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ABSTRACT 
 

A Selective Maintenance (SM) policy is used for the 

maintenance of equipment that works in mission mode. Most of the 

approaches for Selective Maintenance Optimization (SMO) require 

higher computation time to determine the maintenance policy, which is 

undesirable. The advent of machine learning opens up new horizons for 

developing novel approaches that have the potential to substantially 

reduce computation time in SMO. The rapid rise in the use of sensors 

and computing infrastructure is transforming conventional industrial 

systems into smart machines. There is an opportunity to embrace this 

smartness in every aspect of industrial systems. Maintenance planning 

is one such inherent aspect. Technologies like multi-agent systems are 

making a move from centralized decision making to distributed 

realization of decision making.   

 

This project proposes to develop a novel Reinforcement 

Learning (RL) based methodology and a distributed algorithm for 

intelligent maintenance planning to optimize the selective maintenance 

problem. As part of the RL based methodology, a temporal difference 

learning algorithm - Q-Learning is used to solve this optimization 

problem where the agent chooses a policy at the end of an epoch, based 

on the updated Q-Values. Different heuristics are embedded with the 

methodology to effectively determine the optimal policy, of which one 

smartly reduces the solution space and the other aids in increasing the 

agent’s intelligence based on the reward policy. The objective of the 

maintenance optimization problem is to maximize the system reliability 

and it is formulated as a Semi-Markov decision process (SMDP). The 

reward function is also defined in a way that the agent will try to 

determine the best strategy with minimum consumption of maintenance 

resources.  
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The algorithm designed for agent based distributed maintenance 

planning fits into the Industrial Internet of Things (IIoT) paradigm and 

revolves around the idea of having individual agents to make 

maintenance decisions for respective subsystems and an overall 

coordinating agent that will decide the optimal policy from the 

preferences given by the subsystem level agent and decides what 

maintenance policy best for the enterprise 

The efficiency of the developed algorithms is demonstrated by 

applying it to a benchmark multi-state industrial system for coal 

transportation. The results accentuate the supremacy of the developed 

RL based algorithm and agent based distributed approach over the 

commonly used methods like the enumeration approach and genetic 

algorithm based approach. 
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Chapter 1 Introduction 
 

1.1 Maintenance  

The technical meaning of maintenance encompasses all tasks like 

functional checks, servicing, repairing or replacing of necessary 

components, equipment, machinery and supporting utilities in 

industrial, business and residential installations.  

Maintenance is strictly connected to the utilization stage of the product 

or technical system, in which the concept of maintainability must be 

included. In this scenario, maintainability is considered as the ability of 

an item, under stated conditions of use, to be retained in or restored to a 

state in which it can perform its required functions, using prescribed 

procedures and resources. 

In some domains like aircraft maintenance; terms like maintenance, 

repair and overhaul also include inspection, rebuilding, alteration and 

the supply of spare parts, accessories, raw materials, adhesives, sealants, 

coatings and consumables for aircraft maintenance at the utilization 

stage.  

In international civil aviation maintenance means: 

The performance of tasks required to ensure the continuing 

airworthiness of an aircraft, including any one or combination of 

overhaul, inspection, replacement, defect rectification, and the 

embodiment of a modification or a repair. 

1.1.1 Major types of maintenance 

• Preventive Maintenance  

Maintenance is carried out at regular fixed intervals or according 

to a given criteria to reduce the risk of failure or degradation of 

performance of the equipment. 

 

 



2 
 

• Condition-based Maintenance 

Maintenance is done on the equipment by continuously 

monitoring the performance and controlling the corrective 

actions being taken. Maintenance is performed when certain 

sensors show that the performance is deteriorating and 

probability of failure is increasing. 

• Risk-based Maintenance 

This is a maintenance strategy which prioritizes maintenance 

resources towards assets that pose the most risk if they fail. 

• Corrective Maintenance 

Maintenance strategy which involves carrying out maintenance 

activities to restore normal operating conditions only when an 

anomaly is detected. 

 

1.2 Industry 4.0 

The world, as we know it today, was greatly influenced by the three 

major technological revolutions, as shown in the figure. We are 

currently at the cusp of experiencing a paradigm shift in industries in 

the form of fourth industrial revolution (termed as Industry 4.0). 

 

Figure 1.1: Chronology of Industrial Revolutions 

Industry 4.0 is the automation of conventional manufacturing and 

industrial practices, using smart technologies like mobile devices, 
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Internet of Things (IoT) platforms, smart sensors, augmented reality etc. 

Self-monitoring of systems and automation can be increased by 

integrating IoT and Machine-to-machine communication, which helps 

analyze and diagnose issues without human intervention.  

1.2.1 Effect of Industry 4.0 on Maintenance 

Maintenance planning is a strategic concern for industries, because 

maintenance activities carried out inappropriately leads to inefficient 

usage of assets. With the advent of Industry 4.0, Industrial Internet of 

Things (IIoT) provides a smarter approach by continuously analyzing 

data to achieve useful insights and predict failure of the system, increase 

system uptime and improve asset efficiency. The dawn of the fourth 

industrial revolution has created a new maintenance strategy known as 

predictive maintenance. 

Predictive maintenance is using sensors and other technologies to 

collect and analyse data from the machines to accurately predict when 

maintenance work is needed. It uses an analytical approach by utilizing 

real time data and past data to accurately identify the fault in the 

machine so that it can be repaired ahead of time. 

Benefits of Predictive maintenance: 

• Continuous monitoring of the health of the machines. 

• Time to intervene before the system undergoes catastrophic 

failure. 

• Reduction in machine/system downtime. 

• Early recognition of wear and tear of critical components. 

 

1.3 Selective Maintenance  

1.3.1 Introduction 

Many industrial and military applications require systems to perform a 

sequence of missions with a maintenance break between two successive 

missions. However, performing maintenance on all components of the 

system isn’t feasible due to the limited duration of the maintenance 
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break. In situations like these, the decision-maker needs to decide on a 

subset of components to perform maintenance. This maintenance 

strategy is called Selective Maintenance (SM) and it is defined as a 

policy of determining which set of maintenance actions to perform when 

given a set of limited maintenance resources such as time, cost, spares 

and crew [1,2].  Selective maintenance is widely considered as a type of 

profit generating maintenance policy which plays a crucial role in 

balancing limited maintenance resources with system performance. 

The Selective maintenance policy is widely used in the maintenance of 

military equipment and aircraft as they perform a sequence of missions. 

After a mission ends, the decision-maker needs to decide on the 

maintenance strategy to be followed to ensure the successful completion 

of the next mission. But as the maintenance break duration is a resource 

constraint, the decision-maker can’t invest much time in deciding which 

maintenance policy to be adopted because it diminishes the maintenance 

break duration.  

 

Figure 1.2: Illustration of Selective Maintenance 

Selective Maintenance, a policy which aims to ‘do more with minimum 

resources’ comes under the paradigm of maintenance modeling and 

optimization [3]. SM has some important features which make it very 

practical to use in some scenarios. They are: 

i. SM is mission oriented. 

SM is majorly used in those scenarios where a system is required 

to execute a sequence of missions and maintenance actions can 

be performed in the break between two successive missions.  
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ii. SM is condition based. 

SM decisions are greatly influenced by systems’ health status 

and mission profiles. In comparison with conventional 

condition-based maintenance policies, condition in SM has a 

wider array of factors to be considered. 

1.3.2 Criteria for Selective Maintenance decision making 

SM decision making to obtain optimal maintenance schedule considers 

various parameters such as system configuration, maintenance policies, 

maintenance degrees, optimization criteria, planning horizon etc. All 

these factors can be broadly categorized into 3 categories to provide a 

holistic structure. They are System Characteristics, Maintenance 

Characteristics and Mission Profile Characteristics.  

 

Figure 1.3: Criteria for SM decision making 

I. System characteristics 

System characteristics include machine’s inherent features which are 

decided by its design and includes its configuration, lifetime features 

and states. 

• Systems Configurations: 

The system configuration considered for selective maintenance 

optimization is designated as Series, Parallel and Complex 

(Series-Parallel) configurations. In a series configuration 

system, if a component fails; it is necessary to repair it at once. 

But in a system with parallel configuration, the system will be 
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operational even if the failed component isn’t repaired 

immediately. 

• Lifetime features: 

All components of a system are associated with different 

lifetime features which can be explained by parametric or non-

parametric information. The commonly used distributions for 

SM modeling are Exponential distribution and Weibull 

distribution. Exponential distribution is followed by those 

component’s which have a constant failure rate, whereas 

Weibull distribution considers component’s whose failure rate 

is time dependent.  

• States 

States of the components of a system can be classified into 

binary or multiple. In case of binary states, a component at a 

specific instant can be in one of the two states, i.e., Working or 

Failed.  But in many practical applications, the state of a system 

or component can vary between perfect functioning to complete 

failure. 

 

Figure 1.4: System Characteristics 

II. Maintenance characteristics 

Maintenance characteristics refer to the factors comprehending 

maintenance that can have a major effect on maintenance decisions like 

type of maintenance action, resource consumption etc.  

• Maintenance Degrees 

According to the degree to which the component or system is 

restored, state of any component or system after maintenance 

will be somewhere between as bad as old and as good as new. 
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This is called Imperfect maintenance. Here, the condition of the 

system/component is improved. Imperfect maintenance ensures 

the modeling of SM problem is more realistic in nature. 

• Resource Consumption 

Maintenance budget and Maintenance time are the two major 

maintenance resources in SM modeling. Other resources include 

maintenance crew and spare parts etc. Considering resources as 

constraints in SM modeling will make the model more practical 

and closer to industrial scenario.  

 

Figure 1.5: Maintenance Characteristics 

III. Mission profile characteristics 

Mission profile is the task which is to be executed by the system during 

the defined time under some specific conditions. Features of mission 

profile include objectives of the mission, planning horizon, type of 

mission and the working conditions.  

• Mission Objectives 

To ensure the system completes a mission successfully, the 

objectives generally considered in SMO is to minimize 

maintenance time / maintenance cost or to maximize the system 

reliability.  

• Planning Horizon 

It refers to the duration of mission considered for SMO. Any 

system can execute a single mission of a fixed time duration or 

multiple missions over a fixed time horizon. 

 

1.4 Computational Complexity in SM 

The problem of SMO is modeled as a non-linear programming problem 

with an objective to either maximize the system reliability or minimize 
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the maintenance cost. It has constraints in the form of maintenance cost 

being less than the budget and maintenance time being within the 

maintenance break duration. So, the computational algorithm should 

choose the best set of maintenance actions to be performed on the 

system. For a system which has “n” components with “m” possible 

maintenance actions for each component, the total number of 

maintenance actions becomes mn. So, the optimization problem 

becomes combinatorial in nature thereby increasing the computational 

complexity. Irrespective of the complexity involved, it is necessary to 

solve the SM problem in the minimum possible duration. As the limited 

available maintenance duration is itself a constraint in the problem, any 

approach which requires higher computation time is undesirable, since 

the decision-making process itself will consume most of the 

maintenance duration. 

1.4.1 Necessity of efficient computational approaches 

 

Initial research on SMO focused on using the enumeration approach. 

But it was found that this method was not suitable when applied to 

problems with larger solution space. This led to the development of the 

next generation of methods coupled with heuristics, like tabu search, 

genetic algorithm, particle swarm optimization, differential evolution 

approach etc. for optimizing the SM problem. They were effective in 

reducing the computation time significantly compared to the 

enumeration method, but the optimality of the solution was not 

guaranteed always. There is a need for a comprehensive approach which 

provides optimal or near-optimal result in significantly lesser 

computation time. So, the advent of Machine learning and Industry 4.0 

paves way for development of novel and intelligent computational 

algorithms with the potential to be much more efficient than the existing 

approaches. 
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1.5 Research Objectives 

I. Develop an Evolutionary algorithm-based approach for Selective 

maintenance optimization of a complex industrial system.  

II. Develop a Machine learning based approach for Selective 

maintenance optimization of the complex industrial system. 

Reinforcement learning, a Machine learning paradigm is used to 

develop an algorithm which learns through experience.  

