0 e
−→χ .−→σ /2




This implies that the Lorentz group’s Dirac spinor representation is reducible.

It breaks down into two irreducible representations that exclusively act on two-

component spinors u± which are specified by in the chiral representation.

ψ =




u+

u−




The two-component objects u± are called Weyl spinors or chiral spinors. When

rotated, they transform in about the same way

u± → eι−→ϕ .−→σ /2u±

2.2.6 Fermionic propagator:

The fermionic propagator can be defined as the following:

ιS(x − y) = ιSαβ = {ψα(x), ψβ(y)}

ιS(x − y) =
� d3pd3q

(2π)6
1�

4E−→p E−→q
[{bs−→p , br†

−→q }us(−→p )ur(−→q )e−ι(p.x−q.y)

+ {cs†
−→p , cr−→q }vs(−→p )vr(−→q )e+ι(p.x−q.y)]

ιS(x − y) =
� d3p

(2π)3
1

2E−→p
[us(−→p )us(−→p )e−ιp.(x−y) + vs(−→p )vs(−→p )e+ιp.(x−y)]

ιS(x − y) =
� d3p

(2π)3
1

2E−→p
[(γµpµ + m)e−ιp.(x−y) + (γµpµ − m)e+ιp.(x−y)]

We can then write

ιS(x − y) = (ιγµ∂ + m)(D(x − y) − D(y − x)) (2.12)

Quantum Field Theory 9



2.2.7 The Feynman propagator for Fermions:

We can figure out what the vacuum expectation value is

�0|ψα(x)ψβ(y)|0� =
� d3p

(2π)3
1

2E−→p
(γµpµ + m)αβe−ιp.(x−y)

�0|ψβ(y)ψα(x)|0� =
� d3p

(2π)3
1

2E−→p
(γµpµ − m)αβe+ιp.(x−y)

As such a time-ordered product, we establish the Feynman propagator SF (x −
y), which is still another 4 × 4 matrix.

SF (x − y) = �0|Tψ(x)ψ(y)|0� =





�0|ψ(x)ψ(y)|0� x0 > y0

�0|−ψ(y)ψ(x)|0� y0 > x0

For such Feynman propagator, we have had the 4-momentum essential repres-

entation.

SF (x − y) = ι
� d4p

(2π)4
1

2E−→p
e−ιp.(x−y) (γµpµ + m)

p2 − m2 + ιε
(2.13)

Feynman Rules for Fermions:

The below are now the rules for evaluating amplitudes:

• We assign a spinor ur(−→p ) to each entering fermion having momentum p

and spin r (Figure-2).ūr(−→p ) is assigned to outgoing fermions (Figure-3).

Figure 2.2: Incoming fermion

Quantum Field Theory 10



Figure 2.3: Outgoing fermion

• We assign a spinor v̄r(−→p ) to each entering fermion having momentum p

and spin r (Figure-4). vr(−→p ) is assigned to outgoing anti-fermions(Figure-

5).

Figure 2.4: Incoming anti-fermion

Figure 2.5: Outgoing anti-fermion

• Each vertex is multiplied by a factor of −ιλ .

• The relevant propagator’s factor is given for each internal line.

− − −p→ − − − ι

p2 − µ2 + ιε
for scalars (2.14)

Quantum Field Theory 11



p→−−→ ι(γµpµ + m)
p2 − m2 + ιε

for fermions (2.15)

The fermion lines’ arrows must follow a constant path throughout the illustra-

tion (this ensures fermion number conservation). The fermionic propagator is

indeed a 4 × 4 matrix, as you can see. At each vertex, the matrix indices are

constricted, either with further propagators or through external spinors u, ū, v

or v̄.

• Integrate over unknown loop momenta while imposing momentum con-

servation on every vertex.

• For statistics, add additional minus signs.

Quantum Field Theory 12



Chapter 3

General Relativity

3.1 Einstein Field equation:

The Einstein field equations describe how the existence of matter causes space-

time curvature[6].

Rµν − 1
2Rgµν = 8πGTµν (3.1)

or

Gµν = 8πGTµ (3.2)

or

Rµν = 8πG(Tµν − 1
2Tgµν) (3.3)

where Rµν is Ricci tesor,

Tµν is stress-energy tensor,

G is Newton’s constant of gravitation,

Gµν is Einstein tensor, and gµν is metric.

