

i

AUTOMATION OF NETWORK ON CHIP DESIGN FLOW

AND CREATION OF A FRAMEWORK FOR PPA

(POWER, PERFORMANCE, AREA) IMPROVEMENT

ANALYSES

MTech Thesis

By
ARAVA VEERA VENKATA SNEHITHA

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE 2021

ii

(This page is intentionally left blank)

iii

AUTOMATION OF NETWORK ON CHIP DESIGN FLOW

AND CREATION OF A FRAMEWORK FOR

PPA(POWER, PERFORMANCE, AREA) IMPROVEMENT

ANALYSES

A THESIS

Submitted in partial fulfilment of the

requirements for the award of the degree

of

Master of Technology

in

Electrical Engineering

with specialization in

VLSI Design and Nanoelectronics

by

ARAVA VEERA VENKATA SNEHITHA

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JUNE 2021

iv

(This page is intentionally left blank)

v

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

 I hereby certify that the work which is being presented in the thesis entitled AUTOMATION OF

NETWORK ON CHIP DESIGN FLOW AND CREATION OF A FRAMEWORK FOR

PPA(POWER, PERFORMANCE, AREA) IMPROVEMENT ANALYSES in the partial fulfilment of

the requirements for the award of the degree of MASTER OF TECHNOLOGY and submitted in the

DEPARTMENT OF ELECTRICAL ENGINEERING, Indian Institute of Technology Indore, is an

authentic record of my own work carried out during the time period from July 2019 to June 2021under the

supervision of Dr Mukesh Kumar, Associate Professor, IIT Indore and Mr Amit Prakash, Senior Manager,

Qualcomm India Pvt Ltd, Banglore.

 The matter presented in this thesis has not been submitted by me for the award of any other degree of

this or any other institute.

 07-06-2021

Signature of the student with date

(ARAVA VEERA VENKATA SNEHITHA)

--

 This is to certify that the above statement made by the candidate is correct to the best of my/our

knowledge.

7/06/2021

07 June 2021

Dr Mukesh Kumar Mr Amit Prakash

--

 ARAVA VEERA VENKATA SNEHITHA has successfully given his/her M.Tech. Oral

Examination held on7thJune 2021.

7/06/2021 07 June 2021

Signature(s) of Supervisor(s) of M.Tech. thesis Convener, DPGC

Date: Date: 07/06/2021

Signature of PSPC Member #1 Signature of PSPC Member #1

Date: 08-06-2021 Date: 08.06.2021 -----

--

vi

(This page is intentionally left blank)

vii

ACKNOWLEDGEMENTS

I want to take this opportunity to express my deepest gratitude to my research

supervisor Dr MukeshKumar, Associate Professor at IIT Indore. I am indebted to

him for giving his valuable time to guide me all the way technically as well as non-

technically. I am very much thankful to him for motivating me in my distressed

conditions. Finally, encouragement and guidance helped me to shape my future and

the completion of my MTech.

I would like to wish my sincere appreciation to my co-supervisor, Mr Amit

Prakash, Senior Manager at QUALCOMM India Pvt Ltd, Banglore. He

convincingly guided and encouraged me in the project as well as helped me to gain a

big leap from campus to corporate. His pieces of advice kept me going on in this

work,and this would not have been possible without his inputs and counselling. I am

also thankful to Ms Swathi Rajput, PhD Scholar at IIT Indore, who helped me to

sharpen my VLSI knowledge. I would also like to thank my friends, Riya Verma and

Nikita Golait for the idea’s discussion, support, and needful comments on my

research work.

I want to acknowledge the great people of the QUALCOMM community, who

provide me with training and technical support to fulfil my requirement for research.

The enthusiasm and incentive given by this organization gave me the strength to

stand up against the difficulties that I faced during my whole year. It was a

memorable year at QUALCOMM as Research Intern.

I sincerely acknowledge the support of the IIT Indore community to provide

resources, lab equipment, and facilities for my research work. Also, I would like to

thank the Ministry of Human Resource and Development (MHRD) for providing

TA Scholarships.Last but not least, I wish to acknowledge the support and great love

of my family, my mother, father, and my brother for emotional support.

viii

(This page is intentionally left blank)

ix

DEDICATION

Dedicated to my parents and frontline COVID warriors

x

(This page is intentionally left blank)

xi

Abstract

High latency, bandwidth, and throughput requirements have originated the

deployment of multi-core processors in SoCs.As the transistor sizes shrink and the

IPs(Intellectual Property)used in the chip increases, the quality of service begins to

crumble. The conventional cross-bar and bus approach prove to be impotent.

Network on the chip is the contemporary communication network technology that

facilitated point-to-point communication among the Processing elements providing

scalability, high bandwidth and operating frequencies.

Design automation has been a vital area of research for at least three decades. Due to

the intricacy involved in the system and the increased complexity of the fabrication

techniques, chips' design has become a crucial task. Automating the activities

involved in the design flow lessens human errors and saves time. For complex

architectures like Network-on-chip, the area populated by each sub-element like

buffers, interface units, power-related elements, and debug probes is paramount for

analysis and planning on design reuse and improvements. A framework is created

that visualises the area from the area data files and projects it into different

technology nodes for given scaling factors. Debug infrastructure present in the

Network-on-chip subsystem captures the time-stamp and hang state data. The debug

data dumps are an enormous amount of data to be analysed and identify the cause of

hangs; here, a framework is proposed that identifies if the debug register’s data

corresponding to the hang state, captures the data lessening the efforts and time

invested for debugging.

Scaling down the technology node adds complications like more leakage and more

static power dissipation, high delays owing to reduced dimensions of wires of

interconnect. The shift of focus is now towards integrating electrical interconnect

with optical NOC for reducing the issues faced. Owing to the compatibility of

Silicon-Photonics with the CMOS technology, ONOC router architecture is

proposed, the design flow and its Performance analysis are discussed.

xii

(This page is intentionally left blank)

