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Abstract 

Power optimization in cache memory is very attractive area of research to achieve data 

transfer at high speed between the high-speed processor and low speed main memory 

(DRAM). The processor accesses the main memory through cache memory to enhance 

system performance. This thesis demonstrates that cache usage is an important measure 

of performance and power with an emphasis on the order of access to the cache line. In 

this thesis, we mainly focused on cache memory optimization through L1 data cache 

memory. For that we did experiment on 32KB size of cache memory architecture with 

64B cache size and 4-way set associative cache and divide this 32KB size of cache 

memory into smaller size of caches using 2KB, 4KB, 8KB and 16KB size of logical 

banks to organize 32KB memory. After that we compared all 2KB, 4KB, 8KB and 

16KB logical banks based on the number of comparators used, number of shared or 

individual address decoder used, number of multiplexers required in each logical bank. 

After that we evaluate the miss rate in data transfer, cost in each logical bank 

organization, bandwidth required in each organization and memory traffic in each 

organization. Sleep mode finite machine concept is also used as per the Qualcomm 

memory specs to save the power and in that clock is used only when memory is busy in 

reading and writing of data, else clock is off as per memory timing specification. With 

the help of all these observations we decided 4KB and 8KB logical bank organization 

is better suited for one big 32KB size logical bank organization.  
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Chapter 1  

 

Introduction 

 

The Memory system is a vital component of any high-performance computer system. 

Memories in computing, refers to the physical devices used to store data (e.g. program 

state information) or programs (sequences of instructions) on a temporary or permanent 

basis in a computer or other digital electronic device. The term primary memory, that 

operate at high-speed (i.e. RAM), as a compared from secondary memory, is used to 

denote the information in physical systems. Secondary memory can be accessed via 

large storage devices such as hard discs, floppy disk storage media, optical storage 

devices which offers greater capacity but slow to accessing data. In contrast to primary 

memory, secondary memory is not directly accessible via the processor. Primary 

memory access through the processor is done by utilizing address and data busses, while 

the input and output channels serve to access the secondary memory. Data and 

instructions that are stored inside the memory are accessed using the memory addresses 

which denote the location of each element inside the memory [1]. 

1.1 Memory Hierarchy 

Memories can be organized based on access time, cost of the memory, size of the 

memory. For perceived execution speed of the processor, memory speed is often the 

major component, since the processor can only execute data and instruction as fast as 

memory provides. It is obvious that the design will aim for a large-sized, high-speed 

memory for a given cost. The solution to this problem is offered by hierarchical memory 
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design. 

A typical memory hierarchy as shown in figure 1.1, as one moves down the hierarchy, 

the cost per bit decreases, the access time increases, the capacity increases and 

frequency the memory access by the processor decreases. Hierarchy design of memory 

is based on two principles: first is the principle of locality (both temporal and spatial), 

and second is the cost or performance of the memory. Temporal locality principal says 

that it is likely for recently accessed memory locations is being accessible sometime in 

the not-too-distant future. The principal of Spatial locality says that memory locations 

are likely to be accessible within a short span of time that are nearby [2]. Memory 

hierarchy work well, because programs prefer to access the storage at any high level 

more often than they access the storage at the next lower level. As a result, storage at 

the next level might be slower, but bigger and less expensive per bit. Thus, smaller, 

faster and more expensive memories are therefore supported with bigger, less costly, 

slower memories. The total effect is a vast pool of memory which thus costs the same 

as cheap storage at the lower level of the hierarchy but feeds data to processes at the 

same rate as fast storage at the top [1][2]. 

 

 

 

 

 

 

 

 

 

                                          Figure 1.1 Memory Hierarchy [2] 
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1.2  Motivation 

As the gap between performance of processor and main memory increases continuously, 

it causes a significant roadblock to exascale computing. Memory performance has 

lagged behind the processor performance, and today due to the advent of data-intensive 

applications particularly, becoming a bottleneck. Figure 1.2 [3] shows this performance 

gap over past three decades. 

With the advent of data intensive applications, memory is fast becoming the critical 

bottleneck for system performance and is not scaling at the same rate as the computing 

performance. 

 

 

                                          Figure 1.2 Performance Curve [3] 

Basic architecture of memory and processor is shown in figure 1.3. In this figure 

processor connected with a main memory module (DRAM) whose performance is far 

behind in comparison to the processor. The performance of processor cores increases at 

a faster pace. Compared to large capacity main memory, the processor is generally able 

executes operations on operands faster than main memory access time. Although 

semiconductor memory exists that can function at rates equivalent to the processor's, it 
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is not cost-effective to offer very high-speed semiconductor memory for the main 

memory, taking in view the capacity of the main memory. The performance of the 

processor and to the system as whole, can indeed be bottleneck due to the presence of 

slower memory.  

 

 

 

 

 

 

 

                                    Figure1.3 Basic memory and processor architecture [6] 

 

The problem of performance gap between main memory and processor can be taken 

the edge off by inserting a small block of high-speed memory known as a cache (SRAM) 

between the processor and the main memory and figure 1.4 shows that representation. 

