Development of robust support vector
machine algorithms with biomedical
applications

Ph.D. Thesis

By

Bharat Richhariya

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY INDORE

APRIL 2021






Development of robust support vector
machine algorithms with biomedical
applications

A THESIS
submitted to the
INDIAN INSTITUTE OF TECHNOLOGY INDORE

i partial fulfillment of the requirements for

the award of the degree

of
DOCTOR OF PHILOSOPHY

By

Bharat Richhariya

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY INDORE

APRIL 2021






INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled Develop-
ment of robust support vector machine algorithms with biomedical applications
in the partial fulfillment of the requirements for the award of the degree of Doctor of
Philosophy and submitted in the Department of Mathematics, Indian Institute of
Technology Indore, is an authentic record of my own work carried out during the time
period from December 2017 to April 2021 under the supervision of Dr. M. Tanveer, As-
sociate Professor, Indian Institute of Technology Indore, Indore, India.

The matter presented in this thesis has not been submitted by me for the award of any
other degree of this or any other institute.

Phosat
12-04-202|
Signature of the Student with Date
(Bharat Richhariya)

This is to certify that the above statement made by the candidate is correct to the best of
my knowledge.

(oo Apail 13,202

Signature of Thesis Supervisor with Date
(Dr. M. Tanveer)

Bharat Richhariya has successfully given his Ph.D. Oral Examination held on 30 July
2021.

(o Jwy 30,202

Signat-ur;z of Thesis Supervisor with Date
(Dr. M. Tanveer)






ACKNOWLEDGEMENTS

I would like to take this opportunity to thank the persons who in some way helped me
in completing my PhD work. Firstly, I would like to thank my Thesis supervisor Dr.
M. Tanveer, for the continuous guidance and support. He provided the motivation
and support, which helped me in completing my research work. His expertise in the
research field helped me a lot in tackling the problems arising in the various stages of
research. This lead to the timely completion of my PhD thesis.

[ am also thankful to Dr. Niraj Kumar Shukla and Dr. Aruna Tiwari, my
research progress committee members for giving valuable comments, which lead to
improvements in my research work. I am also thankful to the Head, Department of
Mathematics for his consistent support and encouragement.

My sincere gratitude and respect to Director, Indian Institute of Technology Indore
for providing the required research facilities for my work.

I would acknowledge Indian Institute of Technology Indore for providing me insti-
tute fellowship for my PhD programme.

I would like to thank my lab mates for the healthy scientific discussions and ex-
change of ideas, especially Ashraf, Ashwani, Anshul, Riyaz, Mudasir, Avijit, and
Shilpa. I am also thankful to Chandan, and Pratik for the helpful discussions on
machine learning. Moreover, I would thank my colleagues from my department for
discussions on mathematical topics especially, Shreyas, Shubham, Sudipta, Prince,
Vibhuti, Vineeta, and Arstu.

I am also grateful to the administrative and other staff of the institute for their
support and assistance, wherever required during my PhD.

I am thankful to my parents for their constant support and encouragement, which
lead to the smooth completion of my PhD.

Finally, I would like to express my PhD journey with the following line:

“The path not taken is the path to discovery.”

I

Bharat Richhariya






To my famaily and friends






Abstract

The work presented in this thesis comprises robust and efficient machine learning
(ML) models based on novel optimization approaches. The ML technique investigated
very thoroughly in this work is support vector machine (SVM). SVM is a widely used
supervised learning algorithm for classification as well as regression problems. It uses a
kernel based approach for efficiently classifying the data. Since SVM based algorithms
have been extensively used for classifying biomedical data [1}/2], we applied most of

the proposed SVM models to biomedical applications.

Our survey identified some key problems in training SVMs, viz. (which are) class
imbalance problem, data with noise, no knowledge about data distribution, unlabelled
data, and proper feature selection. Also, these problems often occur with biomedical
data as well. To resolve these issues, we proposed novel SVM based algorithms involv-
ing universum data and fuzzy logic. We presented the applications of these models for
healthcare, such as automated diagnosis of diseases like brain disorders. Moreover, we
focused on the issue of proper integration of machine learning algorithms with specific
applications. We also performed a review of the various machine learning techniques
used in detecting brain disorders. This resulted in the detection of key problems re-
lated to machine learning usage in the biomedical domain. One of the key issues is
identifying features containing possible locations of brain regions responsible for the
disease. To resolve this, we proposed a novel feature selection technique based on

universum SVM in this thesis.

To deal with the problem of class imbalance, we proposed two novel algorithms
for classification. One of the algorithm is termed as a robust fuzzy least squares
twin support vector machine for class imbalance learning (RFLSTSVM-CIL). The
RFLSTSVM-CIL algorithm removes the class imbalance problem using a fuzzy logic
based approach, which in turn helps to deal with noisy data as well. The second
algorithm is proposed using a different approach involving universum data to use prior
information about data distribution for class imbalance scenarios. This algorithm

is termed as a reduced universum twin support vector machine for class imbalance



learning (RUTSVM-CIL).

We utilized universum learning for neurological disorders in this work. For epilepsy;,
we used electroencephalogram (EEG) recordings to propose a universum SVM based
seizure detection technique. Moreover, for feature selection, we proposed a universum
based feature elimination algorithm, termed as universum support vector machine
based recursive feature elimination (USVM-RFE). We applied the proposed USVM-
RFE on Alzheimer’s disease (AD) using magnetic resonance imaging (MRI) data for
classification.

However, to deal with noisy datasets in universum learning, three fuzzy logic based
universum algorithms are proposed in this thesis as: A fuzzy universum support vec-
tor machine (FUSVM), a fuzzy universum twin support vector machine (FUTSVM)
based on information entropy, and a fuzzy universum least squares twin support vector
machine (FULSTSVM). However, universum learning incurs additional computation
time. Therefore, we presented some efficient universum based SVM algorithms. We
proposed an efficient angle based universum least squares twin support vector machine
(AULSTSVM) for pattern classification. AULSTSVM uses an angle based approach
for universum learning. Also, two novel variants of universum based twin SVM algo-
rithms are proposed as: Improved universum twin support vector machine (IUTSVM),
and universum least squares twin parametric-margin support vector machine (UL-
STPMSVM). Most of the above mentioned algorithms are applied on Alzheimer’s
disease data for detection of disease.

To explore the domain of unsupervised learning, we presented an SVM based algo-
rithm, termed as least squares projection twin support vector clustering (LSPTSVC),
and applied on AD data. All the models proposed in thesis are compared with
baseline algorithms to justify the advantages. The results of numerical experiments

are compared using statistical significance tests.

Keywords: Support vector machine, class imbalance, universum data, fuzzy mem-
bership, Alzheimer’s disease, epilepsy, MRI, EEG, twin support vector machine, clus-

tering.
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Chapter 1

Introduction

In the past few decades, the data generation has increased substantially, creating a
need for development of robust machine learning techniques. Various improvements in
algorithms have lead to accurate and efficient learning techniques, making remarkable
changes in our daily lives. Many of the widely used machine learning algorithms belong
to a class known as supervised learning. Support vector machines proposed by Vapnik
and co-workers [4H6] have turned out to be a successful algorithm for classification
problems. SVM is based on the maximal margin principle, which leads to an optimal
hyperplane for classification of data. SVM and its variants have been applied to solve
various real world problems ranging from classification of neurological disorders [7] to
applications such as fingerprint [8] and facial expression recognition [9). In order to
improve the generalization performance of SVM, Weston et al. [10] came up with the
idea of universum data. The universum data are unlabelled, and lie in between the
binary classes. Other than universum SVM, many other variants of SVM have been

developed in the past to improve its performance.

In this thesis, we present novel variants of SVM, and apply them on various biomed-
ical applications. The biomedical data included in this work is primarily related to
neurological disorders, namely Alzheimer’s disease, and epilepsy. However, one appli-
cation is also presented on breast cancer data. Like any other classification problem
involving high dimensional data, the neurological disorders are hard to detect without

the use of artificial intelligence. Currently, 50 million people are affected worldwide



by dementia, and is expected to be 152 million by the year 2050 [11]. Alzheimer’s dis-
ease (AD) is a progressive neurodegenerative disease, primarily affecting the elderly
population. It is also a leading cause of dementia. Diagnosis of AD is a formidable
task that requires a lot of expertise, and a thorough examination of patient data.
Moreover, for epilepsy detection, electroencephalogram (EEG) signal classification is
a major challenge in the field of machine learning and signal processing. EEG is a
widely used non-invasive technique for the detection of various types of brain disorders
such as epileptic seizures and sleep disorders. In epilepsy, the extent of disease ranges
from partial to generalized seizures which are reflected in their respective EEG.
Various other challenges need to be addressed with data, such as unlabelled and
noisy data. Moreover, robust algorithms need to be developed which are insensitive
to small variations in the data distribution. Some of these challenges are addressed in

this thesis with a focus on biomedical applications.

1.1 Background

Support vector machine (SVM) [5] is a widely used technique for classification [2,(12]
and regression problems [13,/14]. Based on the structural risk minimization principle
(SRM), SVM gives very good generalization performance. SVM uses the maximal
margin principle to classify the data points as shown in Fig. [L.1(a)] After solving a

convex optimization problem, the decision function of SVM is written as,
f(z) = sign (w'z + b), (1.1)

where w? is transpose of weight vector w, and b is the bias.

To classify non-linearly separable data, kernel functions [15] have been used to
transform the data to higher dimensions. Moreover, various variants of SVM have been
proposed to increase its performance with respect to (w.r.t.) generalization ability and
training time [16]. A computationally efficient variant of SVM is proposed by Jayadeva
et al. [12], known as twin support vector machine (TWSVM). The TWSVM algorithm
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— SVM classifier — TWSVM classifier

(a) SVM (b) TWSVM

Figure 1.1: Types of SVM classifiers.

generates twin hyperplanes to classify the data as shown in Fig. [1.1(b)] To improve
the computation cost of TWSVM, least squares based algorithms are proposed, such

as least squares SVM (LSSVM) [17], and least squares twin support vector machine
(LSTSVM) [18].

In 2006, Weston et al. [10] proposed a novel universum based support vector ma-
chine (USVM) by incorporating universum data in the formulation of SVM. The uni-
versum data consists of additional data points not belonging to any of the binary
classes. Universum data gives prior information about data distribution to the clas-
sifier. Cherkassky et al. [19] stated the practical conditions on the effectiveness of
universum such as selection of parameters. Due to the higher generalization perfor-
mance, universum based algorithms have been used in various applications such as

classification of EEG signals [20], gender [21], and investor sentiments [22].

The universum data is used to align the classifier with the data distribution. As
shown in Fig. [I.2] the classifier generated by USVM is better aligned to classify the
data points. This helps in the classification of testing data. Without this knowledge
of the data distribution, the SVM classifier only tries to maximize the margin, which

results in reduced generalization performance of the model.
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Figure 1.2: Universum data.

1.2 Motivation

Machine learning (ML) techniques are found to be very useful in various real world
problems [2] in the last decade. Among the various ML techniques, we chose to work
on SVM due to its significant prevalence in the literature for ML applications [1].
For understanding the status of state of the art, we surveyed a number of papers
using SVM for classification. We observed that SVM based models have been widely
used for various types of data. We also found various problems involved with SVM for
classification tasks such as class imbalance, noisy data, lack of prior information
about data distribution, and unlabelled data. This motivated us to develop
novel SVM algorithms to remove these drawbacks.

Moreover, we found that SVM based models have been extensively used for biomed-
ical data, such as EEG [23] and MRI [2]. It is due to transparency in the SVM model
for the relation between features and prediction values. Therefore, we proposed novel
variants of SVM and applied on brain disorder datasets. Also, it is observed that
the classification of two classes can be improved by using a third class, known as
universum learning [10]. We found that universum based SVM (USVM) [10] is not ef-
fectively utilized in the past for classification, especially for biomedical datasets. This
motivates us to develop novel USVM models for classification tasks, such as seizure

detection for epilepsy.



However, we found that in the case of Alzheimer’s disease data, better classifica-
tion requires identifying brain regions responsible for the disease [24]. Therefore, we
proposed a feature elimination method based on USVM. Moreover, the availability of
a lot of unlabelled data in today’s world motivates us to explore the domain of unsu-
pervised learning as well. This leads us to develop a SVM based clustering algorithm

with biomedical applications.

1.3 Objectives

The objectives of this thesis are as follows:

(i). To develop SVM based classifiers for class imbalanced data.

(ii). To present a review on the works based on SVM, especially those involving

biomedical data.

i). To develop classification techniques for brain disorders using universum learning.

)
(iv). To formulate noise insensitive universum SVM based classifiers using fuzzy logic.
). To propose efficient universum based twin SVM algorithms.

)

. To propose a novel SVM based unsupervised learning technique.

1.4 Thesis contributions

In this section, we give a brief overview on the contributions of our work. The

proposed algorithms are abbreviated with bold font. The contributions are as follows:

I. Twin support vector machine for class imbalance learning

Based on our review, it is found that noisy class imbalanced data pose a major
challenge in various applications. To resolve this problem, we propose a robust fuzzy
least squares twin support vector machine for class imbalance learning, termed as
RFLSTSVM-CIL [25]. In order to reduce the effect of outliers, we propose a novel
fuzzy membership function specifically for class imbalance problems.

Moreover, in the existing SVM based techniques for class imbalance, there is no in-

formation about the distribution of data. Motivated by the idea of prior information



about data, a reduced universum twin support vector machine for class imbalance
learning (RUTSVM-CIL) [26] is proposed in this thesis. For the first time, uni-
versum learning is incorporated with SVM to solve the problem of class imbalance.
Oversampling and undersampling of data is performed to remove the class imbalance.
The universum data gives prior information about the distribution of data. To re-
duce the computation time of our universum based algorithm, we use a small sized

rectangular kernel matrix.

II. Review on machine learning techniques for Alzheimer’s disease

To develop efficient learning techniques, a better understanding of the existing
work is needed. Therefore, we reviewed various papers from 2005-2019 on the works
involving feature extraction and machine learning techniques for Alzheimer’s disease.
The machine learning techniques are surveyed under three main categories: support
vector machine (SVM), artificial neural network (ANN), and deep learning (DL) with
ensemble methods [2]. We present a detailed review on the use of SVM based ap-

proaches for AD in this thesis with possible future directions.

III. Universum learning for neurological disorders

In our survey [2], we found that apart from class imbalance, noise poses a problem
in balanced data as well. In order to develop a robust classifier, we propose univer-
sum based techniques for neurological disorders such as epilepsy. We present a novel
machine learning approach based on universum support vector machine (USVM) to
include prior information about data. In our approach, the universum data points are
generated by selecting universum from the EEG dataset itself, which are the interictal
EEG signals [20]. This removes the effect of outliers on the generation of universum
data. Further, to reduce the computation time, we use our approach of universum
selection with universum twin support vector machine (UTSVM) [27].

Moreover, other than classification algorithms, efficient feature extraction tech-
niques are also needed for common biomedical data, such as MRI images. Motivated
by the work on support vector machine based recursive feature elimination (SVM-

RFE) [1], we propose a novel feature selection technique to incorporate prior informa-
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tion about data distribution in the recursive feature elimination process. Our method
is termed as universum support vector machine based recursive feature elimination
(USVM-RFE) [28]. For application, we applied the proposed approach on AD data.
The proposed method provides global information about data in the RFE process as

compared to the local approach of feature selection in SVM-RFE.

IV. Fuzzy universum support vector machines

Although universum learning provides prior information about data distribution,
noise is still a major cause for mis-classification. Therefore, to improve noise insensi-
tivity for universum based algorithms, we propose fuzzy based universum SVM algo-
rithms. First, we present a fuzzy universum support vector machine (FUSVM) [29]
by introducing weights to the universum data points based on their information en-
tropy. In addition, we also propose an efficient variant of this approach as fuzzy
universum twin support vector machine (FUTSVM).

To further reduce the computation time, a least squares based model is proposed
as fuzzy universum least squares twin support vector machine (FULSTSVM) [30].
In FULSTSVM, the membership values are used to provide weights for data samples

of the classes, as well as to the universum.

V. Efficient universum twin support vector machines

Universum learning incurs better generalization performance. However, it involves
a drawback of additional computation time. To improve the efficiency of universum
based algorithms, we present novel universum twin support vector machines to gen-
erate two hyperplanes. First, we propose an efficient approach termed as angle based
universum least squares twin support vector machine (AULSTSVM) [31]. This is a
novel approach of incorporating universum in the formulation of least squares based
twin SVM.

Moreover, a novel parametric model for universum based twin support vector ma-
chine is presented for classification problems. The proposed model is termed as univer-
sum least squares twin parametric-margin support vector machine (ULSTPMSVM)

[32]. The solution of ULSTPMSVM involves a system of linear equations, making it
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efficient in terms of training time.

In order to include the structural risk minimization (SRM) principle in the formu-
lation of UTSVM, we propose an improved universum twin support vector machine
(IUTSVM) [33]. Our proposed IUTSVM implicitly makes the matrices non-singular

in the optimization problem by including a regularization term.

VI. Projection based twin support vector clustering

Most of the algorithms proposed in this thesis involve supervised learning. In order
to learn from unlabelled data, we propose an unsupervised learning algorithm based
on projection axes, termed as least squares projection twin support vector clustering
(LSPTSVC) [34]. The proposed LSPTSVC finds projection axis for every cluster
in a manner that minimizes the within class scatter, and keeps the clusters of other
classes far away. Moreover, the solution of proposed LSPTSVC involves a set of linear

equations leading to very less computation time.

1.5 Organization of the thesis

The works included in this thesis are divided into eight chapters. Fig. shows
a pictorial representation of the works. We have given a brief description of every

chapter in the following:

Chapter 1 (Introduction)
In this chapter, we provided the introduction, and background of SVM. We ex-

plained the motivation for this work, with the contributions made in this thesis.

Chapter 2 (Literature Survey and Research Methodology)
This chapter provides a thorough review on the existing SVM based learning tech-
niques, with applications to biomedical data. It also describes the research methodol-

ogy including the performance metrics used in this thesis.

Chapter 3 (Twin support vector machine for class imbalance learning)

In this chapter, we present two novel SVM based algorithms for class imbalanced

8
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data.

Chapter 4 (Universum learning for neurological disorders)
This chapter presents a novel universum based approach for detection of epilepsy.
Also, a universum based feature elimination technique is proposed for Alzheimer’s

disease.

Chapter 5 (Fuzzy universum support vector machines)
To remove the effect of noise, three novel universum SVM based algorithms are

presented using fuzzy logic.

Chapter 6 (Efficient universum twin support vector machines)
This chapter discusses three novel universum SVM based algorithms with improved

generalization and lesser computation time.

Chapter 7 (Projection based twin support vector clustering)
For unsupervised learning, a twin support vector clustering technique is proposed

using projection of data points.

Chapter 8 (Conclusions and Future Work)

This chapter gives the conclusions of the thesis, with possible future directions.
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Chapter 2

Literature Survey and Research

Methodology

In this chapter, we present the literature on the different research problems ad-
dressed in this thesis. We have divided the literature survey into six sections, with
section [2.1]introducing the formulation of SVM. Section [2.2] discusses twin SVM based
techniques in reference to class imbalance problems and fuzzy functions. Section
describes the formulation of USVM with applications to neurological disorders. More-
over, a survey on machine learning for Alzheimer’s diseaseE] is presented in section
2.4l For unsupervised learning, the works on SVM based clustering algorithms are
explained in section [2.5] Lastly, section gives the research methodology used in

this work.

Notations: The mathematical notations used in this work are as follows: All
vectors x are assumed as column vectors. 27 denotes the transpose of the vector. X
and X, are matrices containing the data points belonging to class ‘1’ and ‘-1’ of size
p X n and ¢ X n respectively. U represents universum data points having dimension
r X n. Total number of data points are represented by [ = p + ¢, where n is the

dimension of each data point. ||z|| represents the 2-norm of a vector z.

IM. Tanveer, B. Richhariya, R.U. Khan, A.H. Rashid, P. Khanna, M. Prasad, C.T. Lin. Ma-
chine learning techniques for the diagnosis of Alzheimer’s disease: A review. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM), ACM, 16(1s):1-35, 2020, DOI:
https://doi.org/10.1145/3344998.

[SCI Indexed Impact Factor: 3.144]
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In the last few decades, support vector machine (SVM) [5] has become a popu-
lar technique for classification problems |16]. SVM is based on the maximal margin
principle with bounded VC dimension, leading to better generalization performance
of the model. In the next section, first we present the mathematical formulation of

SVM, then in further sections, we discuss about the various improvements made on

the SVM formulation.

2.1 Support vector machine for classification prob-

lems

The formulation of SVM [5] in primal form is written as follows:
1 !
. - 2 )
min ] +c;&
s.t. yz'(le’z‘ +0) >1-¢,

§>0,Vi=1,2,...,1, (2.1)

where w is weight vector, b is the bias, y; is label of data point x;, [ is the total number

of data points, ¢ > 0 is penalty parameter, and &; is the slack variable.

The dual formulation of quadratic programming problem or QPP (2.1)) is written
by applying the Karush Kuhn Tucker (K.K.T.) conditions [35,36] as

l l l
HlOE}X o — 5 aiajyiiji l’j
i=1

i=1 j=1

st. 0<;<c,Vi=1,2,...,1,

l
=1

where a; > 0 is the Lagrange multiplier [36], and y; ; is the class label.

The classifier is given as
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f(z) = sgn(w’z +b), (2.3)

1
where sgn is the signum function, and the weight vector is calculated as w = Z QYT
i=1

2.2 Twin support vector machine and class imbal-

ance problem

The time complexity of solving QPP of SVM is O(m?) [12], where m is number of
samples. To reduce the computational complexity of SVM, Jayadeva et al. [12] pro-
posed an efficient twin support vector machine (TWSVM) for classification problems.
In TWSVM, two hyperplanes are constructed instead of one as in SVM, and the opti-
mization problem is to keep each of the hyperplanes closer to its own class and away
from the other class. This leads to a time complexity of 2 x O(m/2)? i.e., O(m)3/4
in TWSVM. The TWSVM algorithm is one of the most prominent techniques for
classification problems. It has been applied in various real world applications, due to
its less computational complexity. Kumar and Gopal [18] proposed a more efficient
least squares twin support vector machine (LSTSVM), where a pair of system of linear

equations is solved. The computation time of LSTSVM is very less in comparison to

SVM.

One of the important applications of SVM is the classification of class imbalance
datasets. In most applications, there is an imbalance in the number of samples of
the classes, leading to incorrect classification of data points in the minority class.
Moreover, while dealing with imbalanced data, noisy data poses a major challenge in
various applications. In many applications involving high imbalance in the data, such
as disease [37], fault [38], and defective software modules detection [39], the priority
is to correctly classify the minority class. For example, in disease detection there are

very less samples of people with disease in comparison to healthy people.
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In QPP of SVM, all the data points serve as constraints, but in TWSVM the data
is distributed in such a way that one class gives the constraints to the other class and
vice-versa. So, TWSVM solves two smaller size QPPs rather than one large QPP in
SVM. The formulation of TWSVM is described in the following subsection.

2.2.1 Twin support vector machine (TWSVM)

Consider a binary classification problem where the data points belong to class +1
and -1, which are represented by matrices X; and X5 respectively.

The optimization problems of TWSVM in the non-linear case [12] are written as:

. 1
min —||K (X1, D" )w; + e1by||* + cre5 &
w1,b1,€1 2

st — (K (Xo, DT)wy 4 esb)) + & > eq, & >0, (2.4)

. 1
min || K (Xs, D" )ws + eabo|* + cae] &
wa, ba, €2 2

s.t. (K(Xl, DT)U)2 + €1b2) -+ 52 Z €1, 52 Z 0, (25)

where w;,i = 1,2 is weight vector and b; is bias of hyperplane of i class, &; is slack
variable, and D = [XT XI]T. Here, K (27, D7) = (K(z,21),...,K(z,2;)) is a row
vector in R™, and e; is vector of ones of appropriate dimension.

By using the K.K.T. necessary and sufficient conditions, the Wolfe duals of Eqgs.

(2.4) and (2.5) are obtained as

1
max ej o — EaTN(MTM)_lNTa

st. 0<a<q, (2.6)

1
max el — iﬂTM(NTN)*lMTB

st. 0< B <, (2.7)
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where M = [K (X, DT) e;] and N = [K(X3, D) e,], a and 3 are vectors containing
the Lagrange multipliers. The classifying hyperplanes K (27, DT)w; + b; = 0 and
K(zT, DT)wy + by = 0 are constructed by using the values of w;, and b;, i = 1,2 from

the following equations,

wq

= —(M"M +6I)"'NTa, (2.8)
by
W2 T —12 4T
| (NTN + 60 'MT 3, (2.9)
2

where § > 0 is a small positive value to avoid ill-conditioning of the matrices MM

and NTN in calculating the inverse, and I is identity matrix of appropriate size.

A new data point z € R" is classified using the following decision function,
class(i) = min(|K (x*, DT w; + b;|) for i=1,2, (2.10)

where |.| is the perpendicular distance of point x from the hyperplane. Similarly, for

the linear case, the decision function can be given as

class(i) = min(jwlz +b;|) for i=1,2. (2.11)

2.2.2 Least squares twin support vector machine (LSTSVM)

The QPPs of LSTSVM [18] for non-linear case are described as

. 1 c
min  =||K(X1, D")wy + exby|* + S m
wi,bi,m 2 2
s.t. — (K(XQ, DT)’LUl + 62[)1) + m = €, (212)
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i 1 c
min || K(Xa, DT)wy + eabs||* + —2772T7}2
wa,ba, e 2 2
s.t. K(Xl, DT)U)Q + €1b2 + 2 = €1, (213)
where ¢;,7 = 1,2 are positive parameters, 7;,,7 = 1,2 denote the slack variables,
K(.,DT) is the kernel matrix where D = [XT XI]7, and e, e, represent vectors

of ones of suitable dimensions.

By using the constraints in their respective objective functions, we get

1 c
mlgl EHK(Xl’ DT)w1 + 61b1||2 + 51||K(X2, DT)’U)l + €2b1 + 62”2, (214)
wi1,01

. 1 c
min  — || K (X2, DT )wsy + eaby|* + 52“ — (K (X1, DT)wy + e1by) + e ||*. (2.15)

wa,by 2

Taking the gradient of QPP (2.14)) w.r.t. w; and by, we get

K(Xl, DT)T(K(Xl, DT)w1 + Glbl) + ClK(XQ, DT)T(K(XQ, DT)w1 + 62b1 + 62) == O,

(2.16)
el (K (X1, D" w; + e1by) + cres (K(Xa, DT )w; + esby + €2) = 0. (2.17)
Combining Eqgs. (2.16)) and (2.17) and solving, we get
1 -1
[wy o) = — <GTG + C—HTH) G e, (2.18)
1

where H = [K (X1, D7) e], and G = [K(Xy, DT) e5]. Similarly, using Eq. (2.15)),

we get

-1
[wy by]T = (HTH + lGTG) He,. (2.19)

C2

For reducing the computation time of finding the inverse, Sher-

man—Morrison-Woodbury (SMW) formula [40] is used for Egs.  (2.18) and
(2.19). A testing data point x is assigned to a class using Eq. (2.10)).
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2.2.3 Fuzzy membership functions

In [41], Lin and Wang proposed a fuzzy support vector machine (FSVM) based on
distance from the class centroid for each class. This reduces the effect of outliers in
the classification because the outliers get relatively less weight for the classification as
compared to the other points. In class imbalance learning, due to a huge difference
in the number of samples of the binary classes, SVM classifier gives more priority to
the samples of the majority class, and misclassifies the samples which are in minority.
To give more weight to the minority class, different weights are assigned to the data
points of both the classes. Since FSVM is not suitable for class imbalance learning,
Batuwita and Palade [42] proposed FSVM-CIL with different settings of parameters
and fuzzy membership functions. An improved one-class SVM for class imbalance is
proposed in [43] using a conformal kernel transformation. A boosting algorithm for
support vector machine [44] is proposed for countering the excessive bias in classifying
imbalance data. FSVM for class imbalance in medical datasets is proposed [45] for
incorporating the local information using a local within-class preserving scatter matrix.
A scaling kernel function is proposed [46] for SVM in class imbalance learning. An
oversampling technique is combined with the undersampling technique in a hybrid

sampling approach for SVM [47].

A weighted least squares projection twin support vector machines is proposed
in [48] to include the local information about the data. A fuzzy least squares twin
support vector machine is proposed [49] to deal with class imbalance datasets. For
class imbalance data with missing values, Razzaghi et al. [50] proposed a multilevel
framework of the cost-sensitive SVM for healthcare data. Moreover, a fuzzy total
margin based support vector machine (FTM-SVM) is proposed with different settings
in [51] for imbalance problems. A weighted K-means support vector machine for
cancer prediction is proposed in [52] to circumvent the problem of imbalance in the
data. Further, a weighted least squares twin support vector machine (WLSTSVM)
is proposed for binary classification in [53], while a weighted multi-class least squares

twin support vector machine (WMLSTSVM) is proposed in [54]. In WMLSTSVM,
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the fuzzy membership function gives membership on the basis of number of samples in
the two classes, and thus is not capable of dealing with outliers. Recently, an entropy
based fuzzy support vector machine (EFSVM) is proposed in [55]. In EFSVM, the data
points of the majority class are given fuzzy membership based on their information
entropy on the basis of proximity to the binary classes.

Here, we discuss some of the fuzzy membership functions used for class imbalance.
The fuzzy membership functions for centroid based membership [42] are as follows:
L. Centroid (linear): The fuzzy membership is assigned based on the distance of the
data points from the centroid of its class. Here, the decaying function is linear in

nature. The fuzzy membership function is given as

dcen
mem =1 — <W), (220)

where d,., is the Euclidean distance of each data point from the centroid of its class,
and 0 is a small positive integer to remove the possibility of division by 0.

II. Centroid (exponential): The decaying function is exponential in nature and the
fuzzy membership is assigned based on the distance of the data points from the centroid

of its class. The fuzzy membership function is written as

2
mem = (1 + ea:p(ﬁdcen))’

(2.21)

where d.., is the Euclidean distance of each data point from the centroid of its class,

and [ decides the scale of the exponential function.

2.3 Universum learning and its applications

Weston et al. [10] proposed a universum support vector machine (USVM) to give
prior information to the classifier about the distribution of data. The universum data
points do not belong to any of the classes, and lie within a tube between the two classes.
This approach is also called as ‘learning through contradiction’. In USVM, along with

the hinge loss it involves an e-insensitive loss function. This universum based approach
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has been applied to various real world applications. Long and Tang [22] performed
the classification of investor sentiments using USVM. Gao et al. [56] used universum
SVM for prediction of translation initiation in proteins. They used two approaches
for selecting the universum: one is based on uniform distribution of noise and other
using random averaging of the data points. Hao and Zhang [57] proposed an ensemble
universum support vector machine for the detection of Alzheimer’s disease from brain
imaging data by using the patients with mild cognitive impairment (MCI) as the

universum. In the following subsection, we describe the formulation of USVM.

2.3.1 Universum support vector machine (USVM)

The optimization problem of USVM is given as follows:

l 2r
. 1
win Ll 4> 6ra Yy
i=1 j=1

w,b,&,n
st yi(whé(z) +b) >1 -,

yi(w¢(z;) +b) > —e — 1,

&>0,m>0Vi=12...,1,Yj=12... 2 (2.22)

where [ is the total number of data points, ¢ > 0,¢, > 0 are penalty parameters, &
and 7; are slack variables, € is the parameter for the insensitive tube, ¢ : R" — RP
is the function mapping from n to p dimension where p > n, and r is the number of
universum samples.

The dual of Eq. (2.22) is written by applying the K.K.T. conditions as,

1427 I+2r [+2r

mgx Z ity — % Z Z @iajyiyj¢(xi)T¢(xj)
i=1

i=1 j=1
st. 0<a;<c,u;=1,Vi=1,2,...,1,

0<a;<cy ps=—6Vi=1l+1,1+2,...,14+2r,
[+2r

> agy; =0, (2.23)
=1
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where o; > 0 is the Lagrange multiplier.

The classifier shown in Fig. (1.2)) is given by Eq. (2.3)), and the weight vector is
I+2r

obtained as w = Z QYT

=1

2.3.2 Classification of EEG signals using SVM

Electroencephalogram (EEG) signal classification is a major challenge in the field of
machine learning and signal processing. EEG is a widely used non-invasive technique
for the detection of various types of brain disorders, such as epileptic seizures and
sleep disorders. In epilepsy, the extent of disease ranges from partial to generalized
seizures which are reflected in their respective EEG. The different types of EEG signals
are shown in Fig. 2.} For the better feature extraction and classification of EEG
signals, several signal processing techniques have been used by researchers. Among
the various feature extraction techniques, wavelet transform is one of the frequently
used methods. In wavelet transform, the frequency domain features are extracted from
the signal with good localization in time. This is in contrast to the Fourier transform,
where the signal analysis is done mainly in the frequency domain. In wavelet analysis,
the approximation and decomposition coefficients are used to form the feature vector
as shown in Fig.

The different families of wavelet are used for specific type of signals to get better
characteristics of that signal. Adeli et al. [58] proposed a computer aided diagno-
sis (CAD) method for epilepsy using discrete wavelet transform (DWT). They used
Daubechies wavelet with db-4 as the mother wavelet for the feature extraction. An
orthogonal decimated discrete wavelet transform (ODWT) [59] is used for detecting
maturational changes associated with childhood absence epilepsy. The classification
of EEG signals is performed [60] using wavelet packet analysis and genetic algorithm.
Daubechies wavelet-2 is used for the classification of five different EEG signals [61].
Subasi and Gursoy [23] used principal component analysis (PCA), linear discriminant
analysis (LDA) and independent component analysis (ICA) for the feature extraction,

and SVM for classification.
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Figure 2.1: Healthy, interictal, and ictal EEG signals.
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The proper selection of classification techniques is very crucial for the automated
diagnosis of patients having neurological diseases. Among the various classification
algorithms, support vector machines (SVMs) have emerged as a powerful classifica-
tion technique. SVM solves a convex optimization problem which leads to a globally
optimal solution. This is in contrast to artificial neural network (ANN) that suffers
from the problem of local minima. SVM also has a lower VC (Vapnik-Chervonenkis)
dimension that enables it to classify high dimensional data with less optimizing pa-
rameters.

Many researchers have used SVM in the classification of EEG signals [62] and for
the diagnosis of neurological diseases like epilepsy [63-65]. Guo et al. (2010) [66]
performed the classification of mental tasks from the analysis of EEG signals using
SVM. Least squares support vector machine (LSSVM) [17] is also used [67,/68] for
the detection of epilepsy. LSSVM is used for classification of EEG signal with a
clustering based approach [69]. For multiclass classification of EEG signals, Guler and
Ubeyli (2007) [70] proposed a SVM based model and showed that SVM gives better
classification accuracy for EEG signals as compared to probabilistic neural network
(PNN) and multilayer perceptron neural network (MLPNN).

The models proposed in this thesis for neurological disorders also involve efficient
universum SVM based models. Therefore, in the following subsections, we discuss
the formulations of some existing universum SVM based algorithms, which are im-
provements over USVM in terms of computation time. An efficient universum based
technique known as universum twin support vector machine (UTSVM) is discussed in

the following subsection.

2.3.3 Universum twin support vector machine (UTSVM)

Universum based algorithms give better generalization performance [10,[19] due
to inclusion of universum data in the optimization problem. However, the model
becomes computationally expensive [20,71], due to a single large QPP with additional
universum data. To remove this drawback, a universum twin support vector machine

(UTSVM) is proposed [27]. UTSVM solves two smaller size QPPs instead of one large

22



QPP. This makes UTSVM computationally faster than USVM, as TWSVM is faster
than SVM. Here, the additional constraints in each QPP are for the universum data

points.

The optimization problems of UTSVM in the non-linear case are written as follows:

) 1
min || K(Xq, DT)wl + e1by]|* + 016551 + cuegm
wy, b1, &,m 2

st — (K(Xg, DM)w; + egby) + & > ey,
(K(U, D" w; + euby) +m > (=1 + €)ey,

20, m =0, (2.24)

. 1
min §||K(X27 DTYwy + eabs||* + cael & + cuelny

w2, b2, &2, M2

sit.  (K(Xy, DM)wy + e1by) + & > ey,
— (K(U, DT)wy + e,bs) +m2 > (=1 + €)ey,

§>0, n2 >0, (2.25)

where ¢;(i = 1,2) and ¢, are positive real penalty parameters; &;, n;(i = 1,2) are slack

variables, and e;(i = 1,2), e, are vectors of ones of suitable dimensions.

By applying the K.K.T. necessary and sufficient conditions, the Wolfe duals of Eqs.
(2.24) and ([2.25)) are obtained as

1
max el a; — 5(041TN —pFOYMT M) M (NTay — OT jy) + (e — Vel g

a1, fH1

st. 0< a1 <¢, 0<u <gc, (2.26)

1
max el ay — §(agM — 2 OY(NTN) Y (M ay — O o) + (e — 1)el py

a2, (42

st. 0<as<cy, 0< s <ecy, (2.27)

where M = [K(X;, D) e;], N = [K(X5, DT) e3] and O = [K(U, DT) e,]; a1, as,
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11, po are vectors of Lagrange multipliers.
The classifying hyperplanes K (2”7, D")w; + b; = 0 and K (27, DT)w, + by = 0
are constructed from the parameter values of w;(i = 1,2) and b;(i = 1,2) using the

following Eqgs. (2.28) and (2.29),

)| —(M*M)"Y(NTa; — 0T y), (2.28)

1

W2 T Ary=1/ 14T T

, = (N'N)""(M"ay — O" o). (2.29)
2

Note that the matrices MTM and NN are always positive semi-definite, it is
possible that they may not be well conditioned in some situations. So, a regularization
term 61, § > 0 is introduced with the matrices MTM and NTN as (MTM + 61) and
(NTN +61). Here, I is an identity matrix of appropriate dimension. Each new data
point is classified using Eq. .

In the following section, we discuss another efficient formulation for universum
based SVM algorithms, known as least squares twin support vector machine with

universum data (ULSTSVM).

2.3.4 Least squares twin support vector machine with uni-

versum data (ULSTSVM)

A least squares twin support vector machine with universum data (ULSTSVM) [71]
is proposed to reduce the computation time of UTSVM. The optimization problem of
ULSTSVM [27] comprises the following QPPs,

. 1 c c c
min < ||K (X1, DT)wy + edi|* + &L & + = (wn]® +63) + 2nl'm
wi,b1,é1,m 2 2 2 2

s.t. — (K (X2, D"Yw; + eaby) + &1 = e,

KU, D"Yw; + e, by +m1 = (=1 + €)ey, (2.30)
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. 1 c c C
min || K(Xa, DT)ws + eabo||* + &5 & + — (|lwal* + b3) + —nd my
wa,b2,€2,m2 2 2 2 2

s.t. K(XI,DT)U)Q“Fele‘i_gQ = €y,

— (K (U, D")wy + eyby) + 12 = (=1 + €)ey, (2.31)

where &;,7n;,7 = 1,2 represent slack variables, ¢;,7 = 1,2 are positive parameters, and

K(., D7) is the kernel matrix and D = [X] XJ|7.
Substituting the constraints in the objective functions, we get

.1 c c
min o[ K (X0, DT )wy + exba[* + 5| 5 (Xa, DT )wn + eaby + ea|* + 5 (lwa]|* +0)

w1,b1

+ S = (KU, DTy + eby) + (~1+ e (2.32)

o1 c c
min §HK(X2, DTYws + exbs||* + 5” — (K (X1, D" wy + e1bs) + eq||* + 54(Hw2H2 + b3)

waz,b2

+ DN WU, DT ywa + eubs) + (<1 + e (2.33)

Taking the gradient of Eq. (2.32) w.r.t. w; and b; and equating to 0, we get

K (X1, D7) (K(X1, DT)wy + exby) + &1 K (Xa, D) (K(Xa, DT )wy + esby + €3) + cswn
+e; K (U, DT)"(K(U, D" )wy + eb1 — (=1 + €)e,) =0,
(2.34)

6{ (K(Xl, DT)’U)l + elbl) + cleg (K(XQ, DT)w1 + 6261 + 62) + Cgbl

+csen (K (U, D" )ws + e,by — (=1 + €)e,) = 0.
(2.35)

Combining Egs. (2.34) and ({2.35)) and solving, we get
w1 )" =—(H"H+aG"G+cl + C5OT0)71 (a1G"es + c5(1 —€)0O"e,), (2.36)
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and using Eq. (2.33]), we get
[wo bo]" = (GT"G + xH"H + s + CGOTO)_l (coH"e1 + cs(1 —€)O"e,).  (2.37)

where H = [K (X, DT) e1], G = [K(X3, DT) ey], and O = [K(U, DT) e,].
For a new data point z, the class assignment is performed using Eq. (2.10)).

2.4 Diagnosis of Alzheimer’s disease using machine

learning techniques

Alzheimer’s disease (AD) is one of the most common cause of dementia in today’s
world. According to World Alzheimer Report (2018) [11], around 50 million people
were affected by this disease in 2018, which is expected to triple by 2050. Usually, the
symptoms of AD are visible after 60 years of age [72]. However, some forms of AD
develop very early (30-50 years) for individuals having gene mutation [73]. Alzheimer’s
disease gives rise to structural and functional changes in the brain. In AD patients, the
time between healthy state to Alzheimer’s spans over many years [74]. First, patients
develop mild cognitive impairment (MCI), and gradually progress to AD. However, all
MCI patients do not convert to AD [75]. So, the main focus of current research is to
predict the conversion of MCI to AD. These changes can be measured using medical
imaging [76] and other techniques like blood plasma spectroscopy [77,/7§].

Many open source databases for Alzheimer’s disease have accelerated research in
this field |79,80]. The most widely used databases are ADNI [81] (adni.loni.usc.
edu), AIBL (aibl.csiro.au), OASIS (www.oasis-brains.org). A new publicly
available database for clinical Alzheimer’s data is J-ADNI database [82,83] containing
data from longitudinal studies in Japan. Further, processing of MRI images requires
a lot of effort. To facilitate analysis of MRI images open source softwares like Statisti-
cal Parametric Mapping (SPM) have been developed by Wellcome Centre for Human
Neuroimaging for public use. SPM is used for voxel based morphometry (VBM) [84] of

MRI data. Another very popular open source software i.e., Freesurfer [85] is developed
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for volume based morphometry and is used by many researchers [86},87].

Machine learning techniques are found to be very useful for the diagnosis of
AD [88-90] in the last decade. The most widely used classification techniques are
support vector machine (SVM), artificial neural network (ANN), and deep learning.
The primary difference between SVM and ANN is the nature of the optimization
problem. SVM gives a globally optimal solution [91], while ANN gives locally optimal
solution. In both SVM and ANN, feature extraction is an important step. Shi et
al. [92] suggested that combination of neural networks and intelligent agents can be
useful for medical image analysis. However, deep learning incorporates the feature
extraction step in the learning model itself [93,/94]. For large datasets, deep learning is
found to be useful especially for image data [93]. Some researchers also used ensemble
methods to improve the classification accuracy for AD [95-97].

For classification of AD data, the accuracy is dependent on the type of problem.
For example, the accuracy is highest for Control normal (CN) vs AD, lesser for CN
vs MCI, and least for MCI vs AD [98]. Moreover, the classification of MCI converters
(MClIc) vs non-converters (MClnc), and amnestic MCI (aMCI) vs non-amnestic MCI
(naMCI) is also a challenging task [99,|100]. Moreover, the data generated from MRI
scanners is 3-D in nature and thus amounts to large sized datasets. So, efficient feature

extraction and classification techniques are needed to analyze this data |[101}]102].

2.4.1 Search strategy

We searched prominent papers in the field from Google Scholar (https://
scholar.google.co.in) and Sciencedirect (https://www.sciencedirect.com). We
excluded the studies which did not use accuracy measures for classification perfor-
mance. This resulted in a total of 165 papers. Out of 165, 60 papers used SVM,
45 used a combination of ANN, multi-task learning, transfer learning, multi-kernel
learning and certain feature selection techniques. We also reviewed 60 papers based
on deep learning and ensemble methods for AD.

As per our survey [2], it is found that SVM based models have been widely used

for Alzheimer’s disease showing its robustness. This is because techniques like ANN
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suffers from the drawbacks of local minima, which is not the case with SVM. Therefore,
in the following sections, we present a review on the works using SVM for Alzheimer’s

disease. The review is summarized in Table 2.1] with details of these works.

2.4.2 Image modality

Image modality is a prominent factor for classification of MRI images. In case
of structural MRI (sMRI) images, most of the researchers used T1-weighted images
while only few researchers used T2 images [103-105]. This is because the delineation of

ventricular surface of brain due to atrophy is clearly visible in T1-weighted images [24].

Fan et al. [106] suggested that positron emission tomography (PET) scans pro-
vide complementary information to sMRI scans, thus improving the classification
accuracy of CN vs MCI using SVM. Dukart et al. [107] supported this fact that
fluorodeoxyglucose-PET (FDG-PET) features are more discriminative as compared
to sMRI. Further, better accuracy is found for CN vs AD [108] with PET images (100
%) as compared to single photon emission computed tomography (SPECT) images
(97.5 %). Similar finding is observed for CN vs AD [109] with better accuracy for
PET images (96.67 %) as compared to SPECT images (94.5 %). Kamathe et al. [105]
used combination of T1, T2 and proton density (PD) scans for classification of CN vs
AD. Hojjati et al. [110] used resting state functional MRI (rs-fMRI) to find the con-
nectivity changes in brain for classification of MClc vs MClnc, while Sheng et al. [111]
used connectivity information from fMRI data. Fig. shows the usage of different

modalities of data for SVM in our survey.

Diffusion tensor imaging (DTI) is also explored by various researchers for
Alzheimer’s disease [100,[112,/113]. Haller et al. [114] found that SVM based anal-
ysis of white matter DTI parameters is helpful in classification of different types of

MCT patients.
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Figure 2.3: Plot showing different image modalities and other data used with SVM
for AD.

2.4.3 Feature selection and extraction with SVM

Feature selection plays an important part in the classification of data. Different
features are combined to form the feature vector in many works [110|[115/[116]. Vemuri
et al. found that including demographic and genetic information with sMRI scans
improved the classification accuracy of CN vs AD. A refined parcellation method
is proposed for detecting subtle changes in gray matter (GM). Magnin et al.
7] presented a feature selection method based on histogram of regions of interests
(ROIs) for CN vs AD. Gerardin et al. used shape features of hippocampus to
discriminate CN, MCI and AD, and found that shape deformation features are better
than volumetric features. Normalized mean square error (NMSE) features are used
to discriminate CN with early AD. A clustering based approach is proposed
to group adjacent voxels for classification of CN, MCI and AD. Fisher discriminate
ratio (FDR) is used to extract useful voxels as features (VAF) from SPECT
images.

Gaussian mixture model (GMM) is used in for CN vs AD. It is stated that
the proposed GMM based feature extraction makes the data linearly separable. Ortiz
et al. used PET and sMRI data to find the most discriminative features using

sparse inverse covariance estimation (SICE) method with SVM. Non-negative matrix
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factorization (NMF) based features with SVM are found to give better performance
than PCA with SVM to classify CN vs AD [123]. Moreover, Abdulkadir et al. [124]
illustrated the affects of hardware heterogeneity on classification accuracy of SVM.
They also found high confidence level of classification performance for large samples.
Cuingnet et al. [99] stated that DARTEL based features are better than SPM fea-
tures for CN, MClc, MClnc, and AD. Moreover, it is concluded that feature selection
techniques for sMRI images may lead to less classification accuracy due to addition of
hyperparameters. Further, Schmitter et al. [125] found volume based features to be
more useful than voxel based morphometry (VBM). Morphological features of brain
regions are used by Plocharsky et al. |[126] to classify CN vs AD, while Long et al. used
shape differences in the subjects’ brains for classification of CN, AD, sMCI (stable),
and pMCI (progressive). Fuzzy based classes for hippocampus volume are used by

Tangaro et al. [87] for classification of CN vs AD, and MClc vs MClnc.

Wavelet based features are used in various works. Chaplot et al. [103] used discrete
wavelet transform (DWT) features, while Zhang et al. [116] found that 3-D DWT and
SVM are useful for classification of CN, MCI and AD subjects. Segovia et al. [127]
discovered that partial least squares (PLS) components have a higher FDR score as
compared to principal component analysis (PCA) for CN vs AD using SPECT images.
Ortiz et al. used self organizing maps (SOMs) [115] for unsupervised segmentation of
sMRI images in classification of CN vs AD. However, Chaplot et al. [103] found that
SVM performs better than SOM for classification of AD patients using T2-weighted
images.

Other techniques like SVM-RFE [1/128] are used as an optimized feature selection
technique in [129] to select prominent brain features for CN vs AD. Independent
component analysis (ICA) is used in many works [130,/131] for classification of CN
vs AD using SVM. EEG data is also used [132] for classification of CN vs AD using
SVM. Mazaheri et al. [133] used EEG recordings of word comprehension by subjects
to classify MClc from MCInc and CN. Some researchers also focused on blood based
biomarkers for AD [77,,78]. Gostolya et al. [134] used speech patterns of subjects and
classified using linear SVM.
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2.4.4 Kernel functions for AD

Different kernels have been used with SVM for classification of AD. Various re-
searchers have used linear kernel with SVM to classify Alzheimer’s data as shown in
Fig. . This is due to the fact that in linear kernel, there is no kernel parameter
to tune. Some researchers also utilized multiple kernels for SVM [86]. Moreover, in
most papers, the sample size is also very small as shown in Table [2.1| which may lead
to overfitting of the data with radial basis function (RBF) kernel |128]. This leads to

the use of linear kernel due to its simplicity. The usage of different kernels as per our

survey is shown in Fig. 2.4(a)

Kloppel et al. [135] used linear SVM to classify pathologically confirmed cases of
AD with CN, and suggested that SVM can help in the diagnosis of AD. It has been
stated in [121,[131] that linear kernel provides better classification performance for high
dimensional data as compared to polynomial or RBF kernel. However, polynomial
kernel is also used by researchers. Lahmiri et al. [104] used polynomial kernel for
multiclass classification of CN, MCI, and AD. Zhang et al. [136] found that polynomial
kernel is useful in classification of CN vs AD using PCA features. In 2018, Lahmiri et
al. |[137] used volumetric features with cognitive test scores for classification of CN vs

AD with polynomial kernel.