xiii

TABLE OF CONTENTS

LIST OF FIGURES…………………………………………………………………………….………….xvi

LIST OF TABLES………………………………………………………………………………………xviii

ACRONYMS……………………………………………………………………………………………...xix

Chapter 1 Introduction .. 1

1.1 Introduction .. 1

1.2. Network On-Chip basics ... 2

1.2.1 Optical Network on-chip ... 3

1.3. Area analysis ... 3

1.4. Network-on-chip - Debug .. 4

1.5. Chip design flow ... 5

1.5.1. Brief about the terms .. 5

1.6 Motivation .. 6

1.7 Objective .. 7

1.8 Thesis organisation... 7

Chapter 2 Automation and Data Science for Data Analysis .. 8

2.1. Data Science .. 8

2.2 Workflow in Data Science ... 9

2.3 Role of Automation in the VLSI industry .. 10

2.3.1. Python for automation ... 11

2.3.2. Perl for automation ... 12

2.4 Background Study .. 12

2.5 Automation and Framework creation... 13

Chapter 3 Area Analysis for NOC .. 14

xiv

3.1. Floorplan of the chip ... 14

3.1.1 Macros ... 14

3.2. Abstraction of elements in NOC for Area Analysis... 15

3.3. Area CSV file generation .. 16

3.4. Problem – Statement .. 17

3.4.1. Existing Flow ... 18

3.5. Framework creation for Area Analysis Flow ... 19

3.5.1. Configuration file-based execution .. 19

3.5.2. Steps to use the framework .. 20

Chapter 4 Automation of Debug Analysis ... 22

4.1. Introduction ... 22

4.2. Debug infrastructure overview in NOC .. 22

4.3. Hang state Analysis ... 23

4.3.1. Placing the debug registers .. 23

4.3.2. Causes of hang in NOC .. 24

4.4. Existing post-debug Analysis procedure ... 25

4.4.1. Detailed steps ... 25

4.5. Debug Framework ... 27

4.5.1. Exploiting Python for automation .. 27

4.5.2. Features of the debug automation framework ... 27

4.5.3. Accessing HTML code of webpage and generation of debug output .. 29

4.5.4. Comparison between conventional and automated methods ... 29

Chapter 5 Automation of Design Flow ... 30

5.1. Design Flow ... 30

5.2. Existing Architecture ... 30

5.2.1. Algorithm for the conventional mode of design flow ... 31

xv

5.3. Automation of design flow.. 32

5.3.1 Features of the framework .. 34

5.3.2 Comparison between automated and conventional methods .. 37

Chapter 6 Analysis and Design Flow .. 38

of ONOC architecture.. 38

6.1. Introduction ... 38

6.2. Design of ONOC Architecture .. 38

6.2.1. Router in Network-on-Chip ... 38

6.2.2. Wavelength-routed Network-on-Chip ... 39

6.3. Design flow of MRR .. 43

6.3.1. Computing the characteristics of the MRR .. 45

6.4. ITO – based MRR ... 45

Chapter 7 Results and discussion ... 48

7.1. Area Framework.. 48

7.1.1. Configuration settings file .. 48

7.1.2. Data Visualisation .. 49

7.1.3. Scaling of area .. 50

7.1.4. Improved vs Existing process .. 50

7.2. Debug automation framework.. 51

7.2.1. Configuration settings file .. 51

7.2.2. Framework over the conventional procedure ... 52

7.3. Automated Design Flow ... 54

7.3.1. Configuration settings file .. 54

7.3.2. Execution time analysis.. 54

7.3.3. Reduced number of file access and command line usage ... 56

7.3.4. Improved design flow vs Existing flow ... 57

xvi

7.4. Design Flow of O-NoC router architecture ... 58

7.4.1. 4x4 Network on-chip router ... 58

7.4.2. Computing design parameters for MRR .. 60

7.4.3 Tunability of MRR .. 63

Chapter 8 - Conclusions and Future Scopes .. 64

8.1. Conclusion .. 64

8.2. Future Scope ... 65

REFERENCES ... 66

xvii

LIST OF FIGURES

Figure 1.1 Network-on-chip connected to different processing elements ... 2

Figure 1.2 General optical interconnect link[34] ... 3

Figure 1.3 Metastability issues faced in asynchronous clock domains .. 6

Figure 2.1 The essence of Data Science... 8

Figure 2.2 Data Science workflow ... 10

Figure 3.1 Floor Plan of the chip ... 15

Figure 3.2 Model of NOC .. 16

Figure 3.3 Various elements of NOC ... 17

Figure 3.4 Flow for area report generation .. 18

Figure 3.5 Existing flow for Area Analysis ... 19

Figure 4.1 A debug–aware NOC architecture .. 23

Figure 4.2 Flow chart showing existing procedure ... 26

Figure 4.3 Automated framework for debug-hang analysis ... 28

Figure 5.1 Existing design flow architecture ... 30

Figure 5.2 Flowchart showing iterative process of constraint file updating .. 31

Figure 5.3 Flow chart showing steps followed in the conventional method .. 33

Figure 5.4 Improved Design Flow Architecture ... 34

Figure 5.5 Design flow with automation framework ... 35

Figure 5.6 Config file-based script execution .. 36

Figure 6.1 Network-on-chip router architecture[24] .. 39

Figure 6.2 Cross and parallel MRR configuration ... 40

Figure 6.3 Generic Wavelength Optical Routed Architecture a)Type I b)Type II c) 41

Figure 6.4 Noise due to interference and cross-talk, an example[22] .. 42

Figure 6.5 Add-drop ring resonator configuration ... 43

Figure 6.6 Non-uniform coupling between ring & straight waveguide[19] .. 44

Figure 6.7 Figure showing ITO as the gate electrode for MRR used for electrical tuning 46

Figure 7.1 Area configuration file .. 48

Figure 7.2 Area of sub-elements of different NoCs ... 49

xviii

Figure 7.3 Pie-chart representation of the percentage of area occupied by ... 50

Figure 7.4 Scaled total area of NoCa, NoCb and NoCc in different technology nodes................................... 51

Figure 7.5 Design flow configuration file .. 52

Figure 7.6 Snippet of code ... 53

Figure 7.7 Design flow configuration file .. 54

Figure 7.8 Comparison of average execution time in existing and improved architecture.............................. 55

Figure 7.9 Sample flow result .. 56

Figure 7.10 Number of file access in existing and automated flow ... 56

Figure 7.11 Command-line usage comparison in existing and automated flow .. 57

Figure 7.12 4x4 parallel O-NoC router .. 58

Figure 7.13 5x5 ONOC router ... 59

Figure 7.14 Variation of cross-coupling coefficient with the gap ... 61

Figure 7.15 Transmission through the Tn (all-pass), Td(drop-port), ... 62

Figure 7.16 Indium-Tin-Oxide as the gate electrode for MRR used for electrical tuning 63

xix

LIST OF TABLES

Table 2.1 Python library and its uses[17] .. 11

Table 4.1 Table showing SLVERR and DECERR responses in AXI protocol used for debugging purposes. 25

Table 6.1 Routing table for 4x4 GWOR .. 41

Table 7.1 Comparison with and without framework ... 53

Table 7.2 Design flow configuration file ... 55

Table 7.3 Routing table for 4x4 O-NoC router .. 59

Table 7.4 Routing table for 5x5 ONOC router .. 60

Table 7.5 Parameters considered for κ calculation .. 61

Table 7.6 Estimated parameters of the MRR through non-linear curve-fitting using Python 62

xx

ACRONYMS

NOC – Network-on-Chip

SOC – System-on-Chip

ML – Machine Learning

DS – Data Science

AI – Artificial Intelligence

RTL – register transfer level

BASH - Bourne-Again Shell

GPU – Graphical Processing Unit

DSP - Digital Signal Processor

PE – Processing Elements

CPU – Central Processing Unit

AMBA AXI – Advanced Microcontroller Bus Architecture Advanced eXtensible Interface

NI- Network Interface

CDC – Clock Domain Crossing

UPF – Unified Power Format

CLP – Conformal Low Power

STA – Static Timing Analysis

IP – Intellectual Property

ONOC - Optical Network-on-Chip

MRR – Microring resonator

1

Chapter 1 Introduction

1.1 Introduction

Network-on-chip has become a popular and endorsed network-based communication

subsystem offering parallelism and scalability. It has masters and slaves connected

upstream, and downstream side; and has interface units that convert generic protocols

like the AMBA AXI to NoC specific protocol(packet-based transmission). The

emerging trends in performance requirements like high latency, low power

consumption, higher clock rates (typically in GHz), instruction and data parallelism

in various devices like smartphones, videogaming, accelerating, artificial

intelligence/machine learning, sizing, and shrinking transistor sizes have replaced the

traditional bus architectures with NOCs. The NOC is also severely scaled down to

meet the scaling and performance requirements. The upsurge in design complexity

and miniaturisation, processes involved has been the originator of automation either

in the design of NOC or for the performance, area and power analyses.

Data organisation, processing and analysis play a key role in gaining insight

knowledge. Data processing is now a popular field due to advancements in fields like

Data Science, Artificial Intelligence and Machine Learning[1]. Area analysis of NOC

elements, i.e. debug, power, interface elements in technology, allows us to estimate

the area consumed in other technology nodes through scaling factors. It helps in area

estimation, optimising design and removal of redundant elements in future.

Automation of design flow reduces the manual effort and time spent on RTL Quality

analysis. Design flow has been automated using Python 3.6 and BASH scripting to

reduce manual efforts. Results have shown that the time consumed for RTL quality

checking has reduced.

2

1.2. Network On-Chip basics

Network-on-chip communication infrastructure permits design reuse while preserving the

performance of the chip. NOC provides the flexibility for various IP blocks and

computational resources to process high data rates (>100Mbps) like in Video processors,

 GPUs, and DSP cores[3].

The components of NOC includes

1. PE- Processing elements could be Processor cores, CPU, memory, PCI, USB. These

elements initiate transactions as required by broadcasting signals via the links.

2. Routers –Routers are connected to the processing elements and other routers in the network.

These regulate the traffic flow using the routing logic.

3. NI- Network Interface bridges the link between the router and the core.

4. Links will join routers to the on-chip network[4].

Figure 1.1 Network-on-chip connected to different processing elements

3

 1.2.1 Optical Network on-chip

Optical Network-on-Chip comprises optical elements that could be incorporated into

the chip for communication purposes. Figure 1.2 depicts the general optical link

comprising the optical signal generation, routing of the signal to the corresponding

destination and signal reception. At the generation unit, the electrical signal is altered

into the optical signal and at the reception unit, the optical signal is converted back

into a corresponding electrical signal. The optical components comprise optical

filters, couplers, waveguides, lasers, amplifiers, photodetectors and modulators.

Owing to the advancements in Silicon photonics, the integration of optical

components on Network on-chip has been possible. Waveguides utilised could be

bent, straight or cross-type. Straight waveguides have the most negligible losses

whereas insertion losses are induced in bent and cross-type waveguides. Micro ring

resonators are deployed for filtering the optical signal for routing purposes. These

deliver the required switching and are most prevalent[34].

Figure 1.2 General optical interconnect link[34]

1.3. Area analysis

Scalability and design reuse of NOCs is imperative along with other cores and IPs

as this has the chance to become a performance bottleneck if NOCs could not be

scaled. Power consumption and area overhead are the two vital constraints in

scaling the interconnect[11]. Scaling the area should not escalate the power

consumption. NOC contains various units like the interface units, buffers, probes,

4

power-related elements. For widely harnessed devices like smartphones and

laptops, the buffer size might get shoot up or fall based on the routing technique

and method of switching[12]. A designer can get insight into reuse, modify the

design of any element of the NOC and aim for high efficiency and performance.

In the VLSI design flow, once an architecture design is complete, the design

compiler is run and generates an area report of all the SOCs elements. It is a

massive amount of data reporting each element's area, for example, of each NOC,

making it difficult to analyse as a whole. Suppose there are b number of buffers

in NOCa, p number of power elements, “i” the number of interface elements and

“d” number of debugging elements, “o” for the others.

Area(b) = Σ Area of individual buffer in NOCa

Area(p) = Σ Area of individual power element in NOCa

Area(i) = Σ Area of individual interface units in NOCa

Area(d) = Σ Area of individual debug units in NOCa

Area(o) = Σ Area of individual other elements in NOCa

Total area = Area(b) + Area(p) + Area(i) + Area(d) + Area(o)

To overcome the time constraint and manual effort put in by the user who

analyses the area, and created a framework to analyse the interconnect area.More

about Area is described in the later chapters.

 1.4. Network-on-chip - Debug

The intricacy involved in the communication among different cores facilitates the

requirement for the debug-monitoring system at the communication network or

Network-on-chip. On-chip monitoring is required even after abundant verification of

the functionality to ensure the error-free design and avoid bugs reaching the

consumer end. Specifically for improved debugging in SOC, transaction monitoring

is done at NOC. These debug infrastructures could be complex owing to the

manifestation of different clock domains within the NOC. The protocols used in

NOC, AXI permitting OOO(Out of Order) execution, reinforces the transaction's

complexity. Transactions emerging from a master with an ID may finish later than

5

the transaction generated most recently with a different ID. Transactions with

different IDs can execute in any order; ordering restrictions arise when transactions

are of the same ID. Interleaving and out-of-order features provided by the protocols

for performance improvements in terms of throughput increase the chances of

bugs[15].