The program issues effective addresses and read and write requests, and these requests 

are satisfied by memory. The request is unknown to the program, whether it is the cache 

(SRAM) or main memory (DRAM) that processes. Usually, instructions and data in 

cache memories can be referenced in 10 to 25 percentage of the time taken to access 

main memory [5]. Thus, the execution rate of the system to be substantially increased 

by the cache memories. If majority of memory location accesses are cached memory 

locations, then the average latency of memory accesses will be nearer to the cache 

memory latency than to the main memory [6]. 

So, cache memory employs as bridging the performance gap between the high-speed 

processor and slow speed main memory. The processor cache is a hardware component 

that stores frequently accessed data. High bandwidth and low latency of memory with 

respect to the processor can be achieved by the memory caches. In this thesis we discuss 
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techniques for power optimization that involve in enhancing the performance of the 

high-speed cache memory organization. 

 

 

                                                                                                                                                                                                                        

 

 

 

 

 

 

                      

                Figure1.4 Basic memory and processor with cache [6] 

 

1.3 Organization of Thesis 
 

In the further part of the thesis is organized in the following fashion: 

 

• Chapter 2: In this chapter we will discussed about the related work that is already 

done with respect to the high-speed cache memory performance enhancement. 

 

• Chapter 3: In this chapter we will focus on the terms that is very important terms                

related to the cache memory. After that we will add the mapping technique for 

cache memory. Then we will cover the writing policy for the cache. 
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• Chapter 4: In this chapter we will discuss about the proposed technique for the 

implementation of 32Kb cache. And other power saving option that can be done in 

the cache memory organization  

 

• Chapter 5: In this chapter, we will capture the various test bench results for the 

different organization and the comparison table for different logical banks 

organizations. 

 

• Chapter 6: In this chapter, we will conclude what we have done and what possibly 

future work can be done in this field. 

 

 

 

1.4 Summary 

 
In this chapter, we have discussed about the evolution of the memory hierarchy and how 

cache memory comes into picture for the evolution of memory performance. Then the 

motivation behind the cache memory optimization technique. And in the last how we 

organized the thesis for further parts. 
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Chapter 2 

 

Literature Survey 

 

In this chapter, we discuss the existing works related to the theme of the proposal. In 

[7], the authors proposed a technique in which the effectiveness of the target banks 

improved by continuously adjusting its associativity. Also, the expense of sending 

requests is improved by using network distance as an extra parameter for target 

selection. The methodology used here has varied working set requirements, as well as 

uneven distribution of data across cache banks, which is dynamically handled to 

determine which banks should be switched off. Target bank will get the content of 

shutdown bank that will also, take care of any future requests for this closed bank. The 

target bank manages the shutdown bank's additional load, so will get a greater number 

of requests.  Proposed technique achieved 23 percentage EDP minimization for a 4MB 

lower level of caches and 43 percentage reduction in static energy with a performance 

constraint of 3 percentage.  

In [8], A.D. Jebaseeli, M. Kiruba proposed a new cache architecture to improve the 

accuracy of cache miss prediction by a partial tag enhanced-bloom filter. Significant 

amounts of energy will be saved without sacrificing performance abasement by 

allowing the L2 cache to function in a direct mapping mode while write hits and 

minimizing tag comparison of cache miss prediction; there will be no necessitated to 

use the L2 cache if a cache miss is detected. L2 cache does not functional for all tags, 

and the partial bloom filter predicts cache misses. On average, the suggested 
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methodology saves 63 percent of the energy in L2 cache while incurring just 0.02 

percent to the area overhead. 

In [9], J. Lee and S. Kim, proposed a filter data cache design in order to efficiently 

integrate the filter cache into the data cache hierarchy. They identified that since the 

filter cache is being used for data cache, misses occur considerably. Those misses 

increase cache latency and loading superfluous data that effects cost performance and 

energy consumption. Three approaches are used in the described filter data cache design 

to minimize miss costs: ECHP, LA, and NTW. When compared to the filter cache, the 

suggested filter data cache decreases energy consumption by 21 percent, and the ALU's 

energy usage on average by 27.2 percentage. The filter data cache depicts an immense 

benefit on energy as the size of the L0/L1 caches grows, and it has minimal operating 

cost in terms of area and power leakage. 

In paper [10], A. G. Kumar, D. A. Janeera, M. Ramesh proposed novel cache 

architecture so called Tag-Bloom cache designed to minimize power usage. Every way 

with in L2 cache has a tag associated to it, is contained in way tag array in FLC. During 

successive write hits, the L2 cache is being accessed as a direct mapped cache, reducing 

power consumption. This method enhances the efficiency of both cache miss and cache 

hit prediction. To increase the efficiency of cache hit as well as cache miss predictions, 

the Bloom filter examines these way tags. Thus, with a minimum area overhead they 

achieved energy effectual cache design without sacrificing efficiency deterioration. 