Some researchers also used an ensemble of kernels. Multiple kernel SVM is used
by Alam et al. [86] for classification of CN, MCI, and AD. Kamathe et al. [105] used
linear, polynomial and RBF kernel for classification of CN vs AD. Peng et al. [13§]
used MRI and genetic data for features, and used multiple kernel learning with SVM
to classify the subjects. The selection of optimal hyperparameters is a major step in
the classification of SVM. Among the various methods, leave one out cross validation
(LOOCV) has been widely used for classification of AD using SVM. The details of the
cross-validation methods are shown in Fig. .

In the following subsection, we present a comprehensive survey on the usage of

different variants of SVM for AD.

31



5-fold (10%)

NA (15%)

NA (8%)
Multiple kernel (3%)

Linear (43%) Polynomial (7%) LOOCV (43%) k-fold (8%)

RBF (32%) 10-fold (30%)

(a) (b)

Figure 2.4: (a) Plot showing usage of different types of kernels and (b) cross validation
methods used with SVM for AD. NA means information about kernel is not available,
and k = 2,3,4,9 and 20.

2.4.5 Variants of SVM used for AD

Many variants of SVM are developed for different types of classification problems.
In the formulation of SVM, there is no spatial information of the brain image in
the optimization problem ,. To provide spatial information, contiguous SVM
(CSVM) is used to classify SPECT images of AD and control subjects [139}[141].
CSVM uses the information about voxel connectivity to give a more robust classifier.
For reducing the computation cost, Zhang et al. used twin support vector machine
(TWSVM) for classification of CN vs AD, while structural least squares twin support
vector machine (S-LSTSVM) is used in [143]. For optimized feature selection, Beheshti
et al. used genetic algorithm (GA) with linear SVM for classification of CN vs
AD and pMCI vs sMCI.

For early diagnosis of AD, Zhu et al. used a temporally structured SVM
(T'S-SVM) for classification of longitudinal MR images of MCI converters and non-
converters. Lu et al. proposed a random forest robust SVM (RF-RSVM) for
classification of CN vs MCI using FDG-PET images. TWSVM is used for classification
of CN vs AD using dual-tree complex wavelet transform (DTCWT), LDA and
PCA features. Sun et al. introduced spatial anatomical regularization with SVM
for classification of CN, AD, sMCI, and pMCI. To optimize the SVM parameters, Zeng
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et al. [147] proposed a switching delayed particle swarm optimization SVM (SDPSO-
SVM). In order to reduce the complexity of SVM, Bi et al. [148] used random support
vector machine clusters for classification of CN vs AD using rs-fMRI. In the random
SVM approach, samples and features randomly are chosen randomly from the dataset
and trained accordingly. It helps to reduce the size of training data leading to less
computational complexity. Some researcher also applied ensemble based SVM for
better prediction accuracy in AD classification [108},149,/150].

The usage of different cross validation strategies is shown in Fig. . LOOCV
comes out to be the frequently used method. This may be attributed to small sample

size in the works shown in Table 211

2.4.6 Observations

In the classification of dementia related data, there are various categories or targets.
One classification target is MCI vs AD, which is one of the most important targets for
early diagnosis of AD. It can be observed in Fig. that most of the work has been
done in classification of CN vs AD and CN vs MCI. Moreover, classifications like MCI
vs AD are very less. This needs to be addressed in future research for early detection
of AD. Other categories like MClIc vs MClnc are also addressed in very few papers.
Therefore, researchers can focus on these particular problems for early detection of
dementia caused by Alzheimer’s disease.

The usage of different types of SVM in our survey is shown in Fig. 2.5(a)] One
can notice that among the different variants of SVM, 83% of the papers used standard
SVM. This shows the popularity and robustness of SVM in the classification of MRI
data [154]. In 3% of the papers, TWSVM is used [142,(145|, whereas LSTSVM |[143]
is used in only 1 paper. The CSVM algorithm is used in [139}|141].

Some papers used ensemble of SVMs to classify Alzheimer’s data [108,/149]. In
AD diagnosis, an important focus point for research is the development of individual
specific diagnosis models. For this, multimodal clinical data can be utilized as per
the population. Moreover, novel learning techniques need to be developed for small

datasets, since in real world scenarios the sample size from some population may not
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Figure 2.5: Plot showing usage of (a) different variants of SVM and (b) different target
groups for AD.

be large for training of the model. Further, the data collection for Alzheimer’s includes
noise from various sources. Therefore, noise insensitive techniques must be applied for

AD classification.

In the following section, we discuss a classification algorithm using projection based

approach, and an unsupervised SVM based algorithm for clustering problems.
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2.5 Projection based twin SVM and clustering al-

gorithms

A novel approach based on projection axes rather than classifying hyperplanes is
proposed as projection twin support vector machine [155], and extended for regression
problems in [156}(157]. To improve the computation cost, Shao et al. [158] proposed an
efficient least squares projection twin support vector machine (LSPTSVM). LSPTSVM
has been used for various classification problems [159,(160]. However, the algorithms
discussed in the previous sections are supervised learning algorithms, needing infor-

mation about true labels of data samples in the training process.

For unsupervised learning i.e., where the labels of training data are unknown, al-
gorithms like k-means clustering [161], and fuzzy c-means (FCM) [162] clustering are
proposed in the past. In FCM, clustering is performed based on distance from cluster
centres with fuzzy membership value for each cluster. However, plane based clustering
algorithms are also proposed, such as the k-plane clustering (kPC) algorithm [163].
In kPC, a plane is constructed for each cluster by solving an eigenvalue problem.
Some other plane based clustering algorithms are proposed in [164,/165]. In 2015,
Wang et al. [166] proposed an unsupervised algorithm termed as twin support vector
clustering (TWSVC), improving the proximal plane clustering algorithm [164]. To in-
clude regularization in TWSVC, a twin bounded support vector clustering (TBSVC)
is proposed [167], leading to improved generalization performance. In order to reduce
the computation cost of TWSVC, least squares twin support vector clustering (LST-
WSVC) is formulated in [168]. In LSTWSVC, a set of linear equations is solved instead
of QPPs. A fuzzy least squares twin support vector clustering (FLSTWSVC) [168] is

also proposed by including fuzzy membership values for the data points.

In the next subsections, we briefly discuss the formulation of a classification algo-

rithm i.e., LSPTSVM [158], and a clustering algorithm i.e., TWSVC [166].

39



2.5.1 Least squares projection twin support vector machine

(LSPTSVM)

Linear LSPTSVM [158] generates two non-parallel hyperplanes based on the fol-

lowing optimization problems,

. 1 T C1 2 2 C3 2
H11u11n §w1 Slwl + 5 ;(&;) + 5”101“

1 «—
s.t. wiprf) — w{a Zxél) +¢,=1, ¢=0,1,...,mq, (2.38)
p=1
min Sl Sy + 2 3 () + 2 s
e
1 &
st. — | wlz) — I — @ 4+, = 1, p=0,1,...,m, 2.39
( 2%p 2 Mo ; q 77p 1 ( )
where ¢;,7 = 1, ..., 4 are positive parameters, and &, i) are slack variables. The matrices

S; and Sy are written as

T
my 1 mi 1 mq
_ 1 1 1 1
s=St(- B (- LS) . e
p=1 p=1 p=1
ma 1 ma 1 ma T
_ 2 2 2 2
g=1 q=1 g=1

Now, QPP ([2.38)) can be written using matrices of data points in the objective
function |158],

1 T C1 1 T 2 C3 9
L =—w; Siwy + —H—ngl + —ege; Xjwy + 62” + —||w %, (2.42)
2 2 mq 2

where eq, e5 are vectors of ones of appropriate dimensions.
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Setting the gradient of Eq. (2.42) w.r.t. w; equal to 0 and solving, we get

-1
1 T 1
w1 = (& + ( - XQ + —626{X1> ( - X2 + —626{){1) + C—SI>
mq &1

&1 ma

1 T
(XQ — —626{X1> €2, (243)
my

where [ is identity matrix of appropriate dimension.

Similarly, ws is calculated as

—1
S 1 T 1
wy = — (-2 + <X1 - EeleQTXQ) <X1 - EeleQTXQ) n %1>

C2 2 2 C2

1 T
<X1 - —eleg)(z) . (2.44)
mo

For a testing sample x;, the class is determined as follows,

1 =
_ : T, T+ (4)
class (x¢) = arg min \w; 2 — w; - ;xk : (2.45)

2.5.2 Twin support vector clustering (TWSVC)

TWSVC [166] generates non-parallel clustering hyperplanes by solving the follow-

ing optimization problem:

1 . . ,
Lmin I e e
w{“,b{*l,gg“‘l 2
st DKl 4 b)) = e -4, €M 20,
i=0,1,...,N, (2.46)

where ¢; > 0 is the penalty parameter, T(.) is the Taylor series expansion, and {f 1

is the slack variable, 7 = 0,1,..., and e is vector of ones of appropriate dimension.

By using the subgradient [169] of |X;w! + ble| w.r.t. w and b} and the Taylor

)

series expansion [166}168], we get
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1 . , .
. Loy gt VST T ej+1
wq‘+1r£~l+rll g1 2||szi +b; eill” + cie &

s Us 1 Sq

7

s.t. diag(sign(X;w! + ble)) (X! T + 0t e) > e — &7 &7 > 0. (2.47)
The dual problem of QPP (2.46) is written as

1
min iATB(ATA)‘lBT/\ —efA

st. 0 < A <cpe, (2.48)

where B = diag(sign(X;w] + ble))[X; e],A = [X; e], and A is the vector of
Lagrange multipliers.
The hyperplane for each cluster is found using the following equation:

[w/™ T = (ATA)TBTN, i=0,1,...,N. (2.49)

7

2.6 Research methodology

In the section, we present the details about the datasets, experimental setup, and

various performance metrics and other formulae used in this thesis.

2.6.1 Datasets

The real world datasets are downloaded from UCI [170], and KEEL repository
[171]. For Alzheimer’s disease, all MRI images used in this work were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
ADNI was launched in 2003 as a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The main goal of ADNI is to find out the effec-
tiveness of neuroimaging techniques like MRI, positron emission tomography (PET),

other biological markers, and clinical neuropsychological tests to estimate the onset of
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Alzheimer’s disease from the state of mild cognitive impairment. For more informa-

tion, visit www.adni-info.org.

2.6.2 Experimental setup

All the experiments are performed on a PC running on 64 bit Windows 10 operating
system, 3.60 GHz Intel® core™ i7-7700 processor, 16 GB of RAM under MATLAB
R2008b environment. 5-fold cross validation is used for parameter selection in all the
methods. MOSEK optimization toolbox (http://www.mosek.com) is used to solve
the QPPs. For non-linear case, radial basis function (RBF) or Gaussian kernel is used

in all the algorithms, which is defined as

-1
(o) = ean( 3 5lle o). (2.50)

where x and y are vectors, and u is a scalar parameter.

The imbalance ratio (I R) is calculated as

_ Number of majority class samples

IR (2.51)

~ Number of minority class samples’

In the works presented in this thesis, we use the terms positive and negative class

for minority and majority class respectively.

2.6.3 Performance metrics

The different performance metrics used in this thesis are as follows:

TP+FP

TP+TN+FP+FN’
FP=False positive, and FN=False negative.

(). Accuracy = where TP=True positive, TN=True negative,

(ii). Sensitivit P
. 1N, 1 e —
ens1tivity TPLFP
TN
(111). SpemﬁClty = m
. 2(TP)
. F1 =
(iv) score >(TP)+FPLFN

43


www.adni-info.org
http://www.mosek.com

(v). For class imbalanced data, the accuracy is calculated using area under receiver

operating characteristics (ROC) curve i.e. AUC [55] is used which is defined as:

1 Tprae_FPrae
AUC = =+ . te (2.52)

where T'P, .. is the true positive classification of minority (positive) class, and

F P, 4. is the false positive classification of majority (negative) class data points.

(vi). The clustering accuracy for | data samples with y labels is measured using the

following similarity matrix L € R™! [166],

17 if Yi = Yj
L(i,j) =
0, otherwise.

Now, let L,, is similarity matrix of predicted cluster labels, and L, is the similar-

ity matrix of actual labels. Then, the accuracy is defined as the rand index [166],

no+n1—l

s X 100%, (2.53)

Accuracy =

where ng is the number of zeros in L, and L,, and n; is number of ones in L,

and L.

2.6.4 Statistical tests

To check the statistical significance of the proposed algorithms in this thesis, we
used Friedman test with the corresponding post-hoc test [172] using the average ranks
of the algorithms based on accuracy of the datasets. First, we assume that all the
methods are equivalent under null hypothesis. The Friedman statistic is computed

using the y2 value as follows:

k

12N SR k(k+ 1)

k(k+1)

2 = 2 2.54
XF 1 4 ? ( )

=1
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where R; is the average rank on N datasets for i’ method, k denotes total number of
methods.

Then, the Fr value is calculated using the following formula:

(N - D(x%)
Fr = . 2.55
PTNX(k—1) =3 (2:55)
The Fp is distributed as the F-distribution with (k — 1, (N — 1)(k — 1)) degrees
of freedom. For significant difference between the methods at « level of significance,
the value of Fr must be more than the critical value.
To check the pairwise difference between the proposed and existing algorithms, we

use the Nemenyi posthoc test. The critical difference is calculated using the following:

k(k+1)

CD =t, ,
6N

(2.56)

where ¢, is the critical value for « level of significance, and CD is the critical differ-
ence for k algorithms and N datasets. For significant pairwise difference between the
methods at significance level «, the difference in the average ranks of the methods
should be atleast the CD.

This chapter presented a review on the works related to algorithms proposed in this
thesis. The following chapter presents two novel algorithms to deal with the problem

of class imbalanced data with SVM.
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Chapter 3

Twin support vector machine for class

imbalance learning

In this chapter, we present two efficient twin SVM based algorithms to reduce
the effect of class imbalance on the classification of data. Section presents the
robust fuzzy least squares twin support vector machine for class imbalance learning
(RFLSTSVM-CIL) algorithmE]. The RFLSTSVM-CIL algorithm utilizes a novel fuzzy

membership function proposed in this work.

To include prior information about data distribution in the classification of imbal-
anced data, the idea of universum is incorporated in the proposed reduced universum
twin support vector machine for class imbalance learning (RUTSVM—CIL)H As per
our survey, the concept of universum is used for the first time to solve class imbalance
problem. Section discusses the RUTSVM-CIL algorithm. First, we present the
RFLSTSVM-CIL algorithm in the following section.

'B. Richhariya, M. Tanveer. A robust fuzzy least squares twin support vector machine for class
imbalance learning. Applied Soft Computing, Elsevier, 71: 418-432, 2018, DOI: https://doi.org/
10.1016/j.aso0c.2018.07.003.

[SCI Indexed Impact Factor: 6.725]

2B. Richhariya, M. Tanveer. A reduced universum twin support vector machine for class
imbalance learning. Pattern Recognition, Elsevier, 102:107150, 2020, DOI: https://doi.org/10.
1016/ .patcog.2019.107150.

[SCI Indexed Impact Factor: 7.740]
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3.1 A robust fuzzy least squares twin support

vector machine for class imbalance learning

(RFLSTSVM-CIL)

In most of the applications on classification, there is imbalance in the number of
samples of the classes, which leads to incorrect classification of the data points of
the minority class. Further, while dealing with imbalanced data, noise poses a major
challenge in various applications. To resolve these problems, in this work we propose
a robust fuzzy least squares twin support vector machine for class imbalance learn-
ing, termed as RFLSTSVM-CIL using 2-norm of the slack variables which makes the
optimization problem strongly convex. In order to reduce the effect of outliers, we
propose a novel fuzzy membership function specifically for class imbalance problems.
Our proposed function gives appropriate weights to the datasets and also incorporates
the knowledge about the imbalance ratio of data. In our proposed model, a pair of sys-
tem of linear equations is solved instead of solving a quadratic programming problem
(QPP), which makes our model efficient in terms of computation time. To check the
performance of our proposed approach, several numerical experiments are performed
on synthetic and real world benchmark datasets. The proposed RFLSTSVM-CIL
model has shown better generalization performance in comparison to existing meth-

ods in terms of AUC and training time.

To give appropriate membership to the majority class, we propose a new fuzzy
membership function for imbalance datasets. In the previous work on fuzzy mem-
bership for imbalance data, the range of fuzzy membership is fixed for datasets with
different imbalance ratios. To overcome this drawback, our function uses information
about the imbalance ratio (/R) and gives appropriate range of the fuzzy membership
to different datasets. Moreover, we present a novel 2-norm based robust fuzzy least
squares twin support vector machine for class imbalance learning (RFLSTSVM-CIL).
To justify the effectiveness of our proposed approach, several numerical experiments

are performed on synthetic and real world benchmark datasets.
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3.1.1 Proposed fuzzy membership function

There are some drawbacks in the existing fuzzy membership functions used with
SVM. For example, the centroid based fuzzy membership function only gives member-
ship values on the basis of the distance from its centroid, but does not take into account
whether a data point is near to the region of its own class or the other. Similarly, in
other fuzzy functions used for class imbalance problems [55], this idea of proximity to
its class centroid with information about the other class is not considered. Also, the
information about the extent of imbalance in the data is not utilised in the previous
works. Therefore, the proposed approach includes the information about the imbal-
ance ratio (I R) which control the range of the membership values. Motivated by the
works of [173]/174], we propose a new fuzzy membership function for class imbalance

problem.

For negative class, the fuzzy membership function is as follows:

1 ) N ( IR ) (exp(co((dl —dy)/d — dy/r3)) — exp( — 200))’

mem = (1 +IR 1+ IR exp(cy) — exp(—2c)

(3.1)

where IR is the imbalance ratio, d; is Euclidean distance from centroid of positive
class, and d, is Euclidean distance from centroid of negative class, d is the distance
between the centroid of the binary classes, 5 is the maximum distance of the data
points of negative class from its centroid, and ¢y decides the scale of the exponential
function. The membership is assigned as 1 to all the data points of the positive class
which is having the lesser number of samples [55].

The proposed fuzzy membership function is based on the following aspects of the

data points.

(i). Proximity of the majority class data point to the centroid of the other classes.

(ii). Proximity of the majority class data points to their own class.
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Properties of the proposed function:

(i).

(ii).

(iv).

(vi).

. The membership value of data point is equal to <

The membership value of the negative class ranges from (ﬁ) to 1 based on
the position of the data points w.r.t. centroids of the two classes. The range of

the membership value depends on the imbalance ratio (I R).

. The membership value for the negative data point based on its proximity to the

positive class depends on the variable (d; — dy)/d in the membership function.

The penalty for the outliers which are proximal to the negative class is taken

care by dy /3.
The membership value is equal to 1 when dy = 0 which makes d; = d .

1 . .
m) when it is closest to
the positive class centroid i.e., d; = 0 resulting in d = ry, and farthest from the

centroid of the negative class i.e., dy = ry.

One can observe from Fig. that if the outlier data point of the majority
class (negative class) is in the positive class region, then the penalty on the
membership value is higher as compared to when it is on its own side i.e. negative

class.

In class imbalance problems, the objective is to classify the data points of the

minority class more effectively. For achieving this property in an effective manner, the

proposed fuzzy membership function gives the membership according to the following

cases, as illustrated in Fig. for an artificial binary dataset:

Case 1 Negative data point closer to the centroid of its own class: High member-

ship.

Case 2 Negative data point away from its own centroid but relatively closer to its

own centroid as compared to the other class: Low membership.

Case 3 Negative data point away from its own centroid and relatively closer to the

positive class centroid: Very low membership.
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Figure 3.1: Plot of artificial dataset (IR = 3.57) showing membership values of the
data points based on the proposed membership function for ¢y = 0.5.

3.1.2 Linear RFLSTSVM-CIL

In the proposed approach, the 2-norm of the weighted slack vector is used for
giving fuzzy membership values to data points in the constraints of the optimization

problem. The optimization problems of linear RFLSTSVM-CIL are written as

: 1 c
min || Xiwn +eabi |+ 282

w1, b1,§

s.t. — (X2w1 + 62b1) —f-f = €9, (32)

: 1 c
min || Xawz + eaba|[* + | Sl

waz, b2, n

s.t. (Xl’wg + 6162) -+ n=e, (33)
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where X and X5 are matrices of class 1 (minority) and class 2 (majority) containing
p and ¢ number of samples respectively. S; is identity matrix of dimension p, and
S, is diagonal matrix of dimension ¢ containing the fuzzy membership values at the
diagonal places. The slack variables are represented by &, n with ¢;,co > 0 as the

penalty parameters and eq, e; are the vectors of ones of appropriate dimension.

Using the equality constraints of QPP (3.2) in its objective function, the QPP is

written as

o1 c
min o[ Xiwy +eaby||* 4+ 2 [ S2(Xaws + eaby + ea)] | (3.4)

wi, b1

Taking the gradient of QPP ({3.4)) with respect to w; and b; and equating to 0, we

get

XlT(Xlwl + elbl) —+ CI(SQXQ)T(SQ(Xle + €2b1 -+ 62)) = 0, (35)

6{(X1w1 + €1b1) + Cl(Sgeg)T(SQ(ngl + €2b1 + 62)) =0. (36)

Combining equations (3.5)) and (3.6]), and solving [18], we get,

w1 T L r - T
=—\1"T + C_R R T 5262, (37)
by 1

where R = [X; ey}, and T' = [S2 Xy Saes].

Similarly, the other hyperplane is computed by the following,

Wa 1 !
= <RTR + —TTT> RTSey, (3.8)

by 2

where R = [Sle 5161], and T = [Xg 62].

For reducing the computation time of finding the inverse, Sherman-Morrison-

Woodbury (SMW) formula [40] is used for the equations (3.7) and (3.8]) and inverses
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of smaller dimensions are solved. For a new data point x, the class assignment is done
using Eq. .

If we give the membership values for both the classes according to our fuzzy mem-
bership function then our proposed RFLSTSVM-CIL can also be applied to datasets
with no class imbalance. Further, if the membership values of both the classes are set
to 1 then our proposed RFLSTSVM-CIL reduces to the standard LSTSVM. So, we
can say that LSTSVM is a special case of RFLSTSVM-CIL.

3.1.3 Non-linear RFLSTSVM-CIL

The formulation of the non-linear RFLSTSVM-CIL is written as

) 1 c
min §HK(X1, DT)wy + e ||” + EleszHQ

wi,b1,§

s.t. — (K(XQ, DT)w1 + €2b1) —f-g = €9, (39)

. 1 &
min [ K(Xy, D" )ws + eaba* + 211

waz, bz, n

s.t. (K(Xl, DT)UJQ + €1b1) + n=e, (310)

where matrix D = [XT XI|T, K(X;, DT), K(X,, DT) are the kernel matrices of class
1 and 2 respectively.

Using the constraints of (3.9)) in its objective function, the QPP is written as

. 1 c
min §|]K(X1, DTYwy + eby||* + Elusz(f((xg, DTYwy + esby + €2)|?. (3.11)

w1, b1

Taking the gradient of (3.11])) with respect to w; and b; and equating to 0, we get

K(X1, DN (K (X1, DT)w; + e1by)

+ Cl(SQK(XQ, DT))T(SQ(K(XQ, DT)’LUl + €2b1 + 62)) = O, (312)
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el (K (X1, DT)wy + e1by) + c1(Sae2)" (So(K(Xa, DM )wy + eaby +€3)) = 0. (3.13)

Similarly as in the linear case, one can write in the following form,

w1 T P N
by “
where R = [K (X, D) e1] and T = [Sy K (X3, DT) Saes).

Similarly, for the other hyperplane the parameters are computed as

W2 T L) pr
by €2
where R = [S| K (X, DT) Sie;] and T = [K(Xo, DT) ey).

For reducing the computation time of finding the inverse, SMW formula [40] is used
for the equations (3.14) and (3.15]) and inverses of smaller dimensions are solved. The
class of a new data sample z € R" is predicted based on the perpendicular distances
from the hyperplanes K (27, DT)w; + by and K(x7, DT)wy + by and the class label of

the nearer hyperplane is assigned to it.

3.1.4 Computational complexity

Our proposed approach of RFLSTSVM-CIL incorporates the 2-norm of the slack
variable with fuzzy membership values in the formulation of LSTSVM. Similar to
LSTSVM, our proposed RFLSTSVM-CIL solves two systems of linear equations which
involve the inversion of matrices.

In the formulation of LSTSVM, the calculation of two inverses of size (m + 1) is
required where m = p+ ¢, p and ¢ are number of data points of positive and negative
class. So, reduce the computation of the inverses the Sherman—Morrison—Woodbury
(SMW) formula [40] is used, where three inverse of smaller sizes are solved. In case
of our proposed algorithm the size of the invertible matrices are same as in LSTSVM,

so there is no computation overhead in terms of solving the optimization problem as
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compared to LSTSVM. Further, in comparison to SVM and TWSVM our proposed
RFLSTSVM-CIL is computationally efficient as it is calculating the solution of linear
equations as in LSTSVM.

The additional computation involved in our proposed method is the calculation of
the fuzzy membership function. In comparison to the existing fuzzy based approaches,
our fuzzy membership function is efficient in terms of computation cost. The tradi-
tional fuzzy based functions have the time complexity of O(m) . This is because these
functions calculate the fuzzy membership of all the data points based on measures
like distance from centroid with linear and exponential decay functions. Our proposed
fuzzy based function has the time complexity as O(q) where ¢ < m and ¢ is the num-
ber of samples of the negative class. This is due to the fact that our proposed function
calculates fuzzy values only for the majority class and assigns the membership value

as 1 for the minority class.

3.1.5 Experimental results

The performance of the proposed methods is compared with several existing al-
gorithms on various synthetic and real world imbalanced datasets. EFSVM [55],
TWSVM [12], FTWSVM,;, & FTWSVM,,, [42,]175,176], Universum Twin Support
Vector Machine (UTSVM) [27], and LSTSVM [18] are compared with the proposed
method RFLSTSVM-CIL in terms of accuracy and training time. UTSVM incor-
porates the notion of prior information about the data. So we have compared our
proposed RFLSTSVM-CIL with UTSVM in case of imbalanced data. To show the
effectiveness of our proposed fuzzy membership function, we show the comparison of
our proposed RFLSTSVM-CIL with the novel fuzzy function to the proposed algo-
rithm using existing fuzzy functions for assigning the weights. The centroid based
fuzzy membership functions with linear (FLSTSVM-CILy;,) and exponential decay
(FLSTSVM-CIL,,,) are also the proposed algorithms using the existing fuzzy mem-
bership functions.

The AUC is calculated as mean AUC with standard deviation for five iterations

on the testing data. In each iteration, one part is used for testing and the remaining
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data for training. The time is calculated in seconds and averaged over five itera-
tions. The value of the penalty parameter is taken as ¢ = ¢; = ¢ = ¢, from the
set {107°,107%, ..., 10°}, where ¢, is used in UTSVM [27] and p is taken from the
set {272,274 ...,25} for all the cases. For RFLSTSVM-CIL, ¢y is chosen from the set
{0.5,1,1.5,2,2.5}. For EFSVM [55], 3 is considered as 0.05, [ is taken as 10, and the
value of k is chosen from {3,5,7,9,11}. For FTWSVM,;,, ¢ is taken as 0.01 and for
FTWSVM,,,, B is chosen from the set {0.1,0.3,0.5,0.7,1}. In UTSVM, e is taken
from the set {0.1,0.3,0.5,0.6}, number of universum samples i.e. u is taken as 10%
of the training data, and random averaging scheme [27] is used for the generation of

universum. The AUC is calculated in terms of percentage for all the algorithms.

3.1.5.1 Synthetic datasets

To analyse the performance of our proposed method, we performed experiments
on different synthetic datasets. We used 6 synthetic datasets to test the performance
of our proposed approach. The datasets containing noise are taken from KEEL imbal-
anced dataset repository [171,[177] having 2 classes where the data points are randomly
and uniformly distributed in the two-dimensional space (both attributes are real val-
ued). The noisy datasets are namely 04clover5z-600-5-60-BI, 03subcl5-600-5-30-BI,
03subcl5-600-5-50-BI and 03subcl5-600-5-60-BI with the disturbance ratio as 60%,
30%, 50% and 60% respectively [177].

We also performed experiments on Crossplane (XOR) dataset [178] generated with
different number of samples and imbalance ratios as shown in Table [3.1] For the gen-
eration of the datasets, randomized values of data points are used in the equation of
a line i.e., y = kx + b to generate the dataset. The parameters for slope and intercept
i.e., k and b are chosen as 0.7 and 0.1 for negative class and —0.6 and 1 for positive
class. Fig. shows the distribution of data points in the Crossplane dataset. AUC
values and training time are shown in Table for RBF kernel with the correspond-
ing average ranks, for the performance comparison of the proposed RFLSTSVM-CIL
with EFSVM, TWSVM, FTWSVM;,,, FTWSVM,,,,, UTSVM, LSTSVM, FLSTSVM-
CILyj;, and FLSTSVM-CIL,,, on the synthetic datasets.
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Table 3.1: Imbalance ratio (IR) of synthetic imbalance datasets for all the samples
and for the training data.

Dataset Imbalance ratio Imbalance ratio
(Train size, Test size) (All samples) (Training samples)

04clover5z-600-5-60-BI

(200x2, 400x2) g 5.0
03subcl5-600-5-30-BI

(200%2, 400%2) g 471
03subcl5-600-5-50-BI

(200x2, 400x2) g 441
03subcl5-600-5-60-BI

(200%2, 400%2) g 206

Crossplane_400 7 6

(119x2, 281x2)

Crossplane_450 3 703

(134x2, 316x2)

o Positive class
¢ Negative class

0.8 a
. [m )
0.7} B @Qﬁgmgf
0.5 4949 ©
0.4 dgygig
0.3 ﬁ‘@ 1
0.2f @9@ 1
L@

0.1y 02 0.4 06 0.8 1

X,

0.8t

Figure 3.2: Plot showing Crossplane dataset containing 120 samples with imbalance
ratio, IR = 5.
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3.1.5.2 Real world datasets

Numerical experiments are performed on several real world imbalanced datasets for
binary classification. The class imbalance ratios of the various real world datasets are
shown in Table 3.3 The performance of the proposed RFLSTSVM-CIL is compared
with existing algorithms in terms of AUC values and training time in Table [3.4]

Table 3.3: Imbalance ratio (I R) of real world datasets for all the samples and for the
training data.

Dataset Imbalance ratio Imbalance ratio Dataset Imbalance ratio Imbalance ratio
(Train size, Test size) (All samples) (Training samples) (Train size, Test size) (All samples) (Training samples)
Cmec Yeast-0-5-6-7-9_vs_4 .
(700%9, 773x9) 0-75 1.46 (250%8, 278x8) 9-35 8.26
Ecoli-0-1_vs_2-3-5 Ecoli-0-1-4-6_vs_5 .
(120%7, 124%7) 9-17 9 (150x6, 130x6) 13 911
Ecoli-0-1.vs_5 Ecoli2
(120x6, 120x6) 1 16.14 (1507, 186x7) 8.6 689
Ecoli-0-1-4-7_vs_5-6 Vowel
(150x6, 182x6) 12.28 10.54 (500% 10, 488x10) 9.98 987
Ecoli-0-2-3-4_vs_5 Ecoli3
(1007, 102x7) 91 069 (1507, 186x7) 8.6 0-89
Ecoli-0-2-6-7_vs_3-5 Abalone9-18 .
(110x7, 114x7) 918 746 (3507, 381x7) 164 1844
Ecoli-0-3-4-6_vs_5 Vehicle 1
C
(1007, 105x7) 925 8.09 (40018, 446 18) 29 33
Ecoli-0-4-6_vs_5 . Vehicle2
(1006, 1036) 915 115 (400 18, 446x18) 288 248
Ecoli-0-6-7_vs_3-5 Pima-Indians
(110x7, 112x7) 9.09 12.75 (300x8, 468x8) 187 163
Ecoli-0-6-7_vs_5 Yeast3
(1106, 110x6) 10 9 (5008, 984x8) 8.1 72
Ecoli4 . . Yeast1vsT . ,
(150x7, 186%7) 158 1775 (200x8, 259%8) 143 15.67
Glass-0-4_vs_5
. Yeast2vs8
(509, 42x9) 9.22 6.14 (2508, 233x8) 23.15 19.83
Glass2 Ecoli0137vs26 .
(100x9, 114x9) 1159 1329 (180x7, 131x7) 4.76 463
Ripley Australian-Credit .
(6002, 630x2) L 108 (300 14, 300 14) 125 L3
Yeast-0-2-5-6_vs_3-7-8-9 Monk2
(5008, 504x8) 914 115 (3007, 301x7) 192 2.06
Yeast-0-3-5-9_vs_7-8 912 115

(250%8, 256%8)
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One can notice from Table that our proposed approach is having the least rank
with less training time since our approach solves a pair of system of linear equations.
To check the statistical significance of our proposed RFLSTSVM-CIL, we use Fried-
man test with the corresponding post-hoc test [172] for the 9 algorithms using 31
binary class datasets. Here, we assume that all the methods are equivalent under null
hypothesis. The Friedman statistic is computed for the AUC values from Table
using Eq. . The x? in this case is 61.4887. Then, the Fr value is calculated
as 9.8903. Here, the F-distribution has (9 —1,(9 — 1)(31 — 1)) = (8,240) degrees of
freedom. Thus, for the significance level at o = 0.05, the critical value for F(8,240)
is 1.9771. Since Fr = 6.8377 > 2.1595, we reject the null hypothesis.

Now, to check the pairwise difference between the proposed and existing algo-
rithms, we use the Nemenyi posthoc test. The critical difference is calculated using
the formula in Eq. [2.56] For significant pairwise difference between the methods at
significance level of o = 0.10, the average ranks of the methods shown in Table
should differ by atleast 2.855 99+ _ 1.986. The pairwise difference between the

6x31
methods is shown in Table [3.50 The proposed RUTSVM-CIL is significantly better

than most of the existing algorithms.

Table 3.5: Pairwise significant difference of proposed RFLSTSVM-CIL with existing
algorithms.

Significance EFSVM | TWSVM | FTWSVMy;, | FTWSVM,,, | UTSVM | LSTSVM | FLSTSVM-CIL;;, | FLSTSVM-CIL,,,

Proposed
RFLSTSVM-CIL Yes Yes Yes Yes Yes No No Yes

3.1.6 Discussion

The proposed RFLSTSVM-CIL uses the 2-norm of the slack variables with the
fuzzy membership values as shown in Egs. and . This makes the opti-
mization problem strongly convex and gives globally optimal solution. For dealing
with varying imbalance conditions, the novel fuzzy membership gives different ranges
to the fuzzy membership values by using the information about the imbalance ratio

(IR) of the data. The imbalance ratios of the synthetic and real datasets are shown
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in Table and Table respectively. By incorporating the imbalance ratio (I R)
in fuzzy function proper range is set for the fuzzy membership values on different
datasets. Moreover, the information about the proximity of the data points to two
classes is used in the proposed function which leads to better fuzzy membership for

class imbalance data.

For the experiments on synthetic datasets, one can observe in Table that the
proposed RFLSTSVM-CIL is not performing better for all the synthetic datasets.
However, RFLSTSVM-CIL is having the least ranks in most of the datasets, which
justifies its robustness for different sets of data. For noisy data, our proposed method is
having ranks as 1, 2, 3 and 2 out of 9 methods for 04clover5z-600-5-60-BI, 03subcl5-600-
5-30-BI, 03subcl5-600-5-50-BI and 03subcl5-600-5-60-BI datasets respectively. Also,
the training time of our proposed approach is lesser as compared to the existing algo-

rithms in Table [3.21

In real world datasets, our proposed RFLSTSVM-CIL is having the least rank
with less training time in Table [3.4l It is observable that the proposed algorithm
with the existing fuzzy functions i.e., FLSTSVM-CIL;;,, and FLSTSVM-CIL,,, also
perform better in comparison to the traditional approaches. The average ranks
of FLSTSVM-CILy;, and FLSTSVM-CIL,,, are lesser in comparison to EFSVM,
TWSVM, FTWSVM;;,, FTWSVM,,,, and UTSVM in Table and Table 3.4] In
comparison to the existing algorithms, our proposed RFLSTSVM-CIL takes more
computation time in comparison to LSTSVM. This is due to the additional computa-
tion for calculating the fuzzy membership values in the proposed approach.

The performance of the proposed method is compared with LSTSVM for showing
the effect of proposed fuzzy membership in Fig. for Monk2, Yeast-0-2-5-6-vs_3-7-
8-9, Abalone9-18 and Vowel datasets. The figures show the distance of the data points
with the two hyperplanes. It is observable from Figs. that the data points of the
positive class are nearer to the positive class hyperplane and away from the negative
class hyperplane. This justifies the fact the proposed fuzzy membership function is

efficient in calculating the proper fuzzy membership value for imbalance datasets.

The insensitivity analysis of the proposed RFLSTSVM-CIL to the parameters c
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and ¢y is shown in Fig. for Ecoli-0-3-4-6_vs_5, Ecoli-0-4-6_vs_5, Yeast2vs8 and
Monk?2 datasets. It can be observed that RFLSTSVM-CIL performs better on lesser
values of ¢ as well as c¢g.

In the following section, we present a different approach for solving class imbalance.
We propose a novel twin SVM algorithm by utilizing universum data and reduced
kernel for removing the imbalance between the classes. This leads to an efficient as

well as better model for classifying class imbalanced data.

3.2 A reduced universum twin support vector ma-
chine for class imbalance learning (RUTSVM-
CIL)

The formulation of UTSVM [27] involves the solution of two small QPPs as com-
pared to USVM [10] where one large QPP is solved. In universum based SVM algo-
rithms, the addition of the universum data points increases the computational com-
plexity of the algorithm [10}20,27]. Also, universum based algorithms like USVM and
UTSVM suffer from the problem of class imbalance. To remove these drawbacks and
to give prior information about data, we propose a reduced universum twin support
vector machine for class imbalance learning (RUTSVM-CIL). We utilize the concepts
of undersampling and oversampling to formulate an algorithm specifically for class
imbalance. Moreover, we incorporate information about data distribution in the for-
mulation from majority class data points. Further, the training time is reduced by
constructing the rectangular kernel matrix from the undersampled dataset in proposed
RUTSVM-CIL.

In RUTSVM-CIL, the data points of majority (negative) class are reduced by using
random undersampling approach [179H181] as shown in Fig. [3.5(b)] This leads to a
balance condition for construction of the hyperplanes as well as reduces the training
time. The reduced kernel also utilizes the widely used undersampling approach for

imbalanced data in the kernel matrix. In the proposed RUTSVM-CIL, the universum
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data points are selected using the random averaging scheme [20,27].
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Figure 3.5: Balancing of class imbalanced data with universum in proposed RUTSVM-
CIL. The distributions of data points in the optimization problem of minority class
and majority class hyperplanes in proposed RUTSVM-CIL are shown in (b) and (c)
respectively.

3.2.1 Universum for class imbalance

In the case of class imbalance, most of the information about data distribution is
contained in the majority class. So, we increase the number of universum data points
in the case of the majority class hyperplane to give prior information of the data. In
Fig. 3.5(c), we treat universum data points as belonging to minority (positive) class.
This is in contrast to UTSVM where universum is treated as not belonging to any of
the binary classes, and do not solve the class imbalance problem. We add additional
constraints of universum points having size equal to difference in the number of data
points of the two classes. This gives constraints in the construction of the majority
class hyperplane to keep universum data points at a distance of (1 — €) from the
majority class. It also prevents the majority class hyperplane to lie closer to the
minority class data points, while giving prior information about the data. Thus, the
biasing of the classifier towards the majority class is reduced, and the generalization
performance is improved using this scheme.

In case of minority class i.e., positive class, random undersampling of the negative
class is used to create the balance situation for the construction of the positive class

hyperplane. The same reduced kernel matrix is used in the construction of both the
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hyperplanes. The formulation of proposed RUTSVM-CIL is as follows:

Consider the matrices X; and X, representing the data points of ‘class 1’ and
‘class 27, having dimension r X n and s x n respectively. X is the randomly chosen
reduced data samples of the negative class of size r x n. The universum data points
are contained in the matrix U of size d x n, where d is the difference in the number of
data points of the two classes i.e., (s —r) . The matrix U* is a subset of U of size equal
to ceiling of (r/2) denoted as g, and the dimension of each data point is represented

by n . The data points in U* are selected randomly from the set U.

3.2.2 Linear RUTSVM-CIL

The optimization problems of linear RUTSVM-CIL in primal are written as

1
min " §||X1w1 + 61[)1”2 + 6162T£ + CUGZ;Q/J

w1, b1, &,
s.t. — (X§w1 + €1b1) +§ Z €1,
(Utwy + egb1) + ¥ = (=1 + €)ey,

§>0, ¢=0, (3.16)

1 .
min §\|X2w2 + eabo||* + caeln + cuelp

w2, b2, 7,
s.t. (X]_w2 + €1b2) + n 2 €1,
(Uws + egb2) + 9" > (1 — €)eq,

n>0, ¥ >0, (3.17)

where &, 1, n,1* represent the slack variables; ¢y, co and ¢, represent the penalty pa-
rameters; ej, ea, €, and eq are vectors of ones of appropriate dimensions.

Here, QPP corresponds to the optimization problem for the positive class,
and QPP corresponds to the negative class hyperplane. One can observe that
the constraint in is to keep the universum within a distance of (1 —€) from the
positive class hyperplane, and in QPP the constraint is to keep the universum
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away from the negative class hyperplane by a distance of (1 — €). Therefore, in QPP
(3.16)), the universum provides the prior information about the data, and in QPP
(3.17) the prior information is provided in a manner that removes the biasing of the

classifier.

The Wolfe duals of the primal problems (3.16]) and (3.17)) are obtained by applying
the K.K.T. conditions as

1
max ej o — §(oleT* — 1 O)(STS) T oy — O puy) + (€ — Vel

a1, (U1

st. 0< a3 <c¢, 0<pu <gc, (3.18)

1
max el ay — 5(04;5 + p2 ONTTT) (ST ay + OF py) + (1 — €)el g

a2, (2

st. 0<as<cy, 0<pus<cy, (3.19)

where S = [Xj e, T* = [ X5 e1], T = [Xoep], OF = [U*¢y], O = [U ¢4), and

a1, Qig, i1, (o are the vectors of Lagrange multipliers.

The hyperplanes 7w, + b; = 0 and 27w, + by = 0 are obtained using the value of

the parameters w;, b;, ¢ = 1,2 from the following equations (3.20) and (3.21)),

w
o= —(STS + o) N T oy — 0T y), (3.20)
by
w2
= (T"T +oI) ' (STay + O y), (3.21)
ba

where o is a small positive value to deal with the case of singular matrices. A new

data point x € R™ is classified using Eq. (2.11)).
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3.2.3 Non-linear RUTSVM-CIL

The optimization problems of non-linear RUTSVM-CIL are expressed as follows:

1
min . §||K(X1, DTYw, + ey ||* 4+ crel € + cuegq,b

w1, b, &,
st.  — (K(X5,DDw; +eiby) + € > ey,
(K(U*, D")wy + e,b1) + ¢ > (=1 + €)ey,

£§>20, v >0, (3.22)

) 1 .
min = || K (X2, D" )wy + exbs||* + caei n + cuel vy
wa, ba,n,b* 2

s.t. (K(Xl, DT)’LUQ + elbg) + n 2 €1,
(K(U, D" )wsy + eqba) + ¢* > (1 — €)eq,

n=0, ¢ =0, (3.23)

where the slack variables are &,,n,1*; the penalty parameters are represented by
c1,¢9 and ¢,; D = [XT X377 €1, eq,¢e, and e4 are vectors of ones of appropriate
dimension, and K (z7, DT) = (k(x,z1),k(x,21),...,k(z,xs.)) is a row vector of the
reduced kernel matrix in R?" space, where r is the number of data points of ‘class 1.

The Wolfe duals of primal problems and are obtained using the K.K.T.

conditions as

1 * * — * *
max el ar — 5(04{17 —py PYETE) N (F T oy — P n) + (e = eg i
st. 0< a1 <c¢, 0<pu <ecy, (3.24)

1
max el g — §(a2TE +pa PY(FTF) Y (ETag + P o) + (1 — €)el uo

a2, (U2

st. 0<ag<cy, 0<pus<cy, (3.25)

where £ = [K(X;,D7) e], F* = [K(X3;,DT) e, F = [K(Xy,DT) ey, P* =
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[K(U*,DT) e,|, P = [K(U,DT) e4), and ay, az, p1, 12 are the vectors of Lagrange mul-
tipliers.

The non-linear hyperplanes K (z7, DT)w; + b, = 0 and K (27, DT)wy + by = 0 are

obtained by using parameters w and b from the following equations ([3.26)) and (3.27):

wq

b

= —(ETE+ol) " (Fay — P ), (3.26)

Wa

by

= (FTF + o) Y (ETay + P uy), (3.27)

where ¢ is a small positive value to deal with the case of singular matrices. Every new
data point € R" is classified using Eq. (2.10). The algorithm for RUTSVM-CIL is
briefly described in Alg.

Algorithm 3.1 RUTSVM-CIL
Input:
{X1}rxns {X2}sxn, {U}tdxn, d = s —r, and g = ceil(r/2).
Output:
The weight vectors and bias i.e., w;, b;,i = 1,2, for ‘class 1’ and ‘class 2’ respec-
tively.

1: Construct matrices {X3},x, and {U*},x, using randomly selected data samples
of negative class i.e., {Xs}sxn and universum {U }4x, respectively.

2: Set the constraints of optimization problem of positive class hyperplane using
matrices { X5 }rxn, and {U*},«, and for negative class using matrix {Xj },x, with
universum {U } 4., treated as belonging to positive class.

3: Solve the QPPs in the dual form to obtain the Lagrange multipliers {ay;}i_;,
{mit{_y and {ani}i_y, {paikiy -

4: Calculate w;, b;,7 = 1,2 using the Lagrange multipliers obtained in step 3.

5: Return w;, b;,7 = 1,2 for the construction of hyperplanes of the two classes.

3.2.4 Analysis of proposed algorithm

In case of class imbalance problems, knowledge about the distribution of data is

contained in the majority class, simply due to the more number of data points in it. To
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incorporate this knowledge of the distribution as prior information in the construction
of the classifier, the proposed model uses the concept of universum. Moreover, the
traditional approaches does not resolve the problem of computation time for the class
imbalance problems, and in some cases the use of fuzzy membership functions incur
additional computation time in the training phase. For reducing this computational
cost, the proposed RUTSVM-CIL uses the concept of a rectangular kernel of smaller
size which reduces the training time of the algorithm significantly. By using the
reduced kernel, the setup time [182] for solving the QPP is reduced. The setup time
consists of the construction of kernel matrices and computation of the inverses. In
comparison to UTSVM, the setup time as well as time for solving the QPP is reduced

by using the rectangular kernel.

The proposed RUTSVM-CIL utilizes the benefits of undersampling as well as over-
sampling, with reduced kernel for UTSVM to classify imbalanced datasets. There is
undersampling of the majority class as stated in subsection |3.2.4.1 and oversampling
of universum samples in [3.2.4.2] to create a balance situation for classification. The
proposed scheme for the construction of twin hyperplanes in our RUTSVM-CIL is

discussed below:

3.2.4.1 Positive (minority) class hyperplane

The negative class has more number of data points as compared to the positive
class. To reduce the biasing of the positive class hyperplane, a random undersampling
approach [179-181] is used to reduce the number of data points of the negative class.
Here, the universum data points are also used by randomly selecting data points from
the set U. This creates a balance situation for the construction of positive hyperplane.
Moreover, the computation time for calculating the inverse of the matrix is reduced due

to the undersampling. Experimental analysis on selection of universum is presented

in subsection [3.2.6.1V).
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3.2.4.2 Negative (majority) class hyperplane

In case of negative class hyperplane, the random undersampling of the negative
samples would result into a poor approximation of the actual data. So, we used all the
samples of both classes. Now, to create a balance situation for the negative hyperplane,
we used more number of universum data points U in the constraints which reduce the
bias towards the negative class. This also gives prior information in the construction
of the classifier.

The universum data points are kept at a distance of (1 — €) from the classifier
in QPP , and the minority class is unit distance away from the negative class
hyperplane. So, the universum points help in providing the balance between the
two classes. Thus, the majority class hyperplane gets some information about the
distribution of data, as well as do not get biased towards its own class. It is clearly
visible in Figs. and [3.7 that the classifier in the proposed RUTSVM-CIL aligns
itself with the distribution of data. Moreover, the classifier is also not biased towards

the majority class, leading to better classification of samples in each class.

3.2.4.3 Kernel matrix

To incorporate the concept of undersampling in the kernel matrix, we choose the
rectangular kernel, where the size of the kernel depends on the size of the minority
class. The columns of the kernel matrix are equal to twice the size of the minority
class, which includes the positive class of size r, and randomly selected samples of size
r from the negative class. This also creates a balance in the kernel matrix w.r.t. kernel
mapping of the data. So, if there is more imbalance in the data, then lesser will be the
size of the kernel, and lesser the computation time. The size of universum data for the
majority class is directly proportional to the imbalance ratio (I R) of data, while the
size of the kernel matrix is inversely proportional to the imbalance ratio. However, the
training time of the proposed RUTSVM-CIL is inversely proportional to the imbalance
ratio of data, since the construction of kernel matrices and calculating the inverses

are computationally expensive steps. Experiments on IR vs. time are presented in
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Figure 3.6: Performance of EFSVM, TWSVM, TWSVM-RUS and proposed
RUTSVM-CIL for the classification of synthetic dataset Crescent_& _full moon using
RBF kernel.
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subsection 3.2.6.1[(IV). The proposed RUTSVM-CIL also requires less memory to store

the kernel matrices, and is suitable for handling large scale imbalanced datasets.

