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Abstract

The work presented in this thesis comprises robust and efficient machine learning

(ML) models based on novel optimization approaches. The ML technique investigated

very thoroughly in this work is support vector machine (SVM). SVM is a widely used

supervised learning algorithm for classification as well as regression problems. It uses a

kernel based approach for efficiently classifying the data. Since SVM based algorithms

have been extensively used for classifying biomedical data [1, 2], we applied most of

the proposed SVM models to biomedical applications.

Our survey identified some key problems in training SVMs, viz. (which are) class

imbalance problem, data with noise, no knowledge about data distribution, unlabelled

data, and proper feature selection. Also, these problems often occur with biomedical

data as well. To resolve these issues, we proposed novel SVM based algorithms involv-

ing universum data and fuzzy logic. We presented the applications of these models for

healthcare, such as automated diagnosis of diseases like brain disorders. Moreover, we

focused on the issue of proper integration of machine learning algorithms with specific

applications. We also performed a review of the various machine learning techniques

used in detecting brain disorders. This resulted in the detection of key problems re-

lated to machine learning usage in the biomedical domain. One of the key issues is

identifying features containing possible locations of brain regions responsible for the

disease. To resolve this, we proposed a novel feature selection technique based on

universum SVM in this thesis.

To deal with the problem of class imbalance, we proposed two novel algorithms

for classification. One of the algorithm is termed as a robust fuzzy least squares

twin support vector machine for class imbalance learning (RFLSTSVM-CIL). The

RFLSTSVM-CIL algorithm removes the class imbalance problem using a fuzzy logic

based approach, which in turn helps to deal with noisy data as well. The second

algorithm is proposed using a different approach involving universum data to use prior

information about data distribution for class imbalance scenarios. This algorithm

is termed as a reduced universum twin support vector machine for class imbalance

i



learning (RUTSVM-CIL).

We utilized universum learning for neurological disorders in this work. For epilepsy,

we used electroencephalogram (EEG) recordings to propose a universum SVM based

seizure detection technique. Moreover, for feature selection, we proposed a universum

based feature elimination algorithm, termed as universum support vector machine

based recursive feature elimination (USVM-RFE). We applied the proposed USVM-

RFE on Alzheimer’s disease (AD) using magnetic resonance imaging (MRI) data for

classification.

However, to deal with noisy datasets in universum learning, three fuzzy logic based

universum algorithms are proposed in this thesis as: A fuzzy universum support vec-

tor machine (FUSVM), a fuzzy universum twin support vector machine (FUTSVM)

based on information entropy, and a fuzzy universum least squares twin support vector

machine (FULSTSVM). However, universum learning incurs additional computation

time. Therefore, we presented some efficient universum based SVM algorithms. We

proposed an efficient angle based universum least squares twin support vector machine

(AULSTSVM) for pattern classification. AULSTSVM uses an angle based approach

for universum learning. Also, two novel variants of universum based twin SVM algo-

rithms are proposed as: Improved universum twin support vector machine (IUTSVM),

and universum least squares twin parametric-margin support vector machine (UL-

STPMSVM). Most of the above mentioned algorithms are applied on Alzheimer’s

disease data for detection of disease.

To explore the domain of unsupervised learning, we presented an SVM based algo-

rithm, termed as least squares projection twin support vector clustering (LSPTSVC),

and applied on AD data. All the models proposed in thesis are compared with

baseline algorithms to justify the advantages. The results of numerical experiments

are compared using statistical significance tests.

Keywords: Support vector machine, class imbalance, universum data, fuzzy mem-

bership, Alzheimer’s disease, epilepsy, MRI, EEG, twin support vector machine, clus-

tering.
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Chapter 1

Introduction

In the past few decades, the data generation has increased substantially, creating a

need for development of robust machine learning techniques. Various improvements in

algorithms have lead to accurate and efficient learning techniques, making remarkable

changes in our daily lives. Many of the widely used machine learning algorithms belong

to a class known as supervised learning. Support vector machines proposed by Vapnik

and co-workers [4–6] have turned out to be a successful algorithm for classification

problems. SVM is based on the maximal margin principle, which leads to an optimal

hyperplane for classification of data. SVM and its variants have been applied to solve

various real world problems ranging from classification of neurological disorders [7] to

applications such as fingerprint [8] and facial expression recognition [9]. In order to

improve the generalization performance of SVM, Weston et al. [10] came up with the

idea of universum data. The universum data are unlabelled, and lie in between the

binary classes. Other than universum SVM, many other variants of SVM have been

developed in the past to improve its performance.

In this thesis, we present novel variants of SVM, and apply them on various biomed-

ical applications. The biomedical data included in this work is primarily related to

neurological disorders, namely Alzheimer’s disease, and epilepsy. However, one appli-

cation is also presented on breast cancer data. Like any other classification problem

involving high dimensional data, the neurological disorders are hard to detect without

the use of artificial intelligence. Currently, 50 million people are affected worldwide
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by dementia, and is expected to be 152 million by the year 2050 [11]. Alzheimer’s dis-

ease (AD) is a progressive neurodegenerative disease, primarily affecting the elderly

population. It is also a leading cause of dementia. Diagnosis of AD is a formidable

task that requires a lot of expertise, and a thorough examination of patient data.

Moreover, for epilepsy detection, electroencephalogram (EEG) signal classification is

a major challenge in the field of machine learning and signal processing. EEG is a

widely used non-invasive technique for the detection of various types of brain disorders

such as epileptic seizures and sleep disorders. In epilepsy, the extent of disease ranges

from partial to generalized seizures which are reflected in their respective EEG.

Various other challenges need to be addressed with data, such as unlabelled and

noisy data. Moreover, robust algorithms need to be developed which are insensitive

to small variations in the data distribution. Some of these challenges are addressed in

this thesis with a focus on biomedical applications.

1.1 Background

Support vector machine (SVM) [5] is a widely used technique for classification [2,12]

and regression problems [13, 14]. Based on the structural risk minimization principle

(SRM), SVM gives very good generalization performance. SVM uses the maximal

margin principle to classify the data points as shown in Fig. 1.1(a). After solving a

convex optimization problem, the decision function of SVM is written as,

f(x) = sign (wTx+ b), (1.1)

where wT is transpose of weight vector w, and b is the bias.

To classify non-linearly separable data, kernel functions [15] have been used to

transform the data to higher dimensions. Moreover, various variants of SVM have been

proposed to increase its performance with respect to (w.r.t.) generalization ability and

training time [16]. A computationally efficient variant of SVM is proposed by Jayadeva

et al. [12], known as twin support vector machine (TWSVM). The TWSVM algorithm
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Figure 1.1: Types of SVM classifiers.

generates twin hyperplanes to classify the data as shown in Fig. 1.1(b). To improve

the computation cost of TWSVM, least squares based algorithms are proposed, such

as least squares SVM (LSSVM) [17], and least squares twin support vector machine

(LSTSVM) [18].

In 2006, Weston et al. [10] proposed a novel universum based support vector ma-

chine (USVM) by incorporating universum data in the formulation of SVM. The uni-

versum data consists of additional data points not belonging to any of the binary

classes. Universum data gives prior information about data distribution to the clas-

sifier. Cherkassky et al. [19] stated the practical conditions on the effectiveness of

universum such as selection of parameters. Due to the higher generalization perfor-

mance, universum based algorithms have been used in various applications such as

classification of EEG signals [20], gender [21], and investor sentiments [22].

The universum data is used to align the classifier with the data distribution. As

shown in Fig. 1.2, the classifier generated by USVM is better aligned to classify the

data points. This helps in the classification of testing data. Without this knowledge

of the data distribution, the SVM classifier only tries to maximize the margin, which

results in reduced generalization performance of the model.
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Figure 1.2: Universum data.

1.2 Motivation

Machine learning (ML) techniques are found to be very useful in various real world

problems [2] in the last decade. Among the various ML techniques, we chose to work

on SVM due to its significant prevalence in the literature for ML applications [1].

For understanding the status of state of the art, we surveyed a number of papers

using SVM for classification. We observed that SVM based models have been widely

used for various types of data. We also found various problems involved with SVM for

classification tasks such as class imbalance, noisy data, lack of prior information

about data distribution, and unlabelled data. This motivated us to develop

novel SVM algorithms to remove these drawbacks.

Moreover, we found that SVM based models have been extensively used for biomed-

ical data, such as EEG [23] and MRI [2]. It is due to transparency in the SVM model

for the relation between features and prediction values. Therefore, we proposed novel

variants of SVM and applied on brain disorder datasets. Also, it is observed that

the classification of two classes can be improved by using a third class, known as

universum learning [10]. We found that universum based SVM (USVM) [10] is not ef-

fectively utilized in the past for classification, especially for biomedical datasets. This

motivates us to develop novel USVM models for classification tasks, such as seizure

detection for epilepsy.
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However, we found that in the case of Alzheimer’s disease data, better classifica-

tion requires identifying brain regions responsible for the disease [24]. Therefore, we

proposed a feature elimination method based on USVM. Moreover, the availability of

a lot of unlabelled data in today’s world motivates us to explore the domain of unsu-

pervised learning as well. This leads us to develop a SVM based clustering algorithm

with biomedical applications.

1.3 Objectives

The objectives of this thesis are as follows:

(i). To develop SVM based classifiers for class imbalanced data.

(ii). To present a review on the works based on SVM, especially those involving

biomedical data.

(iii). To develop classification techniques for brain disorders using universum learning.

(iv). To formulate noise insensitive universum SVM based classifiers using fuzzy logic.

(v). To propose efficient universum based twin SVM algorithms.

(vi). To propose a novel SVM based unsupervised learning technique.

1.4 Thesis contributions

In this section, we give a brief overview on the contributions of our work. The

proposed algorithms are abbreviated with bold font. The contributions are as follows:

I. Twin support vector machine for class imbalance learning

Based on our review, it is found that noisy class imbalanced data pose a major

challenge in various applications. To resolve this problem, we propose a robust fuzzy

least squares twin support vector machine for class imbalance learning, termed as

RFLSTSVM-CIL [25]. In order to reduce the effect of outliers, we propose a novel

fuzzy membership function specifically for class imbalance problems.

Moreover, in the existing SVM based techniques for class imbalance, there is no in-

formation about the distribution of data. Motivated by the idea of prior information
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about data, a reduced universum twin support vector machine for class imbalance

learning (RUTSVM-CIL) [26] is proposed in this thesis. For the first time, uni-

versum learning is incorporated with SVM to solve the problem of class imbalance.

Oversampling and undersampling of data is performed to remove the class imbalance.

The universum data gives prior information about the distribution of data. To re-

duce the computation time of our universum based algorithm, we use a small sized

rectangular kernel matrix.

II. Review on machine learning techniques for Alzheimer’s disease

To develop efficient learning techniques, a better understanding of the existing

work is needed. Therefore, we reviewed various papers from 2005-2019 on the works

involving feature extraction and machine learning techniques for Alzheimer’s disease.

The machine learning techniques are surveyed under three main categories: support

vector machine (SVM), artificial neural network (ANN), and deep learning (DL) with

ensemble methods [2]. We present a detailed review on the use of SVM based ap-

proaches for AD in this thesis with possible future directions.

III. Universum learning for neurological disorders

In our survey [2], we found that apart from class imbalance, noise poses a problem

in balanced data as well. In order to develop a robust classifier, we propose univer-

sum based techniques for neurological disorders such as epilepsy. We present a novel

machine learning approach based on universum support vector machine (USVM) to

include prior information about data. In our approach, the universum data points are

generated by selecting universum from the EEG dataset itself, which are the interictal

EEG signals [20]. This removes the effect of outliers on the generation of universum

data. Further, to reduce the computation time, we use our approach of universum

selection with universum twin support vector machine (UTSVM) [27].

Moreover, other than classification algorithms, efficient feature extraction tech-

niques are also needed for common biomedical data, such as MRI images. Motivated

by the work on support vector machine based recursive feature elimination (SVM-

RFE) [1], we propose a novel feature selection technique to incorporate prior informa-
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tion about data distribution in the recursive feature elimination process. Our method

is termed as universum support vector machine based recursive feature elimination

(USVM-RFE) [28]. For application, we applied the proposed approach on AD data.

The proposed method provides global information about data in the RFE process as

compared to the local approach of feature selection in SVM-RFE.

IV. Fuzzy universum support vector machines

Although universum learning provides prior information about data distribution,

noise is still a major cause for mis-classification. Therefore, to improve noise insensi-

tivity for universum based algorithms, we propose fuzzy based universum SVM algo-

rithms. First, we present a fuzzy universum support vector machine (FUSVM) [29]

by introducing weights to the universum data points based on their information en-

tropy. In addition, we also propose an efficient variant of this approach as fuzzy

universum twin support vector machine (FUTSVM).

To further reduce the computation time, a least squares based model is proposed

as fuzzy universum least squares twin support vector machine (FULSTSVM) [30].

In FULSTSVM, the membership values are used to provide weights for data samples

of the classes, as well as to the universum.

V. Efficient universum twin support vector machines

Universum learning incurs better generalization performance. However, it involves

a drawback of additional computation time. To improve the efficiency of universum

based algorithms, we present novel universum twin support vector machines to gen-

erate two hyperplanes. First, we propose an efficient approach termed as angle based

universum least squares twin support vector machine (AULSTSVM) [31]. This is a

novel approach of incorporating universum in the formulation of least squares based

twin SVM.

Moreover, a novel parametric model for universum based twin support vector ma-

chine is presented for classification problems. The proposed model is termed as univer-

sum least squares twin parametric-margin support vector machine (ULSTPMSVM)

[32]. The solution of ULSTPMSVM involves a system of linear equations, making it
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efficient in terms of training time.

In order to include the structural risk minimization (SRM) principle in the formu-

lation of UTSVM, we propose an improved universum twin support vector machine

(IUTSVM) [33]. Our proposed IUTSVM implicitly makes the matrices non-singular

in the optimization problem by including a regularization term.

VI. Projection based twin support vector clustering

Most of the algorithms proposed in this thesis involve supervised learning. In order

to learn from unlabelled data, we propose an unsupervised learning algorithm based

on projection axes, termed as least squares projection twin support vector clustering

(LSPTSVC) [34]. The proposed LSPTSVC finds projection axis for every cluster

in a manner that minimizes the within class scatter, and keeps the clusters of other

classes far away. Moreover, the solution of proposed LSPTSVC involves a set of linear

equations leading to very less computation time.

1.5 Organization of the thesis

The works included in this thesis are divided into eight chapters. Fig. 1.3 shows

a pictorial representation of the works. We have given a brief description of every

chapter in the following:

Chapter 1 (Introduction)

In this chapter, we provided the introduction, and background of SVM. We ex-

plained the motivation for this work, with the contributions made in this thesis.

Chapter 2 (Literature Survey and Research Methodology)

This chapter provides a thorough review on the existing SVM based learning tech-

niques, with applications to biomedical data. It also describes the research methodol-

ogy including the performance metrics used in this thesis.

Chapter 3 (Twin support vector machine for class imbalance learning)

In this chapter, we present two novel SVM based algorithms for class imbalanced

8
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data.

Chapter 4 (Universum learning for neurological disorders)

This chapter presents a novel universum based approach for detection of epilepsy.

Also, a universum based feature elimination technique is proposed for Alzheimer’s

disease.

Chapter 5 (Fuzzy universum support vector machines)

To remove the effect of noise, three novel universum SVM based algorithms are

presented using fuzzy logic.

Chapter 6 (Efficient universum twin support vector machines)

This chapter discusses three novel universum SVM based algorithms with improved

generalization and lesser computation time.

Chapter 7 (Projection based twin support vector clustering)

For unsupervised learning, a twin support vector clustering technique is proposed

using projection of data points.

Chapter 8 (Conclusions and Future Work)

This chapter gives the conclusions of the thesis, with possible future directions.
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Chapter 2

Literature Survey and Research

Methodology

In this chapter, we present the literature on the different research problems ad-

dressed in this thesis. We have divided the literature survey into six sections, with

section 2.1 introducing the formulation of SVM. Section 2.2 discusses twin SVM based

techniques in reference to class imbalance problems and fuzzy functions. Section 2.3

describes the formulation of USVM with applications to neurological disorders. More-

over, a survey on machine learning for Alzheimer’s disease1 is presented in section

2.4. For unsupervised learning, the works on SVM based clustering algorithms are

explained in section 2.5. Lastly, section 2.6 gives the research methodology used in

this work.

Notations: The mathematical notations used in this work are as follows: All

vectors x are assumed as column vectors. xT denotes the transpose of the vector. X1

and X2 are matrices containing the data points belonging to class ‘1’ and ‘-1’ of size

p × n and q × n respectively. U represents universum data points having dimension

r × n. Total number of data points are represented by l = p + q, where n is the

dimension of each data point. ‖x‖ represents the 2-norm of a vector x.

1M. Tanveer, B. Richhariya, R.U. Khan, A.H. Rashid, P. Khanna, M. Prasad, C.T. Lin. Ma-
chine learning techniques for the diagnosis of Alzheimer’s disease: A review. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM), ACM, 16(1s):1-35, 2020, DOI:
https://doi.org/10.1145/3344998.
[SCI Indexed Impact Factor: 3.144]
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In the last few decades, support vector machine (SVM) [5] has become a popu-

lar technique for classification problems [16]. SVM is based on the maximal margin

principle with bounded VC dimension, leading to better generalization performance

of the model. In the next section, first we present the mathematical formulation of

SVM, then in further sections, we discuss about the various improvements made on

the SVM formulation.

2.1 Support vector machine for classification prob-

lems

The formulation of SVM [5] in primal form is written as follows:

min
w, b, ξ

1

2
‖w‖2 + c

l∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi,

ξi ≥ 0, ∀i = 1, 2, . . . , l, (2.1)

where w is weight vector, b is the bias, yi is label of data point xi, l is the total number

of data points, c > 0 is penalty parameter, and ξi is the slack variable.

The dual formulation of quadratic programming problem or QPP (2.1) is written

by applying the Karush Kuhn Tucker (K.K.T.) conditions [35,36] as

max
α

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjx
T
i xj

s.t. 0 ≤ αi ≤ c, ∀ i = 1, 2, . . . , l,

l∑
i=1

αiyi = 0, (2.2)

where αi ≥ 0 is the Lagrange multiplier [36], and yi,j is the class label.

The classifier is given as
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f(x) = sgn(wTx+ b), (2.3)

where sgn is the signum function, and the weight vector is calculated as w =
l∑

i=1

αiyixi.

2.2 Twin support vector machine and class imbal-

ance problem

The time complexity of solving QPP of SVM is O(m3) [12], where m is number of

samples. To reduce the computational complexity of SVM, Jayadeva et al. [12] pro-

posed an efficient twin support vector machine (TWSVM) for classification problems.

In TWSVM, two hyperplanes are constructed instead of one as in SVM, and the opti-

mization problem is to keep each of the hyperplanes closer to its own class and away

from the other class. This leads to a time complexity of 2 ∗ O(m/2)3 i.e., O(m)3/4

in TWSVM. The TWSVM algorithm is one of the most prominent techniques for

classification problems. It has been applied in various real world applications, due to

its less computational complexity. Kumar and Gopal [18] proposed a more efficient

least squares twin support vector machine (LSTSVM), where a pair of system of linear

equations is solved. The computation time of LSTSVM is very less in comparison to

SVM.

One of the important applications of SVM is the classification of class imbalance

datasets. In most applications, there is an imbalance in the number of samples of

the classes, leading to incorrect classification of data points in the minority class.

Moreover, while dealing with imbalanced data, noisy data poses a major challenge in

various applications. In many applications involving high imbalance in the data, such

as disease [37], fault [38], and defective software modules detection [39], the priority

is to correctly classify the minority class. For example, in disease detection there are

very less samples of people with disease in comparison to healthy people.
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In QPP of SVM, all the data points serve as constraints, but in TWSVM the data

is distributed in such a way that one class gives the constraints to the other class and

vice-versa. So, TWSVM solves two smaller size QPPs rather than one large QPP in

SVM. The formulation of TWSVM is described in the following subsection.

2.2.1 Twin support vector machine (TWSVM)

Consider a binary classification problem where the data points belong to class +1

and -1, which are represented by matrices X1 and X2 respectively.

The optimization problems of TWSVM in the non-linear case [12] are written as:

min
w1, b1, ξ1

1

2
‖K(X1, D

T )w1 + e1b1‖2 + c1e
T
2 ξ1

s.t. − (K(X2, D
T )w1 + e2b1) + ξ1 ≥ e2, ξ1 ≥ 0, (2.4)

min
w2, b2, ξ2

1

2
‖K(X2, D

T )w2 + e2b2‖2 + c2e
T
1 ξ2

s.t. (K(X1, D
T )w2 + e1b2) + ξ2 ≥ e1, ξ2 ≥ 0, (2.5)

where wi, i = 1, 2 is weight vector and bi is bias of hyperplane of ith class, ξi is slack

variable, and D = [XT
1 XT

2 ]T . Here, K(xT , DT ) = (K(x, x1), . . . , K(x, xl)) is a row

vector in Rn, and ei is vector of ones of appropriate dimension.

By using the K.K.T. necessary and sufficient conditions, the Wolfe duals of Eqs.

(2.4) and (2.5) are obtained as

max
α

eT2 α−
1

2
αTN(MTM)−1NTα

s.t. 0 ≤ α ≤ c1, (2.6)

max
β

eT1 β −
1

2
βTM(NTN)−1MTβ

s.t. 0 ≤ β ≤ c2, (2.7)
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where M = [K(X1, D
T ) e1] and N = [K(X2, D

T ) e2], α and β are vectors containing

the Lagrange multipliers. The classifying hyperplanes K(xT , DT )w1 + b1 = 0 and

K(xT , DT )w2 + b2 = 0 are constructed by using the values of wi, and bi, i = 1, 2 from

the following equations, w1

b1

 = −(MTM + δI)−1NTα, (2.8)

w2

b2

 = (NTN + δI)−1MTβ, (2.9)

where δ > 0 is a small positive value to avoid ill-conditioning of the matrices MTM

and NTN in calculating the inverse, and I is identity matrix of appropriate size.

A new data point x ∈ Rn is classified using the following decision function,

class(i) = min(|K(xT , DT )wi + bi|) for i = 1, 2, (2.10)

where |.| is the perpendicular distance of point x from the hyperplane. Similarly, for

the linear case, the decision function can be given as

class(i) = min(|wTi x+ bi|) for i = 1, 2. (2.11)

2.2.2 Least squares twin support vector machine (LSTSVM)

The QPPs of LSTSVM [18] for non-linear case are described as

min
w1,b1,η1

1

2
‖K(X1, D

T )w1 + e1b1‖2 +
c1
2
ηT1 η1

s.t. − (K(X2, D
T )w1 + e2b1) + η1 = e2, (2.12)
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min
w2,b2,η2

1

2
‖K(X2, D

T )w2 + e2b2‖2 +
c2
2
ηT2 η2

s.t. K(X1, D
T )w2 + e1b2 + η2 = e1, (2.13)

where ci, i = 1, 2 are positive parameters, ηi, i = 1, 2 denote the slack variables,

K(., DT ) is the kernel matrix where D = [XT
1 XT

2 ]T , and e1, e2 represent vectors

of ones of suitable dimensions.

By using the constraints in their respective objective functions, we get

min
w1,b1

1

2
‖K(X1, D

T )w1 + e1b1‖2 +
c1
2
‖K(X2, D

T )w1 + e2b1 + e2‖2, (2.14)

min
w2,b2

1

2
‖K(X2, D

T )w2 + e2b2‖2 +
c2
2
‖ − (K(X1, D

T )w2 + e1b2) + e1‖2. (2.15)

Taking the gradient of QPP (2.14) w.r.t. w1 and b1, we get

K
(
X1, D

T
)T (

K(X1, D
T )w1 + e1b1

)
+ c1K

(
X2, D

T
)T (

K(X2, D
T )w1 + e2b1 + e2

)
= 0,

(2.16)

eT1
(
K(X1, D

T )w1 + e1b1
)

+ c1e
T
2

(
K(X2, D

T )w1 + e2b1 + e2
)

= 0. (2.17)

Combining Eqs. (2.16) and (2.17) and solving, we get

[w1 b1]
T = −

(
GTG+

1

c1
HTH

)−1

GT e2, (2.18)

where H = [K(X1, D
T ) e1], and G = [K(X2, D

T ) e2]. Similarly, using Eq. (2.15),

we get

[w2 b2]
T =

(
HTH +

1

c2
GTG

)−1

HT e1. (2.19)

For reducing the computation time of finding the inverse, Sher-

man–Morrison–Woodbury (SMW) formula [40] is used for Eqs. (2.18) and

(2.19). A testing data point x is assigned to a class using Eq. (2.10).
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2.2.3 Fuzzy membership functions

In [41], Lin and Wang proposed a fuzzy support vector machine (FSVM) based on

distance from the class centroid for each class. This reduces the effect of outliers in

the classification because the outliers get relatively less weight for the classification as

compared to the other points. In class imbalance learning, due to a huge difference

in the number of samples of the binary classes, SVM classifier gives more priority to

the samples of the majority class, and misclassifies the samples which are in minority.

To give more weight to the minority class, different weights are assigned to the data

points of both the classes. Since FSVM is not suitable for class imbalance learning,

Batuwita and Palade [42] proposed FSVM-CIL with different settings of parameters

and fuzzy membership functions. An improved one-class SVM for class imbalance is

proposed in [43] using a conformal kernel transformation. A boosting algorithm for

support vector machine [44] is proposed for countering the excessive bias in classifying

imbalance data. FSVM for class imbalance in medical datasets is proposed [45] for

incorporating the local information using a local within-class preserving scatter matrix.

A scaling kernel function is proposed [46] for SVM in class imbalance learning. An

oversampling technique is combined with the undersampling technique in a hybrid

sampling approach for SVM [47].

A weighted least squares projection twin support vector machines is proposed

in [48] to include the local information about the data. A fuzzy least squares twin

support vector machine is proposed [49] to deal with class imbalance datasets. For

class imbalance data with missing values, Razzaghi et al. [50] proposed a multilevel

framework of the cost-sensitive SVM for healthcare data. Moreover, a fuzzy total

margin based support vector machine (FTM-SVM) is proposed with different settings

in [51] for imbalance problems. A weighted K-means support vector machine for

cancer prediction is proposed in [52] to circumvent the problem of imbalance in the

data. Further, a weighted least squares twin support vector machine (WLSTSVM)

is proposed for binary classification in [53], while a weighted multi-class least squares

twin support vector machine (WMLSTSVM) is proposed in [54]. In WMLSTSVM,
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the fuzzy membership function gives membership on the basis of number of samples in

the two classes, and thus is not capable of dealing with outliers. Recently, an entropy

based fuzzy support vector machine (EFSVM) is proposed in [55]. In EFSVM, the data

points of the majority class are given fuzzy membership based on their information

entropy on the basis of proximity to the binary classes.

Here, we discuss some of the fuzzy membership functions used for class imbalance.

The fuzzy membership functions for centroid based membership [42] are as follows:

I. Centroid (linear): The fuzzy membership is assigned based on the distance of the

data points from the centroid of its class. Here, the decaying function is linear in

nature. The fuzzy membership function is given as

mem = 1−
(

dcen
max(dcen) + δ

)
, (2.20)

where dcen is the Euclidean distance of each data point from the centroid of its class,

and δ is a small positive integer to remove the possibility of division by 0.

II. Centroid (exponential): The decaying function is exponential in nature and the

fuzzy membership is assigned based on the distance of the data points from the centroid

of its class. The fuzzy membership function is written as

mem =

(
2

1 + exp(βdcen)

)
, (2.21)

where dcen is the Euclidean distance of each data point from the centroid of its class,

and β decides the scale of the exponential function.

2.3 Universum learning and its applications

Weston et al. [10] proposed a universum support vector machine (USVM) to give

prior information to the classifier about the distribution of data. The universum data

points do not belong to any of the classes, and lie within a tube between the two classes.

This approach is also called as ‘learning through contradiction’. In USVM, along with

the hinge loss it involves an ε-insensitive loss function. This universum based approach
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has been applied to various real world applications. Long and Tang [22] performed

the classification of investor sentiments using USVM. Gao et al. [56] used universum

SVM for prediction of translation initiation in proteins. They used two approaches

for selecting the universum: one is based on uniform distribution of noise and other

using random averaging of the data points. Hao and Zhang [57] proposed an ensemble

universum support vector machine for the detection of Alzheimer’s disease from brain

imaging data by using the patients with mild cognitive impairment (MCI) as the

universum. In the following subsection, we describe the formulation of USVM.

2.3.1 Universum support vector machine (USVM)

The optimization problem of USVM is given as follows:

min
w, b, ξ, η

1

2
‖w‖2 + c

l∑
i=1

ξi + cu

2r∑
j=1

ηj

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi,

yj(w
Tφ(xj) + b) ≥ −ε− ηj,

ξi ≥ 0, ηj ≥ 0, ∀i = 1, 2, . . . , l, ∀j = 1, 2, . . . , 2r, (2.22)

where l is the total number of data points, c > 0, cu > 0 are penalty parameters, ξi

and ηj are slack variables, ε is the parameter for the insensitive tube, φ : Rn −→ Rp

is the function mapping from n to p dimension where p > n, and r is the number of

universum samples.

The dual of Eq. (2.22) is written by applying the K.K.T. conditions as,

max
α

l+2r∑
i=1

µiαi −
1

2

l+2r∑
i=1

l+2r∑
j=1

αiαjyiyjφ(xi)
Tφ(xj)

s.t. 0 ≤ αi ≤ c, µi = 1, ∀ i = 1, 2, . . . , l,

0 ≤ αi ≤ cu, µi = −ε, ∀ i = l + 1, l + 2, . . . , l + 2r,

l+2r∑
i=1

αiyi = 0, (2.23)
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where αi ≥ 0 is the Lagrange multiplier.

The classifier shown in Fig. (1.2) is given by Eq. (2.3), and the weight vector is

obtained as w =
l+2r∑
i=1

αiyixi.

2.3.2 Classification of EEG signals using SVM

Electroencephalogram (EEG) signal classification is a major challenge in the field of

machine learning and signal processing. EEG is a widely used non-invasive technique

for the detection of various types of brain disorders, such as epileptic seizures and

sleep disorders. In epilepsy, the extent of disease ranges from partial to generalized

seizures which are reflected in their respective EEG. The different types of EEG signals

are shown in Fig. 2.1. For the better feature extraction and classification of EEG

signals, several signal processing techniques have been used by researchers. Among

the various feature extraction techniques, wavelet transform is one of the frequently

used methods. In wavelet transform, the frequency domain features are extracted from

the signal with good localization in time. This is in contrast to the Fourier transform,

where the signal analysis is done mainly in the frequency domain. In wavelet analysis,

the approximation and decomposition coefficients are used to form the feature vector

as shown in Fig. 2.2.

The different families of wavelet are used for specific type of signals to get better

characteristics of that signal. Adeli et al. [58] proposed a computer aided diagno-

sis (CAD) method for epilepsy using discrete wavelet transform (DWT). They used

Daubechies wavelet with db-4 as the mother wavelet for the feature extraction. An

orthogonal decimated discrete wavelet transform (ODWT) [59] is used for detecting

maturational changes associated with childhood absence epilepsy. The classification

of EEG signals is performed [60] using wavelet packet analysis and genetic algorithm.

Daubechies wavelet-2 is used for the classification of five different EEG signals [61].

Subasi and Gursoy [23] used principal component analysis (PCA), linear discriminant

analysis (LDA) and independent component analysis (ICA) for the feature extraction,

and SVM for classification.
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Figure 2.1: Healthy, interictal, and ictal EEG signals.