Rµν = Rλ
µλν and Rλ

µλν is Ricci curvature tensor[6].

And for vacuum Tµν is zero. So, Einstein field equation for vacuum is

Rµν = 0 (3.4)

The Einstein field equations have been used to define the spacetime geometry

that results from the existence of mass-energy and linear momentum, or the

13



metric of spacetime for a specific arrangement of stress-energy within space-

time.

The Schwarzschild Solution: The Schwarzschild geometry is the geometry

of the vacuum spacetime outside a spherical star. In spherical coordinates

{t, r, θ, φ}, the metric is given by

ds2 = −(1 − 2GM

r
)dr2 + (1 − 2GM

r
)−1dr2 + r2dΩ2 (3.5)

where dΩ2 = dθ2 + sin2θdφ2

ds2 = −(1 − 2GM

r
)dr2 + (1 − 2GM

r
)−1dr2 + r2dθ2 + sin2θdφ2 (3.6)

The constant M is interpreted as the mass of the gravitating object.

gµν = diag(−(1 − 2GM

r
), (1 − 2GM

r
)−1, r2, sin2θ) (3.7)

in equation (3.6) metric called Schwarzschild metric.

Schwarzschild radius RS is

RS = 2GM (3.8)

3.2 Maximally Symmetric Universes

Homogeneity and isotropy are useful because they suggest that space is maxim-

ally symmetric. Consider isotropy to be invariance under rotations, and homo-

geneity to be invariance under translations. The combination of homogeneity

and isotropy implies that space has the largest number of Killing vectors ima-

ginable. The Copernican principle could be taken to its logical conclusion by

claiming that spacetime is maximally symmetric. In reality, this will not be the

case. We know from observation that the cosmos is homogenous and isotropic

in space, but not in all of spacetime. However, it’s worth thinking about space-

times that are maximally symmetric first (which are, after all, special cases of

the more general situation in which only space is maximally symmetric). As

we will show, such universes are ground states of general relativity in several

General Relativity 14



ways[6].

For a maximally symmetric n-dimensional manifold with metric gµν , the

Riemann tensor is represented as

Rρσµν = Λ (gρµgσν − gρνgσµ) (3.9)

where Λ is a Ricci curvature measure that has been normalized, and

Λ = R

d(d − 1) (3.10)

and the Ricci scalar R will be a constant over the manifold.

For vanishing curvature Λ = 0 the maximally symmetric spacetime is well

known; it is simply Minkowski space with metric

ds2 = −dt2 + dx2 + dy2 + dz2 (3.11)

The maximally symmetric spacetime with positive curvature Λ > 0 is called

de Sitter space. Consider a Minkowski space with five dimensions and metric

ds2
5 = −du2 + dx2 + dy2 + dz2 + dw2, Then insert a hyperboloid provided by

− u2 + x2 + y2 + z2 + w2 = �2 (3.12)

Now induce coordinates t, χ, θ, φ on the hyperboloid via
u = � sinh(t/�)

w = � cosh(t/�) cos(χ)

x = � cosh(t/�) sin(χ) cos(θ)

y = � cosh(t/�) sin(χ) sin(θ) cos(φ)

z = � cosh(t/�) sin(χ) sin(θ) sin(φ)

(3.13)

The metric on the hyperboloid is then

ds2 = −dt2 + �2 cosh(τ/�)
�
dχ2 + sin2(χ)

�
dθ2 + sin2(θ)dφ2

��
(3.14)

General Relativity 15



Consider coordinate transformation from ttoτ via

cosh(t/�) = 1
cos(τ) (3.15)

Tme metric equation(3.14) now becomes

ds2 = �2

cos2(τ)ds2 (3.16)

where ds2 represents the metric on the Einstein static universe,

ds2 = −(τ)2 + dχ2 + sin2(χ)dΩ2
2 (3.17)

The range of the new time coordinate is

− π

2 < τ <
π

2 (3.18)

Figure 3.1: Conformal diagram for de Sitter spacetime. Spacelike slices are
three spheres, so that points on the diagram represent two-spheres except for
those at left and right edges, which are points.