III. Develop Multi agent based distributed approach for Selective 

maintenance optimization of the complex industrial system. To 

reap the benefits of interconnected assets which have more access 

to data and enable better decision making.   

IV. Perform a comparative study of the above approaches with 

conventional approach of Enumeration method for the 

benchmark problem of coal transportation system. 

 

1.6 Novelty of the project 

Major innovations made in this project: 

• Development of a neoteric Reinforcement Learning based 

algorithm for selective maintenance optimization problem. 

• Development of a novel Agent based Distributed maintenance 

planning algorithm for selective maintenance optimization. 

 

1.7 Thesis Organization 

The thesis is broadly divided into seven chapters. The current chapter 

introduces the reader to the background of the work and the basics about 

maintenance and selective maintenance and also outlines the research 

objectives.  
 

Chapter 2 presents a comprehensive literature review of the state-of-the-

art research in selective maintenance. It also addresses the shortcomings 

of the previous research and provides a holistic view on the evolution 

of the selective maintenance optimization approaches till date.      
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Chapter 3 deals with the detailed problem formulation and also the 

aspects about Reliability estimation. This chapter introduces to the 

reader the benchmark problem considered in the subsequent chapters to 

solve the SMO problems with the developed algorithms. Finally, the 

methodology of implementing the Enumeration method along with the 

results obtained by using this algorithm is also discussed in this chapter. 
 

Chapter 4 provides a brief introduction about the evolutionary 

algorithms. The methodology of its implementation for SMO problem 

is discussed in detail along with the various biological operators used. 

Then the algorithm is implemented on the benchmark problem defined 

in the previous chapter and the results are compared with those obtained 

using enumeration method. 

 

Chapter 5 starts with the introduction to machine learning and its 

paradigm, reinforcement learning. It then discusses about how RL is 

applied for SM optimization problem and the modeling of the problem 

as a Semi-Markov decision process. The application of Q-Learning for 

solving this problem is also discussed along with the various novel 

heuristics defined. Finally, it is implemented on the benchmark problem 

and the results are compared with the earlier proposed methodologies. 

 

Chapter 6 explains the development of a novel decentralized distributed 

maintenance planning algorithm. It starts with the introduction about 

distributed decision making and IIoT, followed by methodology of 

implementation of this approach. Reliability allocation is explained in 

detail and the algorithm is applied on the benchmark problem to and the 

results are compared with the proposed methodologies.  

 

Chapter 7 discusses about the conclusions of the research work and also 

lays the foundation for future work to realize Industry 4.0. 
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Chapter 2 Literature Review 
 

This section provides a comprehensive review of the state-of-the-art 

research in selective maintenance pertaining to the various system 

characteristics like system configuration, lifetime features, and various 

maintenance characteristics. The progression of research on selective 

maintenance can be broadly categorized into three generations. First 

generation research on selective maintenance, predominantly focused 

on modelling the problem by altering the system characteristics. In the 

second generation, researchers in a bid to reduce computation time, 

explored the use of various computational algorithms along with 

employing different kinds of heuristics. Presently in the presumed third 

generation, researchers are focused on further improving the 

computation efficiency with the aid of contemporary techniques like 

machine learning algorithms and incorporating Industry 4.0 

technologies.  

 

2.1 Evolution of SMO problem (I generation) 

The introductory study on selective maintenance optimization was 

performed on a system with series-parallel configuration and constant 

component failure rates i.e., Exponential distribution [2]. The model 

could optimally decide a subset of failed components to be replaced 

before the next mission to maximize the system reliability of the next 

mission. Later, researchers improvised this by studying about a case in 

which the system configuration was complicated and also the 

components in each subsystem were not identical. Further, cost was also 

included as an additional resource constraint [4].  Then, the problem of 

selective maintenance optimization was illustrated on systems with 

partially redundant structures (components arranged in series and 

parallel) [5]. Following the earlier research, age of the component was 

introduced as a factor in reliability estimation and it was assumed that 

components’ lifetimes follow Weibull distribution. Multiple 



12 
 

maintenance actions were considered and repair action on the 

component could be minimal repair of failed components, replacement 

of failed components and replacement of functioning components 

(preventive maintenance) [6]. Then, imperfect maintenance was 

considered amongst the maintenance actions for selective maintenance 

optimization wherein the component was restored to the condition 

somewhere between as good as new and as bad as old and age of the 

component after maintenance was also affected by the maintenance 

action [7–9]. 

The prime focus of researchers lied in the development of 

computationally efficient approaches for solving this complex 

optimization problem. Enumeration method was only suitable for 

selective maintenance optimization problems with small solution space. 

The number of feasible solutions increased exponentially with increase 

in number of components and the method became computationally 

intractable. Heuristics were defined and a modified enumeration method 

with upper bounds was used initially [1]. The efficiency of enumeration 

method was improved by applying upper bounds and lower bounds on 

decision variables, applying objective function bounds based on branch 

and bound concepts and also by iterating through the values of the 

decision variables in descending order [10]. 

 

2.2 II generation methodologies for SMO 

Construction heuristic and Tabu search were both implemented for 

solving this problem and Tabu search was found to be better as it gave 

a near optimal solution though the optimality was not guaranteed always 

[5]. Later use of Evolutionary algorithms started gaining prominence. 

Genetic Algorithm (GA) was employed to solve the selective 

maintenance optimization problem in which both multi-state systems 

and imperfect maintenance models were considered [7,11,12]. In a 

research to identify the maintenance actions before the start of 

maintenance break along with simulation to forecast the requirement of 
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spares before and during a mission, GA was used to compute the 

optimum solution [13]. Simulated Annealing (SA) was applied on a 

selective maintenance optimization problem for multi-state system 

operating for more than one mission. Differential Evolution (DE) was 

applied to solve the selective maintenance optimization problem for 

selective maintenance scheduling over a finite planning horizon [8,14].  

An exact method to solve selective maintenance optimization problem 

considering imperfect maintenance was proposed which reduced the 

solution space by 42.46 % compared to enumeration method [15]. To 

identify the optimal maintenance policy in a computationally efficient 

manner, use of Ant colony optimization (ACO) algorithm was 

proposed, where the algorithm can be tailored to search for the global 

optimum and tackle the constraints and infeasible solutions by 

constructing a tabu list [16].  

Despite using various efficient computation algorithms for selective 

maintenance optimization of multi state systems there was no assurance 

that the optimum solution will be reached and there was still the 

possibility to reduce the computation time. In order to ensure accuracy 

of selective maintenance optimization results and tackle the underlying 

issue of large solution space which was affecting the computation time, 

researchers felt the need of using some heuristics. One such attempt was 

to use a heuristic to prioritize components for maintenance in this break 

based on the cost, time or reliability threshold. and reduce the solution 

space [17]. Generally, both break durations and mission durations are 

considered to be deterministic in nature. But researchers in a study 

considered the break duration and mission duration to be stochastic in 

nature and the problem of selective maintenance optimization in that 

case was formulated as a non-linear stochastic optimization problem 

[18]. Most of the research on selective maintenance optimization 

considered the assignment of repair task to repairpersons as a different 

problem. But integrating both the selective maintenance and 

repairperson assignment problem provided more effective solutions in 

terms of cost and system reliability. Later, the joint optimization of 



14 
 

selective maintenance and repairperson assignment problem was done 

by considering using remanufactured parts for replacement in place of 

new components which solved both economic purpose as well as 

favored sustainable practices [19]. It was observed that components in 

a multi-state system exhibited multiple performance levels and the 

selective maintenance optimization problem in that case was also 

modelled as a nonlinear programming problem and evolutionary 

algorithms were used to obtain the optimal solution [20].  Selective 

maintenance scheduling was also applied to cases where the system was 

required to execute multiple consecutive missions over a determined 

time horizon. A maintenance scheduling over a time horizon model 

under imperfect maintenance was developed to determine the optimum 

schedule with an aim to minimize the total cost [14]. A customized 

simulated annealing-based GA was used to solve the max-min 

optimization problem modelled for determining the selective 

maintenance strategy for systems executing multiple consecutive 

missions with uncertainty [21].  

 

2.3 III generation methodologies for SMO 

In the presumed third generation, with increase in intelligence of 

machines due to incorporation of sensors and increase in sophistication 

of computation infrastructure, researchers are focused on using these to 

further improve the efficiency of selective maintenance optimization. 

The application domain of selective maintenance optimization does not 

allow for higher computation time, which may not be acceptable in 

nuclear, maritime and army applications.  The selective maintenance 

optimization problem for multi-state system that can execute multiple 

consecutive missions over a finite horizon was solved using a Deep 

Reinforcement Learning approach based on the framework of actor-

critic algorithms [22]. This customized DRL algorithm overcame the 

‘curse of dimensionality’ and mitigated the uncountable state space 

when dealing with systems containing large number of components. 

Further, in a study to develop a selective maintenance optimization 
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model for an intelligent multi state manufacturing system, the problem 

was formulated as a constrained combinatorial optimization problem 

and Particle Swarm Optimization (PSO) was used to solve this as it has 

higher convergence speed than other traditional optimization algorithms 

[23].  

The distributed approach in operations planning is primarily centred 

around the notion of multi agent systems. Multi agent paradigm is 

characterized by decentralization and parallel execution of activities 

based on autonomous entities, called agents [24]. Agent systems, due to 

their inherent characteristic of decentralization along with autonomy, 

adaptability, coordination, cooperation, and robustness clubbed with 

reasoning ability, pose a promising platform for developing decision 

support systems [25]. In multi agent systems, problem solving is a group 

effort wherein agents of different types with partial access to system 

information collaborate to achieve a system goal. [24,26] have used the 

distributed approach for planning and decision making in several 

industrial arenas. Literature on distributed approaches in decision 

making for production planning suggests the supremacy of it over the 

conventional centralized approach. For example, [27] reported 50% 

reduction in computation time in operation planning when compared to 

centralized approach. In a nutshell, literature highlights the supremacy 

of employing distributed approach for decision making over the 

conventional centralized approaches. This enhances the potential of 

employing the multi agent based distributed approach for complex 

maintenance planning problems. 
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2.4 Summary 

 

There is a profound need for further research in the direction of reducing 

computation time in solving selective maintenance optimization 

problem for the all-inclusive industrial scenarios. The present work is 

an attempt to contribute to the research on SMO in the third generation 

to make it more applicable to the real industrial scenarios.  

Application of distributed approach in selective maintenance 

optimization could be one of the effective ways to reduce the 

computation time significantly. This project proposes to extensively 

research on applying distributed decision-making approaches on the 

selective maintenance planning problem of complex industrial systems. 
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Chapter 3 Enumeration Method 
 

This chapter describes the selective maintenance optimization problem 

with its objectives and the associated constraints of budget and time. It 

also discusses the maintenance actions that can be performed and its 

corresponding restoration factors, along with determining the 

maintenance cost and time. This chapter also introduces the benchmark 

problem considered in this project for SMO and the various parameters 

associated with it. Finally, the methodology and results obtained 

through the traditional approach of Enumeration method to solve this 

SMO problem is discussed in detail. 

 

3.1 Problem Description 

3.1.1 Selective Maintenance Optimization 

After the completion of a mission, due to the stochastic nature of the 

failure of components, each component has a different age. SMO is 

performed to choose the best maintenance action to be undertaken on 

the components of the system during the maintenance break to ensure 

successful completion of the next mission; while the break is coupled 

with several constraints. 

3.1.2 Multi-State system 

A multi-state system is comprised of various components connected in 
different configurations.  

• There are s (i = 1,2…..,s) subsystems connected in series. 

• Each subsystem i has p (j = 1,2,…p) components connected in 
parallel. 

• There are N possible maintenance actions. 

3.1.3 Maintenance Actions 

Maintenance can be performed on a component (𝑖, 𝑗) during a 

maintenance break to restore the age of the component. Maintenance 
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action chosen for the component (𝑖, 𝑗) is denoted as 𝑙𝑖,𝑗. In this project, 

the maintenance action options available for the decision-maker are 

given in Table 1. 

The option of maintenance action ‘0’ means there is no requirement to 

perform maintenance on the component. The actions 1, 2 and 3 restore 

the component to a state somewhere between ‘as bad as old’ and ‘as 

good as new’. The component is completely replaced when action ‘4’ is 

chosen. 