3.2.5 Computational complexity

Let number of samples belonging to positive class be m;, and number of samples
belonging to negative class be my, then m = my + msy, and IR = my/m; where IR is

the imbalance ratio. In case of TWSVM, the time complexity is given as follows [12]:

T =0(m3) + O(m?),
T =O(IR x my)* + O(m3),
T =0O(IR* +1)O(m3). (3.28)

If the imbalance ratio (IR) is equal to 1, then T'= 2 x O(m/2)? as stated in [12].

In the proposed RUTSVM-CIL, the computational complexity is given by consid-
ering the constraints in both QPPs (3.16{and [3.17)) as follows:

T =0(my 4+ m1/2)* + O(my + (my — m1))?,
T =0(my +my /2)* + O(m3),

T =O(IR* + 3.375)0(m3). (3.29)

The time complexity of the proposed RUTSVM-CIL is comparable to TWSVM
(Eq. [3.28). However, since we include the reduced kernel in constructing the kernel
matrices in the proposed approach, the setup time involving the construction of kernel

matrices and computation of inverses is reduced. This leads to less computation

complexity of RUTSVM-CIL as compared to TWSVM.

In TWSVM, two kernel matrices are computed i.e., for the positive and negative

classes. The computation complexity of calculating the kernel matrices in TWSVM is
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given as follows:

T =0(my x m) + O(mg X m),
T =0(mq x (my; +IR xmy)) +OIR xmq x (my + IR x my)),

T =0(1 +2IR+ IR*)O(m}). (3.30)

In proposed RUTSVM-CIL, three kernel matrices are computed i.e., for positive
and negative classes, and the universum. The computation complexity of calculating

the kernel matrices for RUTSVM-CIL is given as follows:

T :O(m1 X le) + O(m2 X 2m1) + O((m2 — ml) X 2m1),
T =0(2m3) + O(IR x my x 2my) + O((IR x my —my) X 2my),
T=0(1+IR+IR—-1)x0(2m}),

T =(4IR)O(m?). (3.31)

It is evident from Eqgs. and that in comparison to TWSVM, proposed
RUTSVM-CIL is computationally efficient for datasets with high imbalance ratios.

Further, the time complexity in calculating inverse of matrix having size m x m
is O(m?). So, for TWSVM the complexity is 20(m?)(1 + I R?), while the proposed
RUTSVM-CIL has very less complexity i.e., 20(2my)3. Therefore, the complexity
of RUTSVM-CIL is less than TWSVM for IR > 1. This makes our RUTSVM-CIL

suitable for large scale imbalanced datasets.

3.2.6 Experimental results

In this section, experiments are performed on various synthetic as well as real world
benchmark datasets for the comparison of the proposed RUTSVM-CIL with existing
approaches. The proposed method is compared with EFSVM [55], SVM-RUS [179-
181], TWSVM [5], TWSVM-RUS [179-181], TWSVM-SMOTE [183], MMTSSVM
[184], FTSVM [175,|185] and UTSVM [27] in terms of classification accuracy and

training time. We also performed experiments on large scale imbalanced datasets to
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justify the applicability of the proposed approach.

Experiments on large datasets are carried out on a workstation with 64-bit Win-
dows 10 OS, running on 2.30 GHz Intel® Xeon processor, and 128 GB RAM. For
the kernel matrices, RBF kernel is used for the kernel function in all the algorithms.
The results for all the algorithms are calculated for the non-linear case using RBF
kernel. For comparison of classification accuracy of the methods, area under receiver

operating characteristics (ROC) curve i.e. AUC is used.

The range of penalty parameter ¢, and kernel parameter p is same as in subsection
for all the algorithms. For EFSVM and UTSVM also, the settings are similar as
before. In SVM-RUS and TWSVM-RUS random undersampling of the majority class
is performed. In SMOTE, the value of K for K-nearest neighbours (KNN) is set as
3. For MMTSSVM and FTSVM, vy = vy is selected from the set {0.1,0.2,...,0.9}.
In case of UTSVM and RUTSVM-CIL, random averaging scheme is used for the
generation of universum. In RUTSVM-CIL, the minority class data points are used

multiple times for random averaging of data points with the majority class.

1. Datasets:

We used two types of binary class imbalanced datasets i.e., synthetic and real world
datasets. Three synthetic datasets are used namely, Crescent_& _full_ moon, Half _kernel
[3], and Crossplane (XOR) dataset [178] as shown in Figs. 3.7/and B.2] respectively.
For Crescent_& _full_moon and Half_kernel datasets, total number of samples is set as
500 with 475 data points of negative class and 25 data points of positive class. For
Crossplane dataset, the parameters ky and b; [178] are set as 0.7 and 0.1 for majority
class and, 0.6 and 1 for minority class. The imbalance ratios of Crescent_&_full_moon,

Half kernel datasets are shown in Table 3.6 and for Crossplane datasets in Table [3.7]

In order to justify the applicability of RUTSVM-CIL for real world class imbalance
problems, we used 28 real world datasets from KEEL imbalanced datasets [171] and
UCI repository [170]. The imbalance ratios are shown in Table 6. The imbalance ratio
(IR) of 6 datasets lie in the range (2, 5], 12 datasets lie in (5, 10], 6 datasets lie in
(10, 15], and 4 highly imbalanced datasets lie in (15, 33].

79



The large scale datasets are generated using the approach as mentioned in |186],
and the parameters are set as ¢; = ¢ = ¢, = 1, p = 2, and ¢ = 0.5. For FTSVM,
vy = 1 is set as 0.3. The datasets are made class imbalanced by randomly removing

samples of one class.

3.2.6.1 Synthetic datasets

In order to analyse the performance of the different algorithms, we performed
experiments on synthetic datasets i.e., Crescent_& _full moon, Half kernel, and Cross-

plane.

1. Effect of prior information:

Figs. and illustrate the effect of universum in the proposed RUTSVM-CIL.
The blue colour curves show the positive class hyperplane, and the curves in red are
the negative class hyperplane. It is clearly visible that the classifier of the proposed
RUTSVM-CIL utilizes prior information from the universum to obtain a better classi-
fier. The classifiers in the other algorithms do not have any prior information leading
to mis-classification of data. Moreover, it can be seen in Figs. and that the
classifiers of the existing algorithms are biased towards the majority class. The pro-
posed algorithm is not showing any bias leading to better classification of imbalanced

data. This is due to the universum data which creates a balance between the classes.

11. Effect of training size:

In order to show the effect of training size on the performance of the vari-
ous algorithms, experiments are performed on Crescent_& _full_moon and Half_kernel
datasets for different sets of training data. The total number of samples in Cres-
cent_& _full_ moon and Half kernel datasets is 500. The training data is selected as
30%, 40%, 50% and 70% of the number of samples in the datasets. The perfor-
mance analysis of different algorithms is shown in Table [3.6| in terms of AUC values
and training time. The corresponding average ranks are shown for the performance
comparison of proposed RUTSVM-CIL with EFSVM, SVM-RUS, TWSVM, TWSV M-
RUS, TWSVM-SMOTE, MMTSSVM, FTSVM and UTSVM. The proposed algorithm
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performs better than the existing algorithms in 4 out of 8 datasets with least rank
for all the 8 datasets. Fig. shows the plot of AUC and training time of Cres-

cent_& _full_ moon and Half kernel dataset for different training sizes.

One can observe in Figs. [3.8(a)|and [3.8(c)|that the AUC of the proposed RUTSVM-

CIL is increasing with increase in training size. There is a slight decrease in the AUC
of RUTSVM-CIL in Fig. [3.8(c)| with 70% training data. This may be attributed
to the selection of universum using random averaging of data points. Figs. [3.8(b)
and show the comparison of training time of the various algorithms except
EFSVM, since it is having very high computation time in comparison to the other
algorithms. It is visible that the training time of RUTSVM-CIL is lesser than most of
the algorithms. Also, the rate of increase in training time of RUTSVM-CIL is lesser

than other algorithms.

I1I. Crossplane dataset:

Numerical experiments are performed on synthetic Crossplane dataset to verify the
effectiveness of the proposed RUTSVM-CIL. Table shows the AUC and training of
the different algorithms on Crossplane dataset. RUTSVM-CIL performs better than
the existing algorithms with lesser training time in most cases. Moreover, RUTSVM-

CIL obtains least rank in Table B.7l

IV. Effect of imbalance ratio (IR):

To verify the efficacy of the reduced kernel, the performance comparison is made
using Crossplane dataset in Fig. It is clear from Fig. that the proposed
RUTSVM-CIL gives better accuracy with less training time for highly imbalanced
data. However, the accuracy of RUTSVM-CIL is less for IR = 4. This is due to
the use of reduced kernel in proposed RUTSVM-CIL, resulting into removal of some
informative data points. Fig. justifies this fact where the accuracy of proposed
RUTSVM-CIL with full kernel matrix is higher than RUTSVM-CIL with reduced
kernel for IR = 4. For higher imbalance ratio, less number of samples is used in the
construction of reduced kernel matrix. Moreover, the decline in accuracy of RUTSVM-

CIL is not so rapid in comparison to other algorithms. Most of the existing algorithms
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Figure 3.8: Plot of AUC vs training size, and time vs training size for Cres-
cent_&_full moon in (a) and (b), and Half kernel in (c¢) and (d) respectively. Number
of samples are 500.
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are having fluctuations in their accuracies, while RUTSVM-CIL is rather stable w.r.t.
its declining accuracy values for higher IRs. To check the effect of reduced kernel,
performance of RUTSVM-CIL is compared with proposed
matrix and UTSVM in Figs. 3.9(c)[and [3.9(d)|

scheme using full kernel
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Figure 3.9: Plot of AUC and time vs imbalance ratio (I R) is shown in (a) and (b)
respectively for Crossplane dataset containing 200 data points. A comparison with
proposed RUTSVM-CIL with full kernel is shown in (c¢) and (d).

It is clearly visible that the proposed RUTSVM-CIL is giving better generalization
performance in most cases as compared to proposed algorithm with full kernel matrix.

Moreover, the training time of the proposed algorithm is also very less.
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V. Selection of universum:

In the formulation of proposed RUTSVM-CIL, the matrix U* is a subset of uni-
versum matrix U of size equal to ceiling of (r/2), where r is number of data points
of minority class. The data points in U* are selected randomly from U. To analyze
the effect of random selection of U* on the generalization performance, we conducted
experiments on three synthetic datasets i.e., Crescent_& _full_moon, Half _kernel, and
Crossplane. The training size is set as 50% of total samples. The performance of
RUTSVM-CIL on different sizes of U* is shown in Fig. where the size of U* is a
fraction of U. One can clearly observe that on the three synthetic datasets, the per-
formance is high when the size of U* is 0.5 or 0.75 times the samples in minority class.
This is because for higher size of U*, less importance is given for the classification of

minority class samples. So, this analysis justifies our method for proper selection of

U-.
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Figure 3.10: Plot of AUC vs size of U* on synthetic datasets. The size of U* is
represented as a fraction of the minority class samples.

3.2.6.2 Real world datasets

In this subsection, numerical experiments are performed on several real world bi-
nary class imbalanced datasets. The performance of the proposed RUTSVM-CIL
is compared with EFSVM, SVM-RUS, TWSVM, TWSVM-RUS, TWSVM-SMOTE,
MMTSSVM, FTSVM and UTSVM.
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1. Generalization performance:

The classification accuracy of the algorithms is shown in Table [3.8in terms of AUC
values and training time, with the corresponding average ranks. It is observable that
the proposed approach is showing better AUC in 8 out of 28 datasets. The proposed
RUTSVM-CIL is also having the least rank on the basis of AUC i.e., 2.6607. For 6
datasets, the rank of RUTSVM-CIL is 1 including Shuttle-cO-vs-c4, which is a large
dataset. It is observable that TWSVM-RUS is having less rank than TWSVM which
shows the efficacy of undersampling with TWSVM. The average rank of UTSVM is
more than RUTSVM-CIL i.e., 5.375 > 2.6607. This is due to biasing of the classifier
towards majority class in UTSVM. EFSVM is also showing good generalization abil-
ity with an average rank of 4.7857 in comparison to SVM-RUS, TWSVM-SMOTE,
FTSVM and UTSVM.

The average rank of the proposed RUTSVM-CIL in Table |3.8|is 3.1667 for datasets
with IR in the range (2, 5], 2.2917 with IR in (5, 10], 2.3333 with IR in (10, 15], and
3.5 with IR in (15, 33]. Although the overall average rank of RUTSVM-CIL is better
than existing algorithms, the performance is highest for datasets with IR in the range
(5, 10].

For comprehensive comparison of the proposed RUTSVM-CIL with existing algo-
rithms on different sets of testing data, we calculated mean and standard deviation
(SD) of AUC and G-mean [187] in Table The AUC and G-mean are calculated
on 5 folds of testing data. As shown in Table [3.9, the proposed RUTSVM-CIL is
having least rank for AUC as well as G-mean. This shows the superiority of proposed
RUTSVM-CIL over existing algorithms.

Fig. [3.11] shows the performance of proposed RUTSVM-CIL with TWSVM and
UTSVM for Ecoli-0-4-6_vs_5, Shuttle-cO-vs-c4, Ecoli3 and New _thyroid2 datasets. The
figure shows the distance of the data points with the two hyperplanes. Hyperplane 1
and 2 correspond to positive and negative class respectively. One can observe from
Fig. that the proposed RUTSVM-CIL classifier is less biased towards the negative
class. The data points of the positive and negative class are relatively closer to their

own class’ hyperplane as compared to the other class. Moreover, it is visible from
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Fig. that the distance of negative class from its hyperplane is more in case of
RUTSVM-CIL in comparison to TWSVM and UTSVM in Figs. [3.11(a)| and [3.11(b)|

respectively. This shows the effect of universum in reducing the bias to the negative
or majority class. The majority class data points which are near to the minority class

are given less importance.

II. Computation time:

One can observe the computation time of the different algorithms in Table|3.8] The
training time of RUTSVM-CIL is less than all the existing algorithms except SVM-
RUS and TWSVM-RUS. This is due to undersampling of the majority class in one
QPP, as well as oversampling of the universum in the other QPP of RUTSVM-CIL.
Also, RUTSVM-CIL finds the solution of two smaller sized QPPs with reduced kernel
matrix. It can be seen in Table that the training time of UTSVM is more than
TWSVM due to the universum. However, in comparison to TWSVM, our RUTSV M-
CIL takes lesser time while incorporating the universum data. It is visible in Table
that the computation time of the algorithms like SVM-RUS and TWSVM-RUS is
very less as compared to other algorithms. This is due to the undersampling of data
points. The computation time of FTSVM is more than TWSVM due to the calculation
of fuzzy membership in FTSVM. In case of TWSVM-SMOTE, the training time is
more than most of the other algorithms due to oversampling of data points. For
EFSVM, the computation time is the highest, since it finds the solution of a large
QPP.

3.2.6.3 Statistical tests

Similar to section (3.1.5.2)), we apply the Friedman test to check the statistical
difference for the 9 algorithms on 28 class imbalanced datasets. First, we assume
the null hypothesis as there is no difference between the methods. The Y% value for
Friedman statistic is calculated using average ranks from Table [3.8] By applying the

formula (2.54), we get x% = 41.9496.
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The Fr value is calculated as

(28 —1)(41.9496)
28 x (9 —1) — 41.9496

¥ = 6.2216,

where for 9 methods and 28 datasets, the F-distribution has (9—1,(9—1)(28—1)) =
(8,216) degrees of freedom. For the significance level at o = 0.05, the critical value of
F(8,216) is 1.9814. Since Fr = 6.2216 > 1.9814, we reject the null hypothesis.

Now, to check the pairwise difference between the proposed and existing algo-
rithms, we use the Nemenyi posthoc test using Eq. . For significant pairwise
difference between the methods at significance level of o = 0.10, the average ranks of

the methods shown in Table should differ by atleast 2.855 % = 2.0896. The

pairwise difference between the methods is shown in Table [3.10]

Table 3.10: Pairwise significant difference of proposed RFLSTSVM-CIL with existing
algorithms.

Significance | EFSVM | SVM-RUS | TWSVM | TWSVM-RUS | TWSVM-SMOTE | MMTSSVM | FTSVM | UTSVM
Proposed
RUTSVM-CIL

Yes Yes No No Yes Yes Yes Yes

3.2.6.4 Large scale imbalanced datasets

In this subsection, we present the experimental results on large sized datasets.
The proposed RUTSVM-CIL is compared with TWSVM, FTSVM, and UTSVM on
NDC [186] datasets using RBF kernel. Table shows the performance compari-
son on large scale imbalanced datasets, where the training time is shown in seconds.
One can observe from Table that the RUTSVM-CIL is performing better than
the compared algorithms in most of the datasets. Moreover, the training time of
RUTSVM-CIL is very less in comparison to other algorithms. This is due to the re-
duced kernel in our RUTSVM-CIL. For the dataset NDC-7 all the algorithms except
RUTSVM-CIL failed to run due to limitation of system memory. This shows that the
proposed RUTSVM-CIL is applicable on real world applications involving large scale
class imbalanced data.

Moreover, the existing algorithm UTSVM is having the highest training time due
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Table 3.11: Comparison of proposed RUTSVM-CIL on AUC (%) and training time
with existing algorithms for classification on large scale imbalanced datasets.

Proposed
Dataset IR TVXISJ\C/M Fi%\éM Ui%\éM RUTSVM-CIL
(Train size, Test size) (All samples) : : : AUC
Time (s)  Time (s) Time (s) .
Time (s)
NDC-1 567 96.1781 95.4849 96.3524 99.3031
(3336%10, 335x10) ' 13.0017 14.3013  15.5044 7.0055
NDC-2 5.68 97.8261 96.0304 96.8705 96.755
(5008 %10, 502x10) ’ 31.9098 33.0532 35.6478 22.2657
NDC-3 6.1 97.9305 94.35 96.731 99.0939
(7100%10, 712x10) ‘ 70.6731 70.9368  74.6066 42.1088
NDC-4 5.66 98.2424 94.5994 98.9887 99.3095
(13317x10, 1333x10) ' 321.49 300.514 349.715 204.397
NDC-5 5.58 99.1583 96.67 99.2606 99.3452
(1972410, 1974x10) ’ 861.113 864.887 981.933 530.71
NDC-6 486 99.1033 97.9502  99.2811 99.0635
(29287x 10, 2930x 10) ' 2271.82 2145.12 2680.11 1302.92
NDC-7 Lo § i . 99.1485
(41789x10, 4180x10) 3752.11

to inclusion of universum data. So, the universum based algorithms are not feasible
on large scale datasets. On the other hand, our RUTSVM-CIL includes the universum

samples with lesser training time than all the compared algorithms.

3.2.6.5 Insensitivity analysis

In Fig. [3.12] the insensitivity performance of the proposed RUTSVM-CIL is pre-
sented for the penalty parameter ¢, tolerance value €, and kernel parameter p. The
analysis is shown for non-linear RUTSVM-CIL on the datasets Ecoli-0-1_vs_2-3-5,
Ecoli-0-4-6_vs_5, Yeastl and Yeast2vs8. Insensitivity for the parameters ¢ and € is
shown for the datasets Ecoli-0-1_vs_2-3-5 and Ecoli-0-4-6_vs_5 in Figs. and
respectively. The value of u is set as the optimal value obtained after cross
validation.

It is evident that the proposed RUTSVM-CIL gives better generalization perfor-

mance for lesser values of ¢, and the parameter ¢ do not have much effect on the AUC.

97



105

. LS
10%3 e 01 g 1003 10

€ 01 qpr5 C
c [

(a) Ecoli-0-1_vs_2-3-5 (b) Ecoli-0-4-6_vs_5

2 10
205 1005

(c) Yeastl (d) Yeast2vs8

Figure 3.12: Insensitivity performance of proposed RUTSVM-CIL for classification of
real world imbalance datasets to the user specified parameters using RBF kernel.

In case of insensitivity w.r.t. parameters ¢ and pu, the value of € is set as the optimal

value obtained after cross validation. It is observable from Figs. [3.12(c)| and [3.12(d)|

that the proposed RUTSVM-CIL gives high accuracy for higher values of y and lower
values of ¢. This justifies the selection of the set of parameters for training of the

proposed RUTSVM-CIL on class imbalanced data.
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3.3 Summary

In this chapter, we proposed two novel SVM based algorithms for class imbalance
learning viz. (which are) RFLSTSVM-CIL and RUTSVM-CIL. We also proposed
a novel fuzzy membership function specifically for class imbalance learning, which
gives different range of fuzzy membership values for different datasets. The different
range of the fuzzy membership function helps in giving proper weights to the data
points in different imbalance scenarios. The proposed RFLSTSVM-CIL has shown
good generalization performance with less training time in comparison to the existing
algorithms on noisy datasets.

The proposed RUTSVM-CIL is a novel computationally efficient model for class
imbalance learning. The proposed model incorporates prior information from the uni-
versum data, and creates a balance situation for the classification. The reduced kernel
based approach leads to a computationally efficient model of universum based SVM.
This removes the overhead of higher computation cost of universum based algorithms.
The memory requirement for executing the proposed algorithm is also very less, which
makes it suitable for large scale imbalanced datasets. The approach of combining
undersampling with oversampling using universum data is found to be helpful in clas-
sification of class imbalance datasets. RUTSVM-CIL has shown good generalization
performance with less training time on several synthetic and real world datasets.

In the next chapter, we focus on algorithms based on universum learning for feature

extraction and classification in biomedical datasets related to brain disorders.
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Chapter 4

Universum learning for neurological

disorders

The previous chapter discussed a universum based technique for class imbalance
learning. Universum selection depends on the type of problem. Therefore, we present
techniques for applying universum based algorithms on problems such as detection
of diseases. In this chapter, we present two novel universum based techniques, and
apply on brain disorder datasets. Section explains the proposed universum based
techniqu{] for detection of epilepsy, while section presents a universum based

feature elimination algorithm?| for diagnosis of Alzheimer’s disease.

In the following section, we present a universum based technique for detection of

epilepsy using electroencephalogram (EEG) signals.

'B. Richhariya, M. Tanveer. EEG signal classification using universum support vector machine.
Expert Systems with Applications, Elsevier, 106:169-182, 2018, DOI: https://doi.org/10.1016/j.
eswa.2018.03.053.

[SCI Indexed Impact Factor: 6.954]

’B. Richhariya, M. Tanveer, A.H. Rashid, Alzheimer’s Disease Neuroimaging Initiative. Diag-
nosis of Alzheimer’s disease using universum support vector machine based recursive feature elim-
ination (USVM-RFE). Biomedical Signal Processing and Control, Elsevier, 59:101903, 2020, DOI:
https://doi.org/10.1016/j.bspc.2020.101903,

[SCI Indexed Impact Factor: 3.880]
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4.1 EEG signal classification using universum sup-

port vector machine

The major challenge with universum based approach is the proper selection of
universum data points. In digit classification problem [10], the universum data is
selected based on similarity of digits. For example, digit ‘3’ is chosen as universum for
classifying ‘5’ and ‘8’ since its shape is similar to both ‘5" and ‘8’. Chapelle et al. [19]
presented an analysis for the selection of proper universum data. Universum samples
are generated for classification of faces [188] using the random averaging approach,
where the average of the pixels of two faces is used as the universum. An in-between-
universum (IBU) approach is also proposed [189] for the proper selection of universum.
The practical conditions for choosing the universum data are given in [190}/191]. To
reduce the training time of TWSVM, twin support vector machine (TWSVM) [12]
was proposed where two quadratic programming problems (QPPs) of smaller size are
solved to obtain the classifier. For the classification of seizure EEG signals, for the
first time TWSVM is used in this work. Qi et al. [27] proposed a universum twin
support vector machine (UTSVM) to reduce the computational complexity of USVM
and used the random averaging approach for universum selection. Xu et al. [71] also
used the random averaging scheme for selecting the universum data. Since the random
averaging approach suffers from the effect of outliers, the method of generation of
universum data depends solely on the type of application and is currently an area of

research.

Motivated by the work on universum support vector machine in [22,56}57], we
propose a novel approach of selecting the universum in the classification of EEG signals
for seizure detection. Since universum based support vector machines have not been
used for the classification of EEG signals, we also present an application of USVM
and UTSVM for EEG signals. For the classification of EEG signals in the healthy
and seizure (ictal) classes, the interictal EEG signals are chosen as the universum,
which corresponds to the EEG recording for the time period in between the seizures

in a patient with epilepsy. The proposed approach of EEG classification is tested for
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Figure 4.1: Distribution of data points of set Z set as healthy control, S as seizure
using PCA up to 3 principal components in (a) for proposed method i.e., using set
N (seizure free) data points as universum and in (b) random averaging is used for
generating the universum.

different datasets that are generated using various feature extraction techniques, and

the results are compared with existing methods.

4.1.1 Proposed approach using universum

In many classification approaches for EEG signals, the prior information about the
distribution of EEG data is not utilized. Due to this, the classification techniques are
not able to give better generalization performance, even with the most efficient feature
extraction technique. The universum based approach gives some prior information in
the construction of the classifier. So, we used a universum based approach with support
vector machine to classify the EEG signals. Further, in the datasets generated from
the EEG signals, many data points behave as outliers, especially in case of seizure
signal as shown in Figs. and [£.2] Consequently, the traditional approach of
universum based support vector machine based on random averaging [27,,71] is not so
efficient in giving the prior information. The outlier data points affect the generation
of the universum points in the random averaging approach, which leads to incorrect

classification.
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Figure 4.2: Distribution of data points of set Z as healthy control, S as seizure using
ICA up to 3 principal components (PCs) in (a) the proposed approach using seizure
free data points as universum and (b) universum data points generated using random
averaging.

The proposed approach of universum support vector machine (USVM) selects the
universum points from the EEG dataset itself. We take the interictal or seizure free
signals from the EEG dataset [192] as the universum. Since the variation of the
signal in the seizure free state comes in between the variation of healthy and seizure
EEG signals, this gives the required prior information to the support vector machine
classifier in an effective manner. Moreover, there are no outliers in the universum data
since our universum data is not generated from the training data and thus there is no
effect of noise. A comparison of the proposed approach with the traditional random
averaging scheme is illustrated in Figs. and [£.2] where the universum data points
of the proposed approach lie in between the two classes.

Further, we use the proposed approach with universum twin support vector ma-
chine (UTSVM) which is a more efficient technique in terms of computational com-
plexity. A brief illustration of our methodology is given in Fig. [4.3]

The steps involved in the proposed approach for classification of EEG signals are

as follows:

(i). Choose a feature extraction technique and extract the features from the training
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Figure 4.3: Proposed approach using universum.
data consisting of healthy and seizure data points.

(ii). Extract the features from the universum points which are taken from seizure

free dataset.

(iii). Reduce the dimension of the feature vector using PCA 193] and class discrimi-
natory ratio (CDR) [194].

(iv). Train the model using training data with the universum.

(v). Test the model using testing data, step (iii) and the classifier.
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In this work, different feature extraction techniques are used to extract the ap-
propriate features from the datasets such as principal component analysis (PCA),
independent component analysis (ICA) and wavelet transform with different families

of wavelet such as dbl, db2, db4, db6 and Haar wavelet.

4.1.2 Experimental results

In this section, numerical experiments are performed for the classification of EEG
signals of healthy and seizure states. The EEG dataset used in this work is available
online [192]. The dataset consists of five sets viz. Z, O, N, F and S. Each set con-
tains 100 single-channel EEG signals sampled at a sampling rate of 173.61 Hz and of
23.6 seconds duration. The sets Z and O are surface EEG recordings of five healthy
volunteers with eyes open and closed respectively. The sets N and F are recordings
of five patients in the interictal state and the region of recording is the hippocampal
formation of the opposite hemisphere of the brain in N and the epileptogenic zone in
F. The set S is for the ictal state consisting of seizure recordings from all the recording
sites exhibiting ictal activity. The mode of EEG recording is intra-cranial for N, F
and S. For all the EEG signals, same 128-channel amplifier system is used with an
average common reference.

In the numerical experiments, the training and testing set consists of 50 samples
each, chosen from the sets Z, O and S each containing 100 samples. In the pro-
posed approach, the universum is chosen from the set N which contains the interictal
EEG signals. For feature extraction, various techniques are applied including princi-
pal component analysis (PCA), independent component analysis (ICA) and wavelet
transform. In case of wavelet transform, several families of wavelets are applied with
different levels of decomposition as used in the available literature. Discrete wavelet
transform (DWT) is implemented using different families of wavelet on specific lev-
els of decomposition. The set of the approximation and decomposition coefficients is
taken as the feature vector. The level of decomposition is set at level-3 for Daubechies
wavelet- db2, db4, and Haar wavelet. For dbl and db6 wavelets, we used level-2 de-

composition. In case of ICA and wavelet transform, PCA is applied for the dimension
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reduction. The implementation of ICA is same as in [194] (ICA Architecturel). The
class discriminatory ratio (CDR) is used to sort the PCA components and to choose
the most relevant PCA components. To check the effectiveness, the results of the
proposed method for universum are compared with SVM, LSSVM, and USVM with
random averaging scheme [27,|71]. In case of UTSVM, we made a comparison with

TWSVM and UTSVM with random averaging.

The range of penalty parameter is same as in section for all the algorithms.
For USVM, proposed USVM, UTSVM and proposed UTSVM, the number of univer-
sum samples i.e. wu is taken from the set {10,20,30,40} and € is chosen by varying
values from the set {0.1,0.2,...,0.7}. For the selection of the optimal parameters, 5-
fold cross-validation is used. In the proposed approaches, universum is selected from
the set N of the EEG database and for the existing universum methods random aver-
aging is used for generating the universum data. RBF kernel is used in all the cases,

and the value of u is calculated as per the following formula [195] in all the methods,
1N
p=z 3l — (11)
ij=1
where z;, x; represent each data point, and NV is the total number of data points.

For all the datasets, the number of attributes are decided on the basis of two
factors, (a) variance accounted for [193], and (b) class discriminatory ratio (CDR).

The approach of calculating CDR of components is taken from [194] as

Obetween
r= : (4.2)
Owithin

C
where Gperween = Y. (T; — T)? is the variance of C' class means, z is mean of all samples,
i=1

c C
and oyitnin = > . (zij — T;)? is sum of the within class variance of all the C' classes.
i=1j=1

The plots for variance and CDR are shown in Figs. and [4.5] for Z & S dataset
using PCA and ICA respectively. In Fig. [4.6] the generalization performance of the

proposed approach for UTSVM is compared with random averaging approach for Z &
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S and O & S using PCA, O & S using ICA | and O & S using wavelet feature extraction
technique. The accuracy is shown for different number of universum points. In Fig.
4.6|, it can be seen that in all cases the proposed approach is giving higher accuracy

in comparison to the traditional approach. Also the effect of outliers is clearly visible

in Figs. |4.6(c)| and [4.6(d)| for the random averaging approach, where the accuracy

decreases for some sets of universum. This justifies our selection of the universum.
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Figure 4.4: (a) Variance of data points (b) class discriminatory ratio vs. number of
PCA components for Z & S dataset using PCA feature extraction technique.
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Figure 4.5: Variance of data points (b) class discriminatory ratio vs number of PCA
components for Z & S dataset using ICA feature extraction technique.
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Figure 4.6: Performance comparison of proposed approach for UTSVM with the ran-
dom averaging method on (a) Z & S using PCA, (b) O & S using PCA, (¢) O & S
using ICA and (d) O & S using wavelet (db4) feature extraction technique.

The results for all the proposed and baseline methods are shown in terms of pre-
diction accuracy and training time in Table and Table One can observe from
Table that the proposed approach outperforms USVM with random averaging,
LSSVM and SVM in terms of accuracy. It can be observed in Table 4.1 that LSSVM
performs better than SVM and USVM.

From Table it is evident that the proposed approach is showing better general-
ization performance for almost all the datasets as compared to TWSVM and UTSVM.

In terms of training time, the proposed approach is comparable with respect to the
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Table 4.1: Performance comparison of proposed USVM with SVM, LSSVM and USVM
for classification of seizure and healthy EEG signals using RBF kernel.

SVM LSSVM USVM Proposed USVM
Dataset Feature extraction Accuracy(%) Accuracy(%) Accuracy (%) Accuracy (%)
(Train size, Test size) method (¢, 1) (c, ) (¢, 1, €, u) (c, i, €, u)
Time (s) Time (s) Time (s) Time (s)
785 69 73 69 77
(100 x 50, 100 x 50) PCA (102,21180.7)  (10°,21180.7) (10%,21180.7,0.2,15) (10%,21180.7,0.3, 15)
' 0.09954 0.03017 0.17169 0.16816
7 &8 80 79 81 79
(100 x 15,100 x 15) ICA (10%,69.919)  (10%,69.919)  (10%,69.919,0.2,10) (102 69.919,0.1,10)
' 0.09963 0.02733 0.14142 0.13958
78S 69 73 69 76
(100 x 50,100 x 50) Wavelet (db4) (102,21415.9)  (10°,21415.9) (102,21415.9,0.1,10) (10%,21415.9,0.3,10)
o ° 0.09859 0.02984 0.14816 0.14314
785 69 72 69 84
(100 x 50, 100 x 50) Wavelet (Haar) (102,21196.3)  (10%,21196.3) (10°,21196.3,0.2,30) (10%,21196.3,0.7, 30)
' 0.10009 0.0295 0.25236 0.25148
7 &8 69 73 69 76
Wavelet (db2 102,21315.9)  (10°,21315.9) (102,21315.9,0.1,10) (10%, 21315.9,0.5, 10
(100 x 50,100 x 50)
' 0.10182 0.02925 0.14347 0.14183
78S 69 71 69 77
Wavelet (db6 10%,21503.3)  (102,21503.3) (102,21503.3,0.1,10) (10%,21503.3,0.5,10
(100 x 50, 100 x 50)
o 2 0.09742 0.03005 0.14553 0.14177
7 &S 69 74 69 78
Wavelet (dbl 102,20956.4)  (10°,20956.4) (102,20956.4,0.1,10) (10*,20956.4,0.1, 10
(100 x 50,100 x 50)
' 0.09981 0.031 0.14285 0.14328
0kS 72 69 67 75
(100 x 50, 100 x 50) PCA (101,20400)  (102,20400)  (10%,20400,0.1,40)  (10%,20400,0.3,40)
' 0.10182 0.02975 0.32457 0.30981
0&S 72 74 72 76
ICA 10%,105.268) (10°,105.268) (10?,105.268,0.3,20) (102,105.268,0.6,20
(100 x 50, 100 x 50)
o 2 0.10174 0.03955 0.2129 0.18707
0 &S 71 71 70 75
Wavelet (dbd 101,20139.2) (10',20139.2) (102,20139.2,0.1,40) (10',20139.2,0.3,40
(100 x 30,100 x 30)
' 0.09831 0.0284 0.32568 0.31293
0kS 70 70 69 75
Wavelet (Haar 102,19800.4) (102,19800.4) (10%,19800.4,0.2,40) (10,19800.4, 0.3, 40
(100 x 50,100 x 50)
' 0.10273 0.04194 0.32389 0.31326
OLS 68 69 67 75
Wavelet (db2 10%,20074.4) (10%,20074.4) (10%,20074.4,0.1,40) (10',20074.4,0.3, 40
(100 x 50, 100 x 50)
o 2 0.09935 0.03094 0.31621 0.31399
0&S 69 70 69 77
Wavelet (db6 101,19984.8) (102,19984.8) (102,19984.8,0.1,40) (10°,19984.8,0.1,40
(100 x 50,100 x 50)
' 0.09922 0.02976 0.31894 0.31528
0&S 71 69 68 76
(100 x 50, 100 x 50) Wavelet (db1) (10',20412.5)  (102,20412.5) (10%,20412.5,0.3,40) (10°,20412.5,0.1, 40)
' 0.10013 0.03019 0.32286 0.31789
Average accuracy 70.5 71.9286 69.7857 76.8571
Average rank 3 2.3214 3.5 1.1786
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Table 4.2: Performance comparison of proposed UTSVM with TWSVM and UTSVM
for classification of seizure and healthy EEG signals using RBF kernel.

TWSVM UTSVM Proposed UTSVM
Dataset Feature extraction  Accuracy(%) Accuracy(%) Accuracy(%)
(Train size, Test size) method (e, ) (¢, p, €, 1) (¢, €,u)
Time (s) Time (s) Time (s)
2&S PCA (10-° 2?180‘7) (100.211880?7 0.7,30) (10! 2118%97 0.1,30)
(100 50, 100 > 50) 0.0191 0.02529 0.02599
z&S ICA (10° ?sg 919) (102,69 gi9 0.6,10) (105,69 2?9 0.1, 10)
(10015, 100 > 15) 0.01607 0.01804 0.01756
7&S B 82 ) 78 ) 91
(100 x 50,100 x 50) Wavelet (db4)  (1077,21415.9)  (10,21415.9,0.3,30)  (10',21415.9,0.1,30)
’ 0.01805 0.02533 0.02509
7&S B 79 . 80 1 88
(100 x 50,100 x 50) Wavelet (Haar) (107°,21196.3)  (10°,21196.3,0.6,20)  (10',21196.3,0.1, 20)
’ 0.01819 0.02217 0.02255
78S B 82 . 89 X 90
(100 x 50, 100 x 50) Wavelet (db2)  (1075,21315.9)  (10°,21315.9,0.7,30)  (10%,21315.9,0.1,30)
’ 0.01854 0.02468 0.0251
7 & S -5 80r 0 4 ol 1 4 57
(100 x 50,100 x 50) Wavelet (db6)  (1077,21503.3)  (10°,21503.3,0.7,20)  (10,21503.3,0.1,20)
’ 0.01813 0.022 0.02306
78S ] B 80 . 89 ) 88
(100 x 50,100 x 50) Wavelet (dbl)  (1075,20056.4)  (10°,20956.4,0.7,30)  (10',20956.4,0.1, 30)
’ 0.01832 0.02431 0.0256
0&S 7479 B 80 . 84
(100 x 50,100 x 50) PCA (10-4,20400)  (107%,20400,0.6,40)  (10~2,20400,0.6,40)
’ 0.01826 0.02571 0.02601
O0&sS 0 94r -1 r90 -1 r95
(100 x 50,100 x 50) ICA (10°,105.268)  (107%,105.268,0.6,10) (107*,105.268,0.1,10)
’ 0.01699 0.01823 0.01942
0&S B 84 . 78 _3 84
(100 x 30,100 x 30) Wavelet (db4)  (1073,20139.2)  (10°,20139.2,0.2,20) (1073, 20139.2,0.1, 20)
’ 0.01822 0.02271 0.02236
0&S 7 . B 82 . 79 73 82
(100 50,100 50y Wavelet (Haar) (1072, 19800.4)  (10°,19800.4,0.3,10) = (10~%,19800.4,0.1,10)
’ 0.01874 0.02041 0.01991
0&S B 83 B 78 _ 73 83
(100 x 50,100 x 50) Wavelet (db2)  (107%,20074.4) (10~',20074.4,0.5,10) (10~%,20074.4,0.1, 10)
’ 0.01829 0.02005 0.02022
0&S ) B 80 . 7 B 85
(100 x 50,100 x 50) Wavelet (db6)  (107,19984.8)  (10°,19984.8,0.3,40)  (10~2,19984.8, 0.7, 40)
’ 0.02598 0.02778 0.02615
0&S ! B 84 B 79 73 84
(100 x 50,100 x 50) Wavelet (dbl)  (107%,20412.5) (107%,20412.5,0.5,10) (10~3,20412.5,0.1, 10)
’ 0.01862 0.02023 0.02013
Average accuracy 83.2143 83 87.8571
Average rank 2.3571 2.4286 1.2143
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existing universum based methods. It is also noticeable from Table and that
the universum based approaches take more computation time as compared to tradi-
tional algorithms such as SVM, LSSVM and TWSVM. This additional time is due to
the incorporation of universum data points which can be traded for the generalization
performance. LSSVM takes very less computation time since it solves a system of
linear equations. It is noticeable in Table and that the existing universum
based approaches viz. USVM and UTSVM which use random averaging for univer-
sum have not performed better than the other algorithms. This is because the seizure
data contains noisy data points, and thus the generated universum data do not reflect
the distribution of data. On the other hand, the proposed approach of selecting the
universum from interictal EEG signals gives better accuracy in most of the datasets.
It is due to the removal of noise in the universum data. This justifies the applicability

of the proposed method for classification of seizure and healthy EEG signals.

One can notice from Table[4.1|that the proposed approach has not performed better
for all the datasets. So, we analyze the comparative performance of the proposed
approach with the existing approaches. The average ranks of SVM, LSSVM, USVM
and proposed USVM on the basis of accuracy is also shown in Table 4.1 One can
notice that the average rank of the proposed USVM is lowest among all the methods.
We perform the Friedman test with the corresponding post-hoc test |172] for the
statistical comparison of the performance of the 4 algorithms using 14 datasets. We
assume all the methods are equivalent under null hypothesis. By applying formula

(2.54)), we get the value of % = 25.4352.

The Fr value is calculated as

(14— 1)(25.4352)
14 x (4—1) — 25.4352

F = 19.9615.

where for 4 methods and 14 datasets, the F-distribution has (4 —1,(4—1)(14—1)) =
(3,39) degrees of freedom. For the significance level at o = 0.05, the critical value of

F(3,39) is 2.8451. Since Fp = 19.9615 > 2.8451, we reject the null hypothesis.

To check the pairwise difference between the proposed and existing algorithms,
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we use the Nemenyi posthoc test using Eq. . For significant pairwise difference
between the methods at significance level of @ = 0.10, the average ranks of the methods
shown in Table should differ by atleast 2.291 4éi+1i) = 1.1179. The proposed USVM
is significantly different from SVM, LSSVM and USVM algorithms.

The accuracy values are shown with the training time for the proposed UTSVM
with TWSVM and UTSVM in Table[d.2] One can observe that the proposed UTSVM
has shown better generalization performance in most of the cases. Table shows
the average ranks of TWSVM, UTSVM and proposed UTSVM based on accuracy
values. The proposed UTSVM has the lowest rank among all the methods. We
further performed the Friedman statistics with the corresponding post-hoc test to find

the significant difference between TWSVM, UTSVM and proposed UTSVM.

The Friedman statistic is computed using Table under null hypothesis. Similar
to proposed USVM, % is calculated as 12.9996. In this case, the Fr value for the
F-distribution with (4 —1,(3 — 1)(14 — 1)) = (2,26) degrees of freedom is 11.266.
For the significance level at a = 0.05, the critical value of F(2,26) is 3.3690. Since
Fr = 11.266 > 3.3690, we reject the null hypothesis. The proposed UTSVM is
significantly different from TWSVM and UTSVM. It is noticeable from Table
and that the proposed UTSVM is showing highest generalization performance as
compared to the existing methods. The highest accuracy for Z & S is obtained as
99% in the case of ICA feature extraction with the proposed UTSVM. For O & S, the
highest accuracy is found with ICA feature extraction technique using the proposed

UTSVM.

Fig. [£.7 illustrates the accuracy comparison of different algorithms for the classifi-
cation of seizure and non-seizure data using different feature extraction techniques. In
Fig. the insensitivity performance of the proposed approach of USVM is shown
for the parameters and C' and €. It can be observed that the proposed USVM gives
high accuracy for higher values of C' and €. The insensitivity performance of the pro-
posed approach with UTSVM is shown in Fig. [£.9] It is evident from Fig. that
the proposed UTSVM gives better generalization performance for lesser values of C'

and e.
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Figure 4.7: Accuracy comparison for classification of EEG signals using different algo-
rithms with RBF kernel. SVM based algorithms for classification on (a) Z & S and (b)
O & S datasets, and TWSVM based algorithms on (c) Z & S and (d) O & S datasets
using different feature extraction techniques.
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In the following section, we present a feature selection algorithm based on uni-
versum support vector machine with application on another brain disorder i.e.,

Alzheimer’s disease.

4.2 Diagnosis of Alzheimer’s disease using univer-

sum support vector machine based recursive

feature elimination (USVM-RFE)

Alzheimer’s disease is one of the most common causes of death in today’s world.
Magnetic resonance imaging (MRI) provides an efficient and non-invasive approach
for diagnosis of Alzheimer’s disease. Efficient feature extraction techniques are needed
for accurate classification of MRI images. Motivated by the work on support vector
machine based recursive feature elimination (SVM-RFE) (Guyon et al., 2002 [1]), we
propose a novel feature selection technique to incorporate prior information about data
distribution in the recursive feature elimination process. In the subsequent sections,
first we describe the data and the feature extraction methods, followed by formulation

of the proposed algorithm with analysis of the results.

4.2.1 Data

All data used in this work were obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in the year
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. The main objective of ADNI is to analyze the effectiveness of neuroimaging tech-
niques like magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical neuropsychological tests to estimate the onset of
Alzheimer’s disease from the state of mild cognitive impairment. For more informa-

tion, visit www.adni-info.org.
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4.2.2 Image acquisition

A total of 150 T1-weighted structural MRI (sMRI) images are downloaded from
ADNI database. Each of the categories i.e., CN, MCI, and AD comprises of 50 sub-
jects. The subjects are within the age range of 60-90 with mean age of 75.83, and
standard deviation of 6.07. The Mini-Mental State Examination (MMSE) score of
subjects is in the range of 17-30 with mean and standard deviation of 26.51+2.88.
The detailed demographics of cohort are given in Table [4.3]

Images of the following specifications are acquired from the ADNI archive:
field strength=1.5 T; description=MP-RAGE; acquisition=3D; pulse sequence= RM;
slice thickness=1.2 mm; flip angle=8 degrees; acquisition plane=sagittal, manufac-

turer=GE medical systems.

Diagnosis Age Gender MMSE

CN 76.65 + 4.30 39M/11F 29.02 + 1.15
MCI 75.23 £ 7.02 26M/24F 26.9 £+ 1.96
AD 75.60 + 6.58 28M/22F 23.62 + 2.24

Table 4.3: Subject demographics.

We also downloaded 817 sMRI images from the ADNI baseline dataset [196]/197]
to verify the applicability of the proposed method.

4.2.3 Voxel based morphometry (VBM)

A frequently used neuroimaging toolbox i.e., Statistical Parametric Mapping
(SPM) version 12 (Wellcome Trust Centre for Neuroimaging, University College Lon-
don, U.K.) is used to perform the VBM analysis. The preprocessed data is used for
three different binary classification tasks i.e., CN vs AD, CN vs MCI, and MCI vs
AD. The scans from each subject category were randomly divided into training and
testing sets of 40 and 10 images respectively.

All raw images are aligned in the same coordinate space by setting the origin of
the raw scans manually to the anterior commissure (AC), and registering with SPM’s

single subject T1 template. The registered images are processed by SPM’s unified
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segmentation routine to segment the images into GM, WM and CSF, and create
the template using DARTEL [198] approach. This template is used to normalize
the images into the Montreal Neurological Institute (MNI) space with modulation.
A Gaussian kernel with full width at half maximum (FWHM) of 8 mm is used for
smoothing. All the images are transformed to a dimension of 121 x 145 x 121 with a

voxel size of 1.5 mm3.

A two sample T-test is used for finding the statistically significant voxels by keep-
ing subject age and gender as covariates in the general linear model (GLM) [199].
The differences of individual head sizes are controlled by introducing total intracra-
nial volume (TIV) as a covariate of no interest [200] using the analysis of covariance
(ANCOVA)-by-subject approach. The T-test analysis is done by using a p-value of
0.05 with family-wise error (FWE) correction, and an extent threshold of 0 adjacent
voxels. The complete approach is shown in Fig. and the specified GLM is given
in Fig. 4.11] The voxels of interest (VOI) retrieved after statistical analysis of train-
ing images are used as masks for specifying voxel coordinates that are significantly
different between subject groups [98]. Figs. and show significant voxels of
CN vs AD, and CN vs MCI analysis respectively.

In some previous works [201,202], all the acquired MRI images were used for
creating DARTEL template. In this work, we use DARTEL pipeline for training and
testing phase separately. This procedure is followed in all the cases i.e., CN vs AD,
CN vs MCI, and MCI vs AD with different features i.e., GM, WM, and CSF. As
a whole, the DARTEL approach is used on 18 sets of data (9 training, 9 testing),
leading to distinct subject specific templates for training and testing. This is as per
real world scenarios where testing images are not available beforehand. The mask
from the training set is applied on the testing images for feature extraction [98].

After extracting significant voxel features from the masked images using SPM, we
applied PCA [9§] and F-score [203] technique for dimensionality reduction and feature
selection respectively. The F-score is calculated for all the features using ratio of the

variance between the classes and within the classes.
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Figure 4.10: VBM image preprocessing pipeline.
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Figure 4.11: GLM design matrix for statistical analysis of gray matter in CN (Group; )
vs AD (Groups).
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(a) GM (b) WM (c) CSF

Figure 4.12: Plot showing significant voxels obtained from VBM analysis for CN vs
AD. 3D illustrations (top) are shown for VOI in the MRI images (bottom).

(a) GM (b) CSF

Figure 4.13: Plot showing significant voxels obtained from VBM analysis for CN vs
MCI. 3D illustrations (top) are shown for VOI in the MRI images (bottom).
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4.2.4 Volume based morphometry (VolBM)

For VolBM analysis, Freesurfer’s recon-all pipeline (version 6.0.1) [204,205] is used
on structural MRI images. Out of 150 MRI images, 1 MCI image failed to process
in Freesurfer. So, feature selection was performed on 149 images. We extracted 23
subcortical tissue volumes (SCV), 3¢ WM tissue volumes (WMV), and 34 cortical
thickness (CT) measures of every subject. To check the performance of the proposed
model on an independent dataset, we downloaded 817 sMRI images from ADNI base-
line dataset [196,/197], out of which 4 images failed to process through Freesurfer
pipeline. Thus, our baseline dataset includes 228 CN, 398 MCI, and 187 AD images.

Thickness measures from both the brain hemispheres are added together to form
the cortical thickness features. A similar approach is used for volumetric features.
The volumetric features are normalized by dividing by TIV of the subjects [204}206].
The variations in neurological features of the subjects are illustrated in Fig. and

the complete list of features obtained from Freesurfer is given in Table [4.4]

4.2.5 Proposed universum support vector machine based re-

cursive feature elimination (USVM-RFE)

The SVM-RFE algorithm lacks the knowledge about the distribution of data.
Moreover, in the recursive process, the SVM classifier eliminates features on the basis
of weights for the maximal margin. In order to incorporate knowledge about the data
distribution, we use universum samples as shown in Fig. [[.2] The resulting universum
based algorithm uses this prior information about distribution of data in the recursive

elimination of features leading to better feature selection.