 1.5.Chip design flow

Accurate and clean Front-end RTL design decides the quality and performance of the

chip. Design flow here encompasses the front-end flow dealing with performance and

functionality. Flow also must comply with the design constraints to avoid redo of all

the steps. [4]

First, the RTL for the design, coded in Verilog/System Verilog, can also support

Object-Oriented programmings like C/C++ or System C.[5] The next step involves

checking the RTL quality before it proceeds for the back-end design. These checks

avoid future errors in synthesis and functional bugs. Some checks include Lint

checks, CDC (clock domain crossing) checks, Synthesis checks, CLP(conformal-low

power) checks.

 1.5.1. Brief about the terms

• Clock Domain Crossing(CDC) – Clock domain crossing can happen

between synchronous or asynchronous domains when data is transferred

between two flip-flops. Data can go into a metastable state that is neither

high nor low when data is captured while changing state. Static timing

analysis (STA) is used to scrutinise synchronous domain crossings, but for

asynchronous domain crossing, flop synchronisers have to be used. Figure

1.2 shows the possibility of a metastable state at the second rising edge of

clkb[6].

6

Figure 1.3 Metastability issues faced in asynchronous clock domains

• Lint Checks – Lint checks inspect the aspect of code with the recommended

rules. It is basically like the syntax checking and static analysis of code to

reduce errors due to functional bugs and synthesis errors.[7][8]

• Unified Power Format – UPF details the design's power intent for low power

design[9]. Power supply definitions, isolation cell, memory retentionlevel-

shifters, power supply requirements are specified. [10].

• Synthesis –Synthesis converts synthesisable Verilog code to technology-

specific gate-level netlist.

These make sure that the RTL is clean and the design has less feasibility to

have a bug. Once RTL is clean, it can move on to the back-end design.

1.6 Motivation

Since the automation of various steps involved in the design flow minimises the time

consumed in recurring tasks involving manual efforts, mitigates the human-made

errors, and escalates the robustness of the RTL delivery process in this thesis, the

automation of designflow is done for flow checking and quality assessment.

PPA(Power, performance and area) analyses are imperative for design optimisation

and re-use. Next, a framework created for area analysis from the reports generated by

the designcompiler and also scales to different technology nodes based on various

scaling factors provided by the user. To curtail the time and efforts invested in data

7

collection from debug-dumps, debug automation framework is devised. Finally, we

design an ONOC router that is compatible with the CMOS technology for

communications.

 1.7 Objective

The thesis goal is to incorporate automation to proliferate the robustness of the RTL

delivery process, to exploit Data Science to devise frameworks for Area and debug

dumps for analyses purposes.

• To automate design flow for RTL quality checks that encompasses updating

many constraint files, checking in and checking out them.

• To minimise command-line usage for design flow.

• To capture the area consumed by NOC and its sub-elements from the region-

wise CSV files procured from the design-compiler post-synthesis.

• To reduce the efforts in collecting the debuggability register’s data and

identifying invalid scenarios of the registers from the given Silicon dumps.

• To design an ONOC router and analyse its performance attributes.

 1.8 Thesis organisation

The thesis is organized as illustrated below. The second chapter will discuss the

vitality of data analysis in today’s tech world—the role of Data Science and

Automation in the VLSI domain. Then it shifts towards the Area framework creation

that has simplified the accumulation of areanumbers for all the elements in the NOC.

Next, we discuss the debug automation that has reduced the time taken for collecting

the data related to hang-states to almost none. After that, we discuss the design flow

automation that has automated the checks like CDC (clock domain crossings), lint

checks. After that the design flow of the Network-on-Chip (optical)router that is of

4x4 configuration, non-blocking and minimised crossings is discussed.

8

Chapter 2 Automation and Data Science

for Data Analysis

2.1. Data Science

Nowadays, the phrase Data Science is creating much buzz in the current technology

world. The amount of data handled by organisations like Google, Amazon, Netflix is

substantial. It is the essence of Data Science that allows data collection, modelling,

analysis and visualisation.

 Figure 2.1 explains how Data Science is the medial of Machine Learning, Statistics,

and Data Analysis[13].Python, open-source libraries like pandas, NumPy are

exploited by Data Scientists for playing with a large amount of data.

Figure 2.1 The essence of Data Science

9

2.2 Workflow in Data Science

Data Science workflow is the process extensively used by Analytics for data mining.

The primary work goal of this work is understanding the data and modelling a

solution to achieve the need. Figure 2.2 shows the steps involved in the workflow and

the flow described below.

1. Business Understanding: It involves understanding the project or business

objective, keeping in mind different factors like constraints, assumptions, and

resources.

2. Data Understanding: Comprehension of the business process and sources

involved in the problem, understanding the features of the acquired data, ensuring

the data quality. One has to acquire technical knowledge, data, and tool flow.

3. Data Preparation: Ensuring the collected data is clean, formatted, filtered, and

complete.

4. Modelling: It involves the selection of apt modelling techniques for the dataset.

Once the modelling is complete, test to check the quality and validity.

5. Evaluation: In this phase, results will be generated and evaluated using the model.

Based on the model’s accuracy, it is decided whether to deploy it or modify it.

6. Deployment: Here, the validated model is deployed into the business needs.

10

Figure 2.2 Data Science workflow

2.3 Role of Automation in the VLSI industry

Electronic gadgets incorporating the updated features and technology get launched in

the market very frequently. The tremendous demand for cutting-edge features by

consumers dwindled the lifespan of electronic gadgets. With the upsurge in the

design complexity and enormous demand, the hustle on the chip manufacturers is

very high for on-time product releases. The testing of the features augmented and the

relative hardware improvements consume ample time. Automation streamlines any

job; today, it is exploited in almost every field. Automation deployed in the chip

design and the performance analysis abates the time taken for the process to

complete. Consider the design flow, Area analysis and debug analysis discussed in

chapter 1; automation can bring down all the time and efforts increasing the

productivity and quality of the outcome. First, the problem is understood and we

understand the tools used, the process, the type of data and organise the data. Then

we do modelling of it, identifying the scope of automation[28].

11

 2.3.1. Python for automation

Python has a large number of modules that can be exploited. Various libraries enable

us to plot graphs, access web data, data analysis, web services helping to create

models. Table 2.1 shows various libraries in Python and their uses, as shown in [17].

Table 2.1 Python library and its uses[17]

The exploitation of languages for data science is not limited to Python; others include

Perl, Java. Let us discuss a few about various libraries that are primarily used here.

 2.3.1.1. Brief about the libraries

Various libraries in Python are deployed in handling data. For example, consider

Selenium. This library enables the user to access and download data from web pages.

It can be used to access various browsers like Internet Explorer, Google Chrome and

Firefox and programmed in languages like C, C++, Python, Perl. Various sub-

modules like Web driver allows in accessing and handling data inthe webpage. Graph

plotting libraries like Matplotlib aids in data visualisation. XML and HTML webpage

data can be effortlessly pulled out using the Beautiful Soup library reducing

12

days of work. Being most distinguished in ML and Data Science, Pandas is a notable

library for data analysis and manipulation. It is exploited in tedious tasks and

processes that are repetitive. The OS library is exploited in the creation of directories,

navigating among various directories, access of different files in them and omission

of directories.

 2.3.2. Perl for automation

Perl is extensively exploited in the industry due to its unique features. It is employed

in IC design as well as in fabrication. It permits linking C/C++ libraries so that they

can be incorporated within the Perl script. Similar to Python, Perl is also a

commanding programming language that is employed in data extraction, processing,

filtering and presentation. Data visualisation and web scraping are also available with

Perl. Extraction of essential data from large databases and data files can be

streamlined with this language[29][30].

 2.4 Background Study

Network on-chip, scalable communication infrastructure has superseded the

conventional bus-based architecture imparting higher bandwidth, latency and

parallelism[1]. RTL code of the interconnect either in Verilog/System Verilog is very

complicated as the alteration has been towards multicore architectures, parallel

communication and computing[32][5]. Performing various checks for RTL Quality

assessment moderates the errors and bugs in the later processes[7]. Various checks

incorporate clock domain crossing, lint checking, low power checks, synthesis

checks[6][9][10]. Area efficiency is also as significant as the performance of

interconnect. Design compiler delivers the area report post synthesis[33]; these

reports are region wise area data that needs filtering. Powerful programming

languages like Perl and Python are exploited for data filtering and visualisation

purposes[29][30]. Networks that are debug-aware with cross-triggering are proposed

[15]. These debug elements capture the data during an invalid state; it could be due to

13

time outs, decode error or slave errors. An outset of research towards

integratingoptical interconnects/Network-on-Chip with conventional NOC is

attributable to the higher bandwidth, latency and lower power consumption in optical

interconnect. The

delay, static power consumed also scales up with scaling down the

transistors[22][25]. So, many architectures are proposed that can handle the energy

and performance requirements.

 2.5 Automation and Framework creation

As described, Python and Perl are exploited for automation. A framework for area

numbers extraction from data files dumped by the design compiler is developed. This

framework gives visualised analyses and scales to various technology nodes

exploiting Perl. Automated debug data collection with Python framework utilises

web scraping to extract the data from HTML and filter the required data. This has

dwindled many hours of effort to few hours. Design flow involves many tool

commands, command-line usage, check-in and check-out of various files, accessing

files and updating them. An automation framework has eliminated the problems.