𝑙𝑖.𝑗 ∈ [0,1,2,3,4] (1) 

  

Table 1: Maintenance Actions 

Maintenance action 

(𝑙𝑖,𝑗) 

Action Restoration 

factor 

0 Do nothing 0 

1 Minimal repair 0.15 

2 Intermediate repair 0.50 

3 Major repair 0.90 

4 Component replacement 1 

 

3.1.4 Restoration Factor (RF) 

The concept of restoration factor (RF) is used to determine the effective 

age of the component after the maintenance. In this paper Restoration 

factor based on the Kijima type II model is followed [28]. Because, type 

II restoration factor assumes that the maintenance performed in this 

break fixes all the wear and damage to the component accumulated up 

to the current time. An RF of 1 implies the component is “As good as 

new”. 
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➢ Example:  Component’s age = 700 hrs, RF = 0.75 

            Effective age = (1-0.75) *700 = 175 hrs 

3.1.5 Maintenance Cost  

A component may or may not be considered for maintenance depending 

on its current condition. If maintenance action ‘0’ i.e. Do Nothing is 

chosen for a component (i,j) , it incurs zero maintenance cost. Any 

action other than ‘Doing Nothing’ incurs a maintenance cost 

corresponding to the action li,j performed on the component. It is 

assumed that performing Minimal repair (li,j = 1) costs x% of the 

component’s replacement cost. Intermediate repair (li,j = 2) incurs y% 

of the component’s replacement cost while Major repair (li,j = 3) costs 

the company z% of it. The total maintenance cost C is computed as the 

sum of individual maintenance cost of all components. For illustration, 

the values of x, y and z have been taken as 5, 25 and 50 % respectively 

in this project. 𝐶𝑖,𝑗 is the cost of performing maintenance on the 

component (i, j). 

𝐶 =  ∑ ∑ 𝐶𝑖,𝑗(𝑙𝑖,𝑗)
𝑝

𝑗=1

𝑠

𝑖=1

 (2) 

 

3.1.6 Maintenance Time 

The maintenance time to perform all the maintenance actions on the 

system has to be estimated as it plays a crucial role in determining the 

maintenance strategy. If a component isn’t considered for maintenance, 

the time consumed for maintenance is zero. It is assumed that the 

maintenance time remains same for any maintenance action i.e., it takes 

the same amount of time to replace a component or to repair it. Because 

the time to replace or repair generally tends to vary depending on the 

size of the system being considered. If the system is a very large-scale 

industrial system and the repair time of a component may be higher due 

to the complexity involved in accessing it, while replacing it might be 

easier and quicker. The individual maintenance time of each component 
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chosen for maintenance is denoted as 𝑇𝑖,𝑗. The total maintenance time T 

is calculated as the sum of the individual component’s maintenance 

time. 

𝑇 =  ∑ ∑ 𝑇𝑖,𝑗(𝑙𝑖,𝑗)
𝑝

𝑗=1

𝑠

𝑖=1

 (3) 

 

3.1.7 Objective Function 

Every maintenance event is always coupled with some predefined 

maintenance budget. It is always expected that the maintenance should 

be performed by utilizing minimum maintenance resources while 

ensuring achievement of minimum required probability of successfully 

performing the mission in terms of target mission reliability. Therefore, 

the objective function of the considered problem is set to be 

minimization of the maintenance cost (mathematically given as eqn. 4), 

while satisfying all the constraints as given below.    

𝒎𝒊𝒏 𝑪 =  ∑ ∑ 𝐶𝑖,𝑗(𝑙𝑖,𝑗)
𝑝

𝑗=1

𝑠

𝑖=1

 (4) 

Subject to: 

𝑹(𝒕)  ≥  𝑹∗(𝒕) 

𝑻 ≤  𝑻𝟎 

𝟎 ≤  𝒍𝒊,𝒋  ≤ (𝑵 − 𝟏) 

Where, 

R(t): System’s Mission reliability 

R*(t): System’s Target Mission reliability 

𝑹(𝒕) =  ∏ (𝟏 − ∏(𝟏 −  𝑹𝒊,𝒋)
𝒑

𝒋=𝟏

)
𝒔

𝒊=𝟏

 

𝑅𝑖,𝑗: Mission reliability of component 

C0: Total maintenance budget  
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T0: Available maintenance break duration. 

T: Time required for performing selected maintenance activity 

N: Number of maintenance actions 

 𝑙𝑖,𝑗: Maintenance action for component (𝑖, 𝑗) 

 

3.2 Reliability Estimation 
 

Reliability is defined as the probability that a component/system will 

perform its intended function satisfactorily for a specified time interval 

‘t’ under the stated conditions. This relationship is mathematically 

expressed as a continuous random variable ‘T’ as the time to failure of 

the system (component). Thus, reliability is expressed as shown in eq. 

5. 

𝑹(𝒕) = 𝑷𝒓{ 𝑻 ≥ 𝒕 } (5) 

 

3.2.1 The Weibull Distribution 
 

All the systems considered in this paper are assumed to follow Weibull 

probability distribution. These distributions have hazard rate functions 

that are not constant over time. Weibull distribution can be used to 

model increasing, decreasing and constant failure rates and this versatile 

nature makes it the widely used failure distribution in reliability 

analysis. There are 2 crucial parameters in the Weibull distribution, the 

shape parameter β which is also known as the slope and the scale 

parameter η which is also known as the characteristic life. The hazard 

rate function is defined as: 

𝜆(𝑡) =  
𝛽
𝜂 (

𝑡
𝜂)

𝛽−1
 (6) 

The reliability function of a component (𝑖, 𝑗) whose age is B and is 

following Weibull distribution is defined as: 
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𝑅𝑖,𝑗(𝑡|𝐵) =  
𝑒−(𝑡+𝐵

𝜂 )
𝛽

𝑒−(𝐵
𝜂)

𝛽  

 

(7) 

3.3 Multi-State Industrial system 

The developed algorithms are tested by applying them on the 

benchmark problem to comprehend the results better. The coal 

transportation system is most widely used industrial system in the 

literature [7,14,22] to analyze the efficacy of various approaches to 

solve the SMO problem. It has 5 subsystems comprising of a couple of 

conveyors and feeders and a stacker-reclaimer as shown in figure 3.1. 

All the subsystems are connected in series while in each subsystem, the 

individual components are connected in parallel. 

 

Figure 3.1: Block diagram of coal transportation system 

 

Figure 3.2: Stacker-Reclaimer of a coal transportation system 
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The benchmark problem considered in this project consists of 14 

components and 5 subsystems.  

3.3.1 System Reliability Estimation 

Subsystem Reliability: 

The components in a subsystem are in parallel configuration to each 

other. Therefore, 

𝑅𝑖 = 1 −  ∏( 1 −  𝑅𝑖,𝑗)
𝑝

𝑗=1

 (8) 

 

Table 2: Subsystem reliability estimation 

Subsystem Reliability of subsystem 

Feeder 1 
𝑅1 = 1 −  ∏(1 − 𝑅1,𝑗)

3

𝑗=1

 

Conveyor 1 
𝑅2 = 1 −  ∏(1 − 𝑅2,𝑗)

2

𝑗=1

 

Stacker-Reclaimer 
𝑅3 = 1 −  ∏(1 − 𝑅3,𝑗)

3

𝑗=1

 

Conveyor 2 
𝑅4 = 1 −  ∏(1 − 𝑅4,𝑗)

2

𝑗=1

 

Feeder 2 
𝑅5 = 1 −  ∏(1 − 𝑅5,𝑗)

4

𝑗=1

 

 

System Reliability: 

All the 5 subsystems are in series to each other. So, the overall System 

reliability is estimated as given in eq. 9. 
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𝑅(𝑡) =  ∏ 𝑅𝑖

𝑠

𝑖=1

 (9) 

  

3.4 Methodology of Enumeration method 
 

Enumeration method or Brute-Force search is one of the conventional 

and most reliable algorithms used to solve the SM optimization 

problem. This method will search the complete solution space to 

identify the best maintenance action to perform. Enumeration method 

always guarantees an optimal solution, but this approach is inefficient 

for larger solution spaces. 
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Figure 3.3: Flowchart of Enumeration method 
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The above figure shows the flowchart of the methodology followed to 

identify the optimal maintenance action by solving the non-linear 

programming problem of SMO.  

3.5 Limitation of Enumeration method 

The number of feasible solutions will increase exponentially with 

increase in number of components. So, the algorithm is suitable only for 

models with small solution space. For example, the feasible solution 

space for a system which contains 6 components and 5 maintenance 

actions can be performed is 56 i.e., 15,625 possible actions. But if any 

system containing 14 components is considered, the solution space 

becomes 514 i.e., 6,103,515,625 possible actions. It is computationally 

not feasible to perform a brute force search over this exorbitantly large 

solution space. 

3.6 Results and Discussion 

The developed Enumeration method algorithm is applied for different 

cases which is based on varying ages of the components to simulate a 

practical industrial scenario where the system can be subject to 

maintenance in its earlier days or during a stage after considerable 

ageing of the components.  

3.6.1 Case 1 

The various parameters of the components i.e., its shape parameter (β) 

and scale parameter (η) are given in the table 3. 

The duration of the upcoming mission (t) for the coal transportation 

system is continuous operation for the next 100 days i.e., 2400 hrs. 

Table 3: Weibull parameters of the Coal transportation system 

Subsystem Component Scale parameter 
(hrs) Shape parameter 

Feeder 1 1 7200 1.5 
 2 7200 2.4 
 3 6000 1.6 

Conveyor 1 4 9600 2.6 
 5 9600 1.8 
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Stacker-
Reclaimer 

6 9000 2.4 

 7 9600 2.5 
 8 9000 2 

Feeder 2 9 9600 1.2 
 10 9600 1.4 

Conveyor 2 11 10800 2.8 
 12 10800 1.5 
 13 10200 2.4 
 14 9600 2.2 

 

The ages of the components and the maintenance cost and maintenance 

time of each component is mentioned in table 4. The reliability of each 

component before maintenance is also calculated and mentioned in the 

table. 

Table 4: Reliability of the Components before maintenance 

Component Age 
(hrs) 

Maintenance 
cost 
(Rs) 

Maintenance 
time 
(hrs) 

Reliability 
before 

maintenance      
(𝑹𝒊,𝒋) 

1 2750 225000 6 0.691500273 
2 2600 300000 6 0.718896041 
3 2900 225000 6 0.601991213 
4 2340 375000 7.2 0.874450254 
5 4500 150000 7.2 0.743641875 
6 2590 225000 3.6 0.824905618 
7 2740 450000 7.2 0.846840889 
8 2100 375000 2.4 0.822377655 
9 4250 225000 9.6 0.765265027 

10 3975 450000 4.8 0.7612768 
11 2250 525000 3.6 0.921186337 
12 2850 300000 6 0.815980559 
13 2630 450000 8.4 0.865347609 
14 2455 225000 8.4 0.840822585 

 

Estimating reliability before maintenance of component 1: 

𝑅(1,1)( 𝑡 = 2400 |𝐵 = 2750) =  
𝑒−(𝑡+𝐵

𝜂 )
𝛽

𝑒−(𝐵
𝜂)

𝛽 =  
𝑒−(2400+2750

7200 )
1.5

𝑒−(2750
7200)

1.5 = 0.6915 

• System Reliability before maintenance, 𝑅(2400) = 0.8775 

• Target Mission Reliability, 𝑅∗(2400) = 0.90 
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Since, mission reliability of the system is less than the target reliability 

for the next mission, Maintenance needs to be performed to ensure 

successful completion of the next mission.  

Maintenance priority of components 

All the components of the coal transportation system aren’t selected 

for maintenance. Because, as we can see from table 4, most of the 

components are healthy and performing any sort of maintenance 

action is a futile exercise as it’ll unnecessarily waste the useful life of 

the components. So, components are prioritized by setting a minimum 

threshold before considering for maintenance.  

This is a novel heuristic developed as part of this project to simplify 

the SMO problem. In depth discussion about this heuristic is provided 

in Chapter 5. 