Figure 2.2: Discrete wavelet decomposition of EEG signal at 3rd level of decomposition
using Daubechies-4 wavelet.
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The proper selection of classification techniques is very crucial for the automated

diagnosis of patients having neurological diseases. Among the various classification

algorithms, support vector machines (SVMs) have emerged as a powerful classifica-

tion technique. SVM solves a convex optimization problem which leads to a globally

optimal solution. This is in contrast to artificial neural network (ANN) that suffers

from the problem of local minima. SVM also has a lower VC (Vapnik-Chervonenkis)

dimension that enables it to classify high dimensional data with less optimizing pa-

rameters.

Many researchers have used SVM in the classification of EEG signals [62] and for

the diagnosis of neurological diseases like epilepsy [63–65]. Guo et al. (2010) [66]

performed the classification of mental tasks from the analysis of EEG signals using

SVM. Least squares support vector machine (LSSVM) [17] is also used [67, 68] for

the detection of epilepsy. LSSVM is used for classification of EEG signal with a

clustering based approach [69]. For multiclass classification of EEG signals, Guler and

Ubeyli (2007) [70] proposed a SVM based model and showed that SVM gives better

classification accuracy for EEG signals as compared to probabilistic neural network

(PNN) and multilayer perceptron neural network (MLPNN).

The models proposed in this thesis for neurological disorders also involve efficient

universum SVM based models. Therefore, in the following subsections, we discuss

the formulations of some existing universum SVM based algorithms, which are im-

provements over USVM in terms of computation time. An efficient universum based

technique known as universum twin support vector machine (UTSVM) is discussed in

the following subsection.

2.3.3 Universum twin support vector machine (UTSVM)

Universum based algorithms give better generalization performance [10, 19] due

to inclusion of universum data in the optimization problem. However, the model

becomes computationally expensive [20,71], due to a single large QPP with additional

universum data. To remove this drawback, a universum twin support vector machine

(UTSVM) is proposed [27]. UTSVM solves two smaller size QPPs instead of one large
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QPP. This makes UTSVM computationally faster than USVM, as TWSVM is faster

than SVM. Here, the additional constraints in each QPP are for the universum data

points.

The optimization problems of UTSVM in the non-linear case are written as follows:

min
w1, b1, ξ1, η1

1

2
‖K(X1, D

T )w1 + e1b1‖2 + c1e
T
2 ξ1 + cue

T
uη1

s.t. − (K(X2, D
T )w1 + e2b1) + ξ1 ≥ e2,

(K(U,DT )w1 + eub1) + η1 ≥ (−1 + ε)eu,

ξ1 ≥ 0, η1 ≥ 0, (2.24)

min
w2, b2, ξ2, η2

1

2
‖K(X2, D

T )w2 + e2b2‖2 + c2e
T
1 ξ2 + cue

T
uη2

s.t. (K(X1, D
T )w2 + e1b2) + ξ2 ≥ e1,

− (K(U,DT )w2 + eub2) + η2 ≥ (−1 + ε)eu,

ξ2 ≥ 0, η2 ≥ 0, (2.25)

where ci(i = 1, 2) and cu are positive real penalty parameters; ξi, ηi(i = 1, 2) are slack

variables, and ei(i = 1, 2), eu are vectors of ones of suitable dimensions.

By applying the K.K.T. necessary and sufficient conditions, the Wolfe duals of Eqs.

(2.24) and (2.25) are obtained as

max
α1, µ1

eT2 α1 −
1

2
(αT1N − µT1O)(MTM)−1(NTα1 −OTµ1) + (ε− 1)eTuµ1

s.t. 0 ≤ α1 ≤ c1, 0 ≤ µ1 ≤ cu (2.26)

max
α2, µ2

eT1 α2 −
1

2
(αT2M − µT2O)(NTN)−1(MTα2 −OTµ2) + (ε− 1)eTuµ2

s.t. 0 ≤ α2 ≤ c2, 0 ≤ µ2 ≤ cu, (2.27)

where M = [K(X1, D
T ) e1], N = [K(X2, D

T ) e2] and O = [K(U, DT ) eu]; α1, α2,
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µ1, µ2 are vectors of Lagrange multipliers.

The classifying hyperplanes K(xT , DT )w1 + b1 = 0 and K(xT , DT )w2 + b2 = 0

are constructed from the parameter values of wi(i = 1, 2) and bi(i = 1, 2) using the

following Eqs. (2.28) and (2.29),

w1

b1

 = −(MTM)−1(NTα1 −OTµ1), (2.28)

w2

b2

 = (NTN)−1(MTα2 −OTµ2). (2.29)

Note that the matrices MTM and NTN are always positive semi-definite, it is

possible that they may not be well conditioned in some situations. So, a regularization

term δI, δ > 0 is introduced with the matrices MTM and NTN as (MTM + δI) and

(NTN + δI). Here, I is an identity matrix of appropriate dimension. Each new data

point is classified using Eq. (2.10).

In the following section, we discuss another efficient formulation for universum

based SVM algorithms, known as least squares twin support vector machine with

universum data (ULSTSVM).

2.3.4 Least squares twin support vector machine with uni-

versum data (ULSTSVM)

A least squares twin support vector machine with universum data (ULSTSVM) [71]

is proposed to reduce the computation time of UTSVM. The optimization problem of

ULSTSVM [27] comprises the following QPPs,

min
w1,b1,ξ1,η1

1

2
‖K(X1, D

T )w1 + e1b1‖2 +
c1
2
ξT1 ξ1 +

c3
2

(‖w1‖2 + b21) +
c5
2
ηT1 η1

s.t. − (K(X2, D
T )w1 + e2b1) + ξ1 = e2,

K(U,DT )w1 + eub1 + η1 = (−1 + ε)eu, (2.30)
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min
w2,b2,ξ2,η2

1

2
‖K(X2, D

T )w2 + e2b2‖2 +
c2
2
ξT2 ξ2 +

c4
2

(‖w2‖2 + b22) +
c6
2
ηT2 η2

s.t. K(X1, D
T )w2 + e1b2 + ξ2 = e1,

− (K(U,DT )w2 + eub2) + η2 = (−1 + ε)eu, (2.31)

where ξi, ηi, i = 1, 2 represent slack variables, ci, i = 1, 2 are positive parameters, and

K(., DT ) is the kernel matrix and D = [XT
1 XT

2 ]T .

Substituting the constraints in the objective functions, we get

min
w1,b1

1

2
‖K(X1, D

T )w1 + e1b1‖2 +
c1
2
‖K(X2, D

T )w1 + e2b1 + e2‖2 +
c3
2

(‖w1‖2 + b21)

+
c5
2
‖ − (K(U,DT )w1 + eub1) + (−1 + ε)eu‖2, (2.32)

min
w2,b2

1

2
‖K(X2, D

T )w2 + e2b2‖2 +
c2
2
‖ − (K(X1, D

T )w2 + e1b2) + e1‖2 +
c4
2

(‖w2‖2 + b22)

+
c6
2
‖(K(U,DT )w2 + eub2) + (−1 + ε)eu‖2. (2.33)

Taking the gradient of Eq. (2.32) w.r.t. w1 and b1 and equating to 0, we get

K
(
X1, D

T
)T (

K(X1, D
T )w1 + e1b1

)
+ c1K

(
X2, D

T
)T (

K(X2, D
T )w1 + e2b1 + e2

)
+ c3w1

+c5K(U,DT )T
(
K(U,DT )w1 + eub1 − (−1 + ε)eu

)
= 0,

(2.34)

eT1
(
K(X1, D

T )w1 + e1b1
)

+ c1e
T
2

(
K(X2, D

T )w1 + e2b1 + e2
)

+ c3b1

+c5e
T
u

(
K(U,DT )w2 + eub1 − (−1 + ε)eu

)
= 0.

(2.35)

Combining Eqs. (2.34) and (2.35) and solving, we get

[w1 b1]
T = −

(
HTH + c1G

TG+ c3I + c5O
TO
)−1(

c1G
T e2 + c5(1− ε)OT eu

)
, (2.36)
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and using Eq. (2.33), we get

[w2 b2]
T =

(
GTG+ c2H

TH + c4I + c6O
TO
)−1(

c2H
T e1 + c6(1− ε)OT eu

)
. (2.37)

where H = [K(X1, D
T ) e1], G = [K(X2, D

T ) e2], and O = [K(U,DT ) eu].

For a new data point x, the class assignment is performed using Eq. (2.10).

2.4 Diagnosis of Alzheimer’s disease using machine

learning techniques

Alzheimer’s disease (AD) is one of the most common cause of dementia in today’s

world. According to World Alzheimer Report (2018) [11], around 50 million people

were affected by this disease in 2018, which is expected to triple by 2050. Usually, the

symptoms of AD are visible after 60 years of age [72]. However, some forms of AD

develop very early (30-50 years) for individuals having gene mutation [73]. Alzheimer’s

disease gives rise to structural and functional changes in the brain. In AD patients, the

time between healthy state to Alzheimer’s spans over many years [74]. First, patients

develop mild cognitive impairment (MCI), and gradually progress to AD. However, all

MCI patients do not convert to AD [75]. So, the main focus of current research is to

predict the conversion of MCI to AD. These changes can be measured using medical

imaging [76] and other techniques like blood plasma spectroscopy [77,78].

Many open source databases for Alzheimer’s disease have accelerated research in

this field [79, 80]. The most widely used databases are ADNI [81] (adni.loni.usc.

edu), AIBL (aibl.csiro.au), OASIS (www.oasis-brains.org). A new publicly

available database for clinical Alzheimer’s data is J-ADNI database [82,83] containing

data from longitudinal studies in Japan. Further, processing of MRI images requires

a lot of effort. To facilitate analysis of MRI images open source softwares like Statisti-

cal Parametric Mapping (SPM) have been developed by Wellcome Centre for Human

Neuroimaging for public use. SPM is used for voxel based morphometry (VBM) [84] of

MRI data. Another very popular open source software i.e., Freesurfer [85] is developed
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for volume based morphometry and is used by many researchers [86,87].

Machine learning techniques are found to be very useful for the diagnosis of

AD [88–90] in the last decade. The most widely used classification techniques are

support vector machine (SVM), artificial neural network (ANN), and deep learning.

The primary difference between SVM and ANN is the nature of the optimization

problem. SVM gives a globally optimal solution [91], while ANN gives locally optimal

solution. In both SVM and ANN, feature extraction is an important step. Shi et

al. [92] suggested that combination of neural networks and intelligent agents can be

useful for medical image analysis. However, deep learning incorporates the feature

extraction step in the learning model itself [93,94]. For large datasets, deep learning is

found to be useful especially for image data [93]. Some researchers also used ensemble

methods to improve the classification accuracy for AD [95–97].

For classification of AD data, the accuracy is dependent on the type of problem.

For example, the accuracy is highest for Control normal (CN) vs AD, lesser for CN

vs MCI, and least for MCI vs AD [98]. Moreover, the classification of MCI converters

(MCIc) vs non-converters (MCInc), and amnestic MCI (aMCI) vs non-amnestic MCI

(naMCI) is also a challenging task [99, 100]. Moreover, the data generated from MRI

scanners is 3-D in nature and thus amounts to large sized datasets. So, efficient feature

extraction and classification techniques are needed to analyze this data [101,102].

2.4.1 Search strategy

We searched prominent papers in the field from Google Scholar (https://

scholar.google.co.in) and Sciencedirect (https://www.sciencedirect.com). We

excluded the studies which did not use accuracy measures for classification perfor-

mance. This resulted in a total of 165 papers. Out of 165, 60 papers used SVM,

45 used a combination of ANN, multi-task learning, transfer learning, multi-kernel

learning and certain feature selection techniques. We also reviewed 60 papers based

on deep learning and ensemble methods for AD.

As per our survey [2], it is found that SVM based models have been widely used

for Alzheimer’s disease showing its robustness. This is because techniques like ANN

27

https://scholar.google.co.in
https://scholar.google.co.in
https://www.sciencedirect.com


suffers from the drawbacks of local minima, which is not the case with SVM. Therefore,

in the following sections, we present a review on the works using SVM for Alzheimer’s

disease. The review is summarized in Table 2.1 with details of these works.

2.4.2 Image modality

Image modality is a prominent factor for classification of MRI images. In case

of structural MRI (sMRI) images, most of the researchers used T1-weighted images

while only few researchers used T2 images [103–105]. This is because the delineation of

ventricular surface of brain due to atrophy is clearly visible in T1-weighted images [24].

Fan et al. [106] suggested that positron emission tomography (PET) scans pro-

vide complementary information to sMRI scans, thus improving the classification

accuracy of CN vs MCI using SVM. Dukart et al. [107] supported this fact that

fluorodeoxyglucose-PET (FDG-PET) features are more discriminative as compared

to sMRI. Further, better accuracy is found for CN vs AD [108] with PET images (100

%) as compared to single photon emission computed tomography (SPECT) images

(97.5 %). Similar finding is observed for CN vs AD [109] with better accuracy for

PET images (96.67 %) as compared to SPECT images (94.5 %). Kamathe et al. [105]

used combination of T1, T2 and proton density (PD) scans for classification of CN vs

AD. Hojjati et al. [110] used resting state functional MRI (rs-fMRI) to find the con-

nectivity changes in brain for classification of MCIc vs MCInc, while Sheng et al. [111]

used connectivity information from fMRI data. Fig. 2.3 shows the usage of different

modalities of data for SVM in our survey.

Diffusion tensor imaging (DTI) is also explored by various researchers for

Alzheimer’s disease [100, 112, 113]. Haller et al. [114] found that SVM based anal-

ysis of white matter DTI parameters is helpful in classification of different types of

MCI patients.
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Figure 2.3: Plot showing different image modalities and other data used with SVM
for AD.

2.4.3 Feature selection and extraction with SVM

Feature selection plays an important part in the classification of data. Different

features are combined to form the feature vector in many works [110,115,116]. Vemuri

et al. [117] found that including demographic and genetic information with sMRI scans

improved the classification accuracy of CN vs AD. A refined parcellation method

is proposed [118] for detecting subtle changes in gray matter (GM). Magnin et al.

[7] presented a feature selection method based on histogram of regions of interests

(ROIs) for CN vs AD. Gerardin et al. [119] used shape features of hippocampus to

discriminate CN, MCI and AD, and found that shape deformation features are better

than volumetric features. Normalized mean square error (NMSE) features are used

[120] to discriminate CN with early AD. A clustering based approach is proposed [97]

to group adjacent voxels for classification of CN, MCI and AD. Fisher discriminate

ratio (FDR) is used [121] to extract useful voxels as features (VAF) from SPECT

images.

Gaussian mixture model (GMM) is used in [109] for CN vs AD. It is stated that

the proposed GMM based feature extraction makes the data linearly separable. Ortiz

et al. [122] used PET and sMRI data to find the most discriminative features using

sparse inverse covariance estimation (SICE) method with SVM. Non-negative matrix
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factorization (NMF) based features with SVM are found to give better performance

than PCA with SVM to classify CN vs AD [123]. Moreover, Abdulkadir et al. [124]

illustrated the affects of hardware heterogeneity on classification accuracy of SVM.

They also found high confidence level of classification performance for large samples.

Cuingnet et al. [99] stated that DARTEL based features are better than SPM fea-

tures for CN, MCIc, MCInc, and AD. Moreover, it is concluded that feature selection

techniques for sMRI images may lead to less classification accuracy due to addition of

hyperparameters. Further, Schmitter et al. [125] found volume based features to be

more useful than voxel based morphometry (VBM). Morphological features of brain

regions are used by Plocharsky et al. [126] to classify CN vs AD, while Long et al. used

shape differences in the subjects’ brains for classification of CN, AD, sMCI (stable),

and pMCI (progressive). Fuzzy based classes for hippocampus volume are used by

Tangaro et al. [87] for classification of CN vs AD, and MCIc vs MCInc.

Wavelet based features are used in various works. Chaplot et al. [103] used discrete

wavelet transform (DWT) features, while Zhang et al. [116] found that 3-D DWT and

SVM are useful for classification of CN, MCI and AD subjects. Segovia et al. [127]

discovered that partial least squares (PLS) components have a higher FDR score as

compared to principal component analysis (PCA) for CN vs AD using SPECT images.

Ortiz et al. used self organizing maps (SOMs) [115] for unsupervised segmentation of

sMRI images in classification of CN vs AD. However, Chaplot et al. [103] found that

SVM performs better than SOM for classification of AD patients using T2-weighted

images.

Other techniques like SVM-RFE [1,128] are used as an optimized feature selection

technique in [129] to select prominent brain features for CN vs AD. Independent

component analysis (ICA) is used in many works [130, 131] for classification of CN

vs AD using SVM. EEG data is also used [132] for classification of CN vs AD using

SVM. Mazaheri et al. [133] used EEG recordings of word comprehension by subjects

to classify MCIc from MCInc and CN. Some researchers also focused on blood based

biomarkers for AD [77,78]. Gostolya et al. [134] used speech patterns of subjects and

classified using linear SVM.
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2.4.4 Kernel functions for AD

Different kernels have been used with SVM for classification of AD. Various re-

searchers have used linear kernel with SVM to classify Alzheimer’s data as shown in

Fig. 2.4(a). This is due to the fact that in linear kernel, there is no kernel parameter

to tune. Some researchers also utilized multiple kernels for SVM [86]. Moreover, in

most papers, the sample size is also very small as shown in Table 2.1, which may lead

to overfitting of the data with radial basis function (RBF) kernel [128]. This leads to

the use of linear kernel due to its simplicity. The usage of different kernels as per our

survey is shown in Fig. 2.4(a).

Kloppel et al. [135] used linear SVM to classify pathologically confirmed cases of

AD with CN, and suggested that SVM can help in the diagnosis of AD. It has been

stated in [121,131] that linear kernel provides better classification performance for high

dimensional data as compared to polynomial or RBF kernel. However, polynomial

kernel is also used by researchers. Lahmiri et al. [104] used polynomial kernel for

multiclass classification of CN, MCI, and AD. Zhang et al. [136] found that polynomial

kernel is useful in classification of CN vs AD using PCA features. In 2018, Lahmiri et

al. [137] used volumetric features with cognitive test scores for classification of CN vs

AD with polynomial kernel.

Some researchers also used an ensemble of kernels. Multiple kernel SVM is used

by Alam et al. [86] for classification of CN, MCI, and AD. Kamathe et al. [105] used

linear, polynomial and RBF kernel for classification of CN vs AD. Peng et al. [138]

used MRI and genetic data for features, and used multiple kernel learning with SVM

to classify the subjects. The selection of optimal hyperparameters is a major step in

the classification of SVM. Among the various methods, leave one out cross validation

(LOOCV) has been widely used for classification of AD using SVM. The details of the

cross-validation methods are shown in Fig. 2.4(b).

In the following subsection, we present a comprehensive survey on the usage of

different variants of SVM for AD.
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Linear (43%)

RBF (32%)

Polynomial (7%)

Multiple kernel (3%)

NA (15%)

(a)

LOOCV (43%)

10−fold (30%)

k−fold (8%)

NA (8%)

5−fold (10%)

(b)

Figure 2.4: (a) Plot showing usage of different types of kernels and (b) cross validation
methods used with SVM for AD. NA means information about kernel is not available,
and k = 2, 3, 4, 9 and 20.

2.4.5 Variants of SVM used for AD

Many variants of SVM are developed for different types of classification problems.

In the formulation of SVM, there is no spatial information of the brain image in

the optimization problem [139,140]. To provide spatial information, contiguous SVM

(CSVM) is used to classify SPECT images of AD and control subjects [139, 141].

CSVM uses the information about voxel connectivity to give a more robust classifier.

For reducing the computation cost, Zhang et al. [142] used twin support vector machine

(TWSVM) for classification of CN vs AD, while structural least squares twin support

vector machine (S-LSTSVM) is used in [143]. For optimized feature selection, Beheshti

et al. [98] used genetic algorithm (GA) with linear SVM for classification of CN vs

AD and pMCI vs sMCI.

For early diagnosis of AD, Zhu et al. [102] used a temporally structured SVM

(TS-SVM) for classification of longitudinal MR images of MCI converters and non-

converters. Lu et al. [144] proposed a random forest robust SVM (RF-RSVM) for

classification of CN vs MCI using FDG-PET images. TWSVM is used for classification

of CN vs AD [145] using dual-tree complex wavelet transform (DTCWT), LDA and

PCA features. Sun et al. [146] introduced spatial anatomical regularization with SVM

for classification of CN, AD, sMCI, and pMCI. To optimize the SVM parameters, Zeng
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et al. [147] proposed a switching delayed particle swarm optimization SVM (SDPSO-

SVM). In order to reduce the complexity of SVM, Bi et al. [148] used random support

vector machine clusters for classification of CN vs AD using rs-fMRI. In the random

SVM approach, samples and features randomly are chosen randomly from the dataset

and trained accordingly. It helps to reduce the size of training data leading to less

computational complexity. Some researcher also applied ensemble based SVM for

better prediction accuracy in AD classification [108,149,150].

The usage of different cross validation strategies is shown in Fig. 2.4(b). LOOCV

comes out to be the frequently used method. This may be attributed to small sample

size in the works shown in Table 2.1.

2.4.6 Observations

In the classification of dementia related data, there are various categories or targets.

One classification target is MCI vs AD, which is one of the most important targets for

early diagnosis of AD. It can be observed in Fig. 2.5(b) that most of the work has been

done in classification of CN vs AD and CN vs MCI. Moreover, classifications like MCI

vs AD are very less. This needs to be addressed in future research for early detection

of AD. Other categories like MCIc vs MCInc are also addressed in very few papers.

Therefore, researchers can focus on these particular problems for early detection of

dementia caused by Alzheimer’s disease.

The usage of different types of SVM in our survey is shown in Fig. 2.5(a). One

can notice that among the different variants of SVM, 83% of the papers used standard

SVM. This shows the popularity and robustness of SVM in the classification of MRI

data [154]. In 3% of the papers, TWSVM is used [142, 145], whereas LSTSVM [143]

is used in only 1 paper. The CSVM algorithm is used in [139,141].

Some papers used ensemble of SVMs to classify Alzheimer’s data [108, 149]. In

AD diagnosis, an important focus point for research is the development of individual

specific diagnosis models. For this, multimodal clinical data can be utilized as per

the population. Moreover, novel learning techniques need to be developed for small

datasets, since in real world scenarios the sample size from some population may not
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Figure 2.5: Plot showing usage of (a) different variants of SVM and (b) different target
groups for AD.

be large for training of the model. Further, the data collection for Alzheimer’s includes

noise from various sources. Therefore, noise insensitive techniques must be applied for

AD classification.

In the following section, we discuss a classification algorithm using projection based

approach, and an unsupervised SVM based algorithm for clustering problems.
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2.5 Projection based twin SVM and clustering al-

gorithms

A novel approach based on projection axes rather than classifying hyperplanes is

proposed as projection twin support vector machine [155], and extended for regression

problems in [156,157]. To improve the computation cost, Shao et al. [158] proposed an

efficient least squares projection twin support vector machine (LSPTSVM). LSPTSVM

has been used for various classification problems [159, 160]. However, the algorithms

discussed in the previous sections are supervised learning algorithms, needing infor-

mation about true labels of data samples in the training process.

For unsupervised learning i.e., where the labels of training data are unknown, al-

gorithms like k-means clustering [161], and fuzzy c-means (FCM) [162] clustering are

proposed in the past. In FCM, clustering is performed based on distance from cluster

centres with fuzzy membership value for each cluster. However, plane based clustering

algorithms are also proposed, such as the k-plane clustering (kPC) algorithm [163].

In kPC, a plane is constructed for each cluster by solving an eigenvalue problem.

Some other plane based clustering algorithms are proposed in [164, 165]. In 2015,

Wang et al. [166] proposed an unsupervised algorithm termed as twin support vector

clustering (TWSVC), improving the proximal plane clustering algorithm [164]. To in-

clude regularization in TWSVC, a twin bounded support vector clustering (TBSVC)

is proposed [167], leading to improved generalization performance. In order to reduce

the computation cost of TWSVC, least squares twin support vector clustering (LST-

WSVC) is formulated in [168]. In LSTWSVC, a set of linear equations is solved instead

of QPPs. A fuzzy least squares twin support vector clustering (FLSTWSVC) [168] is

also proposed by including fuzzy membership values for the data points.

In the next subsections, we briefly discuss the formulation of a classification algo-

rithm i.e., LSPTSVM [158], and a clustering algorithm i.e., TWSVC [166].
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2.5.1 Least squares projection twin support vector machine

(LSPTSVM)

Linear LSPTSVM [158] generates two non-parallel hyperplanes based on the fol-

lowing optimization problems,

min
w1

1

2
wT1 S1w1 +

c1
2

m2∑
q=1

(ξq)
2 +

c3
2
‖w1‖2

s.t. wT1 x
(2)
q − wT1

1

m1

m1∑
p=1

x(1)p + ξq = 1, q = 0, 1, . . . ,m2, (2.38)

min
w2

1

2
wT2 S2w2 +

c2
2

m1∑
p=1

(ηp)
2 +

c4
2
‖w2‖2

s.t. −

(
wT2 x

(1)
p − wT2

1

m2

m2∑
q=1

x(2)q

)
+ ηp = 1, p = 0, 1, . . . ,m1, (2.39)

where ci, i = 1, . . . , 4 are positive parameters, and ξ, η are slack variables. The matrices

S1 and S2 are written as

S1 =

m1∑
p=1

(
x(1)p −

1

m1

m1∑
p=1

x(1)p

)(
x(1)p −

1

m1

m1∑
p=1

x(1)p

)T

, (2.40)

S2 =

m2∑
q=1

(
x(2)q −

1

m2

m2∑
q=1

x(2)q

)(
x(2)q −

1

m2

m2∑
q=1

x(2)q

)T

. (2.41)

Now, QPP (2.38) can be written using matrices of data points in the objective

function [158],

L =
1

2
wT1 S1w1 +

c1
2

∥∥∥−X2w1 +
1

m1

e2e
T
1X1w1 + e2

∥∥∥2 +
c3
2
‖w1‖2, (2.42)

where e1, e2 are vectors of ones of appropriate dimensions.
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Setting the gradient of Eq. (2.42) w.r.t. w1 equal to 0 and solving, we get

w1 =

(
S1

c1
+
(
−X2 +

1

m1

e2e
T
1X1

)T(
−X2 +

1

m1

e2e
T
1X1

)
+
c3
c1
I

)−1

(
X2 −

1

m1

e2e
T
1X1

)T
e2, (2.43)

where I is identity matrix of appropriate dimension.

Similarly, w2 is calculated as

w2 =−

(
S2

c2
+
(
X1 −

1

m2

e1e
T
2X2

)T(
X1 −

1

m2

e1e
T
2X2

)
+
c4
c2
I

)−1

(
X1 −

1

m2

e1e
T
2X2

)T
e1. (2.44)

For a testing sample xt, the class is determined as follows,

class (xt) = arg min
i=1,2

∣∣∣∣∣wTi xt − wTi 1

mi

mi∑
k=1

x
(i)
k

∣∣∣∣∣. (2.45)

2.5.2 Twin support vector clustering (TWSVC)

TWSVC [166] generates non-parallel clustering hyperplanes by solving the follow-

ing optimization problem:

min
wj+1

i , bj+1
i , ξj+1

i

1

2
‖Xiw

j+1
i + bj+1

i e‖2 + c1e
T ξj+1

i

s.t. T (|X iw
j+1
i + bj+1

i e|) ≥ e− ξj+1
i , ξj+1

i ≥ 0,

i = 0, 1, . . . , N, (2.46)

where c1 > 0 is the penalty parameter, T(.) is the Taylor series expansion, and ξj+1
i

is the slack variable, j = 0, 1, . . . , and e is vector of ones of appropriate dimension.

By using the subgradient [169] of |X iw
j
i + bjie| w.r.t. wji and bji and the Taylor

series expansion [166,168], we get
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min
wj+1

i , bj+1
i , ξj+1

i

1

2
‖Xiw

j+1
i + bj+1

i ei‖2 + c1e
T ξj+1

i

s.t. diag(sign(X iw
j
i + bjie))(X iw

j+1
i + bj+1

i e) ≥ e− ξj+1
i , ξj+1

i ≥ 0. (2.47)

The dual problem of QPP (2.46) is written as

min
λ

1

2
λTB(ATA)−1BTλ− eTλ

s.t. 0 ≤ λ ≤ c1e, (2.48)

where B = diag
(
sign(X iw

j
i + bjie)

)[
X i e

]
, A = [Xi e], and λ is the vector of

Lagrange multipliers.

The hyperplane for each cluster is found using the following equation:

[wj+1
i bj+1

i ]T = (ATA)−1BTλ, i = 0, 1, . . . , N. (2.49)

2.6 Research methodology

In the section, we present the details about the datasets, experimental setup, and

various performance metrics and other formulae used in this thesis.

2.6.1 Datasets

The real world datasets are downloaded from UCI [170], and KEEL repository

[171]. For Alzheimer’s disease, all MRI images used in this work were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

ADNI was launched in 2003 as a public-private partnership, led by Principal Inves-

tigator Michael W. Weiner, MD. The main goal of ADNI is to find out the effec-

tiveness of neuroimaging techniques like MRI, positron emission tomography (PET),

other biological markers, and clinical neuropsychological tests to estimate the onset of
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Alzheimer’s disease from the state of mild cognitive impairment. For more informa-

tion, visit www.adni-info.org.

2.6.2 Experimental setup

All the experiments are performed on a PC running on 64 bit Windows 10 operating

system, 3.60 GHz Intel R© coreTM i7-7700 processor, 16 GB of RAM under MATLAB

R2008b environment. 5-fold cross validation is used for parameter selection in all the

methods. MOSEK optimization toolbox (http://www.mosek.com) is used to solve

the QPPs. For non-linear case, radial basis function (RBF) or Gaussian kernel is used

in all the algorithms, which is defined as

K(x, y) = exp

(
−1

2µ2
‖x− y‖2

)
, (2.50)

where x and y are vectors, and µ is a scalar parameter.

The imbalance ratio (IR) is calculated as

IR =
Number of majority class samples

Number of minority class samples
. (2.51)

In the works presented in this thesis, we use the terms positive and negative class

for minority and majority class respectively.

2.6.3 Performance metrics

The different performance metrics used in this thesis are as follows:

(i). Accuracy =
TP+FP

TP+TN+FP+FN
, where TP=True positive, TN=True negative,

FP=False positive, and FN=False negative.

(ii). Sensitivity =
TP

TP+FP

(iii). Specificity =
TN

TP+FP

(iv). F1 score =
2(TP)

2(TP)+FP+FN
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(v). For class imbalanced data, the accuracy is calculated using area under receiver

operating characteristics (ROC) curve i.e. AUC [55] is used which is defined as:

AUC =
1 + TPrate − FPrate

2
, (2.52)

where TPrate is the true positive classification of minority (positive) class, and

FPrate is the false positive classification of majority (negative) class data points.

(vi). The clustering accuracy for l data samples with y labels is measured using the

following similarity matrix L ∈ Rl×l [166],

L(i, j) =

1, if yi = yj

0, otherwise.

Now, let Lp is similarity matrix of predicted cluster labels, and La is the similar-

ity matrix of actual labels. Then, the accuracy is defined as the rand index [166],

Accuracy =
n0 + n1 − l
l2 − l

× 100%, (2.53)

where n0 is the number of zeros in La and Lp, and n1 is number of ones in La

and Lp.

