

 STUDY AND ANALYSIS OF POWER

OPTIMIZATION TECHNIQUES FOR HIGH-

SPEED CACHE MEMORY ARCHITECTURE

M.Tech Thesis

By
ROHIT KUMAR LILHARE

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE 2021

STUDY AND ANALYSIS OF POWER

OPTIMIZATION TECHNIQUES FOR HIGH-

SPEED CACHE MEMORY ARCHITECTURE

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

Master of Technology

by

ROHIT KUMAR LILHARE

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
 JUNE 2021

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION
 I hereby certify that the work which is being presented in the thesis entitled STUDY AND ANALYSIS

OF POWER OPTIMIZATION TECHNIQUES FOR HIGH SPEED CACHE MEMORY

ARCHITECTURE in the partial fulfillment of the requirements for the award of the degree of MASTER OF

TECHNOLOGY and submitted in the DISCIPLINE OF ELECTRICAL ENGINEERING, Indian

Institute of Technology Indore, is an authentic record of my own work carried out during the time period

from JULY 2019 to JUNE 2021 under the supervision of Dr. Swaminathan Ramabadran, Assistant Professor,

IIT INDORE and Mr. Abhishek Sakharwade, Staff Engineer, QUALCOMM BANGLORE

 The matter presented in this thesis has not been submitted by me for the award of any other degree of

this or any other institute.
 Signature of the student with date

(ROHIT KUMAR LILHARE)
--
 This is to certify that the above statement made by the candidate is correct to the best of my/our
knowledge.

Signature of the Supervisor of

M.Tech. thesis (with date)
 Signature of the Supervisor of

M.Tech. thesis (with date)
 (DR. SWAMINATHAN R.) (MR. ABHISHEK SAKHARWADE)
--
 ROHIT KUMAR LILHARE has successfully given his/her M.Tech. Oral Examination held on 4
June 2021.

Signature(s) of Supervisor(s) of M.Tech. thesis Convener, DPGC
Date: 04/06/2021 Date: 04/06/2021

 Dr. Puneet Gupta

Signature of PSPC Member 1 Signature of PSPC Member 2

Date: 7 June 2021 Date:

04/06/2021

04/06/2021
(Swaminathan R)

 Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor Dr. Swaminathan

Ramabadran for his constant support, patience, encouragement, and immense

knowledge. His guidance helped me in conducting the research and writing of this

M.Tech dissertation.

I would also like to thank my external supervisor Mr. Abhishek Sakharwade for giving

me the opportunity to work under him and his direction. I wish to express gratitude to

my supervisor for providing good platform at QUALCOMM to perform my work.

I am thankful to the members of my thesis committee: Dr. Srivathsan Vasudevan and

Dr. Puneet Gupta for their encouragement and insightful comments. Their questions and

suggestions helped me to widen my knowledge from various perspectives.

 I am thankful to all the faculty members of the Department of Electrical Engineering

for their support. I must also thank my fellow batch mates and all other friends for

making my stay at IIT Indore delightful. I also thank my family for their unceasing

encouragement and support throughout this journey.

Rohit Kumar Lilhare

M.Tech (communication and signal processing)

1902102005

Discipline of Electrical Engineering, IIT INDORE

Abstract

Power optimization in cache memory is very attractive area of research to achieve data

transfer at high speed between the high-speed processor and low speed main memory

(DRAM). The processor accesses the main memory through cache memory to enhance

system performance. This thesis demonstrates that cache usage is an important measure

of performance and power with an emphasis on the order of access to the cache line. In

this thesis, we mainly focused on cache memory optimization through L1 data cache

memory. For that we did experiment on 32KB size of cache memory architecture with

64B cache size and 4-way set associative cache and divide this 32KB size of cache

memory into smaller size of caches using 2KB, 4KB, 8KB and 16KB size of logical

banks to organize 32KB memory. After that we compared all 2KB, 4KB, 8KB and

16KB logical banks based on the number of comparators used, number of shared or

individual address decoder used, number of multiplexers required in each logical bank.

After that we evaluate the miss rate in data transfer, cost in each logical bank

organization, bandwidth required in each organization and memory traffic in each

organization. Sleep mode finite machine concept is also used as per the Qualcomm

memory specs to save the power and in that clock is used only when memory is busy in

reading and writing of data, else clock is off as per memory timing specification. With

the help of all these observations we decided 4KB and 8KB logical bank organization

is better suited for one big 32KB size logical bank organization.