• Minimum reliability threshold, 𝑅(𝑖,𝑗)𝑚𝑖𝑛(2400) = 0.80 

• Components prioritized for maintenance in this case: [1,2,3,5,9,10] 

These 6 components are prioritized for maintenance as they have less 

reliability than the defined threshold. 

• N = 5 maintenance actions 

• M = 6 components  

Solution space = 𝑁𝑀 = 15,625 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 

Optimal actions are those which help in achieving the desired target 

reliability along with the maintenance cost being within the 

maintenance budget and maintenance time within the maintenance 

break duration. 

• Maintenance Budget = Rs. 2,00,000 

• Maintenance Break duration = 24 hrs 

Optimal maintenance action: 
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Component 1 2 3 5 9 10 

Maintenance action 1 1 0 3 0 0 

 

The maintenance policy is [1,1,0,3,0,0] which implies performing 

Major repair on component 5, Minimal repair on components 1 & 2 

and Do Nothing on all other components. This maintenance action costs 

Rs. 1,01,250 and the time required to perform this action is 19.2 hrs. 

Both of these are well within the constraints and the reliability of the 

system after maintenance is 0.9017. 

The computation time for this problem using enumeration method is 185 

seconds. 

3.6.2 Case 2  

The Weibull parameters of the components are same as mentioned in 

table 3. The ages of the components are slightly more as a more realistic 

case of older components are modeled in this scenario. The ages of the 

components and the reliability before maintenance is given in table 5. 

Table 5: Ages of components (Case 2) 

Component Age 
(hrs) 

Reliability 
before 

maintenance      
(𝑹𝒊,𝒋) 

1 3690 0.662978998 
2 3810 0.616259864 
3 4440 0.540343519 
4 3880 0.789086325 
5 4660 0.738711236 
6 4130 0.734308793 
7 4280 0.762485709 
8 3720 0.747100507 
9 4540 0.763107198 

10 4800 0.748602772 
11 3790 0.854563541 
12 4390 0.787140509 
13 4170 0.793672588 
14 4510 0.744254548 
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The duration of the upcoming mission (t) for the coal transportation 

system is 100 days i.e., 2400 hrs.  

• System Reliability before maintenance, 𝑅(2400) = 0.8211 

• Target Mission Reliability, 𝑅∗(2400) = 0.90 

Since, mission reliability of the system is less than the target reliability 

for the next mission, Maintenance needs to be performed to ensure 

successful completion of the next mission.  

• Minimum reliability threshold, 𝑅(𝑖,𝑗)𝑚𝑖𝑛(2400) = 0.75 

• Components prioritized for maintenance in this case: 

[1,2,3,5,6,8,10,14] 

These 8 components are prioritized for maintenance as they have less 

reliability than the defined threshold. 

• N = 5 maintenance actions 

• M = 8 components  

Solution space = 𝑁𝑀 = 3,90,625 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 

• Maintenance Budget = Rs. 4,00,000 

• Maintenance Break duration = 24 hrs 

Optimal maintenance action: 

Component 1 2 3 5 6 8 10 14 

Maintenance actions 0 3 0 3 2 1 1 0 

 

The maintenance policy is [0,3,0,3,2,1,1,0] which implies performing 

Minimal repair on components 8 and 10, Intermediate repair on 

component 6, Major repair on components 2 and 5 and Do Nothing on 

all other components. This maintenance action costs Rs. 3,22,500 and 

the time required to perform this action is 24 hrs. Both of these are well 
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within the constraints and the reliability of the system after maintenance 

is 0.90012. 

The computation time for this problem using enumeration method is 72 

minutes. 

As we can clearly see, the increase in solution space has caused a steep 

increase in the computation time of the algorithm from around 185 

seconds in the previous case to more than one hour in this scenario. 

3.6.3 Case 3 

A hypothetical scenario with all 14 components prioritized for 

maintenance is simulated to check the potency of the Enumeration 

approach. Table 6 specifies the ages of the components and the 

reliability of each component before maintenance. 

 

Table 6: Ages of components (Case 3) 

Component Age 
(hrs) 

Reliability 
before 

maintenance      
(𝑹𝒊,𝒋) 

1 7000 0.586773954 
2 7000 0.382248979 
3 7000 0.462427422 
4 7000 0.602398158 
5 7000 0.672698145 
6 7000 0.569542624 
7 7000 0.609744072 
8 7000 0.615127371 
9 7000 0.747872421 

10 7000 0.720124979 
11 7000 0.683208001 
12 7000 0.748120373 
13 7000 0.659113606 
14 7000 0.634065707 

 

• System Reliability before maintenance, 𝑅(2400) = 0.6459 

• Target Mission Reliability, 𝑅∗(2400) = 0.90 
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Since, mission reliability of the system is less than the target reliability 

for the next mission, Maintenance needs to be performed to ensure 

successful completion of the next mission.  

• Minimum reliability threshold, 𝑅(𝑖,𝑗)𝑚𝑖𝑛(2400) = 0.75 

• Components prioritized for maintenance in this case: 

[1,2,3,4,5,6,7,8,9,10,11,12,13,14] 

Maintenance needs to be performed on all the 14 components. 

• N = 5 maintenance actions 

• M = 14 components  

Solution space = 𝑁𝑀 = 6,103,515,625 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 

The solution space is very large compared to earlier cases. The 

enumeration method becomes computationally intractable in this case. 

This is the major limitation of this algorithm as it becomes completely 

inefficient and takes huge time to compute for problems with very 

large solution space.  

So, to overcome these computational inefficiencies, second generation 

of research on SMO primarily focused on using various heuristics and 

meta heuristics to solve the nonlinear programming problem of SM 

optimization. 
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Chapter 4  Evolutionary 
Algorithm approach 

 

4.1 Introduction 

An evolutionary algorithm (EA) is a generic population based 

metaheuristic optimization algorithm. An EA is based on natural 

evolution mechanisms like reproduction, crossover, mutation and 

selection. Possible solutions to the optimization problem, i.e., in this 

project, the candidate solutions are the maintenance actions; are the 

individuals in a population. Then fitness function determines the quality 

of the maintenance action, in other words this function evaluates the 

feasibility of the maintenance action and ensures survival of the fittest. 

Only the fittest maintenance actions are carried forward to continue the 

process of evolution after continuous application of the above evolution 

mechanisms.  

4.1.1 Genetic Algorithm (GA) 

Genetic algorithm is a metaheuristic which draws inspiration from 

biological process of natural selection and it is the most commonly used 

EA for solving optimization problems. GA depends on biological 

mechanisms like mutation, crossover and selection to identify the best 

solution.  

The evolution process starts from a randomly generated set of 

chromosomes which constitute a population and the population in each 

iteration is called a Generation. It is an iterative process and in each 

generation after evaluating the fitness of every individual (fitness 

function is generally the objective function of the optimization 

problem), fitter chromosomes are stochastically selected from the 

present population. These chosen individuals are subjected to various 

genetic operators like crossover and mutation to form a new generation 

of individuals. The newer generation of population is then used during 

the next iteration of the GA and the algorithm is terminated when it 
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reaches a set termination criterion like achieving the maximum number 

of generations or obtaining satisfactory fitness levels.  

4.2 Methodology  

 

4.2.1 Hyperparameters 

The parameters which influence the evolution of the algorithm and in 

turn the final result have to be selected meticulously to ensure achieving 

optimal solution in a computationally efficient manner. These 

hyperparameters are listed below. 

• Population Size 

• Number of Generations 

• Crossover Probability 

• Mutation Probability 

4.2.2 Fitness Function 

The fitness function is the most crucial element in the GA methodology. 

Fitness function for the SMO problem of a coal transportation system is 

defined in such a way that if the individual chromosome (maintenance 

action) achieves the objective function and also satisfies the constraints, 

it is given a value of fitness based on its objective function i.e., cost. If 

it fails to fulfill the desired criteria, a very high value of fitness function 

is given. The GA is programmed in such a way that the evolution 

considers low fitness values as better individuals. Because, the objective 

function is to minimize the maintenance cost.  

The flowchart of the fitness function is given in the figure 4.1. 
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Figure 4.1: Fitness function of GA 

 

4.2.3 Crossover Operator 

The crossover genetic operator is analogous to biological crossover. 

Here more than one individual is selected, where each individual is 

considered as a parent. Off springs (More newer maintenance actions) 
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are produced using the genetic material of the parents. Individuals 

which fulfill the fitness function criteria are selected for crossover. 

A random crossover point is chosen and the tail end of each parent is 

swapped to obtain newer individuals. Crossover is generally applied 

with higher probability. 

A schematic representation of this operation is shown in figure 4.2. 

 

Figure 4.2: Crossover 

The newer individuals are considered in the next generation’s 

population. 

4.2.4 Mutation 

Mutation is a minute random tweak in the individual chromosome to 

obtain a new individual. Mutation is used to maintain and diversity in 

the genetic population. It is generally applied with a low probability. 

Mutation is the most crucial element in GA as it ensures exploration of 

the search space and is essential for the convergence of the algorithm. 

The mutation operation is as shown in the figure 4.3. 

 

Figure 4.3: Mutation 

 

4.2.5 Selection 

Parent selection is the process of choosing maintenance actions which 

recombine to create off springs (newer maintenance actions) for the next 

generation. This is one of the most crucial steps as it is imperative for 

the convergence of GA and drives the individuals towards better and 
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fitter solutions. It also ensures to maintain good diversity in the 

population.  

Selection for this SM optimization problem is done based on 

Tournament selection. In this type of selection random individuals are 

chosen from the population at random and best out of these is chosen 

based on the minimum fitness values of competing individuals. This 

method is suitable for this case because we are working on minimizing 

fitness values. A generic schematic of tournament selection is depicted 

in the figure 4.4. 

 

Figure 4.4: General Schematic of Selection 

 

4.3 Results and discussion 

The developed GA is applied on different cases based on varying ages 

of the components which are discussed in the previous chapter. The 

algorithm is applied on the same examples to compare the improvement 

in the solution obtained on using this metaheuristic and to get a fair 

comparison of the computation time on applying GA instead of 

Enumeration method. 
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4.3.1 Case 1 

The various parameters of the components i.e., its shape parameter (β) 

and scale parameter (η) are given in table 3. 

The duration of the upcoming mission (t) for the coal transportation 

system is continuous operation for the next 100 days i.e., 2400 hrs. The 

ages of the components and the reliability of each component is given 

in table 7. 

Table 7: Ages and Reliability of the components (GA: Case 1) 

Component Age 
(hrs) 

Reliability 
before 

maintenance      
(𝑹𝒊,𝒋) 

1 2750 0.691500273 
2 2600 0.718896041 
3 2900 0.601991213 
4 2340 0.874450254 
5 4500 0.743641875 
6 2590 0.824905618 
7 2740 0.846840889 
8 2100 0.822377655 
9 4250 0.765265027 

10 3975 0.7612768 
11 2250 0.921186337 
12 2850 0.815980559 
13 2630 0.865347609 
14 2455 0.840822585 

 

Hyperparameters: 

• Population Size = 2500 

• Number of generations = 6 

• Crossover probability = 0.90 

• Mutation probability = 0.20 

Optimal Maintenance action 

Component 1 2 3 5 9 10 

Maintenance action 1 1 0 3 0 0 



39 
 

The maintenance policy is [1,1,0,3,0,0] which implies performing 

Major repair on component 5, Minimal repair on components 1 & 2 

and Do Nothing on all other components. This maintenance action costs 

Rs. 1,01,250 and the time required to perform this action is 19.2 hrs. 

Both of these are well within the constraints and the reliability of the 

system after maintenance is 0.9017. 

The computation time using GA is 123 seconds. 

4.3.2 Case 2 

In this case, which has a greater number of components prioritized for 
maintenance, the GA is applied by tuning the hyperparameters to 
accommodate the increased solution space. 