2.6.4 Statistical tests

To check the statistical significance of the proposed algorithms in this thesis, we

used Friedman test with the corresponding post-hoc test [172] using the average ranks

of the algorithms based on accuracy of the datasets. First, we assume that all the

methods are equivalent under null hypothesis. The Friedman statistic is computed

using the χ2
F value as follows:

χ2
F =

12N

k(k + 1)

[
k∑
i=1

R2
i −

k(k + 1)2

4

]
, (2.54)
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where Ri is the average rank on N datasets for ith method, k denotes total number of

methods.

Then, the FF value is calculated using the following formula:

FF =
(N − 1)(χ2

F )

N × (k − 1)− χ2
F

. (2.55)

The FF is distributed as the F -distribution with
(
k − 1, (N − 1)(k − 1)

)
degrees

of freedom. For significant difference between the methods at α level of significance,

the value of FF must be more than the critical value.

To check the pairwise difference between the proposed and existing algorithms, we

use the Nemenyi posthoc test. The critical difference is calculated using the following:

CD = tα

√
k(k + 1)

6N
, (2.56)

where tα is the critical value for α level of significance, and CD is the critical differ-

ence for k algorithms and N datasets. For significant pairwise difference between the

methods at significance level α, the difference in the average ranks of the methods

should be atleast the CD.

This chapter presented a review on the works related to algorithms proposed in this

thesis. The following chapter presents two novel algorithms to deal with the problem

of class imbalanced data with SVM.
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Chapter 3

Twin support vector machine for class

imbalance learning

In this chapter, we present two efficient twin SVM based algorithms to reduce

the effect of class imbalance on the classification of data. Section 3.1 presents the

robust fuzzy least squares twin support vector machine for class imbalance learning

(RFLSTSVM-CIL) algorithm1. The RFLSTSVM-CIL algorithm utilizes a novel fuzzy

membership function proposed in this work.

To include prior information about data distribution in the classification of imbal-

anced data, the idea of universum is incorporated in the proposed reduced universum

twin support vector machine for class imbalance learning (RUTSVM-CIL)2. As per

our survey, the concept of universum is used for the first time to solve class imbalance

problem. Section 3.2 discusses the RUTSVM-CIL algorithm. First, we present the

RFLSTSVM-CIL algorithm in the following section.

1B. Richhariya, M. Tanveer. A robust fuzzy least squares twin support vector machine for class
imbalance learning. Applied Soft Computing, Elsevier, 71: 418-432, 2018, DOI: https://doi.org/
10.1016/j.asoc.2018.07.003.
[SCI Indexed Impact Factor: 6.725]

2B. Richhariya, M. Tanveer. A reduced universum twin support vector machine for class
imbalance learning. Pattern Recognition, Elsevier, 102:107150, 2020, DOI: https://doi.org/10.
1016/j.patcog.2019.107150.
[SCI Indexed Impact Factor: 7.740]
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3.1 A robust fuzzy least squares twin support

vector machine for class imbalance learning

(RFLSTSVM-CIL)

In most of the applications on classification, there is imbalance in the number of

samples of the classes, which leads to incorrect classification of the data points of

the minority class. Further, while dealing with imbalanced data, noise poses a major

challenge in various applications. To resolve these problems, in this work we propose

a robust fuzzy least squares twin support vector machine for class imbalance learn-

ing, termed as RFLSTSVM-CIL using 2-norm of the slack variables which makes the

optimization problem strongly convex. In order to reduce the effect of outliers, we

propose a novel fuzzy membership function specifically for class imbalance problems.

Our proposed function gives appropriate weights to the datasets and also incorporates

the knowledge about the imbalance ratio of data. In our proposed model, a pair of sys-

tem of linear equations is solved instead of solving a quadratic programming problem

(QPP), which makes our model efficient in terms of computation time. To check the

performance of our proposed approach, several numerical experiments are performed

on synthetic and real world benchmark datasets. The proposed RFLSTSVM-CIL

model has shown better generalization performance in comparison to existing meth-

ods in terms of AUC and training time.

To give appropriate membership to the majority class, we propose a new fuzzy

membership function for imbalance datasets. In the previous work on fuzzy mem-

bership for imbalance data, the range of fuzzy membership is fixed for datasets with

different imbalance ratios. To overcome this drawback, our function uses information

about the imbalance ratio (IR) and gives appropriate range of the fuzzy membership

to different datasets. Moreover, we present a novel 2-norm based robust fuzzy least

squares twin support vector machine for class imbalance learning (RFLSTSVM-CIL).

To justify the effectiveness of our proposed approach, several numerical experiments

are performed on synthetic and real world benchmark datasets.
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3.1.1 Proposed fuzzy membership function

There are some drawbacks in the existing fuzzy membership functions used with

SVM. For example, the centroid based fuzzy membership function only gives member-

ship values on the basis of the distance from its centroid, but does not take into account

whether a data point is near to the region of its own class or the other. Similarly, in

other fuzzy functions used for class imbalance problems [55], this idea of proximity to

its class centroid with information about the other class is not considered. Also, the

information about the extent of imbalance in the data is not utilised in the previous

works. Therefore, the proposed approach includes the information about the imbal-

ance ratio (IR) which control the range of the membership values. Motivated by the

works of [173, 174], we propose a new fuzzy membership function for class imbalance

problem.

For negative class, the fuzzy membership function is as follows:

mem =
( 1

1 + IR

)
+
( IR

1 + IR

)(exp(c0((d1 − d2)/d− d2/r2))− exp(− 2c0
)

exp(c0)− exp(−2c0)

)
,

(3.1)

where IR is the imbalance ratio, d1 is Euclidean distance from centroid of positive

class, and d2 is Euclidean distance from centroid of negative class, d is the distance

between the centroid of the binary classes, r2 is the maximum distance of the data

points of negative class from its centroid, and c0 decides the scale of the exponential

function. The membership is assigned as 1 to all the data points of the positive class

which is having the lesser number of samples [55].

The proposed fuzzy membership function is based on the following aspects of the

data points.

(i). Proximity of the majority class data point to the centroid of the other classes.

(ii). Proximity of the majority class data points to their own class.
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Properties of the proposed function:

(i). The membership value of the negative class ranges from
(

1
1+IR

)
to 1 based on

the position of the data points w.r.t. centroids of the two classes. The range of

the membership value depends on the imbalance ratio (IR).

(ii). The membership value for the negative data point based on its proximity to the

positive class depends on the variable (d1 − d2)/d in the membership function.

(iii). The penalty for the outliers which are proximal to the negative class is taken

care by d2/r2.

(iv). The membership value is equal to 1 when d2 = 0 which makes d1 = d .

(v). The membership value of data point is equal to
(

1
1+IR

)
when it is closest to

the positive class centroid i.e., d1 = 0 resulting in d = r2, and farthest from the

centroid of the negative class i.e., d2 = r2.

(vi). One can observe from Fig. 3.1 that if the outlier data point of the majority

class (negative class) is in the positive class region, then the penalty on the

membership value is higher as compared to when it is on its own side i.e. negative

class.

In class imbalance problems, the objective is to classify the data points of the

minority class more effectively. For achieving this property in an effective manner, the

proposed fuzzy membership function gives the membership according to the following

cases, as illustrated in Fig. 3.1 for an artificial binary dataset:

Case 1 Negative data point closer to the centroid of its own class: High member-

ship.

Case 2 Negative data point away from its own centroid but relatively closer to its

own centroid as compared to the other class: Low membership.

Case 3 Negative data point away from its own centroid and relatively closer to the

positive class centroid: Very low membership.
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Figure 3.1: Plot of artificial dataset (IR = 3.57) showing membership values of the
data points based on the proposed membership function for c0 = 0.5.

3.1.2 Linear RFLSTSVM-CIL

In the proposed approach, the 2-norm of the weighted slack vector is used for

giving fuzzy membership values to data points in the constraints of the optimization

problem. The optimization problems of linear RFLSTSVM-CIL are written as

min
w1, b1, ξ

1

2
‖X1w1 + e1b1‖2 +

c1
2
‖S2ξ‖2

s.t. − (X2w1 + e2b1) + ξ = e2, (3.2)

min
w2, b2, η

1

2
‖X2w2 + e2b2‖2 +

c2
2
‖S1η‖2

s.t. (X1w2 + e1b2) + η = e1, (3.3)
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where X1 and X2 are matrices of class 1 (minority) and class 2 (majority) containing

p and q number of samples respectively. S1 is identity matrix of dimension p, and

S2 is diagonal matrix of dimension q containing the fuzzy membership values at the

diagonal places. The slack variables are represented by ξ, η with c1, c2 > 0 as the

penalty parameters and e1, e2 are the vectors of ones of appropriate dimension.

Using the equality constraints of QPP (3.2) in its objective function, the QPP is

written as

min
w1, b1

1

2
‖X1w1 + e1b1‖2 +

c1
2
‖S2(X2w1 + e2b1 + e2)‖2. (3.4)

Taking the gradient of QPP (3.4) with respect to w1 and b1 and equating to 0, we

get

XT
1 (X1w1 + e1b1) + c1(S2X2)

T (S2(X2w1 + e2b1 + e2)) = 0, (3.5)

eT1 (X1w1 + e1b1) + c1(S2e2)
T (S2(X2w1 + e2b1 + e2)) = 0. (3.6)

Combining equations (3.5) and (3.6), and solving [18], we get,

w1

b1

 = −
(
T TT +

1

c1
RTR

)−1

T TS2e2, (3.7)

where R = [X1 e1], and T = [S2X2 S2e2].

Similarly, the other hyperplane is computed by the following,w2

b2

 =

(
RTR +

1

c2
T TT

)−1

RTS1e1, (3.8)

where R = [S1X1 S1e1], and T = [X2 e2].

For reducing the computation time of finding the inverse, Sherman-Morrison-

Woodbury (SMW) formula [40] is used for the equations (3.7) and (3.8) and inverses
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of smaller dimensions are solved. For a new data point x, the class assignment is done

using Eq. (2.11).

If we give the membership values for both the classes according to our fuzzy mem-

bership function then our proposed RFLSTSVM-CIL can also be applied to datasets

with no class imbalance. Further, if the membership values of both the classes are set

to 1 then our proposed RFLSTSVM-CIL reduces to the standard LSTSVM. So, we

can say that LSTSVM is a special case of RFLSTSVM-CIL.

3.1.3 Non-linear RFLSTSVM-CIL

The formulation of the non-linear RFLSTSVM-CIL is written as

min
w1, b1, ξ

1

2
‖K(X1, D

T )w1 + e1b1‖2 +
c1
2
‖S2ξ‖2

s.t. − (K(X2, D
T )w1 + e2b1) + ξ = e2, (3.9)

min
w2, b2, η

1

2
‖K(X2, D

T )w2 + e2b2‖2 +
c2
2
‖S1η‖2

s.t. (K(X1, D
T )w2 + e1b1) + η = e1, (3.10)

where matrix D = [XT
1 XT

2 ]T , K(X1, D
T ), K(X2, D

T ) are the kernel matrices of class

1 and 2 respectively.

Using the constraints of (3.9) in its objective function, the QPP is written as

min
w1, b1

1

2
‖K(X1, D

T )w1 + eb1‖2 +
c1
2
‖S2(K(X2, D

T )w1 + e2b1 + e2)‖2. (3.11)

Taking the gradient of (3.11) with respect to w1 and b1 and equating to 0, we get

K(X1, D
T )T (K(X1, D

T )w1 + e1b1)

+ c1(S2K(X2, D
T ))T (S2(K(X2, D

T )w1 + e2b1 + e2)) = 0, (3.12)
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eT1 (K(X1, D
T )w1 + e1b1) + c1(S2e2)

T (S2(K(X2, D
T )w1 + e2b1 + e2)) = 0. (3.13)

Similarly as in the linear case, one can write in the following form,w1

b1

 = −
(
T TT +

1

c1
RTR

)−1

T TS2e2, (3.14)

where R = [K(X1, D
T ) e1] and T = [S2K(X2, D

T ) S2e2].

Similarly, for the other hyperplane the parameters are computed asw2

b2

 =

(
RTR +

1

c2
T TT

)−1

RTS1e1, (3.15)

where R = [S1K(X1, D
T ) S1e1] and T = [K(X2, D

T ) e2].

For reducing the computation time of finding the inverse, SMW formula [40] is used

for the equations (3.14) and (3.15) and inverses of smaller dimensions are solved. The

class of a new data sample x ∈ Rn is predicted based on the perpendicular distances

from the hyperplanes K(xT , DT )w1 + b1 and K(xT , DT )w2 + b2 and the class label of

the nearer hyperplane is assigned to it.

3.1.4 Computational complexity

Our proposed approach of RFLSTSVM-CIL incorporates the 2-norm of the slack

variable with fuzzy membership values in the formulation of LSTSVM. Similar to

LSTSVM, our proposed RFLSTSVM-CIL solves two systems of linear equations which

involve the inversion of matrices.

In the formulation of LSTSVM, the calculation of two inverses of size (m + 1) is

required where m = p+ q, p and q are number of data points of positive and negative

class. So, reduce the computation of the inverses the Sherman–Morrison–Woodbury

(SMW) formula [40] is used, where three inverse of smaller sizes are solved. In case

of our proposed algorithm the size of the invertible matrices are same as in LSTSVM,

so there is no computation overhead in terms of solving the optimization problem as
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compared to LSTSVM. Further, in comparison to SVM and TWSVM our proposed

RFLSTSVM-CIL is computationally efficient as it is calculating the solution of linear

equations as in LSTSVM.

The additional computation involved in our proposed method is the calculation of

the fuzzy membership function. In comparison to the existing fuzzy based approaches,

our fuzzy membership function is efficient in terms of computation cost. The tradi-

tional fuzzy based functions have the time complexity of O(m) . This is because these

functions calculate the fuzzy membership of all the data points based on measures

like distance from centroid with linear and exponential decay functions. Our proposed

fuzzy based function has the time complexity as O(q) where q < m and q is the num-

ber of samples of the negative class. This is due to the fact that our proposed function

calculates fuzzy values only for the majority class and assigns the membership value

as 1 for the minority class.

3.1.5 Experimental results

The performance of the proposed methods is compared with several existing al-

gorithms on various synthetic and real world imbalanced datasets. EFSVM [55],

TWSVM [12], FTWSVMlin & FTWSVMexp [42, 175, 176], Universum Twin Support

Vector Machine (UTSVM) [27], and LSTSVM [18] are compared with the proposed

method RFLSTSVM-CIL in terms of accuracy and training time. UTSVM incor-

porates the notion of prior information about the data. So we have compared our

proposed RFLSTSVM-CIL with UTSVM in case of imbalanced data. To show the

effectiveness of our proposed fuzzy membership function, we show the comparison of

our proposed RFLSTSVM-CIL with the novel fuzzy function to the proposed algo-

rithm using existing fuzzy functions for assigning the weights. The centroid based

fuzzy membership functions with linear (FLSTSVM-CILlin) and exponential decay

(FLSTSVM-CILexp) are also the proposed algorithms using the existing fuzzy mem-

bership functions.

The AUC is calculated as mean AUC with standard deviation for five iterations

on the testing data. In each iteration, one part is used for testing and the remaining
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data for training. The time is calculated in seconds and averaged over five itera-

tions. The value of the penalty parameter is taken as c = c1 = c2 = cu from the

set {10−5, 10−4, ..., 105}, where cu is used in UTSVM [27] and µ is taken from the

set {2−5, 2−4, ..., 25} for all the cases. For RFLSTSVM-CIL, c0 is chosen from the set

{0.5, 1, 1.5, 2, 2.5}. For EFSVM [55], β is considered as 0.05, l is taken as 10, and the

value of k is chosen from {3, 5, 7, 9, 11}. For FTWSVMlin, δ is taken as 0.01 and for

FTWSVMexp, β is chosen from the set {0.1, 0.3, 0.5, 0.7, 1}. In UTSVM, ε is taken

from the set {0.1, 0.3, 0.5, 0.6}, number of universum samples i.e. u is taken as 10%

of the training data, and random averaging scheme [27] is used for the generation of

universum. The AUC is calculated in terms of percentage for all the algorithms.

3.1.5.1 Synthetic datasets

To analyse the performance of our proposed method, we performed experiments

on different synthetic datasets. We used 6 synthetic datasets to test the performance

of our proposed approach. The datasets containing noise are taken from KEEL imbal-

anced dataset repository [171,177] having 2 classes where the data points are randomly

and uniformly distributed in the two-dimensional space (both attributes are real val-

ued). The noisy datasets are namely 04clover5z-600-5-60-BI, 03subcl5-600-5-30-BI,

03subcl5-600-5-50-BI and 03subcl5-600-5-60-BI with the disturbance ratio as 60%,

30%, 50% and 60% respectively [177].

We also performed experiments on Crossplane (XOR) dataset [178] generated with

different number of samples and imbalance ratios as shown in Table 3.1. For the gen-

eration of the datasets, randomized values of data points are used in the equation of

a line i.e., y = kx+ b to generate the dataset. The parameters for slope and intercept

i.e., k and b are chosen as 0.7 and 0.1 for negative class and −0.6 and 1 for positive

class. Fig. 3.2 shows the distribution of data points in the Crossplane dataset. AUC

values and training time are shown in Table 3.2 for RBF kernel with the correspond-

ing average ranks, for the performance comparison of the proposed RFLSTSVM-CIL

with EFSVM, TWSVM, FTWSVMlin, FTWSVMexp, UTSVM, LSTSVM, FLSTSVM-

CILlin and FLSTSVM-CILexp on the synthetic datasets.
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Table 3.1: Imbalance ratio (IR) of synthetic imbalance datasets for all the samples
and for the training data.

Dataset
(Train size, Test size)

Imbalance ratio
(All samples)

Imbalance ratio
(Training samples)

04clover5z-600-5-60-BI
(200×2, 400×2)

5 5.06

03subcl5-600-5-30-BI
(200×2, 400×2)

5 4.71

03subcl5-600-5-50-BI
(200×2, 400×2)

5 4.41

03subcl5-600-5-60-BI
(200×2, 400×2)

5 5.06

Crossplane 400
(119×2, 281×2)

7 6

Crossplane 450
(134×2, 316×2)

8 7.93

Figure 3.2: Plot showing Crossplane dataset containing 120 samples with imbalance
ratio, IR = 5.
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3.1.5.2 Real world datasets

Numerical experiments are performed on several real world imbalanced datasets for

binary classification. The class imbalance ratios of the various real world datasets are

shown in Table 3.3. The performance of the proposed RFLSTSVM-CIL is compared

with existing algorithms in terms of AUC values and training time in Table 3.4.

Table 3.3: Imbalance ratio (IR) of real world datasets for all the samples and for the
training data.

Dataset
(Train size, Test size)

Imbalance ratio
(All samples)

Imbalance ratio
(Training samples)

Dataset
(Train size, Test size)

Imbalance ratio
(All samples)

Imbalance ratio
(Training samples)

Cmc
(700×9, 773×9)

0.75 1.46
Yeast-0-5-6-7-9 vs 4

(250×8, 278×8)
9.35 8.26

Ecoli-0-1 vs 2-3-5
(120×7, 124×7)

9.17 9
Ecoli-0-1-4-6 vs 5
(150×6, 130×6)

13 9.71

Ecoli-0-1 vs 5
(120×6, 120×6)

11 16.14
Ecoli2

(150×7, 186×7)
8.6 6.89

Ecoli-0-1-4-7 vs 5-6
(150×6, 182×6)

12.28 10.54
Vowel

(500×10, 488×10)
9.98 9.87

Ecoli-0-2-3-4 vs 5
(100×7, 102×7)

9.1 6.69
Ecoli3

(150×7, 186×7)
8.6 6.89

Ecoli-0-2-6-7 vs 3-5
(110×7, 114×7)

9.18 7.46
Abalone9-18

(350×7, 381×7)
16.4 18.44

Ecoli-0-3-4-6 vs 5
(100×7, 105×7)

9.25 8.09
Vehicle 1

(400×18, 446×18)
2.9 3.3

Ecoli-0-4-6 vs 5
(100×6, 103×6)

9.15 11.5
Vehicle2

(400×18, 446×18)
2.88 2.48

Ecoli-0-6-7 vs 3-5
(110×7, 112×7)

9.09 12.75
Pima-Indians

(300×8, 468×8)
1.87 1.63

Ecoli-0-6-7 vs 5
(110×6, 110×6)

10 9
Yeast3

(500×8, 984×8)
8.1 7.2

Ecoli4
(150×7, 186×7)

15.8 17.75
Yeast1vs7

(200×8, 259×8)
14.3 15.67

Glass-0-4 vs 5

(50×9, 42×9) 9.22 6.14
Yeast2vs8

(250×8, 233×8)
23.15 19.83

Glass2
(100×9, 114×9)

11.59 13.29
Ecoli0137vs26

(180×7, 131×7)
4.76 4.63

Ripley
(600×2, 650×2)

1 1.08
Australian-Credit
(300×14, 390×14)

1.25 1.13

Yeast-0-2-5-6 vs 3-7-8-9
(500×8, 504×8)

9.14 11.5
Monk2

(300×7, 301×7)
1.92 2.06

Yeast-0-3-5-9 vs 7-8
(250×8, 256×8)

9.12 11.5
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One can notice from Table 3.4 that our proposed approach is having the least rank

with less training time since our approach solves a pair of system of linear equations.

To check the statistical significance of our proposed RFLSTSVM-CIL, we use Fried-

man test with the corresponding post-hoc test [172] for the 9 algorithms using 31

binary class datasets. Here, we assume that all the methods are equivalent under null

hypothesis. The Friedman statistic is computed for the AUC values from Table 3.4

using Eq. (2.55). The χ2 in this case is 61.4887. Then, the FF value is calculated

as 9.8903. Here, the F -distribution has
(
9 − 1, (9 − 1)(31 − 1)

)
= (8, 240) degrees of

freedom. Thus, for the significance level at α = 0.05, the critical value for F (8, 240)

is 1.9771. Since FF = 6.8377 > 2.1595, we reject the null hypothesis.

Now, to check the pairwise difference between the proposed and existing algo-

rithms, we use the Nemenyi posthoc test. The critical difference is calculated using

the formula in Eq. 2.56. For significant pairwise difference between the methods at

significance level of α = 0.10, the average ranks of the methods shown in Table 3.4

should differ by atleast 2.855
√

9(9+1)
6×31

= 1.986. The pairwise difference between the

methods is shown in Table 3.5. The proposed RUTSVM-CIL is significantly better

than most of the existing algorithms.

Table 3.5: Pairwise significant difference of proposed RFLSTSVM-CIL with existing
algorithms.

Significance EFSVM TWSVM FTWSVMlin FTWSVMexp UTSVM LSTSVM FLSTSVM-CILlin FLSTSVM-CILexp

Proposed
RFLSTSVM-CIL

Yes Yes Yes Yes Yes No No Yes

3.1.6 Discussion

The proposed RFLSTSVM-CIL uses the 2-norm of the slack variables with the

fuzzy membership values as shown in Eqs. (3.2) and (3.3). This makes the opti-

mization problem strongly convex and gives globally optimal solution. For dealing

with varying imbalance conditions, the novel fuzzy membership gives different ranges

to the fuzzy membership values by using the information about the imbalance ratio

(IR) of the data. The imbalance ratios of the synthetic and real datasets are shown
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in Table 3.1 and Table 3.3 respectively. By incorporating the imbalance ratio (IR)

in fuzzy function proper range is set for the fuzzy membership values on different

datasets. Moreover, the information about the proximity of the data points to two

classes is used in the proposed function which leads to better fuzzy membership for

class imbalance data.

For the experiments on synthetic datasets, one can observe in Table 3.2 that the

proposed RFLSTSVM-CIL is not performing better for all the synthetic datasets.

However, RFLSTSVM-CIL is having the least ranks in most of the datasets, which

justifies its robustness for different sets of data. For noisy data, our proposed method is

having ranks as 1, 2, 3 and 2 out of 9 methods for 04clover5z-600-5-60-BI, 03subcl5-600-

5-30-BI, 03subcl5-600-5-50-BI and 03subcl5-600-5-60-BI datasets respectively. Also,

the training time of our proposed approach is lesser as compared to the existing algo-

rithms in Table 3.2.

In real world datasets, our proposed RFLSTSVM-CIL is having the least rank

with less training time in Table 3.4. It is observable that the proposed algorithm

with the existing fuzzy functions i.e., FLSTSVM-CILlin and FLSTSVM-CILexp also

perform better in comparison to the traditional approaches. The average ranks

of FLSTSVM-CILlin and FLSTSVM-CILexp are lesser in comparison to EFSVM,

TWSVM, FTWSVMlin, FTWSVMexp and UTSVM in Table 3.2 and Table 3.4. In

comparison to the existing algorithms, our proposed RFLSTSVM-CIL takes more

computation time in comparison to LSTSVM. This is due to the additional computa-

tion for calculating the fuzzy membership values in the proposed approach.

The performance of the proposed method is compared with LSTSVM for showing

the effect of proposed fuzzy membership in Fig. 3.3 for Monk2, Yeast-0-2-5-6-vs 3-7-

8-9, Abalone9-18 and Vowel datasets. The figures show the distance of the data points

with the two hyperplanes. It is observable from Figs. 3.3 that the data points of the

positive class are nearer to the positive class hyperplane and away from the negative

class hyperplane. This justifies the fact the proposed fuzzy membership function is

efficient in calculating the proper fuzzy membership value for imbalance datasets.

The insensitivity analysis of the proposed RFLSTSVM-CIL to the parameters c
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Figure 3.3: Distance of data points from the hyperplanes of proposed RFLSTSVM-CIL
(left) and LSTSVM (right) for classification using RBF kernel.
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(d) Monk2

Figure 3.4: Insensitivity performance of the proposed RFLSTSVM-CIL for classifica-
tion to the user specified parameters (c, c0) using RBF kernel.
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and c0 is shown in Fig. 3.4 for Ecoli-0-3-4-6 vs 5, Ecoli-0-4-6 vs 5, Yeast2vs8 and

Monk2 datasets. It can be observed that RFLSTSVM-CIL performs better on lesser

values of c as well as c0.

In the following section, we present a different approach for solving class imbalance.

We propose a novel twin SVM algorithm by utilizing universum data and reduced

kernel for removing the imbalance between the classes. This leads to an efficient as

well as better model for classifying class imbalanced data.

3.2 A reduced universum twin support vector ma-

chine for class imbalance learning (RUTSVM-

CIL)

The formulation of UTSVM [27] involves the solution of two small QPPs as com-

pared to USVM [10] where one large QPP is solved. In universum based SVM algo-

rithms, the addition of the universum data points increases the computational com-

plexity of the algorithm [10,20,27]. Also, universum based algorithms like USVM and

UTSVM suffer from the problem of class imbalance. To remove these drawbacks and

to give prior information about data, we propose a reduced universum twin support

vector machine for class imbalance learning (RUTSVM-CIL). We utilize the concepts

of undersampling and oversampling to formulate an algorithm specifically for class

imbalance. Moreover, we incorporate information about data distribution in the for-

mulation from majority class data points. Further, the training time is reduced by

constructing the rectangular kernel matrix from the undersampled dataset in proposed

RUTSVM-CIL.

In RUTSVM-CIL, the data points of majority (negative) class are reduced by using

random undersampling approach [179–181] as shown in Fig. 3.5(b). This leads to a

balance condition for construction of the hyperplanes as well as reduces the training

time. The reduced kernel also utilizes the widely used undersampling approach for

imbalanced data in the kernel matrix. In the proposed RUTSVM-CIL, the universum
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data points are selected using the random averaging scheme [20,27].

(a) Imbalanced data (b) Case 2 (c) Case 3

Figure 3.5: Balancing of class imbalanced data with universum in proposed RUTSVM-
CIL. The distributions of data points in the optimization problem of minority class
and majority class hyperplanes in proposed RUTSVM-CIL are shown in (b) and (c)
respectively.

3.2.1 Universum for class imbalance

In the case of class imbalance, most of the information about data distribution is

contained in the majority class. So, we increase the number of universum data points

in the case of the majority class hyperplane to give prior information of the data. In

Fig. 3.5(c), we treat universum data points as belonging to minority (positive) class.

This is in contrast to UTSVM where universum is treated as not belonging to any of

the binary classes, and do not solve the class imbalance problem. We add additional

constraints of universum points having size equal to difference in the number of data

points of the two classes. This gives constraints in the construction of the majority

class hyperplane to keep universum data points at a distance of (1 − ε) from the

majority class. It also prevents the majority class hyperplane to lie closer to the

minority class data points, while giving prior information about the data. Thus, the

biasing of the classifier towards the majority class is reduced, and the generalization

performance is improved using this scheme.

In case of minority class i.e., positive class, random undersampling of the negative

class is used to create the balance situation for the construction of the positive class

hyperplane. The same reduced kernel matrix is used in the construction of both the
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hyperplanes. The formulation of proposed RUTSVM-CIL is as follows:

Consider the matrices X1 and X2 representing the data points of ‘class 1’ and

‘class 2’, having dimension r × n and s × n respectively. X∗
2 is the randomly chosen

reduced data samples of the negative class of size r × n. The universum data points

are contained in the matrix U of size d×n, where d is the difference in the number of

data points of the two classes i.e., (s−r) . The matrix U∗ is a subset of U of size equal

to ceiling of (r/2) denoted as g, and the dimension of each data point is represented

by n . The data points in U∗ are selected randomly from the set U .

3.2.2 Linear RUTSVM-CIL

The optimization problems of linear RUTSVM-CIL in primal are written as

min
w1, b1, ξ, ψ

1

2
‖X1w1 + e1b1‖2 + c1e

T
2 ξ + cue

T
g ψ

s.t. − (X∗
2w1 + e1b1) + ξ ≥ e1,

(U∗w1 + egb1) + ψ ≥ (−1 + ε)eg,

ξ ≥ 0, ψ ≥ 0, (3.16)

min
w2, b2, η, ψ∗

1

2
‖X2w2 + e2b2‖2 + c2e

T
1 η + cue

T
dψ

∗

s.t. (X1w2 + e1b2) + η ≥ e1,

(Uw2 + edb2) + ψ∗ ≥ (1− ε)ed,

η ≥ 0, ψ∗ ≥ 0, (3.17)

where ξ, ψ, η, ψ∗ represent the slack variables; c1, c2 and cu represent the penalty pa-

rameters; e1, e2, eg and ed are vectors of ones of appropriate dimensions.

Here, QPP (3.16) corresponds to the optimization problem for the positive class,

and QPP (3.17) corresponds to the negative class hyperplane. One can observe that

the constraint in (3.16) is to keep the universum within a distance of (1− ε) from the

positive class hyperplane, and in QPP (3.17) the constraint is to keep the universum
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away from the negative class hyperplane by a distance of (1− ε). Therefore, in QPP

(3.16), the universum provides the prior information about the data, and in QPP

(3.17) the prior information is provided in a manner that removes the biasing of the

classifier.

The Wolfe duals of the primal problems (3.16) and (3.17) are obtained by applying

the K.K.T. conditions as

max
α1, µ1

eT1 α1 −
1

2
(αT1 T

∗ − µT1O∗)(STS)−1(T ∗Tα1 −O∗Tµ1) + (ε− 1)eTg µ1

s.t. 0 ≤ α1 ≤ c1, 0 ≤ µ1 ≤ cu, (3.18)

max
α2, µ2

eT1 α2 −
1

2
(αT2 S + µT2O)(T TT )−1(STα2 +OTµ2) + (1− ε)eTd µ2

s.t. 0 ≤ α2 ≤ c2, 0 ≤ µ2 ≤ cu, (3.19)

where S = [X1 e1], T
∗ = [X∗

2 e1], T = [X2 e2], O
∗ = [U∗ eg], O = [U ed], and

α1, α2, µ1, µ2 are the vectors of Lagrange multipliers.