4.2.5.1 Universum data

The universum data is used to align the classifier with the data distribution. As
shown in Fig. [I.2] the classifier generated by USVM is better aligned to classify the
data points. This helps in the classification of testing data. Without this knowledge

of the data distribution, the SVM classifier only tries to maximize the margin. This
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Figure 4.14: Box plot showing distribution of (a) CT, (b) SCV, and (¢) WMV obtained from VolBM in the subjects.



Table 4.4: Cortical, subcortical, and white matter features with their feature IDs

obtained from VolBM analysis.

Feature ID  Cortical thickness Feature ID Subcortical volume Feature ID White matter volume
1 Bankssts* 35 Third ventricle 58 WM caudal anterior cingulate®
2 Inferior temporal 36 Fourth ventricle 59 WM caudal middle frontal
3 Middle temporal 37 Brain stem 60 WM Bankssts
4 Superior temporal 38 Inferior lateral ventricle 61 WM inferior temporal
5 Temporal pole 39 Lateral ventricle 62 ‘WM inferior parietal
6 Transverse temporal 40 Ventral DC* 63 WM middle temporal
7 Caudal anterior cingulate 41 CSF 64 WM superior temporal
8 Caudal middle frontal 42 CC posterior*® 65 WM superior parietal
9 Cuneus 43 CC mid posterior 66 WM superior frontal
10 Precuneus 44 CC central 67 WM temporal pole
11 Entorhinal 45 CC mid anterior 68 WM transverse temporal
12 Fusiform 46 CC anterior 69 WM cuneus
13 Inferior parietal 47 Accumbens area 70 WM precuneus
14 Superior parietal 48 Amygdala 71 WM entorhinal
15 Isthmus cingulate 49 Caudate 72 WM fusiform
16 Lateral occipital 50 Cerebellum white matter 73 WM isthmus cingulate
17 Lateral orbitofrontal 51 Cerebellum cortex 74 ‘WM lateral occipital
18 Medial orbitofrontal 52 Cerebral white matter 75 WM lateral orbitofrontal
19 Lingual 53 Hippocampus 76 WM medial orbitofrontal
20 Parahippocampal 54 Putamen 7 ‘WM lingual
21 Paracentral 55 Pallidum 78 WM parahippocampal
22 Pars opercularis 56 Thalamus proper 79 WM paracentral
23 Pars triangularis 57 Cortex 80 WM postcentral
24 Peri calcarine 81 WM precentral
25 Post central 82 WM pars opercularis

26 Posterior cingulate 83 WM pars triangularis

27 Precentral 84 WM pericalcarine

28 Pars orbitalis 85 WM pars orbitalis

29 Rostral middle frontal 86 WM posterior cingulate
30 Rostral anterior cingulate 87 WM rostral middle frontal
31 Superior frontal 88 WM rostral anterior cingulate
32 Supramarginal 89 WM supra marginal

33 Frontal pole 90 WM frontal pole

34 Insula 91 WM insula thickness

* Bankssts: Banks of superior temporal sulcus, CC: Corpus callosum, WM: White matter, DC: Diencephalon.

results in reduced generalization performance of the model. In this work, we generated

universum samples using random averaging of data points [20},27].

4.2.5.2 Iterative procedure

In the proposed USVM-RFE, we use the universum data points in each iteration.

This results in selection of important features due to addition of universum constraints.

The universum data points are constrained to lie within an e-insensitive tube as shown

in Fig. [1.2] Since USVM-RFE is a wrapper [207] method, the process of USVM-RFE is

divided into three phases: parameter selection, feature elimination, and classification.

The proposed universum based USVM-RFE algorithm is described in Alg. [4.1]

We used k-fold cross validation for selecting optimal parameters for feature elimi-

nation. Then, the features are eliminated in an iterative manner. Lastly, the classifi-
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Algorithm 4.1 Proposed USVM-RFE

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

Inputs:

: Training data

X = [z1, 29, ...,xl]T

1
2
3:
4: Class labels
5:
6
7
8
9

Y = [yh Y2, .-y ?Jl]T

: Universum data

U= [ul,uz, ...,UT]T

Process:
Find optimal parameters for recursive process using k-fold cross validation
Feature set

S=11,2,..,n]
Feature ranked list
R=][]

REPEAT UNTIL S = ]

Feature selection
X =X(09)
U=U(,»>)

Train SVM classifier using parameters obtained in step 11
a=USV Main(X,Y,U)

Compute the weight vector with dimension of length(S)
I+2r

W= ) Y
Compute lralnking criteria
Ci = (w;)? i=1,2,..,length(S)
Find feature with smallest rank
f=argmin(C)
Update feature ranked list
R =[S(f), R
Eliminate the feature with smallest rank
S=[1:f—1f+1:length(S)]

Output:
Feature ranked list R.
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cation is performed on each of the feature subsets. For computational efficiency, more
than one feature can be eliminated in one iteration in the proposed USVM-RFE. The
proposed USVM-RFE provides global information about data distribution as com-
pared to the greedy approach in SVM-RFE. However, proper selection of universum
is a topic of research [10,20].

The proposed universum based feature selection is useful for applications such as
classification of MRI images, where only few voxels corresponding to specific regions
are helpful in the classification. So, we present the application of USVM-RFE on clas-
sification of Alzheimer’s disease. For identifying brain regions with neurodegeneration,
feature selection is performed on VBM as well as VolBM features. USVM is trained on
the feature sets obtained after each iteration using k-fold cross validation, and tested

on testing data. The feature set with highest accuracy is selected as optimal.

4.2.6 Experimental results

The experiments are carried out on feature sets obtained from VBM as well as
VolBM analysis. For VBM, SPM version 12 is used, while for VolBM, Freesurfer
version 6.0.1 is used to process the images. The softwares used in generation of
2D and 3D brain overlays are: ITK Snap (v3.8.0-beta) [208], Paraview (v5.6.0)
[209], Mricron (www.nitrc.org/projects/mricron) and Mricrogl (v1.0.20180623)
(www.nitrc.org/projects/mricrogl). We used WFU_PickAtlas (v3.0.5b) for se-
lecting ROIs from AAL atlas [210].

The image processing is carried out on a workstation with Windows 10 OS, 64-
bit, running on 2.30 GHz Intel ® Xeon processor, and 128 GB RAM. The optimal
parameters for the recursive process are obtained using 5-fold cross validation in all
datasets. Linear kernel is used in both SVM and USVM for feature extraction as well
as classification. The number of PCA components are chosen so as to account for 99%
of variance in the data. The number of F-score features is selected as 500. In all cases,
the features in training and testing data are normalized to a mean of 0 and standard
deviation of 1 using Z-score [206]. The parameter selection is performed based on the

following settings.
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4.2.6.1 Parameter settings

In some previous works, fixed value of ¢ is chosen for feature selection [1}(117].
However, in this work we used different types of features with varying dimensions. So,
in all the VBM features viz., GM, WM, and CSF, grid search is used for obtaining
the optimal parameters. The values of penalty parameters ¢ = ¢, are selected from
the range {107%,107°,...,10°} for SVM and USVM. This range is selected to avoid
overfitting of classifier [211] for high dimensional datasets. For USVM, number of
universum samples i.e., u is selected from the set {0.1,0.2}, and € is selected from

{0.3,0.5,0.7}.

In the RFE phase of VBM, the features are reduced by percentage (per) of feature
size for computational efficiency [1] using the following criteria:
REPEAT UNTIL (No-of_features > ceil (0.01 x Total_feature))
{

No_of_features = per x No_of _features

if (No-of_features < ceil (0.1 x Total_feature))
per = 0.995;

else if(No_of _features < ceil (0.5 % Total_feature))
per = 0.99;

else (No-of_features < ceil (0.7 Total_feature))
per = 0.98;

}

where cetl is the ceiling function.

In all VoIBM feature sets i.e., CT, SCV, and WMV, ¢ = ¢, is chosen from
{1075,1075, ..., 10} in both feature selection and classification phase. For USVM,
for parameter selection, u is selected from the set {0.1,0.3,0.45}, and € is selected
from {0.6,0.7,0.8}. In the classification phase, for features of different dimensions u
is selected from the set {0.1,0.15,0.35,0.45}, and € is selected from {0.3,0.5,0.6,0.8}.
In the RFE process, the features are reduced one at a time, due to less size of VolBM

feature set.

127



To check the performance of proposed USVM-RFE on other applications, we per-
formed experiments on two UCI [170] biomedical datasets i.e., Wpbc (Breast Cancer
Wisconsin Prognostic), and Wdbc (Breast Cancer Wisconsin Diagnostic). The pa-
rameters c, ¢, are selected by varying values from the set {107°,107%, ..., 10°} for SVM
and USVM. For USVM, the values for v and e are set as 0.3 and 0.5 respectively.
Experimental results on classification of different subject groups i.e., CN, MCI, and

AD are shown for different features sets in the following subsections.

4.2.6.2 VBM features

We performed experiments on feature selection from VBM features obtained from

SPM toolbox for both SVM-RFE and proposed USVM-RFE.

I. CN vs AD:

The comparison of classification accuracy for CN vs AD is presented in Table
for GM, WM, and CSF features sets. It is observable that for GM features, the
proposed USVM-RFE outperforms SVM-RFE w.r.t. accuracy and sensitivity in all
the 7 reduced feature sets. This is a result of prior knowledge in USVM-RFE about
the data distribution. However, the accuracy of USVM-RFE reached a maximum of
90% for 20% features, and then declined in lower dimensional features due to loss of
informative voxels. For WM, both methods have similar performance. In case of CSF,
USVM-RFE performed better for lower dimensional feature set (1% features), while
SVM-RFE is having high accuracy for high dimensional feature set (50% features).

The classification accuracy of SVM and USVM for full feature sets of VBM is
shown in Table 4.6, The optimal parameters for RFE process are also shown. These
parameters are utilized to perform the feature elimination process. Moreover, Table
4.6| also shows the accuracies obtained after feature reduction by PCA, and F-score.
From Tables and [4.6] one can observe that the proposed USVM-RFE performs
better than PCA and F-score in the feature selection.

II. CN vs MCI:
For CN vs MCI, the results for feature selection are shown in Table [L.7] It is
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Table 4.5: Performance comparison of proposed USVM-RFE with SVM-RFE based
on classification accuracy (%) for CN vs AD on reduced VBM feature sets. Bold
values indicate highest accuracy for the dataset, and underlined values show highest
accuracy of the algorithm.

Number of Proposed USVM-RFE SVM-RFE

Features (%) features  Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Gray matter

1 264 80 80 80 70 70 70
5 1323 75 90 60 70 70 70
10 2628 85 90 80 70 70 70
15 3952 85 90 80 75 60 90
20 5304 90 90 90 75 70 80
30 7953 90 90 90 80 80 80
50 13045 90 90 90 75 70 80

White matter

1 26 70 60 80 60 40 80
5 133 70 60 80 75 80 70
10 265 75 80 70 75 80 70
15 398 70 70 70 70 70 70
20 534 70 70 70 70 70 70
30 794 70 80 60 75 80 70
50 1333 70 70 70 70 80 60

CSF

1 18 70 50 90 65 40 90
5 90 65 40 90 65 40 90
10 180 65 40 90 65 40 90
15 269 65 40 90 65 40 90
20 359 65 40 90 65 40 90
30 535 60 40 80 60 40 80
50 895 65 50 80 75 80 70

Table 4.6: Performance comparison of USVM with SVM is shown based on classifi-
cation accuracy (%) for CN vs AD on VBM features. The optimal parameters are
shown in parentheses.

USVM SVM
Features Nfl; Zﬁiﬁ:f Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
(c=cy,€,u) (c)
Gray matter
All features 26524 85 90 80 70 80 60
(1073,0.3,0.2) (1079)
PCA 59 75 80 70 80 90 70
(10°,0.3,0.2) (1071
F-score 500 70 70 70 70 70 70
(1074,0.5,0.2) (1074
White matter
All features 2675 75 90 60 75 90 60
(107°,0.3,0.2) (107%)
PCA 26 60 40 80 65 50 80
(1072,0.3,0.2) (1071
F-score 500 70 70 70 70 70 70
(1074,0.3,0.2) (107%)
CSF
All features 1802 70 60 80 75 70 80
(1074,0.3,0.1) (1074
PCA 23 60 30 90 60 30 90
(10°,0.5,0.1) (10%)
F-score 500 60 40 80 60 40 80
(1074,0.5,0.1) (1074
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Table 4.7: Performance comparison of proposed USVM-RFE with SVM-RFE is shown
based on classification accuracy (%) for CN vs MCI on reduced feature sets of VBM.

Number of Proposed USVM-RFE SVM-RFE

Features (%) features  Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Gray matter

1 64 70 80 60 65 70 60
5 322 75 90 60 70 80 60
10 647 70 80 60 70 80 60
15 969 70 80 60 75 90 60
20 1285 70 80 60 70 80 60
30 1925 70 80 60 70 80 60
50 3179 70 80 60 70 80 60

White matter

1 26 50 20 80 45 10 80
5 133 60 60 60 60 60 60
10 265 65 60 70 65 60 70
15 398 55 30 80 65 60 70
20 534 40 10 70 55 40 70
30 794 50 20 80 45 20 70
50 1333 55 30 80 45 10 80
CSF

1 14 90 100 80 80 100 60
5 70 85 100 70 85 100 70
10 140 85 100 70 80 100 60
15 212 80 100 60 85 100 70
20 281 80 100 60 85 100 70
30 424 85 90 80 85 100 70
50 700 85 100 70 80 100 60

visible that in case of GM, USVM-RFE gives accuracy of 75% with sensitivity of 90%
for lesser features i.e., 5%, as compared to SVM-RFE (15% features). However, for
CSF voxels, highest accuracy of 90% is obtained by proposed USVM-RFE for 1%
features, whereas SVM-RFE obtains lower accuracy (85%) with a higher feature size
(5%). In case of WM also, USVM-RFE has outperformed SVM-RFE in most cases.
Table [4.§ shows the classification results on full feature sets. One may notice that
USVM has performed better than SVM for full features on CSF features. SVM and
USVM have also shown lesser accuracies than PCA and F-score in some cases. This
may be attributed to overfitting of SVM and USVM for high dimensional feature
sets [211]. However, both algorithms have shown improvement on accuracy in the

RFE process.

1. MCI vs AD:

Table [£.9 shows the classification accuracies for MCI vs AD on reduced VBM
feature sets. One can notice that USVM-RFE performs better than SVM-RFE for
lower dimensional features of GM. In case of WM, SVM-RFE performed better than
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Table 4.8: Performance comparison of USVM with SVM is shown based on classifi-
cation accuracy (%) for CN vs MCI on VBM features. The optimal parameters are
shown in parentheses.

USVM SVM
Features Nfl; Zﬁiﬁ:f Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
(c=cy,€,u) (¢)
Gray matter

All features 6478 70 80 60 70 80 60
(107°,0.3,0.1) (107%)

PCA 37 65 50 80 70 50 90
(10%,0.3,0.2) (101

F-score 500 75 90 60 70 80 60
(1074,0.7,0.1) (1073)

White matter

All features 2675 45 10 80 45 10 80
(1073,0.7,0.1) (1073)

PCA 28 55 10 100 55 10 100
(10%,0.3,0.1) (101)

F-score 500 60 60 60 60 60 60
(1073,0.3,0.1) (1073)

CSF

All features 1416 85 100 70 80 90 70
(1074,0.3,0.2) (1074

PCA 22 60 70 50 65 70 60
(10%,0.7,0.1) (101

F-score 500 75 80 70 85 100 70
(1074,0.3,0.1) (1073)

USVM-RFE. This may be attributed to improper universum data generated using
random averaging scheme. Since the MCI vs AD dataset is non-linear in nature,
random averaging may generate improper universum data. In case of CSF, both
SVM-RFE and USVM-RFE have shown low classification accuracy. However, USVM-
RFE has performed better in comparison to SVM-RFE. Moreover, Table [4.10] shows
the performance on the full feature set. It can be seen that USVM performs better
than SVM in most cases. Also, in Table the classification accuracy of MCI vs
AD is low in both SVM-RFE and USVM-RFE. This is attributed to the relatively
difficult classification problem of MCI vs AD in comparison to CN vs AD, and CN vs
MCI. |9§|. The discriminating regions in CN vs AD are more as compared to MCI vs
AD. This is due to similar distribution of data points in MCI and AD subjects [125].

Remark: No significant voxels were found in case of WM features of CN vs MCI,
and all cases of MCI vs AD. Thus, the masks obtained from CN vs AD experiments

were used to select region of interests (ROI) in these cases [98].

131



Table 4.9: Performance comparison of proposed USVM-RFE with SVM-RFE is shown
based on classification accuracy (%) for MCI vs AD on reduced feature sets of VBM.

Number of Proposed USVM-RFE SVM-RFE

Features (%) features  Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Gray matter

1 264 60 50 70 55 40 70
5 1323 65 60 70 55 40 70
10 2628 65 60 70 60 50 70
15 3952 60 50 70 60 50 70
20 5304 60 50 70 60 50 70
30 7953 55 50 60 60 50 70
50 13045 60 50 70 60 50 70

‘White matter

1 26 45 50 40 50 60 40
5 133 55 70 40 50 60 40
10 265 50 100 0 50 60 40
15 398 50 100 0 65 100 30
20 534 50 100 0 65 90 40
30 794 50 90 10 60 100 20
50 1333 55 90 20 65 90 40

CSF

1 18 45 0 90 35 40 30

5 90 40 0 80 40 40 40
10 180 45 0 90 40 50 30
15 269 45 0 90 45 60 30
20 359 40 0 80 45 70 20
30 535 50 40 60 45 70 20
50 895 55 50 60 45 50 40

Table 4.10: Performance comparison of USVM with SVM is shown based on classifi-
cation accuracy (%) for MCI vs AD on VBM features. The optimal parameters are
shown in parentheses.

USVM SVM

Number of

Features features Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
(¢ =cu,€6,u) ()
Gray matter

All features 26524 70 60 80 60 60 60
(107%,0.7,0.2) (107%)

PCA 60 50 30 70 50 30 70
(1075,0.5,0.1) (1072)

F-score 500 65 60 70 60 50 70
(1074,0.3,0.1) (1073)

‘White matter

All features 2675 55 70 40 65 90 40
(107°,0.3,0.2) (1073)

PCA 26 40 50 30 40 50 30
(10°,0.5,0.2) (1071

F-score 500 40 80 0 50 100 0
(10%,0.3,0.1) (10%)

CSF

All features 1802 45 0 90 35 40 30
(107,0.3,0.2) (1073)

PCA 24 35 10 60 35 10 60
(1072,0.3,0.2) (10%)

F-score 500 55 10 100 40 50 30
(10',0.3,0.2) (1072)
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Table 4.11: Performance comparison of USVM with SVM is shown based on classi-
fication accuracy (%) for VolBM features. The optimal parameters for RFE process
using SVM and USVM are shown in parentheses.

USVM SVM
Features Nfl; Z‘tl;::f Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
(¢ = cu, €,1) ()
(a) CN vs AD
CT 34 75 50 100 75 50 100
(1072,0.7,0.45) (1072)
SCV 23 90 90 90 90 90 90
(1072,0.6,0.1) (1072)
WMV 34 50 50 50 40 30 50
(10',0.6,0.45) (10?)
CT + SCV + WMV 91 85 70 100 80 60 100
(1072,0.6,0.3) (1072)
(b) CN vs MCI
cT 34 68.42 7778 60 68.42 7778 60
(1072,0.6,0.1) (1072)
SCV 23 78.95 88.89 70 78.95 88.89 70
(10°,0.8,0.45) (109
WMV 34 84.21 100 70 78.95 100 60
(10°,0.8,0.3) (109)
CT + SCV + WMV 91 84.21 88.89 80 84.21 88.89 80
(10°,0.6,0.1) (109
(c) MCI vs AD
CcT 34 57.89 40 T7.78 57.89 30 88.89
(1072,0.6,0.3) (1072)
SCV 23 73.68 80 66.67 68.42 80 55.56
(1072,0.6,0.45) (1072)
WMV 34 63.16 60 66.67 57.89 40 7778
(10,0.6,0.45) (1071
CT + SCV + WMV 91 63.16 50 77.78 63.16 50 77.78
(1072,0.6,0.3) (1072)

4.2.6.3 VolBM features

For comprehensive analysis of MRI data, VolBM analysis is also used in this work
for extracting features from the MRI images. Experiments are performed on volumet-
ric and thickness measures obtained from Freesurfer toolbox. Table [£.11] shows the
accuracy and optimal parameters of USVM and SVM on classification of CN vs AD,
CN vs MCI, and MCI vs AD on VolBM features. The set of all VolBM features i.e.,
CT, SCV, and WMV are used for feature selection. It is clearly visible from Table
that for all the VolBM features, USVM outperforms SVM in terms of accuracy.

The accuracy of USVM for CN vs AD classification for different feature sets of RFE
process is shown in Fig. [£.15] One can see that accuracy of proposed USVM-RFE is
better than SVM-RFE. Moreover, the variation in accuracy of proposed USVM-RFE
is less than SVM-RFE. This is the result of universum data, which helps the classifier

to follow the data distribution. The classification accuracy and F1 scores on reduced
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Figure 4.15: Comparison of classification accuracy of SVM-RFE and proposed USVM-
RFE on different feature sets in RFE of VolBM features for CN vs AD.
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Figure 4.16: Plot showing comparison of (a) accuracy, and (b) F1 score of SVM-RFE,
and proposed USVM-RFE for classification of CN vs AD using VolBM features.

VoIBM features using optimal parameters are shown in Figs. [£.16] [4.17, and [4.18] One
may observe in Fig. 4.16| (a) that USVM-RFE achieves 100% accuracy in 5 feature

sets for CN vs AD, with lowest feature set having 5% of total features.

Also, the variation of accuracy looks similar in both algorithms with higher accu-

racy in proposed USVM-RFE. The F1 scores follow similar trend as accuracy in Fig.

4.16| (b). For CN vs MCI in Fig. 4.17|(a) proposed USVM-RFE achieves highest accu-
racy of 84.21% for 5% features, while SVM-RFE requires 100% features for achieving

the same accuracy. Fig. [4.17] (b) shows the corresponding F1 scores.

In case of MCI vs AD in Fig. the accuracy of proposed USVM-RFE is not
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Figure 4.17: Plot showing comparison of (a) accuracy, and (b) F1 score of SVM-RFE,
and proposed USVM-RFE for classification of CN vs MCI using VolBM features.
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Figure 4.18: Plot showing comparison of (a) accuracy, and (b) F1 score of SVM-RFE,
and proposed USVM-RFE for classification of MCI vs AD using VolBM features.

better than SVM-RFE in all the cases. This is the result of non-linear nature of MCI

vs AD data shown in Fig. 4.19, leading to generation of improper universum data
not lying between the classes. However, the proposed USVM-RFE has shown highest

accuracy of 73.68% for MCI vs AD with 13% and 15% features. This is better than
SVM-RFE which achieved highest accuracy of 68.42% on 30% features.

We present a formula for calculating score for feature ranking in RFE based meth-
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Figure 4.19: Plot of first two PCA components in VolBM features of CN, MCI, and
AD classes.

ods. The feature score of the i feature is calculated as per the following,
f
SCOT@ Z Tlowest — rzg (43)
7=1

where r;; is the rank of ith feature in j** feature set, Tiwest is the lowest rank
value in largest feature set, and f is the total number of features. By using the
above mentioned formula, more weightage is given to features which survive up to the

smallest feature sets. A discussion on these scores is presented in section [4.2.7.2

4.2.6.4 ADNI baseline dataset

In order to verify the comparative performance of the proposed USVM-RFE with
existing algorithms, we conducted experiments on ADNI baseline dataset [196,/197].
The VolBM features are used to compare the classification performance of the proposed
USVM-RFE with SVM-RFE and TWSVM-RFE.

The comparative performance of the proposed USVM-RFE for classification CN
vs AD is shown in Table .12] It is clearly observable that the proposed USVM-
RFE is performing better than existing algorithms in most of the feature sets. The
highest accuracy obtained by USVM-RFE is 89.2% with a sensitivity of 84.87% for
15% features.
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Table 4.12: Comparison of performance of the proposed USVM-RFE in terms of
accuracy (%) with existing algorithms on ADNI baseline dataset for CN vs AD using
VolBM features.

Tissue features (%) Proposed USVM-RFE SVM-RFE TWSVM-RFE
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
CN vs AD
3 83.6 71.43 94.66 83.2 72.27 93.13 84 72.27 94.66
5 86.4 78.99 93.13 86.4 78.99 93.13 85.2 82.35 87.79
8 84.4 74.79 93.13 82.8 71.43 93.13 84.4 78.15 90.08
10 86.4 78.99 93.13 84.8 77.31 91.6 85.2 77.31 92.37
13 86.8 80.67 92.37 87.2 79.83 93.89 85.2 80.67 89.31
15 89.2 84.87 93.13 86.8 78.15 94.66 83.6 78.99 87.79
20 84.4 76.47 91.6 87.2 78.99 94.66 83.2 73.95 91.6
25 86.8 77.31 95.42 85.2 77.31 92.37 81.6 82.35 80.92
30 86.4 78.15 93.89 86.4 74.79 96.95 82 73.95 89.31
35 88.8 83.19 93.89 85.2 73.95 95.42 81.2 73.95 87.79
40 86.4 74.79 96.95 84.8 73.11 95.42 78.8 79.83 77.86
45 86.8 74.79 97.71 84.4 71.43 96.18 79.6 77.31 81.68
50 86 74.79 96.18 85.6 74.79 95.42 79.2 78.15 80.15

Table 4.13: Comparison of performance of the proposed USVM-RFE in terms of
accuracy (%) with existing algorithms on ADNI baseline dataset for CN vs MCI using
VolBM features.

Tissue features (%) Proposed USVM-RFE SVM-RFE TWSVM-RFE
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
CN vs MCI
3 72.61 86.67 47.79 69.41 75.83 58.09 71.28 67.08 78.68
5 72.34 84.58 50.74 71.28 86.25 44.85 69.68 86.25 40.44
8 69.41 82.08 47.06 71.01 86.25 44.12 69.95 82.5 47.79
10 70.74 76.25 61.03 70.21 82.92 47.79 70.21 82.5 48.53
13 70.74 81.25 52.21 69.95 80.83 50.74 70.74 79.17 55.88
15 72.07 82.92 52.94 69.95 80 52.21 68.35 75.83 55.15
20 72.34 81.25 56.62 70.74 82.5 50 68.62 73.75 59.56
25 70.74 85.42 44.85 71.54 84.17 49.26 68.09 73.33 58.82
30 69.41 82.92 45.59 70.74 87.08 41.91 67.82 86.67 34.56
35 68.88 73.33 61.03 70.74 86.25 43.38 66.49 78.75 44.85
40 69.41 76.25 57.35 69.41 86.67 38.97 67.02 62.08 75.74
45 70.21 78.75 55.15 69.41 86.25 39.71 68.09 76.67 52.94
50 71.28 80.42 55.15 68.62 85.42 38.97 68.88 81.25 47.06

In case of CN vs MCI in Table [£.13] again the proposed USVM-RFE outperfomed
SVM-RFE and TWSVM-RFE in most of the feature sets. Moreover, the highest ac-
curacy of proposed USVM-RFE i.e. 72.61% is obtained for just 3% of total features.
Also, for MCI vs AD in Table [£.14] proposed USVM-RFE performed better than other
algorithms in many of the feature sets. However, the highest accuracy obtained by
proposed USVM-RFE is same as TWSVM-RFE i.e., 71.88%, but with higher sensi-
tivity. However, USVM-RFE is having higher accuracy than TWSVM-RFE in lesser
sized feature sets.

The results for the classification performance of USVM, SVM and TWSVM for all
the features are shown in Table[4.15] One can observe that USVM is performing better
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Table 4.14: Comparison of performance of the proposed USVM-RFE in terms of
accuracy (%) with existing algorithms on ADNI baseline dataset for MCI vs AD using
VolBM features.

. Proposed USVM-RFE SVM-RFE TWSVM-RFE
Tissue features (%) Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
MCI vs AD
3 70.45 36.7 85.6 68.47 24.77 88.07 69.03 0 100
5 70.17 38.53 84.36 69.32 55.05 75.72 63.64 64.22 63.37
8 70.17 40.37 83.54 69.6 39.45 83.13 70.74 17.43 94.65
10 71.88 41.28 85.6 71.59 40.37 85.6 71.88 25.69 92.59
13 71.59 42.2 84.77 68.18 42.2 79.84 68.75 34.86 83.95
15 70.17 46.79 80.66 68.47 44.95 79.01 67.05 33.95 81.89
20 70.74 54.13 78.19 69.89 40.37 83.13 63.92 53.21 68.72
25 71.02 55.05 78.19 66.76 40.37 78.6 62.5 51.38 67.49
30 68.75 54.13 75.31 67.33 38.53 80.25 60.23 52.29 63.79
35 69.89 52.29 77.78 67.05 39.45 79.42 62.5 54.13 66.26
40 70.45 52.29 78.6 67.61 39.45 80.25 65.34 49.54 72.43
45 71.02 54.13 78.6 68.18 44.95 78.6 65.06 52.29 70.78
50 70.74 49.54 80.25 68.18 48.62 76.95 61.65 49.54 67.08

Table 4.15: Comparison of performance of USVM in terms of accuracy (%) with
existing algorithms on ADNI baseline dataset using all VolBM features.

Dataset USVM SVM TWSVM
(Train size, Test size) Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

(¢ =cy,€,u) (¢) (¢)

CN vs AD 87.6 87.2 68
02 1° = a5 p 50
(165 % 91250 x 01) (10-2.06,03) S9! 93.13 (10°2) 78.15 95.42 (10-) 77.31 59.54
CN vs MCI 70.21 . 68.35 63.83 . .
(250 x 91,376 x 91)  (102,0.8,03) 0% 5074 (1072) 83.75 4118 (101 68.75 5515
MCI vs AD 72.73 64.77 58.24 B}
(233 01 32 x91) (1020603 0% 87.65 (00 45.87 73.25 (10-9) 60.55 57.2

than the other algorithms for all the cases. This is due to the introduction of universum

samples, providing prior information about AD data. The optimal parameters used

in the RFE process are selected from Table

4.2.6.5 UCI datasets

Experimental results on classification of cancer patients in Wpbc and Wdbc are
shown in Fig. [4.20l The optimal parameters for RFE process are shown in Table 4.16]
One can notice in Fig. that the proposed USVM-RFE performs better than
SVM-RFE for lower dimensional feature sets. Also, it can be observed that USVM-
RFE recovers to 82.81% accuracy for 13% features immediately after a decline to
accuracy of 65.63%. This is better than SVM-RFE for the same feature sets. Similarly,
better performance is shown by USVM-RFE for Wdbc dataset in Fig. |4.20(b) The
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Figure 4.20: Plot showing comparison of classification accuracy of SVM-RFE, and
proposed USVM-RFE for (a) Wpbc, and (b) Wdbc datasets.

comparison of training time is shown in Table [4.16] It can be seen that USVM takes

more time than SVM. This is due to the inclusion of universum data. The addition

of universum data leads to better generalization performance. So, the training time is

a trade off for classification accuracy.

Table 4.16: Performance comparison of USVM with SVM is shown based on classifi-

cation accuracy (%) for UCI datasets.

USVM SVM
Dataset Accuracy Accuracy
(Train size, Test size) (¢, cuy €, 1) (c)
Time (s) Time (s)
Wpbe 79.69 78.13
(130 x 33, 64 x 33) (10, 1, 0.5, 0.3) (1)
0.3644 0.1396
Wdbc 98.43 97.81
(250 x 30, 319 x 30) (0.01, 0.001, 0.5, 0.3) (1)
1.3505 0.5170

4.2.7 Discussion

In this section, we present the discussion on reduced features obtained from VBM

and VolBM analysis by SVM-RFE, and proposed USVM-RFE for CN vs AD, CN vs
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MCI, and MCI vs AD cases. The different regions of brain affected in Alzheimer’s

disease are illustrated in Fig. [4.21}

== Hippocampus
Amygdala
Parahippocampal gyrus
Fusiform gyrus
Temporal pole middle
Temporal pole superior
Inferior parietal lobule

Figure 4.21: Regions of brain affected in Alzheimer’s disease (AAL atlas).

4.2.7.1 VBM feature selection

In case of CN vs AD, the proposed USVM-RFE has shown better classification
accuracy for less number of voxels as compared to SVM-RFE. The feature set with
least size and highest accuracy is illustrated in Fig. for both the algorithms.
For SVM-RFE, the most overlapping GM regions with AAL atlas from Fig. [4.23
are: amygdala (left), amygdala (right), hippocampus (left), parahippocampal (left),
parahippocampal (right), and hippocampus (right). For proposed USVM-RFE, the
regions from Fig. [4.24] are: amygdala (left), hippocampus (left), parahippocampus
(left), parahippocampus (right), and temporal pole mid (left). This is in accordance
with previous studies .

For CN vs MCI, Fig. shows the regions of increased CSF. The brain regions
proximal to area of increased CSF are given in Fig. and for SVM-RFE and
proposed USVM-RFE respectively. The regions selected by SVM-RFE are: cingulate
anterior (left), temporal pole mid (left), hippocampus (left), temporal pole superior
(right), and parahippocampal (right). For proposed USVM-RFE, the regions are:
cingulate anterior (left), temporal pole superior (right), temporal pole mid (left), tem-
poral pole mid (right), and parahippocampal (right). This is a result of atrophy in
the temporal regions . The CSF volumes of our cohort also support this find-
ing. The mean and standard deviation of CSF volume (mm?) of CN, MCI, and AD
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Figure 4.22: Illustration of reduced GM voxels (VBM) obtained after feature elimi-
nation process of (a) proposed USVM-RFE and (b) SVM-RFE for CN vs AD. The

variation of weights is shown using heat map.

are 1306.43+410.93, 1493.98+388.67 and 1652.78+634.80 respectively. This indicates
that CSF voxels are useful for classification of CN vs MCI. Moreover, the number
of CSF voxels selected by proposed USVM-RFE for highest accuracy are lesser than
SVM-RFE. This helps in localizing the regions with change in CSF volume.

In MCI vs AD, there is significant atrophy in the left temporal lobe as compared
to right in both SVM-RFE and USVM-RFE features as shown in Fig. [£.28] The
regions for voxels selected by SVM-RFE are: amygdala (left), parahippocampal (left),
fusiform (left), hippocampus (left), temporal pole superior (left), and temporal inferior
(left) (Refer Fig. for details). Proposed USVM-RFE selected fewer voxels with
higher classification accuracy as compared to SVM-RFE. The corresponding regions
are: amygdala (left), parahippocampal (left), fusiform (left), temporal pole superior
(left), and hippocampus (left) (Refer Fig. [£.30). Moreover, voxels selected by pro-
posed USVM-RFE are mostly in the left side of brain. This is due to asymmetric
atrophy of left and right side of brain in AD ,. The variation of amygdala
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X,Y,Z mm Label % Cluster Nb Vx Cluster % Label Nb Vx Label

-23 -23 -29 Hippocampus_L 25.39 4785 55.00 932
ParaHippocampal L 25,20 4785 52,02 978

OUTSIDE 17.37 4785 0.00 0

Fusiform L 11.45 4785 10.01 2310

Amygdala L 9.86 4785 90.51 220

Temporal Pole Sup L 4.87 4785 7.65 1285

Temporal Inf L 4.83 4785 3.05 3200

Cerebelum 4_5 L 0.42 4785 0.75 1125
Thalamus_L 0.38 4785 0.69 1100

Lingual L 0.10 4785 0.10 2095

Putamen L 0.08 4785 0.17 1009

Olfactory L 0.04 4785 0.30 280

32 -6 -21 ParaHippocampal R 40.83 2437 37.08 1132
Amygdala R 17.07 2437 70.77 248
Hippocampus_R 16.62 2437 18.06 946

OUTSIDE 14.77 2437 0.00 0

Fusiform R 4.64 2437 1.89 2518

Temporal Pole Sup R 3.00 2437 2.30 1338

Temporal Pole Mid R 1.68 2437 1.46 1187

Cerebelum 4_5 R 1.35 2437 1l.62 861

Cerebelum 3 R 0.04 2437 0.20 207

23 -33 -5Hippocampus R 65. 37 361 10.52 946
OUTSIDE 29.92 361 0.00 0
ParaHippocampal R 4.71 361 0.63 1132

6 -21 12 Thalamus_R B86.22 370 12.73 1057
Thalamus_L 10.54 370 1.50 1100

OUTSIDE 3.24 370 0.00 0

Figure 4.23: Reduced features obtained from SVM-RFE for CN vs AD with GM
(VBM) features.

and hippocampus volume in left and right side of brain in our cohort is shown in Fig.
4311

In most of the cases, GM features provided better accuracy due to significant
atrophy of GM regions in the brain [216]. Fig. illustrates the variation of accu-
racy with feature set for SVM-RFE and proposed USVM-RFE using GM. It can be
seen that the proposed USVM-RFE selects features from all the regions of brain as
compared to SVM-RFE for CN vs AD.

This shows that SVM-RFE is having local information about the dataset in ev-
ery iteration, while proposed USVM-RFE has global information i.e., distribution of
data. Therefore, the selection of discriminative voxels from different regions of brain
is achieved by USVM-RFE. It can be deduced that for classification of Alzheimer’s

disease, optimal features are needed from different regions of the brain.
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X,¥,Z mm Label % Cluster Nb Vx Cluster % Label Nb Vx Label

-23 -23 -29 Fusiform L 49.42 172 1.55 2310
ParaHippocampal L 42.44 172 3.15 978

Cerebelum 4 5 L 6.40 172 0.41 1125

OUTSIDE 1.74 172 0.00 0

-30 3 -21 Amygdala L 31.77 872 53.12 220
Hippocampus_L 30.16 872 11.90 932
ParaHippocampal L 17.55 872 6.60 978

OUTSIDE 15.94 872 0.00 0

Temporal Pole_Sup L 3.67 872 1.05 1285

Fusiform L 0.92 872 0.15 2310

32 -6 -23 Hippocampus_ R 75.00 8 0.27 946
OUTSIDE 25.00 8 0.00 0

24 3 -26 OUTSIDE 46.26 294 0.00 0
ParaHippocampal R 24.49 294 2.68 1132

Fusiform R 18.03 294 0.89 2518
Temporal_Pole_Mid R 10.20 294 1.07 1187

Amygdala R 1.02 294 0.51 248

-23 -33 -3 Hippocampus_L 65.81 313 9.32 932
OUTSIDE 22.04 313 0.00 0
ParaHippocampal L 10.86 313 1.47 978

Lingual L 0.96 313 0.06 2095

Thalamus_L 0.32 313 0.04 1100

30 -6 -17 Amygdala R 100.00 4 0.68 248
-38 -14 -35Fusiform L 52.44 82 0.79 2310
Temporal Inf L 28.05 82 0.30 3200

OUTSIDE 19.51 82 0.00 0

24 -33 -5Hippocampus R 53.26 92 2.19 946
ParaHippocampal R 25.00 92 0.86 1132

OUTSIDE 18.48 92 0.00 0

Lingual R 3.26 92 0.06 2300

27 -29 -26 Cerebelum 4 5 R 58.82 85 2.45 861
ParaHippocampal R 29.41 85 0.93 1132

Fusiform R 9.41 85 0.13 2518

OUTSIDE 2.35 85 0.00 0

-42 3 -20 Temporal Mid L 63.08 65 0.35 4942
Temporal Pole_Sup L 27.69 65 0.59 1285

OUTSIDE 9.23 65 0.00 0

-39 -2 -38 Temporal Inf L 100.00 35 0.46 3200
-35 3 -32 Temporal_ Pole Mid L 42.68 157 3.74 755
Temporal_Mid L 33.12 157 0.44 4942

Temporal Pole_Sup L 15.92 157 0.82 1285

OUTSIDE 7.01 157 0.00 0

Temporal Inf L 1.27 157 0.03 3200

-29 -12 -12 Hippocampus_L 43.07 274 5.34 932
OUTSIDE 39.78 274 0.00 0

Temporal Sup L 8.03 274 0.40 2296

Figure 4.24: Region of interest obtained from the proposed USVM-RFE for CN vs
AD with GM (VBM) features.
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(a) (b)

Figure 4.25: Illustration of reduced CSF voxels (VBM) obtained after feature elimi-
nation process of (a) proposed USVM-RFE and (b) SVM-RFE for CN vs MCI. The
variation of weights is shown using heat map.
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XY,z mm Label % Cluster Nb Vx Cluster % Label Nb Vx Label

27 9 -35 Temporal Pole Sup R 58.33 12 0.22 1338
ParaHippocampal R 33.33 12 0.15 1132

Temporal Pole Mid R 8.33 12 0.04 1187

-6 39 8 Cingulate Ant L 100.00 33 0.99 1400
-20 -15 -14 Hippocampus_L 100.00 7 0.32 932
-35 11 -32 Temporal_ Pole Mid L 72.73 11 0.45 755
Temporal_Pole_Sup_ L 27.27 11 0.10 1285

50 -8 9 Rolandic_Oper R 100.00 2 0.06 1331
36 12 -30 Temporal Pole Sup R 100.00 2 0.06 1338
-36 € -29 Temporal Pole_Sup L 100.00 1 0.03 1285
33 3 -15 OUTSIDE 100.00 1 0.00 0
24 0 -27 ParaHippocampal R 100.00 1 0.04 1132

Figure 4.26: Region of interest obtained from SVM-RFE for CN vs MCI with CSF
(VBM) features.

XY,z mm Label % Cluster Nb Vx Cluster % Label Nb Vx Label
27 9 -35 Temporal Pole Sup R 83.33 6 0.16 1338
Temporal Pole Mid R 16.67 6 0.04 1187
-6 36 1l2Cingulate Ant L 100.00 6 0.18 1400
-38 11 -30 Temporal Pole Mid L 100.00 1 0.06 755
24 0 -27 ParaHippocampal R 100.00 1 0.04 1132

Figure 4.27: Region of interest obtained from USVM-RFE for CN vs MCI with CSF
(VBM) features.

3.0
2.7
24

Figure 4.28: Illustration of reduced GM voxels (VBM) obtained after feature elimi-
nation process of (a) proposed USVM-RFE and (b) SVM-RFE for MCI vs AD. The
variation of weights is shown using heat map.
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X,Y,Z mm Label % Cluster Nb Vx Cluster % Label Nb Vx Label

-23 -23 -29 Fusiform L 30.36 1617 8.97 2310
OUTSIDE 19.73 1617 0.00 0
ParaHippocampal L 13.61 1617 9.49 978
Hippocampus_L 11.32 1le6l7 8.28 932
Temporal Pole_Sup_ L 10.88 1617 .78 1285
Amygdala L 10.27 1617 31.83 220
Temporal Inf L 3.15 1617 0.67 3200
Cerebelum 4_5_L 0.68 1617 0.41 1125

-23 -32 -12 ParaHippocampal_L 65.00 200 5.61 978
OUTSIDE 16.50 200 0.00 0
Hippocampus_L 13.00 200 1.18 932
Lingual L 3.00 200 0.12 2095
Fusiform L 2.50 200 0.09 2310

21 -33 -6 ParaHippocampal R 35.71 42 0.56 1132
OUTSIDE 30.95 42 0.00 0
Lingual R 21.43 42 0.17 2300
Hippocampus_R 11.90 42 0.22 946

-39 -2 -38 Temporal Inf L 51.99 377 2.58 3200
OUTSIDE 32.36 377 0.00 0
Fusiform L 11.94 377 0.82 2310
Temporal Pole_Mid L 3.71 377 0.78 155

27 -15 -35OUTSIDE 36.13 119 0.00 0
ParaHippocampal R 33.61 119 1.49 1132
Fusiform R 21.85 119 0.44 2518
Cerebelum 4_5 R 8.40 119 0.49 861
18 3 -39 OUTSIDE 100.00 3 0.00 0
14 -15 11 Thalamus_R 100.00 26 1.04 1057

-56 3 -35 Temporal Mid L 47.73 44 0.18 4942
Temporal_ Inf L 40.91 44 0.24 3200
OUTSIDE 9.09 44 0.00 0
Temporal Pole Mid L 2.27 44 0.06 755

39 8 -36 Temporal Pole Mid R 94.74 19 0.64 1187
Temporal_ Inf R 5.26 19 0.01 3557

-66 -42 3 Temporal Mid L 91.67 48 0.38 4942

OUTSIDE 8.33 48 0.00 0
69 -41 -14 Temporal Mid R 82.00 50 0.39 4409
Temporal Inf R 18.00 50 0.11 3557

-56 6 -23 Temporal Mid L 87.50 16 0.12 4942
OUTSIDE 12.50 16 0.00 0

-65 -42 15 Temporal Sup L 100.00 4 0.07 2296

-66 -32 14 Temporal Sup L 100.00 11 0.20 2296

-59 -33 2 Temporal Mid L 100.00 5 0.04 4942

-50 -6 -42 Temporal Inf L 50.00 6 0.04 3200
OUTSIDE 50.00 6 0.00 0

54 -21 -6 Temporal_Sup_R B82.76 29 0.32 3141
Temporal Mid R 17.24 29 0.05 4409

Figure 4.29: Region of interest obtained from SVM-RFE for MCI vs AD with GM
(VBM) features.
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X,y,Z mm Label % Cluster Nb Vx Cluster % Label Nb Vi Label

-23 -23 -29 Fusiform L 75. 64 431 5.95 2310
ParaHippocampal L 11.60 431 2.16 978

OUTSIDE 8.82 431 0.00 0

Temporal Inf L 2.09 431 0.12 3200

Cerebelum 4 5 L 1.86 431 0.30 1125

-30 3 -21 Temporal Pole_ Sup_L 36.68 428 5.15 1285
OUTSIDE 35.05 428 0.00 0
Hippocampus_L 17.99 428 3.49 932

Amygdala_ L 10.05 428 B8.25 220
ParaHippocampal L 0.23 428 0.04 978

-21 -32 -11 ParaHippocampal L 76.03 121 3.97 978
OUTSIDE 14.88 121 0.00 0
Hippocampus_L 6.61 121 0.36 932

Fusiform L 2.48 121 0.05 2310

-39 -2 -38 Temporal Inf L 50.00 240 1.58 3200
OUTSIDE 45.83 240 0.00 0

Temporal Pole Mid L 3.75 240 0.50 755

Fusiform L 0.42 240 0.02 2310

-27 -2 -39 Fusiform L 59.38 64 0.69 2310
Temporal_ Inf L 39.06 64 0.33 3200

OUTSIDE 1.56 64 0.00 0

27 -20 -33 OUTSIDE 100.00 1 0.00 0
69 -41 -14 Temporal Mid R 100.00 14 0.13 4409
-53 -2 -33 Temporal Inf L 66.67 12 0.11 3200
Temporal Mid L 33.33 12 0.03 4942

-50 -6 -42 Temporal Inf L 50.00 8 0.05 3200
OUTSIDE 50.00 8 0.00 0

-57 6 -21 Temporal Mid L 100.00 1 0.01 4942
-66 -30 15 Temporal Sup L 100.00 1 0.02 2296
-59 3 2 Rolandic_Oper_L 100.00 2 0.09 990

Figure 4.30: Region of interest obtained from USVM-RFE for MCI vs AD with GM
(VBM) features.

CN MCI AD ———
4000 [ Right
-
£ 3000
Y
5 2000
s — g
1000 % n é

Amygdala
Hippocampus
Amygdala
Hippocampus
Amygdala
Hippocampus

Figure 4.31: Box plot showing variation in left and right side of brain in CN, MCI,
and AD.
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4.2.7.2 VolBM feature selection

The volumetric features selected by SVM-RFE and proposed USVM-RFE for CN
vs AD are shown in Table[4.17 It can be seen that amygdala volume is having highest
rank in both SVM-RFE and proposed USVM-RFE. This is due to atrophy of amygdala
in AD subjects [217].

Other highest ranking features for SVM-RFE and USVM-RFE are parahippocam-
pal thickness, entorhinal thickness, hippocampus volume, and inferior parietal thick-
ness, which are in accordance with previous studies [218219]. This also correlates

with our VBM based feature analysis. The decrease in measures of these regions is

illustrated as box plots in Fig. |4.31]

However, one can see that the proposed USVM-RFE assigned higher rank to hip-
pocampus volume than inferior parietal thickness as compared to SVM-RFE. This
justifies better feature selection by proposed USVM-RFE, as hippocampus is one of
the prominent features for CN vs AD classification [220]. For CN vs MCI, Table
shows that inferior parietal thickness is the most discriminative feature for SVM-RFE,
while USVM-RFE ranked parahippocampal thickness as the most optimal. Other
studies also suggested thinning of parahippocampal gyrus [212] in MCI patients.

For MCI vs AD, Table[d.19[shows the most significant features as superior temporal
and entorhinal thickness by proposed USVM-RFE and SVM-RFE respectively. This
was also shown in previous studies [219,221]. One can observe that parahippocampal
thickness is selected as discriminative feature in all cases i.e., CN vs AD, CN vs MCI,
and MCI vs AD. The reason for this is the fact that parahippocampal region encloses

the brain structures affected in Alzheimer’s disease [222].

From the results, it is evident that the proposed USVM-RFE gives higher classi-
fication accuracy than SVM-RFE due to its prior knowledge about the distribution
of data. Moreover, the features selected by proposed USVM-RFE are in accordance

with the literature, justifying its effectiveness.
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4.3 Summary

In this chapter, we presented two novel universum based SVM algorithms for
epilepsy and Alzheimer’s disease. For epilepsy, the proposed method of selection
of universum points has proved to be a promising approach for the classification of
healthy and seizure EEG signals. Also, the effect of outliers on the universum is re-
duced by using the universum from the EEG dataset itself i.e., the seizure free EEG
signal. The distribution of interictal (seizure free) signals provides prior information
about the distribution of healthy and seizure signals and also lies in between the two
classes. Based on the experimental results, it is evident that the proposed approach
using UTSVM is better in comparison to the baseline SVM based algorithms for EEG
signal classification.