In paper [11], C. H. Ting, Y. H. Kao and J. D. Huang proposed the concept of sequential 

way access, on each set-associative cache access ensuring minimal energy usage and 

high performance to limit the number of ways that can be activated. The proposed 

techniques eliminate future accesses once a hit is identified after accessing each way in 

sequence. It also reduced the heavy fan out load of the hit signal, as a result of a more 

sophisticated cache control mechanism, which prevents the cache cycle time against 

increasing. The experiments demonstrate that when compared to a traditional 2-way set-

associative cache of size 32KB, the same size 2-way sequential access set-associative 

cache consumes 24 percentage less energy with no performance compromise. 

In paper [12], Z. Chuanjun, V. Frank, N. Walid shown that changing a cache's line size 
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to a specific program is seemed to be an incredibly efficient approach for minimizing 

memory access energy for embedded devices. By adding this configuration to a cache 

architecture is straight forward and embedded system designers can select the best 

configuration simply. They have worked on a configurable cache architecture with not 

only have a variable line size as well as provides flexible number of ways to access it 

with maintaining same total size. Experiment result showed that owing to memory 

access, adjusting the line size to a specific program can minimize energy dissipation by 

50 percentage. 

 

In paper [13], T. Ishihara, F. Fallah proposed architecture of a non-uniform cache for 

minimizing power requirements for memory systems. Non uniform cache provides 

differing associativity levels (i.e., the number of cache-ways) across distinct cache sets. 

In this paper, authors also proposed a programming approach for decreasing cache-tag 

and cache-way requests that are redundant. The proposed approach evaluates the 

optimal number of cache-ways for each cache-set and produces non-uniform cache 

memory object code. Result showed that the methodology has the potential to minimize 

power usage by up to 76 percent in comparison to the conventional method of memory 

systems. 

 

In paper [14], M. Mutyam, C. J. Janraj, T. Warrier, T. V. Kalyan proposed way-sharing 

cache design, in which two cache sets exchange certain cache ways such that high-

demand sets obtain the most cache ways than low-demand sets. Regardless of the set-

by-set requirements, in standard k-way set-associative caches, every set has n cache 

ways at its allotments, although demands for these cache ways might vary between 

cache sets. Using this feature, way-sharing cache architecture has been proposed in 

which by permitting cache ways to be shared across two cache sets, as high as 41 

percentage dynamic power savings with negligible performance penalty is achieved. 

 

In paper [15], Z. Chuanjun, V. Frank, N. Walid proposed technique in which three 

software-configurable settings in the cache can be customized to the specific purposes. 

The cache's associativity may be adjusted to be direct-mapping, 2-way, or 4-way set-
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associative mapping using a unique mechanism called way concatenation, is first one. 

The total size of a cache may be varied by having to shut down ways is the second 

configurable parameter. Third and last one is, the line size of the cache can be 

customized to 16 bytes, 32 bytes, or 64 bytes. Configurable cache adjusted to each 

program ended up saving energy for every program with an overall energy savings of 

over 40 percentage associated to memory access when compared to the standard 4-way 

set associative cache and a traditional direct-mapping cache. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 
 

Chapter 3 

 

Theoretical Foundation of Cache 
Memory  

 

 

Cache memory have been playing an important role in bridging the performance gap 

between the high-speed processor and slow speed main memory. Cache memory is 

special type SRAM placed between the slow main memory and the fast processor. 

Cache is the first or highest level of memory structure that the processor encounters 

upon leaving an address. Cache memories are smaller in size, cache memories are 

employed in modern computer systems to temporarily store sections of the main 

memory's (DRAM) contents that are currently be in use. 

When request is generated to a memory, the cache memory will get the request first 

from processor. Then the check will be made to determine whether the data is present 

in the cache and if present, then the data will be sent to the processor. If data is not there, 

a block with some fixed number of words (based on cache size) from main memory is 

read into the cache memory and then the word will be sent to the processor. The concept 

behind the fast cache memory is similar to virtual memory that some active part of data 

(frequently used data) of a slow main memory is get stored in a cache memory. It is the 

implementation of cache and virtual memory that made the difference otherwise both 

rely on the correlation features seen in address reference sequences, so conceptually the 

same but because of the speed requirements of cache their implementations are totally 

different. Because of principle of locality of reference, the cache memory to be effective 

by storing only the subset (i.e., subset of recently used instructions and data) of the slow 

main memory. With reference to the principle of locality of reference, to satisfy a single 
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memory reference When a block of data is fetched into the cache, there is a chance that 

subsequent accesses to that memory location or other data in the block will occur. So 

that the upcoming requests for the respective data may be served more quickly because 

cache stores the recently accessed data [4][6]. 

In a particular processor design, the term word is referring for the unit of data used, a 

word is represented by fixed size group of bits. In the form of word, the transfer of 

traffic to   and   from   the   processor   and   the   cache takes place. And in the form of 

block between the cache and main memory, the traffic is transferred. With respect to 

the cache these cache blocks are referred to as cache lines. Usually, a word size varies 

between 8, 16, 32 and 64 bits, in the modern processors. 