The hyperplanes xTw1 + b1 = 0 and xTw2 + b2 = 0 are obtained using the value of

the parameters wi, bi, i = 1, 2 from the following equations (3.20) and (3.21),

w1

b1

 = −(STS + σI)−1(T ∗Tα1 −O∗Tµ1), (3.20)

w2

b2

 = (T TT + σI)−1(STα2 +OTµ2), (3.21)

where σ is a small positive value to deal with the case of singular matrices. A new

data point x ∈ Rn is classified using Eq. (2.11).
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3.2.3 Non-linear RUTSVM-CIL

The optimization problems of non-linear RUTSVM-CIL are expressed as follows:

min
w1, b1, ξ, ψ

1

2
‖K(X1, D

T )w1 + e1b1‖2 + c1e
T
2 ξ + cue

T
g ψ

s.t. − (K(X∗
2 , D

T )w1 + e1b1) + ξ ≥ e1,

(K(U∗, DT )w1 + egb1) + ψ ≥ (−1 + ε)eg,

ξ ≥ 0, ψ ≥ 0, (3.22)

min
w2, b2, η, ψ∗

1

2
‖K(X2, D

T )w2 + e2b2‖2 + c2e
T
1 η + cue

T
dψ

∗

s.t. (K(X1, D
T )w2 + e1b2) + η ≥ e1,

(K(U,DT )w2 + edb2) + ψ∗ ≥ (1− ε)ed,

η ≥ 0, ψ∗ ≥ 0, (3.23)

where the slack variables are ξ, ψ, η, ψ∗; the penalty parameters are represented by

c1, c2 and cu; D = [XT
1 X∗

2
T ]T , e1, e2, eg and ed are vectors of ones of appropriate

dimension, and K(xT , DT ) = (k(x, x1), k(x, x1), . . . , k(x, x2r)) is a row vector of the

reduced kernel matrix in R2r space, where r is the number of data points of ‘class 1’.

The Wolfe duals of primal problems (3.22) and (3.23) are obtained using the K.K.T.

conditions as

max
α1, µ1

eT1 α1 −
1

2
(αT1 F

∗ − µT1 P ∗)(ETE)−1(F ∗Tα1 − P ∗Tµ1) + (ε− 1)eTg µ1

s.t. 0 ≤ α1 ≤ c1, 0 ≤ µ1 ≤ cu, (3.24)

max
α2, µ2

eT1 α2 −
1

2
(αT2E + µT2 P )(F TF )−1(ETα2 + P Tµ2) + (1− ε)eTd µ2

s.t. 0 ≤ α2 ≤ c2, 0 ≤ µ2 ≤ cu, (3.25)

where E = [K(X1, D
T ) e1], F

∗ = [K(X∗
2 , D

T ) e1], F = [K(X2, D
T ) e2], P

∗ =
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[K(U∗, DT ) eg], P = [K(U,DT ) ed], and α1, α2, µ1, µ2 are the vectors of Lagrange mul-

tipliers.

The non-linear hyperplanes K(xT , DT )w1 + b1 = 0 and K(xT , DT )w2 + b2 = 0 are

obtained by using parameters w and b from the following equations (3.26) and (3.27):

w1

b1

 = −(ETE + σI)−1(F ∗Tα1 − P ∗Tµ1), (3.26)

w2

b2

 = (F TF + σI)−1(ETα2 + P Tµ2), (3.27)

where σ is a small positive value to deal with the case of singular matrices. Every new

data point x ∈ Rn is classified using Eq. (2.10). The algorithm for RUTSVM-CIL is

briefly described in Alg. 3.1.

Algorithm 3.1 RUTSVM-CIL

Input:
{X1}r×n, {X2}s×n, {U}d×n, d = s− r, and g = ceil(r/2).
Output:
The weight vectors and bias i.e., wi, bi, i = 1, 2, for ‘class 1’ and ‘class 2’ respec-
tively.

1: Construct matrices {X∗
2}r×n and {U∗}g×n using randomly selected data samples

of negative class i.e., {X2}s×n and universum {U}d×n respectively.
2: Set the constraints of optimization problem of positive class hyperplane using

matrices {X∗
2}r×n and {U∗}g×n and for negative class using matrix {X1}r×n with

universum {U}d×n treated as belonging to positive class.
3: Solve the QPPs in the dual form to obtain the Lagrange multipliers {α1i}ri=1,
{µ1i}gi=1 and {α2i}ri=1, {µ2i}di=1 .

4: Calculate wi, bi, i = 1, 2 using the Lagrange multipliers obtained in step 3.
5: Return wi, bi, i = 1, 2 for the construction of hyperplanes of the two classes.

3.2.4 Analysis of proposed algorithm

In case of class imbalance problems, knowledge about the distribution of data is

contained in the majority class, simply due to the more number of data points in it. To
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incorporate this knowledge of the distribution as prior information in the construction

of the classifier, the proposed model uses the concept of universum. Moreover, the

traditional approaches does not resolve the problem of computation time for the class

imbalance problems, and in some cases the use of fuzzy membership functions incur

additional computation time in the training phase. For reducing this computational

cost, the proposed RUTSVM-CIL uses the concept of a rectangular kernel of smaller

size which reduces the training time of the algorithm significantly. By using the

reduced kernel, the setup time [182] for solving the QPP is reduced. The setup time

consists of the construction of kernel matrices and computation of the inverses. In

comparison to UTSVM, the setup time as well as time for solving the QPP is reduced

by using the rectangular kernel.

The proposed RUTSVM-CIL utilizes the benefits of undersampling as well as over-

sampling, with reduced kernel for UTSVM to classify imbalanced datasets. There is

undersampling of the majority class as stated in subsection 3.2.4.1, and oversampling

of universum samples in 3.2.4.2, to create a balance situation for classification. The

proposed scheme for the construction of twin hyperplanes in our RUTSVM-CIL is

discussed below:

3.2.4.1 Positive (minority) class hyperplane

The negative class has more number of data points as compared to the positive

class. To reduce the biasing of the positive class hyperplane, a random undersampling

approach [179–181] is used to reduce the number of data points of the negative class.

Here, the universum data points are also used by randomly selecting data points from

the set U . This creates a balance situation for the construction of positive hyperplane.

Moreover, the computation time for calculating the inverse of the matrix is reduced due

to the undersampling. Experimental analysis on selection of universum is presented

in subsection 3.2.6.1(V).

73



3.2.4.2 Negative (majority) class hyperplane

In case of negative class hyperplane, the random undersampling of the negative

samples would result into a poor approximation of the actual data. So, we used all the

samples of both classes. Now, to create a balance situation for the negative hyperplane,

we used more number of universum data points U in the constraints which reduce the

bias towards the negative class. This also gives prior information in the construction

of the classifier.

The universum data points are kept at a distance of (1 − ε) from the classifier

in QPP (3.17), and the minority class is unit distance away from the negative class

hyperplane. So, the universum points help in providing the balance between the

two classes. Thus, the majority class hyperplane gets some information about the

distribution of data, as well as do not get biased towards its own class. It is clearly

visible in Figs. 3.6 and 3.7 that the classifier in the proposed RUTSVM-CIL aligns

itself with the distribution of data. Moreover, the classifier is also not biased towards

the majority class, leading to better classification of samples in each class.

3.2.4.3 Kernel matrix

To incorporate the concept of undersampling in the kernel matrix, we choose the

rectangular kernel, where the size of the kernel depends on the size of the minority

class. The columns of the kernel matrix are equal to twice the size of the minority

class, which includes the positive class of size r, and randomly selected samples of size

r from the negative class. This also creates a balance in the kernel matrix w.r.t. kernel

mapping of the data. So, if there is more imbalance in the data, then lesser will be the

size of the kernel, and lesser the computation time. The size of universum data for the

majority class is directly proportional to the imbalance ratio (IR) of data, while the

size of the kernel matrix is inversely proportional to the imbalance ratio. However, the

training time of the proposed RUTSVM-CIL is inversely proportional to the imbalance

ratio of data, since the construction of kernel matrices and calculating the inverses

are computationally expensive steps. Experiments on IR vs. time are presented in
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(a) EFSVM (b) TWSVM

(c) TWSVM-RUS (d) RUTSVM-CIL

Figure 3.6: Performance of EFSVM, TWSVM, TWSVM-RUS and proposed
RUTSVM-CIL for the classification of synthetic dataset Crescent & full moon using
RBF kernel.
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(a) EFSVM (b) TWSVM

(c) TWSVM-RUS (d) RUTSVM-CIL

Figure 3.7: Performance of EFSVM, TWSVM, TWSVM-RUS and proposed
RUTSVM-CIL for the classification of synthetic dataset Half kernel using RBF kernel.
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subsection 3.2.6.1(IV). The proposed RUTSVM-CIL also requires less memory to store

the kernel matrices, and is suitable for handling large scale imbalanced datasets.

3.2.5 Computational complexity

Let number of samples belonging to positive class be m1, and number of samples

belonging to negative class be m2, then m = m1 +m2, and IR = m2/m1 where IR is

the imbalance ratio. In case of TWSVM, the time complexity is given as follows [12]:

T =O(m3
2) +O(m3

1),

T =O(IR×m1)
3 +O(m3

1),

T =O(IR3 + 1)O(m3
1). (3.28)

If the imbalance ratio (IR) is equal to 1, then T = 2×O(m/2)3 as stated in [12].

In the proposed RUTSVM-CIL, the computational complexity is given by consid-

ering the constraints in both QPPs (3.16 and 3.17) as follows:

T =O(m1 +m1/2)3 +O(m1 + (m2 −m1))
3,

T =O(m1 +m1/2)3 +O(m3
2),

T =O(IR3 + 3.375)O(m3
1). (3.29)

The time complexity of the proposed RUTSVM-CIL is comparable to TWSVM

(Eq. 3.28). However, since we include the reduced kernel in constructing the kernel

matrices in the proposed approach, the setup time involving the construction of kernel

matrices and computation of inverses is reduced. This leads to less computation

complexity of RUTSVM-CIL as compared to TWSVM.

In TWSVM, two kernel matrices are computed i.e., for the positive and negative

classes. The computation complexity of calculating the kernel matrices in TWSVM is
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given as follows:

T =O(m1 ×m) +O(m2 ×m),

T =O(m1 × (m1 + IR×m1)) +O(IR×m1 × (m1 + IR×m1)),

T =O(1 + 2IR + IR2)O(m2
1). (3.30)

In proposed RUTSVM-CIL, three kernel matrices are computed i.e., for positive

and negative classes, and the universum. The computation complexity of calculating

the kernel matrices for RUTSVM-CIL is given as follows:

T =O(m1 × 2m1) +O(m2 × 2m1) +O((m2 −m1)× 2m1),

T =O(2m2
1) +O(IR×m1 × 2m1) +O((IR×m1 −m1)× 2m1),

T =O(1 + IR + IR− 1)×O(2m2
1),

T =(4IR)O(m2
1). (3.31)

It is evident from Eqs. (3.30) and (3.31) that in comparison to TWSVM, proposed

RUTSVM-CIL is computationally efficient for datasets with high imbalance ratios.

Further, the time complexity in calculating inverse of matrix having size m × m

is O(m3). So, for TWSVM the complexity is 2O(m3
1)(1 + IR3), while the proposed

RUTSVM-CIL has very less complexity i.e., 2O(2m1)
3. Therefore, the complexity

of RUTSVM-CIL is less than TWSVM for IR > 1. This makes our RUTSVM-CIL

suitable for large scale imbalanced datasets.

3.2.6 Experimental results

In this section, experiments are performed on various synthetic as well as real world

benchmark datasets for the comparison of the proposed RUTSVM-CIL with existing

approaches. The proposed method is compared with EFSVM [55], SVM-RUS [179–

181], TWSVM [5], TWSVM-RUS [179–181], TWSVM-SMOTE [183], MMTSSVM

[184], FTSVM [175, 185] and UTSVM [27] in terms of classification accuracy and

training time. We also performed experiments on large scale imbalanced datasets to
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justify the applicability of the proposed approach.

Experiments on large datasets are carried out on a workstation with 64-bit Win-

dows 10 OS, running on 2.30 GHz Intel R© Xeon processor, and 128 GB RAM. For

the kernel matrices, RBF kernel is used for the kernel function in all the algorithms.

The results for all the algorithms are calculated for the non-linear case using RBF

kernel. For comparison of classification accuracy of the methods, area under receiver

operating characteristics (ROC) curve i.e. AUC is used.

The range of penalty parameter c, and kernel parameter µ is same as in subsection

3.1.5 for all the algorithms. For EFSVM and UTSVM also, the settings are similar as

before. In SVM-RUS and TWSVM-RUS random undersampling of the majority class

is performed. In SMOTE, the value of K for K-nearest neighbours (KNN) is set as

3. For MMTSSVM and FTSVM, ν1 = ν2 is selected from the set {0.1, 0.2, . . . , 0.9}.

In case of UTSVM and RUTSVM-CIL, random averaging scheme is used for the

generation of universum. In RUTSVM-CIL, the minority class data points are used

multiple times for random averaging of data points with the majority class.

I. Datasets:

We used two types of binary class imbalanced datasets i.e., synthetic and real world

datasets. Three synthetic datasets are used namely, Crescent & full moon, Half kernel

[3], and Crossplane (XOR) dataset [178] as shown in Figs. 3.6, 3.7 and 3.2 respectively.

For Crescent & full moon and Half kernel datasets, total number of samples is set as

500 with 475 data points of negative class and 25 data points of positive class. For

Crossplane dataset, the parameters k1 and b1 [178] are set as 0.7 and 0.1 for majority

class and, 0.6 and 1 for minority class. The imbalance ratios of Crescent & full moon,

Half kernel datasets are shown in Table 3.6, and for Crossplane datasets in Table 3.7.

In order to justify the applicability of RUTSVM-CIL for real world class imbalance

problems, we used 28 real world datasets from KEEL imbalanced datasets [171] and

UCI repository [170]. The imbalance ratios are shown in Table 6. The imbalance ratio

(IR) of 6 datasets lie in the range (2, 5], 12 datasets lie in (5, 10], 6 datasets lie in

(10, 15], and 4 highly imbalanced datasets lie in (15, 33].
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The large scale datasets are generated using the approach as mentioned in [186],

and the parameters are set as c1 = c2 = cu = 1, µ = 2, and ε = 0.5. For FTSVM,

ν1 = ν2 is set as 0.3. The datasets are made class imbalanced by randomly removing

samples of one class.

3.2.6.1 Synthetic datasets

In order to analyse the performance of the different algorithms, we performed

experiments on synthetic datasets i.e., Crescent & full moon, Half kernel, and Cross-

plane.

I. Effect of prior information:

Figs. 3.6 and 3.7 illustrate the effect of universum in the proposed RUTSVM-CIL.

The blue colour curves show the positive class hyperplane, and the curves in red are

the negative class hyperplane. It is clearly visible that the classifier of the proposed

RUTSVM-CIL utilizes prior information from the universum to obtain a better classi-

fier. The classifiers in the other algorithms do not have any prior information leading

to mis-classification of data. Moreover, it can be seen in Figs. 3.6 and 3.7 that the

classifiers of the existing algorithms are biased towards the majority class. The pro-

posed algorithm is not showing any bias leading to better classification of imbalanced

data. This is due to the universum data which creates a balance between the classes.

II. Effect of training size:

In order to show the effect of training size on the performance of the vari-

ous algorithms, experiments are performed on Crescent & full moon and Half kernel

datasets for different sets of training data. The total number of samples in Cres-

cent & full moon and Half kernel datasets is 500. The training data is selected as

30%, 40%, 50% and 70% of the number of samples in the datasets. The perfor-

mance analysis of different algorithms is shown in Table 3.6 in terms of AUC values

and training time. The corresponding average ranks are shown for the performance

comparison of proposed RUTSVM-CIL with EFSVM, SVM-RUS, TWSVM, TWSVM-

RUS, TWSVM-SMOTE, MMTSSVM, FTSVM and UTSVM. The proposed algorithm
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performs better than the existing algorithms in 4 out of 8 datasets with least rank

for all the 8 datasets. Fig. 3.8 shows the plot of AUC and training time of Cres-

cent & full moon and Half kernel dataset for different training sizes.

One can observe in Figs. 3.8(a) and 3.8(c) that the AUC of the proposed RUTSVM-

CIL is increasing with increase in training size. There is a slight decrease in the AUC

of RUTSVM-CIL in Fig. 3.8(c) with 70% training data. This may be attributed

to the selection of universum using random averaging of data points. Figs. 3.8(b)

and 3.8(d) show the comparison of training time of the various algorithms except

EFSVM, since it is having very high computation time in comparison to the other

algorithms. It is visible that the training time of RUTSVM-CIL is lesser than most of

the algorithms. Also, the rate of increase in training time of RUTSVM-CIL is lesser

than other algorithms.

III. Crossplane dataset:

Numerical experiments are performed on synthetic Crossplane dataset to verify the

effectiveness of the proposed RUTSVM-CIL. Table 3.7 shows the AUC and training of

the different algorithms on Crossplane dataset. RUTSVM-CIL performs better than

the existing algorithms with lesser training time in most cases. Moreover, RUTSVM-

CIL obtains least rank in Table 3.7.

IV. Effect of imbalance ratio (IR):

To verify the efficacy of the reduced kernel, the performance comparison is made

using Crossplane dataset in Fig. 3.9. It is clear from Fig. 3.9 that the proposed

RUTSVM-CIL gives better accuracy with less training time for highly imbalanced

data. However, the accuracy of RUTSVM-CIL is less for IR = 4. This is due to

the use of reduced kernel in proposed RUTSVM-CIL, resulting into removal of some

informative data points. Fig. 3.9(c) justifies this fact where the accuracy of proposed

RUTSVM-CIL with full kernel matrix is higher than RUTSVM-CIL with reduced

kernel for IR = 4. For higher imbalance ratio, less number of samples is used in the

construction of reduced kernel matrix. Moreover, the decline in accuracy of RUTSVM-

CIL is not so rapid in comparison to other algorithms. Most of the existing algorithms
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(a) (b)

(c) (d)

Figure 3.8: Plot of AUC vs training size, and time vs training size for Cres-
cent & full moon in (a) and (b), and Half kernel in (c) and (d) respectively. Number
of samples are 500.
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are having fluctuations in their accuracies, while RUTSVM-CIL is rather stable w.r.t.

its declining accuracy values for higher IRs. To check the effect of reduced kernel,

performance of RUTSVM-CIL is compared with proposed scheme using full kernel

matrix and UTSVM in Figs. 3.9(c) and 3.9(d).

(a) (b)

(c) (d)

Figure 3.9: Plot of AUC and time vs imbalance ratio (IR) is shown in (a) and (b)
respectively for Crossplane dataset containing 200 data points. A comparison with
proposed RUTSVM-CIL with full kernel is shown in (c) and (d).

It is clearly visible that the proposed RUTSVM-CIL is giving better generalization

performance in most cases as compared to proposed algorithm with full kernel matrix.

Moreover, the training time of the proposed algorithm is also very less.
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V. Selection of universum:

In the formulation of proposed RUTSVM-CIL, the matrix U∗ is a subset of uni-

versum matrix U of size equal to ceiling of (r/2), where r is number of data points

of minority class. The data points in U∗ are selected randomly from U . To analyze

the effect of random selection of U∗ on the generalization performance, we conducted

experiments on three synthetic datasets i.e., Crescent & full moon, Half kernel, and

Crossplane. The training size is set as 50% of total samples. The performance of

RUTSVM-CIL on different sizes of U∗ is shown in Fig. 3.10, where the size of U∗ is a

fraction of U . One can clearly observe that on the three synthetic datasets, the per-

formance is high when the size of U∗ is 0.5 or 0.75 times the samples in minority class.

This is because for higher size of U∗, less importance is given for the classification of

minority class samples. So, this analysis justifies our method for proper selection of

U∗.

Figure 3.10: Plot of AUC vs size of U∗ on synthetic datasets. The size of U∗ is
represented as a fraction of the minority class samples.

3.2.6.2 Real world datasets

In this subsection, numerical experiments are performed on several real world bi-

nary class imbalanced datasets. The performance of the proposed RUTSVM-CIL

is compared with EFSVM, SVM-RUS, TWSVM, TWSVM-RUS, TWSVM-SMOTE,

MMTSSVM, FTSVM and UTSVM.
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I. Generalization performance:

The classification accuracy of the algorithms is shown in Table 3.8 in terms of AUC

values and training time, with the corresponding average ranks. It is observable that

the proposed approach is showing better AUC in 8 out of 28 datasets. The proposed

RUTSVM-CIL is also having the least rank on the basis of AUC i.e., 2.6607. For 6

datasets, the rank of RUTSVM-CIL is 1 including Shuttle-c0-vs-c4, which is a large

dataset. It is observable that TWSVM-RUS is having less rank than TWSVM which

shows the efficacy of undersampling with TWSVM. The average rank of UTSVM is

more than RUTSVM-CIL i.e., 5.375 > 2.6607. This is due to biasing of the classifier

towards majority class in UTSVM. EFSVM is also showing good generalization abil-

ity with an average rank of 4.7857 in comparison to SVM-RUS, TWSVM-SMOTE,

FTSVM and UTSVM.

The average rank of the proposed RUTSVM-CIL in Table 3.8 is 3.1667 for datasets

with IR in the range (2, 5], 2.2917 with IR in (5, 10], 2.3333 with IR in (10, 15], and

3.5 with IR in (15, 33]. Although the overall average rank of RUTSVM-CIL is better

than existing algorithms, the performance is highest for datasets with IR in the range

(5, 10].

For comprehensive comparison of the proposed RUTSVM-CIL with existing algo-

rithms on different sets of testing data, we calculated mean and standard deviation

(SD) of AUC and G-mean [187] in Table 3.9. The AUC and G-mean are calculated

on 5 folds of testing data. As shown in Table 3.9, the proposed RUTSVM-CIL is

having least rank for AUC as well as G-mean. This shows the superiority of proposed

RUTSVM-CIL over existing algorithms.

Fig. 3.11 shows the performance of proposed RUTSVM-CIL with TWSVM and

UTSVM for Ecoli-0-4-6 vs 5, Shuttle-c0-vs-c4, Ecoli3 and New thyroid2 datasets. The

figure shows the distance of the data points with the two hyperplanes. Hyperplane 1

and 2 correspond to positive and negative class respectively. One can observe from

Fig. 3.11 that the proposed RUTSVM-CIL classifier is less biased towards the negative

class. The data points of the positive and negative class are relatively closer to their

own class’ hyperplane as compared to the other class. Moreover, it is visible from
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Fig. 3.11(c) that the distance of negative class from its hyperplane is more in case of

RUTSVM-CIL in comparison to TWSVM and UTSVM in Figs. 3.11(a) and 3.11(b)

respectively. This shows the effect of universum in reducing the bias to the negative

or majority class. The majority class data points which are near to the minority class

are given less importance.

II. Computation time:

One can observe the computation time of the different algorithms in Table 3.8. The

training time of RUTSVM-CIL is less than all the existing algorithms except SVM-

RUS and TWSVM-RUS. This is due to undersampling of the majority class in one

QPP, as well as oversampling of the universum in the other QPP of RUTSVM-CIL.

Also, RUTSVM-CIL finds the solution of two smaller sized QPPs with reduced kernel

matrix. It can be seen in Table 3.8 that the training time of UTSVM is more than

TWSVM due to the universum. However, in comparison to TWSVM, our RUTSVM-

CIL takes lesser time while incorporating the universum data. It is visible in Table

3.8 that the computation time of the algorithms like SVM-RUS and TWSVM-RUS is

very less as compared to other algorithms. This is due to the undersampling of data

points. The computation time of FTSVM is more than TWSVM due to the calculation

of fuzzy membership in FTSVM. In case of TWSVM-SMOTE, the training time is

more than most of the other algorithms due to oversampling of data points. For

EFSVM, the computation time is the highest, since it finds the solution of a large

QPP.

3.2.6.3 Statistical tests

Similar to section (3.1.5.2), we apply the Friedman test to check the statistical

difference for the 9 algorithms on 28 class imbalanced datasets. First, we assume

the null hypothesis as there is no difference between the methods. The χ2
F value for

Friedman statistic is calculated using average ranks from Table 3.8. By applying the

formula (2.54), we get χ2
F = 41.9496.
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The FF value is calculated as

FF =
(28− 1)(41.9496)

28× (9− 1)− 41.9496
= 6.2216,

where for 9 methods and 28 datasets, the F -distribution has
(
9−1, (9−1)(28−1)

)
=

(8, 216) degrees of freedom. For the significance level at α = 0.05, the critical value of

F (8, 216) is 1.9814. Since FF = 6.2216 > 1.9814, we reject the null hypothesis.

Now, to check the pairwise difference between the proposed and existing algo-

rithms, we use the Nemenyi posthoc test using Eq. (2.56). For significant pairwise

difference between the methods at significance level of α = 0.10, the average ranks of

the methods shown in Table 3.8 should differ by atleast 2.855
√

9(9+1)
6×28

= 2.0896. The

pairwise difference between the methods is shown in Table 3.10.

Table 3.10: Pairwise significant difference of proposed RFLSTSVM-CIL with existing
algorithms.

Significance EFSVM SVM-RUS TWSVM TWSVM-RUS TWSVM-SMOTE MMTSSVM FTSVM UTSVM
Proposed

RUTSVM-CIL
Yes Yes No No Yes Yes Yes Yes

3.2.6.4 Large scale imbalanced datasets

In this subsection, we present the experimental results on large sized datasets.

The proposed RUTSVM-CIL is compared with TWSVM, FTSVM, and UTSVM on

NDC [186] datasets using RBF kernel. Table 3.11 shows the performance compari-

son on large scale imbalanced datasets, where the training time is shown in seconds.

One can observe from Table 3.11 that the RUTSVM-CIL is performing better than

the compared algorithms in most of the datasets. Moreover, the training time of

RUTSVM-CIL is very less in comparison to other algorithms. This is due to the re-

duced kernel in our RUTSVM-CIL. For the dataset NDC-7 all the algorithms except

RUTSVM-CIL failed to run due to limitation of system memory. This shows that the

proposed RUTSVM-CIL is applicable on real world applications involving large scale

class imbalanced data.

Moreover, the existing algorithm UTSVM is having the highest training time due
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Table 3.11: Comparison of proposed RUTSVM-CIL on AUC (%) and training time
with existing algorithms for classification on large scale imbalanced datasets.

Dataset
(Train size, Test size)

IR
(All samples)

TWSVM
AUC

Time (s)

FTSVM
AUC

Time (s)

UTSVM
AUC

Time (s)

Proposed
RUTSVM-CIL

AUC
Time (s)

NDC-1
(3336×10, 335×10)

5.67
96.1781
13.0017

95.4849
14.3013

96.3524
15.5044

99.3031
7.0055

NDC-2
(5008×10, 502×10)

5.68
97.8261
31.9098

96.0304
33.0532

96.8705
35.6478

96.755
22.2657

NDC-3
(7100×10, 712×10)

6.1
97.9305
70.6731

94.35
70.9368

96.731
74.6066

99.0939
42.1088

NDC-4
(13317×10, 1333×10)

5.66
98.2424
321.49

94.5994
300.514

98.9887
349.715

99.3095
204.397

NDC-5
(19724×10, 1974×10)

5.58
99.1583
861.113

96.67
864.887

99.2606
981.933

99.3452
530.71

NDC-6
(29287×10, 2930×10)

4.86
99.1033
2271.82

97.9502
2145.12

99.2811
2680.11

99.0635
1302.92

NDC-7
(41789×10, 4180×10)

4.97 * * *
99.1485
3752.11

to inclusion of universum data. So, the universum based algorithms are not feasible

on large scale datasets. On the other hand, our RUTSVM-CIL includes the universum

samples with lesser training time than all the compared algorithms.

3.2.6.5 Insensitivity analysis

In Fig. 3.12, the insensitivity performance of the proposed RUTSVM-CIL is pre-

sented for the penalty parameter c, tolerance value ε, and kernel parameter µ. The

analysis is shown for non-linear RUTSVM-CIL on the datasets Ecoli-0-1 vs 2-3-5,

Ecoli-0-4-6 vs 5, Yeast1 and Yeast2vs8. Insensitivity for the parameters c and ε is

shown for the datasets Ecoli-0-1 vs 2-3-5 and Ecoli-0-4-6 vs 5 in Figs. 3.12(a) and

3.12(b) respectively. The value of µ is set as the optimal value obtained after cross

validation.

It is evident that the proposed RUTSVM-CIL gives better generalization perfor-

mance for lesser values of c, and the parameter ε do not have much effect on the AUC.
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(a) Ecoli-0-1 vs 2-3-5 (b) Ecoli-0-4-6 vs 5

(c) Yeast1 (d) Yeast2vs8

Figure 3.12: Insensitivity performance of proposed RUTSVM-CIL for classification of
real world imbalance datasets to the user specified parameters using RBF kernel.

In case of insensitivity w.r.t. parameters c and µ, the value of ε is set as the optimal

value obtained after cross validation. It is observable from Figs. 3.12(c) and 3.12(d)

that the proposed RUTSVM-CIL gives high accuracy for higher values of µ and lower

values of c. This justifies the selection of the set of parameters for training of the

proposed RUTSVM-CIL on class imbalanced data.
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3.3 Summary

In this chapter, we proposed two novel SVM based algorithms for class imbalance

learning viz. (which are) RFLSTSVM-CIL and RUTSVM-CIL. We also proposed

a novel fuzzy membership function specifically for class imbalance learning, which

gives different range of fuzzy membership values for different datasets. The different

range of the fuzzy membership function helps in giving proper weights to the data

points in different imbalance scenarios. The proposed RFLSTSVM-CIL has shown

good generalization performance with less training time in comparison to the existing

algorithms on noisy datasets.

The proposed RUTSVM-CIL is a novel computationally efficient model for class

imbalance learning. The proposed model incorporates prior information from the uni-

versum data, and creates a balance situation for the classification. The reduced kernel

based approach leads to a computationally efficient model of universum based SVM.

This removes the overhead of higher computation cost of universum based algorithms.

The memory requirement for executing the proposed algorithm is also very less, which

makes it suitable for large scale imbalanced datasets. The approach of combining

undersampling with oversampling using universum data is found to be helpful in clas-

sification of class imbalance datasets. RUTSVM-CIL has shown good generalization

performance with less training time on several synthetic and real world datasets.

In the next chapter, we focus on algorithms based on universum learning for feature

extraction and classification in biomedical datasets related to brain disorders.
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Chapter 4

Universum learning for neurological

disorders

The previous chapter discussed a universum based technique for class imbalance

learning. Universum selection depends on the type of problem. Therefore, we present

techniques for applying universum based algorithms on problems such as detection

of diseases. In this chapter, we present two novel universum based techniques, and

apply on brain disorder datasets. Section 4.1 explains the proposed universum based

technique1 for detection of epilepsy, while section 4.2 presents a universum based

feature elimination algorithm2 for diagnosis of Alzheimer’s disease.

In the following section, we present a universum based technique for detection of

epilepsy using electroencephalogram (EEG) signals.