On the basis of our analysis on Alzheimer’s disease, the proposed USVM-RFE has
performed better than SVM-RFE in most cases for feature selection and classification
of CN, MCI, and AD subjects. Moreover, we presented an approach of using VBM
on training and testing phase separately. This is useful in real world scenarios. We
provided an analysis of the feature extraction methods for MRI images i.e. voxel
based and volume based features. One of the important advantages of the proposed
universum based algorithm is the global or holistic approach in feature selection as
compared to SVM-RFE. This provides robustness to USVM-RFE in each iteration of
feature elimination.

The efficacy and better generalization performance of universum based algorithms
is clearly evident from this chapter. However, to deal with noisy data in universum
learning, the next chapter presents novel formulations for universum based SVM al-

gorithms using fuzzy memberships for the data points.
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Chapter 5

Fuzzy universum support vector machines

In this chapter, we present fuzzy based approaches for universum SVM algorithms.
First, in section we present fuzzy based USVM algorithmg|, termed as fuzzy uni-
versum support vector machine (FUSVM), and fuzzy universum twin support vector
machine (FUTSVM). Moreover, we present a least squares based algorithm, known
as fuzzy universum least squares twin SVM algorithm (FULSTSVM)E] in section ,

whose solution is obtained by a system of linear equations.

5.1 Fuzzy based USVM algorithms

In 2017, Fan et al. [55] used entropy based fuzzy membership for support vector
machine (EFSVM) in case of class imbalance problem. This entropy based approach
is used to give higher fuzzy membership to the data points which lie at the boundary
of the two classes. Motivated by this concept, we have used entropy-based fuzzy
membership in the proposed FUSVM and FUTSVM. In the proposed entropy-based

fuzzy approach for universum, the universum points are assigned fuzzy membership

'B. Richhariya, M. Tanveer. A fuzzy universum support vector machine based on infor-
mation entropy. In M. Tanveer and Ram Bilas Pachori, editors, Machine Intelligence and Signal
Analysis, volume 748, pages 569-582. Springer Singapore, 2019, DOI: https://doi.org/10.1007/
978-981-13-0923-6_49.

[Scopus Indexed]

2B. Richhariya, M. Tanveer, Alzheimer’s Disease Neuroimaging Initiative. A fuzzy univer-
sum least squares twin support vector machine (FULSTSVM). Neural Computing and Applications,
Springer, 2021, DOI: https://doi.org/10.1007/s00521-021-05721-4/

[SCI Indexed Impact Factor: 5.606]
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based on their uncertainty of belonging to any one class. The universum points are
calculated using the random averaging scheme and then higher membership is assigned
to the universum points based on their entropy values. The universum points which lie
in between the two classes have higher entropy values as compared to the points lying
nearer to one of the classes. In datasets involving noise and outliers, the universum
data generated by random averaging do not lie in between the two classes. By the
use of a fuzzy-based approach for the universum data, the effect of outlier universum

points is reduced, leading to higher generalization performance.

5.1.1 Proposed fuzzy USVM (FUSVM)

The optimization problem of FUSVM is written as

l 2r
. 1
min w4 e &+ e S fn
i=1 j=1

w,b,&,n
st yi(whé(z) +b) >1 &, (5.1)
yj(wh¢(x;) +b) > —e —n;,
&>0,m>0,Vi=1,2,...,1,¥j=1,2,...,2r, (5.2)

where [ is the total number of data points, ¢ > 0,¢, > 0 are penalty parameters, &
and 7; are slack variables, € is the parameter for the e-insensitive tube, ¢ : R" — RP
is the function mapping from n to p dimension where p > n, and r is the number of
universum samples.

The dual formulation of Eq. (5.2)) is written by applying the K.K.T. conditions as

1+2r 1 I+2r [+2r
mgx Z UiQt — 5 Z Z aiajyiyj¢(xi)T¢(xj)
i=1 i=1 j=1

st. 0<a;<c,u;=1,Vi=1,2,...,1,

OSOQ‘Sfl'cu,/JJZ':—E,Vi:l+1,l+2,...,l—|—2’r,
1+2r

> agy; =0, (5.3)
=1
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where «;, a; > 0 is the Lagrange multiplier.

For any data point x € R", the classifier is written as

fla) = sgn(gaiyil((xi, z) + b). (5.4)

5.1.2 Proposed fuzzy universum twin support vector machine

(FUTSVM)

By introducing weights to the universum data points based on their information

entropy, the non-linear FUTSVM comprises the following minimization problems,

_ 1
min —HK(Xl, DT)w1 + 6161”2 + clegfl + CufETh
w1, b1, &1,m 2

sit.  — (K(Xy, D")w; + esby) + & > ey,
(K (U, DMYwy + euby) +m1 > (=1 + €)ey,

51 Z 07 ™m 2 07 (55)

i 1
min §||K(X2, DT)wQ + 6262”2 + 0261T§2 + cufuTng

w2, b2, §2,M2
s.t. (K(Xl, DT)U)Q + elbg) + 52 Z €1,
— (K (U, DT )wy + eubs) + 12 > (—1 + €)eq,

20, 17220, (5.6)

where K(X;, DT) is the kernel matrix, D = [X;;X,], f, is the vector containing
the fuzzy membership values, ¢;(i = 1,2) and ¢, are positive penalty parameters,
&, ni(i = 1,2) are slack variables, and e;(i = 1,2) is a vector of ones of suitable
dimension.

In comparison to UTSVM, the fuzzy-based approach of FUTSVM is helpful in
reducing the effect of outliers in the universum data. In FUTSVM, appropriate mem-
bership value is given to the universum points based on their information entropy.

This approach reduces the effect of noise on the universum and results in better gen-
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eralization performance.

By applying the K.K.T. necessary and sufficient conditions, the Wolfe duals of Eqs.

(5.5) and (5.6)) are obtained as

1
max es oy — §(oz1TN —pFOY M M) M (NTay — OFjuy) + (e — Del g

a1, (U1

st. 0< g <c¢, 0 < fucy, (5.7)

1
max eJ g — §(Q§M —pEOYINTN) Y (M ay — O o) + (e — 1)el o

a2, (2

st. 0< ag <cy, 0< g < fuca, (5.8)

where M = [K(Xy, D7) e;], N = [K(Xa, D) 5], and O = [K(U, D7) e,]; au, aq,
11, po are the vectors of Lagrange multipliers.
The classifying hyperplanes K (27, DT)w, + b; = 0 and K (27, DT)w, + by = 0 are

constructed from the parameter values of w;(i = 1,2) and b; using the following Eqs.

and (10,

wq

o |~ —(M" M)~ (NTay — 0" ), (5.9)
1
Wa T Ary—1 T T
) =(N"N)" (M ay — O py). (5.10)
2

To avoid the ill-conditioning in the calculation of inverse (MT M)~ and (NTN)~1,
we add a regularization term 61 to the matrices in (5.9) and (5.10) as (MTM +61)7*
and (NTN + 6I)~! to make them positive definite where § is a small positive value.

Here, I is an identity matrix of appropriate dimension.

Each new data point is classified using Eq. (2.10)).
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5.1.3 Calculation of fuzzy membership

In this work, we used random averaging method for selecting the universum data.
However, the strategy of random averaging gives equal importance to all the universum
data points. There is no knowledge about the suitability of each of these generated
universum data points for use in universum learning. Therefore, a selection strategy

is needed to remove the data points which are less suitable for universum learning.

Motivated by Fan et al. |55, we used a fuzzy membership approach for the univer-
sum data points in this work. In the proposed approach, the universum data points are
eliminated based on their fuzzy membership values. The fuzzy membership values are
calculated based on the information entropy of the universum data points. The fuzzy
membership calculation based on information entropy helps to identify those points
which are having highest uncertainty of belonging to one of the two classes. These are
the data points with the highest information entropy. Due to this selection criteria,
we get the universum data points lying in the region of high uncertainty w.r.t. their
class labels. This is very much desired in universum learning, since the universum
data do not belong to any of the binary classes. This is how proper information about
the prior distribution is provided by universum data points. Therefore, by using the
proposed approach, we obtain the universum data points which lie in between the data

points of the binary classes. The universum points obtained by using this approach

have been utilized in the proposed FUSVM and FUTSVM algorithms.

The fuzzy membership values for the universum data points are calculated as per

the following:

(i). Calculate the information entropy of the universum data points based on K-
nearest neighbour (KNN) approach using Euclidean distance. The probability
value of the universum data point is calculated based on the class label of its

neighbours.

(ii). Assign the universum data points to 10 subsets in decreasing order of entropy
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values [55]. The formula for information entropy is as follows:

E = —pyin(ps) — p-In(p-), (5.11)

where p, and p_ are the probabilities of a data point to belong to the positive

and negative class respectively, and [n is the natural logarithm.

(iii). The fuzzy membership value is calculated as

f@)=1—=k(n; — 1), (5.12)

where k£ = 0.05 is the fuzzy parameter and n, is the i** subset, i = 1,2, ..., 10.

The proposed approach of assigning fuzzy membership based on information en-
tropy gives more weight to those universum points which are lying in between the two
classes. In case of universum data with outliers, this fuzzy-based approach is useful

in order to reduce the effect of outliers on the SVM classifier.

5.1.4 Experimental results

In this section, to check the effectiveness of the proposed algorithms, we have
performed numerical experiments on benchmark datasets with comparisons to the
baseline methods.

For FUSVM and FUTSVM, the value of K for KNN is chosen as 5. For FUSVM,
USVM, FUTSVM and TWSVM the value of € is chosen from {0.1,0.3,0.5,0.6}. For
all the methods RBF kernel is used, and the value of p is calculated using Eq. .
To reduce the computational cost of the parameter selection, we set ¢ = ¢ = ¢ = ¢,
and chosen according to subsection for all the algorithms. For USVM, FUSVM,
UTSVM and FUTSVM, the universum is calculated using random averaging scheme,
and the size of the universum is taken as 30% of the size of training data. The
results are shown in Tables and for the proposed FUSVM and FUTSVM in
comparison to existing algorithms for prediction accuracy and training time, with the

corresponding ranks on accuracy.
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Table 5.1: Performance comparison of proposed FUSVM with SVM and USVM.

SVM USVM Proposed FUSVM
Dataset Accuracy (%)  Accuracy (%) Accuracy (%)
(Train size, Test size) (c, 1) (¢, i, €) (¢, p,€)
Time (s) Time (s) Time (s)
German 76 77.5 77.5
(400 x 24, 600 x 24) (10',6.80536)  (10°,6.80536,0.1) (10°,6.80536, 0.3)
’ 0.3027 3.7708 3.872
Cleveland 80.95 81.63 82.99
(150 % 15 147w 13)  (1045.26173)  (10°,5.26173,0.1)  (10°,5.26173,0.3)
’ 0.0365 0.5113 0.5453
Tonosphere 89.55 87.06 89.05
(150 % 53 Y 3y (0438631) (10°43863.0.0)  (10°,435631,0.)
’ 0.0377 0.5274 0.546
Transfusion 82.41 82.66 84.17
(350 w4308 w 4) (107 2077.88) (10°,207788,03) (107, 2077.88,0.6)
’ 0.192 2.8532 2.916
Cime 74.2 69.37 74.51
(500 x 0,973 x gy (107,13:4139) (10',13.4130,03)  (10%,13.4139,0.1)
’ 0.4126 5.779 6.0853
Heart-stat 77.78 81.11 80
(180 % 13 00 x 13)  (1085982)  (10%85982.05)  (10% 85.982,0.5)
’ 0.053 0.7478 0.7644
Monk3 83.22 84.21 83.88
(50 % 75007y (107 163314) (10°,163314,0.0) (10, 163.314,0.1
’ 0.1036 1.4406 1.5038
Ndelk 89.29 93.29 93.71
(102,571.157)  (10%,571.157,0.3)  (10%,571.157,0.3)
(400 32,700 x 32) 0.269 3.865 3.9502
P Indians 80.38 77.51 78.71
(350 x 8,418 w g)  (107,222028) (10°,2.22028,01)  (107,2:22928,0.5)
’ 0.1966 2.8562 2.9653
Wdbe 94.98 95.61 95.92
(10%,944.407)  (10°,944.407,0.3)  (10°,944.407, 0.6)
(250 30,319 x 30) 0.111 1.4658 1.5308
Veast] 75.34 76.39 75.97
(600 x 8. 9368 w g (10%0-41735) - (10°,0.41735,01)  (10°,0.41735,0.1)
’ 0.6244 8.5181 8.7554
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Table (contd.)

SVM USVM Proposed FUSVM
Dataset Accuracy (%) Accuracy (%) Accuracy (%)
(Train size, Test size) (e, ) (¢, i, €) (¢, iy €)
Time (s) Time (s) Time (s)
Rinle 90.48 89.81 91.05
prey (109,0.766998)  (10°,0.766998,0.6)  (10%, 0.766998, 0.6)
(200 2,100 x 2) 0.066 0.923 0.9578
Yeast3 94.31 95.43 95.33
(500 x 8 %1 g (10°,0411172) (10°,0411172,0.1)  (10°,0.411172,0.1)
’ 0.4341 5.9856 6.1587
Monk?2 67.63 58.76 67.63
(150 7517y (07 151849)  (101,151.849,03)  (10°,151.849,0.5)
' 0.0748 0.5508 0.5779
Average accuracy 82.61 82.17 83.6
Average rank 2.4643 2.0357 1.5

Table 5.2: Performance comparison of proposed FUTSVM with TWSVM and
UTSVM.
TWSVM UTSVM Proposed FUTSVM
Dataset Accuracy (%) Accuracy (%) Accuracy (%)
(Train size, Test size) (c1, ) (c1, py€) (c1, iy €)
Time (s) Time (s) Time (s)
German 72 72 72
! (1074,6.80536) (107%,6.80536,0.1)  (10~*,6.80536,0.1)
(400 > 24,600 x 24) 0.0911 0.131 0.2365
Bupa or liver 70.48 69.52 71.43
disorders (107%,66.1988)  (10',66.1988,0.6) (10!,66.1988,0.6)
(240 x 6,105 x 6) 0.0183 0.0357 0.068
Cleveland 75.51 75.51 76.19
(107,5.26173) (1072,5.26173,0.5) (102, 5.26173,0.6)
(150 x 13, 147 13) 0.009 0.0148 0.0274
Tonospher 92.54 91.54 91.54
(150 :j 3‘?,))81’20‘3’16; 33) (1072,4.38631) (10~2,4.38631,0.5)  (1072,4.38631,0.6)
’ 0.0094 0.0145 0.0288
Transfusion 82.16 82.41 82.66
(350 % 4,308 o 4) (1075,2077.88)  (10°,2077.88,0.3) (10°, 2077.88, 0.3)
’ 0.0387 0.0712 0.1417
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Table (contd.)

TWSVM UTSVM Proposed FUTSVM
Dataset Accuracy (%) Accuracy (%) Accuracy (%)
(Train size, Test size) (c1, ) (c1, 1y €) (c1, s €)
Time (s) Time (s) Time (s)
Heartostat 81.11 77.78 80
(180 13,00 x 13) (10783982 (107,85.982,0.5) (10°, 85.982,0.6)
’ 0.0121 0.0183 0.0376
Monk3 57.89 68.42 78.29
(250 % 7304 x 7) (1075,163.314)  (10% 163.314,0.3) (10%, 163.314, 0.3)
’ 0.018 0.0388 0.0782
Ndelk 90.14 93.14 93.43
(1071,571.157)  (10°,571.157,0.5)  (10°,571.157,0.6)
(400 > 82,700 > 32) 0.0559 0.103 0.1971
Pima-Indians 75.12 77.27 77.27
(350 % 8418w §)  (10%2:22028)  (10%,2.22928,0.6) (101,2.22928, 0.5)
’ 0.0374 0.0724 0.1474
Wdbe 95.92 91.85 95.92
(250 x 30, 319 x 50) (10',944.407)  (107,944.407,0.6)  (10°,944.407,0.1)
’ 0.0212 0.0362 0.0768
Vehicle2 98.43 97.76 97.98
(100 x 18,446 x 15)  (10°-269:333)  (101,260.333,0.1)  (10",269.333,0.1)
’ 0.0579 0.1151 0.21
Vehicle2 98.43 97.76 97.98
(100 x 18, 446 15 (10%:209333)  (10,269.333,0.1)  (10",269.333,0.1)
’ 0.0579 0.1151 0.21
Yeast1 75.84 75.3 75.3
(600 x 8. 2368 x g)  (10%041735)  (107,0.41735,0.5)  (1071,0.41735,0.5)
’ 0.1632 0.2959 0.4888
Yeast3 94.41 93.09 94.61
(500 x 8. 984 x 8) (1072,0.411172)  (10°,0.411172,0.1)  (1073,0.411172,0.6)
’ 0.1349 0.247 0.3805
Breast cancer 98.5 98.8 98.8
wisconsin (1074,12.5202)  (107%,12.5292,0.1)  (10~2,12.5292, 0.6)
(350 x 9,333 x 9) 0.0774 0.1154 0.1935
Average accuracy 82.87 83.17 84.67
Average rank 2.0714 2.3929 1.5357
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From Tables[5.I|and [5.2] it is evident that the proposed FUSVM and FUTSVM are
giving better generalization performance in comparison to other baseline algorithms.
It is also reflected in the average ranks based on accuracy shown in these tables.
However, the proposed methods (FUSVM and FUTSVM) are taking some additional
computational time due to the fuzzy calculation. This additional time can be traded

for the improved generalization ability of the model.
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Figure 5.1: Insensitivity performance for classification of FUSVM is shown in (a) and
(b), and for FUTSVM in (c) and (d) to the user specified parameters (c,€) on real
world datasets using RBF kernel.

The insensitivity analysis for both FUSVM and FUTSVM is shown in Fig.
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for the parameters ¢ and €. One can observe from Fig. that FUSVM gives bet-
ter accuracy for larger values of ¢. However, the proposed FUTSVM shows better
generalization performance for lesser values of c.

The next section presents a fuzzy based approach in a least squares based twin
SVM model using universum data. The algorithm is robust w.r.t. noisy data, and
also requires less computation time. The proposed fuzzy based approach results in an

noise insensitive as well as efficient model, which is discussed in the following section.

5.2 Proposed fuzzy universum least squares twin

support vector machine (FULSTSVM)

In universum based algorithms, all the universum data points are not equally
important for the classifier. To solve these problems, a novel fuzzy universum least
squares twin support vector machine (FULSTSVM) is proposed in this work. In
FULSTSVM, the membership values are used to provide weights for the data samples
of the classes, as well as to the universum data. Further, the optimization problem of
proposed FULSTSVM is obtained by solving a system of linear equations. This leads
to an efficient fuzzy based algorithm.

In the next subsection, we present the formulation of the proposed FULSTSVM,
and the fuzzy function used in the proposed algorithm. The proposed algorithm is
motivated by the approach used in RFLSTSVM-CIL [25] for removing the effect of
outliers. In proposed FULSTSVM, the fuzzy memberships are calculated for the data
samples belonging to the classes, as well as to the universum using fuzzy membership

matrices as described below.

5.2.1 Linear FULSTSVM

The formulation of proposed FULSTSVM for the linear case is described using
optimization problems (5.13) and (5.14). In the objective function of the primal

problem (|5.13|), we use three diagonal matrices represented by .S; containing the fuzzy
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memberships of the data points of i*" class. The memberships of the data points are
calculated on the basis of distance from their respective class centres.

We also add a regularization term in the objective function to include the structural
risk minimization principle (SRM) principle. The constraints are similar to the UL-
STSVM formulation described in the previous subsection. Fig. [5.2] shows a pictorial

representation of the proposed approach.

W1Tx+b1 =0 WzTX+bz =0

o © °
® @
@
Q@
@
B, , B Class 1
;.-": pA A Class 2
Outliers @ Universum

Figure 5.2: Universum data with noise.

. 1 c1 C3 c
—1S1(X b)|1? + =[1S9& |1* + = 210 4+ 2||Sun |2
wl,gll,lg?,wl 2|| 1(Xqwy +e1by)[]” + 5 126117 + 2(||”LU1|| +b7) + 5 | Sutbn ||

st. — (X2w1 + €2b1) + fl = €9,

Uwy + e,by + 1 = (=1 + €)ey, (5.13)

: 1 o C4 Cy
oy in §||52(X2w2 + esby)|]? + §|15152H2 + 5(Hw2|\2 +b3) + EHSM/&HQ

sit. Xjws + e1by + & = ey,

— (Uwy + eybe) + 1y = (=1 + €)ey, (5.14)

where S;, S, are diagonal matrices containing fuzzy membership values of data samples

belonging to the classes and universum respectively. &;,);, are the slack variables, and

164



¢;, ¢, are positive penalty parameters, ¢ = 1,2. The parameter for the insensitive zone

is €, while ¢;, © = 3,4 are the parameters for regularization.
Rewriting the objective functions using the values of the error variables,

.1 c
min o ||S1(Xywr + eaby)|* + 5 [[S2(Xaws + eaby + e2)]?

w1,b1

c Cu
+ 5l 4+ 6) + S 8u(=(Uwn + eubr) + (=1 + e[, (5.15)

o1 c
min 51152()(2102 + e2b)]]> + 52“51(—()(11112 + e1bs) + €1)]?

wz,b2

c Cu
5 (lwal® + B3) + S 1Su(Uwz + euba + (=14 eu)[. (5.16)

By setting the gradient of QPP (5.15)) w.r.t. w; and b; equal to 0, and solving we
get

czwi + (51X1)T(51(X1w1 +e1b1)) + C1(S2X2)T(52(X2w1 + eaby + €2))

— o (S U (Su(—(Uwy + eub1) + (=1 + €)e,) = 0, (5.17)

Cgbl + (51€1>T(Sl (Xlwl + 61[)1)) -+ Cl(Sgeg)T(SQ(ngl + €2b1 + 62))

— cu(Suel) T (Sy(—(Uwy + eyby) + (=14 €)ey) = 0, (5.18)

Rewriting Eqgs. (5.17) and (5.18)) with u; = [w; b;]7 and combining, we get

csuy + VIVuy + e W Wuy + e W Syey + o2 Zuy + ¢, 27 S,(1 — €)e, = 0. (5.19)

Rearranging the terms and solving, we get

[wy by]T = —(VIV + ceWIW + csl + e, 27 Z) " Hea W Saey + o 27 Sy (1 — €)ey),
(5.20)

where V' = [S1X; Sieq], W = [Se Xy Saes], and Z = [S,U Sye).
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Similarly, using the procedure for Eq. (5.16)) and solving, we get

[wy by)T = (WIW + VIV + eyl + e, Z7 Z) eV Sier + e ZT Sy (1 — €)e).
(5.21)

A new data point z is classified using the decision function in Eq. (2.11]).

5.2.2 Non-linear FULSTSVM

The formulation of non-linear FULSTSVM is written as

. 1 c c Cu
min = ||Sy(K(Xy, DM )wi + e1by)|* + 18261 |2 + = (lwn | + b3) + —||Sutn |
w1,b1,€1,01 2 2 2 2

sit. — (K(Xg, DM)wy + egby) + & = ey,

KU, DMYwy + euby + 11 = (=14 €)ey, (5.22)

. 1 c c Cy
min S [[So(K (X, DT )ws + exbs)[” + = [S1&1” + T (w2l + 83) + = [1Suths|?
w27b27§27w2 2 2 2 2

s.t. K(Xl, DT>UJ2 + 61b2 + fz = €1,

— (K (U, DM )wy + eyby) + by = (=1 4 €)ey, (5.23)

where K (X;, DT) is the kernel matrix, D = [X1; X»|, S;, S, are diagonal fuzzy mem-
bership matrices of data points in the classes and universum respectively, i = 1, 2.

Rewriting the objective functions using the constraints, we get

. 1 c
min §||51(K(X1> Dhw; + erby)]|* + §1H52(K(X27 DT)w; + esby + e2) ||

w1,b1

c Cu
+ §(||w1||2 + b3) + §||Su(—(K(U, DDYw; +euby) + (=14 e)ey)||?,  (5.24)

1 c
min 5\!52(K(X2a DTYwy + e2b,)|” + 52\!51(—([(()(1: D)wy + e1by) + €1) ||

waz,b2

5l +83) + SIS (K (U, DT ywy + euby + (<1 + ). (5.25)
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The parameters w; and b; are obtained by setting the gradient of QPP ((5.24]) w.r.t.

wy and by equal to 0, and solving we get,

[wy by]T = — (MTM + e NTN + 31 + cuOTO)f1 (clNT5262 + ¢,078, (1 — e)eu),
(5.26)

where M = [SlK(Xl,DT) 5161], N = [SQK(XQ,DT) 5’262}, and O =
[S.K (U, DT) S,e,|. Similarly, using Eq. (5.25), we get

[wy by]" :(NTN + eoMTM + g1 + cuOTO)_l(chTSlel + ¢,07 8, (1 — e)eu).
(5.27)

For a new data point, similar to linear case, the class is assigned based on the class
of the nearest hyperplane using Eq. (2.10). In the following subsection, we present
the fuzzy membership function used in the proposed FULSTSVM.

5.2.3 Fuzzy membership function

The proposed FULSTSVM utilizes a fuzzy function inspired by [41]. The follow-
ing fuzzy function keeps the range of fuzzy memberships in the range (0.5, 1]. The

membership function is described as

flo)=1— 0.5(%), (5.28)

where z; is a data point belonging to class j with centre ¢;, ¢ = 1,...,m;,j = 1,2.
The variable 7; is the largest distance from the class centre of data points of class j,
and p is a very small positive value to avoid division by zero.

The range of fuzzy memberships in the above mentioned fuzzy function is chosen
as (0.5, 1]. This is to keep significant contribution of majority of the data points in
the formation of the classifier. Moreover, the proposed FULSTSVM also gives fuzzy
memberships to the universum data points. The contribution of most universum data

points is required for providing prior information about the data, which is achieved
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by this function. Moreover, the contribution of outliers is reduced accordingly. This
approach is in contrast to the approach proposed in FSVM [41], where the fuzzy

memberships are chosen in the range (0,1].

5.2.4 Time complexity

The time complexity of TWSVM is 2 x O(m/2)3 i.e., O(m)3?/4, where m is total
number of data points [12]. This is the time complexity of solving the QPPs, which
is a computationally intensive task. Moreover, TWSVM involves two matrix inverses
having a complexity of O(n)?, where n is the dimension of the matrix [167]. Similarly,
UTWSVM has time complexity of O(m + 2u)3/4, where u denotes the number of
universum data points.

On the other hand, the formulation of LSTSVM involves solution of linear equa-
tions using two matrix inverses. Therefore, the computation time of LSTSVM is lesser
than TWSVM and UTSVM in Table [5.3] Similarly, ULSTSVM involves two inverses
with additional universum data. The time complexity of proposed FULSTSVM is sim-
ilar to ULSTSVM, with additional complexity for fuzzy membership function. The
complexity of fuzzy membership is O(m). Hence, the computation of FULSTSVM is
more than ULSTSVM, but the additional time is O(m), which is insignificant w.r.t.
cubic complexity of inverse calculation in FULSTSVM and ULSTSVM.

5.2.5 Experimental results

In this section, we perform numerical experiments, and show the comparative anal-
ysis of the results obtained on benchmark datasets. We also present two biomedical
applications viz. Alzheimer’s disease and breast cancer to show the utility of the
proposed FULSTSVM. The experiments are performed on a PC running on 64 bit
Windows 10 operating system, with 2.30 GHz Intel® Xeon processor, and 128 GB of
RAM with MATLAB R2017a environment.

168



5.2.5.1 Parameter settings

For experiments on real world datasets, the parameters are selected as follows:
Penalty parameters are set as ¢; = ¢ = ¢,, and ¢3 = ¢4. The range for the penalty
parameters, and p is same as in subsection [3.1.5l The parameter € is selected from
{0.2,0.4,0.6,0.8}. The universum is generated by averaging the samples randomly
from the data [20,27]. The training and testing data is chosen as 50% of total samples.
For large scale datasets, we use fixed value of the hyper-parameters [31158]. Therefore,
the value of ¢; = ¢ = ¢, is fixed as 10, and c3 = ¢4 is set as 1072, € is selected as 0.7,
and p is chosen as 2 for all the algorithms.

In biomedical datasets, we used 150 structural MRI (T1) images from the ADNI
database. The pre-processing and other specifications of the MRI images are same
as in [£.2.2] For breast cancer, the BreakHis histopathological dataset is utilized [223]
in this work. A total of 314 histopathological breast tissue images include a be-
nign condition i.e., adenosis (ADN), and a cancer i.e., ductal carcinoma (DC). The
histopathological images are converted to gray level, and features are extracted using
wavelet transform (Daubechies-4) up to 3 levels of decomposition. The approximation

and detail coefficients are concatenated to form the feature vector [224].

5.2.5.2 Real world data

The results on 18 real world benchmark datasets are presented in Table [5.3] For
comparison, we used TWSVM |[12], UTSVM [27], LSTSVM [18], and ULSTSVM [71]
algorithms. One can observe in Table that the proposed FULSTSVM obtained the
highest accuracies in 11 datasets. FULSTSVM outperformed the existing algorithms
by obtaining an average rank of 1.8056 on accuracy values. This is due to the use of
fuzzy memberships for all data points in the proposed FULSTSVM. It is noticeable
that the proposed FULSTSVM achieved highest accuracy of 98.54% for Breast cancer
wisconsion dataset with LSTSVM. However, ULSTSVM achieved a lesser accuracy of
98.25%, due to equal weighting to all universum data points in ULSTSVM.

One can observe in Table that the training time of proposed FULSTSVM is
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Table 5.3: Comparative performance of proposed algorithm with existing approaches
for classification on real world benchmark datasets. Accuracy is in percentage, and

average rank is calculated on accuracy.

TWSVM UTSVM LSTSVM  ULSTSVM Proposed
Datesot f12] 7] f13] [71] FULSTSVM
(Size) Accuracy Accuracy Accuracy Accuracy Accuracy
(Cb ,U/) (Ch 122 6) (Cl7 M) (C17 C3, €, ,U) ((:17 C3, €, /’L)
Time (s) Time (s) Time (s) Time (s) Time (s)
BeoliOol ve.s 93.39 95.04 93.39 95.04 95.04
((3(2)46 5 1‘; (1075,2%)  (107%,2%,0.6) (107°,25) (1075, 1071,0.2,2%)  (1075,1072,0.2,2%)
0.2566 0.2598 0.0221 0.0261 0.0388
95.81 98.2 97.6 98.8 98.8
ECOh(gg; i 71*2V)S*‘) O (10-4,2%) (105,24,04) (107,25  (10°,101,0.6,2°)  (10°,1072,0.6,2°)
0.0794 0.0781 0.0321 0.0364 0.0444
. 98.04 98.04 97.06 94.12 99.02
ECOIE'Q%QZ'i"%*Vbj (1073,2%)  (1074,25,0.4)  (10%,25)  (1072,107°,0.4,2%)  (1072,1075,0.6,2°)
0.0881 0.0898 0.0118 0.0129 0.0161
. 93.81 94.69 97.35 92.92 94.69
ECOh'(gffj%)VSﬁ"r’ (1072,2%)  (1072,25,0.4)  (10%,2%)  (1071,107°,0.6,2°)  (10° 107, 0.6,2)
0.0332 0.0379 0.0141 0.0157 0.019
el ve 5 94.12 94.12 94.12 95.1 96.08
CO(;OQ y é)vs* (1075,2%)  (1074,25,0.8)  (10%,2%)  (10°,107%,0.6,2%)  (10°,1077,0.4,2)
0.0274 0.0384 0.0155 0.018 0.0189
. 91.07 91.07 94.64 93.75 93.75
ECOI&%?’:*;)S*?"5 (107%,2%)  (107%,2%,0.4)  (10%,2%)  (1071,107°,0.4,25)  (10',107%,0.2,25)
0.0295 0.0333 0.0137 0.0156 0.0177
Clased 94.44 95.37 94.44 95.37 97.22
(214 % 9) (107°,29)  (1071,2%,0.2) (107°,29)  (1071,107%,0.6,2')  (10°107%,0.6,2!)
0.0341 0.0304 0.0127 0.0108 0.0192
Vehiclo 1 74.06 73.82 73.82 72.88 73.82
(846 x 18) (1074,2%)  (1071,2°,0.8)  (1074,25)  (107%,107°,0.6,2%)  (10~,107%,0.2,2)
0.2701 0.3207 0.2116 0.2364 0.2319
Velicle? 96.7 98.11 98.11 98.11 98.11
(846 x 18) (1073,2%)  (1072,2%,0.6)  (1072,25)  (10°,107%,0.6,25)  (10~1,107%,0.6,2°)
0.2824 0.243 0.1469 0.2063 0.2338
Pima Indims 75.84 76.1 74.81 74.29 78.96
‘?71681; ;)n (107°,2%)  (1075,2°5.0.8) (107°,25)  (1075,107°,0.2,2°)  (10',10',0.6,2°)
0.1783 0.1807 0.1164 0.1264 0.1369
Veast3 94.35 93.41 93.67 93.81 94.21
(14§Zk>< 8) (1071,2°)  (10%,22,0.6)  (1072,20)  (1072,107°,0.2,2°)  (10%,10%,0.8,272)
0.6316 0.7756 0.463 0.5962 0.495
VeastLvaT 92.61 93.04 92.61 93.48 93.48
(igg XVS) (1071,271)  (1071,20,0.4)  (10°,27Y)  (1072,107%,0.4,272) (1072,1073,0.4,272)
0.0933 0.079 0.0434 0.0471 0.0593
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Table (contd.)

TWSVM UTSVM LSTSVM ULSTSVM Proposed
Dataset f12] 7] [18 [71] FULSTSVM
(Size) Accuracy Accuracy Accuracy Accuracy Accuracy
(clnu‘) (017/‘L76) (CI7I'L) (61703767/‘[’) (C17C3,67 lu‘)
Time (s) Time (s) Time (s) Time (s) Time (s)
. 97.44 96.15 94.87 95.51 96.15
EC(O;lOlli?‘?’;% (1071,2%)  (10°,2°,0.4)  (1073,272)  (1072,1071,0.2,2!)  (1077,10°,0.2,271)
0.0364 0.0428 0.01876 0.0206 0.0244
Yeast5 96.64 96.64 96.5 96.5 96.77
(1484 x ) (10°2%)  (107%,272,0.2) (1075,2°1) (1075,1075,0.4,2°1) (10~4,10%,0.6,2"2)
0.805 0.7354 0.4878 0.5705 0.5929
Cleveland 81.21 76.51 81.21 81.88 83.22
vean (1071,24)  (1072,23,0.8) (10,24 (102,103,0.6,2%)  (1071,107%,0.6,2%)
(297 x 13)
0.0289 0.0319 0.0172 0.0194 0.0254
Transfusion 78.93 78.93 81.07 82.67 81.87
(?45 ;154(; (1073,25)  (1073,2°,0.2)  (107%,25) (10 10',0.4,2%) (10%,10',0.4,2%)
0.2164 0.2377 0.1115 0.1207 0.1559
Breast cancer 98.25 98.25 98.54 98.25 98.54
wisconsin (1074,2%)  (1074,2%,0.2)  (10°,25) (10°, 10, 0.8, 2%) (10%,102,0.4,2%)
(682 x 9) 0.1431 0.1971 0.0855 0.095 0.1408
Riple 90.58 91.05 91.21 91.05 91.05
(1258 XYQ) (10°,271)  (10%,2°1,0.4)  (10°,271)  (10%,10%,0.8,27%)  (1072,107%,0.4,27")
0.5155 0.5511 0.3014 0.3378 0.4951
Average accuracy 90.96 91.03 91.39 91.31 92.27
Average rank 3.5556 3.2222 3.3056 3.1111 1.8056

lower than TWSVM and UTSVM algorithms. This is because TWSVM and UTSVM
solve a pair of QPPs, which is computationally expensive. On the other hand pro-

posed FULSTSVM solves a system of linear equations. However, the training time of

FULSTSVM is higher than LSTSVM and ULSTSVM due to the fuzzy memberships.

5.2.5.3 Statistical significance

In order to prove the statistical significance of the proposed FULSTSVM for gen-
eralization performance, we perform the Friedman and Nemenyi posthoc test [172].

The Friedman test is performed using the average ranks of the algorithms from
Table [5.3] Here, we first assume that all the algorithms are not significantly different,

as the null hypothesis. We calculated the x% value as 13.6151.
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The Fr value is obtained as

(18 — 1)(13.6151)

= — 3.9643.
18 x (5— 1) — 13.6151

F

In this case, the F-distribution has (5 — 1, (5 — 1)(18 — 1)) = (4,68) degrees of
freedom. Therefore, the critical value for F'(6,150) at o = 0.05 level of significance
is 2.5066. Since Fp = 3.9643 > 2.5066, we reject the null hypothesis. Thus, there is
significant difference between these methods.

Next, for pairwise difference, we use the Nemenyi posthoc test [172] to check pair-
wise difference between proposed FULSTSVM and existing algorithms. The critical

difference (CD) for our case at av = 0.10 level of significance is 2.459 56(5;;;) = 1.296.

The pairwise difference of the average ranks should be greater than CD for signifi-
cance. Table shows the pairwise significant difference between the methods based
on average ranks. One can observe that proposed FULSTSVM is significantly different
from TWSVM, UTSVM, LSTSVM, and ULSTSVM algorithms.

Table 5.4: Significant difference between the proposed FULSTSVM and existing al-
gorithms in pairwise comparison.

Significance TWSVM | UTSVM | LSTSVM | ULSTSVM
Proposed FULSTSVM Yes Yes Yes Yes

5.2.5.4 Insensitivity analysis

To check the effect of hyper-parameter values on the accuracy of the proposed
FULSTSVM, we present the insensitive analysis. The insensitivity performance of

FULSTSVM is shown for varying values of ¢y, i, and € hyper-parameters in Fig. [5.3]

Figs. [5.3(a)| and [5.3(b)| show the change in accuracy for different values of ¢; and

. One can observe that accuracy of proposed FULSTSVM is higher for lower values

of ¢q, and higher values of . The variation in accuracy for ¢; with € is shown in

Figs. p.3(c)|and |5.3(d)} The parameter € is not affecting the accuracy in a significant

manner. However, here also the accuracy of FULSTSVM is higher for lesser values of

the hyper-parameter ¢;. This also justifies the parameter selection in the experiments.
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Figure 5.3: Insensitivity analysis of proposed FULSTSVM for ¢; and p in (a) and (b),
and for ¢; and € in (¢) and (d) on real world benchmark datasets.

5.2.5.5 Biomedical data

In this section, we present the results on classification of Alzheimer’s disease and
breast cancer datasets. The results for these applications are shown in Table One
can observe that the proposed FULSTSVM performs better than baseline algorithms
in most of the cases. This is reflected in the average rank based on accuracy. The pro-
posed FULSTSVM obtained lowest average rank of 2.5. The accuracy of FULSTSVM
is higher than other algorithms for classification of AD vs MCI shown in AD_MCI,
which is a difficult classification problem .

Moreover, for breast cancer data i.e. adenosis vs ductal carcinoma, the proposed

FULSTSVM obtains highest accuracy of 84.18%. The better average rank of proposed
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Table 5.5: Comparative performance of the proposed and baseline algorithms on
Alzheimer’s and breast cancer datasets. Accuracy is in percentage.

TWSVM UTSVM LSTSVM ULSTSVM Proposed
[12] [27] [18] [71] FULSTSVM
Dataset Accuracy Accuracy Accuracy Accuracy Accuracy
(Clau) (017/1'7€> (cl7ﬂ) (61763767N) (61703767/“)
Time (s) Time (s) Time (s) Time (s) Time (s)
80 80 77.5 75 72.5
CN_AD (1071,2%)  (1071,2%,0.2) (107°,21) (10',10%,0.8,2%) (107°,10%,0.2,2%)
0.255 0.2427 0.0105 0.0149 0.0255
69.23 66.67 69.23 71.79 69.23
CN_MCI (1075,2%)  (1072,2%,0.8) (107°,2%) (1071,107%,0.2,25) (10°,1073,0.2,2%)
0.0311 0.0328 0.0062 0.0081 0.0109
53.85 58.97 48.72 48.72 66.67
AD_MCI (1075,2%)  (1071,2°,0.2) (107%,2%) (1072,107°,0.8,27%) (107°,107%,0.6,2%)
0.094 0.0677 0.006 0.0054 0.0094
83.54 83.54 83.54 82.28 84.18
ADN_DC (1075,2%)  (107%,2*,0.4) (107°,2%) (1075,10°,0.2,2%)  (107°,1071,0.2,2°)
0.2538 0.2968 0.0732 0.0939 0.1072
Average rank 2.625 2.875 3.375 3.625 2.5

FULSTSVM for accuracy can be attributed to the use of fuzzy membership with
universum data. It leads to prior information for the model, with less sensitivity
to outlier data points of the classes, as well as the universum. This implies the

applicability of the proposed FULSTSVM for biomedical applications.

5.2.5.6 Large scale data

In order to check the performance of the proposed FULSTSVM on large datasets,
we used the Skin segmentation dataset from UCI repository [170]. For comparison,
we used two other efficient algorithms viz. LSTSVM and ULSTSVM. The results
are shown in Table [5.6] It is observable that the proposed FULSTSVM is showing
higher accuracy on most of the datasets. This is because FULSTSVM removes the
effect of outliers in the generation of universum data, whereas ULSTSVM gives equal
importance to all the universum data points. Moreover, the proposed FULSTSVM
also gives proper weighting to the data points of the binary classes, where LSTSVM

174



Table 5.6: Classification performance of the proposed and baseline algorithms on large
scale datasets. Accuracy is in percentage.

LSTSVM ULSTSVM Proposed

(18 71] FULSTSVM
Dataset 3 ]
Accuracy Accuracy Accuracy
Time (s) Time (s) Time (s)
. 93.56 97.8 97.76
Skin-bk ) 9937 5.7513 6.1476
. 95.26 97.64 97.88
Skin-10k 55 g=99 24.0887 24.4975
. 97.03 98.8 98.91
Skin-20k 7 5216 104.539 105.941
. 97.74 99.23 99.25
Skin-30k 945 199 243.475 247.076
. 98.6 99.47 99.53
Skin-d0k 07 591 453.43 548.742

gives equal to weights to all the data points. However, the time is the least in case of
LSTSVM, because there is no universum data in LSTSVM. The time is slightly higher
in FULSTSVM as compared to ULSTSVM due to the calculation of fuzzy membership
values. However, the additional time in FULSTSVM is not significant as discussed in

section in terms of time complexity.

5.3 Summary

In this chapter, for dealing with noisy data in universum learning, we have proposed
three novel fuzzy based SVM algorithms. We proposed a fuzzy based approach for
USVM and UTSVM algorithms which is useful in the classification of data with noise
and outliers. The proposed FUSVM and FUTSVM have shown better generalization
performance for most of the datasets. This fuzzy based approach for universum helps
in giving prior information to the data in an effective manner. The use of information
entropy of the universum points is helpful in giving optimum membership values to

the universum data points.
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Moreover, we proposed a more efficient fuzzy based learning algorithm, termed as
fuzzy universum least squares twin support vector machine (FULSTSVM). The pro-
posed algorithm gives prior information about data distribution to the classifier, and
also provides fuzzy membership to the data points and universum. Proposed FUL-
STSVM also performed better on large sized datasets in terms of accuracy, showing
its scalability on large datasets. Results on applications i.e. Alzheimer’s disease and
breast cancer clearly show the applicability of the proposed FULSTSVM for healthcare
data.

However, the calculation of fuzzy memberships involved in the works of this chapter
incur additional computation time. Moreover, in universum based algorithms, there
is a drawback of higher training time due to the additional universum data. To
address the issue of computation complexity in universum learning, we present efficient

universum based SVM algorithms for classification problems in the next chapter.
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Chapter 6

Efficient universum twin support vector

machines

In this chapter, we present some novel formulations for improving the efficiency
of universum based SVM algorithms. Each of these proposed formulations introduce
some important ideas to improve the performance of universum based algorithms on
classification tasks. Section presents a novel angle based approach for universum
learning termed as angle based universum least squares twin support vector machine
(AULSTSVM)T] In section we present an efficient least squares based algorithm
with universum data, known as universum least squares twin parametric-margin SVM
(ULSTPMSVM)E]. Lastly, section presents an improved version of universum twin
SVM using regularization, abbreviated as [TUTSVM]

'B. Richhariya, M. Tanveer, Alzheimer’s Disease Neuroimaging Initiative. An efficient angle
based universum least squares twin support vector machine for pattern classification. ACM Trans-
actions on Internet Technology (TOIT), ACM, 2021, DOI: https://doi.org/10.1145/3387131.
[SCI Indexed Impact Factor: 3.135]

2B. Richhariya, M. Tanveer, Alzheimer’s Disease Neuroimaging Initiative. Universum least
squares twin parametric-margin support vector machine. In International Joint Conference on Neural
Networks (IJCNN), pages 1-8. TEEE, 2020, DOIL: https://doi.org/10.1109/IJCNN48605.2020.
9206865
[Scopus Indexed, Core rank: A]

3B. Richhariya, A. Sharma, M. Tanveer. Improved universum twin support vector machine. In
2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages 2045-2052. IEEE, 2018,
DOI: https://doi.org/10.1109/SSCI.2018.8628671.

[Scopus Indexed]
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6.1 An efficient angle based universum least
squares twin support vector machine for pat-

tern classification

Universum based support vector machine (USVM) incorporates prior information
about the distribution of data in training of the classifier. This leads to better gen-
eralization performance, but with increased computation cost. Various twin hyper-
plane based models are proposed to reduce the computation cost of universum based
algorithms. Khemchandani et al. [225] proposed an angle based twin support vector
machine (ATWSVM), and angle based least squares twin support vector machine (LS-
ATWSVM). Motivated by this approach, we present an efficient angle based universum
least squares twin support vector machine (AULSTSVM) for classification. This is a

novel approach of incorporating universum in the formulation of least squares based

twin SVM model.
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Figure 6.1: Classification of data points by the proposed AULSTSVM.

The geometrical representation of the proposed approach is shown in Fig. [6.1 In
contrast to TWSVM and LSTSVM where twin hyperplanes are proximal to the binary

classes, in proposed AULSTSVM one hyperplane remains at minimum distance from
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the universum data points, while other hyperplane remains at minimum distance from
the data samples of the binary classes. The objective of the proposed AULSTSVM is to
minimize the angle () between the two hyperplanes. By this approach, the universum
plane provides prior information about the data distribution to the classifier.

In contrast to ATWSVM and LS-ATWSVM, where the angle between the twin
hyperplanes is maximized, AULSTSVM minimizes the angle between the twin hy-
perplanes. This is due to introduction of the idea of universum hyperplane in
AULSTSVM. In the proposed approach, the angle is minimized by maximizing the
dot product of the normal vectors, i.e., wlw,. The following subsections present the

formulations of the proposed AULSTSVM for the linear and non-linear cases.

6.1.1 Linear AULSTSVM

There are two optimization problems in AULSTSVM, where the first QPP (6.1])
constructs a hyperplane proximal to universum data, while the second QPP (6.2))
constructs the classifier. A regularization term i.e., $(|jw|* +b7) is added to control

the model complexity, as well as to remove the ill-conditioning of the matrices [33].

The optimization problems of linear AULSTSVM are written as

) c 1
min (w4 03) + 5 |Uwi + eubi||* + ese] &1 + cseqmy
wi,b,é,m 2 2

s.t. — (X1w1 + 61b1) = 517

X2w1 + 62[)1 ="M, (61)

. c c c
min 52(”102|’2 +b3) + ;H&HZ + §6H772H2 — c7(w] wy + biby)

wa,b2,82,m2

s.t. Xjwy + e1by — e; = &,

X2w2 + €2b2 + €o = T2, (62)

where ¢; > 0, « = 1,...7 are positive parameters, w;, ¢ = 1,2 represent the weight

vectors, and &;,m;, © = 1,2 represent the slack variables.
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The objective function in QPP (6.1) minimizes the distance of universum data
points from the universum hyperlane, while keeping the data points of the binary
classes as close as possible. QPP solves the optimization problem using the lin-
ear loss function, making the classifier less sensitive towards outliers. Consequently,
the computation cost of the proposed AULSTSVM is reduced in comparison to algo-
rithms like ULSTSVM, where quadratic loss is used for all the data points (Egs. [2.30
and . Moreover, in QPP , the objective function minimizes the distance of
classifying hyperplane from the binary classes, while minimizing the angle between
the two hyperplanes. This is a novel formulation for least squares based SVM models

by including information about data distribution using an angle based approach.

The unconstrained optimization problem (UOP) for Eq. (6.1]) is written as

c 1
L1 :El(leHQ + b%) + §||Uw1 + €ub1||2 — 0361T(X1w1 + elbl) + C5€g(X2UJ1 + €2b1>.

(6.3)
Similarly, the UOP for Eq. (6.2)) is given as
C2 2 2 Cq 2, Ce 2
L2 :§(Hw2|| + b2) + §||X1w2 + €1b2 — 61” + EHXQIUQ + 62b2 + 62”
— 07(wfw2 + b1b2)- (64)

Taking the gradient of L; (Eq. w.r.t. wy; and b; and equating to 0, we get

clwy + UT(U’UJl + eubl) — 03X1T61 -+ C5X2T€2 = 0, (65)

c1by + el (Uwy + eubr) — cseler + cseles = 0. (6.6)
Rearranging the terms in Eqs. (6.5]) and (6.6)), and solving for w; and by, we get

crug + OTOuy — csH ey 4+ c¢5GTey = 0,

Uy = (OTO + 01])_1(63HT61 — C5GT62), (67)

where H = [X; e1], G =[Xy €], O =[U e¢,], and u; = [w; b;]7. Similarly, setting
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the gradient of Ly (Eq. [6.4) w.r.t. wy and by equal to 0, we get

CoW29 + C4X1T(X1w2 + Glbg — 61) + CGX2T<X2U}2 + €2b2 + 62) — C7W1 = 0, (68)

Coby + cael (Xwy + e1by — €1) + cged (Xowy + eaby + €3) — c7by = 0. (6.9)
Rearranging the terms in Egs. & and solving for uy = [wy by)T, we get
uy = (s H'H + cGTG 4 ol ) HegH ey — csGh ey + cruy). (6.10)

The decision function for a new data point z is given as
f(z) = sgn(wi x + by). (6.11)

Note: The decision function of the proposed AULSTSVM (Eq. [6.11)) is different
than that of UTSVM, LSTSVM and ULSTSVM (Eq. [2.11)).