 

3.1 Cache Memory Architecture 

Cache memory has three levels of cache. Levels describe its closeness and accessibility 

to the processor. L1 is called as the first level of cache (FLC) and L2 and L3 is called 

as the last level of cache (LLC). Figure 3.1 showed that the three levels between the fast 

processor and the slow speed memory. 

 

 

 

                          

 

              Figure 3.1 3 Levels of cache between processor and main memory 

For L1 cache, instruction and data caches are separated, whereas for last levels of cache, 

instructions and data cache are unified. L1 and L2 are present inside processor and L3 

are located outside the processor. With the help of FLCs, we can minimize access 

latency and while with the help of LLCs reduce the numbers of off-chip accesses and 

cache miss-rate. By design L1 caches are smaller in size and employ parallel lookup 

and tag arrays and have smaller associativity. LLCs, on the other hand, are significantly 

bigger, use serial or phased data and tag array lookups, and have stronger associativity. 
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FLCs consume a bigger portion of their power in the form of dynamic power due to 

their lower size and quantity of accesses, while L2 and L3 caches spend the majority of 

their power in terms of leakage power [16]. 

The basic cache memory architecture shown in the figure 3.2[16]. 

 

 

 

 

 

 

 

 

              Figure 3.2 Basic cache memory architecture for 2 cores 

In this figure we have taken the example of processor which has two core. L1 data cache 

and L1 instruction cache are separated for each core and for each core has there is 

unified L2 cache memory. And L3 cache memory is unified for all the cores. A unified 

cache is more flexible because it offers greater hit ratio compared to the splits caches 

and it can flexibly accommodate either data or instruction and the program may have a 

larger fraction of instructions than data or vice versa. The fundamental benefit of a split 

cache is that it avoids conflict in the cache between the instruction fetch/decode unit and 

the execution unit. In this thesis, we will mainly focus on L1 data cache memory. 

In figure 3.3 we have listed some basic functions of L1 cache and in the figure 3.4, we 

have listed the functions of L2 and L3 cache memory [4]. 
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                                    Figure 3.3 Functions of L1 cache 

 

 

 

 

 

 

 

                                 Figure 3.4 Functions of LLC cache 
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3.2 Terms Related to Cache Memory  

Cache Hit: If the data or instruction requested by the processor is present in the cache, 

then it is termed as cache hit. The data is taken from that level and propagated up the 

hierarchy.  

                      𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 = 
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒉𝒊𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒎𝒆𝒎𝒐𝒓𝒚 𝒂𝒄𝒄𝒆𝒔𝒔
 

Cache Miss: If the required data or instruction requested by the processor is not present 

in the cache, then it is termed as cache miss and request goes down a level until found. 

A cache miss at any level may overwrite old data when the requested new data is 

propagated up the hierarchy which result longer execution time. 

Access Time: It indicates the time for representing the address and retrieve the 

appropriate data from memory. 

Memory Cycle Time: It is the time required by the memory to recover before next 

access. 

Cache Lines: The unit of data transfer between the cache memory and main memory is 

represented by cache line. Most commonly used cache line is 64 bytes. Caches lines 

contain copies of blocks of data from main memory. 

Average Memory Access Time: 

AMAT = Hit Time + (Miss Rate * Miss Penalty access)  

Hit Time = Hit Rate * Access Time 

The various types of misses are there in cache memory which is categorized as: 

• Compulsory misses: These are known as first references misses. When first access 

to the block happens then compulsory misses occur. From the upper-level memory, 

data must be fetched at least once to be present in the cache. 

• Conflict misses: Conflict misses occurs during the mapping of two different data to 

the same cache line. 

• Coherency misses: Coherency misses occur when the data updated by the external 

processor or input output device. 

• Capacity misses: Capacity misses occur when the data and instructions required for 
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the program exceeds the cache size. 

 

 

3.3 Cache Memory Organizations 

A cache memory is a special type static random-access memory (SRAM), where copies 

of information currently used by instructions and data, loaded from the slow speed main 

memory stores by the computer hardware. The cache has more expensive 

implementation technology but has significantly shorter access time than the main 

memory. If the cache memory is used again for information fetched to it, then the access 

time to it will be much shorter than in the case of the main memory. If the same 

information is stored in it, then the program will execute faster because of the cache 

memory [18]. 

Cache memory operation governs the principle of locality of reference. There are two 

methods for retrieving programs from main memory and storing them in cache. 

Temporal Locality: Temporal locality means currently being fetched instruction 

or data may be needed soon. To avoid searching of that data in main memory, 

instruction or data should be stored in the cache memory [17]. 

There is a high probability that if some data is referenced, then that data will be 

brought up again in the near future. 

Spatial Locality: Spatial locality refers to the present memory location where an 

instruction or data is being retrieved, which may be required in the near future. Spatial 

locality is slightly differing from temporal. The focus of spatial locality was on nearly 

situated memory locations, but the focus of temporal locality was on the actual 

memory locations being fetched [17]. 