A similar hyperboloid construction reveals the Λ < 0 spacetime of maximal

symmetry, known as anti-de Sitter space. "Begin with a fictitious five-dimensional

General Relativity 16



flat manifold with metric ds2
5 = −du2 − dv2 + dx2 + dy2 + dz2, and embed a

hyperbolid given by

− u2 − v2 + x2 + y2 + z2 = −�2 (3.19)

Then we can induce coordinate {τ, ρ, θ, φ} on the hyperboloid via
u = � sin(τ) cosh(ρ)

w = � cos(τ) cosh(ρ)

x = � sinh(ρ) cos(θ)

y = � sinh(ρ) sin(θ) cos(φ)

z = � sinh(ρ) sin(θ) sin(φ)

(3.20)

yielding a metric on this hyperboloid of the form

ds2 = �2
�
− cosh2(ρ)dτ 2 + dρ2 + sinh2(ρ)dΩ2

2

�
(3.21)

To derive the conformal diagram, perform a coordinate transformation analog-

ous to that used for de Sitter, but now on the radial coordinate:

cosh(ρ) = 1
cos(χ) (3.22)

so that

ds2 = �2

cos2(χ)ds2 (3.23)

where ds2 represents the metric on the Einstein static universe equation (3.17).

Unlike in de Sitter, the radial coordinate now appears in the conformal factor.

In addition, for anti-de Sitter, the τ coordinate goes from minus infinity to plus

infinity, while the range of the radial coordinate is

0 ≤ χ <
π

2 (3.24)

General Relativity 17



Figure 3.2: Conformal diagram for anti-de Sitter spacetime. Spacelike slices
have the topology of R3, which we have represented in polar coordinates, so
that points on the diagram stand for two-spheres except those at the left side,
which stand for single points at the spatial origin. Infinity is a timelike surface
at the right side.

General Relativity 18



Chapter 4

Bulk Reconstruction

4.1 Introduction

The AdS/CFT correspondence is commonly expressed as the equality of

the bulk and boundary theories partition functions[12][7][15].

A different formulation of the correspondence, which is expected to be equival-

ent to the statement above, is the extrapolation dictionary[2][3][4], which we

state here for scalar fields :

lim
r→∞ rnΔ�φ(r, t1, Ω1)φ(r, t2, Ω2)......φ(r, tn, Ωn)�pure AdS

= �0|O(t1, Ω1)O(t2, Ω2)........O(tn, Ωn)|0� (4.1)

Here O is the scalar primary dual to the bulk scalar φ. It has dimension

Δ which is related to the mass M of the scalar field as Δ = d
2 + 1

2
√

d2 + 4M 2

where d is the number of space dimensions. A similar dictionary can be written

down for other fields.

This was for pure AdS. More generally, for any semi-classical asymptotically

AdS geometry g we expect that there will be a dual state |ψg�

g ←→ |ψg� (4.2)

19



such that

lim
r→∞ rnΔ�φ(r, t1, Ω1)φ(r, t2, Ω2)......φ(r, tn, Ωn)�g

= �ψg|O(t1, Ω1)O(t2, Ω2)........O(tn, Ωn)|ψg� (4.3)

Equation (4.1) is a specific situation in which geometry g is pure AdS and the

dual state is the CFT vacuum |0�:

Pure AdS ←→ |0�

The two-sided eternal black hole is another example of semiclassical asymptot-

ically AdS spacetime. Two asymptotic boundaries exist for the eternal black

hole. As an outcome, the tensor product of the Hilbert Spaces of the two CFTs

on the two boundaries must contain the state dual to the eternal black hole.

The theromofield double state is the correct dual state:

Eternal Black Hole ←→ 1�
Z(β)

�

E

e−βE|E��E| (4.4)

where β is the inverse temperature of the black hole and Z(β) is the partition

function at inverse temperature β, and the sum is over energy eigenstates.

In general, we don’t know what a boundary state’s bulk dual is.

The extrapolation dictionary already contains some bulk physics information.

We can do scattering experiments, in which we send in wave packets from close

to the boundary, scatter them, and then collect them close to the boundary

later. The CFT correlator �O(X1)O(X2)O(X3)O(X4)� will have the results of

such scattering experiments.

Bulk Reconstruction 20



Figure 4.1: A bulk scattering experiment.

However, this does not cover all bulk information. For example, the extra-

polate dictionary cannot directly consider the problem of the correlator between

bulk fields for finite values of r, which may be relevant for the description of a

local bulk experiment. A bulk-boundary dictionary would need to be further

developed.