 

Table 8: Ages of components (GA: Case 2) 

Component Age 
(hrs) 

Reliability 
before 

maintenance      
(𝑹𝒊,𝒋) 

1 3690 0.662978998 
2 3810 0.616259864 
3 4440 0.540343519 
4 3880 0.789086325 
5 4660 0.738711236 
6 4130 0.734308793 
7 4280 0.762485709 
8 3720 0.747100507 
9 4540 0.763107198 

10 4800 0.748602772 
11 3790 0.854563541 
12 4390 0.787140509 
13 4170 0.793672588 
14 4510 0.744254548 

 

Hyperparameters: 

• Population Size = 25000 

• Number of generations = 20 

• Crossover probability = 0.90 

• Mutation probability = 0.20 
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Optimal maintenance action: 

Component 1 2 3 5 6 8 10 14 

Maintenance actions 0 3 0 3 2 1 1 0 

 

The maintenance policy is [0,3,0,3,2,1,1,0] which implies performing 

Minimal repair on components 8 and 10, Intermediate repair on 

component 6, Major repair on components 2 and 5 and Do Nothing on 

all other components. This maintenance action costs Rs. 3,22,500 and 

the time required to perform this action is 24 hrs. The system reliability 

after maintenance is 0.90012. 

The computation time for solving the above case of SM optimization is 

44 minutes. 

4.3.3 Comparison with enumeration method 

The GA is applied on two different scenarios and the results obtained 

are compared with those obtained by using Enumeration method. 

Because to overcome the drawbacks of enumeration method of 

computational inefficiency during brute force search, metaheuristics 

like GA was used.  

• Case 1 

Table 9: Comparison of GA with Enumeration method 

 Enumeration method Genetic algorithm 

Components  [1,2,3,5,9,10] [1,2,3,5,9,10] 

Solution [1,1,0,3,0,0] [1,1,0,3,0,0] 

Computation time  185 seconds 123 seconds 

 

In this case, the solution space contains 15,625 possible actions. GA 

achieves the optimal solution with the selected hyperparameters in 

lesser time than enumeration method. 



41 
 

• Case 2 

Table 10: Comparison of GA with Enumeration method 

 Enumeration method Genetic algorithm 

Components [1,2,3,5,6,8,10,14] [1,2,3,5,6,8,10,14] 

Solution [0,3,0,3,2,1,1,0] [0,3,0,3,2,1,1,0] 

Computation time  72 minutes 44 minutes 

 

In this case the solution space is increased to 3,90,625. The 

hyperparameters are also changed accordingly. We can see that to solve 

this SMO problem, enumeration method takes more than an hour but 

GA is computationally efficient and takes only 44 minutes to complete 

it.  

4.3.4 Limitations of Genetic Algorithm 

 

Though GA is beneficial over enumeration method, the optimality of 

the solution isn’t always guaranteed. But enumeration method always 

results in an optimal solution, whereas sub optimal solutions are also 

possible with GA. And implementation of GA is tedious task which 

requires technically skilled people. 
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Chapter 5 Machine Learning 
based Approach 

 

5.1 Introduction to Machine Learning (ML) 

 

5.1.1 What is Artificial Intelligence (AI)? 

Machines which exhibit intelligent behavior by perceiving its 

environment and taking decisions accordingly are said to possess 

artificial intelligence. By using AI, a machine can mimic cognitive 

human functions like learning and problem solving. 

An AI system is created with Machine Learning (ML) and Deep 

Learning (DL) algorithms. We can infer from the schematic diagram 

shown below that ML and DL are subsets of AI. 

 

Figure 5.1: ML as subset of AI 

5.1.2 Machine Learning (ML) 

ML is an application of AI that provides systems the ability to 

automatically learn and improve from experience without being 

explicitly programmed. ML is a process where machines take data, 

analyze it to generate predictions and use those predictions to make 

decisions. The decisions generate results which are used to improve 

future predictions.  
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ML is a method of data analysis, that automates analytical model 

building. The process of feeding data to a software program and coming 

up with human like decisions is known as modeling. 

5.1.3 Types of ML methods 

Machine learning is comprised of three different paradigms. They are 

Supervised learning, Unsupervised learning and Reinforcement 

learning.  

• Supervised Learning 

Supervised learning algorithms apply already learned data to present 

data with labeled outputs to envisage future outcomes. A known training 

dataset is analyzed and the algorithm learns and a function is created to 

make anticipation about the future events. The learning model will 

compare its output with the exact output and modifies the model 

accordingly to make correct predictions. 

The figure shown below clearly illustrates the learning process in 

supervised learning. 

 

Figure 5.2: Illustration about Supervised Learning 

 

• Unsupervised Learning 

Unsupervised learning detects emerging properties in input data. These 

learning algorithms are useful when the information is not labeled. It is 
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predominantly used to find out the hidden structure in unclassified data. 

Model constructs patterns or clusters as outputs because the system just 

explores the data to draw inferences. 

• Reinforcement Learning 

Reinforcement learning algorithms is a learning method that interacts 

with its environment by producing actions and discovers errors or 

rewards. This method allows machines and software agents to 

automatically determine the ideal behavior within a specific context in 

order to maximize its performance. Reinforcement learning is learning 

what to do and how to map situations to actions so as to maximize a 

numerical reward signal. The agent is not told which actions to take, but 

instead must discover which actions yield the most reward by trying 

them. The algorithm discovers through trial and error, which actions 

yield the best rewards [29].  

 

Figure 5.3: Learning in RL 

 

“Of all forms of Machine learning, Reinforcement learning is closest to 

the kind of learning that humans and animals do.” 

It is distinguished from other computational approaches by its emphasis 

on learning by an agent from direct interaction with its environment, 

without requiring exemplary supervision or complete models of the 

environment. 
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5.2 Reinforcement Learning (RL) for Selective Maintenance 

Optimization 

 

Reinforcement learning for SMO requires the agent to determine an 

optimal policy. RL is distinguished from supervised and unsupervised 

learning as the former requires learning from a training set and the latter 

is typically about finding the hidden structure in unlabeled data, whereas 

RL is learning what to do, how to map states to actions to maximize a 

numerical reward signal. This learning methodology of RL makes it the 

most suitable ML paradigm for applying it to solve the computationally 

complex problem of SMO.  

5.2.1 Steps involved in RL process: 

[1] Observe the environment 

[2] Perform an action based on the strategy 

[3] Accept a reward or penalty 

[4] Learn from the experience and modify the strategy 

[5] Iterate until an optimal solution is found 

 

5.2.2 Elements of RL  

Any RL algorithm has four major components. They are: 

i. The Agent – Learner or Decision maker 

ii. The Environment – Industrial system for maintenance 

iii. Actions – Maintenance actions performed on the system 

iv. Reward – Feedback to the maintenance performed 

 

Figure 5.4: Elements of RL 
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• Return: The Return function is the sum of the rewards in the 

simplest case. It is denoted as G(t). 

𝐺(𝑡)  ≐  𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ =  ∑ 𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

 (10) 

Where,  

G(t): Return 

Rt: Reward 

γ: Discount rate 

• Action-Value function: The action-value function is the expected 

return when starting from state s taking action a and following 

policy π. 

𝑞𝜋(𝑠, 𝑎)  ≐ 𝐸𝜋[𝐺𝑡| 𝑆𝑡 = 𝑠,   𝐴𝑡 = 𝑎]  

=  𝐸𝜋 [∑ 𝛾𝑘𝑅𝑡+𝑘+1| 𝑆𝑡 = 𝑠 , 𝐴𝑡 = 𝑎
∞

𝑘=0

] 
(11) 

Where,  

qπ (s, a): Action-value function for policy π 

St: Current State 

Eπ[.]: Expected value given the agent follows policy π 

Rt: Reward 

 

5.3 Modeling of the SMO problem 

Taking into account the mechanical nature of the industrial systems / 

components under consideration, it is assumed that the component 

lifetimes follow a 2-parameter Weibull distribution. This distribution 

has hazard rate function that is not constant over time, for shape 

parameter values ≠ 1. For preventive replacement, only those 

components qualify whose shape parameter > 1. The same is considered 

for the problem described in this project. 
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Markov Decision Processes (MDPs) are classical formalization of 

sequential decision making, where actions influence not just immediate 

rewards, but also subsequent situations and states which in turn affects 

future rewards.  

Since the components in the Multi-State System (MSS) is assumed to 

follow the Weibull distribution, the SM problem is modelled as an 

SMDP [30]. The Action Space of the SMDP is a set of all possible 

maintenance actions, but only those actions which are feasible 

maintenance actions yield a positive reward. Feasible actions are those 

whose maintenance cost is within the maintenance budget and the 

maintenance time is less than the break duration as shown in eq. 12. 

𝑆𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
𝑎𝑐𝑡   

=  {𝑎|𝛴𝐶 ≤ 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑏𝑢𝑑𝑔𝑒𝑡 , 𝛴𝑇 ≤ 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑏𝑟𝑒𝑎𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛} 
(12) 

Reward of the SMDP is based on the probability of the system 

successfully completing the next mission. The optimal selective 

maintenance strategy (Π*) is determined by: 

𝜋∗ = argmax Q*(a) (13) 

 

5.4 Q – Learning for SMO 

Q - Learning is an off-policy temporal difference learning algorithm that 

learns from the reward obtained and chooses the best action to take at a 

given state. Q in Q-Learning stands for Quality. A higher Q-Value 

denotes a higher reward if that action is chosen in that state. The Q-

Value is estimated using the Bellman equation. 

𝑄(𝑆𝑡, 𝐴𝑡)  ←  𝑄(𝑆𝑡, 𝐴𝑡)

+ 𝛼[𝑅𝑡+1 + 𝛾 max 𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] 
(14) 

Where,  

α: Learning rate:  Extent to which Q – Values are updated in every 

epoch. α determines the weightage given to recent observations. 
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γ: Discount rate: This parameter helps determine the present value of a 

reward obtained in the future. 

In this algorithm, the agent will learn from experience and choose the 

best action from the set of feasible maintenance actions. The Q – Values 

are updated in the Q - table which is maintained by the agent and the 

table will guide it to the best action for each component. The optimal 

Selective Maintenance strategy is determined by the set of maintenance 

actions that give the maximum Q – value for each component. 

 

5.5 Exploration – Exploitation dilemma 

The agent has two possibilities to choose from whenever it requires to 

make a decision. Whether to explore for better actions or exploit those 

actions which is already giving the agent a reward. There’s a trade-off 

between choosing a random action to explore and choosing actions 

based on already learned Q-Values i.e., choosing greedy actions. If the 

agent sticks to an action which gives it good reliability of system at a 

feasible maintenance cost, there is also a possibility that on exploration 

the agent may find a much better action by consuming much lower 

maintenance resources.  

A parameter ‘ε’ known as exploration probability is defined, which 

denotes the probability that the agent will explore in a particular 

iteration. Reward maybe lower in the short run during exploration, but 

it can be higher in the long run because the agent may discover a better 

action and can exploit it.  

 

5.6 Maintenance priority of components  

At the end of a mission, when the system is ready for maintenance, if 

the number of components in the system is M and N maintenance actions 

are possible on the system, there are NM possible maintenance action 

combinations. However, there are some components whose age is 

comparatively lesser resulting in their higher mission reliability. The 
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decision makers are skeptical about replacing such components and 

considering these components in the solution space unnecessarily 

burdens the computation process. It is also observed that, even 

considering such components with higher reliabilities, serves no 

purpose as they do not get assigned with any maintenance action in the 

final solution. With this heuristic, the reliability of each component for 

the duration of the next mission gets estimated and the solution space 

gets smartly reduced by omitting the components with the reliability 

higher than the predefined reliability threshold. Omitting these 

components for maintenance serves two purposes: 

i. Avoids maintenance on components that are already healthy and 

ensures the useful life of components isn’t wasted. 

ii. Reduces the solution space, thereby giving the agent a much 

narrow set of possibilities to choose from. 

 

5.7 Reward Function 

The reward function is a very important parameter in letting the agent 

learn and improve from experience. The agent is rewarded or penalized 

based on the chosen maintenance action satisfying the objective of the 

problem and the constraints. The flowchart of the reward function is 

given in Figure 5.5.  

To make sure the agent will choose the maintenance action by 

consuming minimum maintenance resources, the reward given to the 

agent is further divided based on the system reliability after 

maintenance. As the difference between the reliability of the system 

after maintenance and target reliability increases, the cost and time 

required to perform maintenance increases and hence the agent will 

consume more resources. So, to help the agent choose optimal actions 

and refrain from choosing sub optimal solutions, harsh measures in the 

form of reducing rewards were adopted.  