Using Python the coefficients for Network on-chip router design are visualised and

computed. In the succeeding chapters, the framework created for area analyses,

debug automation framework, automation of design flow and Network on-chip

architecture (optical) will be discussed.

14

Chapter 3 Area Analysis for NOC

 3.1. Floorplan of the chip

Network-on-chip is a communication network infrastructure used widely in a SOC.

Figure 3.1 shows the floorplan of the chip at a higher level of abstraction. The

regions in the chip are termed as Center, East, West, North, South for the soft

macros. They primarily include hard and soft macros, which couldincorporate

different IPs, processor cores, memories.Since interconnects connect various cores,

they are spread all across the chip. So for a particular interconnect, its elements could

be spread across various regions in the chip.

 3.1.1 Macros

Macros are Intellectual Properties(IPs); these are designed to be picked up and placed

by the designer.

These are of two types:

1. Hard Macros

These are peculiar to IP manufacturing technology optimised for area, powerand

timing. RTL is non-modifiable; performance parametersare optimised

andforeseeable, either in performance, area, power or timing. For example,

memory.

2. Soft Macros

These macros are modifiable, i.e., RTL can be changed by the designer and is

synthesisable, leading to anomalous performance parameters in either

performance, area, power or timing.Being portable, their IP protection is

endangered.

Few of the interconnects are soft macros.

15

Figure 3.1 Floor Plan of the chip

 3.2. Abstraction of elements in NOC for Area Analysis

NOC contains various sub-components; At lower-level abstraction, these include

buffers for storing and forwarding packets for meeting the timing requirements.

Power related elements like retention flop, gating elements. Interface units convert

standard protocols like AMBA AXI to data packets as shown in figure 3.2.

Other elements include debug elements for debugging purposes that are present in the

NOC near the interfaces. Figure 3.3 shows elements of the NOCs spread across

thesoft macro-regions. Various NOCs are present, designed for meeting the

performance requirements in bandwidth, latency, and throughput. All the NOCs,

along with their elements, are analysed for the area. The dots represent various

elements of the NOCs, black dots for buffers, orange for power-related elements,

silver dots for interface and brown dots for debug related elements.

16

Figure 3.2 Model of NOC

 3.3. Area CSV file generation

Design can be considered at various levels. SOC team synthesises the design at SOC

level rather than at core or IP level. Multiple soft macros are grouped and synthesised

at the regional level; soft macros comprise NOCs and other elements. The regional

level synthesis produces region-wise area reports.

Area report for each region, i.e., South, East, North, East and Center regions area

reports are dumped by the Design Compiler. The next step post-RTL

 design is the synthesis.

 It includes the steps[14]

1. Analysis

2. Elaboration

3. Compilation

17

Figure 3.3 Various elements of NOC

Figure 3.4 shows the flow for area report generation for the design; the report gives

the design’s total area and area break-down modules. The report states macros,

buffers, total combinational, non-combinational areas, and interconnects areas. Area

CSV reports for a design get generated region-wise.

 3.4. Problem – Statement

 As the design compiler run at the SOC level generates area reports of all the region’s

elements, it became a cumbersome task for the designer to analyse the interconnect

area of one NOC from different region CSV files with randomly distributed area

numbers of different elements. Here three different NOC areas, as explained in

section 1.2 are taken, i.e., NOCa, NOCb, NOCc

18

Figure 3.4 Flow for area report generation

 3.4.1. Existing Flow

Figure 3.5 shows the existing flow for area number analysis where the CSV files

dumped by the design compiler, reading the files and extracting the areas of each of

the elements, i.e. for example, buffers. Each of the buffers of a particular NOC is

identified from all the files for analysing the area numbers. Reiterate the same

process for all other elements.

The above flow shows that it is a cumbersome task for any designer to spend so

much time organising data from the area reports already generated by the design

compiler. This problem shows potential for the exploitation of Automation and Data

Science for data wrangling and data visualisation, making it facile to understand.

19

Figure 3.5 Existing flow for Area Analysis

 3.5. Framework creation for Area Analysis Flow

It has a programmed framework using Perl and tcsh scripting that enables data

visualisation and data wrangling. Figure 3.6 shows the flowchart of the framework.

The features of the script are as follows

 3.5.1. Configuration file-based execution

Whenever the script created is run, it reads the settings from the configuration file.

The following switches are present in the file,

1. Project Path – Give the path of the Area CSV files of SOC in this setting.

2. Tech node – Give technology node of the design in this setting, e.g. 15nm.

3. Scaling nodes – Give the other technology nodes for getting scaled areas.

20

Getting scaled area is user-definable. User can add scaling factors in the script.

3.5.2. Steps to use the framework

In the script’s directory, open the .cfg file, i.e. the configuration settings file and

Enter the settings as required. Close the file. Source the .sh file that reads the

Figure 3.6 Flow chart showing Area Framework using Perl programming

21

Configuration file settings and gives the settings read as input to the Perl script. The

script identifies all the interfaces, power, debug, buffer related elements, computes

the total area occupied by these elements individually for each Network-on-chip and

visualises the data.

22

Chapter 4 Automation of Debug Analysis

 4.1. Introduction

Once the chip design is accomplished, testing the design is vital to check for flaws.

As the number of cores and the communication complexity increases, so increases

the complexity of NOC architecture; hence there is a high chance of the SOC going

into an undetermined state. The chip has inbuilt debug features that will capture the

erroneous states, enabling us to find the cause for Silicon going to hang state. These

include trace data collection, triggering units and cross trigger interfaces [15].

In this chapter, debug for SOC is discussed, followed by the existing procedure for

collecting the debug data, i.e. the debug register’s hang states or undetermined state

and then the exploitation of data science for framework creation for identifying the

hang status of registers from the dumps.

 4.2. Debug infrastructure overview in NOC

As discussed in the above section, the below figure 4.1 shows a debug aware NOC

architecture. It has various cores like CPU, GPU, MODEM and PCI connected to the

upstream side of the interconnect, whereas DDR and local memory are connected to

the downstream side of the NOC.

The choice of placement of debug probes is designer specific; one can place the

probes near the NIU for auditing transactions issued by the upstream core elements.

The central debug unit will trigger the debug resisters to dump the data to the

externally connected AMBA Trace bus for further analysis.

23

Figure 4.1 A debug–aware NOC architecture

 4.3. Hang state Analysis

Hangs occur when a transaction between master and slave takes more time than

usual. When a transaction takes a longer time than usual, a time-out counter present

at the slave side gets timed out and generates an interrupt to notify that a hang has

occurred.

 4.3.1.Placing the debug registers

Network-on-Chip includes various registers for capturing the status of the ongoing

traffic behaviour. These registers are scattered across multiple regions in the NOC,

either proximate to the masters or slaves. Among the registers that encapsulate the

traffic status, few of them are for debuggability. These registers for debug purposes

are not functionally active until they get triggered. To comprehend an invalid

scenario that eventuates in the network in a particular path, multiple registers

24

including some dedicated status registers for time outs, decode errors are scrutinized

to understand it.The placement of debug-related elements in the NOC is vital because

we cannot place the elements all across the chip. It can hardly consume 5 to 10 per

cent of the average area of the NOC.Hence the placement of debug elements is also a

crucial task in NOC design. Once the first few prototypes get fabricated, we run

multiple-use cases and verify thesoftware settings and also check if the features

added to the chip are satisfied. For example, Is the chip compatible with 5G

technology? Does it meet the performance requirements?

During the performance check, we could encounter hangs in the system. There are

several provisions like hang-reporting that creates an interrupt that states a hang has

occurred. Then we need to provide a system reset to get back to a normal state from

hang-state. The debug registers provide the hang information.

 4.3.2.Causes of hang in NOC

There could be various reasons for hang in the system.

Non-responding targets:

Target may be non-responsive due to clock gating, i.e. clock to the target might

be in off-state. There might be power collapse due to power gating on the target

side, or the target might be in a bad state.

In the case of hangs, the response of the transaction by the slave could be one of

those as mentioned in [16]

1. Slave Error –

A slave error is a response to the transaction by the slave when there is a timeout

condition in the slave, transaction of unsupported transfer size or if access to

writing has endeavoured to read-only location[16].

2. Decode Error –

Decode error sent as a response to when the destination address of a transaction

25

BRESP[1:0]

RRESP[1:0]

Response

Meaning

b00 OKAY Successful normal

access

b01 EXOKAY Successful exclusive

access

b02 SLVERR Sends error response

to the master post

access by the master

b03 DECERR Decode error

denotes no presence

of slave with the

specified address

Table 4.1Table showing SLVERR and DECERR responses in AXI protocol used

for debugging purposes.

does not map to any slave downstream of the NOC. Default slave sends this

response when this happens as it may end up searching for the slave with the address

leading to stalling of further transactions in the NOC. Logging of all the decode

errors responses by the default slave assists in debugging[16].

 4.4. Existing post-debug Analysis procedure

This section describes the existing procedure to analyse silicon hang issues for

debugging. All the silicon debug dumps dumped by the NOC units are available at an

HTML link. The NOC team has the list of debug registers whose read-outs have to be

analysed to identify which core is involved in the hang issue and the cause for it. The

flowchart in figure 4.2 describes the conventional procedure followed.

 4.4.1. Detailed steps

Here are the steps in the conventional hang cause detection procedure.