The algorithm for linear AULSTSVM is described in the following Alg. [6.1]

Algorithm 6.1 Linear AULSTSVM
1: Inputs:
1.1 Training samples X € R", training labels Y € {1, —1}.
2: Generate universum data:
2.1 Select samples randomly from binary classes in matrices A and B.
2.2 Compute the averages of samples as U = (A + B)/2.
3: Select optimal parameters:
3.1 Obtain optimal values for parameters i.e., ¢; > 0, ¢ = 1,...7 using k-fold
cross validation on training data.
4: Construct plane for universum:
4.1 Generate plane for universum data i.e., wiz + b; using Eq. .
5: Construct classifier:
5.1 Generate classifying plane i.e., wlz + by using Eq. .
6: Classification of testing data:

6.1 Assign labels to the data points based on sign of decision function in Eq.
(6.11]).
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6.1.2 Non-linear AULSTSVM

The optimization problems of non-linear AULSTSVM are described as

. c 1
min o ([wl* +83) + S| K(U, D )wy + eubi]|* + csef & + csesm
wi,bném 2 2

s.t. — (K(X1, D")w; + e1by) = &,

K(Xy, DYw; + exby = 11, (6.12)

. c c c
min 52(”’602|’2 +b3) + §4H€2HZ + §6H772H2 — cr(w] wa + biby)

w2,b2,82,m2

st.  K(X1,DDwy + eiby —ep = &,

K (X3, DT)w;y + exby + €3 = 1, (6.13)

where ¢; > 0, + = 1,...,7 are parameters, w;, 1 = 1,2 is weight vector, &,n;, 1 = 1,2
are slack variables, and K (X;, D7) is the kernel matrix, where D = [A; B].

The UOP for Eq. (6.12)) is written as

c 1
L :EI(leH2 + b?) + EHK(U’ DTYw, + eublH2 — 036{(K(X1, DYw, + e1by)

+ csed (K (Xo, DT)wy + esby). (6.14)
Similarly, the UOP for Eq. (6.13) is written as

c c c
Ly 252(||w2||2 +b3) + 54||K(X1, Dwy + e1by — eq|* + 56||K(X27 DT)ws + esbs + e

— c7(wipw2 + blbg). (615)
Setting the gradient of L; (Eq. [6.14]) w.r.t. w; and b; and equating to 0, we get

cwy + KU, D" (K(U, D" )wy + e,b1) — csK (X1, D")er + ¢5K (X2, D) ey = 0,
(6.16)

cibr + e (K(U, D")wy + e,b1) — csel e1 + cseg e = 0. (6.17)

182



Rearranging the terms in Eqgs. (6.16) and (6.17)), and solving for w; and by, we get

cluy + RTRu1 - 03PT61 -+ C5QT€2 = O,
Uy = (RTR + Cll)_1(63PT€1 - C5QT€2), (6].8)

where P = [K(X1,DT) e1], Q = [K(Xo,DT) e), R = [K(U,DT) e,], and u; =

[w1 bl]T.

Similarly, we obtain uy = [wy bo]T as

Uy = (C4PTP + CGQTQ + CQI)_1(64PT61 — CGQTGQ + C7U1). (619)

Here, Eqs. (6.18)) and (6.19) involve two inverses of matrices having dimension
(m+ 1) x (m+ 1), where m = my + mg. To reduce the computational complexity
of inverse calculation, we use the Shermann-Morrison-Woodbury (SMW) formula [40]

ie.,

(A+BCTY '=A"1—-A'BU+CTA'B) 0T AT (6.20)

Using SMW approach in Eq. (6.18), we get

1
u; = —(I — R (c1] + RRT) ' R)(csPTe; — c5Q%ey). (6.21)

&

In Eq. (6.19)), we use the SMW approach twice and obtain two conditions. If

my > mg, then we use the following:

1
V=1 —cy P (col + c, PPT)71P), (6.22)
C2

uy = (V1 =V 1IQT(I + cQV QT 'QV ™) (caPTer — csQT ey + cruy).  (6.23)

If my > my, then us is obtained as
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W = 312(] — QT (co] + csQQT)Q), (6.24)

uy = (W =W PT(I + e, PW P T'PW ) (ea P ey — c6QT e + cruy).
(6.25)

One can observe that in Eq. (6.21)), one matrix inverse is calculated of size mg x ms.
For uy (Eqs. (6.2216.25)), two matrix inverses need to be calculated of size my x my

and my X mo. Hence, three inverses of smaller size are calculated using the SMW

approach in comparison to two inverses of large size in Eqs. (6.18) and (6.19).

Finally, the decision function for a new data point x is given as
f(x) = sgn(K (", DT )ws + b). (6.26)

The algorithm for non-linear AULSTSVM is given in the following Alg.

Algorithm 6.2 Non-linear AULSTSVM
1: Inputs:
1.1 Training samples X € R", training labels Y € {1, —1}.
2: Generate universum data:
2.1 Select samples randomly from binary classes in matrices A and B.
2.2 Compute the averages of samples as U = (A + B)/2.
3: Select optimal parameters:
3.1 Obtain optimal values for parameters i.e., ¢; > 0, ¢ = 1,...7, and pu for
the non-linear kernel function using k-fold cross validation on training data.
4: Construct kernel surface for universum:
4.1 Generate surface for universum data i.e., K(2T, DT)w; + b; using Eq.
(6.21]).
5: Construct non-linear classifier:
5.1 Generate the classifying surface i.e., K (2T, DT )w, + by using the following
if (m1 > ’I’I”LQ)
Use Eq.
else
Use Eq. (6.25).
6: Classification of testing data:
6.1 Assign labels to the data points based on decision function in Eq. .

184



6.1.3 Proposed AULSTSVM vs ULSTSVM

For providing prior information about data distribution, the idea [10,27] is to keep
universum data within an e-insensitive tube between the binary classes [27]. This is
achieved by adding constraints for the universum which keeps the twin hyperplanes
proximal to universum data. However, unlike UTSVM [27], the concept of e-insensitive
tube does not hold in case of ULSTSVM, due to the incorporation of quadratic loss
instead of hinge loss. On the other hand, in case of proposed AULSTSVM, the prior
information of universum is given to the classifier using an angle based approach.
Consequently, the classifier of AULSTSVM aligns itself to the universum hyperplane,
and also classifies the data points of the binary classes. This angle based approach
was not used with universum data in the past. Moreover, the proposed AULSTSVM
includes linear loss in one of the optimization problems, while ULSTSVM uses the
quadratic loss function only. This leads to lesser computation cost of AULSTSVM as
compared to ULSTSVM.

6.1.4 Proposed AULSTSVM vs ATWSVM and LS-
ATWSVM

The formulation of ATWSVM solves a QPP and a system of linear equations to
obtain the classifying hyperplane, whereas the proposed AULSTSVM only solves two
systems of linear equations. In both ATWSVM and LS-ATWSVM, the angle between
the two classifying hyperplane is maximized, whereas AULSTSVM minimizes the angle
between the universum plane and the classifier.

Similar to the proposed AULSTSVM, LS-ATWSVM also solves two systems of
linear equations. However, LS-ATWSVM uses the angle information in separating the
data points of the binary classes [225]. On the contrary, the proposed AULSTSVM
uses the angle information for aligning the classifier with the universum hyperplane.
This results in prior information to the classifier for separating the data points of the

binary classes.
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6.1.5 Time complexity

The solution of proposed AULSTSVM involves computation of kernel matrices and
matrix inverses. The time complexity for generation of kernel matrix is O(m?), while
that of inverse calculation is O(m?) [167]. For addition of two square matrices, the
complexity is O(n?), where n is the number of features in the dataset.

In linear case, the proposed AULSTSVM has lesser time complexity than UL-
STSVM, due to the introduction of linear loss in place of quadratic. This leads
to lesser number of matrix addition operations in the proposed AULSTSVM. The
computation complexity of AULSTSVM is similar to LSTSVM and LS-ATWSVM.
Moreover, the training time of proposed AULSTSVM is very less in comparison to
TWSVM, ATWSVM, and UTSVM, as these algorithms involve solution of QPPs.

In non-linear case, SMW formula is used in the algorithms viz. LSTSVM, LS-
ATWSVM, ULSTSVM, and proposed AULSTSVM. In this case also, AULSTSVM
has lesser time complexity in comparison to ULSTSVM. This is due to lesser number
of matrix additions, as well as lesser matrix inverses in AULSTSVM. The solution
of AULSTSVM involves computation of 3 inverses, whereas ULSTSVM involves 5
inverses after applying the SMW approach. The other algorithms like LSTSVM, and
LS-ATWSVM also involve the computation of 3 inverses. However, AULSTSVM and
ULSTSVM involve the generation of kernel matrix for universum which has complexity
of O(m?). This leads to additional computation time.

One important observation is that in comparison to LSTSVM and LS-ATWSVM,
one matrix inverse in our proposed AULSTSVM is for universum, which is of very
less size. A comparison of computation time of the algorithms is shown in the next

subsection.

6.1.6 Experimental results

In this section, we present the comparison of proposed AULSTSVM with TWSVM
[12], ATWSVM [225], UTSVM [27], LSTSVM [18], LS-ATWSVM [225], and UL-

STSVM [71] algorithms. The experiments are performed for both linear and non-linear
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cases of the algorithms. We used 26 benchmark datasets to analyze the performance
of our proposed AULSTSVM. To show the applicability of the proposed AULSTSVM
on real world problems, an application on Alzheimer’s disease data is presented in
this section. Moreover, an analysis of computation time is shown for the existing and
proposed algorithms on large scale datasets. Statistical tests and insensitivity analysis

are presented for detailed analysis of the proposed approach.

6.1.6.1 Parameter settings

In case of real world datasets in Table and [6.2) 50% of data samples are used
for training and rest for testing. The size of universum is chosen as 15% of total data
samples in real world datasets. 5-fold cross-validation is used for selecting optimal
parameters in all the algorithms. The parameters ¢;,7 = 1, ...,6 are selected from the
set {1075,1074,...,10%} for TWSVM, ATWSVM, UTSVM, LSTSVM, and proposed
AULSTSVM, while for ATWSVM and LS-ATWSVM parameters cq, ¢, are chosen
from {107°,107%,...,10°} [225]. For UTSVM and ULSTSVM, ¢ is chosen from the
set {0.1,0.2,...,0.9}. To reduce the computational complexity of grid search [226],
the parameters are set as ¢; = ¢3 = ¢, in TWSVM and UTSVM, ¢; = ¢3,¢3 = ¢4 in
ULSTSVM, and ¢; = ¢3 = ¢5,00 = 1 — ¢4 [225] in ATWSVM and LS-ATWSVM. In
proposed AULSTSVM the parameters are set as ¢; = ¢o, 3 = €5 = ¢y %¢y, ¢4 = 6. The
parameter cg is for the linear loss. In order to maintain a tradeoff between linear and
quadratic loss, the parameter c3 is taken as product of the weighting parameters for
regularization term, and quadratic loss of the data points. The kernel parameter p is
taken from the set {275,274, ..., 2%} in all the algorithms. In ATWSVM, LS-ATWSVM,
and proposed AULSTSVM the angle parameter ¢7 is chosen from {0.1,0.2, ..., 1} [225].

In case of large datasets shown in Table [6.4] the hardware specifications are same
as in the size of training data and universum is 60% and 10% of all samples
respectively. The values of ¢;,7 = 1,2 are fixed as 0.1, ¢;,i = 3, ..., 6 are fixed as 1, the
parameters ¢y, € are set as 0.5, and y is set as 2* [158] for all the algorithms. For ADNI
datasets, the size of universum is chosen from the set {10%,15%}. The universum

data is generated by random averaging of data points [26,[27], and the same dataset
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is used in UTSVM, ULSTSVM, and proposed AULSTSVM.

6.1.6.2 Synthetic dataset

The classifiers constructed by the different algorithms on Half kernel synthetic
dataset [3] are shown in Fig. |6.2 The hyperplanes for the binary classes are shown in
red and blue colour, while black coloured hyperplane is the classifier. One can see that
instead of twin hyperplanes for the two classes, proposed AULSTSVM constructs one
plane for universum (green), and one for classification (black). The AULSTSVM tries
to minimize the angle between the hyperplanes, and thus provides prior information

to the classifier using the universum plane. In Fig. [6.2] one observation is that

the quadratic loss based methods shown in [6.2(a)}, [6.2(b), and are showing

comparatively better performance than the hinge loss based models in [6.2(d)} [6.2(e)|
and [6.2(f)l Among the quadratic loss based methods, the proposed AULSTSVM is

showing highest generalization performance shown in [6.2(f). This shows the benefit

of introducing the universum plane for providing prior information about the data.

6.1.6.3 Real world benchmark datasets

This subsection presents the experimental results with discussion on the perfor-

mance of the algorithms for both linear and non-linear cases.

1. Linear case:

The experimental results for the linear case are shown in Table [6.1] The perfor-
mance comparison with 6 existing algorithms is based on mean accuracy with standard
deviation and training time. One can observe in Table that the accuracy of the
proposed AULSTSVM is more than existing algorithms in most of the datasets. This
is reflected in the average rank of AULSTSVM based on accuracy i.e., 2.2115. It is
the least rank among all the methods in Table 6.1, The proposed AULSTSVM is out-
performing all the existing algorithms in 10 out of 26 datasets. One can notice that
apart from AULSTSVM, other algorithms viz. UTSVM and ULSTSVM performed

better than other algorithms in terms of accuracy.
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Table 6.1: Performance comparison of the proposed AULSTSVM with existing algo-
rithms on real world datasets in linear case.

TWSVM ATWSVM UTSVM LSTSVM  LS-ATWSVM ULSTSVM AULSTSVM
Dataset Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)  Accuracy (%) Accuracy (%) Accuracy (%)
(Size) (1) (c1,¢4) (c1,€) (1) (€1,¢4) (c1,c3,€) (e, 1, ¢7)
Time (s) Time (s) Time (s) Time (ms) Time (ms) Time (ms) Time (ms)
Beoli0l ve 235 ~O093E6.79 0103345  93.47+548  92.53+3.53 90.2+3.75 92.67+3.39 94.3+6.71
(1246’; 7 (10°) (1077, 0.7) (10%, 0.2) (10") (1073, 0.3) (102, 10°, 0.9) (1075, 107°, 0.5)
0.0091 0.0046 0.0082 0.0656 0.0626 0.0754 0.0649
Feoli-0-1 vs.5 92.39+£5.56 91.77+4.05 90.87+4.61 88.2246.2 86.7+6.9 87.63+5.78 96.67+3.49
‘(242 X*G‘)*‘J (10°) (1078, 0.3) (10%, 0.1) (104 (1079, 0.1) (10',107%,0.1)  (10°, 102, 0.4)
0.0099 0.0046 0.0088 0.0759 0.0541 0.0732 0.0627
Feoli0A7 vesg OP7T0£27L 9405+416  97.01£0.05 95.76+4.6 92.8545.36 95.79+2.68 97.61+2.47
/ (334 x (*5 - (10%) (1079, 0.1) (10°, 0.4) (1071) (1079, 1) (10°, 1077, 0.9) (10, 10%, 0.8)
0.0113 0.0067 0.0151 0.0623 0.0807 0.0806 0.0592
Feoli0-2-34 vs.5 89+4.18 94.2446.2  85.1947.24 89+8.94 92.2444.14 87.3347.33 94.19+6.28
(204 % 7) - (1071 (107%, 0.5) (1071, 0.1) (1071 (1075, 0.6) (1075, 10%, 0.1) (1073, 107°, 0.1)
0.0069 0.0047 0.0102 0.0646 0.0581 0.0774 0.053
Beoli0.2.6.7 ve.g5 O308£409  021TETTS 86881147 90.12£7.4 89.57+11.34 90.3646.44 95.65+4.35
(226 x 7) (1071 (1071, 0.9) (1071, 0.8) (10% (10°, 0.9) (107,107, 0.9)  (10° 10%, 0.8)
0.0067 0.0046 0.0106 0.0587 0.0676 0.1337 0.0725
Eeoli034.6ve s  SO05E1T5 92.29+9.9 93.19+2.7  92.0544.51 90.38+6.74 89.43+10.85 97.05+4.45
(1206 ; 75“’ (10°) (10°, 0.5) (102, 0.3) (10°) (107, 0.1) (107%,102,0.1) (104, 10%, 0.4)
0.0063 0.0041 0.0108 0.0715 0.0563 0.0752 0.0575
ool 046y 5 95+3.54 91.1442.3 89.29+7.76 9444.18 90.147.07 94.1444.09 92.147.63
‘(204 § é)"“) (1071 (1079, 0.2) (102, 0.6) (1071 (107°,0.1)  (107%,107°,0.1)  (10%, 102, 0.5)
0.0067 0.004 0.0086 0.0624 0.052 0.1042 0.0549
Beoli0.6.7 v 35 8184874 86.64£616  80.43+£16.72  80.91+19.92 87.51+7.2 92.8542.48 96.4+3.79
(224 X’V?>’ (10 (1075, 0.7) (10%, 0.1) (10) (1078, 0.4) (10°, 10%, 0.4) (10t, 103, 1)
0.0069 0.0045 0.0081 0.0724 0.0571 0.0776 0.0758
Led7digit-0-2-4-5- 9545.43 95.053.69 92.841.86 91.82+1.24 91.89+1.25 96.85+2.58 97.29+2.95
6-7-8-9 vs_1 (10°) (10°, 0.8) (10%, 0.2) (10°) (109, 0.9) (10°, 107, 0.6)  (10°, 10, 0.3)
(444 x 7) 0.0177 0.0135 0.0255 0.0853 0.0579 0.0989 0.066
Yeast-0-2-5-7-9_ 95.841.49 96.62+1.5  96.82+0.82  92.61+1.82 92.65+2.84 95.4340.87 96.23+1.9
vs_3-6-8 (109 (10, 0.9) (10, 0.2) (109 (1071, 0.9) (10%, 10%,0.8) (1071, 10°, 0.9)
(1006 x 8) 0.078 0.0462 0.1278 0.0838 0.0675 0.098 0.0724
Vonst.2 vs 4 94.92+4.3 93.02+1.76  95.73+£1.63  94.13+3.11 91.0944.42 93.03+2.56 96.52+2.09
(5;6 X’VS)’ (10?) (1072, 0.7) (10°, 0.5) (10°) (1072, 0.9) (102,102, 0.7)  (10°, 10°, 0.5)
0.0165 0.0171 0.0231 0.0719 0.063 0.1203 0.0698
Feoli-0-1-4-6 vs.5 92.75+4.59 97.86+3.19 94.38+5.22 98.57+3.19 93.67+4.45 99.31+1.54 97.86+3.19
(282 x 6) 52 (10") (1071, 0.8) (10°, 0.1) (1071 (107, 0.1) (10°,107%, 0.6) (10, 10%, 0.4)
0.0106 0.008 0.0121 0.0716 0.0749 0.0775 0.0563
Class.0.6.v5.5 96.18+5.24  94.55+8.13  87.27415.21  88.73+10.32  90.91+11.13 87.27+8.13 89.09+7.61
(110 X’;>" (107?) (1073, 0.7) (10°, 0.2) (1075) (1072, 0.1) (1073, 1074, 0.1) (1073, 1073, 0.6)
0.0075 0.0033 0.0079 0.0806 0.0614 0.1314 0.0795

Abbreviations: s- seconds, ms- milliseconds.
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Table (contd.)

TWSVM ATWSVM UTSVM LSTSVM LS-ATWSVM ULSTSVM AULSTSVM
Dataset Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)  Accuracy (%) Accuracy (%) Accuracy (%)
(Size) (c1) (c1,¢4) (c1,€) (1) (c1,¢4) (c1,¢3,€) (cayc1,07)
Time (s) Time (s) Time (s) Time (ms) Time (ms) Time (ms) Time (ms)
Abaloned-18 95.07+7.35 94.2946.31 95.6444.23 94.79+6.81 94.01+£6.02 95.65+4.81 95.92+4.69
752 x 7) (102) (107, 0.6) (101, 0.5) (10°) (1071, 0.9) (101, 10°,0.7) (109, 107, 0.7)
0.0441 0.0258 0.0556 0.0811 0.0729 0.1108 0.0954
Pima Indians 74.16+6.81 74.55+5.71 77.1442.69 79.64+2.81 64.421+8.88 72.99+4.54 77.6612.32
08 (10%) (10°, 0.6) (107, 0.7) (10%) (10°, 0.9) (10°, 1071, 0.1) (103, 10%, 0.6)
0.0201 0.0121 0.0311 0.0866 0.0702 0.103 0.0954
New-thyroidl 98.1+2.61 89.78+6.02 95.37+0.12 95.3243.22 86.02+6.01 96.28+2.08 97.234+2.53
16 ¥ 8) (10" (10°, 0.9) (10, 0.8) (1072) (107, 0.9)  (1072,10%, 0.1) (102 10%, 0.9)
0.0064 0.0041 0.0099 0.1015 0.0638 0.1104 0.0526
Yeast3 95.27+1.36 92.3244.82 92.86+3.66 90.284+6.92 90.2916.68 92.86+2.89 92.3243.27
(148(; . 8) (10°) (1071, 0.4) (10', 0.7) (10°) (1071,0.9)  (10° 1075, 0.7) (102, 102, 0.4)
0.1635 0.1273 0.2889 0.082 0.0746 0.1504 0.0753
Yeast1vsT 9343.55 93.48+£3.44 93.48+3.44 93.45+3.41 92.17+3.64 54.35+24.35 93.48+3.44
(460 X‘;) (10%) (102, 0.2) (10°, 0.4) (10°) (1072, 0.9) (102,102, 0.8) (1071, 1072, 1)
0.0131 0.0085 0.0215 0.0688 0.068 0.084 0.0653
Ecoli0137vs26 94.194+4.21 94.214+8.04 96.79+3.23 96.771+2.28 88.451+8.73 95.516.69 95.5+4.9
312 x 7 (10 (1071, 08) (107, 0.1) (1071 (1071,0.9) (1071, 107, 0.6) (10, 101, 0.5)
0.0105 0.0076 0.0122 0.0658 0.077 0.1101 0.0633
Class-0-1-6 vs.2 88.4246.86 91.794+5.91 93.89+4.15 93.68+4.4 93.89+4.15 93.89+4.15 93.89+4.15
3(5194X 9’)5’ (10°) (1077, 0.5) (10°, 0.1) (10%) (107, 1) (10°, 10°,0.9) (102, 102, 0.3)
0.0088 0.0045 0.0089 0.0742 0.0789 0.0856 0.07
Monk?2 68.21+10.15 45.24+11.44  58.79+13.85  56.77+16.17 64.131+6.25 54.13+15.02 64.134+6.25
(éoé’l‘x 7 (10°) (1075, 0.8) (10", 0.4) (10°) (1079,0.1) (10, 107%,0.9) (10, 1072, 0.1)
0.0105 0.0092 0.0225 0.0882 0.085 0.0853 0.0632
Australian credit 86.34+4.65 83.5242.25 84.68+6.54 85.78+7.32 71.664+2.94 85.831+6.28 85.25+3.77
?692 X 14) (10°) (10°, 0.8) (10°, 0.1) (10°) (1079, 0.9) (101, 10%,0.8) (1073, 10°, 0.7)
0.018 0.0106 0.0298 0.0901 0.0853 0.1145 0.084
Riple 88.1542.59 87.2242.49 87.06+1.34 89.1+1.97 68.691+4.03 88.512.38 87.5443.33
(12,5 XYQ) (10%) (10°, 0.9) (101, 0.4) (10-%) (107, 0.9) (101, 10°, 0.4) (1075, 1074, 0.1)
o 0.0391 0.0154 0.0747 0.0992 0.0656 0.1015 0.0823
Transfusion 70.3£15.98 82.67+14.02  82.13£14.38  82.01+£14.55 82.4+14.19 79.474+23.24 84.53+14.78
(7‘50‘ ii’) (10°) (10, 0.9) (10°, 0.1) (10%) (10, 0.6) (10°, 1071, 0.9) (102, 10°, 0.3)
0.0217 0.0215 0.0356 0.0856 0.0569 0.0937 0.0712
Votes 97.22+1.05 90.41+7.91 93.5944.35 94.8945.05 60.06+3.83 84.38+6.28 94.974+4.92
(436  16) (10°) (1079, 0.6) (10°, 0.9) (1079) (1079, 1) (101, 1075, 0.2) (10, 10", 0.2)
0.0088 0.0079 0.0123 0.1304 0.1112 0.1921 0.0821
Vowel 88.86+5.46 89.49+6.09 92.124+6.9 91.08+2.7 90.1+1.81 92.12+6.68 91.72+7.09
(990 x 10) (1071 (10°, 0.4) (102, 0.4) (10) (1071, 0.8) (10°, 1071, 0.5)  (10%, 10, 0.5)
’ 0.0622 0.0523 0.112 0.1129 0.1125 0.1237 0.0755
Average accuracy 89.73 89.21 89.5 89.69 85.62 88 92.12
Average rank 3.8846 4.2885 3.8654 4.2692 5.6154 3.8654 2.2115
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In Table [6.1] the average ranks based on accuracy of UTSVM and ULSTSVM are
the same i.e., 3.8654. This can be attributed to the use of universum data in both
of these algorithms. In terms of computational efficiency, AULSTSVM takes very
less training time in comparison to TWSVM, ATWSVM, UTSVM, and ULSTSVM in
Table This is because TWSVM, ATWSVM and UTSVM solve computationally
intensive QPPs, while AULSTSVM solves system of linear equations. The training
time of the proposed AULSTSVM is lesser than ULSTSVM due to the introduction of
linear loss in AULSTSVM. The difference in training time is clearly visible in the large
sample datasets viz. Yeast-0-2-5-7-9_vs_3-6-8, Yeast3 and Ripley. In these datasets,
the training time of proposed AULSTSVM is lesser than LSTSVM algorithm also. It
shows the benefit of the proposed algorithm which includes universum data for prior

information, but with lesser computation time.

II. Non-linear case:

In non-linear case also, the proposed AULSTSVM outperforms the existing al-
gorithms in terms of accuracy in Table [6.2] The proposed AULSTSVM performed
better than existing algorithms in 11 out of 26 datasets. This shows the superiority of
proposed AULSTSVM over the other algorithms. Among the 7 algorithms, proposed
AULSTSVM achieves lowest rank on accuracy i.e., 2.2692. The second algorithm
with better performance in terms of accuracy is UTSVM with a rank of 3.4615. This
shows the superiority of universum based SVM algorithms. One can observe that in
the non-linear case also, the training time of AULSTSVM is very less as compared
to TWSVM, ATWSVM, and UTSVM. However, the training time of AULSTSVM is
comparable to LSTSVM. This is due to the overhead of calculating the universum
kernel matrix in proposed AULSTSVM. In comparison to ULSTSVM, the training
time of AULSTSVM is very less. This means that proposed AULSTSVM utilizes the
universum data using kernel matrix like in ULSTSVM, but with reduced computation
cost. Thus, non-linear AULSTSVM also removes the drawback of increased computa-
tion time due to addition of universum data [20]. The computation time of proposed
AULSTSVM is comparable to the existing algorithms in the non-linear case, because

most computations are involved in the construction of kernel matrices.
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Table 6.2: Performance comparison of the proposed AULSTSVM with existing algo-
rithms on real world datasets for non-linear case.

TWSVM ATWSVM UTSVM LSTSVM  LS-ATWSVM ULSTSVM AULSTSVM
Dataset Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)  Accuracy (%)  Accuracy (%) Accuracy (%)
(Size) (c1, 1) (c1, ¢4, 1) (c1, 11, €) (c1, 1) (c1, ca, 1) (c1=cs.e,1)  (ca=ci,c0,p)
Time (s) Time (s) Time (s) Time (ms) Time (s) Time (s) Time (s)
Feoli-0-1 vs.2-3-5 92.63+£7.25 91.83+6.41 93.43+6.21 91.03+£5.99 90.2+3.75 93.47+5.48 94.274+4.72
246 1) (1075,2%)  (10°,0.1,2°)  (1075,2%,0.1) (105,24 (10°,0.1,2%)  (10%,0.3,2%)  (10%,0.3,2%)
0.0204 0.0183 0.0227 0.0117 0.0132 0.0166 0.0123
Ecoli-0-1 vs.5 95.87+4.17 94.242.31 90.93+3.37 91.846.38 92.57+4.55 96.7+3.48 96.7+3.48
‘{‘24'2 'X*G;*O (107°,2%)  (107%,0.6,2°) (1072,2%,0.4)  (10%29) (10-1,0.8,2%)  (1071,0.6,2°)  (10°,0.1,2%)
0.0211 0.0196 0.024 0.0144 0.0135 0.0164 0.012
Ecoli-0-1-4-7 vs.5-6 97.61£2.47 97.01£2.99 96.41+3.29 95.81+£4.53 93.44+5.68 97.01£2.99 98.22+2.64
834 x 6) - (102,25 (10°,0.6,25)  (1071,25,07)  (10',2%) (10°,0.9,2%)  (10°,0.6,2°)  (10%,0.1,2%)
0.0324 0.0299 0.0374 0.0216 0.022 0.0268 0.0217
Fcoli-0-2-3-4_vs.5 96.05£2.21 99.05+2.13 99+2.24 96.05£2.21 85.52£11.02 98+2.74 98.14+4.26
Can T (1075,2%)  (1071,0.1,2%)  (1073,2%,04)  (107%,2%) (1071,0.6,2°)  (10°,0.3,2°)  (1072,0.4,2%)
0.0178 0.0128 0.0189 0.0115 0.0084 0.013 0.0087
Ecoli-0-2-6-7 vs.3-5 95.65+4.35 95.65+4.35 92.96£4.99 91.15£6.15 93.04+£6.59 91.26£8.11 96.52+3.64
26 % 7T) (103,2%) (10°,07,25)  (1073,2%,05)  (10°2,29) (1071,0.8,2%)  (10%,0.2,2)  (10%,0.1,2%)
0.0229 0.0182 0.0277 0.0113 0.0098 0.0148 0.0101
Ecoli-0-3-4-6.vs.5 95.14+3.54 98.05+2.67 95.1+6.13 96.14+4 91.33+7.08 96.1+4.16 97.05+£2.7
206 %7 (105,25 (1071,0.8,2%) (101,25,0.7)  (107%,2%) (1071,0.1,21)  (1073,0.8,2%)  (10°,0.2,2%)
0.0135 0.0158 0.0197 0.0117 0.0113 0.0132 0.0089
Ecoli-0-4-6.vs. 5 90.14+5.06 9545 95+7.07 91.14+6.54 90.14+3.63 94.1+£4.21 96+5.48
(22104>< é‘)" (10°,2%)  (1071,0.9,2°) (1073,2%,0.4)  (1075,2%) (101,0.9,2%)  (10',0.9,2°)  (107,0.1,2%)
0.0192 0.0169 0.0198 0.0108 0.0103 0.0154 0.0085
Feoli-0-6-7 vs.3-5 92.06+5.66 94.74+3.62 94.66+£3.72 91.07+6.36 90.24+4.68 93.75+4.03 94.66+3.72
@) (1073,2%)  (10°,0.9,2%)  (1072,25,0.2)  (107%,2%)  (1071,0.9,2%)  (1072,0.1,2°)  (10%,0.2,2°)
0.0193 0.0175 0.0219 0.0109 0.0093 0.0145 0.01
Led7digit-0-2-4-5- 94.64£5.1 96.39+3.45 96.86£2.54 96.39+3.41 91.89+1.25 95.95+£2.94 97.75+2.25
6-7-8-9 vs_1 1074, 2! 1079,0.8,24)  (1072,2',0.9 107,28 107°,0.5,27%)  (1071,0.1,22)  (10%,0.2,2!
(
444 x 7 0.0529 0.0476 0.0596 0.0363 0.036 0.0442 0.0376
(
Yeast-0-2-5-7-9_ 97.424+1.34 95.43£1.5 96.23£0.81 93.84+1.62 92.85+1.89 94.63£1.32 97.22+1.29
v$_3-6-8 (1071,272)  (107%,0.9,273) (107%,21,0.3)  (1071,2?) (1075,0.9,2Y)  (10°,0.7,272)  (10°,0.4,2°1)
(1006 x 8) 0.2386 0.2398 0.2991 0.166 0.1588 0.2229 0.1914
Yeast-2_vs_4 95.36£2.9 92.26+3.83 96.12+1.36 95.36£3.21 88.79+4.12 94.97£2.9 97.294+1.71
(516 x ) (1072,2°)  (1071,0.9,2°1) (1071,2°,0.5)  (10°,2°) (107°,0.9,2°)  (1072,0.1,2°)  (10°,0.7,2°)
° 0.0613 0.0594 0.076 0.0568 0.0441 0.0588 0.0511
Ecoli-0-1-4-6_vs_5 98.62+3.08 99.31+1.54 98.62+3.08 99.31+1.54 85.1+13.23 98.62+3.08 99.31+1.54
82 x6) (1073,2%)  (1071,0.7,2%) (1071,25,0.7)  (107%,2%) (1071,0.1,2%)  (1072,0.1,2%)  (10%,0.6,2%)
0.0224 0.0236 0.0282 0.0128 0.0134 0.0161 0.0155
Glass-0-6 vs.5 92.73+£7.61 92.73+£7.61 94.55+8.13 92.73+£7.61 78.184+34.38 90.91+9.09 90.91+9.09
(110  0) (1074,20)  (1077,0.9,2')  (10',21,0.1)  (107%,2°)  (107°,0.2,2°%) (107%,0.4,2°) (107%,0.2,2"1)
0.0103 0.0067 0.0113 0.0036 0.004 0.0048 0.0028

Abbreviations: s- seconds, ms- milliseconds.
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Table (contd.)

TWSVM ATWSVM UTSVM LSTSVM LS-ATWSVM ULSTSVM AULSTSVM
Dataset Accuracy (%) Accuracy (%)  Accuracy (%) Accuracy (%)  Accuracy (%)  Accuracy (%)  Accuracy (%)
(Size) (c1, ) (c1,c4, ) (c1,p15€) (c1, 1) (c1, ¢4, 1) (c=cs6,p1)  (ca=crerp)
Time (s) Time (s) Time (s) Time (ms) Time (s) Time (s) Time (s)
Abaloneo-18 93.18+4.61 93.75+£7.32 94.01+4.65 92.9+2.96 94.01+6.54 94.29+6.74 95.1+4.64
(732 % 7) (1072,2°)  (107°,0.8,24) (10"1,20,0.9)  (107%,2) (107°,0.7,2%)  (1071,0.4,2%)  (10%,0.4,2°1)
0.1214 0.1216 0.1527 0.0883 0.0839 0.1103 0.1019
Pima Indians 75.06£5.15 71.69+5.46 75.06£2.82 68.83£6.3 68.05+9.74 71.95£6.53 75.58+2.32
70X &) (1074,2%)  (1071,0.2,2%)  (107%,2%,0.9)  (10%,2%) (1072,05,2°)  (107%0.6,2°)  (1075,1,2%)
0.1268 0.1171 0.1538 0.1062 0.0941 0.1252 0.1121
New-thvroidl 97.19£2.57 97.19£2.57 99.05+2.13 96.32+3.82 90.69+4.71 94.33£7.83 94.42+3.9
(216 v ) (1072,24  (107,0.9,2%)  (1073,25,0.3) (100, 2) (10°,0.9,2Y)  (10%,0.8,2%)  (10°,0.3,2%)
° 0.0163 0.0125 0.0179 0.01 0.0092 0.0175 0.0095
Veast3 94.61+£2.49 90.57+£5.83 94.61+£2.66 94.34+£2.07 89.62+6.43 94.07£2.89 95.15+1.82
(1486 x 8) (1072,2°)  (107%,0.6,22)  (10%,22,0.4) (101,24 (100,0.9,271)  (102,09,2°Y)  (10%,0.2,2°1)
0.5232 0.5205 0.7458 0.3651 0.3628 0.4955 0.4305
Veast1vsT 92.61£3.3 92.61£3.95 91.3+1.54 92.61£3.95 91.74+3.22 90+2.92 93.48+3.44
(460 x 8) (1071,272)  (107%,0.9,2°2) (10-1,272,0.1)  (10°,2°1) (105,0.9,2°)  (1072,0.3,2°2)  (10',0.2,2"1)
0.0514 0.0487 0.0627 0.0371 0.0363 0.0467 0.04
Ecolio137vs26 95.52£3.65 91.09£9.63 75.6£8.81 93.61£5.05 88.43+10.38 94.23£2.69 97.48+4.08
312 % 7) (1072,2°2)  (107%,0.9,22)  (10%,2%,0.3)  (10°271)  (107%,0.9,2%)  (1072,0.1,23)  (10%0.3,2°2)
0.0273 0.0263 0.0329 0.0156 0.0156 0.0196 0.0183
Class-0-1-6.vs.2 91.84+4.34 92.89+5.66 91.84+4.34 93.89+4.15 57.89£48.45 91.84+5.72 93.89+4.15
(104 % 9) (107428 (1075,0.2,2°)  (104,2L,0.1)  (1075,27%)  (1079,0.1,25) (1072,0.9,271) (107%,0.6,27%)
0.0172 0.0158 0.0193 0.01 0.011 0.0141 0.0078
Monk? 64.13+6.25 64.13+6.25 64.13+6.25 64.13+6.25 58.88+14.46 64.13+6.25 64.13+6.25
(602 x 7) (1073,27%)  (1079,0.1,2°5) (1075,27%,0.1)  (10-°,27%)  (1072,0.9,2%)  (1075,0.1,27%) (107%,0.1,27%)
0.0743 0.0751 0.0918 0.0614 0.0651 0.0738 0.0676
Australian credit 83.52+4.46 85.25+6.45 83.52+4.46 85.831+6.46 71.69+2.88 82.66+2.25 84.96+6.48
(602 o 10y (022)  (10209.2)  (107%,2%.01) (10, 2) (109,0.9,28)  (1071,0.1,2°)  (1075,0.1,2)
’ 0.0989 0.0938 0.1251 0.0848 0.0799 0.1036 0.0959
Riple 89.46+1.88 89.46£1.05 90.89+£1.22 91.22+1.76 60.54+9.74 90.42+2.19 90.74£0.71
(1255 X’YQ) (10°,271)  (1077,0.9,27%) (107%,271,0.9)  (10°,2°1) (10°,0.9,272)  (1072,0.9,2%) (107%,0.4,2°2)
0.3209 0.2828 0.4103 0.2551 0.258 0.3299 0.2947
Transfusion 81.6+13.84 82.4+13.87 79.2+13.49 82.4+14.19 75.47+10.48 84.53+13.08 81.6+13.84
(750 x 4) (1074,27%)  (1073,0.6,2%)  (107%,2°,0.4) (10%,2%) (107%,0.6,2Y)  (1071,0.6,2%) (107%,0.1,27%)
0.1216 0.1196 0.1566 0.0905 0.0917 0.1139 0.109
Votes 94.5+£4.7 93.59£2.45 94.97+3.72 94.97+4.92 82.56+6.73 94.5+£4.7 94.05+4.41
(436 x 16) (10°1,2%)  (107%,0.7,2%)  (1071,2%,0.6)  (10°,2%) (10°,0.9,21)  (107%,0.1,2)  (1073,0.5,2)
0.0472 0.0399 0.0558 0.0357 0.0355 0.0416 0.038
Vowel 93.74£8.88 94.55+4.26 96.97+3.98 93.74£10.82 87.88+8.51 94.95+5.1 93.7446.04
(990( xelo) 10°1,2%)  (1074,0.8,2%)  (1071,2%,0.5)  (10°L,2Y)  (107%,0.4,2%)  (10,0.6,2?)  (10%0.1,2?)
0.2341 0.2234 0.3008 0.1579 0.1627 0.2127 0.1894
Average accuracy 91.57 91.57 91.19 91.02 83.87 91.44 92.63
Average rank 3.9615 3.4808 3.4615 4.1538 6.5385 4.1346 2.2692
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6.1.6.4 Statistical analysis

To verify the statistical significance of the results, we perform statistical tests viz.

Friedman test |[172], and Nemenyi posthoc test in the linear and non-linear cases.

1. Linear case:

Using Table we perform the Friedman test and the corresponding post hoc test
on 7 algorithms and 26 datasets. First, we assume that there is no difference between
the methods as the null hypothesis. x% for Friedman test is calculated using average
ranks from Table [6.1] to be 33.5038.

The Fr value is calculated as

(26 — 1)(33.5038)

o —
726 % (7T—1) — 33.5038

= 6.8377.

Here, the F-distribution has (7 — 1,(7 — 1)(26 — 1)) = (6,150) degrees of freedom.
Thus, for the significance level at o« = 0.05, the critical value for F(6,150) is 2.1595.
Since Fr = 6.8377 > 2.1595, we reject the null hypothesis.

Now, to check the pairwise difference between the proposed AULSTSVM and ex-
isting algorithms, we use the Nemenyi posthoc test. For significant pairwise difference

between the methods at significance level of o = 0.10, the average ranks of the meth-

ods shown in Table should differ by atleast 2.693 ) — 1.6135. The pairwise

6% 26
difference between the methods is shown in Table[6.3l It can be stated that in the lin-

ear case, the proposed AULSTSVM is significantly better than TWSVM, ATWSVM,
UTSVM, LSTSVM, LS-ATWSVM, and ULSTSVM algorithms.

Table 6.3: Pairwise significance of the proposed AULSTSVM with existing algorithms.

Linear TWSVM | ATWSVM | UTSVM | LSTSVM | LS-ATWSVM | ULSTSVM
Proposed AULSTSVM Yes Yes Yes Yes Yes Yes

Non-linear TWSVM | ATWSVM | UTSVM | LSTSVM | LS-ATWSVM | ULSTSVM
Proposed AULSTSVM Yes No No Yes Yes Yes

II. Non-linear case:

First, we calculate the value of x% for Friedman test using Table as 55.9464.
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The Fr value is calculated as

(26 — 1)(55.9464)

- = 13.9791.
26 x (7 — 1) — 55.9464

F

Since Fp = 13.9791 > 2.1595, we reject the null hypothesis. Again, for checking
pairwise difference between proposed AULSTSVM and existing algorithms, we per-
form the Nemenyi post hoc test. The pairwise difference between the methods for the
non-linear case is shown in Table[6.3] It can be stated that the proposed AULSTSVM
is significantly better than TWSVM, LSTSVM, LS-ATWSVM, and ULSTSVM.

6.1.6.5 Insensitivity analysis

The proposed AULSTSVM involves many hyperparameters viz. penalty parame-
ters ¢;,1 = 1,...,6, angle parameter c7, and kernel parameter . The performance of
proposed non-linear AULSTSVM for varying values of the user defined parameters ¢
i.e., penalty parameter, and p is shown in Fig. [6.3]

The plots for classification accuracy on various parameters and datasets are shown
in Fig. [6.3] It is observable that the accuracy of proposed AULSTSVM increases for
higher values of . However, the value of ¢ does not have any significant effect on the
accuracy of the model. This is due to the fact that in non-linear case, the value of

in the RBF kernel significantly affects the complexity of the classifier.

6.1.7 Large scale datasets

To further analyze the computation cost of the proposed approach, experiments
are performed on large scale NDC datasets |[186]. A rectangular kernel [26] matrix
is used in all the algorithms with 10% of the samples of the binary classes. The
classification accuracy, and training time of different algorithms are shown in Table[6.4]
For the comparison on large datasets, LSTSVM and ULSTSVM are chosen because
of their better performance in Table w.r.t. accuracy and computation time. It is
observable in Table that our proposed AULSTSVM is performing better than the

other algorithms on most datasets.
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Figure 6.3: Insensitivity performance of proposed AULSTSVM on the user defined
parameters ¢ and pu.
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Table 6.4: Performance comparison of the proposed AULSTSVM on large scale
datasets.

LSTSVM ULSTSVM AULSTSVM
Dataset Accuracy (%) Accuracy (%) Accuracy (%)

Time (s) Time (s) Time (s)
NDC-2.5k 0%’% 3935 0?21553
NDC-5k et ycad 1182
Npeaoe (S50 011
NDC-15k 12%%9 244.52)4788 12.2;9)(?9
NDOk 11267 S
NDC-25k 52?66881 93.22;;13 488(.);54
NDC-30k 1332839 12?:222 fgi%z
NDC-35k 12222&739 23?:336 ligl,t;gl
NDCADK o 108,950 170,578
NDC-A3E il Propes 200,356
NDOSO it mass o
NDCEE 908,007 357 329
NDC-60k 52?2223 92?2223 4%?228
NDCTOR 1161 a1 052
NDC-80k 1332922 2%52.36 9%?:1’,?4

Abbreviations: s- seconds.
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In terms of computation time, the proposed AULSTSVM is better than LSTSVM
and ULSTSVM in all the datasets. This is illustrated in Fig. [6.4] showing the com-
parative advantage of the proposed approach. One can observe that for very large
datasets, such as NDC-60k, NDC-70k, and NDC-80k, the training time of proposed
AULSTSVM is very less as compared to LSTSVM and ULSTSVM. This is due to the
matrix inverse calculation for universum data in the proposed AULSTSVM. The com-
plexity of constructing kernel matrix of m samples is O(m?), while inverse calculation
is O(m?). Consequently, for large datasets the computation time for inverse calcula-
tion is very high. However, the size of universum matrix in the proposed AULSTSVM
is very less size in comparison to the matrices of data points in LSTSVM. Therefore,

the proposed AULSTSVM algorithm is suitable for large scale datasets.

-0-LSTSVM 5:
2000l ~E-ULSTSVM fo)
-A-Proposed AULSTSVM ,':
1500+ ';,
2 '
= 1000 -8 ISD 4
§ oA
500 . ‘x
A8 g:’g' «

LB p-R-
ada’
0725K“70k 20k 30k 40k 50k 60k 80k
Number of samples

Figure 6.4: Plot showing comparison of LSTSVM, ULSTSVM, and proposed
AULSTSVM algorithm on training time for large scale datasets.

6.1.8 Application to Alzheimer’s disease

In order to verify the applicability of proposed AULSTSVM on real world appli-
cations, we present an application on classification of Alzheimer’s disease data. We
classify three classes namely control normal (CN), mild cognitive impairment (MCI),
and Alzheimer’s disease (AD) shown in Fig. [6.5] A total of 150 T1-weighted struc-

tural MRI images are used from ADNI database with the same specifications as in
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(c) AD

Figure 6.5: Structural MRI images from ADNI database showing coronol (left image)
and saggital (right image) view of head in CN, MCI, and AD subjects.

subsection 4.2.2 We used three types of VolBM features viz. SCV, WM, and CT as

specified in subsection |4.2.4]

We compared the performance of the proposed AULSTSVM with TWSVM,
UTSVM, LSTSVM, and ULSTSVM algorithms using linear kernel |2]. We performed
three types of classifications viz. CN vs AD, CN vs MCI, and MCI vs AD as shown
in Fig. [6.6f In case of CN vs AD, one can see in Fig. that the proposed
AULSTSVM achieves highest 95% accuracy for SCV features. For CN vs MCI, the
proposed AULSTSVM obtains 84.21% accuracy, which is more than the best accuracy
of other algorithms. However, in case of MCI vs AD, highest accuracy of 68.42% is
obtained by ULSTSVM, as compared to 63.16% accuracy of AULSTSVM. This is
because MCI vs AD is a relatively difficult task for classification resulting in lower
accuracy [249§].

In the next section, we discuss a novel and efficient formulation for least squares

based SVM algorithm with universum data, using parametric-margin based approach.
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Figure 6.6: Plot showing classification performance for (a) CN vs AD, (b) CN vs MCI,

and (c) MCI vs AD by TWSVM, UTSVM, LSTSVM, ULSTSVM, and the proposed
AULSTSVM algorithm.

6.2 Proposed

universum

least squares twin

parametric-margin support vector machine

(ULSTPMSVM)

In this section, we present a novel parametric-margin based algorithm with uni-

versum data for classification problems. The proposed algorithm i.e., ULSTPMSVM

involves the solution of system of linear equations making it efficient w.r.t. computa-

tion time. The formulations of proposed ULSTPMSVM for the linear and non-linear
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cases are discussed in the following subsections.

6.2.1 Linear ULSTPMSVM

The optimization problems of linear ULSTPMSVM are written as

. 1 c Cy
min = ([wn]® +53) + vied (Xows + eby) + —ni i + —f ¥y
wi,b1,mapr 2 2 2

s.t. X1w1 —+ €1b1 =M,

le + eubl + (1 — 6) 1/11, (627)

. 1 c Cu
min = ([lws? 4+ b3) — vael (X1ws + e1bs) + —nd 1 + —pd 1y
wa,ba,m2,be 2 2 2

s.t. X2w2 -+ €2b2 = 12,
U’wz + Gubg (1 — 6) 77/12, (628)

where ¢;,7 = 1,2, ¢, are positive parameters, and 7;,v;,? = 1,2 are slack variables.
Using the constraints of Eqs. (6.27) and (6.28)) in their respective objective func-

tions, we get

1
min (| Xuws + exbu ) + vief (Xown + eabr) + S (1l |2 +83)

wi,by

+ F U+ euby + (1= e, (6.29)

. C 1
min —2(|!X2w2 + e3bs||”) — vaet (Xqws + €1b2) + §(sz||2 + b3)

wa,b2

5“(||Uw2 + euby — (1 — €)ey||?). (6.30)
Now, taking the gradient of QPP (6.29) w.r.t. w; and b; and equating to 0, we get

CleT(Xl’LUl + elbl) -+ V1X§€2 + wy + CuUT<U’LU1 + eubl -+ (1 — €>€u) = O, (631)

crel (Xiwy + erby) +vied ey + by + cuel (Uwy + ey + (1 — €)ey) = 0. (6.32)
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Combining Egs. (6.31) and (6.32)) and solving, we get

[wi )" =~ (ctH'H + ¢,0T0 + 1)1 (11,GTey + (1 — €)c,OFey), (6.33)

where H = [A; e1], G = [B; ey, and O = [U; e¢,].