The cache mapping techniques used to bring the main memory's contents into cache and 

are then referenced by the processor. It is basically an algorithm by which cache lines 

are mapped from main memory blocks. The number of cache lines is often less than the 

number of main memories blocks [18].  

To determine which main memory block occupies a cache line in cache memory, 



 

17 
 

mapping methods are required. According to the mapping policy cache memory is 

organized. Three different types of cache organizations commonly used based on 

mapping functions. 

 

3.3.1 Direct Mapped Cache: 

Implementation of direct mapped cache is very simple because every single main 

memory block is mapped to single cache line. In this mapping technique, every memory 

block of main memory is allotted for specific cache line. If the main memory block that 

in recently present in cache line, and new block of data is required by processor, then 

the previous block is deleted. The address bits are divided into three segments like as 

offset bits, index bits and tag bits. index bits are used to access the cache directory, 

offset bits used get the specified byte within a cache line and tag bits field must be 

compared with the tag bits of respective data block associated with it, to ensure a hit 

[19][20].  

If CPU generates request to a memory, the index bit is used for accessing the specific 

line of the cache memory. The tag bit of that address is then compared with the tag 

address of the cache memory. If this tag is match with the tag address field, the word is 

present in the cache and cache hit occurs. Else, a cache miss will be occurred. If cache 

miss occurs, then required word will be taken from the main memory. And by changing 

the existing tag with the new one, it will be saved in the cache memory. In figure 3.5 

block number J is selected for line L based on the tag and index bits. Direct mapped 

cache has high conflict misses because of lack of associativity but have better access 

time. 
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                                        Figure 3.5 Direct mapped cache 

 

3.3.2 Fully Associative Mapped Cache: 

In fully associative mapped cache technique, the block of main memory can be placed 

into any of the cache line in cache memory, which is freely available. Fully mapped 

cache technique is more flexible compared to the direct mapped cache, but 

implementation of fully associative mapping is more complex. Address bit is divided 

into two parts one is tag bit field which is used for identifying the given block uniquely 

and other is offset bits that is used get the specified byte within a cache line. when CPU 

generate the request to cache, the sent address request is compared to each entry in the 

tag array to determine whether the data referenced for the operation is there in cache or 

not. If requested address is found in cache memory, data belong to that address location 

in the cache is fetched and returned back to the processor, otherwise a miss occurs, then 

required data will be taken from the main memory [21][22]. 

In the figure 3.6 the block J can be placed any of the cache line which is free in the 

cache memory. 
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Figure 3.6 Fully associative mapped cache 

 

3.3.3 K-Way Set Associative Mapped Cache: 

In the K-way set associative mapped cache technique, according to the number of sets 

cache lines are grouped and K number of lines is present in each set. A specific block 

of the main memory can be mapped to one specific set in the cache memory. And block 

may be mapped into any one of the ways within the set that depends on the size of K. 

Typical size of K varies between 2-ways, 4-ways, 8 ways and 16 ways. Set way 

associative mapped cache is tradeoff between fully associative mapped cache and the 

direct mapped cache. Address bit is divided into three parts, tag bits field, set bits field 

and offset bit field. If request is generated from the processor, then set bits field is used 

to select one particular set in the cache memory and then with the set based on the tag 

bits field will be decided from which way, we have to get the data. If the tag bits are not 

matched with any of the ways, then cache miss will occur, and the request will be sent 

to the main memory to get that data from the particular location [23][24]. 

Figure 3.7 is the example of 4-way set associative cache memory that shows reading of 

data from the given address, based on the set bits will select the set from the cache 
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memory. Then we will compare the tag bit from the each of the ways in the selected set 

and result will generate by the comparator and with the help of the multiplexer data will 

be sent to the processor and with the OR gate we will decide cache hit or miss occurs. 

 

                          Figure 3.7 4-way set associative cache mapping 

 

                           Figure 3.8 2-way set associative mapping 
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Figure 3.8 show the organization of 2-way set associative mapping, in which block 

number J is mapped to the set number 1 of the cache memory. 

Cache memory with the higher associative organization leads to more complex 

hardware requirements but will have a lower miss rate as each set has more blocks, so 

chances of a conflict between two addresses is less. Fully associative cache makes 

complete use of their capacity but relying on expensive search process, so they have 

higher hardware cost. To search in K-way set-associative cache is easier than fully- 

associative cache. 

3.3.4 Writing Policy in Cache Memory 

While performing the read operation on cache memory it will not change data present 

in the memory. But performing any write operation on the cache will changes the 

content data of the cache memory. So, it is very important to perform any write on cache 

memory carefully. Assume a value is already cached and we want to overwrite it, but 

only changing the cached value would result in a discrepancy between the cached copy 

of data and the original data value preserved in main memory [27]. In cache memory, 

to ensure cache memory and main memory coherence, two major write policies are 

used: 

Write Through Policy: Write-through policy is the most commonly methods to be 

used for writing into the cache. In write-through method, when the cache memory is 

updated, it also updates the main memory at the same time. So, at any time, the main 

memory will contain the same data which is available in the cache memory. Write 

through policy is a slow process because of excessive write and every time it needs to 

access main memory. This method will perform good, if there are few writes to a given 

block and if there are multiple writes to the given block, then it will be disadvantageous 

[26]. 