26

1. From the long list of read-outs present in the Html link, search for each register

specified in the read-out register list.

2. So if there are 200 registers (can be more) search and copy readout values of all

the registers. It is a very tedious job for the user to collect all the data.

3. Next, from the captured data analyse and identify which registers are in bad

states.

4. Identify which data fields in the register represent the bad state.

5. Analyse all the registers identified for analysis and identify the cause of hang and

report it to the software team for further analysis.

Figure 4.2 Flow chart showing existing procedure

27

 4.5. Debug Framework

We created a framework for making the analysis process non- tedious, which

eliminates all the above steps.It eliminates the time consumed by using the above

discussed conventional procedure.

 4.5.1. Exploiting Python for automation

We used the Python data framework for reducing the efforts of the user by

automating all the steps discussed in section 4.4.1. It uses several Python libraries

like requests, selenium, Beautiful soup, re to capture the data from the given Html

link by reading the page’s HTML code. It parses the data from the required tabs and

saves it in text files in the input directory allowing the user to read them if necessary.

The decoding logic identifies the wrong states.

 4.5.2. Features of the debug automation framework

We have entirely automated all the steps followed in the conventional method and

reduced all the efforts in the debugging process. We have included a configuration

file based execution. We discuss below the parameter settings added in the

configuration file

1. url_link :

This setting takes the HTML or XML link as input. Generally, the software team

provides the links for getting access to dumps of debug related registers.

2. Chrome_driver_path:

This setting takes the chrome driver executable path as input. Specify the correct

path for the errorless working of the framework.

3. Input_file_path:

Specify the path to the input list of debug registers.

28

.

Figure 4.3 Automated framework for debug-hang analysis

Flow-chart above in figure 4.3 briefly describes the exploitation of the debug

framework. Here we will elaborate on the steps used for debug-analysis in the net

paragraph.

29

 4.5.3. Accessing HTML code of webpage and generation of debug output

Create an input directory in the current working directory and put the input file list in

it. Open the configuration file and enter the settings. Ensure that the correct path is

entered to avoid the “WebDriverException” and termination of the run. Run the

script; it opens the chrome browser and reads the HTML code of the provided

webpage. We developed a decoding logic for capturing the required data. Once the

data capturing data is done it is stored in a .txt file for reading later. Now all input

debug register names are compared against the captured data and if there is a match

in the register names, next it checks the state of the register. If the register’s state is

found to be ina bad or unacceptable statethe framework captures the name of the

register and the values. It is left to the user to analyse the output file in the output

directory to detect the cause of hang in the NOC.

 4.5.4. Comparison between conventional and automated methods

• The time and efforts invested by the user in the conventional process are

abated merely to furnishing the config file and running the framework.

• Easier identification of silicon hangs.

30

Chapter 5 Automation of Design Flow

 5.1. Design Flow

After the NOC design, the RTL source code in Verilog/System Verilog must be

verified to ensure that the design is clean, i.e., free from syntax errors,

unsynthesisable constructs, ahead to avoid the long back end stages in the ASIC

design cycles. It also minimises the functional bugs and eliminates the errors that

occur during the synthesis. The design Flow described here verifies the front-end

design and all the design steps involved in the design.

 5.2. Existing Architecture

In section 1.3, we have given a brief introduction to design flow and section 1.3.1

described various checks verified in the front-end design for clean RTL design. In

this section, we will describe the existing architecture for design flow.

Figure 5.1 Existing design flow architecture

31

Once the design is complete, entirely inclusive of all changes we wanted to make to

the source code be it the addition of new ports or clocks, we need to update all the

design constraints manually for each of the flow check in their respective directories

to ensure that it does not fail during the checks. Checking comprises running various

tool-specific commands and accessing the required files and updating them. The

check-ins and check-outs of all the required files should be taken care of before

running flow checks.

 5.2.1. Algorithm for the conventional mode of design flow

Figure 5.2 Flowchart showing iterative process of constraint file updating

32

In this section, we discuss the manual efforts incorporated by the designer to verify

the front-end design flow. As discussed above post design, we run the interconnect

tool, and the tool dumps the constraint files in the respective directories as specified

by the designer. The user needs to update all the design constraints as required. Since

today’s NOC is a complex communication network, it involves many components;

hence we can expect the number of constraints files. It employs much time and

efforts to update each of the constraint files in the directories of the flow checks.

Figure 5.2 shows the iterative process of constraint file update.

The next step followed by updating the constraint file is running the flow checks.

Run all the commands for each of lint, CDC, UPF, synthesis. There is almost a total

of 100 commands run on the command line to run the flow checks. Once all the flow

checks are done the user can check each error log files in the output directory for

each run. The user has to identify which run has failed and open the output log file to

determine why a check has failed. Some of the reasons could be due to mismatch in

port names or addresses, missing files. The user has to debug the causes of failure, fix

it and repeat the above-discussed steps. Figure 5.3 shows the conventional method as

discussed.

 5.3. Automation of design flow

As we have identified the scope for automation owing to the lengthy steps involved

in the command line usage, updating constraint files and the time taken to accomplish

the complete task is also substantial and should be taken into account. Now we

discuss the automation of design flow. Figure 5.4 shows the improved architecture; it

has a framework around it that eliminates the hurdles discussed above. Figure 5.5

shows the flow chart for the improved architecture, which has proven to be effective.

33

Figure 5.3 Flow chart showing steps followed in the conventional method

34

Figure 5.4 Improved Design Flow Architecture

 5.3.1 Features of the framework

The framework coalesces all the commands that have the scope of being automated

to simplify the process.

As a part of automation, we have added configuration file-based execution; a

configuration file is a file that configures the settings or initial parameters for the

program. The config file has the following settings added.

1. Flow:

Flow setting can be either 0 or 1. The user can set it to 0 if he does not want to

run the flow checks and one if he wants to run the checks.

2. Constraint_update:

This field requires the constraints that need updating, for example, lint, CDC

filled each parameter separated by a comma. Comma separation is mandatory as

35

Figure 5.5 Design flow with automation framework

36

the framework identifies the settings for constraint individually if separated by

commas.

3. Error log:

This setting will allow the user to print all the errors from each of the log

directories in one place post-flow run.

Figure 5.6 Config file-based script execution

37

Post running the script, it executes all the relevant commands for all the runs. These

commands include dumping of constraint files by the interconnect tool by checking

constraint_update configuration parameter, post update, it checks the flow switch and

runs the checks and generates error reports. Configuration file-based execution is

shown in figure 5.6.

 5.3.2 Comparison between automated and conventional methods

This framework proved to be advantageous for the users since

• Time consumed in updating the constraint file is minimised.

• Reduced chances of human-made mistakes.

• We reduced command line usage to almost 10 per cent.

• The script takes care of check-ins and check-outs of files, eliminating the

failures due to check-ins and checkouts.

• It has reduced the time and effort in error debugging.

38

Chapter 6 Analysis and Design Flow

of ONOC architecture

 6.1. Introduction

Assimilation of Optical interconnects in intra-chip communications for multi-core

architectures comprising numerous cores, complex computing and communication

schemes conform with the immense urge for performance requirements. There is

extensive research in this domain since these can meet the demand for low power

requirements, high latency and high bandwidth. Micro-ring resonator-based optical

routers are prevalently exploited for ONOC architecture design. We will design the

micro ring resonator adopting an SOI (Silicon on insulator) waveguide with a layer

of Indium-Tin Oxide deposited on it. Indium – Tin Oxide facilitates the tuning of the

ring up to ~2nm, eliminating thermal tuning of the resonator that not only costs much

power and area overhead but also alters the properties of Silicon due to its high

thermo-optic coefficient.

Silicon photonics facilitates the integration of optical components with CMOS as it is

compatible with CMOS fabrication technology fulfilling the performance attributes;

low power consumption and high bandwidth. We converse the electrically tunable

MRR, design flow and performance of the proposed router in this chapter.

 6.2. Design of ONOC Architecture

 6.2.1. Router in Network-on-Chip

A router transmits the incoming message to the destination. Figure 6.1demonstrates

conventional network-on-chip router architecture. The local output and input ports

are connected to the core that is local to it. The remaining four ports direct the input

signal from any other ports to the destination based on the control and routing

logic[24].

39

Figure 6.1 Network-on-chip router architecture[24]

The network interface unit transforms the incoming data packets into flits. The flit

comprises header flit mentioning its destination, body flit, and tail flit.

 6.2.2. Wavelength-routed Network-on-Chip

Wavelength routed optical networks involves deploying optical elements for

overcoming the performance bottlenecks in electrical interconnect. Different

wavelengths are allowed to transmit in the waveguide, improving the bandwidth and

of the system. Some of the wavelength-routed architectures are discussed in this

section.

 6.2.2.1.Parallel and cross-MRR switches

MRR switches are broadly adopted in optical router design. They perchance are

active or passive. Two types of MRRs employed in optical routers and NOCs are

parallel and cross MRR switches[4]. Figure 6.2 shows both configurations used in

optical architectures. During the off-state, i.e. the wavelength of the signal is out of

40

resonance, the input passes uninterruptedly to the through port; during the ON state,

the signal is transmitted to the drop port. Ousting cross-switches with only parallel

Figure 6.2 Cross and parallel MRR configuration

switches have diminished the insertion losses[4]. Wavelength division multiplexing

employed in optical NOC enhances the bandwidth owing to signal transmission of

distinct wavelengths on the same waveguide. The non-blocking, passive GWOR with

nominal power loss and acceptable bandwidth is shown in figure 6.3 [25]. It employs

8 MRRs and two distinct wavelengths; all are in cross switch configuration.

The routing table is listed below. The signal from a source is inhibited from reaching

its destination. I0 to O3, I3 to O0, I2 to O1 and I1 to O2, the signals traversing

through these paths are uninterrupted by the ring resonators. Expect the sources and

destinations in the straight path; all the signals arerouted by the ring resonator when

the signals pass in their path. The designed optical router that is non-blocking

employs parallel resonators is discussed in the next chapter.