4.1.1 Statement of the program

We’ll work with semi-classical bulk geometry all the time. The gravitational

constant G << �d−1, where � is the AdS radius, is required for semiclassicality.
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A set of conditions must be satisfied for a CFT to have a semi-classical bulk

dual[10]. It is critical to have a parameter N >> 1 that governs the factoriza-

tion of the CFT correlators and can be dual to the perturbative parameter in

the bulk theory. In the CFTs known to have a bulk dual, the role of N is played

by the central charge of the CFT. In the CFT, N is the expansion parameter,

and it is related to the gravitational constant as follows:

N2 = ld−1

G
(4.5)

In the CFT, we’ve only introduced one expansion parameter thus far. As

a consequence, the most general dual bulk theory with Einstein gravity and

scalar fields will have a similar action(in units where a radius of AdS is one):

S = 1
G

�
dd+1y

√−gR +
�

dd+1y
√−g

�
∂µφ∂µφ + M 2φ2

�

+ λ
√

G
�

dd+1y
√−g

�
φ3

3! + all possible cubic coupling
�

+ λ
�
G

�
dd+1y

√−g

�
φ

4! + all possible quartic coupling
�

+ .............. (4.6)

In this case, λ and λ
� are O(1) numbers. The couplings’ strengths are con-

strained. A general bulk field theory can contain couplings of varying strengths

(e.g., the standard model), but a theory with a holographic CFT dual cannot

unless more expansion parameters are included.

Our goal is to find CFT operators for all bulk points that represent bulk fields.

That is, φCF T of them fulfill the following criteria:

�φ(r1, t1, Ω1)φ(r2, t2, Ω2)�g = �ψg|φCF T (r1, t1, Ω1)φCF T (r2, t2, Ω2)|ψg� (4.7)
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4.2 Boundary representation of free fields in

the bulk

4.2.1 Free scalar fields in AdS :-

The AdS metric is given by:

ds2 = �2
�
− cosh2(ρ)dτ 2 + dρ2 + sinh2(ρ)dΩ2

d−1

�

With the transformations r = �sinh(ρ) and t = �τ we can have the usual

AdSd+1 metric in global coordinates:

ds2 = −
�

1 + r2

�2

�
dt2 + dr2

1 + r2

�2

+ r2dΩ2
d−1 (4.8)

where � is AdS radius.

We’ll take � = 1 from now on.

ds2 = −
�
1 + r2

�
dt2 + dr2

(1 + r2) + r2dΩ2
d−1

We shall operate in a semi-classical framework in which bulk action is provided

by (4.6).We find the free field equation in pure AdS by setting G → 0(N → ∞
limit in the CFT) .

�
� − M 2

�
φ = 0 (4.9)

where � is the D’Alembartian in anti-de Sitter space-time. And M is mass

parameter for the field φ.

The D’Alembartion operator in d+1 dimensions is written as

� = 1
�2


− �2∂2

t�
1 + r2

�2

� + �2
�

1 + r2

�2

�
∂2

r +
�

d − 1
r

�2
�

1 + r2

�2

�
+ 2r

�
∂r + �2

r2�Ωd−1




We’ll take � = 1 and we get

� =
�

− ∂2
t

(1 + r2) +
�
1 + r2

�
∂2

r +
�

d − 1
r

�
1 + r2

�
+ 2r

�
∂r + 1

r2�Ωd−1

�
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Gravity is turned off at this limit. As a result, we may ignore gravity and

consider the scalar field in a fixed background. Let’s look up the quantum

theory that applies to this field.

From rotational and time translation symmetry of the metric (4.8) we know

that the solution to equation (4.9) will be of the form

fωl−→m (r, t, Ω) = ψωl(r)e−ιωtYl−→m(Ω)

where Yl−→m(Ω) are the usual spherical harmonics.

Substituting this in equation (4.9) gives:(For derivation see Appendix A.)