Similarly, using Eq. (6.30)), we get

[wy bo]" =(caGTG 4 ¢, 07O + 1) (voH ey + (1 — €)c, 0T e,,). (6.34)

The decision function of linear ULSTPMSVM is same as in Eq. (2.11)).

6.2.2 Non-linear ULSTPMSVM

The formulation of non-linear ULSTPMSVM involves kernel generated surfaces.

The optimization problem comprises the following two QPPs,

1

, 1
min o ([fws [[* 4 b1) + viey (K(Xa, DT )wn + esb) + 3

w1,b1,M1,%1

sit. K(X1, DMw, +eby =1,

Cu
mm+ 5
KU, D"Yw; + eub + (1 — €)e, = 9y, (6.35)

Co

. 1
min (||w2||2 + bg) - V26F1F(K(X17 DT)w2 + e1by) + 5

wa,bam2b2 2

s.t. K(XQ, DT)U)Q + €2b2 =12,

Cy
s 1o + E%T (05

KU, D" Ywy + euby — (1 — €)e, = 1y, (6.36)

where ¢;,i = 1,2, ¢, are positive parameters, K (., D7) is the kernel matrix, D = [A; B],

and n;,v;,1 = 1,2 represent the slack variables.

Substituting the constraints of Eqgs. (6.35]) and (6.36)) in their respective objective

functions, we get
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1 c
min §(||w1||2 + b%) + El(HK(Xl» DT)U)1 + €1b1||2) + VU?;(K(XQ, DT)w1 + €2b1>

wi,by

+ SHE (U, D s + euby + (1= ) (6.37)

. 1 &
min §(||w2||2 +b3) + 52(||K(X27 DT )wsy + exbo||*) — vaef (K (X1, DT )wa + e1by)

wa,bz

+ (K (U, Dy + by = (1= eul?). (6.38)
Solving similar to the linear case, we get
[wi b]" == (@ P"P+c,R"R+ 1) (11Q"es + (1 — €)c, R e,), (6.39)

where P = [K (X1, DT); e1], Q = [K(X3, DT); e5], and R = [K(U, DT); e,].
Similarly, using Eq. (6.38)), we get

[wy by]" =(c2Q7Q + cu R"R+ 1) (1yPTer + (1 — €)euRTey). (6.40)

The decision function of non-linear ULSTPMSVM is same as in Eq. (2.10).

6.2.3 Time complexity

The time complexity of proposed ULSTPMSVM is lesser than existing algorithms
such as TWSVM and ULSTSVM. In comparison to TWSVM where QPPs are solved,
the proposed ULSTPMSVM solves a system of linear equations, leading to lesser
computation cost [227]. Moreover, in comparison to ULSTSVM, time complexity of
proposed ULSTPMSVM is lesser because ULSTSVM involves an additional matrix
multiplication term in its solution (Egs. and , as compared to proposed
ULSTPMSVM in Egs. and . However, the computation cost of the
proposed ULSTPMSVM is higher than LSTSVM. This is due to the incorporation of
universum data points in the proposed ULSTPMSVM algorithm.
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6.2.4 Experimental results

In this section, we show the results of experiments carried out on real world

datasets, along with an application on Alzheimer’s disease.

6.2.4.1 Parameter settings

For experiments on real world datasets, 50% data is used for training. The pa-
rameters ¢ and v are chosen from the set {1075, 1074, ..., 105}, while yu is chosen from
{275,274 ...,2°}. The value for € is selected from {0.1,0.4,0.7}. The universum data
is generated by performing random averaging of data points in all the cases [9,20,27].

In case of Alzheimer’s disease dataset, 40% of the samples are used for training.

Freesurfer’s recon-all pipeline (version 6.0.1) [205] is applied for processing the struc-

tural MRI (sMRI) images as in subsection [4.2.4]

6.2.4.2 Real world datasets

In Table [6.5] performance comparison of the proposed ULSTPMSVM is shown
with existing algorithms on 18 real world benchmark datasets. The existing algorithms
used for comparison in this work are TWSVM [12], LSTSVM [18|, LSTPMSVM |[227],
and ULSTSVM [71]. One can observe in Table [6.5| that the proposed ULSTPMSVM
is showing lowest average rank on the basis of accuracy. In terms of training time,
the time taken by proposed ULSTPMSVM is comparable or lesser than the existing
algorithms. It is noticeable that the training time of TWSVM is the highest. This is
because the solution of TWSVM involves a pair of QPPs, as compared to systems of

linear equations in least squares based algorithms.

6.2.4.3 Statistical analysis

To check the statistical difference, the Friedman test [172] is performed with the
corresponding posthoc test. First, we assume that there is no difference between the

methods. Now, the x% value is calculated for Friedman test using average ranks r;

from Table [6.5] as 20.8605.
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Table 6.5: Comparison of the proposed ULSTPMSVM with existing algorithms on
classification of real world datasets using RBF kernel.

TWSVM LSTSVM  LSTPMSVM ULSTSVM Proposed ULSTPMSVM
Dataset Accuracy (%) Accuracy (%)  Accuracy (%) Accuracy (%) Accuracy (%)
(Size) (e, 1) (e, 1) (c, v, p) (c15 cay € ) (c, v, ¢ )
Time (s) Time (s) Time (s) Time (s) Time (s)
Feoli-0-1vs.5 94.2149 90.9091 95.0413 95.0413 97.5207
(3((;4'2 'X*;‘)* (1075, 2%) (1073, 2%) (1072, 10%, 2) (1077, 1071, 0.1, 2%) (101, 102, 0.1, 2°)
0.0442 0.0033 0.0035 0.0035 0.0035
Ecoli-0-1-4-7 vs.5-6 97.006 94.6108 97.6048 98.8024 98.8024
(334X é) - (1073, 25) (1071, 25) (109, 10%, 24) (10°, 1073, 0.7, 2%) (10%, 1072, 0.1, 2°%)
0.0135 0.0016 0.0018 0.0017 0.0016
Eooli-0-2-6.7 vs.53.5 93.8053 97.3451 96.4602 92.9204 96.4602
(226 x %) - (1073, 2°) (102, 2%) (102,10, 2%) (1071, 1077, 0.4, 2°) (1071, 1072, 0.1, 24)
0.0079 0.0007 0.0007 0.0009 0.0007
Feoli-0-3-4-6.vs.5 97.0874 98.0583 95.1456 98.0583 98.0583
’ (50'6 'X'75V" (1075, 2°) (104, 25) (10°,10%,2%) (1071, 107, 0.7, 2°) (10%, 1071, 0.7, 2°)
0.0071 0.0006 0.0009 0.0007 0.0007
Feoli-06-7 ve.3-5 91.0714 94.6429 91.9643 91.0714 95.5357
(224 X*7)* ° (1073, 2% (10%, 29) (10°, 10, 2%) (1072, 1073, 0.7, 2°) (10%, 1071, 0.1, 2°)
0.0106 0.0007 0.0008 0.0008 0.0009
Eeolid 97.6331 97.6331 97.6331 98.2249 98.2249
(336 x 7) (1072, 22) (1071, 2% (10%,10°, 21 (1072, 107°, 0.1, 2°) (10°, 103, 0.4, 2)
0.0133 0.0013 0.0015 0.0015 0.0019
Class.0-1-6.v5.2 89.6907 91.7526 92.7835 87.6289 92.7835
(1;)4'; é) - (1074, 24) (1073, 23) (10°,10%,27Y) (1073, 107°, 0.4, 22) (1075, 1073, 0.4, 27%)
0.0064 0.0008 0.0006 0.0006 0.0006
Class.0-4.vs.5 91.4894 100 95.7447 100 97.8723
(92 x é) - (1071, 2% (1071, 29) (10%, 10°,2%) (1071, 1075, 0.1, 2%) (103, 10°, 0.4, 2°)
0.0058 0.0003 0.0005 0.0002 0.0002
Heart.stat 66.9118 62.5 65.4412 63.2353 67.6471
(2(;‘0 ;1‘3) (100, 25) (1075, 25) (10°, 10, 25) (10', 10%, 0.4, 2°) (1071, 1072, 0.7, 2°)
0.0077 0.0013 0.001 0.0009 0.001
Led7digit-0-2-4-5-6- 91.8919 93.6937 96.8468 92.3423 92.7928
7-8-9 vs_1 (1074, 24 (10°, 22) (1072, 1074, 2% (1071, 107%, 0.1, 22) (102, 102, 0.1, 2)
(444 x 7) 0.0236 0.0024 0.0026 0.0026 0.0026
Feoli-0-14-6.v.5 98.5816 98.5816 98.5816 98.5816 99.2908
(282 x 65 - (1073, 2°) (103, 2%) (104, 10%, 2%y (1072, 1073, 0.1, 2°) (10°, 1072, 0.1, 2°)
0.0103 0.001 0.001 0.001 0.001
Ecoli2 91.716 86.9822 90.5325 94.0828 92.3077
(33é < 7) (1071, 29) (1072,2%) (1072, 107%, 27%)  (10°, 10%, 0.1, 272) (10%, 1072, 0.4, 27Y)
0.0116 0.0014 0.0016 0.0013 0.0018
Glassd 94.4444 96.2963 94.4444 96.2963 97.2222
(282 x 6) (1075, 29) (1072, 21) (109, 10%, 27Y) (1072, 1075, 0.7, 21) (102, 1074, 0.7, 24)
0.0084 0.001 0.0007 0.0007 0.0008
Breast cancer 98.538 98.2456 98.538 98.2456 98.8304
Wisconsin (1074, 22) (10, 2% (1071, 10°, 2%) (1074, 1074, 0.4, 2%) (10%, 103, 0.1, 2°)
(683 x 9) 0.032 0.0064 0.0066 0.0069 0.0068
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Table (contd.)

TWSVM LSTSVM LSTPMSVM ULSTSVM Proposed ULSTPMSVM
ataset ccuracy (% ccuracy (% ccuracy (% ceuracy (% ceuracy (%
D A %) A % A % A % A %
(Size) (Cv //') (C7 N) (Cv v, N’) (Clv C2, € ;L) (Cv v, € /u)
Time (s) Time (s) Time (s) Time (s) Time (s)
Ecoli3 91.716 86.9822 90.5325 94.0828 92.3077
(556 % 7) (1071, 29) (1072, 29) (1072, 1071, 27%)  (10°, 10%, 0.1, 272) (10%, 1072, 0.4, 271)
0.012 0.0016 0.0021 0.0016 0.0015
Veast1vsT 91.7391 93.0435 93.4783 93.4783 93.913
(466 y é) (1071, 2-2) (100,271 (1074, 1072, 271) (102, 1073, 0.4, 2-2) (101, 1071, 0.1, 271
0.0219 0.003 0.0032 0.0031 0.0042
Eeolio137vs26 95.5128 96.1538 97.4359 96.1538 96.7949
(312 x ) (1072,272) (1071, 271) (1075, 107%,272)  (10%, 10°%, 0.4, 2°1) (1071, 1072, 0.4, 2°1)
0.0108 0.0015 0.0013 0.0013 0.0012
Votes 94.4954 94.4954 94.4954 94.0367 94.9541
(436 x 16) (1071, 2%) (10°, 24) (103, 102, 29) (101, 104, 0.7, 2% (101, 10°, 0.4, 22)
0.0141 0.0023 0.0025 0.0025 0.0025
Average accuracy 92.6414 92.8848 93.4836 93.4602 94.5177
Average rank 3.8889 3.4167 3.0278 3.0556 1.6111

The Fr value is calculated as

(18 — 1)(20.8605)

) -
P18 % (5— 1) — 20.8605

= 6.9345.

This F-distribution involves (5—1, (5—1)(18—1)) = (4, 68) degrees of freedom. Thus,
for the significance level at av = 0.05, the critical value for F'(4,68) is 2.5066. Since
Fr =6.9345 > 2.5066, the null hypothesis is rejected.

To check the pairwise difference between the proposed ULSTPMSVM and exist-
ing algorithms, we perform the Nemenyi posthoc test [172]. For significant pairwise
difference between the methods at significance level of o = 0.10, the average ranks of

the algorithms shown in Table should differ by atleast 2.459 5011 — 1.296. The

6x18

pairwise difference between the methods is shown in Table [6.6]

Table 6.6: Pairwise significant difference between the proposed ULSTPMSVM and
existing algorithms.

Statistical difference | TWSVM | LSTSVM | LSTPMSVM | ULSTSVM

Proposed ULSTPMSVM Yes Yes Yes Yes

It can be stated from Table [6.6] that the proposed ULSTPMSVM is significantly
better than TWSVM, LSTSVM, LSTPMSVM, and ULSTSVM algorithms.
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Figure 6.7: Plots showing insensitivity performance for the penalty parameter ¢ =
c1 = ¢ with v = v; = vy for proposed ULSTPMSVM using RBF kernel.

6.2.4.4 Insensitivity performance

The insensitivity analysis of proposed ULSTPMSVM is presented in Fig. [6.7 The
variation of accuracy w.r.t. the penalty parameter ¢ and v is shown for 4 datasets viz.

Ecoli-0-1-4-7_vs_5-6, Ecoli-0-6-7_vs_3-5, Glass4, and Votes.

One can observe that the accuracy of proposed ULSTPMSVM increases with higher
value of ¢, while v does not have much effect on the accuracy. However, the accuracy

is slightly higher for larger values of v.
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6.2.4.5 Alzheimer’s disease classification

In Alzheimer disease data, we have considered three classes namely control normal
(CN), Alzheimer’s disease (AD), and mild cognitive impairment (MCI) [2,/28]. We
include 50 sMRI images of CN and AD each, and 49 sMRI images of MCI, since
one MCI image failed to process. The performance of proposed ULSTPMSVM and
existing algorithms on classification of Alzheimer data is shown in Table [6.7]

Table 6.7: Performance comparison of proposed ULSTPMSVM on classification of
Alzheimer’s data.

Dataset TWSVM LSTSVM LSTPMSVM ULSTSVM Proposed ULSTPMSVM

Accuracy (%) Accuracy (%) Accuracy (%)  Accuracy (%) Accuracy (%)
CN vs AD 85 80 80 85 76.6667
CN vs MCI 74.5763 59.322 76.2712 74.5763 76.2712
MCI vs AD 61.0169 44.0678 61.0169 42.3729 64.4068

One can see that the proposed ULSTPMSVM performed better than other algo-
rithms in 2 out of 3 datasets i.e., CN vs MCI, and MCI vs AD. The highest accuracy of
proposed ULSTPMSVM in MCI vs AD indicates that it may be used for the early di-
agnosis of Alzheimer’s disease. Moreover, the proposed ULSTPMSVM can be used for
other diseases such as epilepsy, where the universum data is selected from the dataset
itself [20,[26]. This may lead to higher classification accuracy for such problems.

In the next section, we present an improved version of the efficient UTSVM algo-

rithm by introducing regularization in the formulation.

6.3 Proposed improved universum twin support

vector machine (IUTSVM)

In this section, we propose an improved universum twin support vector machine
(IUTSVM). The SRM principle is implemented by regularization in the primal prob-
lems to propose a robust algorithm involving universum data. Moreover, the proposed
IUTSVM implicitly makes the matrices non-singular in the optimization problem. The

following subsections describe the formulations of the proposed ITUTSVM algorithm
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in the linear and non-linear forms.

6.3.1 Linear IUTSVM

The linear IUTSVM algorithm comprises the following pair of QPPs:

) 1
min  —c3(

1
w1, b1, &1,m 2 Hw1H2 + bf) + §’|X1w1 + 61b1H2 + Clegfl + Cuefm,

st.  — (Xowy +exby) + & > eo,
(Uwy + e,br) +m1 > (=1 + €)ey,
§20, m=0 (6.41)
wg)g}igm 504(||u12||2 + b3) + %Hngg + egby|? + coel & + cuelng,
st (Xjwe + e1hy) + & > ey,
— (Uws + eyba) +1m2 > (=14 €)ey,
§2>0, n2 >0, (6.42)

where ¢;(i = 1,2,3,4) and ¢, are positive real parameters; &, n;(i = 1,2) are slack

variables; and e;(i = 1,2), e, are vectors of ones of suitable dimensions.

The Lagrangian of problems ([6.41]) and (6.42)) are written as:
1 2, 4oy, L 2 T T
Ly 2503(”1”1” +b7) + §||X1w1 +eb||” + crep &1 + cuey,m
+ of (Xowy + e2by) — & + €2) — B &

— 11 (Uwy + euby) +m1 + eu(1

—€) =1 m, (6.43)
1 1
Ly 2504(\!1112”2 +b3) + §HX2U)2 + e2b|? + a1 & + cuelm
+ ag(_<X1w2 +e1by) — & +e1) — 52Tf2
+ ps (Uws + eyba) — 1 — eu(1 — €)) — 73 1o, (6.44)
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where «;, 5;, p; and ~; (i = 1,2) are the Lagrange multipliers.

Using the K.K.T. necessary and sufficient conditions on Eqs. (6.43)) and (6.44]),
the Wolfe duals are obtained as

1
max €51 — 5(041TQ — iy R)(PTP 4 es1)7H(Q e — R ) + (e — Ve pua,
st. 0< a3 <c¢;, 0<pu <c, (6.45)

1
max e,y — 5(042TP — a R)(QTQ + )™ (PTag — R o) + (e — 1)eg pia,

2, (12

st. 0<ag<cy, 0<pus<cy, (6.46)

where P = [X) e1], Q = [X2e3], R =[Ue,] and [ is an identity matrix of appropriate

dimension.

The non-parallel hyperplanes 7w, + b, = 0 and 27w, + by = 0 are obtained by
using the parameters w; and b;, i = 1,2 from the following Eqgs. (6.47) and (/6.48]),

wq

= —(P"P + c31)71 QT — RTpy), (6.47)
b
W
L | = (@QTQ+ el (PTay - RTp). (6.48)
2

It can be observed that both the matrices (PT P+c3I) and (QTQ+c4I) are positive
definite, and hence the solution of IUTSVM is more robust and stable than that of
UTSVM. A new data point is classified to a class using Eq. (2.11]).
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6.3.2 Non-linear IUTSVM

In non-linear IUTSVM, we consider the following pair of minimization problems:

) 1 1
min  —cs(|Jwi]]? + 0?) + = || K (X1, DD)wy + e1bi||* + crel & + cuegm
wi,b1,€1,m 2 2

st. — (K(Xo, DT)wy + exby) + & > 69
(K(U, DM Ywy + euby) +m > (=1 +eey
& 20, m =0, (6.49)
Lmin el + ) + K (Xa, D)y 4 eaball® + eael € + cuctny
sit. (K(Xy, DM)wy +e1by) +& > )
— (K (U, DM)wy + eyby) + 12 > (=14 €)ey
£>0, 12 >0, (6.50)

where ¢;(1 = 1,2,3,4) and ¢, are positive real parameters; &, n;(i = 1,2) are slack

variables and ¢;(i = 1,2) and e, are the vectors of ones of suitable dimensions.
The Lagrangian of problems ([6.49) and (6.50) are written as:

1 1
L1 2503(HIU1H2 + b%) + §|’K(X17 DT)U)l + 61b1“2 + cleg& + Cuegm

+ of (K (X9, DMYwy + exby) — &+ €2) — B &

— p1 (K(U, D" Ywy + €ub1) +m1 + eu(1 =€) — v m,

(6.51)
1 1
L2 I§C4(HUJ2H2 + bg) -+ §”K(XQ, DT>U)2 -+ €2b2H2 + 026?52 + cuegm
+ Qg(—(K(Xl, DT)’LUQ + €1b2> — 52 + 61) — ﬁgfg
+ 115 (K (U, DT )wy + euby) — m — eu(1 — €)) — 73 2. (6.52)

Applying the K.K.T. necessary and sufficient conditions on Eqs. (6.53)) and (6.54]),
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the Wolfe duals are written as

1
max ejay — §(oz1TN —pFOYMTM + c3I) Y (NTay — O py) + (e — 1)el iy

Ql, (U1

st. 0<a;<c;, 0<pu <gc, (6.53)

1
max el — 5(042TM — pFOY(NTN + cyI) " H(M g — O i) + (€ — 1)el g

a2, (2

st. 0< ag<cy, 0< s <cy, (6.54)

where M = [K(X,DT)e;], N = [K(X3,DT)ey], O = [K(U,D")e,], and I is an
identity matrix of appropriate dimension.

The classifying hyperplanes K (27, DT)w, + by = 0 and K (27, DT)w, + by = 0 are
constructed using the values of the parameters w; and b;, i = 1,2 from the following

Eqgs. (6.55]) and (6.56)),

w
bl = —(M"M + ¢csI) "' (N"on — O"pua), (6.55)
1
W2 T —1/ 24T T
2

It is visible from Eqs. (6.55) and (6.56)) that both (MTM + c3I) and (NTN + c,1)
are positive definite due to the regularization term, leading to a more stable solution.

A new data point is classified using Eq. (2.10]).

6.3.3 Experimental results

The comparison of the proposed IUTSVM is performed with USVM, TWSVM and
UTSVM. The RBF kernel is used in all the algorithms. We selected the values of the

parameters ¢, ¢; = ¢y = ¢,, and c3 = ¢4 from the set {107°,...,105} for the different
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algorithms. The number of universum samples i.e., r is taken as 10% of the training
data for the existing algorithms i.e., USVM, UTSVM and proposed IUTSVM. The
value of € is chosen from the set {0.1,0.3,0.5,0.6}. Universum data is selected from
the set obtained by random averaging [27] of data points of the binary classes. The

parameter p is calculated as used in [195] for all the methods.

Table shows the performance of the proposed and related algorithms in terms
of classification accuracy and training time. The corresponding average ranks are
also shown based on accuracy. It can be observed from Table that the proposed
IUTSVM is having least rank among all the methods. It shows the supremacy of
the proposed IUTSVM in comparison to the compared algorithms. The algorithms
USVM, UTSVM and proposed ITUTSVM take more training time in comparison to
TWSVM. This is due to the additional data points of the universum data, which can

be traded for the classification accuracy.

To check the significant difference between the methods we performed the Friedman
test |[172] using Table . For the Friedman test, we take the null hypothesis that
there is no significant difference between the algorithms. Under the null hypothesis,
the Friedman statistics is distributed according to X2 with (k — 1) degree of freedom

and N methods. The x? value is found to be 8.3161. The F value is calculated as

~ (18—-1) x 8.3161
18 x (4—1)—8.3161

Fr = 3.0946,

where Fr is calculated for (3,3 x 17) = (3,51) degrees of freedom on 4 methods and
18 datasets. The critical value for of F'(3,51) at o = 0.05 level of significance is 2.786.
Here, we reject the null hypothesis since the value of Fr = 3.0946 > 2.786. So, there is
significant difference between the algorithms. In the Nemenyi posthoc test, the C'D is
found to be 0.9859. So, according to Table [6.8] there is pairwise significant difference
between TWSVM, UTSVM and the proposed ITUTSVM.

The insensitivity performance of the proposed IUTSVM for the parameters c3 = ¢4
and € is shown in Fig. [6.8f The variation in accuracy is illustrated with changing

values of the parameters for datasets i.e., Votes, Bupa or liver-disorders, Ionosphere,
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Table 6.8: Performance comparison of the proposed IUTSVM with USVM, TWSVM

and UTSVM using RBF kernel.

USVM TWSVM UTSVM Proposed IUTSVM
Dataset Accuracy (%)  Accuracy (%)  Accuracy (%) Accuracy (%)
(Train size, Test size) (¢, py€) (c1, ) (c1, y€) (c1,¢3, 1y €)
Time(s) Time(s) Time(s) Time(s)
Buba or liver-disorders 69.5238 70.4762 68.5714 73.3333
(1340 6,105  6) (10',66.2,0.3)  (1071,66.2)  (10',66.2,0.6)  (10~},107%,66.2,0.5)
’ 0.8337 0.049 0.0548 0.0529
Cleveland 80.9524 75.5102 73.4694 82.3129
(150 15,147 x 13 (10%5:26,00)  (107°,5.26)  (107,5.26,05)  (10°,10",5.26,0.5)
’ 0.3216 0.0109 0.0103 0.0099
Tonosphere 90.0498 92.5373 92.5373 93.5323
(150 » 55 P sy (0439.05)  (1072430)  (102,439,06)  (107,10°2439,03)
’ 0.3278 0.0083 0.0095 0.0093
Votes 95.3191 95.7447 95.7447 95.7447
(200 % 16 935 1) (10%33L05)  (1072531)  (1072,531,05)  (10%,10,531,05)
’ 0.5761 0.0125 0.018 0.0192
Breast cancer wisconsin 99.0991 98.4985 98.7988 98.7988
(350 x 9. 335 x ) (10',12.53,0.1)  (107%,12.53)  (1073,12.53,0.1)  (107%,1075,12.53,0.1)
’ 1.7746 0.0312 0.0406 0.0391
Heart-stat 777778 81.1111 81.1111 80
(180 % 15,00 x 13 (10%85.98.03)  (107,85.98)  (10°,85.98,01)  (10°,10°%,85.98,0.5)
’ 0.4637 0.0104 0.012 0.0117
Ndelk 91.7143 90.1429 91 91.5714
(400 x 32,700 x 327 (10757L16,0.0)  (107,57116)  (107,57L16,0.6) (10,107, 571.16,0.6)
’ 2.338 0.0462 0.058 0.059
Pima 78.2297 75.1196 77.512 79.4258
(350 » 8, 418 x §) (10%,2.23,0.3)  (10°,2.23) (109, 2.23, 0.6) (10°,1077,2.23,0.3)
’ 1.7374 0.0329 0.04 0.0403
Splice 90.023 89.6552 89.1494 89.7011
(10',11.98,0.6)  (10"1,11.98)  (107%,11.98,0.6)  (10',1072,11.98,0.5)
(1000 60, 2175 x 60) 15.2782 0.4038 0.528 0.5272
Wdbe 92.79 95.9248 95.6113 93.1034
(250 x 30,310 x 30) (10°,944.41,0.3)  (10',944.41)  (10°,944.41,0.3)  (1072,1077,944.41,0.6)
’ 0.943 0.0239 0.0276 0.0275
Australian-credit 90.6667 58 58 %0
(548 MR 14 (1071,5.31,0.3)  (1071,5.31)  (1071,5.31,0.6)  (10},10°2,5.31,0.6)
’ 4.3106 0.0883 0.1159 0.1105
Yeast3 93.1911 94.4106 94.4106 93.8008
(500 x 8, 984 x &) (10%,0.41,0.3)  (1072,0.41)  (107%,0.41,0.6) (10*,10%,0.41,0.6)
’ 3.7007 0.1377 0.1561 0.1708
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Table (contd.)

USVM TWSVM UTSVM Proposed IUTSVM
Dataset Accuracy (%) Accuracy (%)  Accuracy (%) Accuracy (%)
(Train size, Test size) (¢, py€) (e1, 1) (c1, py €) (c1,¢3, 1, €)
Time(s) Time(s) Time(s) Time(s)
Beoli0-] vs 9.3.5 97.5806 94.3548 93.5484 95.1613
(120 ;('7*;’241 >< '7) (10%,67.42,0.5) (1071,67.42) (1072,67.42,0.5) (10°,107,67.42,0.1)
’ 0.2116 0.008 0.0091 0.0093
. 97.2527 98.3516 98.3516 98.9011
Ef;ggigﬁgﬁ%ﬁ (10',67.54,0.3) (1072,67.54) (1071,67.54,0.1) (107,1073,67.54,0.1)
’ 0.3281 0.0116 0.0125 0.0123
. 94.7368 92.9825 93.8596 95.614
%216'(3;27'61';33%5 (102,59.17,0.1)  (1071,59.17)  (1072,59.17,0.1) (10-5,1073,59.17,0.1)
’ 0.1779 0.007 0.0081 0.0074
EeOl0-34-6 vs 5 98.0952 94.2857 98.0952 98.0952
(100 x 7 105 7 (10°,65.84,0.3)  (1074,65.84) (1071,65.84,0.1)  (10*,10°,65.84,0.3)
’ 0.1482 0.0068 0.0074 0.0073
Beol0-67 ve 3.5 97.3214 93.75 91.9643 96.4286
(110 x 7 112 » 7 (10',57.95,0.1)  (1072,57.95) (107!,57.95,0.6) (10~*,1073,57.95,0.1)
’ 0.178 0.0073 0.0086 0.0082
Vonst2 ved 95.8333 95.0758 96.5909 97.7273
(250 x 8,264 x 8) (10',0.35,0.1)  (1071,0.35)  (107%,0.35,0.3)  (107,1072,0.35,0.3)
’ 0.9188 0.0239 0.0294 0.0298
Average accuracy 90.5643 89.774 89.907 91.2918
Average rank 2.4444 2.9167 2.8333 1.8056

and Pima-Indians with accuracies as 95.74%, 73.33%, 93.53%, and 79.43%. For these

datasets, IUTSVM is performing better for lower values of c3, which is also reflected

in Table This shows that small values of the regularization parameter ¢z are more

suitable for the proposed IUTSVM on these datasets. However, the parameter ¢ does

not show much effect on the performance of IUTSVM in terms of accuracy.

6.4 Summary

In this chapter, we presented three novel algorithms based on universum based

twin SVM algorithms.

provements over the existing formulations.
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Figure 6.8: Insensitivity performance of the proposed IUTSVM to the parameters
c3 = ¢4 with € using RBF kernel.

based algorithm, termed as efficient angle based universum least squares twin support
vector machine (AULSTSVM). The proposed AULSTSVM removes the drawback of
existing least squares based algorithms w.r.t. computation time. Moreover, the pro-
posed AULSTSVM gives better generalization performance due to the incorporation
of prior information in the training. Instead of the traditional twin hyperplane based
approach for obtaining the decision function, the proposed AULSTSVM needs only
one hyperplane for classification.

We also proposed a novel universum based algorithm in this chapter termed

as universum least squares twin parametric-margin support vector machine (UL-
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STPMSVM). The formulation of ULSTPMSVM is an alternative approach towards
universum based learning. Lastly, we presented an improved universum twin support
vector machine. The proposed algorithm introduces the SRM principle in the for-
mulation of UTSVM. There is no ill-conditioning of the matrices in calculating the
inverse in the proposed IUTSVM. The proposed algorithms show high generalization
performance with lesser training time in comparison to existing algorithms. More-
over, the proposed AULSTSVM, and ULSTPMSVM performed well for classification
of Alzheimer’s disease, showing their applicability on real world biomedical applica-
tions.

In the next chapter, we discuss the paradigm of unsupervised learning using SVM.
We present a novel formulation for twin SVM based clustering using a projection based

approach.

218



Chapter 7

Projection based twin support vector

clustering

In this chapter, we present an unsupervised learning algorithm using a twin SVM
based approach. Clustering is a prominent unsupervised learning technique. In the
literature, various plane based clustering algorithms are proposed, such as the twin
support vector clustering (TWSVC) algorithm. In this work, we propose an alternative
algorithm based on projection axes termed as least squares projection twin support
vector clustering (LSPTSVC)} The proposed LSPTSVC finds projection axis for every
cluster in a manner that minimizes the within class scatter, and keeps the clusters of
other classes far away. The following sections discuss the proposed algorithm both

theoretically as well as experimentally.

7.1 Proposed algorithm

In this section, we present the formulations of proposed least squares projection
twin support vector clustering (LSPTSVC) with detailed analysis of the experimental
results. The idea of proposed scheme is illustrated in Fig. [7.I] where a projection
axis is generated to cluster the data points. The proposed LSPTSVC minimizes the

'B. Richhariya, M. Tanveer, Alzheimer’s Disease Neuroimaging Initiative. Least squares pro-
jection twin support vector clustering (LSPTSVC). Information Sciences, Elsevier, 533:1-23, 2020,
DOI: https://doi.org/10.1016/j.ins.2020.05.001.

[SCI Indexed Impact Factor: 6.795]
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scatter of a cluster, while keeping the data points of other clusters far away. We also
include the regularization term in the objective function to control the structural risk
of the model [5]. The regularization term also helps in avoiding the ill-conditioning of

the matrices for calculating the inverse [167].

Projection axi Projections of

A data points
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Figure 7.1: Clustering by proposed LSPTSVC.

7.1.1 Linear LSPTSVC

The optimization problem of linear LSPTSVC is described as

1 : . : I & ()2 j
T JHINT () J+INT _~ (%) j+1 Jj+112
min 53 (! ™)) — @) mi}jxp) }j(& 7+ Sl

i p=1 p=1 q=1
ot ‘(ng)TE((]) with? Z . J-I—l 1
q=0,1,..., 7, i=0,1,...,N, (7.1)

where c1,co > 0 are parameters, wf i represents the weight vector of (j + 1)th itera-
tion, 7 = 0,1,..., and the slack variable is represented by fj 1 The data points of a
cluster, and rest of the clusters are represented by xp and Eq respectively. Here, N

is the number of clusters, and m; = (m — m;).
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The QPP ([7.1)) is formulated by setting an objective function that minimizes intra
class variance, while maximizing the inter class distance using the constraints. To
solve this optimization problem, we use the concave-convex (CCCP) procedure [22§].

Thus, the objective function of QPP (7.1)) can be rewritten as

1 . O o
min o (w] ™) Sl + 2 (€ + Sl TP
w?
k3 q=1
. 1 )
s.t. T(’Xiwfrl — —éieiTXiwa

7

)+ = (7.2)

where T'(.) is the first order Taylor series expansion, e; and €; represent the vector of

ones of size p and ¢ respectively. The matrix S; is written as

ST i T
S; = Z (mé) - Sz‘)(%(,) - i), (7.3)
p=1

myg .
where s; = - xg) is the centre point of each cluster. Eq. 1' can be rewritten as
i =1

S = (X; — eisD) (X, — essT). (7.4)

% 7

The QPP ([7.2) can be rewritten by substituting the constraints in the objective func-

tion as

—T(‘szfﬂ — —éieiTX,-waD + éi
mA

7

2 e ,
+ 2l

1, . ; c
L == J+1 TS'L g+1 “1
2 (wl ) w’b + 2 2

(7.5)

Now, the value of the Taylor series expansion is written by using the subgradient

1168,/169] of ‘Xiwg — Leel Xow!| wort. w! as

) = diag (sign(Xiwj - —éieiTXiwi-D
mA

%
%

J+1 — T J+1

)

S 1 .
(Xiwg“ - féie;Xiwf+1>. (7.6)

7
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Substituting the value of T(.) in Eq. (7.6, we get

1 . . .
L =5 (] Sd ™ + 2wl ™2+

— .1 N 1 .
2H—diag (sz'gn(Xiwf — —éieiTXiwf)> (Xiwj-Jrl — —éieiTXiwa) +€;
2 m; m;

3
3

2

(7.7)
Solving the gradient of Eq. (7.7)) w.r.t. wf“ and equating to 0, we get
Siwgﬂ + 02wg+1 + CleT (Giwﬁl - éi) =0,
where
. oo g i\ (¥ L _p
G,; = diag (szgn(Xiwi — —€;€; Xiwi> <Xi — —€;e; Xi>. (7.8)
my; i
Solving Eq. 1' for w{ 1 we get
. S; -1
it = (616 + 2+ 21) e, (7.9)
C1 (&1
For a testing sample x;, the label y is determined by the following formula:
(z)) =arg min |w!z, — ie-TX-w- (7.10)
Y\t gi: 2N i vt m; 7 Wi |- .

For the initialization of the labels, nearest neighbour graph (NNG) [166] algorithm
is used in LSPTSVC. The algorithm for linear LSPTSVC is shown in Alg. [7.1]
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Algorithm 7.1 Linear LSPTSVC

1: Inputs:
1.1 Unlabelled data X € R™.
2: Initialization:
2.1 Label assignment: Yy <+ NNG(X).
2.2 Initialize weight vector w) for each cluster i = 0,1,..., N:
w) = Figenvector(S;), for smallest eigenvalue of S;.
3: CCCP process:
3.1 For each cluster 7, calculate wzj *1 for j = 0 using the initial weight vector

0
w,L'.

3.1.1 w/™ = LSPTSVC(X,w!) using Eq. .

3.1.2if (|Jw!™ — w!|| > tolerance)
j=Jj+1
go to step 3.1.1

3.1.3 else
go to step 4

4: Assign cluster labels:
4.1 Assign new labels to the data points for each cluster 7.

4.1.1 Yy41 = Decision_function(X, w;) using Eq. (7.10]), initially with

k= 0.

4.1.2 if (||Virr — Y| #0)
k=k+1
go to step 3

4.1.3 else
go to step 5

5: Output:
Return data labels Y, and projection vectors w;, i = 0,1,..., N.

7.1.2 Non-linear LSPTSVC

The optimization problem of non-linear LSPTSVC is described as

1 . . C i . IS .
s S JFINT gl C JHN2 . C2y 0 12
ﬁf} 2(wi ) Ziw] T+ B ( iq )"+ 5 [y ||
i q:l
_ , 1 4
st. T(‘K(Xi, MTywt' — e eT K (X;, MT)w!t!
m

)

j+l _ —
) + giq = €y,
q=0,1,...,m;, i=0,1,... N, (7.11)
where ¢y, ¢ > 0 are parameters, j = 0,1,..., and 527;1 represents the slack variable,
T(.) is the first order Taylor series expansion, K (., MT) is the kernel function [159],
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and M = [Xy, X5, ..., Xy]. The matrix Z; is written as

Zi= Z 1), MT) = 2) (K () MT) = )" (7.12)
where z; = - i K(z,, MT). Now, Eq. (7.12) can be rewritten as
i =1
Zi = (K (X, M") — e;2]) " (K(X;, MT) — e;2]). (7.13)

Now, QPP ([7.13]) can be written by using the constraints in the objective function as

1 — A . 2
L= (! ™) Zwd o S| =7 (| (Ko, M7yl ™ = el K (X, M7l ) 4
m;
Co ;
+ E|ng“\|2. (7.14)
Substituting the value of T(.) in (7.14]) for the CCCP procedure, we get
I :1(wj+1)TZ g+l 2‘|wj+l||2+
2" 27"
_ 1 .
El“—diag(sign(K(Xi, MMw! — —eel K(X;, MT)wf)>
m;
_ . A 2
(K(XZ-, MDYt - — gt K(X, MT)wg“) - (7.15)
Now, solving the gradient of 1} w.r.t. w?“ and equating to 0, we get
Zwlth 4 CQ—waH + UM (Uw!*' —7;) =0,
where
_ 1 .
U; = diag (sign(K(Xi, MMw! — —eel K(X;, MT)wf)>
— 1
(K(Xi, MT) — —& K (X, MT)), (7.16)

)
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Solving Eq. 1) for wf 1 we get

. Z; ¢ -1
it = (U0 + 2+ 21) Utes (7.17)
C1 C1
The above equation involves matrix inversion of order m x m. This leads to
high computation time for datasets having very large m as compared to number of

features. In order to reduce the computation cost of calculating the inverse, we use

the Sherman-Morrison-Woodbury (SMW) formula [40].
We can write Eq. (7.17) as

DI'D;

8]

. —1
wit = (UTU+ 21+ ) ule, (7.18)
&1

where D = (K(X;, M") — e;2]'). Now, using the SMW formula (Eq. 6.20)), we obtain

the following expression:

wi™ = (A7 = ATYUR (L + U AT U U A Y U e, (7.19)

7

where A" = & (I, — D] (cal; + D;D]) 7' D;).

For calculating wf“, instead of computing inverse of size (m x m), we need to
compute one inverse of size (m; x m;), and other of size (m — m;) x (m —m;), Vi =
1,2,...,N.

For a testing sample x;, the label y is determined as follows,

1
_ - T T _ LT AT\
y(zy) = arg 1:11%mN w; K(xey, M) - e; K(X;, M )w;

. (7.20)

The algorithm for non-linear LSPTSVC is shown in Alg.

Lemma 7.1.1 Let X € R™", S € R™"™ m > Then, S = (X —es) (X — es) is

n.

1 N~ T

a positive semidefinite matriz, where s = pon 231 T, .
p:

Proof: Let T'= (X — es). Then, S = T7T is a symmetric matrix.
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Algorithm 7.2 Non-linear LSPTSVC

1: Inputs:
1.1 Unlabelled data X € R™.
1.2 Kernel matrix K obtained using kernel function.
2: Initialization:
2.1 Label assignment: Yy <+ NNG(K).
2.2 Initialize weight vector w{ for each cluster i = 0,1,..., N:
wy = Figenvector(Z;), for smallest eigenvalue of Z;.
3: CCCP process:
3.1 For each cluster ¢, calculate wf 1 for j = 0 using the initial weight vector

0
w,z:-

3.1.1 wfl = LSPTSVC(K, wf) using Eq. .

3.1.2 if (|Jw!t! — w!|| > tolerance)
j=j+1
go to step 3.1.1

3.1.3 else
go to step 4

4: Assign cluster labels:
4.1 Assign new labels to the data points for each cluster 7.

4.1.1 Y41 = Decision_function(K, w;) using Eq. (7.20)), initially with

k=0.

4.1.2if (||Yes1 — Yl #0)
k=k+1
go to step 3

4.1.3 else
go to step 5

5: Qutput:
Return data labels Y, and projection vectors w;, i = 0,1,..., N.
Now, for any w € R",
wl Sw = w!' T Tw
— w! Sw = || Tw|* > 0. (7.21)

Therefore, S is positive semidefinite.

Theorem 7.1.1 Let X € RP™ m > n, and S = (X —es)" (X — es). Then, the

global minimum of:
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min w!’ Sw
w

T

st ww =1,

(7.22)

is obtained for any eigenvector w of S with minimum eigenvalue. The minimum value

of is positive iff S is positive definite or equivalently iff rank(X — es) = n.

Proof: Firstly, we write the Lagrangian of Eq. (7.22),
L=w"Sw— )\(wTw — 1).

Now, we use the Karush-Kuhn-Tucker (K.K.T.) optimality conditions,

g—i:Sw—)\wzo,
oL T
B w'w 0

From and (7.25), we get
A =w! Sw.
Putting the value of A in ([7.24)), we get
Sw = (w! Sw)w,
which is equivalent to

Sw = kw,

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

where & = w?Sw, which is to be minimized in Eq. (7.22). Hence, the smallest
eigenvalue of S gives the eigenvector w to achieve global minimum of ([7.22) [163].
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Remark: If S € R"*" is positive definite, then S is non-singular.

Theorem 7.1.2 Let X € R, G € R, § = (X —es) (X — es) € R™", and
I € R™" is the identity matrixz. Then, the matriz (GTG + % + %I) 15 invertible

Vey,co > 0.

Proof: Here, GT'G and S are positive semidefinite matrices from Lemma , and
21, is positive definite for ¢1,co > 0. Also, for any vector w € R, w # 0, the sum of a
positive semidefinite and positive definite matrix is always positive definite as shown
below:

Let A and B be a positive definite and positive semidefinite matrix respectively.

Then, for any vector w € R"™, w # 0,

w? Aw > 0, (7.29)
w? Bw > 0, (7.30)
Adding (7.29) & (7.30), we get
(w” Aw + w' Bw) > 0, (7.31)
w’ (A + B)w > 0. (7.32)

Therefore, the square matrix (GTG + f—l + 21 ) is always non-singular, and thus

invertible.

7.1.3 Convergence

The proposed LSPTSVC described in Algs. [7.1]and[7.2] converges in a finite number
of steps. This is because CCCP method always finds a local minimum, and thus
converges as discussed in [228]. Moreover, in the cluster assignment process, every data
point is assigned to closest hyperplane [163]. So, the overall objective function cannot
increase. Thus, the algorithm converges based on any of the following terminating

conditions:
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(i). Same labels assigned to data points in two consecutive iterations.

(ii). Non-decrease in the overall objective function.

7.1.4 Time complexity

In comparison to TWSVC which solves large sized QPPs to solve the clustering
problem, the proposed LSPTSVC only needs to solve sets of linear equations. The
time complexity of solving the QPP in linear TWSVC is O(N (m;)?) for m = m; +m;
samples, N classes and m; constraints, i = 1,2,..., N. The complexity of calculating
the matrix inverse is about O(Nn?) [167]. So, the complexity of TWSVC becomes
O(N(m? 4+ n?)). In case of non-linear TWSVC, the complexity for QPP is O(Nm?),
where m; is the number of constraints, and for inverse is about O(Nm?). Therefore,
the complexity becomes O(N (3 +m?)). The time complexity of TBSVC is same as
TWSVC.

The solution of linear LSPTSVC requires the inversion of N matrices of size n x n.
Thus, the time complexity of solving the inverses in Eq. is O(Nn?). In the non-
linear case, N matrix inverses of size m;, and m; need to be calculated. Therefore, the
time complexity is O(N (m3+m?), i = 1,2,..., N. The time complexity of LSPTSVC
is lower than TWSVC which leads to lesser training time. LSTWSVC has similar
time complexity as LSPTSVC, except the fact that it needs to calculate the bias.
Consequently, the number of linear equations in LSPTSVC is less than LSTWSVC by
one equation.

Moreover, in the initialization process, the proposed LSPTSVC only needs to find
w. On the other hand, the bias b is also calculated in case of existing plane based

clustering algorithms.

7.1.5 Proposed LSPTSVC vs LSPTSVM

The LSPTSVM [15§] is a supervised learning algorithm that performs classification
of data points by constructing projection axes for each class. The decision function

shown in Eq. (2.45) is constructed in a manner to keep the projected data well
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separated. However, LSPTSVM minimizes the within class variance of one class, and
keeps the scatter of the other class far away on one side of the axis. This is shown by
the constraints of QPP (2.38).

We extended the projection axes based approach for unsupervised learning. The
proposed LSPTSVC performs clustering by minimizing the within cluster variance,
and keeping the scatter of the other clusters far away on both sides of the axes as
shown in Fig. [7.]] This is a result of the constraints of QPP (7.I). Moreover,
LSPTSVM solves the optimization problem by system of linear equations, whereas
proposed LSPTSVC solves linear equations in multiple iterations of the CCCP proce-
dure to obtain the projection axes.

In contrast to LSPTSVM, the proposed LSPTSVC involves an initialization pro-
cedure for the weights. Since the scatter matrix S involved in the projection based
algorithms is positive semidefinite, we presented the initialization procedure based on
eigenvalue of S. In terms of time complexity, LSPTSVC requires more computation
time than LSPTSVM, since it involves the CCCP iterative procedure, and mostly
deals with multiclass clustering of data. However, the proposed LSPTSVC is compu-
tationally more efficient than LSTWSVC. This is analogous to the lesser computation
cost of LSPTSVM in comparison to LSTSVM [15§].

7.1.6 Experimental results

In this section, performance of the proposed LSPTSVC is compared with existing
techniques on the basis of clustering accuracy and training time. The algorithms used
for comparison are FCM [162], kPC [163], TWSVC [166], TBSVC [167], LSTWSVC
[168], and FLSTWSVC [168]. Among these, FCM is a distance based technique using
fuzzy memberships, while rest are plane based algorithms. We use 13 synthetic and 10
real world benchmark datasets to assess the performance of the proposed model with
linear and non-linear kernels. Moreover, the performance of LSPTSVC is compared
with existing algorithms on 12 large scale datasets. Performance comparison on real
world applications are also presented viz. clustering of faces, facial expressions, and

Alzheimer’s disease data.
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The synthetic benchmark datasets are downloaded from the website (https:
//github.com/deric/clustering-benchmark), while the real world and large scale
datasets are taken from UCI repository [170]. For applications, facial images
are downloaded from AT&T database (https://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html) of AT&T Laboratories Cambridge, and facial ex-
pression data is taken from JAFFE database [229]. For application on Alzheimer’s
data, the same dataset is used as in [£.2.2] with the same pre-processing pipeline.

7.1.6.1 Parameter settings

In Table and [7.2] 50% of total data samples are used for training and rest for
testing. The value of the parameters ¢, co are selected as in subsection [3.1.5] for all the
cases. The tolerance value for the CCCP process is set as 0.001 in all the algorithms. In
FCM, the weighting exponent i.e., m is selected from the set {1.25,1.5,1.75,2} [162].
In case of large datasets, the value of ¢, ¢y is fixed as 1 [158], and u is set as 2° for all
the algorithms.

In all the existing algorithms except FCM, the initialization of weights is per-
formed using kPC algorithm [163], while LSPTSVC is initialized using Theorem [7.1.1]
For initialization of cluster labels, the well known nearest neighbour graph (NNG)
technique [166] is used for all the algorithms except FLSTWSVC which uses fuzzy
NNG [168]. However, in case of large datasets, a set of randomly generated cluster

labels are used for initialization of all the algorithms.

7.1.6.2 Results on benchmark datasets

The comparison of the proposed LSPTSVC with existing methods viz. FCM [162],
kPC [163], TWSVC [166], TBSVC [167], LSTWSVC [16§|, and FLSTWSVC [168§] is
shown in Table for linear case. One can observe that the proposed LSPTSVC
is showing better performance w.r.t. clustering accuracy in comparison to existing
algorithms. This is also justified by the lowest average rank of LSPTSVC i.e., 2.0217
for all the datasets. Moreover, the training time of LSPTSVC is lesser than TWSVC
and TBSVC. This is due to the fact that the proposed LSPTSVC solves a set of
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linear equations to obtain the projection axis. In contrast, TWSVC and TBSVC solve
computationally expensive QPPs.

In comparison to LSTWSVC, LSPTSVC is slightly faster in most datasets since it
only needs to calculate the weight vector w and not the bias b. For FLSTWSVC, the
training time is higher than proposed LSPTSVC due to the overhead of calculation
of fuzzy membership. The comparison of computation time of kPC and FCM with
proposed LSPTSVC is not given, since they are not twin SVM based algorithms.

However, we have shown the training time of all the algorithms in the tables.

Table also shows the number of mis-clustered [230] data points for every al-
gorithm. The mis-clustered data points are calculated by counting the pair of data
points with cluster mismatch. One can observe in Table [7.1| that even in terms of the
mis-clustered data points, proposed LSPTSVC obtains the least rank i.e., 2.3696. One
can notice that for some datasets, the best performing algorithm in terms of accuracy
is not having the least number of mis-clustered data points. This can be attributed

to the imbalance in the number of data points of clusters in a dataset.