i

Table of Contents

List of Figures iii

List of Tables v

List of Abbreviations vii

Chapter 1: Introduction 1

 1.1 Memory Hierarchy ………………………………………………………. 1

 1.2 Motivation ………………………………………………………………. 3

 1.3 Organization of the Thesis ………………………………………………. 5

 1.4 Summary ………………………………………………………………… 6

Chapter 2: Literature Review 7

Chapter 3: Theoretical Foundation of Cache Memory 11

 3.1 Cache Memory Architecture ……………………………………………. 12

 3.2 Terms Related to Cache Memory ………………………………………. 15

 3.3 Cache Memory Organizations …………………………………………. 16

 3.3.1 Direct Mapped Cache ……………………………………………... 17

 3.3.2 Fully Associative Mapped Cache …………………………………. 18

 3.3.3 K-Way Set Associative Mapped Cache……………………………. 19

 3.4 Writing Policy in Cache Memory ………………………………………. 21

ii

Chapter 4: Power Optimization Techniques for L1 Data Cache 23

 4.1 Design Specification of Memory Wrapper ……………………………... 23

 4.2 Top Level Block Diagram of The Memory Wrapper …………………... 24

 4.3 Sleep Mode Finite State Machine ………………………………………. 25

 4.4 Different Configuration of LB for 32KB L1 Data Cache Design ……… 27

 4.4.1 Specifications for 32KB L1 Data Cache …………………………. 27

 4.4.2 Design 32KB with 2KB LB ……………………………………… 27

 4.4.3 Design 32KB with 4KB LB ……………………………………… 29

 4.4.4 Design 32KB with 8KB LB ……………………………………… 31

 4.4.5 Design 32KB with 16KB LB ……………………………………. 32

Chapter 5: Results and Discussion 34

 5.1 Simulation Wave from Top level ……………………………………... 35

 5.2 Simulation Wave Form of Logical Bank Size of 2KB …………. …… 35

 5.3 Simulation Wave form of Logical Bank Size of 4KB……………….... 36

 5.3 Simulation Wave form of Logical Bank Size of 8KB ………………... 37

 5.3 Simulation Wave form of Logical Bank Size of 16KB ………………. 38

 5.6 Comparison table of different configurations on hardware requirements… 39

Chapter 6: Conclusions and Future Work 40

REFERENCES

iii

List of Figures

1.1 Memory hierarchy …………………………………………………………. 2

1.2 Performance curve ………………………………………………………… 3

1.3 Basic memory and processor architecture ………………………………… 4

1.4 Basic memory and processor with cache architecture ……………………. 5

3.1 Levels of cache between processor and main memory …………………… 12

3.2 Basic cache memory architecture for 2 cores ……………………………… 13

3.3 Functions of L1 cache ……………………………………………………... 14

3.4 Functions of LLC cache ………………………………………………….... 14

3.5 Direct mapped cache ………………………………………………………. 18

3.6 Fully associative mapped cache …………………………………………… 19

3.7 4-way set associative cache mapping ……………………………………… 20

3.8 2-way set associative cache mapping ……………………………………… 20

4.1 Top level block diagram of memory wrapper ……………………………... 25

4.2 Sleep mode FSM …………………………………………………………... 26

4.3 Address bit …………………………………………………………………. 27

4.4 2KB logical bank organization ……………………………………………. 28

4.5 Ways representation in the sets for 2KB LB ……………………………… 29

4.6 4KB logical bank organization …………………………………………… 30

4.7 Ways representation in the sets for 4KB LB ……………………………… 30

iv

4.8 8KB logical bank organization ……………………………………………. 31

4.9 Ways representation in the sets for 8KB LB ……………………………… 32

4.10 16KB logical bank organization ………………………………………... 33

4.11 Ways representation in the sets for 16KB LB …………………………… 33

5.1 Simulation waveform of top-level design of 32KB memory ……………… 35

5.2 Simulation waveform of LB of size 2KB …………………………………. 35

5.3 Simulation waveform of dout of 2KB each ………………………………. 36

5.4 Simulation waveform of LB of size 4KB …………………………………. 36

5.5 Simulation waveform of dout of 4KB each ………………………………. 37

5.6 Simulation waveform of LB of size 8KB …………………………………. 37

5.7 Simulation waveform of dout of 8KB each ………………………………. 37

5.8 Simulation waveform of LB of size 16KB ………………………………… 38

5.9 Simulation waveform of dout of 16KB each ………………………………. 38

v

List of Tables

5.1 Table for comparison on hardware requirements ……………………………... 39

vi

vii

List of Abbreviations

SRAM Static Random-Access Memory

DRAM Dynamic Random-Access Memory

ECHP Early Cache Hit Predictor

NTW No Tag Matching Write

LA Locality-based Allocation

FSM Finite State Machine

LB Logical Bank

CPU Central Processing Unit

AMAT Average Memory Access Time

ALU Arithmetic Logic Unit

viii

1

Chapter 1

Introduction

The Memory system is a vital component of any high-performance computer system.

Memories in computing, refers to the physical devices used to store data (e.g. program

state information) or programs (sequences of instructions) on a temporary or permanent

basis in a computer or other digital electronic device. The term primary memory, that

operate at high-speed (i.e. RAM), as a compared from secondary memory, is used to

denote the information in physical systems. Secondary memory can be accessed via

large storage devices such as hard discs, floppy disk storage media, optical storage

devices which offers greater capacity but slow to accessing data. In contrast to primary

memory, secondary memory is not directly accessible via the processor. Primary

memory access through the processor is done by utilizing address and data busses, while

the input and output channels serve to access the secondary memory. Data and

instructions that are stored inside the memory are accessed using the memory addresses

which denote the location of each element inside the memory [1].

1.1 Memory Hierarchy

Memories can be organized based on access time, cost of the memory, size of the

memory. For perceived execution speed of the processor, memory speed is often the

major component, since the processor can only execute data and instruction as fast as

memory provides. It is obvious that the design will aim for a large-sized, high-speed

memory for a given cost. The solution to this problem is offered by hierarchical memory

2

design.

A typical memory hierarchy as shown in figure 1.1, as one moves down the hierarchy,

the cost per bit decreases, the access time increases, the capacity increases and

frequency the memory access by the processor decreases. Hierarchy design of memory

is based on two principles: first is the principle of locality (both temporal and spatial),

and second is the cost or performance of the memory. Temporal locality principal says

that it is likely for recently accessed memory locations is being accessible sometime in

the not-too-distant future. The principal of Spatial locality says that memory locations

are likely to be accessible within a short span of time that are nearby [2]. Memory

hierarchy work well, because programs prefer to access the storage at any high level

more often than they access the storage at the next lower level. As a result, storage at

the next level might be slower, but bigger and less expensive per bit. Thus, smaller,

faster and more expensive memories are therefore supported with bigger, less costly,

slower memories. The total effect is a vast pool of memory which thus costs the same

as cheap storage at the lower level of the hierarchy but feeds data to processes at the

same rate as fast storage at the top [1][2].

 Figure 1.1 Memory Hierarchy [2]

Magnetic Tape

Magnetic Disk

Main Memory

Register

Cache
Smaller,

Faster,

Costliest

3

1.2 Motivation

As the gap between performance of processor and main memory increases continuously,

it causes a significant roadblock to exascale computing. Memory performance has

lagged behind the processor performance, and today due to the advent of data-intensive

applications particularly, becoming a bottleneck. Figure 1.2 [3] shows this performance

gap over past three decades.

With the advent of data intensive applications, memory is fast becoming the critical

bottleneck for system performance and is not scaling at the same rate as the computing

performance.

 Figure 1.2 Performance Curve [3]

Basic architecture of memory and processor is shown in figure 1.3. In this figure

processor connected with a main memory module (DRAM) whose performance is far

behind in comparison to the processor. The performance of processor cores increases at

a faster pace. Compared to large capacity main memory, the processor is generally able

executes operations on operands faster than main memory access time. Although

semiconductor memory exists that can function at rates equivalent to the processor's, it

4

is not cost-effective to offer very high-speed semiconductor memory for the main

memory, taking in view the capacity of the main memory. The performance of the

processor and to the system as whole, can indeed be bottleneck due to the presence of

slower memory.

 Figure1.3 Basic memory and processor architecture [6]

The problem of performance gap between main memory and processor can be taken

the edge off by inserting a small block of high-speed memory known as a cache (SRAM)

between the processor and the main memory and figure 1.4 shows that representation.