Write Back Policy: Write-back policy also used for cache memory writing. In this 

policy only the cache memory location is updated during a write operation while 

following write-back method. Updated location is marked by a flag, when update in 
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cache occurs. The flag is named as dirty bit or modified bit. When a dirty cache line is 

thrown out, then only the stored data will be written to main memory [25]. 

Inconsistency may occur in write back techniques because of different copies of data in 

cache and main memory, which is the only limitation of this technique. Flag bit is set if 

cache memory is replaced by the word, then word will be written into main memory. 

The idea behind this method is based on the fact that during write operation in cache 

memory, the word present in the cache memory may be accessed several times before 

also, so reduce the number of references to main memory [27]. 
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Chapter 4 

 

Power Optimization in Cache Memory 

 

4.1 Design Specification of Memory Wrapper 

Designed configurable memory wrapper to enable analysis of different configuration 

with respect to power, area and performance for target IP. The features of the memory 

wrapper include the configurable cache size with the default setting of cache size used 

is 64 bytes. For the design of memory wrapper design we have used configurable size 

logical bank (LB). Our design mainly focused on design of 32KB size of memory 

wrapper. So if we use logical bank of size 8KB, then we will have requirement of 4 

logical banks. For the design of memory wrapper, we have used configurable address 

decoder architecture. It is the job of decoder to locate the selected memory block. The 

address decoder architecture will be shared between all the logical banks. In our design 

we have used 32KB memory wrapper with 64 data bits, then we have 12-bit address and 

LB of 8KB having 10-bit address. So last two bit of address used for the decoding logic 

and allow logical bank to be placed in any 8KB section of 32Kb address space.   
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Port to the memory wrapper: 

▪ Input Ports 

• Clock and Reset 

• Write/Read Enable 

• Write Address 

• Active Input 

• Write Data 

▪ Output Port 

• Read Data 

Sleep Control logic also added inside the memory wrapper design. Sleep control logic 

provides the power saving feature in the memory design whenever there is no reading 

or writing is going on (means memory is in idle mode). Sleep control logic count the 

idle number of clock pulse and put all logical banks into the sleep. 

4.2 Top Level Block Diagram of the Memory Wrapper 

Figure 4.1 show the top-level block diagram of the memory wrapper. In the top-level 

block diagram, we have shown input ports to the memory wrapper and read out as the 

output port to the wrapper.  

In the block diagram we have shown memory controller, which drives input interface to 

the logical banks via finite state machine (FSM). Also, memory controller gets the data 

from the input port and drive it to the logical banks as per the memory protocol.  

Sleep controller is responsible for the efficiently managing power mode (power up and 

power) of the memory wrapper. It uses the activity counter for transition through various 

sleep state to save power. Sleep controller maintains the activity counter per logical 

banks. It is following the Qualcomm memory timing specification for enter and exits 

from the sleep mode and with the help of this we have designed sleep mode FSM. 
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              Figure 4.1 Top level block diagram of memory wrapper 

 

4.3 Sleep Mode Finite State Machine 

In figure 4.2 we have shown FSM for Sleep mode diagram. Usually memory is in 

normal mode, when it is doing reading and writing operation. But when memory is idle, 

this means it is not doing any operation and for that to save the power in the idle mode, 

we have designed the sleep mode FSM. In this FSM we have used counters, where one 

is idle counter and other is the state change counter. When memory is in idle state (i.e., 

no read and write), the idle counter will check for the idle number of clock pulse and if 

the configurable number of idle clock pulse is reached (default idle number of clock 

pulse 5 is used), then the memory goes into the sleep mode stages. Sleep mode starts 

from the state zero (STG0), where it will spend configurable amount of time and then 

change the state from STG0 to state one (STG1). It will spend the defined amount of 
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time in state one then will move to the STG2 with the help of state change counter. In 

STG2 sleep retention will be low to retain the data. After this stage wake up state will 

start and in state three (STG3) it will spend some time and after that in the last state 

which is dummy state (STG4) it will spend defined amount of time, because after the 

wake up, first clock cycle will be invalid for read and write operation. After this state 

idle counter will again check for the idle number of clock pulse and if defined idle clock 

is reached, then it will remain in the sleep state, otherwise will go into the normal mode 

and memory again starts the read and write operation. 