The Win-Tie-Loss comparison is also shown in Table [7.I, The clustering accu-
racy of proposed LSPTSVC is compared with existing algorithms in a Win-Tie-Loss
scenario for all the datasets. It is evident that LSPTSVC is having a ‘Win’ scenario
for all the compared algorithms. The highest ‘Win’ case is in comparison to FCM,
kPC, and TWSVC algorithm. This is because FCM algorithm is based on distance
from neighbouring data points, while the datasets have varying data distributions.
Moreover, LSPTSVC initializes its weights using the eigenvectors and then converges,
while kPC obtains its hyperplanes as the eigenvectors. In comparison to TWSVC,
proposed LSPTSVC involves the concept of within class scatter minimization leading
to better clustering accuracy. However, the proposed LSPTSVC is having some losses
in case of TBSVC, LSTWSVC, and FLSTWSVC. For more analysis on significance of

the proposed algorithm, statistical analysis is presented in section 4.4.

The clusters identified by the proposed and existing algorithms using linear kernel
for 3MC synthetic dataset are shown in Fig. [7.2] The actual clusters in the dataset are
shown in Fig. [7.2(a)l One can easily notice that the clusters labelled by the proposed
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Table 7.1: Performance comparison on clustering accuracy (%), number of mis-
clustered data points (# Miss), and training time of the proposed LSPTSVC with
existing algorithms using linear kernel. The Win-Tie-Loss calculation is based on
accuracy, and ‘s’ represents time in seconds.

FCM kPC TWSVC TBSVC LSTWSVC FLSTWSVC Proposed
162 [163] [166] [167] 1168] 1168] LSPTSVC
Dataset Accuracy Accuracy  Accuracy Accuracy Accuracy Accuracy Accuracy
(Size, clusters) # Miss # Miss # Miss # Miss # Miss # Miss # Miss
- - (c1) (c1,02) (c1, ) (c1,¢2) (c1,02)
Time (s) Time (s)  Time (s) Time (s) Time (s) Time (s) Time (s)
Synthetic
51.37 66.3 68.96 90.1 90.1 89.29 96.02
3MC 89 89 80 18 18 16 6
(400%2, 3) - - (109 (1075, 10?) (107°,10?) (10t, 10%) (10%,10%)
0.0151 0.00008 0.0191 0.0162 0.00015 0.0037 0.00009
77.64 79.36 79.97 78.86 80.82 89.62 83.55
Aggregation 152 189 183 178 187 95 149
(788x2, 7) . . (101 (10°,10°  (107%,107)  (107%,107%)  (10',10°)
0.1394 0.00015 0.2811 0.2869 0.00324 0.0418 0.00185
78.41 73.56 79.88 80.14 79.88 79.76 86.61
Compound 72 97 81 84 92 80 51
(399%2, 6) - - (109 (1071,107%)  (1073,107%) (1072,1072) (1075, 10%)
0.0718 0.0001 0.055 0.054 0.00039 0.0077 0.00026
92.17 91.4 96.18 93.49 95.58 97.71 97.07
R15 126 133 64 102 75 36 48
(600%2, 15) - - (1072) (1071,107%)  (1073,1079) (10°,107°) (10°,10%)
0.0243 0.00019 0.3949 0.4091 0.00238 0.0486 0.00123
68.73 78.73 78.43 95.08 85.99 82.75 91.4
Zelnikh 112 96 99 15 58 72 26
(512x2, 4) - - (10)  (101,10"Y)  (1075,1072)  (1075,107%)  (10%,10°9)
0.0163 0.00011 0.055 0.0472 0.00044 0.0107 0.00022
85.77 77.66 97.49 96.85 97.01 96.37 98.59
2d-4c¢-no9 114 130 14 18 17 22 8
(876x2, 4) - - (1072)  (1071,10')  (107%,10%)  (10°107°)  (1073,10%)
0.0931 0.00014 0.1426 0.1436 0.00169 0.0244 0.00084
81.67 83.46 84.27 86.47 85.78 90.15 90.93
Longsquare 179 159 127 128 130 101 94
(900%2, 6) - - (1079) (1075,107Y) (10741071 (1072,107%) (10%,10%)
0.0114 0.00016 0.228 0.2248 0.00408 0.0537 0.00259
77.05 87.57 99.03 99.03 98.49 94.9 100
Hepta 43 38 2 2 3 11 0
(212x3, 7) - - (107%)  (1073,107%) (107%,107%)  (1071,1072) (102,100
0.006 0.00011 0.0268 0.0268 0.00016 0.0031 0.00015
74.87 81.6 80.25 80.25 80.25 75.1 83.96
Zelnik3 31 20 22 22 22 30 17
(2662, 3) - - (1079) (1075,1072)  (1072,1072) (1075,1079) (102,1079)
0.0054 0.00007 0.0113 0.0109 0.00009 0.0018 0.00006
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Table (contd.)

FCM kPC TWSVC TBSVC LSTWSVC FLSTWSVC Proposed
[162] [163] [166] [167] (168 |168 LSPTSVC
Dataset Accuracy  Accuracy  Accuracy Accuracy Accuracy Accuracy Accuracy
(Size, clusters) # Miss # Miss # Miss # Miss # Miss # Miss # Miss
- - (c1) (c1,¢2) (c1,¢2) (c1,¢2) (c1,¢2)
Time (s)  Time (s)  Time (s) Time (s) Time (s) Time (s) Time (s)
61.71 70.36 71.22 71.44 70.7 71.44 71.35
Pathbased 74 48 45 45 47 45 45
(300%2, 3) - - (1071 (1072,107Y)  (1072,107%) (107°,1079) (10%,10%)
0.0156 0.00007 0.0135 0.0131 0.00011 0.0023 0.00008
56.47 58.72 56.05 59.59 56.05 49.58 59.65
Zelnik1 70 71 71 72 70 74 69
(399%2, 3) - - (1071) (10%,10°) (1072,107%) (10°,107Y) (10%,1079)
0.022 0.00009 0.0136 0.0144 0.00011 0.0031 0.00008
87.44 90.46 93.08 93.01 93.17 93.06 93.45
Ds2c¢2sc13 115 103 69 70 72 79 81
(5882, 13) - - (1073) (1073,107%)  (1073,107®) (1071,107?) (10',10")
0.4318 0.00035 0.3133 0.3154 0.0021 0.0437 0.00128
87.68 62.52 67.13 85.22 85.22 62.96 93.38
2d-4c-nod 66 205 131 70 70 205 24
(863x2, 4) - - (10%) (10°,10%) (107%,10°) (10%,1073) (10%,10%)
0.0048 0.0003 0.1697 0.0754 0.00261 0.0275 0.00148
Real world
71.02 37.79 63.47 63.44 61.98 56.19 68.25
Ecoli 71 81 81 82 80 81 84
(336x7, 8) - - (10%) (10%,10%) (10',1079) (102, 10%) (101, 10")
0.0144 0.00034 0.1092 0.0563 0.00033 0.0083 0.00035
54.53 72.73 82.04 89.8 88.98 90.12 88.41
Zoo 24 15 14 11 11 11 12
(101x16, 7) - - (1073) (1071, 109) (1075,10%) (1071, 10%) (102,107%)
0.0181 0.0023 0.0309 0.0217 0.00026 0.0057 0.00022
34.22 56.03 73.88 71.71 75.74 79.01 74.06
Wine 43 43 25 26 21 17 23
(17813, 3) - - (1072) (1073, 109) (1073,1071) (10%,1073) (1071,10%)
0.0048 0.00016 0.0087 0.009 0.00011 0.0026 0.00009
32.68 62.7 91.53 93.08 94.7 94.7 94.7
Iris 37 29 5 4 3 3 3
(150x4, 3) - - (1079) (1071, 109) (1071, 10Y) (10=°,109) (1072,10°)
0.0059 0.00007 0.0083 0.0083 0.00007 0.0009 0.00006
32.77 76.58 75.66 75.99 75.44 75.66 74.56
Seeds 52 33 33 34 35 33 27
(210x7, 3) - - (107%) (107°,1072)  (107°,1072) (107%,107) (10%,10?)
0.0072 0.00015 0.0116 0.0103 0.00008 0.0022 0.00008
33.98 42.85 48.32 52.65 51.32 49.05 56.25
Teachingeval 36 37 37 37 37 37 36
(151x5, 3) - - (10?) (1071, 109) (1072,10?) (1075, 10") (10',1071)
0.0047 0.00009 0.0093 0.0083 0.0001 0.0011 0.00006
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Table (contd.)

FCM kPC TWSVC TBSVC LSTWSVC FLSTWSVC Proposed
162 [163] [166] [167] [168] [168] LSPTSVC
Dataset Accuracy  Accuracy  Accuracy Accuracy Accuracy Accuracy Accuracy
(Size, clusters) # Miss # Miss # Miss # Miss # Miss # Miss # Miss
- - (01) (6‘17 02) (6‘17 Cz) (Ch ca) (c1, Cz)
Time (s)  Time (s)  Time (s) Time (s) Time (s) Time (s) Time (s)
32.68 45.15 52.61 52.61 49.48 32.68 56.61
Tae 37 36 37 37 35 37 36
(1505, 3) - - (10°) (10°,107%)  (10%,10°%) (1075,107%)  (102,10%)
0.0088 0.0001 0.0094 0.0098 0.00011 0.0012 0.00006
62.75 57.67 55.99 55.34 53.38 52.73 53.94
Hayes-roth 27 31 32 33 32 28 32
(132x4, 3) - - (101) (10°,107%)  (1072,107?) (109,1075) (102,10%)
0.0098 0.00007 0.0077 0.0077 0.00008 0.0008 0.00005
63.25 51.55 62.85 87.77 78.54 82.12 78.54
Shuttle 167 359 251 54 124 104 112
(14869, 5) - - (107 (1072,102)  (10°,10%) (102,10%) (10°, 10%)
0.3162 0.00235 1.1994 1.4062 0.00828 0.1927 0.00783
70.99 64.14 66.16 83.27 86.72 87.65 87.81
Libras 89 88 89 88 87 85 88
(36090, 15) - - (107%)  (1071,107Y) (104,104  (1074,107%)  (10°,107%)
0.4334 0.0491 0.1845 0.1641 0.00584 0.0261 0.00503
Average 65.23 69.38 75.81 80.25 79.41 77.9 82.22
accuracy
Average rank 5013 5 47s3 4.1522 3.1522 3.6304 3.7609 2.0217
(Accuracy)
Average rank 5500 5 3606 41957 3.9783 3.6304 3.3261 2.3696
(# Miss)
Win-Tie-Loss 21-0-2 21-0-2 21-0-2 17-0-6 18-2-3 15-1-7

LSPTSVC in Fig. are similar to the original clusters in Fig. [7.2(a)l This may

be attributed to minimization of the within class variance of projected data, while

keeping the projected data of other classes at unit distance from centre of the cluster.

Table shows the performance of the proposed LSPTSVC for non-linear case.
One can notice that clustering accuracy of the proposed LSPTSVC is better than
existing algorithms for most of the datasets. This is also evident from the average
rank of LSPTSVC which is the lowest among algorithms in Table ie., 1.7391.
Moreover, the proposed non-linear LSPTSVC is having ‘Win’ situation with all the
algorithms in most datasets. This is due to the effect of RBF kernel resulting in
non-linear projection axes. Similar to the linear case, the training time of proposed

LSPTSVC is also lesser than existing algorithms.
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Figure 7.2: Plot showing performance of proposed LSPTSVC in comparison to existing
algorithms using linear kernel for 3SMC dataset. In the legend ‘C’ means cluster.
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Table 7.2: Performance comparison on clustering accuracy (%), number of mis-
clustered data points (# Miss), and training time of the proposed LSPTSVC with
existing algorithms using RBF kernel. The Win-Tie-Loss calculation is based on ac-
curacy, and ‘s’ represents time in seconds.

FCM kPC TWSVC TBSVC LSTWSVC FLSTWSVC Proposed
162 (163 166 167 168 168 LSPTSVC
Dataset Accuracy Accuracy  Accuracy Accuracy Accuracy Accuracy Accuracy
(Size, clusters) # Miss # Miss # Miss # Miss # Miss # Miss # Miss
- - (Cl ) N) (Cl = Ca ,U) (Clt C2, /1') (C] ; €2, :U) (Cl ; C2, /t)
Time (s)  Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
Synthetic
51.37 69.18 66.32 60.81 88.85 72.27 82.31
3MC 89 63 97 93 18 62 29
(400x2, 3) - - (10°,2%) (10',29)  (1073,1071,25)  (10%107% 2%) (101,101, 2%)
0.0151 0.0383 0.0977 0.0993 0.045 0.0455 0.0444
77.64 92.21 92.36 92.85 92.8 94.97 92.99
Aggregation 152 Y s 70 71 42 70
(788%2, 7) - - (1073,2%)  (1075,2)  (1075,1072,2')  (1071,1071,2%)  (1077,1075,2Y)
0.1394 0.638 0.8281 0.7539 0.29 0.2958 0.2835
78.41 88.57 91.34 91.37 93.24 90.81 93.05
Compound 72 53 44 41 38 43 40
(399x2, 6) - - (107°,2°)  (1072,21)  (1073,1071,20)  (107%,1075,21) (1072102 22)
0.0718 0.1013 0.1506 0.1482 0.0557 0.0588 0.0527
92.17 99.43 99.73 99.8 99.42 99.43 99.57
R15 126 8 4 3 7 7 5
(600x2, 15) - - (1075,25)  (1075,24)  (1075,107%,271) (1075,107°,271) (1075,107%,271)
0.0243 0.6568 0.6917 0.7201 0.2268 0.23 0.2197
68.73 75.96 82.07 86.85 84.03 85.64 84.86
Zelnik5 112 87 76 53 80 67 61
(512x2, 4) - - (1073,25) (10722 (1071,1072,21)  (1075,107%,22)  (102,10°,27%)
0.0163 0.0946 0.1574 0.1356 0.0837 0.0876 0.0794
85.77 98.66 98.39 97.81 97.07 99.16 98.28
2d-4¢-no9 114 8 7 10 15 5 8
(8762, 4) - - (1075,22)  (1075,2!)  (1072,10%,22)  (1075,107%2Y)  (107%,1072,2?)
0.0931 0.3521 0.6216 0.6215 0.2801 0.2892 0.2798
81.67 89.27 64.72 78.86 81.08 93.22 93.76
Longsquare 179 107 200 192 198 65 49
(9002, 6) - - (10722 (10°,22) (1074,10%,22)  (1073,107%,22)  (10°,10%,22)
0.0114 0.5345 1.0026 0.8856 0.3905 0.3796 0.3779
77.05 100 100 100 100 100 100
Hepta 43 0 0 0 0 0 0
(2123, 7) - - (107°,21)  (107°,21)  (107°,1075,2%)  (107°,107%,20)  (107%,107°,21)
0.006 0.018 0.0563 0.0553 0.0156 0.0176 0.0144
74.87 83.12 83.39 81.7 84.51 100 100
Zelnik3 31 19 18 20 17 0 0
(266x2, 3) - - (1071,2%)  (1074,22)  (10',10%,27%)  (1077,107%,275)  (10°,10%,27%)
0.0054 0.0253 0.048 0.0455 0.0206 0.0214 0.0192
61.71 63.9 57.49 68.21 70.56 5.7 82.26
Pathbased 74 64 74 60 46 34 23
(300x2, 3) - - (10, 2%) (10°,2%) (107°,10°,2%)  (1072,107°,22)  (10',10%,22)
0.0156 0.0252 0.0638 0.0571 0.0256 0.026 0.0255
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Table [7.2] (contd.)

FCM kPC TWSVC TBSVC LSTWSVC FLSTWSVC Proposed
162 163 166 167 1168 168 LSPTSVC
Dataset Accuracy Accuracy  Accuracy Accuracy Accuracy Accuracy Accuracy
(Size, clusters) # Miss # Miss # Miss # Miss # Miss # Miss # Miss
- - (cr,p) (o =ca,p) (c1, 02, 1) (c1, €2, 1) (c1, 02, 1)
Time (s)  Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
56.47 52.6 59.82 58.52 68.57 73.41 74.16
Zelnik1 70 74 69 69 57 53 56
(399x2, 3) - - (1072,21)  (1072,2')  (102,10°,2%)  (10°,10°%2°%) (101,101, 22)
0.022 0.0217 0.0433 0.0381 0.0268 0.0275 0.0248
87.44 84.25 94.28 94.78 95.14 93.47 95
Ds2c2sc13 115 114 45 43 41 7 41
(588x2, 13) - - (1075,273)  (1073,27%)  (107%,107%,2°%)  (1073,10~%,27%) (10°5,10~%,279)
0.4318 0.3848 0.5756 0.5546 0.1956 0.2095 0.1902
87.68 71.55 65.39 64.93 62.14 89.65 95.27
2d-4c-no4 66 101 155 156 162 66 20
(8632, 4) - - (1074,2')  (10°,22)  (1075,10%,22)  (10°1,10°,2Y) (101, 10%,22)
0.0048 0.3495 0.5077 0.4275 0.2884 0.2889 0.2773
Real world
71.02 68.31 61.13 60.61 63.45 55.01 73.28
Ecoli 71 69 84 83 74 67 81
(336x7, 8) - - (1073,2%) (10%,2%) (10%,1074,25) (107,109, 25) (10%,10%,2°%)
0.0144 0.0496 0.1331 0.1175 0.0434 0.0466 0.0407
54.53 81.71 86.53 86.86 85.88 80.33 89.31
Zoo 24 16 11 14 13 15 9
(101x16, 7) - - (1075,2%)  (1072,22)  (10%,107%,2%)  (1071,107%,2%)  (10',10°1,2%)
0.0181 0.0039 0.0379 0.0311 0.0039 0.0078 0.0035
34.22 65.27 68.69 72.32 74.26 59.24 75.18
Wine 43 30 27 22 23 38 21
(178x13, 3) - - (1075,2)  (10°2,2%)  (1071,10°,2%)  (107°,1072,2%)  (107L,10°3,2%)
0.0048 0.0067 0.0262 0.0258 0.0096 0.0103 0.009
32.68 78.31 94.7 94.7 96.4 90.05 94.7
Iris 37 16 3 3 2 6 3
(150x4, 3) - - (1071,2%)  (1075,25)  (10-1,107%,22)  (1071,1072,20)  (107!,1072%,22)
0.0059 0.0051 0.019 0.0197 0.0063 0.007 0.0062
32.77 76.1 76.58 87.09 87.01 73.79 87.71
Seeds 52 33 33 12 12 33 11
(210x7, 3) - - (1073,2%)  (1073,25)  (1075,1073,2%)  (10%,10%,2%) (101,102, 24)
0.0072 0.0127 0.0311 0.0322 0.0123 0.0133 0.0121
33.98 44 40.76 46.74 46.52 49.05 53.08
Teachingeval 36 35 36 37 36 37 36
(1515, 3) - - (1073,22)  (10°,22) (104,10, 22) (101, 10%,2%) (10, 10%,2%)
0.0047 0.0033 0.021 0.0206 0.0067 0.0074 0.0064
32.68 54.67 32.68 42.13 47.53 32.68 54.88
Tae 37 36 37 35 37 37 37
(1505, 3) - - (1075,27%) (101,22 (10°,10%,23)  (107°,107%,27%)  (10%,102,2%)
0.0088 0.0021 0.0199 0.0201 0.0068 0.0071 0.0061
62.75 33.19 63.92 63.92 52.96 54.5 70.35
Hayes-roth 27 33 29 29 33 30 24
(132x4, 3) - - (1075,271)  (107%,271)  (1073,1071,22)  (10°,107%,2Y) (10°,102,21)
0.0098 0.0026 0.0173 0.017 0.0051 0.0056 0.0049
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Table (contd.)

FCM kPC TWSVC TBSVC LSTWSVC FLSTWSVC Proposed
162! f163] f166] 167 f168] 168 LSPTSVC
Dataset Accuracy Accuracy  Accuracy Accuracy Accuracy Accuracy Accuracy
(Size, clusters) # Miss # Miss # Miss # Miss # Miss # Miss # Miss
- - (c1, ) (c1 = ca, 1) (e1,c2, 1) (c1, 02, 1) (c1, 2, 1)
Time (s)  Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
63.25 68.37 70.33 70.59 75.73 64.66 79.96
Shuttle 167 145 150 149 137 160 132
(14869, 5) : . (1074,2%)  (107%,2Y)  (10',10%,2%)  (107%,107%,2%)  (107',10%,2%)
0.3162 0.565 2.5814 2.5527 1.1689 2.168 1.1518
70.99 71.75 85.68 81.56 86.41 88.6 87.15
Libras 89 83 88 86 88 87 88
(36090, 15) - - (1075,271)  (1073,29)  (10%,10%,271)  (107%,107°,2°)  (10%,10°,2%)
0.4334 0.1532 0.251 0.2675 0.0799 0.08 0.074
Average 65.23 75.45 76.88 78.87 80.9 80.36 85.84
accuracy
Averagerank 6 1739 5606 4.3478 3.7391 3.4565 3.6739 1.7391
(Accuracy)
Average rank 5.8013 4.4348 4.4783 3.6957 3.6522 3.5435 2.3043
(# Miss)
Win-Tie-Loss 23-0-0 21-1-1 19-2-2 19-2-2 18-1-4 17-2-4

In terms of mis-clustered data points also, the proposed LSPTSVC performs better
than the existing algorithms with an average rank of 2.3043 (Table . A similar
trend is observed for the average ranks of the different algorithms. However, the
average rank of FLSTWSVC is lesser than LSTWSVC in terms of mis-clustered data
points.

The clusters labelled by all the algorithms using non-linear kernel for Longsquare
synthetic dataset are shown in Fig. 7.3 There are 6 clusters in this dataset labelled
using non-linear kernel. It is clear from the illustration in Fig. that LSPTSVC
is able to label the clusters better than the other algorithms. Also, FLSTWSVC is
showing similar performance in Fig. . A similar trend is visible in Fig. for

Pathbased dataset, where proposed LSPTSVC outperforms the other algorithms.

7.1.6.3 Statistical analysis

In this section, we check the statistical significance of proposed LSPTSVC with
existing techniques in terms of clustering accuracy. We perform the Friedman test [172]
with the corresponding Nemenyi post hoc test. Initially, we assume that there is no

difference between the methods as the null hypothesis.
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Figure 7.3: Plot showing performance of proposed LSPTSVC in comparison to existing
algorithms using RBF kernel for Longsquare dataset. In the legend ‘C” means cluster.
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Figure 7.4: Plot showing performance of proposed LSPTSVC in comparison to existing

algorithms using RBF kernel for Pathbased dataset. In the legend ‘C’ means cluster.



I. Linear case:

The x% value for Friedman test is calculated using Table as 50.7162. The FFp

value is calculated as

(23 — 1) x 50.7162

= — 12.7831.
23 x (7— 1) — 50.7162

F

Here, the F-distribution has (7 —1, (7 —1)(23 — 1)) = (6,132) degrees of freedom.
Now, for the level of significance at ov = 0.05, the critical value of F(6,132) is 2.1680.
Since Frp = 12.7831 > 2.1680, we reject the null hypothesis.

Now, to check pairwise difference between the proposed method and existing algo-
rithms, we use the Nemenyi post hoc test. For significant pairwise difference between
the methods at a = 0.10 level of significance, the average ranks of the methods shown

in Table should differ by atleast 2.693 % = 1.7155. Table shows the

pairwise difference between the methods.

Table 7.3: Pairwise significance of the proposed LSPTSVC with existing algorithms.

Linear FCM | kPC | TWSVC | TBSVC | LSTWSVC | FLSTWSVC
Proposed LSPTSVC | Yes | Yes Yes No No Yes

Non-linear FCM | kPC | TWSVC | TBSVC | LSTWSVC | FLSTWSVC
Proposed LSPTSVC | Yes | Yes Yes Yes Yes Yes

It can be inferred from Table [7.3] that in the linear case, the proposed LSPTSVC
is significantly better than FCM, kPC, TWSVC, and FLSTWSVC algorithms.

II. Non-linear case:

Similar to the linear case, first we calculated the x? value using Table[7.2)as 55.1196.

The Fp value is given as

(23 — 1) x 55.1196

= = 14.6311.
23 x (7—1) —55.1196

F

Since Fp = 14.6311 > 2.1680, we reject the null hypothesis. Now, similar to linear
case, we perform the Nemenyi post hoc test using Table to check the pairwise

difference between the proposed method and existing algorithms. The results for
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the pairwise statistical difference are shown in Table [7.3] It is clear that in terms of

clustering accuracy, the proposed LSPTSVC is significantly better than all the existing

algorithms for the non-linear case.
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Figure 7.5: Insensitivity of proposed LSPTSVC for clustering to the user specified
parameters ¢; = ¢ and p using RBF kernel for real world benchmark datasets.

To analyze the effect of parameter values on the clustering performance, insensi-
tivity analysis of LSPTSVC is performed for the parameters ¢ and u. Fig. shows
the change in accuracy w.r.t. varying values of parameters for real world datasets. It
can be observed in Fig. that for higher values of pu, the clustering performance is

better. This is due to the fact that in non-linear case, p1 decides the value of kernel
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function, leading to non-linear transformation of data. However, the value of ¢; = ¢

does not have any significant effect on the clustering accuracy.

7.1.6.4 Large scale datasets

To show the effectiveness of the proposed LSPTSVC on large sized datasets, exper-
iments are performed on datasets with large number of samples as well as features. A
total of 12 large scale datasets are included, where 7 datasets are having large number
of samples, while five are having large feature size. The algorithms involving QPPs
incur high computation time for large number of samples. Therefore, for large sample
datasets, we compared the proposed algorithm with algorithms involving solution of
linear equations in Table [7.4] Moreover, linear kernel is used for the comparison.
Table 7.4: Performance comparison on accuracy (%) and training time of proposed

LSPTSVC with existing algorithms on large sample datasets using linear kernel. Av-
erage rank is based on accuracy.

Proposed
Dataset LSTWSVC FLSTWSVC LSPTSVC
L . Clusters  Accuracy Accuracy
(Train size, Test size) . . Accuracy
Time (s) Time (s) .
Time (s)
Pendigits 10 84.76 79.77 83.31
(5996x 17, 1498x17) 1.3836 1.5956 1.0081
Penbased 10 75.62 1.7 81.59
(879416, 2198x16) 2.6765 2.9576 2.0746
Letter_10k 9% 86.21 86.64 91.51
(8000% 16, 2000x16) 6.2636 6.9988 5.1504
Letter_20k % 81.16 87.54 90.17
(16000x 16, 4000x16) 23.0756 24.9343 19.9956
Poker_30k g 54.71 53.28 54.68
(24000% 10, 6000x10) 13.3279 16.7914 10.6532
Poker_40k 9 54.78 53.98 55.29
(32000% 10, 8000x10) 30.5703 36.0595 22.2977
Poker_50k 9 54.41 54.51 54.99
(40000% 10, 10000%10) 48.7161 62.3994 36.6232
Average rank 2.1429 2.5714 1.2857
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It is evident from Table[7.4]that the proposed LSPTSVC takes least amount of time
for large sample datasets. Moreover, the generalization performance of LSPTSVC is
also better in most datasets with an average rank of 1.2857. The training time is
highest for FLSTWSVC, since it involves the calculation of fuzzy membership matrix.

In case of datasets with large features, we used RBF kernel in all the algorithms.
Here, the SMW formula is not used in LSTWSVC, FLSTWSVC, and LSPTSVC, since
the feature size is more than the number of samples. Table shows the performance
for datasets with large feature size. One can observe that the proposed LSPTSVC is
efficient on datasets with large number of features. On TTC-3600 dataset, the training
time of LSPTSVC is significantly lesser than the other algorithms. Also, the accuracy
of LSPTSVC is better for all the datasets. However, the differences in training time of
the algorithms are not high. This is due to inclusion of time for generation of kernel
matrices in all the algorithms. The time required for generation of kernel matrices is

very high in comparison to other steps in the algorithms.

Table 7.5: Performance comparison on accuracy (%) and training time of proposed
LSPTSVC with existing algorithms on large feature datasets using RBF kernel. Av-
erage rank is based on accuracy.

TSVC TBSVC LSTWSVC FLSTWSVC JLroposed
Dataset LSPTSVC
. . Clusters Accuracy Accuracy  Accuracy Accuracy
(Train size, Test size) . . . . Accuracy
Time (s) Time (s) Time (s) Time (s) .
Time (s)
Dbworld _emails 9 83.33 69.7 69.7 69.7 100
(52x4702, 12x4702) 0.075 0.0716 0.0611 0.0669 0.0598
Hydraulic_condition_ps1 9 50.03 62.06 50.93 59.21 62.97
(1103x6000, 1102x6000) 61.3294 61.5112 60.8006 60.8788 60.6945
Hydraulic_condition_ps2 9 59.85 52.45 56.03 53.52 70.85
(1103x6000, 1102x6000) 60.6696  61.1182 60.4428 60.5068 60.2428
Hydraulic_condition_ps4 9 66.39 66.74 67.63 62.33 68.91
(1544 %6000, 661x6000) 119.679  119.708 118.259 118.567 117.561
TTC-3600 6 68.54 66.76 65.09 60.59 69.31
(28807507, 720X 7507) 687.917 660.138 632.627 632.861 613.667
Average rank 3 3.4 3.4 4.2 1
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Figure 7.6: AT&T face recognition data (AT&T Laboratories Cambridge) comprising
of 40 individuals.

7.1.7 Applications

In this section, we present some real world applications of the proposed LSPTSVC,
along with comparisons to existing algorithms. Experiments are performed on bio-
metric data viz. facial, and facial expression images. Moreover, we also present the
application of LSPTSVC on biomedical data. We use ADNI MRI data to evaluate
clustering ability of LSPTSVC on Alzheimer’s disease. For all the applications, RBF

kernel is used in proposed and existing algorithms.

7.1.7.1 Face images

A total of 400 images are included from the AT&T face recognition database shown
in Fig. The dataset consists of 10 images of 40 individuals, each having dimension
of 112 x 92. 200 images are used in the training as well as testing phase. The dataset
is constructed by using all pixel values of an image in one row of the dataset matrix.
To avoid overfitting of model, we use principal component analysis (PCA) and class
discriminatory ratio (CDR) [9] to reduce the dimension of the dataset to 400 x 100.
The results for face clustering are shown in Fig. It is evident that LSPTSVC is
able to cluster facial data with better accuracy i.e., 95.53% in comparison to other

algorithms.
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Figure 7.7: Performance comparison of the proposed LSPTSVC with existing algo-
rithms for clustering of AT&T face recognition data.

7.1.7.2 Facial expression images

A total of 210 images are downloaded from the well known JAFFE facial expression
database having 30 images of each expression. The dataset contains 7 classes as
shown in Fig. A total of 140 images are used for training consisting of 20 images
of each class, and 70 for testing containing 10 images of each class. The dimension of

all the images is 256 x 256.

Class 1: Anger Class 2: Disgust Class 3: Fear  Class 4: Happiness

Class 5: Neutral Class 6: Sadness  Class 7: Surprise

Figure 7.8: Sample images of JAFFE database showing different facial emotions.

In comparison to face recognition, facial expression is a much more difficult problem
due to large variations in facial expressions among individuals [231]. However, edge

based information is useful for identifying facial expressions [232]. Wavelet transform is
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Figure 7.9: Performance comparison of proposed LSPTSVC with existing algorithms
for clustering of JAFFE facial expression data.

used for extracting high frequency components [@] responsible for the edges. Therefore,
we used PCA along with wavelet transform for dimension reduction, and extraction of
useful information for expression detection. Wavelet transform []gﬂ is performed using
‘Daeubechies-4’ wavelet upto 3 levels of decomposition. Further, CDR is utilized
to select the prominent features. After dimension reduction, the size of the dataset
becomes 210 x 50. The results for clustering are shown in Fig. [7.9] In comparison to
face recognition, the accuracy is lower in all the algorithms for both features. However,
it can be observed that the proposed LSPTSVC is showing highest clustering accuracy
for both feature sets i.e., PCA and wavelet for the facial expression dataset.

Other algorithms obtaining high clustering accuracy are TBSVC and FLSTWSVC.
This is because TBSVC involves the regularization term, and FLSTWSVC includes

fuzzy membership information about the data points.

7.1.7.3 Alzheimer’s disease

Alzheimer’s disease is an incurable disease affecting 50 million people worldwide
. Classification of Alzheimer’s disease data is a challenging task . For unlabelled
Alzheimer data, clustering is a very useful option. As per our search, there is no
work on application of SVM based clustering techniques for Alzheimer’s disease data.
Therefore, we used Alzheimer’s data for clustering by the proposed LSPTSVC and

compared with other algorithms.
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Class 1: CN Class 2: MCI Class 3: AD

Figure 7.10: MRI images of CN, MCI, and AD subject from ADNI database.
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Figure 7.11: Performance comparison of proposed LSPTSVC with existing algorithms
for clustering of ADNI Alzheimer’s disease data.

The preprocessing and image details are same as in subsection The images
belonging to three categories i.e., control normal (CN), mild cognitive impairment
(MCI), and Alzheimer’s disease (AD) as shown in Fig. [7.10] 74 images are used for
training and 75 for testing. The results are shown in Fig. [7.11]

It is evident that the proposed LSPTSVC is effective in clustering Alzheimer’s data
in comparison to other algorithms. LSPTSVC obtains a clustering accuracy of 63.09%
for CN, MCI and AD subjects. The clustering accuracy of LSPTSVC is similar to
previous works [206,233] on multiclass classification of Alzheimer’s data. However,
the clustering accuracy of FLSTWSVC is lowest among all the methods. This may
be attributed to the presence of outliers in the data. Indeed, the clustering accuracies

of all the algorithms are comparatively lower than the applications discussed in the
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previous subsections. This is because the data points belonging to the classes MCI and
AD are non-linear in their distribution, and are overlapping in nature [28] as shown
in Fig. [£.19, Moreover, MCI is an intermediate stage between CN and AD, leading to
incorrect labelling of data points [234]. Therefore, the Alzheimer’s dataset is difficult

to classify [2] or cluster.

7.2 Summary

In this chapter, we proposed a novel twin SVM based unsupervised learning tech-
nique. The proposed technique is a projection based clustering algorithm termed as
LSPTSVC. The proposed LSPTSVC finds projection axes instead of projection planes
for clustering. This is an alternative to the plane based clustering algorithms. The
solution of proposed LSPTSVC is obtained by solving a set of linear equations, leading
to lesser computational cost. Consequently, no optimization toolbox is required for
LSPTSVC. Moreover, LSPTSVC is an efficient algorithm for clustering on datasets
with large sample and feature size.

In case of real world applications, LSPTSVC performed better than the exist-
ing algorithms. This justifies its applicability for real world applications. In case of
Alzheimer’s disease, the proposed LSPTSVC has shown significantly better perfor-
mance, justifying its use for healthcare applications.

The following chapter concludes the works presented in this thesis with possible

future directions.
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Chapter 8

Conclusions and Future Work

The works presented in this thesis involve novel ideas for the improvement and
application of SVM based models. First, the thesis gave a comprehensive review on
the various variants of SVM developed in the past. Then, various novel SVM based
algorithms are presented primarily for supervised learning. However, one SVM based
unsupervised algorithm is proposed for clustering of data. The works presented in
this thesis addresses many drawbacks in the existing SVM based algorithms. Also,
applications are shown for the proposed algorithms on biomedical datasets. One of
the problems addressed in this thesis is class imbalance. This problem is solved by
using fuzzy memberships, and with a reduced kernel based approach using universum
data. Another problem is of noisy data, which has been dealt by a fuzzy based SVM

approach with novel fuzzy functions.

Moreover, reviews are presented for applications of SVM on biomedical data. Var-
ious applications of SVM have been discussed, especially for diseases, such as epilepsy,
Alzheimer’s disease, and breast cancer. The disease which is reviewed extensively in
this thesis is Alzheimer’s disease. Further, one of the key aspect of this thesis is to
develop better universum based SVM algorithms, and apply on biomedical data. The
appropriate selection of universum is a research problem. Therefore, we utilized uni-
verum data from the EEG dataset itself, leading to better classification accuracy. We
extended USVM algorithm for feature selection by proposing a universum based RFE
algorithm, and showed its applicability on Alzheimer’s disease data. Since the USVM
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based model is transparent and clearly interpretable, it can be used for identifying the
features from data. These features can then be analysed for identifying biomarkers in
biomedical data of diseases.

Further, to address the drawback of high computation time in USVM based al-
gorithms, we proposed novel variants of USVM to reduce the training time, as well
as improve the generalization performance. All the proposed algorithms have been
tested on benchmark datasets viz. synthetic, real world, as well as related to biomed-
ical domain. The proposed algorithms showed statistically significant results in these
experiments.

In the following subsections, the conclusions of the novel approaches proposed in

this thesis is given, followed by a discussion on the possible future directions.

8.1 Conclusions of the proposed works

The conclusions on the different works proposed in this thesis are given under the

objectives accomplished in the following:

(i). Reducing class imbalance: The problem of class imbalance in SVM learning
is addressed in this thesis by proposing two novel algorithms viz. RFLSTSVM-
CIL and RUTSVM-CIL. The RFLSTSVM-CIL algorithm is proposed using 2-
norm of the slack variable, making the optimization problem strongly convex
and implies a globally unique solution. We also proposed a novel fuzzy mem-
bership function specifically for class imbalance learning, which gives different
range of fuzzy membership values for different imbalanced datasets. The differ-
ent range of the fuzzy membership function helps in giving proper weights to the
data points in different imbalance scenarios. The proposed approach has shown
good generalization performance with noisy data as compared to the existing
algorithms. From the experiments, it is clear that the proposed RFLSTSVM-
CIL approach is having the least ranks for most of the datasets on the basis
of AUC, justifying its robustness. Moreover, RFLSTSVM-CIL takes less com-

putation time as compared to the existing fuzzy based algorithms for parallel
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(ii).

(i)

and non-parallel support vector machines which justifies its applicability to real

world applications.

The second method i.e., proposed RUTSVM-CIL incorporates prior infor-
mation from the universum data, and creates a balance situation for the classifi-
cation. The reduced kernel based approach leads to a computationally efficient
model of universum based SVM. This removes the overhead of higher computa-
tion cost of universum based algorithms. The memory requirement for executing
the proposed algorithm is also very less, which makes it suitable for large scale
imbalanced datasets. The approach of combining undersampling with oversam-
pling using universum data is found to be helpful in classification of class imbal-
ance datasets. The proposed model has shown good generalization performance
with less training time on several synthetic and real world datasets. Moreover,
RUTSVM-CIL shows high efficiency for large scale datasets with better classi-
fication accuracy. However, due to the use of undersampling and rectangular
kernel, the proposed RUTSVM-CIL gives lesser accuracy for high imbalance

ratio, but with lesser computation cost.

Review on Alzheimer’s disease: For showing application of SVM on brain
disorder, we presented a comprehensive survey on the use of SVM based tech-
niques for Alzheimer’s disease. We concluded that SVM has been the most
frequently used algorithm for classification of Alzheimer’s disease data. As dis-
cussed earlier, different variants of SVM have been employed in the past for
classification of Alzheimer’s. However, it is observed that only 7% of the papers
are in the others category. This category involves the algorithms based on SVM
which are modified especially for Alzheimer’s. Also, it is observed that very few
variants of SVM have been applied for AD. It shows the need for research in
application of other variants of SVM for AD.

Universum learning for brain disorders: We proposed two novel univer-
sum based techniques for brain disorders viz. epilepsy, and Alzheimer’s disease.

The USVM based technique is proposed for detection of seizure and healthy
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EEG signals, while the USVM-RFE technique is proposed with application to
feature selection in Alzheimer’s disease. In case of seizure detection, on the
basis of the experimental results, it can be stated that the proposed universum
based approach gives better generalization performance for the classification of
EEG signals as compared to the existing approaches. The proposed method of
selection of universum points has proved to be a promising approach for the
classification of healthy and seizure EEG signals. Also, the effect of outliers on
the universum is reduced by using the universum from the EEG dataset itself
i.e., the seizure free EEG signal. The distribution of interictal (seizure free)
signals provides prior information about the distribution of healthy and seizure
signals and also lies in between the two classes. Based on the experimental
results, it is evident that universum twin support vector machine (UTSVM) is
better in comparison to other support vector machine algorithms for EEG signal
classification. Among the different feature extraction techniques, ICA shows the

best results using the proposed approach with 99% accuracy.

Moreover, the second proposed method i.e., USVM-RFE provides an im-
provement over SVM-RFE algorithm by giving prior information about data.
On the basis of our analysis on Alzheimer’s disease, the proposed USVM-RFE
has performed better than SVM-RFE in most of the cases for classification of
CN, MCI, and AD subjects. Moreover, we presented an approach of using VBM
on training and testing phase separately. This is useful in real world scenarios.
We provided an analysis of the feature extraction methods for MRI images i.e.,
voxel based and volume based features. On the basis of our work on VBM and
VolBM features, USVM-RFE achieved relatively better classification accuracy
of CN vs AD and MCI vs AD in VolBM as 100% and 73.68% respectively.
For CN vs MCI, VBM features provided highest accuracy of 90%. According
to our feature analysis, amygdala volume is a prominent discriminative feature
for detection of Alzheimer’s. One of the important advantages of the proposed
universum based algorithm is the global or holistic approach in feature selec-

tion as compared to SVM-RFE. Therefore, there is robustness in the proposed
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USVM-RFE for each iteration of the feature elimination process.

. Noise insensitive USVM based classifiers: To reduce the effect of noise in

USVM based algorithms, we used fuzzy based techniques to propose three novel
algorithms viz. FUSVM, FUTSVM, and FULSTSVM. First, we proposed a
fuzzy based approach for USVM and UTSVM algorithms to remove the effect of
outliers. The proposed FUSVM and FUTSVM have shown better generalization
performance for most of the datasets. This fuzzy based approach for universum
helps in giving prior information to the data in an effective manner. The use
of information entropy of the universum points is helpful in giving optimum

membership values to the universum data points.

Further, we proposed a novel and efficient fuzzy based learning algorithm,
termed as fuzzy universum least squares twin support vector machine (FUL-
STSVM). The proposed algorithm gives prior information about data distribu-
tion to the classifier, and also provides fuzzy membership to the data points and
universum. Moreover, the optimization problem of FULSTSVM is solved by a
system of linear equations. This makes FULSTSVM efficient in terms of train-
ing time. The proposed FULSTSVM is a robust universum based algorithm
for classification of data with outliers. Statistical tests on experimental results
confirm the significance of the proposed algorithm. Proposed FULSTSVM also
performed better on large sized datasets in terms of accuracy, showing its scal-
ability on large datasets. Results on applications i.e., Alzheimer’s disease and
breast cancer clearly show the applicability of the proposed FULSTSVM for
healthcare data.

. Efficient UTSVM based classifiers: To reduce the computation time of ex-

isting universum based techniques, we proposed three novel twin USVM based
algorithms viz. AULSTSVM, IUTSVM, and ULSTPMSVM. These techniques
also showed improved generalization performance of the model. The proposed
AULSTSVM removes the drawback of existing least squares based algorithms
w.r.t. computation time. Moreover, the proposed AULSTSVM gives better
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generalization performance due to the incorporation of prior information in the
training process. Instead of the traditional twin hyperplane based approach
for obtaining the decision function, the proposed AULSTSVM needs only one
hyperplane for the classification. In contrast to ULSTSVM, AULSTSVM con-
structs hyperplane for universum data, and utilizes the prior information about
data using an angle based approach. Statistical tests confirm the advantage of
proposed AULSTSVM in comparison to existing algorithms. The lesser com-
putation time of proposed AULSTSVM is due to the introduction of linear
loss in the construction of universum hyperplane. This shows the applicability
of proposed AULSTSVM on various real world applications using universum
data. Various experiments on large scale datasets clearly show the benefit of
the proposed AULSTSVM on large sample datasets. Moreover, an application
on Alzheimer’s disease data is also presented, where the proposed AULSTSVM
obtains highest classification accuracy of 95% for CN vs AD.

A novel and efficient formulation is proposed as universum least squares twin
parametric-margin support vector machine (ULSTPMSVM). The proposed al-
gorithms show high generalization performance with lesser training time in com-
parison to existing algorithms. The formulation of ULSTPMSVM is an alterna-
tive approach towards universum based learning. The optimization problem of
ULSTPMSVM involves a parametric model, solved by a system of linear equa-
tions. In terms of statistical difference in the generalization performance, the
proposed ULSTPMSVM turns out to be significantly better than the existing
algorithms. Moreover, the proposed ULSTPMSVM performed well for classifi-
cation of Alzheimer’s disease, showing its applicability on real world biomedical

applications.

Moreover, to introduce the SRM principle in the formulation of UTSVM,
we proposed an improved universum twin support vector machine (IUTSVM).
There is no ill-conditioning of the matrices in calculating the inverse in the

proposed IUTSVM. The proposed algorithm takes less computation time than
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USVM since it solves a pair of QPP. It can be inferred from the experimental
results that [IUTSVM shows better generalization performance in comparison to

the related algorithms.

(vi). Unsupervised SVM algorithm: Lastly, we proposed a unsupervised learning
algorithm in this thesis using a projection based twin SVM based approach.
The proposed LSPTVSC involves a least squares based approach, leading to
less computation cost, and finds projection axes instead of projection planes
for clustering. This is an alternative to the plane based clustering algorithms.
The solution of the proposed LSPTSVC is obtained by solving a set of linear
equations, leading to lesser computational cost. Experimental results show that
proposed LSPTSVC obtains better clustering accuracy than existing algorithms
with lesser training time. Statistical analysis also implies that the proposed
algorithm is significantly better than existing algorithms. Moreover, it is showed
that LSPTSVC is an efficient algorithm for clustering on datasets with large

sample and feature size.

8.2 Future directions

The possible future works are discussed under the different objectives accomplished

in this thesis in the following:

(i). Reducing class imbalance: The procedure of parameter selection for the
fuzzy membership function can be improved by using heuristic based approaches.
The fuzzy membership function proposed with RFLSTSVM-CIL can be applied
to various applications involving class imbalance. The proposed approach can be
extended to multiclass classification, since in most of the multiclass classification

problems there is imbalance of data belonging to the different classes.

The accuracy of the proposed RUTSVM-CIL can be improved by proper
selection of universum. The proper selection of universum is also a field of re-

search, and depends on the type of application. The proposed approach can be
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(iii).

used with proper selection of universum from the imbalanced data itself. Fur-
ther, different types of undersampling and oversampling techniques can be used
for the proposed RUTSVM-CIL to improve the performance. Multiclass classifi-
cation of data can also be performed by modifying the proposed RUTSVM-CIL.
Since RUTSVM-CIL involves sampling of data with reduced kernel, it can be
useful on applications involving undersampling or oversampling of data. The
proposed model can be applied on classification problems involving large scale

imbalanced datasets.

. Review on Alzheimer’s disease: For the classification of AD data, it is ob-

served that researchers have given more importance to the feature extraction
phase, and not much to the classification phase. This can be addressed in fu-
ture research, since novel models can give some new insight in the diagnosis of
Alzheimer’s. More work is required in formulation of machine learning mod-
els which can integrate information from various modalities for early diagnosis
of Alzheimer’s disease. Moreover, other than the existing models, some novel
variants of SVM also need to be developed for Alzheimer’s disease as was done
in [140]. Also, one can develop and use novel kernel functions for diagnosis
of AD using SVM. Such kind of novel models can increase the classification

performance of SVM.

Universum learning for brain disorders: The universum based SVM ap-
proach needs to be applied to other diseases which are diagnosed using EEG sig-
nals with the proper selection of universum. In future, the proposed universum
based approach of EEG classification can be improved in terms of computation
time. The proposed universum based approach can be extended to multiclass
classification of EEG signals using EEG datasets generated with different fea-
ture extraction techniques. It is evident from the experimental results that other
variants of SVM such as TWSVM and UTSVM give good generalization and
computational performance, and thus can be applied for the classification of

different EEG signals.
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The proposed USVM-RFE can be improved w.r.t. computation time. Also,
more research is needed in the proper selection of universum, as it is dependent
on the classification problem. Moreover, the proposed USVM-RFE can be mod-
ified for multiclass classification problems, and used on various other real world

applications.

. Noise insensitive USVM based classifiers: The proposed fuzzy based ap-

proach for universum support vector machine can be extended to multiclass
classification problems, and can be applied in other variants of USVM as well.
Moreover, the proposed FUSVM, FUTSVM and FULSTSVM can be improved
by implementing new techniques for selecting the universum. The universum
data can be selected from a dataset related to a particular application. More-
over, other novel fuzzy membership functions can also be used with the proposed

fuzzy based USVM algorithms for various applications.

. Efficient UTSVM based classifiers: The proposed AULSTSVM, UL-

STPMSVM, and IUTSVM algorithms can be applied on real world problems,
where universum sample are selected from the dataset itself. More work is
needed for the proper generation of universum data in various applications. The
proposed algorithms can be applied on other biomedical applications utilizing
the benefit of universum learning with less training time. The generalization
performance of proposed angle based approach can be improved by the use of
multiple kernel learning. Moreover, the proposed AULSTSVM can also be ex-
tended for multiclass classification of data. Due to its lesser computation cost,

the proposed AULSTSVM can be very effective for multiclass classification.

In future, more work can be done on improving the computation cost of
the universum based SVM algorithms. For example, the solution of universum
based SVM algorithms can be obtained by using novel iterative methods for
solving an unconstrained version of the optimization problem. Moreover, the
loss function can be formulated based on different types of smoothing techniques.

Also, novel formulations can be proposed in order to reduce the computation
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cost of calculating matrix inversions in the solution.

(vi). Unsupervised SVM algorithm: In future, the proposed LSPTSVC can be
extended for multiple projection axes, and can be applied on other real world
clustering problems. In case of Alzheimer’s disease, proposed LSPTSVC has
shown significantly better performance, justifying its use for other healthcare

applications.

The works presented in this thesis provided some significant improvements on ex-
isting SVM algorithms. Moreover, the applications on biomedical data puts emphasis
on the development and use of SVM based algorithms for such problems. In future
more novel SVM based models can be developed to help the diagnosis of various kinds
of diseases, which involve very large sized data. This will lead to automated diagnosis
of various types of diseases at the early stages, which will lead to a better quality of

life for people, especially the elderly population.
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