In this project, the penalties for the agent after performing a particular 

maintenance action is divided based on the constraints being satisfied. 
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If the agent fails to meet the reliability constraint, it is penalized heavily 

by a penalty P1. If the objective function of cost isn’t met, then agent is 

penalized P2 and finally on failing to meet the maintenance time criteria, 

a penalty of P3 is imposed. For calculative purposes, empirical 

numerical values of 10000, 7000 and 4000 is chosen as P1, P2 and P3 

respectively in this project. 

 

 

Figure 5.5: Flowchart of Reward function 

 

5.8 Reward Factors 

A novel heuristic is devised in the form of a reward factor which 

is additionally multiplied to the reward received by the agent, before 

using it in the Bellman equation (eqn. 14) to update the Q-Table. The 

use of this heuristic forces the agent to choose the action which 
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consumes minimum maintenance resources. A higher reward factor is 

given if the agent chooses an action which doesn’t involve replacing the 

component. The values of the reward factors are given in Table 11. 

Table 11: Reward Factors 

Maintenance action 
(𝑙𝑖,𝑗) Action Reward factor 

0 Do nothing 10 
1 Minimal repair 7.5 
2 Intermediate repair 5 
3 Major repair 2.5 

4 Component 
replacement 

1 

 

 

5.9 Steps in Q-Learning 

• The initialization of Q – table: The Q – table is initialized for M 

components where N actions are possible. The values are initialized 

at 0. 

 

• Choose an action to perform: An action to perform on a component 

will be chosen depending on the agent’s decision to explore or 

exploit. An immediate reward is given to the agent for choosing an 

action. After the agent chooses an action for each component, the 

set of maintenance actions chosen for each component is performed 

on the system and the reliability of the system, maintenance cost and 

maintenance time is determined. 

 

• Calculate the reward and update the Q – Table: Based on the 

reliability of the system after maintenance and the cost and time 

incurred for maintenance, an accumulated reward is estimated and 

based on this reward, the Bellman optimality equation is used to 

determine the Q – Value and update the Q – Table at every epoch. 

The flowchart of the complete Q-Learning process for an epoch is 

depicted in Figure 5.6. 



52 
 

 

Figure 5.6: Flowchart of Q-Learning process 

 

5.10 Results and Discussion 

The proposed RL based methodology is illustrated on two different 

problems. Firstly, the methodology is applied on a small-scale problem 

and later, it is illustrated on the benchmark industrial system for coal 

transportation. 

5.10.1 Illustrative Example I – Small scale system 

To discuss the application of methodology in detail, firstly, it is applied 

on a small-scale system consisting of 2 subsystems connected in series 

configuration. Both sub systems are configured with two components 
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connected in parallel. The block diagram for the considered small-scale 

system is shown in Figure 5.7. 

 

Figure 5.7: Series-Parallel system 

 

The status of the system along with details regarding probability distribution 

parameters, maintenance cost, maintenance duration, etc. are provided in 

Table 12. 

Table 12: Parameters of the small-scale system 

Component η (hrs) β Age 
(hrs) 

Maintenance 
cost 

Maintenance 
time (hrs) 

1 3500 1.5 1000 15000 7 
2 2600 2.4 850 12500 6 
3 2800 2.4 900 20000 3 
4 3800 1.8 1000 10000 5 

 

The next mission for the system is of 1000 hrs. of operation. Required 

probability of successfully completing the mission in terms of target 

mission reliability is 0.90. Based on the status of the system, the mission 

reliability before maintenance is 0.872, which is less than the target 

mission reliability, therefore, the maintenance needs to be performed. 

Total available maintenance budget is limited to Rs. 10000 and duration 

of maintenance break is limited to 12 hrs.  

This selective maintenance optimization problem is solved using the 

proposed RL methodology. There are 4 components (M = 4) considered 

for maintenance and with 5 maintenance actions (N = 5) possible on 

each component, the solution space is 54 = 625 possible actions. So, the 

RL agent has to choose the optimal maintenance action which 
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maximizes the system reliability while satisfying maintenance 

constraints. The hyperparameters for the algorithm are selected as 

following – Table 13. 

Table 13: Hyperparameters 

Learning rate (α) 0.1 

Discount rate (γ) 0.95 

ε (greedy policy) 0.25 

 

The Q-Learning is initiated with all the values set to 0. Each row in the 

Q-table has 5 elements which corresponds to each action for a 

component. The present value of 0 shows the initial Q-Value for every 

action over every component. 

 

After initialization, the agent chooses an action and updates the Q-

Values according to the Bellman optimality equation (eqn.14). 

After 1000 iterations, the RL agent has now learnt the best policy to be 

chosen. The optimal strategy to be performed for each component is 

determined by the highest Q-Value for each component. The updated 

Q-Values after the 1000 iterations is given below. We can see in the Q-

table given below that for component 1, the highest Q-Value is when 

action 0 is performed. Similarly, the argument for maximum Q-Value 

for each of the components 2, 3 and 4 is 2, 0, and 1 respectively. So, the 

optimal maintenance policy chosen by the RL agent for this system is 

[0,2,0,1] which denotes performing Intermediate repair on component 

2, Minimal repair on component 4 and do nothing on all the other 

components.  
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The maintenance cost incurred is 3625 units and the time required to 

perform this maintenance action is 11 hrs. The reliability after 

maintenance is 0.901. As can be seen, the agent consumes minimum 

resources and also succeeds in fulfilling the objective of the selective 

maintenance optimization problem. 

5.10.2 Illustrative example II - Coal transportation system: 

5.10.2.1  Case 1 

To further evaluate the proposed methodology, it is applied on the coal 

transportation system introduced by [7,14,22]. It has 5 subsystems 

comprising of a couple of conveyors and feeders and a stacker-reclaimer 

as shown in figure 3.1. Various parameters of the system including its 

current status (randomly selected), maintenance cost, maintenance time 

are listed in table 14.  

Table 14: Parameters of Coal transportation system 

Component Age 
(hrs) 

Maintenance 
cost 
(Rs) 

Maintenance 
time 
(hrs) 

Reliability 
before 

maintenance      
(𝑹𝒊,𝒋) 

1 2750 225000 6 0.691500273 
2 2600 300000 6 0.718896041 
3 2900 225000 6 0.601991213 
4 2340 375000 7.2 0.874450254 
5 4500 150000 7.2 0.743641875 
6 2590 225000 3.6 0.824905618 
7 2740 450000 7.2 0.846840889 
8 2100 375000 2.4 0.822377655 
9 4250 225000 9.6 0.765265027 

10 3975 450000 4.8 0.7612768 
11 2250 525000 3.6 0.921186337 
12 2850 300000 6 0.815980559 
13 2630 450000 8.4 0.865347609 
14 2455 225000 8.4 0.840822585 
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The next mission for the system is of 100 days of continuous operation. 

Required probability of successfully completing the mission in terms of 

target mission reliability is 0.90. Based on the status of the system, the 

present mission reliability is 0.8775 which is less than the target mission 

reliability, therefore, the maintenance needs to be performed. Total 

available maintenance budget is limited to Rs. 200000 and duration of 

maintenance break is limited to 24 hrs.  

As per the reward factors given in Table 11, and reliability threshold (R 

(i, j) min) of 0.80 is set for a component to be prioritized for maintenance 

as per the devised heuristic, the hyperparameters for the algorithm are 

selected as used in the case of illustrative example I. 

The Q-Learning is initiated with all the values set to 0. 

 

After choosing an action randomly in the first epoch, the Q - table is 

updated. The action chosen initially is [1,1,1,0,1,0]. The updated Q – 

Table is given below. Based on the defined reward function, the agent 

is either penalized or rewarded. 

 

After continuously learning up to 2500 epochs, the agent arrives at the 

optimal solution and the optimal maintenance policy is determined by 

the maximum Q-Value at each state which corresponds to the action 

which gives the best return in long run. From the final Q-Table shown 

below, the maintenance policy is [1,1,0,3,0,0] which implies performing 

Major repair on component 5, Minimal repair on components 1 & 2 

and Do Nothing on all other components.  
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This maintenance action costs Rs. 101250 and the time required to 

perform this action is 19.2 hrs. Both of these are well within the 

constraints and the reliability of the system after maintenance is 0.9017. 

The computation time using RL for this case is 64 seconds. 

 

Graph 1: Learning process of the agent 

The graph 1 shows the learning process of the agent. Initially until 

around 650 iterations, the agent tends to explore to identify the optimal 

solution. But once the agent on finding an optimal solution, tends to 

exploit it to get maximum reward and at the same time also explore in 

search of any other better solutions. This clearly depicts the intelligence 

of the agent and we can infer that the agent is learning with experience. 
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5.10.2.2  Case 2 

This scenario considers higher ages of the components of the MSS of 

Coal transportation system. The ages of the components and the values 

of other parameters are listed in the table below.  

Table 15: Ages of the components 

Component Age 
(hrs) 

Reliability 
before 

maintenance      
(𝑹𝒊,𝒋) 

1 3690 0.662978998 
2 3810 0.616259864 
3 4440 0.540343519 
4 3880 0.789086325 
5 4660 0.738711236 
6 4130 0.734308793 
7 4280 0.762485709 
8 3720 0.747100507 
9 4540 0.763107198 

10 4800 0.748602772 
11 3790 0.854563541 
12 4390 0.787140509 
13 4170 0.793672588 
14 4510 0.744254548 

 

The duration of next mission is 2400 hrs and Reliability of the system 

before maintenance, R (2400) is 0.821 while R*(2400) is 0.90. So, there 

is a need for the system to undergo maintenance before the start of next 

mission to successfully complete it. The selective maintenance 

optimization problem is formulated with the objective to maximize the 

system reliability while consuming minimum maintenance resources. 

The reliability threshold R(i,j)min is set at 0.75 and the components 

prioritized for maintenance based on the reliability of the components 

before maintenance are 1,2,3,5,6,8,10 and 14. The number of actions 

available to be performed on each component is 5 and since there are 8 

components for maintenance, the action space for the agent to choose 

from is 58 = 3,90,625. This action space is considerably greater than the 

one discussed previously. 



59 
 

Hyperparameter α is set at 0.1, while γ is 0.95 and the parameter of ε-

greedy policy is 0.25. The constraints of maintenance budget considered 

during this break is Rs. 4,00,000 while the maintenance break duration 

is 48 hrs. The Q-table is initialized as a MxN matrix where M is 8 and 

N is 5.  

The agent starts learning by exploring initially. After 1,00,000 

iterations, the agent arrives at a feasible maintenance action which after 

performing on the system, achieves the desired reliability and also the 

resources like maintenance cost and time consumed is also well within 

the constraints. The feasible maintenance action proposed by the agent 

in this case is to perform Major repair on components 2,5 and 6 while 

perform Minimal repair on components 3,8 and 10 and do nothing on 

all other components.   

Component 1 2 3 5 6 8 10 14 

Maintenance actions 0 3 1 3 3 1 1 0 

 

Rs. 3,90,000 has to be spent to perform the chosen maintenance action 

and it takes 30 hrs. The reliability of the system after maintenance 

𝑅′(2400) is 0.90511. The computation time for solving this SM 

optimization problem is 38 minutes. 

5.10.3 Comparison with Enumeration method and GA  
 

• Case 1 

For the Scenario 1, the maintenance action suggested by all the three 

approaches is same i.e., to perform Major repair on component 5, 

Minimal repair on components 1,2 and Do Nothing on all other 

components as shown in the table 16. 
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Table 16: Comparison with GA and BF (Case 1) 

 

Though all the approaches are suggesting the optimal action, there is 

stark contrast in computation time required for each of the approaches 

to arrive at the optimal solution. The solution space in this case is 56 = 

15,625 actions. Enumeration method takes 185 seconds to compute this 

problem, while GA takes only 123 seconds to identify the solution. The 

proposed RL based approach takes only 64 seconds to compute the 

selective maintenance optimization problem and return the optimal 

solution.  