(1 + r2)ψ�� +
�

d − 1
r

(1 + r2) + 2r

�
ψ

� +
�

ω2

(1 + r2) − l(l + d − 2)
r2 − M 2

�
ψ = 0

(4.10)

At large r this becomes

r2ψ
�� +

�
d − 1

r
r2 + 2r

�
ψ

� − M 2ψ = 0

r2ψ
�� + ((d − 1)r + 2r) ψ

� − M 2ψ = 0

r2ψ
�� + (rd − r + 2r) ψ

� − M 2ψ = 0

r2ψ
�� + (d + 1) rψ

� − M 2ψ = 0 (4.11)

There are certainly polynomial solutions of the kind r−α. By substituting

ψ(r) = r−α in the previous equation, we have two independent solutions, α =

Δ, d − Δ .

where

Δ = d

2 + 1
2

√
d2 + 4M 2 (4.12)

As a conclusion, the asymptotic solution to equation (4.9) will take the follow-

ing form:

φ(r, t, Ω) = rΔ−dK(t, Ω) + r−ΔL(t, Ω) (4.13)

Normalizable modes are the ones with r−Δ fall off. These are the ones we need
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to define a unitary field theory in AdS.

We further impose smoothness at r = 0 which quantizes ω :

ωnl = Δ + l + 2n (4.14)

where n = 0, 1, 2, ....

The full solution of fωl−→m(r, t, Ω) is given by

fωl−→m(r, t, Ω) = 1
NΔnl

e−ιωnltYl−→m(Ω)
�

r√
1 + r2

�l �
1√

1 + r2

�Δ

F1

�
−n, Δ + l + n, l + d

2 ,
r2

1 + r2

�
(4.15)

where N is the normalization constant.

Now that we have the modes we can quantize the fields.

φ(r, t, Ω) = φ− + φ+

φ(r, t, Ω) =
�

nl−→m

�
fωl−→m(r, t, Ω)aωl−→m + f ∗

ωl−→m(r, t, Ω)a†
ωl−→m

�
(4.16)

Here a, a†are the annihilation and creation operator. They create normalizable

particle excitations in the bulk.

4.2.2 Free field reconstruction in mode sum approach:-

As a CFT operator, we want to reproduce the free scalar field from the previous

section. That is, we seek a CFT operator that satisfies the following criteria:

�φ(r1, t1, Ω1)φ(r2, t2, Ω2)�pureAdS = �0|φCF T (r1, t1, Ω1)φCF T (r2, t2, Ω2)|0�
(4.17)

Because higher-order correlators factorize to products of two-point functions

in free field theory, it is sufficient to study only two-point functions. Large N

factorization is a dual phenomenon in the CFT.

How do we obtain such a φCF T ? This problem was first solved in [5][9][8]. The

HKLL construction is named after Hamilton, Kabat, Lifschytz, and Lowe, who
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pioneered some of the techniques used in this field.

To get this representation, we would first have to know that the bulk field

fulfills the free field equation.
�
� − M 2

�
φ = 0 (4.18)

We also notice that the extrapolate dictionary resembles a bulk field boundary

condition:

lim
r→∞ rΔφ(r, t, Ω) = O(t, Ω) (4.19)

In conformal field theory, this equation connects the field’s boundary value to a

primary operator. If we solve equation (4.9) with equation (4.19) as boundary

conditions, we have an expression for φ in terms of conformal field theory

operators O.

Of course, because it maps fields between two separate spaces, equation (4.19)ef

isn’t truly a boundary condition. The right-hand side is a CFT operator acting

on the CFT Hilbert space, whereas the left-hand side is a bulk field’s boundary

value. So what we’ll truly want to do is find a CFT operator φCF T (r, t, Ω) that

fulfills the necessary criteria:
�
� − M 2

�
φCF T (r, t, Ω) = 0 (4.20)

This conformal field theory operator is dependent on r, which may be thought

of as a parameter. Then we demand that in the limit where this parameter

becomes large, φCF T is given by equation (4.19). Then we figure out how to

solve this conformal field theory operator.

This is the correct way of thinking about bulk reconstruction, but in terms

of problem-solving logistics, it’s the same as solving equation (4.9) as a bulk

equation of motion as a boundary value problem using equation (4.19) as the

boundary value. This distinction is not made in the literature. The bulk field

φ and its CFT representation φCF T is usually denoted by the same notation.

Now that we understand what’s going on, we’ll drop the distinction and refer
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to φCF T as simply φ from now on, unless there’s a risk of confusion between

the bulk field and its CFT representation.

It’s important to realize that equation (4.19) isn’t a typical boundary value

problem. In most cases, initial conditions are specified on a space-like Cauchy

surface in field theory. We’re defining boundary conditions on a time-like sur-

face in this case. In mathematics, this is not a well-studied problem. As we’ll

see, the solution isn’t unique.