41

Figure 6.3 Generic Wavelength Optical Routed Architecture a)Type I b)Type II c)

Type III d)Type IV[25]

Table 6.1 Routing table for 4x4 GWOR

 6.2.2.2.Power loss analysis in O-NOC

The insertion loss is maximal in the case of cross switch configuration. Insertion loss

42

can be surmounted by exploiting the add-drop resonator in parallel configuration[26].

Other losses in the router could be bending, propagation, losses due to interference

and cross talk degrading the performance of the interconnect. Cross-talk noise ensues

when wavelength division multiplexing is employed. It can be interchannel crosstalk

between different wavelengths or intrachannel crosstalk between the same

wavelength. Cross talk noise crumbles the SNR (signal to noise ratio), resulting in

excess input laser power requirements[2].

Figure 6.4 Noise due to interference and cross-talk, an example[22]

From figure 6.4, the signal traversing from the upper-right to the lower right and the

signal from the upper left destined to the lower-left interfere. This interference is by

the two MRRs on the upper right side whose resonance wavelengths match the

wavelength of the signals travelling from the upper left. The cross switch at the upper

right leads the signal from the upper-left (blue in colour) to the lower-right inducing

43

cross-talk noise. A 4x4 router with lesser cross-talk, non-blocking is proposed in

chapter 7. The redundant MRRs sustains the SNR of the signal; lessens the cross-talk

and interference. The optical router architecture can be extended to NxN

configuration.

 6.3. Design flow of MRR

The design of the ring resonator is discussed in this section. A microring resonator

employed as an optical switch in optical NOC architectures widely uses the add-drop

configuration to route the incoming signal to the required destination. Here we design

an MRR calculating the cross-coupling(κ) and through-coupling(t) coefficients using

the technique discussed in[18]. As shown in figure 6.5, the add-drop configuration of

MRR is harnessed for filtering the input signal at resonance and transmits it tothe

drop port; hence these can be exploited for routingsignals.Generally, when a wave

transmits in the ring and establishes atotal phase shift of 2π or integral multiples of

2π, the ring cavity is in resonance and governed by equation (1).

Where m is the mode, R is the radius of the ring, neff is the effective refractive index

of the waveguide, and λ is the wavelength.

Figure 6.5 Add-drop ring resonator configuration

44

mλ = 2 π neff ∗ R (1)

We began with the radius of the ring radius of 10,000nm, the width of the waveguide

is 450nm and a resonant wavelength of 1550nm. The effective index of the

waveguide is 2.36[18]. The cross-coupling coefficient is computed from equation 2.

𝑎𝐸 , 𝑎𝑂 , γ𝑂 , γ𝐸 are the fitting parameters, the flexure function of the coupling region is

B(x),d is the least gap amid the waveguide and the ring,𝑥𝐸 , 𝑥𝑂are the gaps for even

and odd modes obtained by[19]

κ = (sin
π

λ
) [

𝑎𝐸

γ𝐸
𝑒−𝑑 𝐵(𝑥𝐸) +

𝑎𝑂

γ𝑂
𝑒−γ𝑂𝑑 𝐵(𝑥𝑂)] (2)

The flexure function is given by[19]

B(x) = √ 2 π x (3)

𝐵(𝑥𝐸) = 𝛾𝐸(𝑅 +
𝑤

2
) (4)

𝐵(𝑥𝑂) = 𝛾𝑂(𝑅 +
𝑤

2
) (5)

where x is the gap,R is the radius of the ring, w is the waveguide width. The flexure

function establishes the correspondence between the varying gap from the waveguide

and the ring’s curvature as shown in figure 6.6.

Figure 6.6 Non-uniform coupling between ring & straight waveguide[19]

45

The best-fit parameters for 𝑎𝐸 , 𝑎𝑂 , γ𝑂 , γ𝐸,obtained by the method of non-linear curve

fittingin Python. The obtained values are 𝑎𝐸 = 0.225, 𝑎𝑂 = 0.010, γ𝑂 = 0.011, γ𝐸 =

0.002.Using these parameters and d = 150nm, the value of κ = 0.2924 is computed

from equation 2.

 6.3.1.Computing the characteristics of the MRR

The intensity of the signal broadcasted through the ring can be characterised by the

mathematical relationship described in [20]. The transmission of all-pass

configuration is furnished as

𝑇𝑛 =
𝑎2−2𝑎𝑡 cos ∅+ 𝑡2

1−2𝑎𝑡 cos ∅+ (𝑎𝑡)2
 (6)

For the add-drop configuration considered here, the transmission via the drop port

and the pass-port is demonstrated in the below equations.

𝑇𝑝 =
𝑡2

2−2𝑡1𝑡2𝑎+ 𝑡1
2

1−2𝑡1𝑡2𝑎 cos ∅+ (𝑡1𝑡2𝑎)2 (7)

𝑇𝑑 =
(1− 𝑡1

2)(1− 𝑡2
2)𝑎

1−2𝑡1𝑡2𝑎 cos ∅+ (𝑡1𝑡2𝑎)2 (8)

Here, the through coefficients 𝑡1 𝑎𝑛𝑑 𝑡2are considered to be of identical value. It

concludes that the parameters opted will provide acceptable transmission

characteristics.

 6.4. ITO – based MRR

Indium-Tin-Oxide, a transparent and conducting element, furnishes the confinement

of light at the ENZ(Epsilon-near-zero) region. Electrical or optical excitation of the

46

material persuades an alteration in carriers (accumulating or depleting) enables the

tuning of the real part of permittivity. A thin layer of Indium Tin oxide ITO (20nm) is

deposited on the top of Silicon dioxide to act as the gate electrode enabling the

electrical tuning of the resonator. When a bias is applied to the ring, carriers

accumulate at the ITO- SiO2 and SiO2-Si interfaces owing to the plasma-dispersion

effect. According to the Drude model[27]

ε𝑟 = ε∞ -
ω𝑝

2

[ω(ω+iτ)]
 (4)

The high-frequency permittivity is 𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑧𝑒𝑑 𝑏𝑦 ε∞ , relative permittivity by ε𝑟,

the plasma dispersion frequency by ω𝑝 and collision frequency by τ

Figure 6.7 Figure showing ITO as the gate electrode for MRR used for electrical tuning

The carrier change induces a change in permittivity, which induces further change in

the refractive index, tuning its wavelength.

ω𝑝
2 =

N𝑐q2

ε0𝑚∗ (5)

47

N𝑐 symbolises the carrier density, 𝑚∗ symbolises the effective mass and q, the

electrical charge. The below relationship furnishes the alteration in refractive index

with the modification of the effective refractive index due to carrier change

∆𝜆 = ∆𝑛𝑒𝑓𝑓
𝜆

𝑛𝑒𝑓𝑓
 (6)

Hence, by effectively modulating the carrier density by employing, bias the resonator

can be tuned.

48

Chapter 7 Results and discussion

In all the preceding chapters, the design flow for RTL delivery, the existing process

for capturing area numbers of Network-on-chip and its elements, the procedure for

getting the debug registers and identification of invalid scenarios in the register

dumps and the scope for automation framework creation was discussed. In this

chapter, we analyse the improvements achieved in terms of reduction in manual

efforts and time-taken in command-line usage, file access, debug register data dumps

capture, region-wise area CSV file reading for identifying and getting the area

numbers for different interconnects as required. This chapter also describes the

design flow of O-NOC router architecture and its analysis.

 7.1.Area Framework

As described in chapter 3, the area CSV files from the post-synthesis are region wise

that contains area data of many elements along with NoC. Here we discuss the

improvements attained through the framework.

 7.1.1. Configuration settings file

A configuration file is an input file that configures the process parameters.

Figure 7.1 Area configuration file

49

Figure 7.1 shows the area configuration file,the path to the CSV files entered in the

path. Tech_node parameter takes the current technology node. Scaling_nodes

parameter takes comma-separated technology nodes numbers.

 7.1.2.Data Visualisation

The framework visualises the total area numbers of sub-elements for analysis

eliminating the tedious work of scanning all the files and noting each area of each of

the buffers, debug probes, interface units and adding them to get the total area.

Figure 7.2 shows the visualised total area for analysis.

Figure 7.2 Area of sub-elements of different NoCs

The figure 7.3 shows the pie-charts for the percentage of area occupied by NoCa,

NoCb and NoCc.

50

Figure 7.3 Pie-chart representation of the percentage of area occupied by

sub-elements in Network-on-chip

 7.1.3. Scaling of area

The framework scales the area of each sub-element to different technology nodes.

Figure 7.4 shows the scaled total area of the three NoCs. The framework can also be

supplemented with other technology nodes.

 7.1.4. Improved vs Existing process

The existing process involved much tedious task of reading each CSV file, the

framework proved to be potent.

• Capture each sub-elements total area and records the total number of each

sub-element and their area contribution.

51

• Visualises the area numbers for a better understanding of trends in different

technology nodes and among different interconnects.