1B. Richhariya, M. Tanveer. EEG signal classification using universum support vector machine.
Expert Systems with Applications, Elsevier, 106:169-182, 2018, DOI: https://doi.org/10.1016/j.
eswa.2018.03.053.
[SCI Indexed Impact Factor: 6.954]

2B. Richhariya, M. Tanveer, A.H. Rashid, Alzheimer’s Disease Neuroimaging Initiative. Diag-
nosis of Alzheimer’s disease using universum support vector machine based recursive feature elim-
ination (USVM-RFE). Biomedical Signal Processing and Control, Elsevier, 59:101903, 2020, DOI:
https://doi.org/10.1016/j.bspc.2020.101903.
[SCI Indexed Impact Factor: 3.880]

101

https://doi.org/10.1016/j.eswa.2018.03.053
https://doi.org/10.1016/j.eswa.2018.03.053
https://doi.org/10.1016/j.bspc.2020.101903


4.1 EEG signal classification using universum sup-

port vector machine

The major challenge with universum based approach is the proper selection of

universum data points. In digit classification problem [10], the universum data is

selected based on similarity of digits. For example, digit ‘3’ is chosen as universum for

classifying ‘5’ and ‘8’ since its shape is similar to both ‘5’ and ‘8’. Chapelle et al. [19]

presented an analysis for the selection of proper universum data. Universum samples

are generated for classification of faces [188] using the random averaging approach,

where the average of the pixels of two faces is used as the universum. An in-between-

universum (IBU) approach is also proposed [189] for the proper selection of universum.

The practical conditions for choosing the universum data are given in [190, 191]. To

reduce the training time of TWSVM, twin support vector machine (TWSVM) [12]

was proposed where two quadratic programming problems (QPPs) of smaller size are

solved to obtain the classifier. For the classification of seizure EEG signals, for the

first time TWSVM is used in this work. Qi et al. [27] proposed a universum twin

support vector machine (UTSVM) to reduce the computational complexity of USVM

and used the random averaging approach for universum selection. Xu et al. [71] also

used the random averaging scheme for selecting the universum data. Since the random

averaging approach suffers from the effect of outliers, the method of generation of

universum data depends solely on the type of application and is currently an area of

research.

Motivated by the work on universum support vector machine in [22, 56, 57], we

propose a novel approach of selecting the universum in the classification of EEG signals

for seizure detection. Since universum based support vector machines have not been

used for the classification of EEG signals, we also present an application of USVM

and UTSVM for EEG signals. For the classification of EEG signals in the healthy

and seizure (ictal) classes, the interictal EEG signals are chosen as the universum,

which corresponds to the EEG recording for the time period in between the seizures

in a patient with epilepsy. The proposed approach of EEG classification is tested for
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Figure 4.1: Distribution of data points of set Z set as healthy control, S as seizure
using PCA up to 3 principal components in (a) for proposed method i.e., using set
N (seizure free) data points as universum and in (b) random averaging is used for
generating the universum.

different datasets that are generated using various feature extraction techniques, and

the results are compared with existing methods.

4.1.1 Proposed approach using universum

In many classification approaches for EEG signals, the prior information about the

distribution of EEG data is not utilized. Due to this, the classification techniques are

not able to give better generalization performance, even with the most efficient feature

extraction technique. The universum based approach gives some prior information in

the construction of the classifier. So, we used a universum based approach with support

vector machine to classify the EEG signals. Further, in the datasets generated from

the EEG signals, many data points behave as outliers, especially in case of seizure

signal as shown in Figs. 4.1 and 4.2. Consequently, the traditional approach of

universum based support vector machine based on random averaging [27,71] is not so

efficient in giving the prior information. The outlier data points affect the generation

of the universum points in the random averaging approach, which leads to incorrect

classification.
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Figure 4.2: Distribution of data points of set Z as healthy control, S as seizure using
ICA up to 3 principal components (PCs) in (a) the proposed approach using seizure
free data points as universum and (b) universum data points generated using random
averaging.

The proposed approach of universum support vector machine (USVM) selects the

universum points from the EEG dataset itself. We take the interictal or seizure free

signals from the EEG dataset [192] as the universum. Since the variation of the

signal in the seizure free state comes in between the variation of healthy and seizure

EEG signals, this gives the required prior information to the support vector machine

classifier in an effective manner. Moreover, there are no outliers in the universum data

since our universum data is not generated from the training data and thus there is no

effect of noise. A comparison of the proposed approach with the traditional random

averaging scheme is illustrated in Figs. 4.1 and 4.2, where the universum data points

of the proposed approach lie in between the two classes.

Further, we use the proposed approach with universum twin support vector ma-

chine (UTSVM) which is a more efficient technique in terms of computational com-

plexity. A brief illustration of our methodology is given in Fig. 4.3.

The steps involved in the proposed approach for classification of EEG signals are

as follows:

(i). Choose a feature extraction technique and extract the features from the training
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Figure 4.3: Proposed approach using universum.

data consisting of healthy and seizure data points.

(ii). Extract the features from the universum points which are taken from seizure

free dataset.

(iii). Reduce the dimension of the feature vector using PCA [193] and class discrimi-

natory ratio (CDR) [194].

(iv). Train the model using training data with the universum.

(v). Test the model using testing data, step (iii) and the classifier.
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In this work, different feature extraction techniques are used to extract the ap-

propriate features from the datasets such as principal component analysis (PCA),

independent component analysis (ICA) and wavelet transform with different families

of wavelet such as db1, db2, db4, db6 and Haar wavelet.

4.1.2 Experimental results

In this section, numerical experiments are performed for the classification of EEG

signals of healthy and seizure states. The EEG dataset used in this work is available

online [192]. The dataset consists of five sets viz. Z, O, N, F and S. Each set con-

tains 100 single-channel EEG signals sampled at a sampling rate of 173.61 Hz and of

23.6 seconds duration. The sets Z and O are surface EEG recordings of five healthy

volunteers with eyes open and closed respectively. The sets N and F are recordings

of five patients in the interictal state and the region of recording is the hippocampal

formation of the opposite hemisphere of the brain in N and the epileptogenic zone in

F. The set S is for the ictal state consisting of seizure recordings from all the recording

sites exhibiting ictal activity. The mode of EEG recording is intra-cranial for N, F

and S. For all the EEG signals, same 128-channel amplifier system is used with an

average common reference.

In the numerical experiments, the training and testing set consists of 50 samples

each, chosen from the sets Z, O and S each containing 100 samples. In the pro-

posed approach, the universum is chosen from the set N which contains the interictal

EEG signals. For feature extraction, various techniques are applied including princi-

pal component analysis (PCA), independent component analysis (ICA) and wavelet

transform. In case of wavelet transform, several families of wavelets are applied with

different levels of decomposition as used in the available literature. Discrete wavelet

transform (DWT) is implemented using different families of wavelet on specific lev-

els of decomposition. The set of the approximation and decomposition coefficients is

taken as the feature vector. The level of decomposition is set at level-3 for Daubechies

wavelet- db2, db4, and Haar wavelet. For db1 and db6 wavelets, we used level-2 de-

composition. In case of ICA and wavelet transform, PCA is applied for the dimension
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reduction. The implementation of ICA is same as in [194] (ICA Architecture1). The

class discriminatory ratio (CDR) is used to sort the PCA components and to choose

the most relevant PCA components. To check the effectiveness, the results of the

proposed method for universum are compared with SVM, LSSVM, and USVM with

random averaging scheme [27, 71]. In case of UTSVM, we made a comparison with

TWSVM and UTSVM with random averaging.

The range of penalty parameter is same as in section 3.1.5 for all the algorithms.

For USVM, proposed USVM, UTSVM and proposed UTSVM, the number of univer-

sum samples i.e. u is taken from the set {10, 20, 30, 40} and ε is chosen by varying

values from the set {0.1, 0.2, . . . , 0.7}. For the selection of the optimal parameters, 5-

fold cross-validation is used. In the proposed approaches, universum is selected from

the set N of the EEG database and for the existing universum methods random aver-

aging is used for generating the universum data. RBF kernel is used in all the cases,

and the value of µ is calculated as per the following formula [195] in all the methods,

µ =
1

N2

N∑
i,j=1

‖xi − xj‖2, (4.1)

where xi, xj represent each data point, and N is the total number of data points.

For all the datasets, the number of attributes are decided on the basis of two

factors, (a) variance accounted for [193], and (b) class discriminatory ratio (CDR).

The approach of calculating CDR of components is taken from [194] as

r =
σbetween
σwithin

, (4.2)

where σbetween =
C∑
i=1

(xi − x)2 is the variance of C class means, x is mean of all samples,

and σwithin =
C∑
i=1

C∑
j=1

(xij − xj)2 is sum of the within class variance of all the C classes.

The plots for variance and CDR are shown in Figs. 4.4 and 4.5 for Z & S dataset

using PCA and ICA respectively. In Fig. 4.6, the generalization performance of the

proposed approach for UTSVM is compared with random averaging approach for Z &
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S and O & S using PCA, O & S using ICA, and O & S using wavelet feature extraction

technique. The accuracy is shown for different number of universum points. In Fig.

4.6, it can be seen that in all cases the proposed approach is giving higher accuracy

in comparison to the traditional approach. Also the effect of outliers is clearly visible

in Figs. 4.6(c) and 4.6(d) for the random averaging approach, where the accuracy

decreases for some sets of universum. This justifies our selection of the universum.
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Figure 4.4: (a) Variance of data points (b) class discriminatory ratio vs. number of
PCA components for Z & S dataset using PCA feature extraction technique.
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Figure 4.5: Variance of data points (b) class discriminatory ratio vs number of PCA
components for Z & S dataset using ICA feature extraction technique.
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Figure 4.6: Performance comparison of proposed approach for UTSVM with the ran-
dom averaging method on (a) Z & S using PCA, (b) O & S using PCA, (c) O & S
using ICA and (d) O & S using wavelet (db4) feature extraction technique.

The results for all the proposed and baseline methods are shown in terms of pre-

diction accuracy and training time in Table 4.1 and Table 4.2. One can observe from

Table 4.1 that the proposed approach outperforms USVM with random averaging,

LSSVM and SVM in terms of accuracy. It can be observed in Table 4.1 that LSSVM

performs better than SVM and USVM.

From Table 4.2, it is evident that the proposed approach is showing better general-

ization performance for almost all the datasets as compared to TWSVM and UTSVM.

In terms of training time, the proposed approach is comparable with respect to the
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Table 4.1: Performance comparison of proposed USVM with SVM, LSSVM and USVM
for classification of seizure and healthy EEG signals using RBF kernel.

Dataset
(Train size, Test size)

Feature extraction
method

SVM
Accuracy(%)

(c, µ)
Time (s)

LSSVM
Accuracy(%)

(c, µ)
Time (s)

USVM
Accuracy(%)

(c, µ, ε, u)
Time (s)

Proposed USVM
Accuracy(%)

(c, µ, ε, u)
Time (s)

Z & S
(100× 50, 100× 50)

PCA
69

(102, 21180.7)
0.09954

73
(105, 21180.7)

0.03017

69
(102, 21180.7, 0.2, 15)

0.17169

77
(103, 21180.7, 0.3, 15)

0.16816

Z & S
(100× 15, 100× 15)

ICA
80

(103, 69.919)
0.09963

79
(104, 69.919)

0.02733

81
(103, 69.919, 0.2, 10)

0.14142

79
(102, 69.919, 0.1, 10)

0.13958

Z & S
(100× 50, 100× 50)

Wavelet (db4)
69

(102, 21415.9)
0.09859

73
(105, 21415.9)

0.02984

69
(102, 21415.9, 0.1, 10)

0.14816

76
(104, 21415.9, 0.3, 10)

0.14314

Z & S
(100× 50, 100× 50)

Wavelet (Haar)
69

(102, 21196.3)
0.10009

72
(104, 21196.3)

0.0295

69
(103, 21196.3, 0.2, 30)

0.25236

84
(104, 21196.3, 0.7, 30)

0.25148

Z & S
(100× 50, 100× 50)

Wavelet (db2)
69

(102, 21315.9)
0.10182

73
(105, 21315.9)

0.02925

69
(102, 21315.9, 0.1, 10)

0.14347

76
(104, 21315.9, 0.5, 10)

0.14183

Z & S
(100× 50, 100× 50)

Wavelet (db6)
69

(102, 21503.3)
0.09742

71
(102, 21503.3)

0.03005

69
(102, 21503.3, 0.1, 10)

0.14553

77
(104, 21503.3, 0.5, 10)

0.14177

Z & S
(100× 50, 100× 50)

Wavelet (db1)
69

(102, 20956.4)
0.09981

74
(105, 20956.4)

0.031

69
(102, 20956.4, 0.1, 10)

0.14285

78
(104, 20956.4, 0.1, 10)

0.14328

O & S
(100× 50, 100× 50)

PCA
72

(101, 20400)
0.10182

69
(102, 20400)

0.02975

67
(103, 20400, 0.1, 40)

0.32457

75
(101, 20400, 0.3, 40)

0.30981

O & S
(100× 50, 100× 50)

ICA
72

(102, 105.268)
0.10174

74
(105, 105.268)

0.03955

72
(103, 105.268, 0.3, 20)

0.2129

76
(102, 105.268, 0.6, 20)

0.18707

O & S
(100× 30, 100× 30)

Wavelet (db4)
71

(101, 20139.2)
0.09831

71
(101, 20139.2)

0.0284

70
(102, 20139.2, 0.1, 40)

0.32568

75
(101, 20139.2, 0.3, 40)

0.31293

O & S
(100× 50, 100× 50)

Wavelet (Haar)
70

(102, 19800.4)
0.10273

70
(102, 19800.4)

0.04194

69
(103, 19800.4, 0.2, 40)

0.32389

75
(101, 19800.4, 0.3, 40)

0.31326

O & S
(100× 50, 100× 50)

Wavelet (db2)
68

(102, 20074.4)
0.09935

69
(102, 20074.4)

0.03094

67
(102, 20074.4, 0.1, 40)

0.31621

75
(101, 20074.4, 0.3, 40)

0.31399

O & S
(100× 50, 100× 50)

Wavelet (db6)
69

(101, 19984.8)
0.09922

70
(102, 19984.8)

0.02976

69
(102, 19984.8, 0.1, 40)

0.31894

77
(100, 19984.8, 0.1, 40)

0.31528

O & S
(100× 50, 100× 50)

Wavelet (db1)
71

(101, 20412.5)
0.10013

69
(102, 20412.5)

0.03019

68
(102, 20412.5, 0.3, 40)

0.32286

76
(100, 20412.5, 0.1, 40)

0.31789

Average accuracy 70.5 71.9286 69.7857 76.8571

Average rank 3 2.3214 3.5 1.1786
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Table 4.2: Performance comparison of proposed UTSVM with TWSVM and UTSVM
for classification of seizure and healthy EEG signals using RBF kernel.

Dataset
(Train size, Test size)

Feature extraction
method

TWSVM
Accuracy(%)

(c, µ)
Time (s)

UTSVM
Accuracy(%)

(c, µ, ε, u)
Time (s)

Proposed UTSVM
Accuracy(%)

(c, µ, ε, u)
Time (s)

Z & S
(100× 50, 100× 50)

PCA
82

(10−5, 21180.7)
0.0191

89
(100, 21180.7, 0.7, 30)

0.02529

90
(101, 21180.7, 0.1, 30)

0.02599

Z & S
(100× 15, 100× 15)

ICA
94

(100, 69.919)
0.01607

95
(10−2, 69.919, 0.6, 10)

0.01804

99
(10−5, 69.919, 0.1, 10)

0.01756

Z & S
(100× 50, 100× 50)

Wavelet (db4)
82

(10−5, 21415.9)
0.01805

78
(101, 21415.9, 0.3, 30)

0.02533

91
(101, 21415.9, 0.1, 30)

0.02509

Z & S
(100× 50, 100× 50)

Wavelet (Haar)
79

(10−5, 21196.3)
0.01819

80
(100, 21196.3, 0.6, 20)

0.02217

88
(101, 21196.3, 0.1, 20)

0.02255

Z & S
(100× 50, 100× 50)

Wavelet (db2)
82

(10−5, 21315.9)
0.01854

89
(100, 21315.9, 0.7, 30)

0.02468

90
(101, 21315.9, 0.1, 30)

0.0251

Z & S
(100× 50, 100× 50)

Wavelet (db6)
80

(10−5, 21503.3)
0.01813

81
(100, 21503.3, 0.7, 20)

0.022

87
(101, 21503.3, 0.1, 20)

0.02306

Z & S
(100× 50, 100× 50)

Wavelet (db1)
80

(10−5, 20956.4)
0.01832

89
(100, 20956.4, 0.7, 30)

0.02431

88
(101, 20956.4, 0.1, 30)

0.0256

O & S
(100× 50, 100× 50)

PCA
79

(10−4, 20400)
0.01826

80
(10−4, 20400, 0.6, 40)

0.02571

84
(10−2, 20400, 0.6, 40)

0.02601

O & S
(100× 50, 100× 50)

ICA
94

(100, 105.268)
0.01699

90
(10−1, 105.268, 0.6, 10)

0.01823

95
(10−1, 105.268, 0.1, 10)

0.01942

O & S
(100× 30, 100× 30)

Wavelet (db4)
84

(10−3, 20139.2)
0.01822

78
(100, 20139.2, 0.2, 20)

0.02271

84
(10−3, 20139.2, 0.1, 20)

0.02236

O & S
(100× 50, 100× 50)

Wavelet (Haar)
82

(10−3, 19800.4)
0.01874

79
(100, 19800.4, 0.3, 10)

0.02041

82
(10−3, 19800.4, 0.1, 10)

0.01991

O & S
(100× 50, 100× 50)

Wavelet (db2)
83

(10−3, 20074.4)
0.01829

78
(10−1, 20074.4, 0.5, 10)

0.02005

83
(10−3, 20074.4, 0.1, 10)

0.02022

O & S
(100× 50, 100× 50)

Wavelet (db6)
80

(10−4, 19984.8)
0.02598

77
(100, 19984.8, 0.3, 40)

0.02778

85
(10−2, 19984.8, 0.7, 40)

0.02615

O & S
(100× 50, 100× 50)

Wavelet (db1)
84

(10−3, 20412.5)
0.01862

79
(10−1, 20412.5, 0.5, 10)

0.02023

84
(10−3, 20412.5, 0.1, 10)

0.02013

Average accuracy 83.2143 83 87.8571

Average rank 2.3571 2.4286 1.2143
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existing universum based methods. It is also noticeable from Table 4.1 and 4.2 that

the universum based approaches take more computation time as compared to tradi-

tional algorithms such as SVM, LSSVM and TWSVM. This additional time is due to

the incorporation of universum data points which can be traded for the generalization

performance. LSSVM takes very less computation time since it solves a system of

linear equations. It is noticeable in Table 4.1 and 4.2 that the existing universum

based approaches viz. USVM and UTSVM which use random averaging for univer-

sum have not performed better than the other algorithms. This is because the seizure

data contains noisy data points, and thus the generated universum data do not reflect

the distribution of data. On the other hand, the proposed approach of selecting the

universum from interictal EEG signals gives better accuracy in most of the datasets.

It is due to the removal of noise in the universum data. This justifies the applicability

of the proposed method for classification of seizure and healthy EEG signals.

One can notice from Table 4.1 that the proposed approach has not performed better

for all the datasets. So, we analyze the comparative performance of the proposed

approach with the existing approaches. The average ranks of SVM, LSSVM, USVM

and proposed USVM on the basis of accuracy is also shown in Table 4.1. One can

notice that the average rank of the proposed USVM is lowest among all the methods.

We perform the Friedman test with the corresponding post-hoc test [172] for the

statistical comparison of the performance of the 4 algorithms using 14 datasets. We

assume all the methods are equivalent under null hypothesis. By applying formula

(2.54), we get the value of χ2
F = 25.4352.

The FF value is calculated as

FF =
(14− 1)(25.4352)

14× (4− 1)− 25.4352
= 19.9615.

where for 4 methods and 14 datasets, the F -distribution has
(
4−1, (4−1)(14−1)

)
=

(3, 39) degrees of freedom. For the significance level at α = 0.05, the critical value of

F (3, 39) is 2.8451. Since FF = 19.9615 > 2.8451, we reject the null hypothesis.

To check the pairwise difference between the proposed and existing algorithms,
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we use the Nemenyi posthoc test using Eq. (2.56). For significant pairwise difference

between the methods at significance level of α = 0.10, the average ranks of the methods

shown in Table should differ by atleast 2.291
√

4(4+1)
6×14

= 1.1179. The proposed USVM

is significantly different from SVM, LSSVM and USVM algorithms.

The accuracy values are shown with the training time for the proposed UTSVM

with TWSVM and UTSVM in Table 4.2. One can observe that the proposed UTSVM

has shown better generalization performance in most of the cases. Table 4.2 shows

the average ranks of TWSVM, UTSVM and proposed UTSVM based on accuracy

values. The proposed UTSVM has the lowest rank among all the methods. We

further performed the Friedman statistics with the corresponding post-hoc test to find

the significant difference between TWSVM, UTSVM and proposed UTSVM.

The Friedman statistic is computed using Table 4.2 under null hypothesis. Similar

to proposed USVM, χ2
F is calculated as 12.9996. In this case, the FF value for the

F -distribution with
(
4 − 1, (3 − 1)(14 − 1)

)
= (2, 26) degrees of freedom is 11.266.

For the significance level at α = 0.05, the critical value of F (2, 26) is 3.3690. Since

FF = 11.266 > 3.3690, we reject the null hypothesis. The proposed UTSVM is

significantly different from TWSVM and UTSVM. It is noticeable from Table 4.1

and 4.2 that the proposed UTSVM is showing highest generalization performance as

compared to the existing methods. The highest accuracy for Z & S is obtained as

99% in the case of ICA feature extraction with the proposed UTSVM. For O & S, the

highest accuracy is found with ICA feature extraction technique using the proposed

UTSVM.

Fig. 4.7 illustrates the accuracy comparison of different algorithms for the classifi-

cation of seizure and non-seizure data using different feature extraction techniques. In

Fig. 4.8, the insensitivity performance of the proposed approach of USVM is shown

for the parameters and C and ε. It can be observed that the proposed USVM gives

high accuracy for higher values of C and ε. The insensitivity performance of the pro-

posed approach with UTSVM is shown in Fig. 4.9. It is evident from Fig. 4.9 that

the proposed UTSVM gives better generalization performance for lesser values of C

and ε.
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Figure 4.7: Accuracy comparison for classification of EEG signals using different algo-
rithms with RBF kernel. SVM based algorithms for classification on (a) Z & S and (b)
O & S datasets, and TWSVM based algorithms on (c) Z & S and (d) O & S datasets
using different feature extraction techniques.
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(a) Z & S with Haar
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Figure 4.8: Insensitivity performance of proposed USVM for classification of seizure
and healthy EEG signals to the user specified parameters (c, ε) using RBF kernel.
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Figure 4.9: Insensitivity performance of proposed UTSVM for classification of seizure
and healthy EEG signals to the user specified parameters (c, ε) using RBF kernel.
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In the following section, we present a feature selection algorithm based on uni-

versum support vector machine with application on another brain disorder i.e.,

Alzheimer’s disease.

4.2 Diagnosis of Alzheimer’s disease using univer-

sum support vector machine based recursive

feature elimination (USVM-RFE)

Alzheimer’s disease is one of the most common causes of death in today’s world.

Magnetic resonance imaging (MRI) provides an efficient and non-invasive approach

for diagnosis of Alzheimer’s disease. Efficient feature extraction techniques are needed

for accurate classification of MRI images. Motivated by the work on support vector

machine based recursive feature elimination (SVM-RFE) (Guyon et al., 2002 [1]), we

propose a novel feature selection technique to incorporate prior information about data

distribution in the recursive feature elimination process. In the subsequent sections,

first we describe the data and the feature extraction methods, followed by formulation

of the proposed algorithm with analysis of the results.

4.2.1 Data

All data used in this work were obtained from the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in the year

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,

MD. The main objective of ADNI is to analyze the effectiveness of neuroimaging tech-

niques like magnetic resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical neuropsychological tests to estimate the onset of

Alzheimer’s disease from the state of mild cognitive impairment. For more informa-

tion, visit www.adni-info.org.
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4.2.2 Image acquisition

A total of 150 T1-weighted structural MRI (sMRI) images are downloaded from

ADNI database. Each of the categories i.e., CN, MCI, and AD comprises of 50 sub-

jects. The subjects are within the age range of 60-90 with mean age of 75.83, and

standard deviation of 6.07. The Mini-Mental State Examination (MMSE) score of

subjects is in the range of 17-30 with mean and standard deviation of 26.51±2.88.

The detailed demographics of cohort are given in Table 4.3.

Images of the following specifications are acquired from the ADNI archive:

field strength=1.5 T; description=MP-RAGE; acquisition=3D; pulse sequence= RM;

slice thickness=1.2 mm; flip angle=8 degrees; acquisition plane=sagittal, manufac-

turer=GE medical systems.

Diagnosis Age Gender MMSE

CN 76.65 ± 4.30 39M/11F 29.02 ± 1.15
MCI 75.23 ± 7.02 26M/24F 26.9 ± 1.96
AD 75.60 ± 6.58 28M/22F 23.62 ± 2.24

Table 4.3: Subject demographics.

We also downloaded 817 sMRI images from the ADNI baseline dataset [196, 197]

to verify the applicability of the proposed method.

4.2.3 Voxel based morphometry (VBM)

A frequently used neuroimaging toolbox i.e., Statistical Parametric Mapping

(SPM) version 12 (Wellcome Trust Centre for Neuroimaging, University College Lon-

don, U.K.) is used to perform the VBM analysis. The preprocessed data is used for

three different binary classification tasks i.e., CN vs AD, CN vs MCI, and MCI vs

AD. The scans from each subject category were randomly divided into training and

testing sets of 40 and 10 images respectively.

All raw images are aligned in the same coordinate space by setting the origin of

the raw scans manually to the anterior commissure (AC), and registering with SPM’s

single subject T1 template. The registered images are processed by SPM’s unified
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segmentation routine to segment the images into GM, WM and CSF, and create

the template using DARTEL [198] approach. This template is used to normalize

the images into the Montreal Neurological Institute (MNI) space with modulation.

A Gaussian kernel with full width at half maximum (FWHM) of 8 mm is used for

smoothing. All the images are transformed to a dimension of 121× 145× 121 with a

voxel size of 1.5 mm3.

A two sample T-test is used for finding the statistically significant voxels by keep-

ing subject age and gender as covariates in the general linear model (GLM) [199].

The differences of individual head sizes are controlled by introducing total intracra-

nial volume (TIV) as a covariate of no interest [200] using the analysis of covariance

(ANCOVA)-by-subject approach. The T -test analysis is done by using a p-value of

0.05 with family-wise error (FWE) correction, and an extent threshold of 0 adjacent

voxels. The complete approach is shown in Fig. 4.10, and the specified GLM is given

in Fig. 4.11. The voxels of interest (VOI) retrieved after statistical analysis of train-

ing images are used as masks for specifying voxel coordinates that are significantly

different between subject groups [98]. Figs. 4.12 and 4.13 show significant voxels of

CN vs AD, and CN vs MCI analysis respectively.

In some previous works [201, 202], all the acquired MRI images were used for

creating DARTEL template. In this work, we use DARTEL pipeline for training and

testing phase separately. This procedure is followed in all the cases i.e., CN vs AD,

CN vs MCI, and MCI vs AD with different features i.e., GM, WM, and CSF. As

a whole, the DARTEL approach is used on 18 sets of data (9 training, 9 testing),

leading to distinct subject specific templates for training and testing. This is as per

real world scenarios where testing images are not available beforehand. The mask

from the training set is applied on the testing images for feature extraction [98].

After extracting significant voxel features from the masked images using SPM, we

applied PCA [98] and F -score [203] technique for dimensionality reduction and feature

selection respectively. The F -score is calculated for all the features using ratio of the

variance between the classes and within the classes.
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Figure 4.10: VBM image preprocessing pipeline.

Figure 4.11: GLM design matrix for statistical analysis of gray matter in CN (Group1)
vs AD (Group2).
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(a) GM (b) WM (c) CSF

Figure 4.12: Plot showing significant voxels obtained from VBM analysis for CN vs
AD. 3D illustrations (top) are shown for VOI in the MRI images (bottom).

(a) GM (b) CSF

Figure 4.13: Plot showing significant voxels obtained from VBM analysis for CN vs
MCI. 3D illustrations (top) are shown for VOI in the MRI images (bottom).
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4.2.4 Volume based morphometry (VolBM)

For VolBM analysis, Freesurfer’s recon-all pipeline (version 6.0.1) [204,205] is used

on structural MRI images. Out of 150 MRI images, 1 MCI image failed to process

in Freesurfer. So, feature selection was performed on 149 images. We extracted 23

subcortical tissue volumes (SCV), 34 WM tissue volumes (WMV), and 34 cortical

thickness (CT) measures of every subject. To check the performance of the proposed

model on an independent dataset, we downloaded 817 sMRI images from ADNI base-

line dataset [196, 197], out of which 4 images failed to process through Freesurfer

pipeline. Thus, our baseline dataset includes 228 CN, 398 MCI, and 187 AD images.

Thickness measures from both the brain hemispheres are added together to form

the cortical thickness features. A similar approach is used for volumetric features.

The volumetric features are normalized by dividing by TIV of the subjects [204,206].

The variations in neurological features of the subjects are illustrated in Fig. 4.14, and

the complete list of features obtained from Freesurfer is given in Table 4.4.

4.2.5 Proposed universum support vector machine based re-

cursive feature elimination (USVM-RFE)

The SVM-RFE algorithm lacks the knowledge about the distribution of data.

Moreover, in the recursive process, the SVM classifier eliminates features on the basis

of weights for the maximal margin. In order to incorporate knowledge about the data

distribution, we use universum samples as shown in Fig. 1.2. The resulting universum

based algorithm uses this prior information about distribution of data in the recursive

elimination of features leading to better feature selection.

4.2.5.1 Universum data

The universum data is used to align the classifier with the data distribution. As

shown in Fig. 1.2, the classifier generated by USVM is better aligned to classify the

data points. This helps in the classification of testing data. Without this knowledge

of the data distribution, the SVM classifier only tries to maximize the margin. This
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Table 4.4: Cortical, subcortical, and white matter features with their feature IDs
obtained from VolBM analysis.

Feature ID Cortical thickness Feature ID Subcortical volume Feature ID White matter volume

1 Bankssts* 35 Third ventricle 58 WM caudal anterior cingulate*
2 Inferior temporal 36 Fourth ventricle 59 WM caudal middle frontal
3 Middle temporal 37 Brain stem 60 WM Bankssts
4 Superior temporal 38 Inferior lateral ventricle 61 WM inferior temporal
5 Temporal pole 39 Lateral ventricle 62 WM inferior parietal
6 Transverse temporal 40 Ventral DC* 63 WM middle temporal
7 Caudal anterior cingulate 41 CSF 64 WM superior temporal
8 Caudal middle frontal 42 CC posterior* 65 WM superior parietal
9 Cuneus 43 CC mid posterior 66 WM superior frontal
10 Precuneus 44 CC central 67 WM temporal pole
11 Entorhinal 45 CC mid anterior 68 WM transverse temporal
12 Fusiform 46 CC anterior 69 WM cuneus
13 Inferior parietal 47 Accumbens area 70 WM precuneus
14 Superior parietal 48 Amygdala 71 WM entorhinal
15 Isthmus cingulate 49 Caudate 72 WM fusiform
16 Lateral occipital 50 Cerebellum white matter 73 WM isthmus cingulate
17 Lateral orbitofrontal 51 Cerebellum cortex 74 WM lateral occipital
18 Medial orbitofrontal 52 Cerebral white matter 75 WM lateral orbitofrontal
19 Lingual 53 Hippocampus 76 WM medial orbitofrontal
20 Parahippocampal 54 Putamen 77 WM lingual
21 Paracentral 55 Pallidum 78 WM parahippocampal
22 Pars opercularis 56 Thalamus proper 79 WM paracentral
23 Pars triangularis 57 Cortex 80 WM postcentral
24 Peri calcarine 81 WM precentral
25 Post central 82 WM pars opercularis
26 Posterior cingulate 83 WM pars triangularis
27 Precentral 84 WM pericalcarine
28 Pars orbitalis 85 WM pars orbitalis
29 Rostral middle frontal 86 WM posterior cingulate
30 Rostral anterior cingulate 87 WM rostral middle frontal
31 Superior frontal 88 WM rostral anterior cingulate
32 Supramarginal 89 WM supra marginal
33 Frontal pole 90 WM frontal pole
34 Insula 91 WM insula thickness

* Bankssts: Banks of superior temporal sulcus, CC: Corpus callosum, WM: White matter, DC: Diencephalon.

results in reduced generalization performance of the model. In this work, we generated

universum samples using random averaging of data points [20,27].