 

  

                                          

                                                 Figure 4.2 Sleep mode FSM 
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4.4 Different Configuration of LB for 32KB L1 Data 

Cache Design  

4.4.1 Specifications for 32KB L1 Data Cache 

For the design of 32KB L1 data cache, in this dissertation we have used 4-way set 

associative organization and cache line size of 64 bytes and address bit width of 64 bit 

so total number of cache line require will be 512 (cache line = size of cache memory 

divided by cache line size) and total number of sets required is 128 (number of sets = 

cache line divided by K-way set associative). Total address bit is divided into three part, 

first is offset bit field that will be of size 6 (offset bits = log2(cache line size)), second is 

set bit field that will be size of 7 (set bits = log2(number of sets)) and third one is tag bit 

field that will be of size 51 (tag bit = total address bits – (offset bits + set bits)). 

 

                                             Figure 4.3 address bits 

4.4.2 Design 32KB with 2KB LB 

To design 32KB memory with 2KB, there will be 16 LB required. We need to get 128 

set with 64-byte cache line so each LB will have 8 set with 64-byte cache size. LB 

selection to be done by the 4 MSB of set bit and least 3 bits of set field will be used to 

select one of the sets, this job will be done by the decoder. 4*16 decoder is required to 

select one of the LB and 3*8 decoder is used for selecting one set. After that from the 

selected set based on the tag bit, selection of one way from four ways will be done. Tag 

bit is simultaneously comparing are the tags from each way, to do this job in one clock 

cycle then all the send through the multiplexer and multiplexer chose data from the one 

of the ways and send it to the processor. From the given address, tag bit is compared 

with all the tag bit of each way and comparison is done by comparator and then cache 

hit or miss occurrence is decided. If cache miss occurs, then request will go to the main 
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memory and data will be taken and also replaced in cache memory by write through 

policy.    

 

 

                     Figure 4.3 2KB logical bank organization 

In figure 4.3 we have shown how to logical bank is organized. If the request is generated 

by the processor, then the address set has set bits 0010001. Based on the 4 MSB bits, 

LB 3 is selected and by the least 3 bits of sets, set number 1 is selected. Then by figure 

4.4 we have shown selection of particular for sending the data. The tag bits from the 

given address is compared with all ways tag bits and then put in the comparator with 

the valid bit, where the valid bit represents whether data is present or not. Based on the 

decision, hit or miss is done and with the help of multiplexer, data is send to the 

processor. 



 

29 
 

               

 

                 Figure 4.4 Ways representation in the sets for 2KB LB 

 

4.4.3 Design 32KB with 4KB LB 

To design 32KB memory with 4KB, 8 LB is required. We need to get 128 set with 64-

byte cache line so that each LB will have 16 set with 64-byte cache size. LB selection 

is done by the 3 MSB bits of set bits and least 4 bits of set field will be used to select 

one of the sets. Note that this job will be done by the decoder. 3*8 decoder is required 

to select one of the LB and 4*16 decoder is used for selecting one set. Rest of the 

procedure is same as we have discussed for the 2KB LB. 

In figure 4.5 we have shown a way to organize logical bank of size 4KB for the 32KB 

cache memory. If the request is generated by the processor to the cache memory and in 

the address sent by the processor, set field has set bits 1101101. After that based on the 

3 MSB bits, LB 7 is selected and by the least 4 bits of set field, set number 7 is selected. 

Figure 4.6 shows ways inside the particular set and in that we have shown the selection 

of particular way for sending the data. Also, the tag bits from the given address is 

compared with all ways tag bits and then put in the comparator with the  



 

30 
 

 

                   Figure 4.5 4KB logical bank organization 

 

 

Figure 4.6 Ways representation in the sets for 4KB LB  
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valid bit, where valid bit represents whether data is present or not. Based on that 

decision, hit or miss is done and with the help of multiplexer, data is sent to the 

processor. 

4.4.4 Design 32KB with 8KB LB 

To design 32KB memory with 8KB, 4 LB is required. We need to get 128 set with 64-

byte cache line so that each LB will have 32 set with 64-byte cache size. LB selection 

is done by the 2 MSB bits of set bits and least 5 bits of set field will be used to select 

one of the sets. Note that this job will be done by the decoder. 2*4 decoder is required 

to select one of the LB and 5*32 decoder is used for selecting one set. Rest of the 

procedure is same as we have discussed for the 2KB LB. 

 In figure 4.7 we have shown a way to organize logical bank of size 8KB for the 32KB 

cache memory. If the request is generated by the processor to the cache memory and in 

the address sent by the processor, set field has set bits 1011000. After that based on the 

2 MSB bits, LB 3 is selected and by the least 5 bits of set field, set number 24 is selected. 

Figure 4.8 shows ways inside the particular set and in that we have shown the selection 

of particular way for sending the data. Also, the tag bits from the given address is 

compared with all ways tag bits and then put in the comparator with the valid bit, where 

valid bit represents whether data is present or not. Based on that decision, hit or miss is 

done and with the help of multiplexer, data is sent to the processor. 