The program issues effective addresses and read and write requests, and these requests

are satisfied by memory. The request is unknown to the program, whether it is the cache

(SRAM) or main memory (DRAM) that processes. Usually, instructions and data in

cache memories can be referenced in 10 to 25 percentage of the time taken to access

main memory [5]. Thus, the execution rate of the system to be substantially increased

by the cache memories. If majority of memory location accesses are cached memory

locations, then the average latency of memory accesses will be nearer to the cache

memory latency than to the main memory [6].

So, cache memory employs as bridging the performance gap between the high-speed

processor and slow speed main memory. The processor cache is a hardware component

that stores frequently accessed data. High bandwidth and low latency of memory with

respect to the processor can be achieved by the memory caches. In this thesis we discuss

CPU

Main Memory

Data bus
Address

bus

5

techniques for power optimization that involve in enhancing the performance of the

high-speed cache memory organization.

 Figure1.4 Basic memory and processor with cache [6]

1.3 Organization of Thesis

In the further part of the thesis is organized in the following fashion:

• Chapter 2: In this chapter we will discussed about the related work that is already

done with respect to the high-speed cache memory performance enhancement.

• Chapter 3: In this chapter we will focus on the terms that is very important terms

related to the cache memory. After that we will add the mapping technique for

cache memory. Then we will cover the writing policy for the cache.

CPU

Cache

Main Memory

Data bus

Data bus

Address

bus

6

• Chapter 4: In this chapter we will discuss about the proposed technique for the

implementation of 32Kb cache. And other power saving option that can be done in

the cache memory organization

• Chapter 5: In this chapter, we will capture the various test bench results for the

different organization and the comparison table for different logical banks

organizations.

• Chapter 6: In this chapter, we will conclude what we have done and what possibly

future work can be done in this field.

1.4 Summary

In this chapter, we have discussed about the evolution of the memory hierarchy and how

cache memory comes into picture for the evolution of memory performance. Then the

motivation behind the cache memory optimization technique. And in the last how we

organized the thesis for further parts.

7

Chapter 2

Literature Survey

In this chapter, we discuss the existing works related to the theme of the proposal. In

[7], the authors proposed a technique in which the effectiveness of the target banks

improved by continuously adjusting its associativity. Also, the expense of sending

requests is improved by using network distance as an extra parameter for target

selection. The methodology used here has varied working set requirements, as well as

uneven distribution of data across cache banks, which is dynamically handled to

determine which banks should be switched off. Target bank will get the content of

shutdown bank that will also, take care of any future requests for this closed bank. The

target bank manages the shutdown bank's additional load, so will get a greater number

of requests. Proposed technique achieved 23 percentage EDP minimization for a 4MB

lower level of caches and 43 percentage reduction in static energy with a performance

constraint of 3 percentage.

In [8], A.D. Jebaseeli, M. Kiruba proposed a new cache architecture to improve the

accuracy of cache miss prediction by a partial tag enhanced-bloom filter. Significant

amounts of energy will be saved without sacrificing performance abasement by

allowing the L2 cache to function in a direct mapping mode while write hits and

minimizing tag comparison of cache miss prediction; there will be no necessitated to

use the L2 cache if a cache miss is detected. L2 cache does not functional for all tags,

and the partial bloom filter predicts cache misses. On average, the suggested

8

methodology saves 63 percent of the energy in L2 cache while incurring just 0.02

percent to the area overhead.

In [9], J. Lee and S. Kim, proposed a filter data cache design in order to efficiently

integrate the filter cache into the data cache hierarchy. They identified that since the

filter cache is being used for data cache, misses occur considerably. Those misses

increase cache latency and loading superfluous data that effects cost performance and

energy consumption. Three approaches are used in the described filter data cache design

to minimize miss costs: ECHP, LA, and NTW. When compared to the filter cache, the

suggested filter data cache decreases energy consumption by 21 percent, and the ALU's

energy usage on average by 27.2 percentage. The filter data cache depicts an immense

benefit on energy as the size of the L0/L1 caches grows, and it has minimal operating

cost in terms of area and power leakage.

In paper [10], A. G. Kumar, D. A. Janeera, M. Ramesh proposed novel cache

architecture so called Tag-Bloom cache designed to minimize power usage. Every way

with in L2 cache has a tag associated to it, is contained in way tag array in FLC. During

successive write hits, the L2 cache is being accessed as a direct mapped cache, reducing

power consumption. This method enhances the efficiency of both cache miss and cache

hit prediction. To increase the efficiency of cache hit as well as cache miss predictions,

the Bloom filter examines these way tags. Thus, with a minimum area overhead they

achieved energy effectual cache design without sacrificing efficiency deterioration.

In paper [11], C. H. Ting, Y. H. Kao and J. D. Huang proposed the concept of sequential

way access, on each set-associative cache access ensuring minimal energy usage and

high performance to limit the number of ways that can be activated. The proposed

techniques eliminate future accesses once a hit is identified after accessing each way in

sequence. It also reduced the heavy fan out load of the hit signal, as a result of a more

sophisticated cache control mechanism, which prevents the cache cycle time against

increasing. The experiments demonstrate that when compared to a traditional 2-way set-

associative cache of size 32KB, the same size 2-way sequential access set-associative

cache consumes 24 percentage less energy with no performance compromise.

In paper [12], Z. Chuanjun, V. Frank, N. Walid shown that changing a cache's line size

9

to a specific program is seemed to be an incredibly efficient approach for minimizing

memory access energy for embedded devices. By adding this configuration to a cache

architecture is straight forward and embedded system designers can select the best

configuration simply. They have worked on a configurable cache architecture with not

only have a variable line size as well as provides flexible number of ways to access it

with maintaining same total size. Experiment result showed that owing to memory

access, adjusting the line size to a specific program can minimize energy dissipation by

50 percentage.

In paper [13], T. Ishihara, F. Fallah proposed architecture of a non-uniform cache for

minimizing power requirements for memory systems. Non uniform cache provides

differing associativity levels (i.e., the number of cache-ways) across distinct cache sets.

In this paper, authors also proposed a programming approach for decreasing cache-tag

and cache-way requests that are redundant. The proposed approach evaluates the

optimal number of cache-ways for each cache-set and produces non-uniform cache

memory object code. Result showed that the methodology has the potential to minimize

power usage by up to 76 percent in comparison to the conventional method of memory

systems.