4.2.5.2 Iterative procedure

In the proposed USVM-RFE, we use the universum data points in each iteration.

This results in selection of important features due to addition of universum constraints.

The universum data points are constrained to lie within an ε-insensitive tube as shown

in Fig. 1.2. Since USVM-RFE is a wrapper [207] method, the process of USVM-RFE is

divided into three phases: parameter selection, feature elimination, and classification.

The proposed universum based USVM-RFE algorithm is described in Alg. 4.1.

We used k-fold cross validation for selecting optimal parameters for feature elimi-

nation. Then, the features are eliminated in an iterative manner. Lastly, the classifi-

124



Algorithm 4.1 Proposed USVM-RFE

1: Inputs:
2: Training data
3: X = [x1, x2, ..., xl]

T

4: Class labels
5: Y = [y1, y2, ..., yl]

T

6:

7: Universum data
8: U = [u1, u2, ..., ur]

T

9:

10: Process:
11: Find optimal parameters for recursive process using k-fold cross validation
12: Feature set
13: S = [1, 2, ..., n]
14: Feature ranked list
15: R = [ ]
16:

17: REPEAT UNTIL S = [ ]
18: Feature selection
19: X = X(:, S)
20: U = U(:, S)
21: Train SVM classifier using parameters obtained in step 11
22: α = USVMtrain(X, Y, U)
23: Compute the weight vector with dimension of length(S)

24: w =
l+2r∑
i=1

αiyixi

25: Compute ranking criteria
26: Ci = (wi)

2, i = 1, 2, ..., length(S)
27: Find feature with smallest rank
28: f = argmin(C)
29: Update feature ranked list
30: R = [S(f), R]
31: Eliminate the feature with smallest rank
32: S = [1 : f − 1, f + 1 : length(S)]
33:

34: Output:
35: Feature ranked list R.
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cation is performed on each of the feature subsets. For computational efficiency, more

than one feature can be eliminated in one iteration in the proposed USVM-RFE. The

proposed USVM-RFE provides global information about data distribution as com-

pared to the greedy approach in SVM-RFE. However, proper selection of universum

is a topic of research [10,20].

The proposed universum based feature selection is useful for applications such as

classification of MRI images, where only few voxels corresponding to specific regions

are helpful in the classification. So, we present the application of USVM-RFE on clas-

sification of Alzheimer’s disease. For identifying brain regions with neurodegeneration,

feature selection is performed on VBM as well as VolBM features. USVM is trained on

the feature sets obtained after each iteration using k-fold cross validation, and tested

on testing data. The feature set with highest accuracy is selected as optimal.

4.2.6 Experimental results

The experiments are carried out on feature sets obtained from VBM as well as

VolBM analysis. For VBM, SPM version 12 is used, while for VolBM, Freesurfer

version 6.0.1 is used to process the images. The softwares used in generation of

2D and 3D brain overlays are: ITK Snap (v3.8.0-beta) [208], Paraview (v5.6.0)

[209], Mricron (www.nitrc.org/projects/mricron) and Mricrogl (v1.0.20180623)

(www.nitrc.org/projects/mricrogl). We used WFU PickAtlas (v3.0.5b) for se-

lecting ROIs from AAL atlas [210].

The image processing is carried out on a workstation with Windows 10 OS, 64-

bit, running on 2.30 GHz Intel R© Xeon processor, and 128 GB RAM. The optimal

parameters for the recursive process are obtained using 5-fold cross validation in all

datasets. Linear kernel is used in both SVM and USVM for feature extraction as well

as classification. The number of PCA components are chosen so as to account for 99%

of variance in the data. The number of F -score features is selected as 500. In all cases,

the features in training and testing data are normalized to a mean of 0 and standard

deviation of 1 using Z-score [206]. The parameter selection is performed based on the

following settings.
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4.2.6.1 Parameter settings

In some previous works, fixed value of c is chosen for feature selection [1, 117].

However, in this work we used different types of features with varying dimensions. So,

in all the VBM features viz., GM, WM, and CSF, grid search is used for obtaining

the optimal parameters. The values of penalty parameters c = cu are selected from

the range {10−6, 10−5, ..., 100} for SVM and USVM. This range is selected to avoid

overfitting of classifier [211] for high dimensional datasets. For USVM, number of

universum samples i.e., u is selected from the set {0.1, 0.2}, and ε is selected from

{0.3, 0.5, 0.7}.

In the RFE phase of VBM, the features are reduced by percentage (per) of feature

size for computational efficiency [1] using the following criteria:

REPEAT UNTIL (No of features ≥ ceil (0.01 ∗ Total feature))

{

No of features = per ∗No of features

if (No of features < ceil (0.1 ∗ Total feature))

per = 0.995;

else if(No of features < ceil (0.5 ∗ Total feature))

per = 0.99;

else (No of features < ceil (0.7 ∗ Total feature))

per = 0.98;

}

where ceil is the ceiling function.

In all VolBM feature sets i.e., CT, SCV, and WMV, c = cu is chosen from

{10−6, 10−5, ..., 104} in both feature selection and classification phase. For USVM,

for parameter selection, u is selected from the set {0.1, 0.3, 0.45}, and ε is selected

from {0.6, 0.7, 0.8}. In the classification phase, for features of different dimensions u

is selected from the set {0.1, 0.15, 0.35, 0.45}, and ε is selected from {0.3, 0.5, 0.6, 0.8}.

In the RFE process, the features are reduced one at a time, due to less size of VolBM

feature set.
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To check the performance of proposed USVM-RFE on other applications, we per-

formed experiments on two UCI [170] biomedical datasets i.e., Wpbc (Breast Cancer

Wisconsin Prognostic), and Wdbc (Breast Cancer Wisconsin Diagnostic). The pa-

rameters c, cu are selected by varying values from the set {10−5, 10−4, ..., 105} for SVM

and USVM. For USVM, the values for u and ε are set as 0.3 and 0.5 respectively.

Experimental results on classification of different subject groups i.e., CN, MCI, and

AD are shown for different features sets in the following subsections.

4.2.6.2 VBM features

We performed experiments on feature selection from VBM features obtained from

SPM toolbox for both SVM-RFE and proposed USVM-RFE.

I. CN vs AD:

The comparison of classification accuracy for CN vs AD is presented in Table

4.5 for GM, WM, and CSF features sets. It is observable that for GM features, the

proposed USVM-RFE outperforms SVM-RFE w.r.t. accuracy and sensitivity in all

the 7 reduced feature sets. This is a result of prior knowledge in USVM-RFE about

the data distribution. However, the accuracy of USVM-RFE reached a maximum of

90% for 20% features, and then declined in lower dimensional features due to loss of

informative voxels. For WM, both methods have similar performance. In case of CSF,

USVM-RFE performed better for lower dimensional feature set (1% features), while

SVM-RFE is having high accuracy for high dimensional feature set (50% features).

The classification accuracy of SVM and USVM for full feature sets of VBM is

shown in Table 4.6. The optimal parameters for RFE process are also shown. These

parameters are utilized to perform the feature elimination process. Moreover, Table

4.6 also shows the accuracies obtained after feature reduction by PCA, and F-score.

From Tables 4.5 and 4.6, one can observe that the proposed USVM-RFE performs

better than PCA and F-score in the feature selection.

II. CN vs MCI:

For CN vs MCI, the results for feature selection are shown in Table 4.7. It is
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Table 4.5: Performance comparison of proposed USVM-RFE with SVM-RFE based
on classification accuracy (%) for CN vs AD on reduced VBM feature sets. Bold
values indicate highest accuracy for the dataset, and underlined values show highest
accuracy of the algorithm.

Features (%)
Number of Proposed USVM-RFE SVM-RFE

features Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Gray matter
1 264 80 80 80 70 70 70
5 1323 75 90 60 70 70 70
10 2628 85 90 80 70 70 70
15 3952 85 90 80 75 60 90
20 5304 90 90 90 75 70 80
30 7953 90 90 90 80 80 80
50 13045 90 90 90 75 70 80

White matter
1 26 70 60 80 60 40 80
5 133 70 60 80 75 80 70
10 265 75 80 70 75 80 70
15 398 70 70 70 70 70 70
20 534 70 70 70 70 70 70
30 794 70 80 60 75 80 70
50 1333 70 70 70 70 80 60

CSF
1 18 70 50 90 65 40 90
5 90 65 40 90 65 40 90
10 180 65 40 90 65 40 90
15 269 65 40 90 65 40 90
20 359 65 40 90 65 40 90
30 535 60 40 80 60 40 80
50 895 65 50 80 75 80 70

Table 4.6: Performance comparison of USVM with SVM is shown based on classifi-
cation accuracy (%) for CN vs AD on VBM features. The optimal parameters are
shown in parentheses.

Features
Number of
features

USVM SVM
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

(c = cu, ε, u) (c)

Gray matter
All features 26524 85 90 80 70 80 60

(10−3, 0.3, 0.2) (10−6)
PCA 59 75 80 70 80 90 70

(100, 0.3, 0.2) (10−1)
F -score 500 70 70 70 70 70 70

(10−4, 0.5, 0.2) (10−4)

White matter
All features 2675 75 90 60 75 90 60

(10−5, 0.3, 0.2) (10−5)
PCA 26 60 40 80 65 50 80

(10−2, 0.3, 0.2) (10−1)
F -score 500 70 70 70 70 70 70

(10−4, 0.3, 0.2) (10−4)

CSF
All features 1802 70 60 80 75 70 80

(10−4, 0.3, 0.1) (10−4)
PCA 23 60 30 90 60 30 90

(100, 0.5, 0.1) (102)
F -score 500 60 40 80 60 40 80

(10−4, 0.5, 0.1) (10−4)
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Table 4.7: Performance comparison of proposed USVM-RFE with SVM-RFE is shown
based on classification accuracy (%) for CN vs MCI on reduced feature sets of VBM.

Features (%)
Number of Proposed USVM-RFE SVM-RFE

features Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Gray matter
1 64 70 80 60 65 70 60
5 322 75 90 60 70 80 60
10 647 70 80 60 70 80 60
15 969 70 80 60 75 90 60
20 1285 70 80 60 70 80 60
30 1925 70 80 60 70 80 60
50 3179 70 80 60 70 80 60

White matter
1 26 50 20 80 45 10 80
5 133 60 60 60 60 60 60
10 265 65 60 70 65 60 70
15 398 55 30 80 65 60 70
20 534 40 10 70 55 40 70
30 794 50 20 80 45 20 70
50 1333 55 30 80 45 10 80

CSF
1 14 90 100 80 80 100 60
5 70 85 100 70 85 100 70
10 140 85 100 70 80 100 60
15 212 80 100 60 85 100 70
20 281 80 100 60 85 100 70
30 424 85 90 80 85 100 70
50 700 85 100 70 80 100 60

visible that in case of GM, USVM-RFE gives accuracy of 75% with sensitivity of 90%

for lesser features i.e., 5%, as compared to SVM-RFE (15% features). However, for

CSF voxels, highest accuracy of 90% is obtained by proposed USVM-RFE for 1%

features, whereas SVM-RFE obtains lower accuracy (85%) with a higher feature size

(5%). In case of WM also, USVM-RFE has outperformed SVM-RFE in most cases.

Table 4.8 shows the classification results on full feature sets. One may notice that

USVM has performed better than SVM for full features on CSF features. SVM and

USVM have also shown lesser accuracies than PCA and F-score in some cases. This

may be attributed to overfitting of SVM and USVM for high dimensional feature

sets [211]. However, both algorithms have shown improvement on accuracy in the

RFE process.

III. MCI vs AD:

Table 4.9 shows the classification accuracies for MCI vs AD on reduced VBM

feature sets. One can notice that USVM-RFE performs better than SVM-RFE for

lower dimensional features of GM. In case of WM, SVM-RFE performed better than
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Table 4.8: Performance comparison of USVM with SVM is shown based on classifi-
cation accuracy (%) for CN vs MCI on VBM features. The optimal parameters are
shown in parentheses.

Features
Number of
features

USVM SVM
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

(c = cu, ε, u) (c)

Gray matter
All features 6478 70 80 60 70 80 60

(10−5, 0.3, 0.1) (10−4)
PCA 37 65 50 80 70 50 90

(101, 0.3, 0.2) (101)
F -score 500 75 90 60 70 80 60

(10−4, 0.7, 0.1) (10−3)

White matter
All features 2675 45 10 80 45 10 80

(10−3, 0.7, 0.1) (10−3)
PCA 28 55 10 100 55 10 100

(101, 0.3, 0.1) (101)
F -score 500 60 60 60 60 60 60

(10−3, 0.3, 0.1) (10−3)

CSF
All features 1416 85 100 70 80 90 70

(10−4, 0.3, 0.2) (10−4)
PCA 22 60 70 50 65 70 60

(101, 0.7, 0.1) (101)
F -score 500 75 80 70 85 100 70

(10−4, 0.3, 0.1) (10−3)

USVM-RFE. This may be attributed to improper universum data generated using

random averaging scheme. Since the MCI vs AD dataset is non-linear in nature,

random averaging may generate improper universum data. In case of CSF, both

SVM-RFE and USVM-RFE have shown low classification accuracy. However, USVM-

RFE has performed better in comparison to SVM-RFE. Moreover, Table 4.10 shows

the performance on the full feature set. It can be seen that USVM performs better

than SVM in most cases. Also, in Table 4.9 the classification accuracy of MCI vs

AD is low in both SVM-RFE and USVM-RFE. This is attributed to the relatively

difficult classification problem of MCI vs AD in comparison to CN vs AD, and CN vs

MCI. [98]. The discriminating regions in CN vs AD are more as compared to MCI vs

AD. This is due to similar distribution of data points in MCI and AD subjects [125].

Remark : No significant voxels were found in case of WM features of CN vs MCI,

and all cases of MCI vs AD. Thus, the masks obtained from CN vs AD experiments

were used to select region of interests (ROI) in these cases [98].

131



Table 4.9: Performance comparison of proposed USVM-RFE with SVM-RFE is shown
based on classification accuracy (%) for MCI vs AD on reduced feature sets of VBM.

Features (%)
Number of Proposed USVM-RFE SVM-RFE

features Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Gray matter
1 264 60 50 70 55 40 70
5 1323 65 60 70 55 40 70
10 2628 65 60 70 60 50 70
15 3952 60 50 70 60 50 70
20 5304 60 50 70 60 50 70
30 7953 55 50 60 60 50 70
50 13045 60 50 70 60 50 70

White matter
1 26 45 50 40 50 60 40
5 133 55 70 40 50 60 40
10 265 50 100 0 50 60 40
15 398 50 100 0 65 100 30
20 534 50 100 0 65 90 40
30 794 50 90 10 60 100 20
50 1333 55 90 20 65 90 40

CSF
1 18 45 0 90 35 40 30
5 90 40 0 80 40 40 40
10 180 45 0 90 40 50 30
15 269 45 0 90 45 60 30
20 359 40 0 80 45 70 20
30 535 50 40 60 45 70 20
50 895 55 50 60 45 50 40

Table 4.10: Performance comparison of USVM with SVM is shown based on classifi-
cation accuracy (%) for MCI vs AD on VBM features. The optimal parameters are
shown in parentheses.

Features
Number of
features

USVM SVM
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

(c = cu, ε, u) (c)

Gray matter
All features 26524 70 60 80 60 60 60

(10−6, 0.7, 0.2) (10−5)
PCA 60 50 30 70 50 30 70

(10−6, 0.5, 0.1) (10−2)
F -score 500 65 60 70 60 50 70

(10−4, 0.3, 0.1) (10−3)

White matter
All features 2675 55 70 40 65 90 40

(10−5, 0.3, 0.2) (10−3)
PCA 26 40 50 30 40 50 30

(100, 0.5, 0.2) (10−1)
F -score 500 40 80 0 50 100 0

(102, 0.3, 0.1) (100)

CSF
All features 1802 45 0 90 35 40 30

(10−1, 0.3, 0.2) (10−3)
PCA 24 35 10 60 35 10 60

(10−2, 0.3, 0.2) (100)
F -score 500 55 10 100 40 50 30

(101, 0.3, 0.2) (10−2)
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Table 4.11: Performance comparison of USVM with SVM is shown based on classi-
fication accuracy (%) for VolBM features. The optimal parameters for RFE process
using SVM and USVM are shown in parentheses.

Features
Number of
features

USVM SVM
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

(c = cu, ε, u) (c)

(a) CN vs AD
CT 34 75 50 100 75 50 100

(10−2, 0.7, 0.45) (10−2)
SCV 23 90 90 90 90 90 90

(10−2, 0.6, 0.1) (10−2)
WMV 34 50 50 50 40 30 50

(101, 0.6, 0.45) (102)
CT + SCV + WMV 91 85 70 100 80 60 100

(10−2, 0.6, 0.3) (10−2)

(b) CN vs MCI
CT 34 68.42 77.78 60 68.42 77.78 60

(10−2, 0.6, 0.1) (10−2)
SCV 23 78.95 88.89 70 78.95 88.89 70

(100, 0.8, 0.45) (100)
WMV 34 84.21 100 70 78.95 100 60

(100, 0.8, 0.3) (100)
CT + SCV + WMV 91 84.21 88.89 80 84.21 88.89 80

(100, 0.6, 0.1) (100)

(c) MCI vs AD
CT 34 57.89 40 77.78 57.89 30 88.89

(10−2, 0.6, 0.3) (10−2)
SCV 23 73.68 80 66.67 68.42 80 55.56

(10−2, 0.6, 0.45) (10−2)
WMV 34 63.16 60 66.67 57.89 40 77.78

(101, 0.6, 0.45) (10−1)
CT + SCV + WMV 91 63.16 50 77.78 63.16 50 77.78

(10−2, 0.6, 0.3) (10−2)

4.2.6.3 VolBM features

For comprehensive analysis of MRI data, VolBM analysis is also used in this work

for extracting features from the MRI images. Experiments are performed on volumet-

ric and thickness measures obtained from Freesurfer toolbox. Table 4.11 shows the

accuracy and optimal parameters of USVM and SVM on classification of CN vs AD,

CN vs MCI, and MCI vs AD on VolBM features. The set of all VolBM features i.e.,

CT, SCV, and WMV are used for feature selection. It is clearly visible from Table

4.11 that for all the VolBM features, USVM outperforms SVM in terms of accuracy.

The accuracy of USVM for CN vs AD classification for different feature sets of RFE

process is shown in Fig. 4.15. One can see that accuracy of proposed USVM-RFE is

better than SVM-RFE. Moreover, the variation in accuracy of proposed USVM-RFE

is less than SVM-RFE. This is the result of universum data, which helps the classifier

to follow the data distribution. The classification accuracy and F1 scores on reduced
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Figure 4.15: Comparison of classification accuracy of SVM-RFE and proposed USVM-
RFE on different feature sets in RFE of VolBM features for CN vs AD.
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Figure 4.16: Plot showing comparison of (a) accuracy, and (b) F1 score of SVM-RFE,
and proposed USVM-RFE for classification of CN vs AD using VolBM features.

VolBM features using optimal parameters are shown in Figs. 4.16, 4.17, and 4.18. One

may observe in Fig. 4.16 (a) that USVM-RFE achieves 100% accuracy in 5 feature

sets for CN vs AD, with lowest feature set having 5% of total features.

Also, the variation of accuracy looks similar in both algorithms with higher accu-

racy in proposed USVM-RFE. The F1 scores follow similar trend as accuracy in Fig.

4.16 (b). For CN vs MCI in Fig. 4.17 (a) proposed USVM-RFE achieves highest accu-

racy of 84.21% for 5% features, while SVM-RFE requires 100% features for achieving

the same accuracy. Fig. 4.17 (b) shows the corresponding F1 scores.

In case of MCI vs AD in Fig. 4.18, the accuracy of proposed USVM-RFE is not
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Figure 4.17: Plot showing comparison of (a) accuracy, and (b) F1 score of SVM-RFE,
and proposed USVM-RFE for classification of CN vs MCI using VolBM features.
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Figure 4.18: Plot showing comparison of (a) accuracy, and (b) F1 score of SVM-RFE,
and proposed USVM-RFE for classification of MCI vs AD using VolBM features.

better than SVM-RFE in all the cases. This is the result of non-linear nature of MCI

vs AD data shown in Fig. 4.19, leading to generation of improper universum data

not lying between the classes. However, the proposed USVM-RFE has shown highest

accuracy of 73.68% for MCI vs AD with 13% and 15% features. This is better than

SVM-RFE which achieved highest accuracy of 68.42% on 30% features.

We present a formula for calculating score for feature ranking in RFE based meth-
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Figure 4.19: Plot of first two PCA components in VolBM features of CN, MCI, and
AD classes.

ods. The feature score of the ith feature is calculated as per the following,

Score (i) =

f∑
j=1

(rlowest − rij), (4.3)

where rij is the rank of ith feature in jth feature set, rlowest is the lowest rank

value in largest feature set, and f is the total number of features. By using the

above mentioned formula, more weightage is given to features which survive up to the

smallest feature sets. A discussion on these scores is presented in section 4.2.7.2.

4.2.6.4 ADNI baseline dataset

In order to verify the comparative performance of the proposed USVM-RFE with

existing algorithms, we conducted experiments on ADNI baseline dataset [196, 197].

The VolBM features are used to compare the classification performance of the proposed

USVM-RFE with SVM-RFE and TWSVM-RFE.

The comparative performance of the proposed USVM-RFE for classification CN

vs AD is shown in Table 4.12. It is clearly observable that the proposed USVM-

RFE is performing better than existing algorithms in most of the feature sets. The

highest accuracy obtained by USVM-RFE is 89.2% with a sensitivity of 84.87% for

15% features.
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Table 4.12: Comparison of performance of the proposed USVM-RFE in terms of
accuracy (%) with existing algorithms on ADNI baseline dataset for CN vs AD using
VolBM features.

Tissue features (%)
Proposed USVM-RFE SVM-RFE TWSVM-RFE

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

CN vs AD
3 83.6 71.43 94.66 83.2 72.27 93.13 84 72.27 94.66
5 86.4 78.99 93.13 86.4 78.99 93.13 85.2 82.35 87.79
8 84.4 74.79 93.13 82.8 71.43 93.13 84.4 78.15 90.08
10 86.4 78.99 93.13 84.8 77.31 91.6 85.2 77.31 92.37
13 86.8 80.67 92.37 87.2 79.83 93.89 85.2 80.67 89.31
15 89.2 84.87 93.13 86.8 78.15 94.66 83.6 78.99 87.79
20 84.4 76.47 91.6 87.2 78.99 94.66 83.2 73.95 91.6
25 86.8 77.31 95.42 85.2 77.31 92.37 81.6 82.35 80.92
30 86.4 78.15 93.89 86.4 74.79 96.95 82 73.95 89.31
35 88.8 83.19 93.89 85.2 73.95 95.42 81.2 73.95 87.79
40 86.4 74.79 96.95 84.8 73.11 95.42 78.8 79.83 77.86
45 86.8 74.79 97.71 84.4 71.43 96.18 79.6 77.31 81.68
50 86 74.79 96.18 85.6 74.79 95.42 79.2 78.15 80.15

Table 4.13: Comparison of performance of the proposed USVM-RFE in terms of
accuracy (%) with existing algorithms on ADNI baseline dataset for CN vs MCI using
VolBM features.

Tissue features (%)
Proposed USVM-RFE SVM-RFE TWSVM-RFE

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

CN vs MCI
3 72.61 86.67 47.79 69.41 75.83 58.09 71.28 67.08 78.68
5 72.34 84.58 50.74 71.28 86.25 44.85 69.68 86.25 40.44
8 69.41 82.08 47.06 71.01 86.25 44.12 69.95 82.5 47.79
10 70.74 76.25 61.03 70.21 82.92 47.79 70.21 82.5 48.53
13 70.74 81.25 52.21 69.95 80.83 50.74 70.74 79.17 55.88
15 72.07 82.92 52.94 69.95 80 52.21 68.35 75.83 55.15
20 72.34 81.25 56.62 70.74 82.5 50 68.62 73.75 59.56
25 70.74 85.42 44.85 71.54 84.17 49.26 68.09 73.33 58.82
30 69.41 82.92 45.59 70.74 87.08 41.91 67.82 86.67 34.56
35 68.88 73.33 61.03 70.74 86.25 43.38 66.49 78.75 44.85
40 69.41 76.25 57.35 69.41 86.67 38.97 67.02 62.08 75.74
45 70.21 78.75 55.15 69.41 86.25 39.71 68.09 76.67 52.94
50 71.28 80.42 55.15 68.62 85.42 38.97 68.88 81.25 47.06

In case of CN vs MCI in Table 4.13, again the proposed USVM-RFE outperfomed

SVM-RFE and TWSVM-RFE in most of the feature sets. Moreover, the highest ac-

curacy of proposed USVM-RFE i.e. 72.61% is obtained for just 3% of total features.

Also, for MCI vs AD in Table 4.14, proposed USVM-RFE performed better than other

algorithms in many of the feature sets. However, the highest accuracy obtained by

proposed USVM-RFE is same as TWSVM-RFE i.e., 71.88%, but with higher sensi-

tivity. However, USVM-RFE is having higher accuracy than TWSVM-RFE in lesser

sized feature sets.

The results for the classification performance of USVM, SVM and TWSVM for all

the features are shown in Table 4.15. One can observe that USVM is performing better
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Table 4.14: Comparison of performance of the proposed USVM-RFE in terms of
accuracy (%) with existing algorithms on ADNI baseline dataset for MCI vs AD using
VolBM features.

Tissue features (%)
Proposed USVM-RFE SVM-RFE TWSVM-RFE

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

MCI vs AD
3 70.45 36.7 85.6 68.47 24.77 88.07 69.03 0 100
5 70.17 38.53 84.36 69.32 55.05 75.72 63.64 64.22 63.37
8 70.17 40.37 83.54 69.6 39.45 83.13 70.74 17.43 94.65
10 71.88 41.28 85.6 71.59 40.37 85.6 71.88 25.69 92.59
13 71.59 42.2 84.77 68.18 42.2 79.84 68.75 34.86 83.95
15 70.17 46.79 80.66 68.47 44.95 79.01 67.05 33.95 81.89
20 70.74 54.13 78.19 69.89 40.37 83.13 63.92 53.21 68.72
25 71.02 55.05 78.19 66.76 40.37 78.6 62.5 51.38 67.49
30 68.75 54.13 75.31 67.33 38.53 80.25 60.23 52.29 63.79
35 69.89 52.29 77.78 67.05 39.45 79.42 62.5 54.13 66.26
40 70.45 52.29 78.6 67.61 39.45 80.25 65.34 49.54 72.43
45 71.02 54.13 78.6 68.18 44.95 78.6 65.06 52.29 70.78
50 70.74 49.54 80.25 68.18 48.62 76.95 61.65 49.54 67.08

Table 4.15: Comparison of performance of USVM in terms of accuracy (%) with
existing algorithms on ADNI baseline dataset using all VolBM features.

Dataset
(Train size, Test size)

USVM SVM TWSVM
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

(c = cu, ε, u) (c) (c)

CN vs AD
(165× 91, 250× 91)

87.6
(10−2, 0.6, 0.3)

81.51 93.13
87.2

(10−2)
78.15 95.42

68
(10−1)

77.31 59.54

CN vs MCI
(250× 91, 376× 91)

70.21
(10−2, 0.8, 0.3)

81.25 50.74
68.35
(10−2)

83.75 41.18
63.83
(101)

68.75 55.15

MCI vs AD
(233× 91, 352× 91)

72.73
(10−2, 0.6, 0.3)

39.45 87.65
64.77
(100)

45.87 73.25
58.24
(10−6)

60.55 57.2

than the other algorithms for all the cases. This is due to the introduction of universum

samples, providing prior information about AD data. The optimal parameters used

in the RFE process are selected from Table 4.15.

4.2.6.5 UCI datasets

Experimental results on classification of cancer patients in Wpbc and Wdbc are

shown in Fig. 4.20. The optimal parameters for RFE process are shown in Table 4.16.

One can notice in Fig. 4.20(a) that the proposed USVM-RFE performs better than

SVM-RFE for lower dimensional feature sets. Also, it can be observed that USVM-

RFE recovers to 82.81% accuracy for 13% features immediately after a decline to

accuracy of 65.63%. This is better than SVM-RFE for the same feature sets. Similarly,

better performance is shown by USVM-RFE for Wdbc dataset in Fig. 4.20(b). The
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Figure 4.20: Plot showing comparison of classification accuracy of SVM-RFE, and
proposed USVM-RFE for (a) Wpbc, and (b) Wdbc datasets.

comparison of training time is shown in Table 4.16. It can be seen that USVM takes

more time than SVM. This is due to the inclusion of universum data. The addition

of universum data leads to better generalization performance. So, the training time is

a trade off for classification accuracy.

Table 4.16: Performance comparison of USVM with SVM is shown based on classifi-
cation accuracy (%) for UCI datasets.

Dataset
USVM SVM

(Train size, Test size)
Accuracy Accuracy
(c, cu, ε, u) (c)
Time (s) Time (s)

Wpbc 79.69 78.13
(130 × 33, 64 × 33) (10, 1, 0.5, 0.3) (1)

0.3644 0.1396

Wdbc 98.43 97.81

(250 × 30, 319 × 30) (0.01, 0.001, 0.5, 0.3) (1)
1.3505 0.5170

4.2.7 Discussion

In this section, we present the discussion on reduced features obtained from VBM

and VolBM analysis by SVM-RFE, and proposed USVM-RFE for CN vs AD, CN vs
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MCI, and MCI vs AD cases. The different regions of brain affected in Alzheimer’s

disease are illustrated in Fig. 4.21.

Amygdala

Fusiform gyrus

Hippocampus

Inferior parietal lobule

Temporal pole middle

Parahippocampal gyrus

Temporal pole superior

Figure 4.21: Regions of brain affected in Alzheimer’s disease (AAL atlas).

4.2.7.1 VBM feature selection

In case of CN vs AD, the proposed USVM-RFE has shown better classification

accuracy for less number of voxels as compared to SVM-RFE. The feature set with

least size and highest accuracy is illustrated in Fig. 4.22 for both the algorithms.

For SVM-RFE, the most overlapping GM regions with AAL atlas from Fig. 4.23

are: amygdala (left), amygdala (right), hippocampus (left), parahippocampal (left),

parahippocampal (right), and hippocampus (right). For proposed USVM-RFE, the

regions from Fig. 4.24 are: amygdala (left), hippocampus (left), parahippocampus

(left), parahippocampus (right), and temporal pole mid (left). This is in accordance

with previous studies [212].