In this case, though, solving the boundary value problem is quite simple. For

the sake of simplicity, we’ll assume Δ is an integer. The solution then becomes

time-periodic, and we can restrict the range of t to −π to π.

We start from the expansion equation (4.16) and plug it in (4.19):

lim
r→∞ rΔφ(r, t, Ω) = lim

r→∞ rΔ


�

nl−→m

�
fωl−→m(r, t, Ω)aωl−→m + f ∗

ωl−→m(r, t, Ω)a†
ωl−→m

�

 = O(t, Ω)

(4.21)

Now

lim
r→∞ rΔfωl−→m(r, t, Ω) = lim

r→∞ rΔ 1
NΔnl

e−ιωnltYl−→m(Ω)
�

r√
1 + r2

�l �
1√

1 + r2

�Δ

F1

�
−n, Δ + l + n, l + d

2 ,
r2

1 + r2

�

For derivation see Appendix B.

lim
r→∞ rΔfωl−→m(r, t, Ω) = 1

NΔnl

e−ιωnltYl−→m(Ω)F1

�
−n, Δ + l + n, l + d

2 , 1
�

(4.22)

lim
r→∞ rΔfωl−→m(r, t, Ω) = gωl−→m(t, Ω) (4.23)

where

gωl−→m(t, Ω) = 1
NΔnl

e−ιωnltYl−→m(Ω)F1

�
−n, Δ + l + n, l + d

2 , 1
�

and similarly

lim
r→∞ rΔf ∗

ωl−→m(r, t, Ω) = g∗
ωl−→m(t, Ω)

�

nl−→m

�
gωl−→m(t, Ω)aωl−→m + g∗

ωl−→m(t, Ω)a†
ωl−→m

�
= O(t, Ω) (4.24)
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When Δ is an integer, gωl−→m(t, Ω) and g∗
ωl−→m(t, Ω) are orthogonal. Using the

orthonormality and completeness of the functions e−ιωnlt and Yl−→m(Ω), we can

now invert this relationship. As a result, we define:

g̃ωl−→m(t, Ω) = NΔnl

2F1
�
−n, Δ + l + n, l + d

2 , 1
�e−ιωnltYl−→m(Ω)

Then we can come up with a solution for a :

aωl−→m =
π�

−π

dt
�

dΩg̃∗
ωl−→m(t, Ω)O(t, Ω) (4.25)

and similarly, we can solve for a† :

aωl−→m =
π�

−π

dt
�

dΩg̃∗
ωl−→m(t, Ω)O(t, Ω)

When we put it back in, we get

φ(r, t, Ω) =
�

nl−→m

�
fωl−→m(r, t, Ω)

π�

−π

dt
�
�

dΩ�
g̃∗

ωl−→m(t�
, Ω�)O(t�

, Ω�)

+ f ∗
ωl−→m(r, t, Ω)

π�

−π

dt
��

�
dΩ��

g̃ωl−→m(t��
, Ω��)O(t��

, Ω��)
�

φ(r, t, Ω) =
π�

−π

dt
�
�

dΩ�
� �

nl−→m
fωl−→m(r, t, Ω)g̃∗

ωl−→m(t�
, Ω�)+complex conjugate

�
O(t�

, Ω�)

(4.26)

It turns out that �
nl−→m

fωl−→m(r, t, Ω)g̃∗
ωl−→m(t�

, Ω�) is real. So this is equal to its

complex conjugate.

φ(r, t, Ω) =
π�

−π

dt
�
�

dΩ�2
� �

nl−→m
fωl−→m(r, t, Ω)g̃∗

ωl−→m(t�
, Ω�)

�
O(t�

, Ω�)

φ(r, t, Ω) =
π�

−π

dt
�
�

dΩ�
K(r, t, Ω, t

�
, Ω�)O(t�

, Ω�) (4.27)

where

K(r, t, Ω, t
�
, Ω�) = 2

� �

nl−→m
fωl−→m(r, t, Ω)g̃∗

ωl−→m(t�
, Ω�)

�
(4.28)
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This is known as the smearing function.

Using equation (4.22) we have that

K(r, t, Ω, t
�
, Ω�) ∝

�

nl−→m
fωl−→m(r, t, Ω)eιωnltY ∗

l−→m(Ω) (4.29)

As a consequence, the smearing function is proportional to the mode function’s

Fourier transform.