In paper [14], M. Mutyam, C. J. Janraj, T. Warrier, T. V. Kalyan proposed way-sharing

cache design, in which two cache sets exchange certain cache ways such that high-

demand sets obtain the most cache ways than low-demand sets. Regardless of the set-

by-set requirements, in standard k-way set-associative caches, every set has n cache

ways at its allotments, although demands for these cache ways might vary between

cache sets. Using this feature, way-sharing cache architecture has been proposed in

which by permitting cache ways to be shared across two cache sets, as high as 41

percentage dynamic power savings with negligible performance penalty is achieved.

In paper [15], Z. Chuanjun, V. Frank, N. Walid proposed technique in which three

software-configurable settings in the cache can be customized to the specific purposes.

The cache's associativity may be adjusted to be direct-mapping, 2-way, or 4-way set-

10

associative mapping using a unique mechanism called way concatenation, is first one.

The total size of a cache may be varied by having to shut down ways is the second

configurable parameter. Third and last one is, the line size of the cache can be

customized to 16 bytes, 32 bytes, or 64 bytes. Configurable cache adjusted to each

program ended up saving energy for every program with an overall energy savings of

over 40 percentage associated to memory access when compared to the standard 4-way

set associative cache and a traditional direct-mapping cache.

11

Chapter 3

Theoretical Foundation of Cache
Memory

Cache memory have been playing an important role in bridging the performance gap

between the high-speed processor and slow speed main memory. Cache memory is

special type SRAM placed between the slow main memory and the fast processor.

Cache is the first or highest level of memory structure that the processor encounters

upon leaving an address. Cache memories are smaller in size, cache memories are

employed in modern computer systems to temporarily store sections of the main

memory's (DRAM) contents that are currently be in use.

When request is generated to a memory, the cache memory will get the request first

from processor. Then the check will be made to determine whether the data is present

in the cache and if present, then the data will be sent to the processor. If data is not there,

a block with some fixed number of words (based on cache size) from main memory is

read into the cache memory and then the word will be sent to the processor. The concept

behind the fast cache memory is similar to virtual memory that some active part of data

(frequently used data) of a slow main memory is get stored in a cache memory. It is the

implementation of cache and virtual memory that made the difference otherwise both

rely on the correlation features seen in address reference sequences, so conceptually the

same but because of the speed requirements of cache their implementations are totally

different. Because of principle of locality of reference, the cache memory to be effective

by storing only the subset (i.e., subset of recently used instructions and data) of the slow

main memory. With reference to the principle of locality of reference, to satisfy a single

12

memory reference When a block of data is fetched into the cache, there is a chance that

subsequent accesses to that memory location or other data in the block will occur. So

that the upcoming requests for the respective data may be served more quickly because

cache stores the recently accessed data [4][6].

In a particular processor design, the term word is referring for the unit of data used, a

word is represented by fixed size group of bits. In the form of word, the transfer of

traffic to and from the processor and the cache takes place. And in the form of

block between the cache and main memory, the traffic is transferred. With respect to

the cache these cache blocks are referred to as cache lines. Usually, a word size varies

between 8, 16, 32 and 64 bits, in the modern processors.

3.1 Cache Memory Architecture

Cache memory has three levels of cache. Levels describe its closeness and accessibility

to the processor. L1 is called as the first level of cache (FLC) and L2 and L3 is called

as the last level of cache (LLC). Figure 3.1 showed that the three levels between the fast

processor and the slow speed memory.

 Figure 3.1 3 Levels of cache between processor and main memory

For L1 cache, instruction and data caches are separated, whereas for last levels of cache,

instructions and data cache are unified. L1 and L2 are present inside processor and L3

are located outside the processor. With the help of FLCs, we can minimize access

latency and while with the help of LLCs reduce the numbers of off-chip accesses and

cache miss-rate. By design L1 caches are smaller in size and employ parallel lookup

and tag arrays and have smaller associativity. LLCs, on the other hand, are significantly

bigger, use serial or phased data and tag array lookups, and have stronger associativity.

Processor L2

Cache

L3

Cache

L1

Cache

Main

Memory
L2

Cache
Processor

13

FLCs consume a bigger portion of their power in the form of dynamic power due to

their lower size and quantity of accesses, while L2 and L3 caches spend the majority of

their power in terms of leakage power [16].

The basic cache memory architecture shown in the figure 3.2[16].

 Figure 3.2 Basic cache memory architecture for 2 cores

In this figure we have taken the example of processor which has two core. L1 data cache

and L1 instruction cache are separated for each core and for each core has there is

unified L2 cache memory. And L3 cache memory is unified for all the cores. A unified

cache is more flexible because it offers greater hit ratio compared to the splits caches

and it can flexibly accommodate either data or instruction and the program may have a

larger fraction of instructions than data or vice versa. The fundamental benefit of a split

cache is that it avoids conflict in the cache between the instruction fetch/decode unit and

the execution unit. In this thesis, we will mainly focus on L1 data cache memory.

In figure 3.3 we have listed some basic functions of L1 cache and in the figure 3.4, we

have listed the functions of L2 and L3 cache memory [4].

L1

Instruction

Cache

L1 Data

Cache

L1

Instruction

Cache

L1 Data

Cache

Core 0 Core 1

Unified L2 Cache Unified L2 Cache

L3 Cache

(Unified for all cores)

14

 Figure 3.3 Functions of L1 cache

 Figure 3.4 Functions of LLC cache

L2, L3

Cache

SECONDARY STORAGE

LARGEST AND FASTEST

HIGH ASSOCIATIVITY

MINIMIZE CACHE MISS

RATE

DATA AND INSTRUCTION

CACHE ARE UNIFIED

EMPLOY SERIAL

LOOKUP

LEAKAGE ENERGY

SPENT HERE

15

3.2 Terms Related to Cache Memory

Cache Hit: If the data or instruction requested by the processor is present in the cache,

then it is termed as cache hit. The data is taken from that level and propagated up the

hierarchy.

 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒉𝒊𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒎𝒆𝒎𝒐𝒓𝒚 𝒂𝒄𝒄𝒆𝒔𝒔

Cache Miss: If the required data or instruction requested by the processor is not present

in the cache, then it is termed as cache miss and request goes down a level until found.

A cache miss at any level may overwrite old data when the requested new data is

propagated up the hierarchy which result longer execution time.

Access Time: It indicates the time for representing the address and retrieve the

appropriate data from memory.

Memory Cycle Time: It is the time required by the memory to recover before next

access.

Cache Lines: The unit of data transfer between the cache memory and main memory is

represented by cache line. Most commonly used cache line is 64 bytes. Caches lines

contain copies of blocks of data from main memory.