Figure 7.4 Scaled total area of NoCa, NoCb and NoCc in different technology nodes

 7.2. Debug automation framework

The automated debug framework discussed in chapter 4 has efficiently eliminated the

reduced capturing and decoding of the invalid states for hang analysis.

 7.2.1. Configuration settings file

A configuration file has been included as shown in the figure 7.5; url_link takes the

HTML webpage link as input, the chrome driver path for automated opening of the

Web browser and capturing the required dump data. The input file path for the list of

Network-on chip debug registers.

52

Figure 7.5 Design flow configuration file

 7.2.2. Framework over the conventional procedure

The framework created using Python. Different modules like Selenium, requests and

Beautiful soup. It parses the web page and filters the debug data. It converts the

HTML code into text files and compares it with the input register list. The data is

further filtered and decoded. Figure 7.6 shows the snippet of the code for the

framework.

• It is 1000+ lines of code and captures only those debug registers data that are

in an invalid state.

• Easier identification of the cause of Silicon hangs.

• The significance of port names has to be decoded by the designer.

Table 7.1 shows the comparison of the existing process of debug-data capture for

analysis with the framework. The state of approximately 220 registers from the input

listhas to be checked against the dumped data and captured to analyse one dump. The

number of dumps may be greater than one for a chip when checked multiple times.

Time taken to capture and decode been cut down from greater than 12 hours to less

than 6 hours.

53

Figure 7.6 Snippet of code

Table 7.1 Comparison with and without framework

54

 7.3. Automated Design Flow

 7.3.1. Configuration settings file

As a part of automating the design flow, a configuration file, as shown in figure 7.7 is

added; the automation script interprets all the settings and runs the commands

accordingly.

Figure 7.7 Design flow configuration file

 7.3.2. Execution time analysis

The comparison for the time incorporated for flow run, updating constraint file, and

total run time for the existing flow and the improved architecture is shown in table7.2

and figure 7.8. Post design changes the constraint files update take about one hour to

update manually is reduced to 5 minutes. Flow run time is tool-specific. Hence it is

constant. So, the total run time for the design flow is reduced by approximately 68%.

The figure 7.9 shows the sample display of the result at the run completion. The user

has to check the error log files, decode and fix the bugs as required.

55

Table 7.2 Design flow configuration file

Figure 7.8 Comparison of average execution time in existing and improved architecture

56

Figure 7.9 Sample flow result

 7.3.3. Reduced number of file access and command line usage

The automation framework lessens the number of constraint files to updatemanually.

Figure 7.10 Number of file access in existing and automated flow

 The constraint update setting in the config file enables the automatic update of

constraint files of specified parameters. Also, post flow run completion if the output

displays any failures, different log files must be checked for debugging. A post-run

P:PASS F:FAIL E:EXEMPTED

57

log file has been added that captures errors from all the file (approximately 30) and

stores it in the run directory. Figure 7.10 shows the number of file access for

constraint file update and log files.

Figure 7.11Command-line usage comparison in existing and automated flow

Figure 7.11 depicts the command-line usage for the flow run; in total, there are about

120 commands till the termination of the run. Automation has reduced the number of

commands to be input by the user. Although the frameworkupdates the constraint

files, there might be some files that require a manual update.

 7.3.4. Improved design flow vs Existing flow

The improvements added through the automation framework has provided the

following

• Easy debugging

• Reduced command-line usage for constraint and flow execution

• Improved robustness

58

 7.4. Design Flow ofO-NoC router architecture

 7.4.1. 4x4 Network on-chip router

The proposed router shown in figure 7.12 is a 4x4 non-blocking router. It

encompasses 8 MRRs and six waveguide crossings. The input and output ports are

assigned from 𝐼0 − 𝑂0 to 𝐼4 − 𝑂4 in the anti-clockwise direction. This router employs

only parallel resonators with no cross-MRRs scaling down the insertion losses. Since

this router uses two different wavelengths recursively to enable parallel

communication, it enables the communication between any pair of input-output ports

concurrently, provided the output port is free. We can see in figure 7.12 that some of

the MRRs are redundant; for example, MRR with λ2 between I1 -> O0 and I2 -> O3

are redundant but these are not evicted to avoid incoherent cross-talk and

interference.

Figure 7.12 4x4 parallel O-NoC router

The routing table for the 4x4 router is shown below in table 7.3. The signal to an

output port other three input ports are of different wavelengths. There are no sharp

turns employed to lessen the bending losses.

59

Table 7.3 Routing table for 4x4 O-NoC router

This router is extended to 5x5 architecture as shown in figure 7.13 employing 16

Figure 7.13 5x5 ONOC router

.

60

MRRs in a parallel configuration, and the routing table is table 7.4. Four different

wavelengths are employed, it can be perceived that as wavelength division

 Table 7.4 Routing table for 5x5 ONOC router

 multiplexing is employed, all input ports exploit distinct wavelengths to a particular

destination port avoiding confliction.

 7.4.2. Computing design parameters for MRR

The cross-coupling coefficient for the ring resonator in parallel configuration is

shown in figure 7.14. As depicted from the figure, the strength of the cross-coupling

coefficient decreases as the gap increases. Note that the cross-coupling coefficient

considers the curvature of the ring. The following parameters tabulated in table 7.5

are considered while computing the best-fit parameters by curve fitting using Python.

κ = (sin
π

λ
) [

𝑎𝐸

γ𝐸
 𝑒−γ𝐸𝑑 𝐵(𝑥𝐸) +

𝑎𝑂

γ𝑂
 𝑒−γ𝑂𝑑 𝐵(𝑥𝑂)] (1)

61

Figure 7.14 Variation of cross-coupling coefficient with the gap

Parameter Value

Radius 10nm

Waveguide width 450nm

Wavelength 1550nm

neff 2.36

Table 7.5 Parameters considered for κ calculation

The best-fit parameters and the coupling coefficients computed through the equation

are as shown in table 7.6.Figure 7.14 illustrates the variation of the coupling

coefficient with the gap; it is evident that there endures a strong coupling amidst the

ring and the waveguide at lower gaps. Considering a lossless resonator κ2 + 𝑡2 = 1,

the through-coefficient is gauged to be 0.9563.The losses in the resonator determine

the performance of the ring. Using the power-law fit[2], the loss α[dB/cm] is

4.5653[dB/cm].The transmission via the add and drop ports of the ring established in

Figure 7.15 concludes that the parameters opted will provide acceptable transmission

62

characteristics. The quality factor is found to be 12548.25.The blue coloured

transmission curve represents the output of the all-pass resonator, green for the drop-

Parameter Value

𝑎𝐸 0.225

𝑎𝑂 0.010

γ𝑂 0.011

γ𝐸 0.002

d 150nm

κ 0.2924

t 0.9563

α[dB/cm] 4.5653[dB/cm]

Table 7.6 Estimated parameters of the MRR through non-linear curve-fitting using

Python

Figure 7.15 Transmission through the Tn (all-pass), Td(drop-port),

Tp(pass-port) of the ring resonator

63

port and orange for the add-port of the MRR.

 7.4.3 Tunability of MRR

As explained in chapter 6, a thin layer of Indium Tin oxide ITO (20nm) is deposited

on the top of Silicon dioxide to act as the gate electrode enabling the electrical tuning

Figure 7.16 Indium-Tin-Oxide as the gate electrode for MRR used for electrical tuning

of the resonator.

64

Chapter 8 - Conclusions and Future Scopes

 8.1. Conclusion

As demonstrated in the previous chapters, the problems regarding handling a massive

amount of data, finding, filtering and decoding the status of debug registers of the

Network-on-Chip and design flow that includes multiple toolruns, excessive

command-line usage and manual constraint file update. This thesis addresses the

resolution by exploiting automation and framework creation eliminating the complex

tasks incorporated in a process incorporating Python, Perl, Bash. Also, using Python

we have estimated the coupling coefficients of the resonator in the design of the

Optical Network on chip router. We see that employing these resolutions have

reduced the efforts and time put by the user.

• Data visualisation for area analysis gives a picture of the area of the sub-

elements present in different interconnects from the region-wise area CSV

files.

• Scaled areas furnished by the framework from the given technology nodes

 is an added advantage that projects the trends of area variations.

• By adding the configuration files, an interface to configure the required

settings is provided.

• Debug automation framework has abolished the effort to filter around 220

registers from the given debug dump data, check for hang states and

aggregate the data to find the reason for hang. Debug framework takes the

URL link of Silicon dumps as input and captures the required data. Hang

data analysis could be repetitive depending on the number of dumps given in

the debugging phase for a chip.

65

• The design flow automation that incorporates various flow checks has been

automated to run the flow checks. The total time taken is reduced; however,

the tool run time is constant

• Constraint file updates involving many files to update from various

directories are also eradicated. Creating element was also automated.

• The command-line usage is reduced. Error logging enabled in the design

flow automation reduced the effort and time in debugging the errors.

• Design flow of Network-on-Chip optical router in the 4x4 configuration

adopting MRRs in parallel lessens the insertion losses. The design described

diminishes the interference and cross talk noise. The ring resonators

employed are tunable electrically.

 8.2. Future Scope

• The automation framework can be extended to provide area analysis among

different projects graphically, including scaling provision.

• Improving the debug analysis framework to not only capture the hang state-

related data but also to decode the significance of bits in it.

• To optimise the Network on-chip router (optical) to reduce the number of ring

resonators to bring down the power and area consumption

66

REFERENCES

1. D. Mahajan, S. Patil, W. V. Shashikant, M. Dangayach, P. V. Bhanu and J.

Soumya, "Design Automation of Network-on-Chip Prototype on FPGA," 2019

IEEE International Conference on Distributed Computing, VLSI, Electrical

Circuits and Robotics (DISCOVER), Manipal, India, 2019, pp. 1-4, doi:

10.1109/DISCOVER47552.2019.9008005.