There is a 34 % reduction in computation time on using GA when 

compared to enumeration approach, and RL based methodology takes 

48% lesser computation time when compared to GA based approach, 

and 65% lesser computation time when compared to enumeration 

approach.  

• Case 2 

In this scenario, the solution space is 58 = 3,90,625 possible maintenance 

actions. The maintenance action obtained from Enumeration method is 

the optimal policy which suggests performing Minimal repair on 

components 8 and 10, while Intermediate repair on component 6, Major 

repair on components 2,5 and do nothing on all other components. The 

maintenance cost for performing this maintenance action is Rs. 3,22,500 

while the maintenance time required is 24 hrs.  

The result obtained from GA is also the optimal maintenance action as 

suggested by Enumeration method. The RL methodology gives a near 

optimal solution which fulfils the objectives and abides by the 

constraints. Though the solution is near optimal, RL based methodology 

 Enumeration 
Method (EM) 

Genetic 
Algorithm  

(GA) 

Reinforcement 
Learning (RL) 

Components [1,2,3,5,9,10] [1,2,3,5,9,10] [1,2,3,5,9,10] 
Solution [1,1,0,3,0,0] [1,1,0,3,0,0] [1,1,0,3,0,0] 

Computation 
time 

185 seconds 123 seconds 64 seconds 
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is computationally superior than the traditional method and the 

evolutionary algorithm-based method. As shown in the table below, 

computation time for Q-Learning agent to learn is 38 minutes while the 

Enumeration method takes 72 minutes to compute the selective 

maintenance optimization problem and GA too consumes 44 minutes. 

Table 17: Comparison with GA and BF (Case 2) 

 
Enumeration 

method 

Genetic 

algorithm 

Reinforcement 

Learning 

Components [1,2,3,5,6,8,10,14] [1,2,3,5,6,8,10,14] [1,2,3,5,6,8,10,14] 

Solution [0,3,0,3,2,1,1,0] [0,3,0,3,2,1,1,0] [0,3,1,3,3,1,1,0] 

Computation 

time 

72 minutes 44 minutes 38 minutes 

 

5.10.4 Limitations of RL based methodology 

The major drawback of traditional approach of using enumeration 

method is that the computation time becomes intractable when the 

solution space is large. These problems can be overcome by using the 

evolutionary algorithm based approach and the proposed novel RL 

based methodology.  

The proposed RL based Q-Learning algorithm is far more efficient than 

the GA approach. Though sometimes due to the stochastic nature of 

learning of the agent, it may not arrive at the optimal solution, but the 

agent always learns and returns a feasible solution well within the 

budget and time constraints.  

It has been observed that, selection of number of epochs for the 

proposed RL based methodology for solving SMO, has significant 

effect on the quality of the solution as well as the computation time 

required. Although the proposed methodology does not guarantee the 

optimality of the solution all the time, it is guaranteed that the 

methodology will result in near optimal solutions when comparatively 

lesser number of epochs are chosen in an attempt to solve the problem 
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in less computation time. In order to reach up to the optimality, selection 

of number of epochs need to be on higher side at the expense of slightly 

higher computation time. Even in such case with near optimal solution, 

the RL based methodology resulted into better performance in terms of 

computation time when compared to traditional approaches. Therefore, 

for the industrial scenarios where the attention is more on the 

computation time while compromising on optimality of the solution, 

this RL based methodology will prove to be more effective. 

The implementation of RL based methodology also requires 

sophisticated computation infrastructure and technically skilled 

personnel to implement the algorithm properly. This adds to the 

financial burden of industries. With the advancement in technology and 

rapid modernization of industries, application of ML based algorithms 

for maintenance planning in industries isn’t a distant reality anymore. 
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Chapter 6 Agent Based 
Distributed Approach 

 

6.1 Introduction 
 

The combination of sensors and computing infrastructure is becoming 

increasingly popular in the industries. Developments like these are 

making way for the automation of various industrial practices and are 

motivating the need to replace conventional maintenance planning 

techniques with methods that can employ the capabilities of Cyber-

physical systems and IIoT. Maintenance planning is a crucial decision-

making task which significantly reduces unplanned downtime and 

improves system efficiency.  

Till now, we have seen the evolution of methodologies used for SM 

optimization from the introduction of the problem. Initially, it was 

traditional methods like brute-force search and in the next generation, 

metaheuristics like GA were used. Now, the rapid rise in ML’s 

popularity opened up new avenues for using machine learning based 

methods for SM optimization. In the last chapter, implementation of 

reinforcement learning based methodology was discussed.  

In this chapter, a neoteric agent-based distributed maintenance planning 

algorithm for SMO is discussed in detail. This is a first of its kind 

attempt to use this decentralized approach for SMO. This algorithm will 

is developed to be compatible with the present trend of IIoT and smart 

manufacturing and pave way for Industry 4.0. Rapid rise of Industry 4.0 

in present day manufacturing processes is resulting in a move from 

centralized decision making to distributed decision making and 

supervisory control across industries.  
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6.2 Machine-Level Agents and Coordinating Agent 
 

• Machine-Level agents: 

Distributed systems are characterized as being more robust and agile, 

which are some of the highly relevant qualities in today’s competitive 

world. Decentralized approaches generally have different agents at 

system level to represent each system or subsystem. They choose what 

is best for the respective subsystem with respect to the maintenance 

which is to be performed. They just ensure that the maintenance policy 

they are preferring for their respective subsystem will not violate the 

constraint of maintenance budget and time.  

The reliability required for each subsystem to ensure the complete 

system achieves the desired target mission reliability is allocated to each 

subsystem and the task of the agent at subsystem level is to achieve the 

allocated subsystem reliability. The agent at subsystem level (machine 

level agent) will give its preferred choices of maintenance for its 

respective subsystem. The preferences can vary by requirement. For 

example, in a particular case, all the machine level agents can give the 

top 5 preferences based on the least maintenance cost. This quantity of 

preferences can be 7,10 or more depending on the requirement.  

 

• Coordinating agent 

The coordinating agent will take in all the preferences given by each 

machine level agent and now its task is to decide which maintenance 

policy to adopt based on the choices, so that the target mission reliability 

of the entire system is achieved. This agent will think over the broader 

perspective of the enterprise as a whole. So, the maintenance 

preferences obtained from the agents will be used to decide the optimal 

maintenance policy whose maintenance cost will be less than the 

maintenance budget and time to perform the maintenance is within the 
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break duration. The coordinating agent uses any computation algorithm 

to arrive at the optimal solution considering all the constraints. In this 

project, enumeration method is used for optimizing the SM problem. 

This decentralized planning ensures the solution space is reduced 

significantly to an extent that only potential maintenance actions are 

present. It filters out all unnecessary actions which helps in reducing the 

computational complexity.   

The diagrammatic representation of the distributed maintenance 

planning algorithm for the benchmark problem of the coal 

transportation system considered in this work is depicted in figure 6.1. 

 

Figure 6.1: Agent based Distributed Maintenance planning 

 

The coal transportation system has 5 different subsystems connected in 

series. Each subsystem has an agent which will determine what is best 

for the respective subsystem. So, for the problem considered in this 

project, there are 5 machine level agents and 1 coordinating agent. 

 

 



66 
 

6.3 Reliability Allocation 
 

Ages of the components are known and the reliabilities are estimated. 

Then based on the target reliability, reliability allocation takes place, 

where each subsystem is allocated a target component reliability to 

achieve after maintenance. This ensures the target system reliability is 

reached after maintenance. The reliability allocation to components and 

subsystems will support the enterprise goals of achieving the target 

reliability.  

There are various methods to allocate reliability. In this project, I have 

used two different reliability allocation techniques to identify the best 

approach suitable for this situation. They are: 

• Equal reliability allocation  

• Minimum effort method 

 

6.3.1 Equal Reliability Allocation  

In this method, reliability is equally allocated to all the 

components/subsystems. If an industrial system contains M subsystems, 

the reliability is equally allocated to each subsystem irrespective of the 

number of components present in the subsystem.  

𝑅∗(𝑡) – Target system reliability 

M = 5 [Number of subsystems in the coal transportation system  

𝑅𝑖(𝑡) =  [𝑅∗(𝑡)]1/5 (15) 

6.3.2 Minimum effort method 

 
In this method, the reliabilities of subsystem are arranged in increasing 

order. This method is called minimum effort method, because now the 

target for the least reliability subsystem is increased up to the next 

highest reliability subsystem. So, the aim is to spend minimum effort to 

achieve the target system reliability (𝑅∗(𝑡)). After increasing the 
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subsystem reliability by a level, then the present system reliability is 

estimated. If it is greater than the target reliability, then the reliability of 

the subsystem has to be increased to a level between the current 

reliability and the next subsequent reliability. If it is less than the target 

reliability, then the reliability of the first two subsystems in increasing 

order is increased up to the reliability of the third subsystem in line. This 

process is repeated until the target system reliability is achieved.  

6.4 Results and Discussion 

The developed distributed maintenance planning algorithm is applied 

on the benchmark problem of coal transportation system and the 

efficiency of the algorithm is compared with the various methodologies 

developed in this project like the enumeration method, GA and RL 

based Q-Learning algorithm.  

The system parameters and ages of the components along with the 

reliabilities of the components are mentioned in tables 18 and 19. The 

duration of the upcoming mission (t) for the coal transportation system 

is continuous operation for the next 100 days i.e., 2400 hrs. 

Table 18: Weibull parameters of the components 

Subsystem Component Scale parameter 
(hrs) Shape parameter 

Feeder 1 1 7200 1.5 
 2 7200 2.4 
 3 6000 1.6 

Conveyor 1 4 9600 2.6 
 5 9600 1.8 

Stacker-
Reclaimer 6 9000 2.4 

 7 9600 2.5 
 8 9000 2 

Feeder 2 9 9600 1.2 
 10 9600 1.4 

Conveyor 2 11 10800 2.8 
 12 10800 1.5 
 13 10200 2.4 
 14 9600 2.2 
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Table 19: Reliabilities of the components 

Component Age 
(hrs) 

Maintenance 
cost 
(Rs) 

Maintenance 
time 
(hrs) 

Reliability 
before 

maintenance      
(𝑹𝒊,𝒋) 

1 2750 225000 6 0.691500273 
2 2600 300000 6 0.718896041 
3 2900 225000 6 0.601991213 
4 2340 375000 7.2 0.874450254 
5 4500 150000 7.2 0.743641875 
6 2590 225000 3.6 0.824905618 
7 2740 450000 7.2 0.846840889 
8 2100 375000 2.4 0.822377655 
9 4250 225000 9.6 0.765265027 

10 3975 450000 4.8 0.7612768 
11 2250 525000 3.6 0.921186337 
12 2850 300000 6 0.815980559 
13 2630 450000 8.4 0.865347609 
14 2455 225000 8.4 0.840822585 

 

6.4.1  Estimating Subsystem Reliability 

[1] Reliability of Feeder 1: 

Feeder 1 consists of 3 components which are connected in parallel 

configuration.  

𝑹𝟏 = 𝟏 −  ∏(𝟏 −  𝑹𝟏,𝒋)
𝟑

𝒋=𝟏

 

𝑹𝟏 = 0.965484481 

 

[2] Reliability of Conveyor 1: 

Conveyor 1 has 2 parallelly connected components.  

𝑹𝟐 = 𝟏 −  ∏(𝟏 −  𝑹𝟐,𝒋)
𝟐

𝒋=𝟏

 

𝑹𝟐 = 0.967814303 
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[3] Reliability of Stacker-Reclaimer: 

Stacker-reclaimer consists of 3 parallelly connected components.  

𝑹𝟑 = 𝟏 −  ∏(𝟏 −  𝑹𝟑,𝒋)
𝟑

𝒋=𝟏

 

𝑹𝟑 = 0.995236648 
 

[4] Reliability of Feeder 2: 

Feeder 2 has 2 parallelly connected components.  

𝑹𝟒 = 𝟏 −  ∏(𝟏 −  𝑹𝟒,𝒋)
𝟐

𝒋=𝟏

 

𝑹𝟒 = 0.943963316 
 

 

[5] Reliability of Conveyor 2: 

Conveyor 2 has 4 components which are parallel to each other.  