Average Memory Access Time:

AMAT = Hit Time + (Miss Rate * Miss Penalty access)

Hit Time = Hit Rate * Access Time

The various types of misses are there in cache memory which is categorized as:

• Compulsory misses: These are known as first references misses. When first access

to the block happens then compulsory misses occur. From the upper-level memory,

data must be fetched at least once to be present in the cache.

• Conflict misses: Conflict misses occurs during the mapping of two different data to

the same cache line.

• Coherency misses: Coherency misses occur when the data updated by the external

processor or input output device.

• Capacity misses: Capacity misses occur when the data and instructions required for

16

the program exceeds the cache size.

3.3 Cache Memory Organizations

A cache memory is a special type static random-access memory (SRAM), where copies

of information currently used by instructions and data, loaded from the slow speed main

memory stores by the computer hardware. The cache has more expensive

implementation technology but has significantly shorter access time than the main

memory. If the cache memory is used again for information fetched to it, then the access

time to it will be much shorter than in the case of the main memory. If the same

information is stored in it, then the program will execute faster because of the cache

memory [18].

Cache memory operation governs the principle of locality of reference. There are two

methods for retrieving programs from main memory and storing them in cache.

Temporal Locality: Temporal locality means currently being fetched instruction

or data may be needed soon. To avoid searching of that data in main memory,

instruction or data should be stored in the cache memory [17].

There is a high probability that if some data is referenced, then that data will be

brought up again in the near future.

Spatial Locality: Spatial locality refers to the present memory location where an

instruction or data is being retrieved, which may be required in the near future. Spatial

locality is slightly differing from temporal. The focus of spatial locality was on nearly

situated memory locations, but the focus of temporal locality was on the actual

memory locations being fetched [17].

The cache mapping techniques used to bring the main memory's contents into cache and

are then referenced by the processor. It is basically an algorithm by which cache lines

are mapped from main memory blocks. The number of cache lines is often less than the

number of main memories blocks [18].

To determine which main memory block occupies a cache line in cache memory,

17

mapping methods are required. According to the mapping policy cache memory is

organized. Three different types of cache organizations commonly used based on

mapping functions.

3.3.1 Direct Mapped Cache:

Implementation of direct mapped cache is very simple because every single main

memory block is mapped to single cache line. In this mapping technique, every memory

block of main memory is allotted for specific cache line. If the main memory block that

in recently present in cache line, and new block of data is required by processor, then

the previous block is deleted. The address bits are divided into three segments like as

offset bits, index bits and tag bits. index bits are used to access the cache directory,

offset bits used get the specified byte within a cache line and tag bits field must be

compared with the tag bits of respective data block associated with it, to ensure a hit

[19][20].

If CPU generates request to a memory, the index bit is used for accessing the specific

line of the cache memory. The tag bit of that address is then compared with the tag

address of the cache memory. If this tag is match with the tag address field, the word is

present in the cache and cache hit occurs. Else, a cache miss will be occurred. If cache

miss occurs, then required word will be taken from the main memory. And by changing

the existing tag with the new one, it will be saved in the cache memory. In figure 3.5

block number J is selected for line L based on the tag and index bits. Direct mapped

cache has high conflict misses because of lack of associativity but have better access

time.

18

 Figure 3.5 Direct mapped cache

3.3.2 Fully Associative Mapped Cache:

In fully associative mapped cache technique, the block of main memory can be placed

into any of the cache line in cache memory, which is freely available. Fully mapped

cache technique is more flexible compared to the direct mapped cache, but

implementation of fully associative mapping is more complex. Address bit is divided

into two parts one is tag bit field which is used for identifying the given block uniquely

and other is offset bits that is used get the specified byte within a cache line. when CPU

generate the request to cache, the sent address request is compared to each entry in the

tag array to determine whether the data referenced for the operation is there in cache or

not. If requested address is found in cache memory, data belong to that address location

in the cache is fetched and returned back to the processor, otherwise a miss occurs, then

required data will be taken from the main memory [21][22].

In the figure 3.6 the block J can be placed any of the cache line which is free in the

cache memory.

19

Figure 3.6 Fully associative mapped cache

3.3.3 K-Way Set Associative Mapped Cache:

In the K-way set associative mapped cache technique, according to the number of sets

cache lines are grouped and K number of lines is present in each set. A specific block

of the main memory can be mapped to one specific set in the cache memory. And block

may be mapped into any one of the ways within the set that depends on the size of K.

Typical size of K varies between 2-ways, 4-ways, 8 ways and 16 ways. Set way

associative mapped cache is tradeoff between fully associative mapped cache and the

direct mapped cache. Address bit is divided into three parts, tag bits field, set bits field

and offset bit field. If request is generated from the processor, then set bits field is used

to select one particular set in the cache memory and then with the set based on the tag

bits field will be decided from which way, we have to get the data. If the tag bits are not

matched with any of the ways, then cache miss will occur, and the request will be sent

to the main memory to get that data from the particular location [23][24].

Figure 3.7 is the example of 4-way set associative cache memory that shows reading of

data from the given address, based on the set bits will select the set from the cache

20

memory. Then we will compare the tag bit from the each of the ways in the selected set

and result will generate by the comparator and with the help of the multiplexer data will

be sent to the processor and with the OR gate we will decide cache hit or miss occurs.

 Figure 3.7 4-way set associative cache mapping

 Figure 3.8 2-way set associative mapping

21

Figure 3.8 show the organization of 2-way set associative mapping, in which block

number J is mapped to the set number 1 of the cache memory.

Cache memory with the higher associative organization leads to more complex

hardware requirements but will have a lower miss rate as each set has more blocks, so

chances of a conflict between two addresses is less. Fully associative cache makes

complete use of their capacity but relying on expensive search process, so they have

higher hardware cost. To search in K-way set-associative cache is easier than fully-

associative cache.

3.3.4 Writing Policy in Cache Memory

While performing the read operation on cache memory it will not change data present

in the memory. But performing any write operation on the cache will changes the

content data of the cache memory. So, it is very important to perform any write on cache

memory carefully. Assume a value is already cached and we want to overwrite it, but

only changing the cached value would result in a discrepancy between the cached copy

of data and the original data value preserved in main memory [27]. In cache memory,

to ensure cache memory and main memory coherence, two major write policies are

used:

Write Through Policy: Write-through policy is the most commonly methods to be

used for writing into the cache. In write-through method, when the cache memory is

updated, it also updates the main memory at the same time. So, at any time, the main

memory will contain the same data which is available in the cache memory. Write

through policy is a slow process because of excessive write and every time it needs to

access main memory. This method will perform good, if there are few writes to a given

block and if there are multiple writes to the given block, then it will be disadvantageous

[26].