For CN vs MCI, Fig. 4.25 shows the regions of increased CSF. The brain regions

proximal to area of increased CSF are given in Fig. 4.26 and 4.27 for SVM-RFE and

proposed USVM-RFE respectively. The regions selected by SVM-RFE are: cingulate

anterior (left), temporal pole mid (left), hippocampus (left), temporal pole superior

(right), and parahippocampal (right). For proposed USVM-RFE, the regions are:

cingulate anterior (left), temporal pole superior (right), temporal pole mid (left), tem-

poral pole mid (right), and parahippocampal (right). This is a result of atrophy in

the temporal regions [213]. The CSF volumes of our cohort also support this find-

ing. The mean and standard deviation of CSF volume (mm3) of CN, MCI, and AD
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(a) (b)

Figure 4.22: Illustration of reduced GM voxels (VBM) obtained after feature elimi-
nation process of (a) proposed USVM-RFE and (b) SVM-RFE for CN vs AD. The
variation of weights is shown using heat map.

are 1306.43±410.93, 1493.98±388.67 and 1652.78±634.80 respectively. This indicates

that CSF voxels are useful for classification of CN vs MCI. Moreover, the number

of CSF voxels selected by proposed USVM-RFE for highest accuracy are lesser than

SVM-RFE. This helps in localizing the regions with change in CSF volume.

In MCI vs AD, there is significant atrophy in the left temporal lobe as compared

to right in both SVM-RFE and USVM-RFE features as shown in Fig. 4.28. The

regions for voxels selected by SVM-RFE are: amygdala (left), parahippocampal (left),

fusiform (left), hippocampus (left), temporal pole superior (left), and temporal inferior

(left) (Refer Fig. 4.29 for details). Proposed USVM-RFE selected fewer voxels with

higher classification accuracy as compared to SVM-RFE. The corresponding regions

are: amygdala (left), parahippocampal (left), fusiform (left), temporal pole superior

(left), and hippocampus (left) (Refer Fig. 4.30). Moreover, voxels selected by pro-

posed USVM-RFE are mostly in the left side of brain. This is due to asymmetric

atrophy of left and right side of brain in AD [214, 215]. The variation of amygdala
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Figure 4.23: Reduced features obtained from SVM-RFE for CN vs AD with GM
(VBM) features.

and hippocampus volume in left and right side of brain in our cohort is shown in Fig.

4.31.

In most of the cases, GM features provided better accuracy due to significant

atrophy of GM regions in the brain [216]. Fig. 4.32 illustrates the variation of accu-

racy with feature set for SVM-RFE and proposed USVM-RFE using GM. It can be

seen that the proposed USVM-RFE selects features from all the regions of brain as

compared to SVM-RFE for CN vs AD.

This shows that SVM-RFE is having local information about the dataset in ev-

ery iteration, while proposed USVM-RFE has global information i.e., distribution of

data. Therefore, the selection of discriminative voxels from different regions of brain

is achieved by USVM-RFE. It can be deduced that for classification of Alzheimer’s

disease, optimal features are needed from different regions of the brain.
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Figure 4.24: Region of interest obtained from the proposed USVM-RFE for CN vs
AD with GM (VBM) features.
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(a) (b)

Figure 4.25: Illustration of reduced CSF voxels (VBM) obtained after feature elimi-
nation process of (a) proposed USVM-RFE and (b) SVM-RFE for CN vs MCI. The
variation of weights is shown using heat map.
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Figure 4.26: Region of interest obtained from SVM-RFE for CN vs MCI with CSF
(VBM) features.

Figure 4.27: Region of interest obtained from USVM-RFE for CN vs MCI with CSF
(VBM) features.

(a) (b)

Figure 4.28: Illustration of reduced GM voxels (VBM) obtained after feature elimi-
nation process of (a) proposed USVM-RFE and (b) SVM-RFE for MCI vs AD. The
variation of weights is shown using heat map.
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Figure 4.29: Region of interest obtained from SVM-RFE for MCI vs AD with GM
(VBM) features.
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Figure 4.30: Region of interest obtained from USVM-RFE for MCI vs AD with GM
(VBM) features.
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4.2.7.2 VolBM feature selection

The volumetric features selected by SVM-RFE and proposed USVM-RFE for CN

vs AD are shown in Table 4.17. It can be seen that amygdala volume is having highest

rank in both SVM-RFE and proposed USVM-RFE. This is due to atrophy of amygdala

in AD subjects [217].

Other highest ranking features for SVM-RFE and USVM-RFE are parahippocam-

pal thickness, entorhinal thickness, hippocampus volume, and inferior parietal thick-

ness, which are in accordance with previous studies [218, 219]. This also correlates

with our VBM based feature analysis. The decrease in measures of these regions is

illustrated as box plots in Fig. 4.31.

However, one can see that the proposed USVM-RFE assigned higher rank to hip-

pocampus volume than inferior parietal thickness as compared to SVM-RFE. This

justifies better feature selection by proposed USVM-RFE, as hippocampus is one of

the prominent features for CN vs AD classification [220]. For CN vs MCI, Table 4.18

shows that inferior parietal thickness is the most discriminative feature for SVM-RFE,

while USVM-RFE ranked parahippocampal thickness as the most optimal. Other

studies also suggested thinning of parahippocampal gyrus [212] in MCI patients.

For MCI vs AD, Table 4.19 shows the most significant features as superior temporal

and entorhinal thickness by proposed USVM-RFE and SVM-RFE respectively. This

was also shown in previous studies [219,221]. One can observe that parahippocampal

thickness is selected as discriminative feature in all cases i.e., CN vs AD, CN vs MCI,

and MCI vs AD. The reason for this is the fact that parahippocampal region encloses

the brain structures affected in Alzheimer’s disease [222].

From the results, it is evident that the proposed USVM-RFE gives higher classi-

fication accuracy than SVM-RFE due to its prior knowledge about the distribution

of data. Moreover, the features selected by proposed USVM-RFE are in accordance

with the literature, justifying its effectiveness.
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4.3 Summary

In this chapter, we presented two novel universum based SVM algorithms for

epilepsy and Alzheimer’s disease. For epilepsy, the proposed method of selection

of universum points has proved to be a promising approach for the classification of

healthy and seizure EEG signals. Also, the effect of outliers on the universum is re-

duced by using the universum from the EEG dataset itself i.e., the seizure free EEG

signal. The distribution of interictal (seizure free) signals provides prior information

about the distribution of healthy and seizure signals and also lies in between the two

classes. Based on the experimental results, it is evident that the proposed approach

using UTSVM is better in comparison to the baseline SVM based algorithms for EEG

signal classification.

On the basis of our analysis on Alzheimer’s disease, the proposed USVM-RFE has

performed better than SVM-RFE in most cases for feature selection and classification

of CN, MCI, and AD subjects. Moreover, we presented an approach of using VBM

on training and testing phase separately. This is useful in real world scenarios. We

provided an analysis of the feature extraction methods for MRI images i.e. voxel

based and volume based features. One of the important advantages of the proposed

universum based algorithm is the global or holistic approach in feature selection as

compared to SVM-RFE. This provides robustness to USVM-RFE in each iteration of

feature elimination.

The efficacy and better generalization performance of universum based algorithms

is clearly evident from this chapter. However, to deal with noisy data in universum

learning, the next chapter presents novel formulations for universum based SVM al-

gorithms using fuzzy memberships for the data points.
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Chapter 5

Fuzzy universum support vector machines

In this chapter, we present fuzzy based approaches for universum SVM algorithms.

First, in section 5.1, we present fuzzy based USVM algorithms1, termed as fuzzy uni-

versum support vector machine (FUSVM), and fuzzy universum twin support vector

machine (FUTSVM). Moreover, we present a least squares based algorithm, known

as fuzzy universum least squares twin SVM algorithm (FULSTSVM)2 in section 5.2,

whose solution is obtained by a system of linear equations.

5.1 Fuzzy based USVM algorithms

In 2017, Fan et al. [55] used entropy based fuzzy membership for support vector

machine (EFSVM) in case of class imbalance problem. This entropy based approach

is used to give higher fuzzy membership to the data points which lie at the boundary

of the two classes. Motivated by this concept, we have used entropy-based fuzzy

membership in the proposed FUSVM and FUTSVM. In the proposed entropy-based

fuzzy approach for universum, the universum points are assigned fuzzy membership

1B. Richhariya, M. Tanveer. A fuzzy universum support vector machine based on infor-
mation entropy. In M. Tanveer and Ram Bilas Pachori, editors, Machine Intelligence and Signal
Analysis, volume 748, pages 569–582. Springer Singapore, 2019, DOI: https://doi.org/10.1007/
978-981-13-0923-6_49.
[Scopus Indexed]

2B. Richhariya, M. Tanveer, Alzheimer’s Disease Neuroimaging Initiative. A fuzzy univer-
sum least squares twin support vector machine (FULSTSVM). Neural Computing and Applications,
Springer, 2021, DOI: https://doi.org/10.1007/s00521-021-05721-4.
[SCI Indexed Impact Factor: 5.606]
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based on their uncertainty of belonging to any one class. The universum points are

calculated using the random averaging scheme and then higher membership is assigned

to the universum points based on their entropy values. The universum points which lie

in between the two classes have higher entropy values as compared to the points lying

nearer to one of the classes. In datasets involving noise and outliers, the universum

data generated by random averaging do not lie in between the two classes. By the

use of a fuzzy-based approach for the universum data, the effect of outlier universum

points is reduced, leading to higher generalization performance.

5.1.1 Proposed fuzzy USVM (FUSVM)

The optimization problem of FUSVM is written as

min
w, b, ξ, η

1

2
‖w‖2 + c

l∑
i=1

ξi + cu

2r∑
j=1

fjηj

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi, (5.1)

yj(w
Tφ(xj) + b) ≥ −ε− ηj,

ξi ≥ 0, ηj ≥ 0, ∀i = 1, 2, . . . , l, ∀j = 1, 2, . . . , 2r, (5.2)

where l is the total number of data points, c > 0, cu > 0 are penalty parameters, ξi

and ηj are slack variables, ε is the parameter for the ε-insensitive tube, φ : Rn −→ Rp

is the function mapping from n to p dimension where p > n, and r is the number of

universum samples.

The dual formulation of Eq. (5.2) is written by applying the K.K.T. conditions as

max
α

l+2r∑
i=1

µiαi −
1

2

l+2r∑
i=1

l+2r∑
j=1

αiαjyiyjφ(xi)
Tφ(xj)

s.t. 0 ≤ αi ≤ c, µi = 1, ∀ i = 1, 2, . . . , l,

0 ≤ αi ≤ ficu, µi = −ε, ∀ i = l + 1, l + 2, . . . , l + 2r,

l+2r∑
i=1

αiyi = 0, (5.3)
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where αi, αj ≥ 0 is the Lagrange multiplier.

For any data point x ∈ Rn, the classifier is written as

f(x) = sgn

( l+2r∑
i=1

αiyiK(xi, x) + b

)
. (5.4)

5.1.2 Proposed fuzzy universum twin support vector machine

(FUTSVM)

By introducing weights to the universum data points based on their information

entropy, the non-linear FUTSVM comprises the following minimization problems,

min
w1, b1, ξ1, η1

1

2
‖K(X1, D

T )w1 + e1b1‖2 + c1e
T
2 ξ1 + cuf

T
u η1

s.t. − (K(X2, D
T )w1 + e2b1) + ξ1 ≥ e2,

(K(U,DT )w1 + eub1) + η1 ≥ (−1 + ε)eu,

ξ1 ≥ 0, η1 ≥ 0, (5.5)

min
w2, b2, ξ2, η2

1

2
‖K(X2, D

T )w2 + e2b2‖2 + c2e
T
1 ξ2 + cuf

T
u η2

s.t. (K(X1, D
T )w2 + e1b2) + ξ2 ≥ e1,

− (K(U,DT )w2 + eub2) + η2 ≥ (−1 + ε)eu,

ξ2 ≥ 0, η2 ≥ 0, (5.6)

where K(Xi, D
T ) is the kernel matrix, D = [X1;X2], fu is the vector containing

the fuzzy membership values, ci(i = 1, 2) and cu are positive penalty parameters,

ξi, ηi(i = 1, 2) are slack variables, and ei(i = 1, 2) is a vector of ones of suitable

dimension.

In comparison to UTSVM, the fuzzy-based approach of FUTSVM is helpful in

reducing the effect of outliers in the universum data. In FUTSVM, appropriate mem-

bership value is given to the universum points based on their information entropy.

This approach reduces the effect of noise on the universum and results in better gen-
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eralization performance.

By applying the K.K.T. necessary and sufficient conditions, the Wolfe duals of Eqs.

(5.5) and (5.6) are obtained as

max
α1, µ1

eT2 α1 −
1

2
(αT1N − µT1O)(MTM)−1(NTα1 −OTµ1) + (ε− 1)eTuµ1

s.t. 0 ≤ α1 ≤ c1, 0 ≤ µ1 ≤ fucu, (5.7)

max
α2, µ2

eT2 α2 −
1

2
(αT2M − µT2O)(NTN)−1(MTα2 −OTµ2) + (ε− 1)eTuµ2

s.t. 0 ≤ α2 ≤ c2, 0 ≤ µ2 ≤ fucu, (5.8)

where M = [K(X1, D
T ) e1], N = [K(X2, D

T ) e2], and O = [K(U, DT ) eu]; α1, α2,

µ1, µ2 are the vectors of Lagrange multipliers.

The classifying hyperplanes K(xT , DT )w1 + b1 = 0 and K(xT , DT )w2 + b2 = 0 are

constructed from the parameter values of wi(i = 1, 2) and bi using the following Eqs.

(5.9) and (5.10),

w1

b1

 = −(MTM)−1(NTα1 −OTµ1), (5.9)

w2

b2

 = (NTN)−1(MTα2 −OTµ2). (5.10)

To avoid the ill-conditioning in the calculation of inverse (MTM)−1 and (NTN)−1,

we add a regularization term δI to the matrices in (5.9) and (5.10) as (MTM + δI)−1

and (NTN + δI)−1 to make them positive definite where δ is a small positive value.

Here, I is an identity matrix of appropriate dimension.

Each new data point is classified using Eq. (2.10).
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5.1.3 Calculation of fuzzy membership

In this work, we used random averaging method for selecting the universum data.

However, the strategy of random averaging gives equal importance to all the universum

data points. There is no knowledge about the suitability of each of these generated

universum data points for use in universum learning. Therefore, a selection strategy

is needed to remove the data points which are less suitable for universum learning.

Motivated by Fan et al. [55], we used a fuzzy membership approach for the univer-

sum data points in this work. In the proposed approach, the universum data points are

eliminated based on their fuzzy membership values. The fuzzy membership values are

calculated based on the information entropy of the universum data points. The fuzzy

membership calculation based on information entropy helps to identify those points

which are having highest uncertainty of belonging to one of the two classes. These are

the data points with the highest information entropy. Due to this selection criteria,

we get the universum data points lying in the region of high uncertainty w.r.t. their

class labels. This is very much desired in universum learning, since the universum

data do not belong to any of the binary classes. This is how proper information about

the prior distribution is provided by universum data points. Therefore, by using the

proposed approach, we obtain the universum data points which lie in between the data

points of the binary classes. The universum points obtained by using this approach

have been utilized in the proposed FUSVM and FUTSVM algorithms.

The fuzzy membership values for the universum data points are calculated as per

the following:

(i). Calculate the information entropy of the universum data points based on K-

nearest neighbour (KNN) approach using Euclidean distance. The probability

value of the universum data point is calculated based on the class label of its

neighbours.

(ii). Assign the universum data points to 10 subsets in decreasing order of entropy
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values [55]. The formula for information entropy is as follows:

E = −p+ln(p+)− p−ln(p−), (5.11)

where p+ and p− are the probabilities of a data point to belong to the positive

and negative class respectively, and ln is the natural logarithm.

(iii). The fuzzy membership value is calculated as

f(i) = 1− κ(ni − 1), (5.12)

where κ = 0.05 is the fuzzy parameter and ni is the ith subset, i = 1, 2, . . . , 10.

The proposed approach of assigning fuzzy membership based on information en-

tropy gives more weight to those universum points which are lying in between the two

classes. In case of universum data with outliers, this fuzzy-based approach is useful

in order to reduce the effect of outliers on the SVM classifier.

5.1.4 Experimental results

In this section, to check the effectiveness of the proposed algorithms, we have

performed numerical experiments on benchmark datasets with comparisons to the

baseline methods.

For FUSVM and FUTSVM, the value of K for KNN is chosen as 5. For FUSVM,

USVM, FUTSVM and TWSVM the value of ε is chosen from {0.1, 0.3, 0.5, 0.6}. For

all the methods RBF kernel is used, and the value of µ is calculated using Eq. (4.1).

To reduce the computational cost of the parameter selection, we set c = c1 = c2 = cu

and chosen according to subsection 3.1.5 for all the algorithms. For USVM, FUSVM,

UTSVM and FUTSVM, the universum is calculated using random averaging scheme,

and the size of the universum is taken as 30% of the size of training data. The

results are shown in Tables 5.1 and 5.2 for the proposed FUSVM and FUTSVM in

comparison to existing algorithms for prediction accuracy and training time, with the

corresponding ranks on accuracy.
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Table 5.1: Performance comparison of proposed FUSVM with SVM and USVM.

Dataset
(Train size, Test size)

SVM
Accuracy (%)

(c, µ)
Time (s)

USVM
Accuracy (%)

(c, µ, ε)
Time (s)

Proposed FUSVM
Accuracy (%)

(c, µ, ε)
Time (s)

German
(400× 24, 600× 24)

76
(101, 6.80536)

0.3027

77.5
(100, 6.80536, 0.1)

3.7708

77.5
(100, 6.80536, 0.3)

3.872

Cleveland
(150× 13, 147× 13)

80.95
(101, 5.26173)

0.0365

81.63
(100, 5.26173, 0.1)

0.5113

82.99
(100, 5.26173, 0.3)

0.5453

Ionosphere
(150× 33, 201× 33)

89.55
(101, 4.38631)

0.0377

87.06
(103, 4.38631, 0.1)

0.5274

89.05
(100, 4.38631, 0.1)

0.546

Transfusion
(350× 4, 398× 4)

82.41
(102, 2077.88)

0.192

82.66
(105, 2077.88, 0.3)

2.8532

84.17
(105, 2077.88, 0.6)

2.916

Cmc
(500× 9, 973× 9)

74.2
(103, 13.4139)

0.4126

69.37
(101, 13.4139, 0.3)

5.779

74.51
(103, 13.4139, 0.1)

6.0853

Heart-stat
(180× 13, 90× 13)

77.78
(102, 85.982)

0.053

81.11
(102, 85.982, 0.5)

0.7478

80
(102, 85.982, 0.5)

0.7644

Monk3
(250× 7, 304× 7)

83.22
(105, 163.314)

0.1036

84.21
(105, 163.314, 0.1)

1.4406

83.88
(105, 163.314, 0.1)

1.5038

Ndc1k
(400× 32, 700× 32)

89.29
(102, 571.157)

0.269

93.29
(103, 571.157, 0.3)

3.865

93.71
(103, 571.157, 0.3)

3.9502

Pima-Indians
(350× 8, 418× 8)

80.38
(103, 2.22928)

0.1966

77.51
(104, 2.22928, 0.1)

2.8562

78.71
(103, 2.22928, 0.5)

2.9653

Wdbc
(250× 30, 319× 30)

94.98
(104, 944.407)

0.111

95.61
(105, 944.407, 0.3)

1.4658

95.92
(105, 944.407, 0.6)

1.5308

Yeast1
(600× 8, 2368× 8)

75.34
(103, 0.41735)

0.6244

76.39
(100, 0.41735, 0.1)

8.5181

75.97
(100, 0.41735, 0.1)

8.7554
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Table 5.1 (contd.)

Dataset
(Train size, Test size)

SVM
Accuracy (%)

(c, µ)
Time (s)

USVM
Accuracy (%)

(c, µ, ε)
Time (s)

Proposed FUSVM
Accuracy (%)

(c, µ, ε)
Time (s)

Ripley
(200× 2, 1050× 2)

90.48
(100, 0.766998)

0.066

89.81
(100, 0.766998, 0.6)

0.923

91.05
(104, 0.766998, 0.6)

0.9578

Yeast3
(500× 8, 984× 8)

94.31
(100, 0.411172)

0.4341

95.43
(100, 0.411172, 0.1)

5.9856

95.33
(100, 0.411172, 0.1)

6.1587

Monk2
(150× 7, 451× 7)

67.63
(10−5, 151.849)

0.0748

58.76
(101, 151.849, 0.3)

0.5508

67.63
(100, 151.849, 0.5)

0.5779

Average accuracy 82.61 82.17 83.6

Average rank 2.4643 2.0357 1.5

Table 5.2: Performance comparison of proposed FUTSVM with TWSVM and
UTSVM.

Dataset
(Train size, Test size)

TWSVM
Accuracy (%)

(c1, µ)
Time (s)

UTSVM
Accuracy (%)

(c1, µ, ε)
Time (s)

Proposed FUTSVM
Accuracy (%)

(c1, µ, ε)
Time (s)

German
(400× 24, 600× 24)

72
(10−4, 6.80536)

0.0911

72
(10−4, 6.80536, 0.1)

0.131

72
(10−4, 6.80536, 0.1)

0.2365

Bupa or liver
disorders

(240× 6, 105× 6)

70.48
(10−1, 66.1988)

0.0183

69.52
(101, 66.1988, 0.6)

0.0357

71.43
(101, 66.1988, 0.6)

0.068

Cleveland
(150× 13, 147× 13)

75.51
(10−5, 5.26173)

0.009

75.51
(10−2, 5.26173, 0.5)

0.0148

76.19
(10−2, 5.26173, 0.6)

0.0274

Ionosphere
(150× 33, 201× 33)

92.54
(10−2, 4.38631)

0.0094

91.54
(10−2, 4.38631, 0.5)

0.0145

91.54
(10−2, 4.38631, 0.6)

0.0288

Transfusion
(350× 4, 398× 4)

82.16
(10−5, 2077.88)

0.0387

82.41
(100, 2077.88, 0.3)

0.0712

82.66
(100, 2077.88, 0.3)

0.1417
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Table 5.2 (contd.)

Dataset
(Train size, Test size)

TWSVM
Accuracy (%)

(c1, µ)
Time (s)

UTSVM
Accuracy (%)

(c1, µ, ε)
Time (s)

Proposed FUTSVM
Accuracy (%)

(c1, µ, ε)
Time (s)

Heart-stat
(180× 13, 90× 13)

81.11
(10−1, 85.982)

0.0121

77.78
(100, 85.982, 0.5)

0.0183

80
(100, 85.982, 0.6)

0.0376

Monk3
(250× 7, 304× 7)

57.89
(10−5, 163.314)

0.018

68.42
(103, 163.314, 0.3)

0.0388

78.29
(104, 163.314, 0.3)

0.0782

Ndc1k
(400× 32, 700× 32)

90.14
(10−1, 571.157)

0.0559

93.14
(100, 571.157, 0.5)

0.103

93.43
(100, 571.157, 0.6)

0.1971

Pima-Indians
(350× 8, 418× 8)

75.12
(100, 2.22928)

0.0374

77.27
(101, 2.22928, 0.6)

0.0724

77.27
(101, 2.22928, 0.5)

0.1474

Wdbc
(250× 30, 319× 30)

95.92
(101, 944.407)

0.0212

91.85
(10−1, 944.407, 0.6)

0.0362

95.92
(100, 944.407, 0.1)

0.0768

Vehicle2
(400× 18, 446× 18)

98.43
(100, 269.333)

0.0579

97.76
(101, 269.333, 0.1)

0.1151

97.98
(101, 269.333, 0.1)

0.21

Vehicle2
(400× 18, 446× 18)

98.43
(100, 269.333)

0.0579

97.76
(101, 269.333, 0.1)

0.1151

97.98
(101, 269.333, 0.1)

0.21

Yeast1
(600× 8, 2368× 8)

75.84
(100, 0.41735)

0.1632

75.3
(10−1, 0.41735, 0.5)

0.2959

75.3
(10−1, 0.41735, 0.5)

0.4888

Yeast3
(500× 8, 984× 8)

94.41
(10−2, 0.411172)

0.1349

93.09
(100, 0.411172, 0.1)

0.247

94.61
(10−3, 0.411172, 0.6)

0.3805

Breast cancer
wisconsin

(350× 9, 333× 9)

98.5
(10−4, 12.5292)

0.0774

98.8
(10−3, 12.5292, 0.1)

0.1154

98.8
(10−3, 12.5292, 0.6)

0.1935

Average accuracy 82.87 83.17 84.67

Average rank 2.0714 2.3929 1.5357
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From Tables 5.1 and 5.2, it is evident that the proposed FUSVM and FUTSVM are

giving better generalization performance in comparison to other baseline algorithms.

It is also reflected in the average ranks based on accuracy shown in these tables.

However, the proposed methods (FUSVM and FUTSVM) are taking some additional

computational time due to the fuzzy calculation. This additional time can be traded

for the improved generalization ability of the model.
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(c) Bupa or liver disorders
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(d) Breast cancer wisconsin

Figure 5.1: Insensitivity performance for classification of FUSVM is shown in (a) and
(b), and for FUTSVM in (c) and (d) to the user specified parameters (c, ε) on real
world datasets using RBF kernel.

The insensitivity analysis for both FUSVM and FUTSVM is shown in Fig. 5.1
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for the parameters c and ε. One can observe from Fig. 5.1 that FUSVM gives bet-

ter accuracy for larger values of c. However, the proposed FUTSVM shows better

generalization performance for lesser values of c.

The next section presents a fuzzy based approach in a least squares based twin

SVM model using universum data. The algorithm is robust w.r.t. noisy data, and

also requires less computation time. The proposed fuzzy based approach results in an

noise insensitive as well as efficient model, which is discussed in the following section.

5.2 Proposed fuzzy universum least squares twin

support vector machine (FULSTSVM)

In universum based algorithms, all the universum data points are not equally

important for the classifier. To solve these problems, a novel fuzzy universum least

squares twin support vector machine (FULSTSVM) is proposed in this work. In

FULSTSVM, the membership values are used to provide weights for the data samples

of the classes, as well as to the universum data. Further, the optimization problem of

proposed FULSTSVM is obtained by solving a system of linear equations. This leads

to an efficient fuzzy based algorithm.

In the next subsection, we present the formulation of the proposed FULSTSVM,

and the fuzzy function used in the proposed algorithm. The proposed algorithm is

motivated by the approach used in RFLSTSVM-CIL [25] for removing the effect of

outliers. In proposed FULSTSVM, the fuzzy memberships are calculated for the data

samples belonging to the classes, as well as to the universum using fuzzy membership

matrices as described below.

5.2.1 Linear FULSTSVM

The formulation of proposed FULSTSVM for the linear case is described using

optimization problems (5.13) and (5.14). In the objective function of the primal

problem (5.13), we use three diagonal matrices represented by Si containing the fuzzy

163



memberships of the data points of ith class. The memberships of the data points are

calculated on the basis of distance from their respective class centres.

We also add a regularization term in the objective function to include the structural

risk minimization principle (SRM) principle. The constraints are similar to the UL-

STSVM formulation described in the previous subsection. Fig. 5.2 shows a pictorial

representation of the proposed approach.

Figure 5.2: Universum data with noise.

min
w1,b1,ξ1,ψ1

1

2
‖S1(X1w1 + e1b1)‖2 +

c1
2
‖S2ξ1‖2 +

c3
2

(‖w1‖2 + b21) +
cu
2
‖Suψ1‖2

s.t. − (X2w1 + e2b1) + ξ1 = e2,

Uw1 + eub1 + ψ1 = (−1 + ε)eu, (5.13)

min
w2,b2,ξ2,ψ2

1

2
‖S2(X2w2 + e2b2)‖2 +

c2
2
‖S1ξ2‖2 +

c4
2

(‖w2‖2 + b22) +
cu
2
‖Suψ2‖2

s.t. X1w2 + e1b2 + ξ2 = e1,

− (Uw2 + eub2) + ψ2 = (−1 + ε)eu, (5.14)

where Si, Su are diagonal matrices containing fuzzy membership values of data samples

belonging to the classes and universum respectively. ξi, ψi, are the slack variables, and
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ci, cu are positive penalty parameters, i = 1, 2. The parameter for the insensitive zone

is ε, while ci, i = 3, 4 are the parameters for regularization.

Rewriting the objective functions using the values of the error variables,

min
w1,b1

1

2
‖S1(X1w1 + e1b1)‖2 +

c1
2
‖S2(X2w1 + e2b1 + e2)‖2

+
c3
2

(‖w1‖2 + b21) +
cu
2
‖Su(−(Uw1 + eub1) + (−1 + ε)eu)‖2, (5.15)

min
w2,b2

1

2
‖S2(X2w2 + e2b2)‖2 +

c2
2
‖S1(−(X1w2 + e1b2) + e1)‖2

+
c4
2

(‖w2‖2 + b22) +
cu
2
‖Su(Uw2 + eub2 + (−1 + ε)eu)‖2. (5.16)

By setting the gradient of QPP (5.15) w.r.t. w1 and b1 equal to 0, and solving we

get

c3w1 + (S1X1)
T (S1(X1w1 + e1b1)) + c1(S2X2)

T (S2(X2w1 + e2b1 + e2))

− cu(SuU)T (Su(−(Uw1 + eub1) + (−1 + ε)eu) = 0, (5.17)

c3b1 + (S1e1)
T (S1(X1w1 + e1b1)) + c1(S2e2)

T (S2(X2w1 + e2b1 + e2))

− cu(Sueu)T (Su(−(Uw1 + eub1) + (−1 + ε)eu) = 0, (5.18)

Rewriting Eqs. (5.17) and (5.18) with u1 = [w1 b1]
T and combining, we get

c3u1 + V TV u1 + c1W
TWu1 + c1W

TS2e2 + cuZ
TZu1 + cuZ

TSu(1− ε)eu = 0. (5.19)

Rearranging the terms and solving, we get

[w1 b1]
T = −(V TV + c1W

TW + c3I + cuZ
TZ)−1(c1W

TS2e2 + cuZ
TSu(1− ε)eu),

(5.20)

where V = [S1X1 S1e1], W = [S2X2 S2e2], and Z = [SuU Sueu].

165



Similarly, using the procedure for Eq. (5.16) and solving, we get

[w2 b2]
T = (W TW + c2V

TV + c4I + cuZ
TZ)−1(c2V

TS1e1 + cuZ
TSu(1− ε)eu).

(5.21)

A new data point x is classified using the decision function in Eq. (2.11).

5.2.2 Non-linear FULSTSVM

The formulation of non-linear FULSTSVM is written as

min
w1,b1,ξ1,ψ1

1

2
‖S1(K(X1, D

T )w1 + e1b1)‖2 +
c1
2
‖S2ξ1‖2 +

c3
2

(‖w1‖2 + b21) +
cu
2
‖Suψ1‖2

s.t. − (K(X2, D
T )w1 + e2b1) + ξ1 = e2,

K(U,DT )w1 + eub1 + ψ1 = (−1 + ε)eu, (5.22)

min
w2,b2,ξ2,ψ2

1

2
‖S2(K(X2, D

T )w2 + e2b2)‖2 +
c2
2
‖S1ξ2‖2 +

c4
2

(‖w2‖2 + b22) +
cu
2
‖Suψ2‖2

s.t. K(X1, D
T )w2 + e1b2 + ξ2 = e1,

− (K(U,DT )w2 + eub2) + ψ2 = (−1 + ε)eu, (5.23)

where K(Xi, D
T ) is the kernel matrix, D = [X1;X2], Si, Su are diagonal fuzzy mem-

bership matrices of data points in the classes and universum respectively, i = 1, 2.