It’s worth noting that the smearing feature isn’t unique. We can see from

equation (4.14) that only modes between −Δ and Δ appear in the solution for

O(t, Ω). Therefore if we add a term eιkt to the smearing function where k is any

integer between −Δ + 1 and Δ − 1, the integration
�

dteιktO(r, t, Ω) vanishes.

So we can add any term of the form �
k

ckeιkt to the smearing function without

changing equation (4.27).

This freedom allows us to put the smearing function in a convenient form. In

particular, we can arrange for the smearing function to be non-zero only at

boundary points space-like separated from the bulk point (r, t). This is the

minimal support that it can have[9].

We now have an expression for the bulk field’s boundary representation. We

can represent it simply by writing the bulk coordinate as y and the boundary

coordinate as X:

φ(y) =
�

dXK(y; X)O(X) (4.30)

Where the range of integration is over all points X in the boundary which

are space-like separated from the bulk point y. Note that this is a non local

operator in the CFT.

Now that we have the CFT representation φ(r, t, Ω) we can check whether it

indeed satisfies the condition equation (4.17). Let’s sketch down the check’s

steps. To begin, we need to point out that

�0|φ(y)φ(y�)|0� =
�

dXdX
�
K(y, X)K(y�

, X
�)�0|O(X)O(X �)|0� (4.31)
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Where we’ve used equation (4.30). Now �0|O(X)O(X �)|0� is fixed completely

by symmetry. We can easily evaluate the equation above. It gives the correct

bulk two-point function, as one may expect. The information about the bulk

has been encoded in the boundary operator through the smearing function.

We worked in global coordinates here, but we could have used Poincare co-

ordinates as well. This produces a smearing function with support on the

Poincare patch’s boundary. This corresponds to the global smearing function

in Poincare patch coordinates, up to the ambiguities in the definition of the

smearing function mentioned above[8].

Figure 4.2: The boundary representation of a bulk scalar field at a point y has
support on all boundary points space-like separated from y.
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Chapter 5

Conclusions

The HKLL construction in Anti-de Sitter spacetime is studied, and the smear-

ing function for free field theories was derived. We discovered AdS-covariant

smearing functions with support simply at spacelike separation through global

coordinates.We worked in global coordinates here, but we could have used

Poincare coordinates as well. This produces a smearing function with support

on the Poincare patch’s boundary.We only have a good understanding of bulk

reconstruction for large N; finite N (i.e. quantum gravity in the bulk) is still a

mystery.1/N corrections are known in many examples.
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Chapter 6

Appendix

6.1 Appendix A

From rotational and time translation symmetry of the metric (4.8) we know

that the solution to (4.9) will be of the form

fωl−→m (r, t, Ω) = ψωl(r)e−ιωtYl−→m(Ω)

where Yl−→m(Ω) are the usual spherical harmonics.

Substituting this in (4.9) gives:
�
� − M 2

�
ψωl(r)e−ιωtYl−→m(Ω) = 0 (6.1)

�
− ∂2

t

(1 + r2) +
�
1 + r2

�
∂2

r +
�

d − 1
r

�
1 + r2

�
+ 2r

�
∂r + 1

r2�Ωd−1 − M 2
�

ψωl(r)e−ιωtYl−→m(Ω) = 0

− ψωl(r)Yl−→m(Ω) ∂2
t e−ιωt

(1 + r2) + e−ιωtYl−→m(Ω)
�
1 + r2

�
∂2

r ψωl(r)

+ e−ιωtYl−→m(Ω)
�

d − 1
r

�
1 + r2

�
+ 2r

�
∂rψωl(r)

+ ψωl(r)e−ιωt 1
r2�Ωd−1Yl−→m(Ω) − M 2ψωl(r)e−ιωtYl−→m(Ω) = 0
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above equation divided by ψωl(r)e−ιωtYl−→m(Ω)

− 1
e−ιωt

∂2
t e−ιωt

(1 + r2) + (1 + r2)
ψωl(r) ∂2

r ψωl(r) +
�

d − 1
r

�
1 + r2

�
+ 2r

�
1

ψωl(r)∂rψωl(r)