Write Back Policy: Write-back policy also used for cache memory writing. In this

policy only the cache memory location is updated during a write operation while

following write-back method. Updated location is marked by a flag, when update in

22

cache occurs. The flag is named as dirty bit or modified bit. When a dirty cache line is

thrown out, then only the stored data will be written to main memory [25].

Inconsistency may occur in write back techniques because of different copies of data in

cache and main memory, which is the only limitation of this technique. Flag bit is set if

cache memory is replaced by the word, then word will be written into main memory.

The idea behind this method is based on the fact that during write operation in cache

memory, the word present in the cache memory may be accessed several times before

also, so reduce the number of references to main memory [27].

23

Chapter 4

Power Optimization in Cache Memory

4.1 Design Specification of Memory Wrapper

Designed configurable memory wrapper to enable analysis of different configuration

with respect to power, area and performance for target IP. The features of the memory

wrapper include the configurable cache size with the default setting of cache size used

is 64 bytes. For the design of memory wrapper design we have used configurable size

logical bank (LB). Our design mainly focused on design of 32KB size of memory

wrapper. So if we use logical bank of size 8KB, then we will have requirement of 4

logical banks. For the design of memory wrapper, we have used configurable address

decoder architecture. It is the job of decoder to locate the selected memory block. The

address decoder architecture will be shared between all the logical banks. In our design

we have used 32KB memory wrapper with 64 data bits, then we have 12-bit address and

LB of 8KB having 10-bit address. So last two bit of address used for the decoding logic

and allow logical bank to be placed in any 8KB section of 32Kb address space.

24

Port to the memory wrapper:

▪ Input Ports

• Clock and Reset

• Write/Read Enable

• Write Address

• Active Input

• Write Data

▪ Output Port

• Read Data

Sleep Control logic also added inside the memory wrapper design. Sleep control logic

provides the power saving feature in the memory design whenever there is no reading

or writing is going on (means memory is in idle mode). Sleep control logic count the

idle number of clock pulse and put all logical banks into the sleep.

4.2 Top Level Block Diagram of the Memory Wrapper

Figure 4.1 show the top-level block diagram of the memory wrapper. In the top-level

block diagram, we have shown input ports to the memory wrapper and read out as the

output port to the wrapper.

In the block diagram we have shown memory controller, which drives input interface to

the logical banks via finite state machine (FSM). Also, memory controller gets the data

from the input port and drive it to the logical banks as per the memory protocol.

Sleep controller is responsible for the efficiently managing power mode (power up and

power) of the memory wrapper. It uses the activity counter for transition through various

sleep state to save power. Sleep controller maintains the activity counter per logical

banks. It is following the Qualcomm memory timing specification for enter and exits

from the sleep mode and with the help of this we have designed sleep mode FSM.

25

 Figure 4.1 Top level block diagram of memory wrapper

4.3 Sleep Mode Finite State Machine

In figure 4.2 we have shown FSM for Sleep mode diagram. Usually memory is in

normal mode, when it is doing reading and writing operation. But when memory is idle,

this means it is not doing any operation and for that to save the power in the idle mode,

we have designed the sleep mode FSM. In this FSM we have used counters, where one

is idle counter and other is the state change counter. When memory is in idle state (i.e.,

no read and write), the idle counter will check for the idle number of clock pulse and if

the configurable number of idle clock pulse is reached (default idle number of clock

pulse 5 is used), then the memory goes into the sleep mode stages. Sleep mode starts

from the state zero (STG0), where it will spend configurable amount of time and then

change the state from STG0 to state one (STG1). It will spend the defined amount of

26

time in state one then will move to the STG2 with the help of state change counter. In

STG2 sleep retention will be low to retain the data. After this stage wake up state will

start and in state three (STG3) it will spend some time and after that in the last state

which is dummy state (STG4) it will spend defined amount of time, because after the

wake up, first clock cycle will be invalid for read and write operation. After this state

idle counter will again check for the idle number of clock pulse and if defined idle clock

is reached, then it will remain in the sleep state, otherwise will go into the normal mode

and memory again starts the read and write operation.

 Figure 4.2 Sleep mode FSM

27

4.4 Different Configuration of LB for 32KB L1 Data

Cache Design

4.4.1 Specifications for 32KB L1 Data Cache

For the design of 32KB L1 data cache, in this dissertation we have used 4-way set

associative organization and cache line size of 64 bytes and address bit width of 64 bit

so total number of cache line require will be 512 (cache line = size of cache memory

divided by cache line size) and total number of sets required is 128 (number of sets =

cache line divided by K-way set associative). Total address bit is divided into three part,

first is offset bit field that will be of size 6 (offset bits = log2(cache line size)), second is

set bit field that will be size of 7 (set bits = log2(number of sets)) and third one is tag bit

field that will be of size 51 (tag bit = total address bits – (offset bits + set bits)).

 Figure 4.3 address bits

4.4.2 Design 32KB with 2KB LB

To design 32KB memory with 2KB, there will be 16 LB required. We need to get 128

set with 64-byte cache line so each LB will have 8 set with 64-byte cache size. LB

selection to be done by the 4 MSB of set bit and least 3 bits of set field will be used to

select one of the sets, this job will be done by the decoder. 4*16 decoder is required to

select one of the LB and 3*8 decoder is used for selecting one set. After that from the

selected set based on the tag bit, selection of one way from four ways will be done. Tag

bit is simultaneously comparing are the tags from each way, to do this job in one clock

cycle then all the send through the multiplexer and multiplexer chose data from the one

of the ways and send it to the processor. From the given address, tag bit is compared

with all the tag bit of each way and comparison is done by comparator and then cache

hit or miss occurrence is decided. If cache miss occurs, then request will go to the main

28

memory and data will be taken and also replaced in cache memory by write through

policy.

 Figure 4.3 2KB logical bank organization

In figure 4.3 we have shown how to logical bank is organized. If the request is generated

by the processor, then the address set has set bits 0010001. Based on the 4 MSB bits,

LB 3 is selected and by the least 3 bits of sets, set number 1 is selected. Then by figure

4.4 we have shown selection of particular for sending the data. The tag bits from the

given address is compared with all ways tag bits and then put in the comparator with

the valid bit, where the valid bit represents whether data is present or not. Based on the

decision, hit or miss is done and with the help of multiplexer, data is send to the

processor.