𝑹𝟓 = 𝟏 −  ∏(𝟏 −  𝑹𝟓,𝒋)
𝟒

𝒋=𝟏

 

𝑹𝟓 = 0.999689143 

 

6.4.2 Equal Reliability Allocation 

• System Reliability before maintenance, 𝑅(2400) = 0.8775 

• Target Mission Reliability, 𝑅∗(2400) = 0.90 

Since, the system reliability before maintenance is less than the target 

mission reliability, maintenance has to be performed on the system. The 

reliability is allocated for each subsystem equally. 

𝑅𝑖(𝑡) =  [0.90]
1
5 = 0.9791 
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Based on reliabilities allocated for each subsystem, the machine-level 

agent identifies the best possible maintenance actions for the respective 

subsystem and the top 5 preferences are forwarded to the coordinating 

agent to make the final decision regarding the maintenance action to be 

performed. 

The maintenance budget is Rs. 2,00,000 and the break duration is 24 

hrs. The chosen policy has to abide by these constraints and at the same 

time achieve the target reliability. 

The top preferences given by each machine-level agent for its respective 

subsystem is listed below. Every preference set will have the action of 

Doing nothing on all components as a preference to ensure the 

optimality of the maintenance policy by not overdoing maintenance on 

redundant components. 

 

I. Preferences of Agent 1 for Feeder 1: 

 

 
 

II. Preferences of Agent 2 for Conveyor 1: 
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III. Preferences of Agent 3 for Stacker-reclaimer: 

 

 
 

IV. Preferences of Agent 4 for Feeder 2: 

There is only option here because the maintenance actions which 

can improve the reliability of this subsystem up to the allocated 

reliability are more expensive to perform as they cost more than 

the maintenance budget. So, these actions are omitted and only 

doing nothing is preferred as the only feasible option. 

 

 
 

V. Preferences of Agent 5 for Conveyor 2: 

 

 
 

Now that all the agents have given their preferences to the coordinating 

agent at the enterprise level, it is now the task of that agent to perform a 

brute force search over all the preferences and identify the best 
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maintenance policy which can fulfill the criterions of the constraints and 

achieve the objective function. 

After performing the brute force search over the solution space, the top 

5 maintenance actions with least maintenance cost are listed below. 

 

The maintenance action highlighted above suggests performing 

Intermediate repair on components 2 and 5, Minimal repair on 

component 4 and do nothing on all other components. This maintenance 

action costs Rs. 1,31,250 and the maintenance time is 20.4 hrs. The 

reliability of the system after maintenance is 0.901831. 

As we can see, equal reliability allocation is a very naive way of 

allocating reliability. This allocation technique tends to overfit the 

model and it doesn’t ensure the optimality of the results. In this case, we 

have obtained a sub optimal solution which costs Rs. 30000 more than 

the optimal solution obtained from enumeration method and GA.  

To overcome this issue, Reliability allocation using Minimum effort 

method is performed and the results are explored. 

 

6.4.3 Minimum Effort Method 

• System Reliability before maintenance, 𝑅(2400) = 0.8775 

• Target Mission Reliability, 𝑅∗(2400) = 0.90 

Since, the system reliability before maintenance is less than the target 

mission reliability, maintenance has to be performed on the system. The 

reliability is allocated to each subsystem based on the minimum effort 

method.  
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Step 1: 

Arranging the reliabilities in increasing order. 

                Table 20: Subsystem Reliability 

Subsystem Reliability 
4 0.943963 

1 0.965484 
2 0.967814 
3 0.995237 

5 0.999689 
 

→ Reliability of the system [R(2400)] < R* 

∴ R4 = R1 = 0.965484 

After first allocation,  𝑅(2400) = 0.89824 

System reliability is still less than target reliability.  

Step 2: 

R4 = R1 = R2 = 0.967814 

𝑅(2400) = 0.901918 

System reliability > Target reliability 

So, the R4 and R1 should be between the previous reliability value and 

R2. 

∴ R4 = R1 = [( 𝑅∗

(𝑅2×𝑅3×𝑅5))
(1

2)
] = 0.966784 

𝑅(2400) = 0.966784 × 0.966784 × 0.967814 × 0.995237 × 0.999689 

               = 0.90 

The allocation process is complete as  𝑅(2400) = R*. 
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The final reliability allocation is as mentioned in table 21. 

Table 21: Reliability allocation by Minimum effort method 

Subsystem Reliability 

4 0.966784 

1 0.966784 
2 0.967814 
3 0.995237 

5 0.999689 

 

The top 10 preferences given by each machine-level agent for its 

respective subsystem is listed below. 

I. Preferences of Agent 1 for Feeder 1: 

 

 
 

II. Preferences of Agent 2 for Conveyor 1: 
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III. Preferences of Agent 3 for Stacker-reclaimer: 

 

 
 

IV. Preferences of Agent 4 for Feeder 2: 

There is only option here because the maintenance actions which 

can improve the reliability of this subsystem up to the allocated 

reliability are more expensive to perform as they cost more than 

the maintenance budget. So, these actions are omitted and only 

doing nothing is preferred as the only feasible option. 

 

 
 

V. Preferences of Agent 5 for Conveyor 2: 
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The maintenance policy is performing Major repair on component 5, 

Minimal repair on components 1 & 2 and Do Nothing on all other 

components. This maintenance action costs Rs. 1,01,250 and the time 

required to perform this action is 19.2 hrs. Both of these are well within 

the constraints and the reliability of the system after maintenance is 

0.90019. 

 

The optimal policy is obtained after using the minimum effort method 

and the coordinating agent obtains this solution on prioritizing top 7 

preferences given by the machine-level agents. The computation time 

required is 88 seconds for solving this SM optimization problem.  

6.5 Comparison of the proposed methodologies 

 

To establish the supremacy of the developed Agent based distributed 

approach and RL based methodology over the commonly used methods, 

the selective maintenance optimization problem is solved using Brute-

Force search and an Evolutionary algorithm based methodology using 

Genetic Algorithm. The results obtained from these approaches are 

compared with those obtained from proposed Distributed maintenance 

planning algorithm and RL methodology and the computation time 

required for these methods is also compared to identify the most 

efficient approach.  

In the Enumeration method, the complete solution space of NM actions 

is explored and the maintenance action which achieves the desired target 

reliability by consuming minimum maintenance resources is chosen. 

Enumeration method always returns the optimal solution but is very 
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tedious to compute for larger solution space. The same problem is then 

solved using the genetic algorithm to choose the optimal action. 

For the considered SM Problem, all the four approaches resulted into 

the optimal maintenance activities as solution. i.e., to perform Major 

repair on component 5, Minimal repair on components 1 & 2 and Do 

Nothing on all other components. 

Table 22: Comparison of developed methodologies 

 Enumeration 
Method (EM) 

Genetic 
Algorithm 

(GA) 

Reinforcement 
Learning (RL) 

Agent based 
Distributed 
approach 

Components [1,2,3,5,9,10] [1,2,3,5,9,10] [1,2,3,5,9,10] [1,2,3,4,5,6,7,8,9,
10,11,12,13,14] 

Solution [1,1,0,3,0,0] [1,1,0,3,0,0] [1,1,0,3,0,0] [1,1,0,0,3,0,0,0,0,
0,0,0,0,0] 

Computation 
time 185 seconds 123 seconds 64 seconds 88 seconds 

 

Though all the approaches are suggesting the optimal action, there is 

stark contrast in computation time required for each of the approaches 

to arrive at the optimal solution. The proposed RL based approach took 

64 seconds to compute the optimal solution for the SM problem, which 

is significantly lesser than the Enumeration method and GA approaches. 

Table 22 shows the optimal solution resulted from all the three 

approaches along with the computation time required to reach up to the 

optimal solution. 

Though the computation time taken using agent based distributed 

method is higher than computation time taken with RL based 

methodology, the approach is equally valuable as the machine learning 

based method because, it will be computationally efficient and even 

better than the raw centralized decision making RL based Q – learning 

algorithm, if we incorporate the machine learning pedagogy into this 

distributed decision making. This decentralized distributed maintenance 

planning is currently being used with brute force search at the 

coordinating agent level. The brute force search or enumeration method 
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is inferior in terms of computational efficiency when used for 

distributed maintenance planning. So, the use of reinforcement learning 

based methodology at the agent level will make this distributed 

approach a force to reckon with.  
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Chapter 7  Conclusion 
 

In this project, a novel attempt has been made to solve the selective 

maintenance optimization problem using a Reinforcement Learning 

based methodology and a decentralized distributed maintenance 

planning approach. The proposed RL based methodology is more 

effective in the real scenario where the computation time is of 

importance. And the optimization problem needs to be solved in 

minimal time, so that the completion of the system's maintenance is 

ensured within the overall limited maintenance break in between two 

missions. Q-learning – a temporal difference control algorithm is used 

here to solve the non-linear programming problem which is modelled 

as a Semi Markov decision process. This choice proves to be correct 

considering the nature of the formulated problem. To efficiently solve 

the optimization problem, two novel heuristics are clubbed within the 

methodology. The first one refines the solution space in the problem by 

prioritizing the components for maintenance, based on their reliability 

against the specified mission. The other heuristic instructs the agent to 

identify the best policy by consuming minimum maintenance resources. 

The proposed RL based methodology outperforms the conventional 

approaches from the viewpoint of the computational efficiency, when 

demonstrated on the problem of SMO for the benchmark industrial 

system for coal transportation.  

A novel approach is developed to decentralize the decision-making 

process to various nodes, thereby reducing computational complexity 

and making the planning algorithm’s runtime scalable with increase in 

problem size. The approach is illustrated for the problem of 

maintenance scheduling for a multi-state industrial system of coal 

transportation. The algorithm tackles large problem sizes without 

compromising on solution accuracy, in significantly lesser runtime 

when compared to conventional centralized approaches like Brute Force 

Search and Genetic algorithm. This approach makes the scheme a 
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perfect fit for an Industrial IoT architecture consisting of Cyber-

Physical Systems, i.e., Industry 4.0. The distributed approach will give 

new dimension to conventionally done centralized operations planning 

in industries.  

 

The distributed maintenance planning approach is beneficial over the 

RL based methodology when scalability becomes an issue. When 

dealing with industrial systems with very high number of components 

or subsystems, the RL based methodology tends to provide sub optimal 

results due to the stochasticity involved in the learning process. But the 

agent based distributed approach can deal this issue with ease because 

of initial filtering process occurring at the subsystem agent level. This 

significantly reduces the solution space for the coordinating agent to 

identify the optimal action. This process of two-layer decentralised 

planning tends to be advantageous over the centralised algorithms.  

 

 

7.1 SCOPE FOR FUTURE WORK 

 

The developed RL based methodology can be further refined and made 

robust by ironing out the current limitations. In the present study, the 

mission duration and maintenance break duration are considered 

deterministic. However, the stochastic component in these durations can 

be considered in further work, as suggested by [16,31]. Considering 

such variances in many other factors would lead to further research in 

the developed methodology, and will make the methodology more 

comprehensive. Although the proposed methodology's effectiveness is 

found to be impressive, it requires the high-end computation 

infrastructure to train the RL agent for complex real industrial systems. 

With the advancement in computational technologies, this problem will 

get resolved, and it will open newer avenues to look into the SMO 

problems from the standpoint of contemporary machine learning 

techniques.  
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The benefits of the proposed agent based distributed approach can be 

further enhanced by the addition of one more layer of decentralization. 

This can be done by implementing agents at the individual machine 

level rather than at the subsystem level. Newer performance indexes can 

be defined at the machine level to signify the effort required to achieve 

the reliability at component level. With this agent at individual machine 

level in addition to the subsystem agent and coordinating agent will 

improve the accuracy of the approach significantly. This layered 

distribution will also improve scalability of the problem and expedite 

the decision making capability for larger industrial systems. 

With the omnipresence of sensors and portable computation devices, an 

agent-based distributed approach for solving SMO problem more 

expeditiously using proposed RL based methodologies deserves 

consideration from the research fraternity. Real time monitoring of 

health of various machine components with the help of advanced 

sensors will enhance the data available to train and develop more 

accurate machine learning based methodologies.  
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