+ 1
r2Yl−→m(Ω)�Ωd−1Yl−→m(Ω) − M 2 = 0

− 1
e−ιωt

(−ω2e−ιωt)
(1 + r2) + (1 + r2)

ψ
ψ” +

�
d − 1

r

�
1 + r2

�
+ 2r

�
1
ψ

ψ
�

+ 1
r2Yl−→m(Ω)(−l(l + d − 2)Yl−→m(Ω)) − M 2 = 0

where we have used

�Ωd−1Yl−→m(Ω) = −l(l + d − 2)Yl−→m(Ω)

ω2

(1 + r2) + (1 + r2)
ψ

ψ” +
�

d − 1
r

�
1 + r2

�
+ 2r

�
1
ψ

ψ
� − l(l + d − 2)

r2 −M 2 = 0

(1 + r2)
ψ

ψ” +
�

d − 1
r

�
1 + r2

�
+ 2r

�
1
ψ

ψ
�
�

ω2

(1 + r2) − l(l + d − 2)
r2 − M 2

�
= 0

(1 + r2)ψ�� +
�

d − 1
r

(1 + r2) + 2r

�
ψ

� +
�

ω2

(1 + r2) − l(l + d − 2)
r2 − M 2

�
ψ = 0

(6.2)

6.2 Appendix B

We start from the expansion equation (4.16) and plug it in equation (4.19):"

lim
r→∞ rΔφ(r, t, Ω) = lim

r→∞ rΔ


�

nl−→m

�
fωl−→m(r, t, Ω)aωl−→m + f ∗

ωl−→m(r, t, Ω)a†
ωl−→m

�

 = O(t, Ω)

(6.3)
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Now

lim
r→∞ rΔfωl−→m(r, t, Ω) = lim

r→∞ rΔ 1
NΔnl

e−ιωnltYl−→m(Ω)
�

r√
1 + r2

�l �
1√

1 + r2

�Δ

F1

�
−n, Δ + l + n, l + d

2 ,
r2

1 + r2

�

lim
r→∞ rΔfωl−→m(r, t, Ω) = lim

r→∞ rΔ 1
NΔnl

e−ιωnltYl−→m(Ω)(rl)
�

1√
1 + r2

�l �
1√

1 + r2

�Δ

F1


−n, Δ + l + n, l + d

2 ,
r2

r2
�

1
r2 + 1

�




lim
r→∞ rΔfωl−→m(r, t, Ω) = lim

r→∞
1

NΔnl

e−ιωnltYl−→m(Ω)rΔ+l

�
1√

1 + r2

�Δ+l

F1


−n, Δ + l + n, l + d

2 ,
1�

1
r2 + 1

�




lim
r→∞ rΔfωl−→m(r, t, Ω) = lim

r→∞
1

NΔnl

e−ιωnltYl−→m(Ω)rΔ+l


 1

r
�

( 1
r2 + 1




Δ+l

F1


−n, Δ + l + n, l + d

2 ,
1�

1
r2 + 1

�




lim
r→∞ rΔfωl−→m(r, t, Ω) = lim

r→∞
1

NΔnl

e−ιωnltYl−→m(Ω)rΔ+l 1
rΔ+l


 1�

( 1
r2 + 1




Δ+l

F1


−n, Δ + l + n, l + d

2 ,
1�

1
r2 + 1

�
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lim
r→∞ rΔfωl−→m(r, t, Ω) = lim

r→∞
1

NΔnl

e−ιωnltYl−→m(Ω)

 1�

( 1
r2 + 1




Δ+l

F1


−n, Δ + l + n, l + d

2 ,
1�

1
r2 + 1

�




lim
r→∞ rΔfωl−→m(r, t, Ω) = 1

NΔnl

e−ιωnltYl−→m(Ω)
�1

1

�Δ+l

F1

�
−n, Δ + l + n, l + d

2 ,
1
1

�

lim
r→∞ rΔfωl−→m(r, t, Ω) = 1

NΔnl

e−ιωnltYl−→m(Ω)F1

�
−n, Δ + l + n, l + d

2 , 1
�

(6.4)

lim
r→∞ rΔfωl−→m(r, t, Ω) = gωl−→m(t, Ω) (6.5)

where

gωl−→m(t, Ω) = 1
NΔnl

e−ιωnltYl−→m(Ω)F1

�
−n, Δ + l + n, l + d

2 , 1
�
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