29

 Figure 4.4 Ways representation in the sets for 2KB LB

4.4.3 Design 32KB with 4KB LB

To design 32KB memory with 4KB, 8 LB is required. We need to get 128 set with 64-

byte cache line so that each LB will have 16 set with 64-byte cache size. LB selection

is done by the 3 MSB bits of set bits and least 4 bits of set field will be used to select

one of the sets. Note that this job will be done by the decoder. 3*8 decoder is required

to select one of the LB and 4*16 decoder is used for selecting one set. Rest of the

procedure is same as we have discussed for the 2KB LB.

In figure 4.5 we have shown a way to organize logical bank of size 4KB for the 32KB

cache memory. If the request is generated by the processor to the cache memory and in

the address sent by the processor, set field has set bits 1101101. After that based on the

3 MSB bits, LB 7 is selected and by the least 4 bits of set field, set number 7 is selected.

Figure 4.6 shows ways inside the particular set and in that we have shown the selection

of particular way for sending the data. Also, the tag bits from the given address is

compared with all ways tag bits and then put in the comparator with the

30

 Figure 4.5 4KB logical bank organization

Figure 4.6 Ways representation in the sets for 4KB LB

31

valid bit, where valid bit represents whether data is present or not. Based on that

decision, hit or miss is done and with the help of multiplexer, data is sent to the

processor.

4.4.4 Design 32KB with 8KB LB

To design 32KB memory with 8KB, 4 LB is required. We need to get 128 set with 64-

byte cache line so that each LB will have 32 set with 64-byte cache size. LB selection

is done by the 2 MSB bits of set bits and least 5 bits of set field will be used to select

one of the sets. Note that this job will be done by the decoder. 2*4 decoder is required

to select one of the LB and 5*32 decoder is used for selecting one set. Rest of the

procedure is same as we have discussed for the 2KB LB.

 In figure 4.7 we have shown a way to organize logical bank of size 8KB for the 32KB

cache memory. If the request is generated by the processor to the cache memory and in

the address sent by the processor, set field has set bits 1011000. After that based on the

2 MSB bits, LB 3 is selected and by the least 5 bits of set field, set number 24 is selected.

Figure 4.8 shows ways inside the particular set and in that we have shown the selection

of particular way for sending the data. Also, the tag bits from the given address is

compared with all ways tag bits and then put in the comparator with the valid bit, where

valid bit represents whether data is present or not. Based on that decision, hit or miss is

done and with the help of multiplexer, data is sent to the processor.

 Figure 4.7 8KB logical bank organization

32

Figure 4.8 Ways representation in the sets for 8KB LB

4.4.5 Design 32KB with 16KB LB

To design 32KB memory with 16KB, 2 LB is required. We need to get 128 set with 64-

byte cache line so that each LB will have 64 set with 64-byte cache size. LB selection

is done by the 1 MSB bits of set bits and least 6 bits of set field will be used to select

one of the sets. Note that this job will be done by the decoder. 1*2 decoder is required

to select one of the LB and 6*64 decoder is used for selecting one set. Rest of the

procedure is same as we have discussed for the 2KB LB.

In figure 4.9 we have shown a way to organize logical bank of size 16KB for the 32KB

cache memory. If the request is generated by the processor to the cache memory and in

the address sent by the processor, set field has set bits 1011110. After that based on the

1 MSB bits, LB 2 is selected and by the least 6 bits of set field, set number 30 is selected.

Figure 4.10 shows ways inside the particular set and in that we have shown the selection

of particular way for sending the data. Also, the tag bits from the given address is

compared with all ways tag bits and then put in the comparator with the valid bit, where

valid bit represents whether data is present or not. Based on that decision, hit or miss is

33

done and with the help of multiplexer, data is sent to the processor.

 Figure 4.9 16KB logical bank organization

 Figure 4.10 Ways representation in the sets for 16KB LB

34

Chapter 5

Results and Discussions

For the purposes of implementation, any cache memory configuration can be chosen.

In this thesis the following standards are considered:

Cache memory 32KB

Cache size 64B

4-way set associativity

Total number of sets 128

Address width 64 bits

Tag field 51 bits

Set field 7 bits

Offset field 6 bits

Clock Frequency 1.8GHz to 2.4GHz

35

5.1 Simulation Wave from Top level

 Figure 5.1 Simulation waveform of top-level design of 32KB memory

 5.2 Simulation Wave Form of Logical Bank Size of 2KB

 Figure 5.2 Simulation waveform of LB of size 2KB

36

 Figure 5.3 Simulation waveform of dout of 2KB each

 5.3 Simulation Wave form of Logical Bank Size of 4KB

 Figure 5.4 Simulation waveform of LB of size 4KB

37

 Figure 5.5 Simulation waveform of dout of 4KB each

 5.4 Simulation Wave Form of Logical Bank Size of 8KB

 Figure 5.6 Simulation waveform of LB of size 8KB

 Figure 5.7 Simulation waveform of dout of 8KB each

38

 5.5 Simulation Wave form of Logical Bank Size of 16KB

 Figure 5.8 Simulation waveform of LB of size 16KB

 Figure 5.9 Simulation waveform of dout of 16KB each

In the waveform, we have shown input and output from top level, memory level and

logical bank. From the top level, we have shown read and write operations to one data

input and one data output and another signal active is used to activate logical bank. In

each logical banks, the memory wrapper wave form signals are there, which is used in

the sleep mode FSM. In the third waveform, read data is taken out from each logical

bank.

39

5.6 Comparison of different configurations based on

hardware requirements

Size of

Memory

(Total

size

32KB)

 Hardware Requirements

No. of

Comparator

No. of

Decoder

+ Shared

Decoder

No. of Multiplexer

2KB LB 64 4*16+3*8 16(4*1) + 16(8*1)

4KB LB 32 3*8+4*16 8(4*1) + 8(16*1)

8KB LB 16 2*4+5*32 4(4*1) + 4(32*1)

16KB

LB

8 1*2+6*64 2(4*1) + 2(64*1)

 Table 5.1 Comparison on hardware requirements

In the comparison table of different logical bank based on the hardware requirement,

comparison has been provided for each logical bank with respect to number of

comparators, decoder and multiplexer used. Based on the comparison, 4KB and 8KB

logical bank is found better in comparison to 2KB and 16 KB logical bank to form 32KB

memory.