       

                     Figure 4.7 8KB logical bank organization 
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Figure 4.8 Ways representation in the sets for 8KB LB 

4.4.5 Design 32KB with 16KB LB 

To design 32KB memory with 16KB, 2 LB is required. We need to get 128 set with 64-

byte cache line so that each LB will have 64 set with 64-byte cache size. LB selection 

is done by the 1 MSB bits of set bits and least 6 bits of set field will be used to select 

one of the sets. Note that this job will be done by the decoder. 1*2 decoder is required 

to select one of the LB and 6*64 decoder is used for selecting one set. Rest of the 

procedure is same as we have discussed for the 2KB LB. 

In figure 4.9 we have shown a way to organize logical bank of size 16KB for the 32KB 

cache memory. If the request is generated by the processor to the cache memory and in 

the address sent by the processor, set field has set bits 1011110. After that based on the 

1 MSB bits, LB 2 is selected and by the least 6 bits of set field, set number 30 is selected. 

Figure 4.10 shows ways inside the particular set and in that we have shown the selection 

of particular way for sending the data. Also, the tag bits from the given address is 

compared with all ways tag bits and then put in the comparator with the valid bit, where 

valid bit represents whether data is present or not. Based on that decision, hit or miss is 
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done and with the help of multiplexer, data is sent to the processor.

 

                              Figure 4.9 16KB logical bank organization 

  

              Figure 4.10 Ways representation in the sets for 16KB LB 
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Chapter 5 

 

Results and Discussions 

 

For the purposes of implementation, any cache memory configuration can be chosen. 

In this thesis the following standards are considered: 

Cache memory 32KB 

Cache size 64B 

4-way set associativity 

Total number of sets 128 

Address width 64 bits  

Tag field 51 bits 

Set field 7 bits  

Offset field 6 bits 

Clock Frequency 1.8GHz to 2.4GHz 
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5.1 Simulation Wave from Top level 

 

                  Figure 5.1 Simulation waveform of top-level design of 32KB memory 

                 5.2 Simulation Wave Form of Logical Bank Size of 2KB 

 

                    Figure 5.2 Simulation waveform of LB of size 2KB 
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                 Figure 5.3 Simulation waveform of dout of 2KB each  

                  5.3 Simulation Wave form of Logical Bank Size of 4KB 

 

                                        Figure 5.4 Simulation waveform of LB of size 4KB 
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                                     Figure 5.5 Simulation waveform of dout of 4KB each 

              5.4 Simulation Wave Form of Logical Bank Size of 8KB  

 

                                              Figure 5.6 Simulation waveform of LB of size 8KB 

 

                                             Figure 5.7 Simulation waveform of dout of 8KB each 
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                  5.5 Simulation Wave form of Logical Bank Size of 16KB  

 

                                     Figure 5.8 Simulation waveform of LB of size 16KB 

 

                                     Figure 5.9 Simulation waveform of dout of 16KB each 

 

In the waveform, we have shown input and output from top level, memory level and 

logical bank. From the top level, we have shown read and write operations to one data 

input and one data output and another signal active is used to activate logical bank. In 

each logical banks, the memory wrapper wave form signals are there, which is used in 

the sleep mode FSM. In the third waveform, read data is taken out from each logical 

bank. 
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5.6 Comparison of different configurations based on 

hardware requirements  

Size of 

Memory 

(Total 

size 

32KB) 

                    Hardware Requirements 

No. of 

Comparator  

No. of 

Decoder 

+ Shared 

Decoder 

No. of Multiplexer 

2KB LB 64 4*16+3*8 16(4*1) + 16(8*1) 

4KB LB 32 3*8+4*16 8(4*1) + 8(16*1) 

8KB LB 16 2*4+5*32 4(4*1) + 4(32*1) 

16KB 

LB 

8 1*2+6*64 2(4*1) + 2(64*1) 

                                          

                                                Table 5.1 Comparison on hardware requirements 

In the comparison table of different logical bank based on the hardware requirement, 

comparison has been provided for each logical bank with respect to number of 

comparators, decoder and multiplexer used. Based on the comparison, 4KB and 8KB 

logical bank is found better in comparison to 2KB and 16 KB logical bank to form 32KB 

memory. 
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Chapter 6 

 

Conclusions and Future Work 

 

In this thesis detailed analysis on the cache memory is done and we have discussed 

different configuration of logical bank for 32KB cache memory and a block diagram is 

also provided for organization of 32KB cache memory. Comparison with all tag of each 

way is done in one clock cycle. We have designed memory wrapper based on the sleep 

mode FSM to save power in the idle mode. Further, design of different configuration of 

cache is also done and then compared them based on the hardware requirement. Based 

on the comparison, we come into conclusion that 4KB and 8KB logical bank perform 

well compared to other logical bank.  

In future we will analysis different way to set associative mapping with this design to 

improve the performance and will focus on the miss rate minimization specially because 

miss rate impacts not only on the execution time but also on optimize power. We will 

also observe this design by varying the cache size for better performance. After adding 

all this features, we again compare all the logical bank to form 32KB based on the power 

and we can more accurately comment on the design of logical bank, which performs the 

best among all logical banks.  
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