2. W. J. Dally and B. Towles, "Route packets, not wires: on-chip interconnection

networks," Proceedings of the 38th Design Automation Conference (IEEE Cat.

No.01CH37232), Las Vegas, NV, USA, 2001, pp. 684-689, doi:

10.1109/DAC.2001.156225.

3. S. Kumar et al., "A network on chip architecture and design

methodology," Proceedings IEEE Computer Society Annual Symposium on VLSI.

New Paradigms for VLSI Systems Design. ISVLSI 2002, Pittsburgh, PA, USA,

2002, pp. 117-124, doi: 10.1109/ISVLSI.2002.1016885.

4. A. Kumar and P. R. Panda, "Front-End Design Flows for Systems on Chip: An

Embedded Tutorial," 2010 23rd International Conference on VLSI Design,

Bangalore, India, 2010, pp. 417-422, doi: 10.1109/VLSI.Design.2010.70.

5. T.R. Mück, A.A. Fröhlich,Aspect-oriented RTL HW design using

SystemC,Microprocessors and Microsystems,Volume 38, Issue 2,2014,Pages

113-123,ISSN 0141-9331, https://doi.org/10.1016/j.micpro.2013.12.002.

6. Shubhyant Chaturvedi. 2012. Static analysis of asynchronous clock domain

crossings. In Proceedings of the Conference on Design, Automation and Test in

Europe (DATE '12).EDA Consortium, San Jose, CA, USA, 1122–1125.

https://doi.org/10.1016/j.micpro.2013.12.002

67

7. A. Yadav, P. Jindal and D. Basappa, "Study and Analysis of RTL Verification

Tool," 2020 IEEE Students Conference on Engineering & Systems (SCES),

Prayagraj, India, 2020, pp. 1-6, doi: 10.1109/SCES50439.2020.9236747

8. L. Leinweber, B. Singh and C. Papachristou, "Expert System Simulation of

Hardware," 2013 IEEE 25th International Conference on Tools with Artificial

Intelligence, Herndon, VA, USA, 2013, pp. 207-212, doi:

10.1109/ICTAI.2013.40.

9. E. Garat, D. Coriat, E. Beigné and L. Stefanazzi, "Unified Power Format (UPF)

methodology in a vendor independent flow," 2015 25th International Workshop

on Power and Timing Modeling, Optimization and Simulation (PATMOS),

Salvador, Brazil, 2015, pp. 82-88, doi: 10.1109/PATMOS.2015.7347591.

10. F. Bembaron, R. Mukherjee, S. Kakkar and A. Srivastava, “Low power

verification methodology using UPF”, Design & Verification Conference &

Exibition (DVCon 2009), San Jose CA, pp. 228-233, in press

11. S. Abadal, M. Iannazzo, M. Nemirovsky, A. Cabellos-Aparicio, H. Lee and E.

Alarcón, "On the Area and Energy Scalability of Wireless Network-on-Chip: A

Model-Based Benchmarked Design Space Exploration," in IEEE/ACM

Transactions on Networking, vol. 23, no. 5, pp. 1501-1513, Oct. 2015, doi:

10.1109/TNET.2014.2332271.

12. S. Sahu and H. M. Kittur, "Area and power-efficient network on-chip router

architecture," 2013 IEEE Conference on Information & Communication

Technologies, Thuckalay, India, 2013, pp. 855-859, doi:

10.1109/CICT.2013.6558214.

13. S. Kumar, N. Dhanda and A. Pandey, "Data Science — Cosmic Infoset Mining,

Modeling and Visualization," 2018 International Conference on Computational

and Characterization Techniques in Engineering & Sciences (CCTES), Lucknow,

India, 2018, pp. 1-4, doi: 10.1109/CCTES.2018.8674138.

68

14. Design compiler graphical,https://www.synopsys.com/implementation-and-

signoff/rtl-synthesis-test/design-compiler-graphical.html.

15. M. H. Neishaburi and Z. Zilic, "Debug Aware AXI-based Network Interface,"

2011 IEEE International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems, Vancouver, BC, Canada, 2011, pp. 399-407, doi:

10.1109/DFT.2011.34.

16. AMBA AXI Protocol Specification, Version 2.0, 19 March 2004.

17. Butwall, Mani et al. “Python in Field of Data Science: A Review.” International

Journal of Computer Applications 178 (2019): 20-24.

18. S. Dwivedi, T. Van Vaerenbergh, A. Ruocco, T. Spuesens, P. Bienstman, P.

Dumon, and W. Bogaerts, "Measurements of Effective Refractive Index of SOI

Waveguides using Interferometers," in Advanced Photonics 2015, OSA Technical

Digest (online) (Optical Society of America, 2015), paper IM2A.6.

19. M. Bahadori et al., "Design Space Exploration of Microring Resonators in Silicon

Photonic Interconnects: Impact of the Ring Curvature," in Journal of Lightwave

Technology, vol. 36, no. 13, pp. 2767-2782, 1 July1, 2018, doi:

10.1109/JLT.2018.2821359.

20. Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Kumar Selvaraja,

S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D. and Baets, R. (2012),

Silicon microring resonators. Laser & Photon. Rev., 6: 47-

73. https://doi.org/10.1002/lpor.201100017L. 4.

21. Zhang et al., "On reducing insertion loss in wavelength-routed optical network-

on-chip architecture," in IEEE/OSA Journal of Optical Communications and

Networking, vol. 6, no. 10, pp. 879-889, Oct. 2014, doi:

10.1364/JOCN.6.000879.

https://doi.org/10.1002/lpor.201100017L.%204

69

22. M. Nikdast et al., "Crosstalk Noise in WDM-Based Optical Networks-on-Chip: A

Formal Study and Comparison," in IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 23, no. 11, pp. 2552-2565, Nov. 2015, doi:

10.1109/TVLSI.2014.2370892.

23. Eyal Feigenbaum, Kenneth Diest, and Harry A. AtwaterUnity-Order Index

Change in Transparent Conducting Oxides at Visible Frequencies,Nano

Letters 2010 10 (6), 2111-2116,DOI: 10.1021/nl1006307.

24. Wen-Chung Tsai, Ying-Cherng Lan, Yu-Hen Hu, and Sao-Jie Chen. 2012.

Networks on chips: structure and design methodologies. JECE 2012, Article 2

(January 2012), 1 pages. DOI:https://doi.org/10.1155/2012/509465.

25. X. Tan, M. Yang, L. Zhang, Y. Jiang and J. Yang, "A Generic Optical Router

Design for Photonic Network-on-Chips," in Journal of Lightwave Technology,

vol. 30, no. 3, pp. 368-376, Feb.1, 2012, doi: 10.1109/JLT.2011.2178019.

26. L. Zhang, Y. Man, X. Tan, M. Yang and Y. Jiang, "Wavelength routed optical

network-on-chip architecture with lower insertion loss," 2014 Optical

Interconnects Conference, 2014, pp. 65-66, doi: 10.1109/OIC.2014.6886073.

27. Zaki, A.O., Kirah, K. & Swillam, M.A. Hybrid plasmonic electro-optical

modulator. Appl. Phys. A 122, 473 (2016). https://doi.org/10.1007/s00339-016-

9843-y.

28. A. Patil, M. Proeller, A. Kshirasagar and A. Nahar, "A Framework for Automated

Testing of RTL Designs," 2015 International Conference on Computing

Communication Control and Automation, 2015, pp. 989-991, doi:

10.1109/ICCUBEA.2015.195.

https://doi.org/10.1007/s00339-016-9843-y
https://doi.org/10.1007/s00339-016-9843-y

70

29. G. A. Allan, "Targeted layout modifications for semiconductor yield/reliability

enhancement," in IEEE Transactions on Semiconductor Manufacturing, vol. 17,

no. 4, pp. 573-581, Nov. 2004, doi: 10.1109/TSM.2004.835727.

30. S. Neeli, K. Govindasamy, B. M. Wilamowski and A. Malinowski, "Automated

Data Mining from Web Servers Using Perl Script," 2008 International

Conference on Intelligent Engineering Systems, 2008, pp. 191-196, doi:

10.1109/INES.2008.4481293.

31. Nikoukar, Ali & Sadegh Amiri, Iraj & Alavi, S. & Shahidinejad, Ali & Anwar,

Toni & Supa'at, Abu & Idrus, Sevia & Teng, Lo. (2014). Theoretical and

Simulation Analysis of The Add/Drop Filter Ring Resonator Based on the Z-

transform Method Theory. Quantum Matter.

32. D. Mahajan, S. Patil, W. V. Shashikant, M. Dangayach, P. V. Bhanu and J.

Soumya, "Design Automation of Network-on-Chip Prototype on FPGA," 2019

IEEE International Conference on Distributed Computing, VLSI, Electrical

Circuits and Robotics (DISCOVER), 2019, pp. 1-4, doi:

10.1109/DISCOVER47552.2019.9008005.

33. C. Chen and S. D. Cotofana, "Towards an Effective Utilization of Partially

Defected Interconnections in 2D Mesh NoCs," 2014 IEEE Computer Society

Annual Symposium on VLSI, 2014, pp. 492-497, doi: 10.1109/ISVLSI.2014.70.

34. Bergman, Keren, et al. Photonic Network-on-Chip Design. Springer, 2014.