40

Chapter 6

Conclusions and Future Work

In this thesis detailed analysis on the cache memory is done and we have discussed

different configuration of logical bank for 32KB cache memory and a block diagram is

also provided for organization of 32KB cache memory. Comparison with all tag of each

way is done in one clock cycle. We have designed memory wrapper based on the sleep

mode FSM to save power in the idle mode. Further, design of different configuration of

cache is also done and then compared them based on the hardware requirement. Based

on the comparison, we come into conclusion that 4KB and 8KB logical bank perform

well compared to other logical bank.

In future we will analysis different way to set associative mapping with this design to

improve the performance and will focus on the miss rate minimization specially because

miss rate impacts not only on the execution time but also on optimize power. We will

also observe this design by varying the cache size for better performance. After adding

all this features, we again compare all the logical bank to form 32KB based on the power

and we can more accurately comment on the design of logical bank, which performs the

best among all logical banks.

41

References

[1] C. C. Liu, I. Ganusov, M. Burtscher, S. Tiwari. Bridging the Processor Memory

Performance Gap with 3D IC Technology. Design and Test of Computers, IEEE, 22,

556-564, 2005.

[2] C. Carvalho. The Gap between Processor and Memory speeds. In IEEE

International Conference on Control and Automation, 2002.

[3] C. Srilatha, C. V. Guru Rao. A Novel Approach for Estimation and Optimization

of Memory in Low Power Embedded Systems. International journal of computer theory

and engineering, 5, 581-587, 2009.

[4] A. J. Mith. Cache memories. ACM Computing Surveys (CsUR), 1982.

[5] D. A. Patterson, J. L. Hennessy. (1996), Computer Architecture: A Quantitative

Approach.

[6] V. P. Heuring and H. F. Jordan. (2004) Computer systems Design and

Architecture, 3rd edition, India, Pearson Education.

[7] S. Chakraborty, S. Das, H. K. Kapoor. Performance Constrained Static Energy

Reduction Using Way-Sharing Target-Banks. IEEE International Parallel and

Distributed Processing Symposium Workshops, 2015.

[8] A. D. Jebaseeli, M. Kiruba. Design of Low Power L2 Cache Architecture Using

Partial Way Tag Information. International Conference on Green Computing

Communication and Electrical Engineering (ICGCCEE), 2014.

[9] J. Lee and S. Kim. Filter Data Cache: An Energy-Efficient Small L0 Data Cache

Architecture Driven by Miss Cost Reduction. IEEE Transactions on Computers, 64,

2015.

[10] A. G. Kumar, D. A. Janeera, M. Ramesh. Power and Performance Efficient

Secondary Cache Using Tag Bloom Architecture. International Conference on

Electronics and Communication System (lCECS), 2014.

42

[11] C. H. Ting, J. D. Huang, Y. U. Kao. Cycle-time-aware sequential way-access

set- associative cache for low energy consumption. IEEE Asia Pacific Conference on

Circuits and Systems,854-857, 2008.

[12] Z. Chuanjun, V. Frank, N. Walid. Energy benefits of a configurable line size

cache for embedded systems. IEEE Computer Soc. Annu. Symp. 87-91, 2003.

[13] T. Ishihara, F. Fallah. A Non-Uniform Cache Architecture for Low Power

System Design. Int. Symp. on Low Power Electronics and Design, 363 - 368, 2005.

[14] M. Mutyam, C. J. Janraj, T. Warrier, T. V. Kalyan. Way haring et Associative

Cache Architecture. 25th International Conference on VLSI Design (VLSID), 251-256,

2012.

[15] C. Zhang, F. Vahid and W. Najjar. A highly configurable cache for low energy

embedded systems. In Journal ACM Trans. on Embedded Computing systems. 4, 363-

387, 2005.

[16] O. A. Emmanuel, B. Washington and O. A. Michael. Architectural Techniques

for Improving the Power Consumption of NoC-Based CMPs: A Case Study of Cache

and Network Layer. Journal of Low Power Electronics and Applications. 2017.

[17] S. Gupta, P. Xiang, Y. Yang, H. Zhou. Locality Principle Revisited: A

Probability-Based Quantitative Approach. IEEE 26th International Parallel and

Distributed Processing Symposium, 2012.

[18] A. Alshegaifi, C. H. Huang. A Locality-Aware, Energy-Efficient Cache Design

for Large-Scale Multi-Core Systems. IEEE International Conference on Internet of

Things and IEEE Green Computing and Communications and IEEE Cyber, Physical

and Social Computing and IEEE Smart Data. 2018.

[19] Chuanjun Zhang. An efficient direct mapped instruction cache for application-

specific embedded systems, Third IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS'05). 2005.

[20] N. P. Jouppi. Improving Direct-Mapped Cache Performance by The Addition

of a Small Fully Associative Cache and Prefetch Buffers. IEEE The 17th Annual

International Symposium on Computer Architecture. 1990.

[21] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong. A fully associative, Tagless

DRAM cache. ACM/IEEE 42nd Annual International Symposium on Computer

43

Architecture (ISCA). 2015.

[22] S Mishra, T. V. Mahendra, A. Dandapat. A Quasi-Static Ternary Fully

Associative Cache Tag with Selective Match line Evaluation for Wire Speed

Applications. IEEE Transactions on Circuits and Systems I, 63, 2016.

[23] R. E. Kessler, R. Jooss, A. Lebeck. Inexpensive Implementations of Set-

Associativity. The 16th Annual International Symposium on Computer Architecture .

2002

[24] C. J. Janraj, T. V. Kalyan, T. Warrier; M, Mutyam. Way Sharing Set Associative

Cache Architecture. 25th International Conference on VLSI Design. 2012.

[25] D. Zhang, J. Lei, M. Zhao, X. Gao, Z. Jia. Write-Back Aware Shared Last-Level

Cache Management for Hybrid Main Memory. 53nd ACM/EDAC/IEEE Design

Automation Conference (DAC). 2016.

[26] P. Guironnet, D. Massas, F. Petrot. Comparison of Memory Write Policies for

Noc Based Multicore Cache Coherent Systems. 2008 Design, Automation and Test in

Europe.

[27] Y. P. Liang, T. Y. Chen, Y. H. Chang, S. H. Chen, P. Y. Chen, W. K. Shih.

Rethinking Last-level-cache Write-back Strategy for MLC STT-RAM Main Memory

with Asymmetric Write Energy. IEEE/ACM International Symposium on Low Power

Electronics and Design (ISLPED). 2019.