Rewriting the objective functions using the constraints, we get

min
w1,b1

1

2
‖S1(K(X1, D

T )w1 + e1b1)‖2 +
c1
2
‖S2(K(X2, D

T )w1 + e2b1 + e2)‖2

+
c3
2

(‖w1‖2 + b21) +
cu
2
‖Su(−(K(U,DT )w1 + eub1) + (−1 + ε)eu)‖2, (5.24)

min
w2,b2

1

2
‖S2(K(X2, D

T )w2 + e2b2)‖2 +
c2
2
‖S1(−(K(X1, D

T )w2 + e1b2) + e1)‖2

+
c4
2

(‖w2‖2 + b22) +
cu
2
‖Su(K(U,DT )w2 + eub2 + (−1 + ε)eu)‖2. (5.25)
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The parameters w1 and b1 are obtained by setting the gradient of QPP (5.24) w.r.t.

w1 and b1 equal to 0, and solving we get,

[w1 b1]
T =−

(
MTM + c1N

TN + c3I + cuO
TO
)−1(

c1N
TS2e2 + cuO

TSu(1− ε)eu
)
,

(5.26)

where M = [S1K(X1, D
T ) S1e1], N = [S2K(X2, D

T ) S2e2], and O =

[SuK(U,DT ) Sueu]. Similarly, using Eq. (5.25), we get

[w2 b2]
T =

(
NTN + c2M

TM + c4I + cuO
TO
)−1(

c2M
TS1e1 + cuO

TSu(1− ε)eu
)
.

(5.27)

For a new data point, similar to linear case, the class is assigned based on the class

of the nearest hyperplane using Eq. (2.10). In the following subsection, we present

the fuzzy membership function used in the proposed FULSTSVM.

5.2.3 Fuzzy membership function

The proposed FULSTSVM utilizes a fuzzy function inspired by [41]. The follow-

ing fuzzy function keeps the range of fuzzy memberships in the range (0.5, 1]. The

membership function is described as

f(xi) = 1− 0.5

(
|xi − cj|
rj + ρ

)
, (5.28)

where xi is a data point belonging to class j with centre cj, i = 1, . . . ,mj, j = 1, 2.

The variable rj is the largest distance from the class centre of data points of class j,

and ρ is a very small positive value to avoid division by zero.

The range of fuzzy memberships in the above mentioned fuzzy function is chosen

as (0.5, 1]. This is to keep significant contribution of majority of the data points in

the formation of the classifier. Moreover, the proposed FULSTSVM also gives fuzzy

memberships to the universum data points. The contribution of most universum data

points is required for providing prior information about the data, which is achieved

167



by this function. Moreover, the contribution of outliers is reduced accordingly. This

approach is in contrast to the approach proposed in FSVM [41], where the fuzzy

memberships are chosen in the range (0,1].

5.2.4 Time complexity

The time complexity of TWSVM is 2 ∗ O(m/2)3 i.e., O(m)3/4, where m is total

number of data points [12]. This is the time complexity of solving the QPPs, which

is a computationally intensive task. Moreover, TWSVM involves two matrix inverses

having a complexity of O(n)3, where n is the dimension of the matrix [167]. Similarly,

UTWSVM has time complexity of O(m + 2u)3/4, where u denotes the number of

universum data points.

On the other hand, the formulation of LSTSVM involves solution of linear equa-

tions using two matrix inverses. Therefore, the computation time of LSTSVM is lesser

than TWSVM and UTSVM in Table 5.3. Similarly, ULSTSVM involves two inverses

with additional universum data. The time complexity of proposed FULSTSVM is sim-

ilar to ULSTSVM, with additional complexity for fuzzy membership function. The

complexity of fuzzy membership is O(m). Hence, the computation of FULSTSVM is

more than ULSTSVM, but the additional time is O(m), which is insignificant w.r.t.

cubic complexity of inverse calculation in FULSTSVM and ULSTSVM.

5.2.5 Experimental results

In this section, we perform numerical experiments, and show the comparative anal-

ysis of the results obtained on benchmark datasets. We also present two biomedical

applications viz. Alzheimer’s disease and breast cancer to show the utility of the

proposed FULSTSVM. The experiments are performed on a PC running on 64 bit

Windows 10 operating system, with 2.30 GHz Intel R© Xeon processor, and 128 GB of

RAM with MATLAB R2017a environment.
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5.2.5.1 Parameter settings

For experiments on real world datasets, the parameters are selected as follows:

Penalty parameters are set as c1 = c2 = cu, and c3 = c4. The range for the penalty

parameters, and µ is same as in subsection 3.1.5. The parameter ε is selected from

{0.2, 0.4, 0.6, 0.8}. The universum is generated by averaging the samples randomly

from the data [20,27]. The training and testing data is chosen as 50% of total samples.

For large scale datasets, we use fixed value of the hyper-parameters [31,158]. Therefore,

the value of c1 = c2 = cu is fixed as 10, and c3 = c4 is set as 10−5, ε is selected as 0.7,

and µ is chosen as 2 for all the algorithms.

In biomedical datasets, we used 150 structural MRI (T1) images from the ADNI

database. The pre-processing and other specifications of the MRI images are same

as in 4.2.2. For breast cancer, the BreakHis histopathological dataset is utilized [223]

in this work. A total of 314 histopathological breast tissue images include a be-

nign condition i.e., adenosis (ADN), and a cancer i.e., ductal carcinoma (DC). The

histopathological images are converted to gray level, and features are extracted using

wavelet transform (Daubechies-4) up to 3 levels of decomposition. The approximation

and detail coefficients are concatenated to form the feature vector [224].

5.2.5.2 Real world data

The results on 18 real world benchmark datasets are presented in Table 5.3. For

comparison, we used TWSVM [12], UTSVM [27], LSTSVM [18], and ULSTSVM [71]

algorithms. One can observe in Table 5.3 that the proposed FULSTSVM obtained the

highest accuracies in 11 datasets. FULSTSVM outperformed the existing algorithms

by obtaining an average rank of 1.8056 on accuracy values. This is due to the use of

fuzzy memberships for all data points in the proposed FULSTSVM. It is noticeable

that the proposed FULSTSVM achieved highest accuracy of 98.54% for Breast cancer

wisconsion dataset with LSTSVM. However, ULSTSVM achieved a lesser accuracy of

98.25%, due to equal weighting to all universum data points in ULSTSVM.

One can observe in Table 5.3 that the training time of proposed FULSTSVM is
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Table 5.3: Comparative performance of proposed algorithm with existing approaches
for classification on real world benchmark datasets. Accuracy is in percentage, and
average rank is calculated on accuracy.

Dataset
(Size)

TWSVM
[12]

Accuracy
(c1, µ)

Time (s)

UTSVM
[27]

Accuracy
(c1, µ, ε)
Time (s)

LSTSVM
[18]

Accuracy
(c1, µ)

Time (s)

ULSTSVM
[71]

Accuracy
(c1, c3, ε, µ)
Time (s)

Proposed
FULSTSVM

Accuracy
(c1, c3, ε, µ)
Time (s)

Ecoli-0-1 vs 5
(240× 12)

93.39
(10−5, 25)

0.2566

95.04
(10−4, 24, 0.6)

0.2598

93.39
(10−5, 25)

0.0221

95.04
(10−5, 10−1, 0.2, 24)

0.0261

95.04
(10−5, 10−2, 0.2, 24)

0.0388

Ecoli-0-1-4-7 vs 5-6
(332× 12)

95.81
(10−4, 25)

0.0794

98.2
(10−3, 24, 0.4)

0.0781

97.6
(10−1, 25)

0.0321

98.8
(100, 10−1, 0.6, 25)

0.0364

98.8
(100, 10−2, 0.6, 25)

0.0444

Ecoli-0-2-3-4 vs 5
(202× 7)

98.04
(10−3, 24)

0.0881

98.04
(10−4, 25, 0.4)

0.0898

97.06
(101, 25)
0.0118

94.12
(10−2, 10−5, 0.4, 24)

0.0129

99.02
(10−2, 10−5, 0.6, 25)

0.0161

Ecoli-0-2-6-7 vs 3-5
(224× 7)

93.81
(10−2, 25)

0.0332

94.69
(10−2, 25, 0.4)

0.0379

97.35
(102, 25)
0.0141

92.92
(10−1, 10−5, 0.6, 25)

0.0157

94.69
(100, 10−4, 0.6, 25)

0.019

Ecoli-0-4-6 vs 5
(202× 6)

94.12
(10−5, 25)

0.0274

94.12
(10−4, 25, 0.8)

0.0384

94.12
(103, 25)
0.0155

95.1
(100, 10−3, 0.6, 25)

0.018

96.08
(100, 10−5, 0.4, 25)

0.0189

Ecoli-0-6-7 vs 3-5
(222× 7)

91.07
(10−4, 24)

0.0295

91.07
(10−3, 24, 0.4)

0.0333

94.64
(101, 25)
0.0137

93.75
(10−1, 10−5, 0.4, 25)

0.0156

93.75
(101, 10−3, 0.2, 25)

0.0177

Glass4
(214× 9)

94.44
(10−5, 20)

0.0341

95.37
(10−1, 23, 0.2)

0.0304

94.44
(10−5, 20)

0.0127

95.37
(10−1, 10−5, 0.6, 21)

0.0108

97.22
(100, 10−4, 0.6, 21)

0.0192

Vehicle 1
(846× 18)

74.06
(10−4, 25)

0.2701

73.82
(10−4, 25, 0.8)

0.3207

73.82
(10−4, 25)

0.2116

72.88
(10−4, 10−5, 0.6, 25)

0.2364

73.82
(10−4, 10−5, 0.2, 25)

0.2319

Vehicle2
(846× 18)

96.7
(10−3, 25)

0.2824

98.11
(10−3, 25, 0.6)

0.243

98.11
(10−2, 25)

0.1469

98.11
(100, 10−3, 0.6, 25)

0.2063

98.11
(10−1, 10−5, 0.6, 25)

0.2338

Pima Indians
(768× 8)

75.84
(10−5, 25)

0.1783

76.1
(10−5, 25, 0.8)

0.1807

74.81
(10−5, 25)

0.1164

74.29
(10−5, 10−5, 0.2, 25)

0.1264

78.96
(101, 101, 0.6, 25)

0.1369

Yeast3
(1484× 8)

94.35
(10−1, 20)

0.6316

93.41
(103, 22, 0.6)

0.7756

93.67
(10−2, 20)

0.463

93.81
(10−2, 10−5, 0.2, 20)

0.5962

94.21
(103, 103, 0.8, 2−2)

0.495

Yeast1vs7
(458× 8)

92.61
(10−1, 2−1)

0.0933

93.04
(10−1, 20, 0.4)

0.079

92.61
(100, 2−1)

0.0434

93.48
(10−2, 10−3, 0.4, 2−2)

0.0471

93.48
(10−2, 10−3, 0.4, 2−2)

0.0593
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Table 5.3 (contd.)

Dataset
(Size)

TWSVM
[12]

Accuracy
(c1, µ)

Time (s)

UTSVM
[27]

Accuracy
(c1, µ, ε)
Time (s)

LSTSVM
[18]

Accuracy
(c1, µ)

Time (s)

ULSTSVM
[71]

Accuracy
(c1, c3, ε, µ)
Time (s)

Proposed
FULSTSVM

Accuracy
(c1, c3, ε, µ)
Time (s)

Ecoli0137vs26
(311× 7)

97.44
(10−1, 23)

0.0364

96.15
(100, 20, 0.4)

0.0428

94.87
(10−3, 2−2)

0.01876

95.51
(10−2, 10−1, 0.2, 21)

0.0206

96.15
(10−5, 100, 0.2, 2−1)

0.0244

Yeast5
(1484× 8)

96.64
(100, 24)

0.805

96.64
(10−4, 2−2, 0.2)

0.7354

96.5
(10−5, 2−1)

0.4878

96.5
(10−5, 10−5, 0.4, 2−1)

0.5705

96.77
(10−4, 10−3, 0.6, 2−2)

0.5929

Cleveland
(297× 13)

81.21
(10−1, 24)

0.0289

76.51
(10−2, 23, 0.8)

0.0319

81.21
(101, 24)
0.0172

81.88
(102, 103, 0.6, 22)

0.0194

83.22
(10−1, 10−4, 0.6, 25)

0.0254

Transfusion
(748× 4)

78.93
(10−3, 25)

0.2164

78.93
(10−3, 25, 0.2)

0.2377

81.07
(10−3, 25)

0.1115

82.67
(102, 101, 0.4, 25)

0.1207

81.87
(101, 101, 0.4, 25)

0.1559

Breast cancer
wisconsin
(682× 9)

98.25
(10−4, 23)

0.1431

98.25
(10−4, 23, 0.2)

0.1971

98.54
(100, 25)
0.0855

98.25
(100, 101, 0.8, 24)

0.095

98.54
(103, 102, 0.4, 25)

0.1408

Ripley
(1250× 2)

90.58
(100, 2−1)

0.5155

91.05
(100, 2−1, 0.4)

0.5511

91.21
(100, 2−1)

0.3014

91.05
(103, 105, 0.8, 2−3)

0.3378

91.05
(10−2, 10−5, 0.4, 2−1)

0.4951

Average accuracy 90.96 91.03 91.39 91.31 92.27

Average rank 3.5556 3.2222 3.3056 3.1111 1.8056

lower than TWSVM and UTSVM algorithms. This is because TWSVM and UTSVM

solve a pair of QPPs, which is computationally expensive. On the other hand pro-

posed FULSTSVM solves a system of linear equations. However, the training time of

FULSTSVM is higher than LSTSVM and ULSTSVM due to the fuzzy memberships.

5.2.5.3 Statistical significance

In order to prove the statistical significance of the proposed FULSTSVM for gen-

eralization performance, we perform the Friedman and Nemenyi posthoc test [172].

The Friedman test is performed using the average ranks of the algorithms from

Table 5.3. Here, we first assume that all the algorithms are not significantly different,

as the null hypothesis. We calculated the χ2
F value as 13.6151.
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The FF value is obtained as

FF =
(18− 1)(13.6151)

18× (5− 1)− 13.6151
= 3.9643.

In this case, the F -distribution has
(
5 − 1, (5 − 1)(18 − 1)

)
= (4, 68) degrees of

freedom. Therefore, the critical value for F (6, 150) at α = 0.05 level of significance

is 2.5066. Since FF = 3.9643 > 2.5066, we reject the null hypothesis. Thus, there is

significant difference between these methods.

Next, for pairwise difference, we use the Nemenyi posthoc test [172] to check pair-

wise difference between proposed FULSTSVM and existing algorithms. The critical

difference (CD) for our case at α = 0.10 level of significance is 2.459
√

5(5+1)
6×18

= 1.296.

The pairwise difference of the average ranks should be greater than CD for signifi-

cance. Table 5.4 shows the pairwise significant difference between the methods based

on average ranks. One can observe that proposed FULSTSVM is significantly different

from TWSVM, UTSVM, LSTSVM, and ULSTSVM algorithms.

Table 5.4: Significant difference between the proposed FULSTSVM and existing al-
gorithms in pairwise comparison.

Significance TWSVM UTSVM LSTSVM ULSTSVM
Proposed FULSTSVM Yes Yes Yes Yes

5.2.5.4 Insensitivity analysis

To check the effect of hyper-parameter values on the accuracy of the proposed

FULSTSVM, we present the insensitive analysis. The insensitivity performance of

FULSTSVM is shown for varying values of c1, µ, and ε hyper-parameters in Fig. 5.3.

Figs. 5.3(a) and 5.3(b) show the change in accuracy for different values of c1 and

µ. One can observe that accuracy of proposed FULSTSVM is higher for lower values

of c1, and higher values of µ. The variation in accuracy for c1 with ε is shown in

Figs. 5.3(c) and 5.3(d). The parameter ε is not affecting the accuracy in a significant

manner. However, here also the accuracy of FULSTSVM is higher for lesser values of

the hyper-parameter c1. This also justifies the parameter selection in the experiments.
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Figure 5.3: Insensitivity analysis of proposed FULSTSVM for c1 and µ in (a) and (b),
and for c1 and ε in (c) and (d) on real world benchmark datasets.

5.2.5.5 Biomedical data

In this section, we present the results on classification of Alzheimer’s disease and

breast cancer datasets. The results for these applications are shown in Table 5.5. One

can observe that the proposed FULSTSVM performs better than baseline algorithms

in most of the cases. This is reflected in the average rank based on accuracy. The pro-

posed FULSTSVM obtained lowest average rank of 2.5. The accuracy of FULSTSVM

is higher than other algorithms for classification of AD vs MCI shown in AD MCI,

which is a difficult classification problem [2].

Moreover, for breast cancer data i.e. adenosis vs ductal carcinoma, the proposed

FULSTSVM obtains highest accuracy of 84.18%. The better average rank of proposed
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Table 5.5: Comparative performance of the proposed and baseline algorithms on
Alzheimer’s and breast cancer datasets. Accuracy is in percentage.

Dataset

TWSVM
[12]

Accuracy
(c1, µ)

Time (s)

UTSVM
[27]

Accuracy
(c1, µ, ε)
Time (s)

LSTSVM
[18]

Accuracy
(c1, µ)

Time (s)

ULSTSVM
[71]

Accuracy
(c1, c3, ε, µ)
Time (s)

Proposed
FULSTSVM

Accuracy
(c1, c3, ε, µ)
Time (s)

CN AD
80

(10−1, 25)
0.255

80
(10−1, 25, 0.2)

0.2427

77.5
(10−5, 21)

0.0105

75
(101, 104, 0.8, 24)

0.0149

72.5
(10−5, 104, 0.2, 24)

0.0255

CN MCI
69.23

(10−5, 25)
0.0311

66.67
(10−2, 22, 0.8)

0.0328

69.23
(10−5, 25)

0.0062

71.79
(10−1, 10−4, 0.2, 25)

0.0081

69.23
(100, 10−3, 0.2, 24)

0.0109

AD MCI
53.85

(10−5, 25)
0.094

58.97
(10−1, 20, 0.2)

0.0677

48.72
(10−1, 25)

0.006

48.72
(10−2, 10−5, 0.8, 2−1)

0.0054

66.67
(10−5, 10−4, 0.6, 25)

0.0094

ADN DC
83.54

(10−5, 23)
0.2538

83.54
(10−4, 24, 0.4)

0.2968

83.54
(10−5, 23)

0.0732

82.28
(10−5, 100, 0.2, 24)

0.0939

84.18
(10−5, 10−1, 0.2, 25)

0.1072

Average rank 2.625 2.875 3.375 3.625 2.5

FULSTSVM for accuracy can be attributed to the use of fuzzy membership with

universum data. It leads to prior information for the model, with less sensitivity

to outlier data points of the classes, as well as the universum. This implies the

applicability of the proposed FULSTSVM for biomedical applications.

5.2.5.6 Large scale data

In order to check the performance of the proposed FULSTSVM on large datasets,

we used the Skin segmentation dataset from UCI repository [170]. For comparison,

we used two other efficient algorithms viz. LSTSVM and ULSTSVM. The results

are shown in Table 5.6. It is observable that the proposed FULSTSVM is showing

higher accuracy on most of the datasets. This is because FULSTSVM removes the

effect of outliers in the generation of universum data, whereas ULSTSVM gives equal

importance to all the universum data points. Moreover, the proposed FULSTSVM

also gives proper weighting to the data points of the binary classes, where LSTSVM
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Table 5.6: Classification performance of the proposed and baseline algorithms on large
scale datasets. Accuracy is in percentage.

Dataset

LSTSVM
[18]

Accuracy
Time (s)

ULSTSVM
[71]

Accuracy
Time (s)

Proposed
FULSTSVM

Accuracy
Time (s)

Skin-5k
93.56
4.9931

97.8
5.7513

97.76
6.1476

Skin-10k
95.26

20.8591
97.64

24.0887
97.88

24.4975

Skin-20k
97.03

97.2516
98.8

104.539
98.91

105.941

Skin-30k
97.74

233.092
99.23

243.475
99.25

247.076

Skin-40k
98.6

427.891
99.47
453.43

99.53
548.742

gives equal to weights to all the data points. However, the time is the least in case of

LSTSVM, because there is no universum data in LSTSVM. The time is slightly higher

in FULSTSVM as compared to ULSTSVM due to the calculation of fuzzy membership

values. However, the additional time in FULSTSVM is not significant as discussed in

section 5.2.4 in terms of time complexity.

5.3 Summary

In this chapter, for dealing with noisy data in universum learning, we have proposed

three novel fuzzy based SVM algorithms. We proposed a fuzzy based approach for

USVM and UTSVM algorithms which is useful in the classification of data with noise

and outliers. The proposed FUSVM and FUTSVM have shown better generalization

performance for most of the datasets. This fuzzy based approach for universum helps

in giving prior information to the data in an effective manner. The use of information

entropy of the universum points is helpful in giving optimum membership values to

the universum data points.

175



Moreover, we proposed a more efficient fuzzy based learning algorithm, termed as

fuzzy universum least squares twin support vector machine (FULSTSVM). The pro-

posed algorithm gives prior information about data distribution to the classifier, and

also provides fuzzy membership to the data points and universum. Proposed FUL-

STSVM also performed better on large sized datasets in terms of accuracy, showing

its scalability on large datasets. Results on applications i.e. Alzheimer’s disease and

breast cancer clearly show the applicability of the proposed FULSTSVM for healthcare

data.

However, the calculation of fuzzy memberships involved in the works of this chapter

incur additional computation time. Moreover, in universum based algorithms, there

is a drawback of higher training time due to the additional universum data. To

address the issue of computation complexity in universum learning, we present efficient

universum based SVM algorithms for classification problems in the next chapter.
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Chapter 6

Efficient universum twin support vector

machines

In this chapter, we present some novel formulations for improving the efficiency

of universum based SVM algorithms. Each of these proposed formulations introduce

some important ideas to improve the performance of universum based algorithms on

classification tasks. Section 6.1 presents a novel angle based approach for universum

learning termed as angle based universum least squares twin support vector machine

(AULSTSVM)1. In section 6.2, we present an efficient least squares based algorithm

with universum data, known as universum least squares twin parametric-margin SVM

(ULSTPMSVM)2. Lastly, section 6.3 presents an improved version of universum twin

SVM using regularization, abbreviated as IUTSVM3.

1B. Richhariya, M. Tanveer, Alzheimer’s Disease Neuroimaging Initiative. An efficient angle
based universum least squares twin support vector machine for pattern classification. ACM Trans-
actions on Internet Technology (TOIT), ACM, 2021, DOI: https://doi.org/10.1145/3387131.
[SCI Indexed Impact Factor: 3.135]

2B. Richhariya, M. Tanveer, Alzheimer’s Disease Neuroimaging Initiative. Universum least
squares twin parametric-margin support vector machine. In International Joint Conference on Neural
Networks (IJCNN), pages 1-8. IEEE, 2020, DOI: https://doi.org/10.1109/IJCNN48605.2020.
9206865.
[Scopus Indexed, Core rank: A]

3B. Richhariya, A. Sharma, M. Tanveer. Improved universum twin support vector machine. In
2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages 2045-2052. IEEE, 2018,
DOI: https://doi.org/10.1109/SSCI.2018.8628671.
[Scopus Indexed]
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6.1 An efficient angle based universum least

squares twin support vector machine for pat-

tern classification

Universum based support vector machine (USVM) incorporates prior information

about the distribution of data in training of the classifier. This leads to better gen-

eralization performance, but with increased computation cost. Various twin hyper-

plane based models are proposed to reduce the computation cost of universum based

algorithms. Khemchandani et al. [225] proposed an angle based twin support vector

machine (ATWSVM), and angle based least squares twin support vector machine (LS-

ATWSVM). Motivated by this approach, we present an efficient angle based universum

least squares twin support vector machine (AULSTSVM) for classification. This is a

novel approach of incorporating universum in the formulation of least squares based

twin SVM model.
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Figure 6.1: Classification of data points by the proposed AULSTSVM.

The geometrical representation of the proposed approach is shown in Fig. 6.1. In

contrast to TWSVM and LSTSVM where twin hyperplanes are proximal to the binary

classes, in proposed AULSTSVM one hyperplane remains at minimum distance from
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the universum data points, while other hyperplane remains at minimum distance from

the data samples of the binary classes. The objective of the proposed AULSTSVM is to

minimize the angle (θ) between the two hyperplanes. By this approach, the universum

plane provides prior information about the data distribution to the classifier.

In contrast to ATWSVM and LS-ATWSVM, where the angle between the twin

hyperplanes is maximized, AULSTSVM minimizes the angle between the twin hy-

perplanes. This is due to introduction of the idea of universum hyperplane in

AULSTSVM. In the proposed approach, the angle is minimized by maximizing the

dot product of the normal vectors, i.e., wT1 w2. The following subsections present the

formulations of the proposed AULSTSVM for the linear and non-linear cases.

6.1.1 Linear AULSTSVM

There are two optimization problems in AULSTSVM, where the first QPP (6.1)

constructs a hyperplane proximal to universum data, while the second QPP (6.2)

constructs the classifier. A regularization term i.e., c1
2

(‖w1‖2 + b21) is added to control

the model complexity, as well as to remove the ill-conditioning of the matrices [33].

The optimization problems of linear AULSTSVM are written as

min
w1,b1,ξ1,η1

c1
2

(‖w1‖2 + b21) +
1

2
‖Uw1 + eub1‖2 + c3e

T
1 ξ1 + c5e

T
2 η1

s.t. − (X1w1 + e1b1) = ξ1,

X2w1 + e2b1 = η1, (6.1)

min
w2,b2,ξ2,η2

c2
2

(‖w2‖2 + b22) +
c4
2
‖ξ2‖2 +

c6
2
‖η2‖2 − c7(wT1 w2 + b1b2)

s.t. X1w2 + e1b2 − e1 = ξ2,

X2w2 + e2b2 + e2 = η2, (6.2)

where ci > 0, i = 1, . . . 7 are positive parameters, wi, i = 1, 2 represent the weight

vectors, and ξi, ηi, i = 1, 2 represent the slack variables.
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The objective function in QPP (6.1) minimizes the distance of universum data

points from the universum hyperlane, while keeping the data points of the binary

classes as close as possible. QPP (6.1) solves the optimization problem using the lin-

ear loss function, making the classifier less sensitive towards outliers. Consequently,

the computation cost of the proposed AULSTSVM is reduced in comparison to algo-

rithms like ULSTSVM, where quadratic loss is used for all the data points (Eqs. 2.30

and 2.31). Moreover, in QPP (6.2), the objective function minimizes the distance of

classifying hyperplane from the binary classes, while minimizing the angle between

the two hyperplanes. This is a novel formulation for least squares based SVM models

by including information about data distribution using an angle based approach.

The unconstrained optimization problem (UOP) for Eq. (6.1) is written as

L1 =
c1
2

(‖w1‖2 + b21) +
1

2
‖Uw1 + eub1‖2 − c3eT1 (X1w1 + e1b1) + c5e

T
2 (X2w1 + e2b1).

(6.3)

Similarly, the UOP for Eq. (6.2) is given as

L2 =
c2
2

(‖w2‖2 + b22) +
c4
2
‖X1w2 + e1b2 − e1‖2 +

c6
2
‖X2w2 + e2b2 + e2‖2

− c7(wT1 w2 + b1b2). (6.4)

Taking the gradient of L1 (Eq. 6.3) w.r.t. w1 and b1 and equating to 0, we get

c1w1 + UT (Uw1 + eub1)− c3XT
1 e1 + c5X

T
2 e2 = 0, (6.5)

c1b1 + eTu (Uw1 + eub1)− c3eT1 e1 + c5e
T
2 e2 = 0. (6.6)

Rearranging the terms in Eqs. (6.5) and (6.6), and solving for w1 and b1, we get

c1u1 +OTOu1 − c3HT e1 + c5G
T e2 = 0,

u1 = (OTO + c1I)−1(c3H
T e1 − c5GT e2), (6.7)

where H = [X1 e1], G = [X2 e2], O = [U eu], and u1 = [w1 b1]
T . Similarly, setting
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the gradient of L2 (Eq. 6.4) w.r.t. w2 and b2 equal to 0, we get

c2w2 + c4X
T
1 (X1w2 + e1b2 − e1) + c6X

T
2 (X2w2 + e2b2 + e2)− c7w1 = 0, (6.8)

c2b2 + c4e
T
1 (X1w2 + e1b2 − e1) + c6e

T
2 (X2w2 + e2b2 + e2)− c7b1 = 0. (6.9)

Rearranging the terms in Eqs. (6.8) & (6.9) and solving for u2 = [w2 b2]
T , we get

u2 = (c4H
TH + c6G

TG+ c2I)−1(c4H
T e1 − c6GT e2 + c7u1). (6.10)

The decision function for a new data point x is given as

f(x) = sgn(wT2 x+ b2). (6.11)

Note: The decision function of the proposed AULSTSVM (Eq. 6.11) is different

than that of UTSVM, LSTSVM and ULSTSVM (Eq. 2.11).

The algorithm for linear AULSTSVM is described in the following Alg. 6.1.

Algorithm 6.1 Linear AULSTSVM

1: Inputs:
1.1 Training samples X ∈ Rn, training labels Y ∈ {1,−1}.

2: Generate universum data:
2.1 Select samples randomly from binary classes in matrices A and B.
2.2 Compute the averages of samples as U = (A+B)/2.

3: Select optimal parameters:
3.1 Obtain optimal values for parameters i.e., ci > 0, i = 1, . . . 7 using k-fold

cross validation on training data.
4: Construct plane for universum:

4.1 Generate plane for universum data i.e., wT1 x+ b1 using Eq. (6.7).
5: Construct classifier:

5.1 Generate classifying plane i.e., wT2 x+ b2 using Eq. (6.10).
6: Classification of testing data:

6.1 Assign labels to the data points based on sign of decision function in Eq.
(6.11).
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6.1.2 Non-linear AULSTSVM

The optimization problems of non-linear AULSTSVM are described as

min
w1,b1,ξ1,η1

c1
2

(‖w1‖2 + b21) +
1

2
‖K(U,DT )w1 + eub1‖2 + c3e

T
1 ξ1 + c5e

T
2 η1

s.t. − (K(X1, D
T )w1 + e1b1) = ξ1,

K(X2, D
T )w1 + e2b1 = η1, (6.12)

min
w2,b2,ξ2,η2

c2
2

(‖w2‖2 + b22) +
c4
2
‖ξ2‖2 +

c6
2
‖η2‖2 − c7(wT1 w2 + b1b2)

s.t. K(X1, D
T )w2 + e1b2 − e1 = ξ2,

K(X2, D
T )w2 + e2b2 + e2 = η2, (6.13)

where ci > 0, i = 1, . . . , 7 are parameters, wi, i = 1, 2 is weight vector, ξi, ηi, i = 1, 2

are slack variables, and K(Xi, D
T ) is the kernel matrix, where D = [A;B].

The UOP for Eq. (6.12) is written as

L1 =
c1
2

(‖w1‖2 + b21) +
1

2
‖K(U,DT )w1 + eub1‖2 − c3eT1 (K(X1, D

T )w1 + e1b1)

+ c5e
T
2 (K(X2, D

T )w1 + e2b1). (6.14)

Similarly, the UOP for Eq. (6.13) is written as

L2 =
c2
2

(‖w2‖2 + b22) +
c4
2
‖K(X1, D

T )w2 + e1b2 − e1‖2 +
c6
2
‖K(X2, D

T )w2 + e2b2 + e2‖2

− c7(wT1 w2 + b1b2). (6.15)

Setting the gradient of L1 (Eq. 6.14) w.r.t. w1 and b1 and equating to 0, we get

c1w1 +K(U,DT )T
(
K(U,DT )w1 + eub1

)
− c3K(X1, D

T )T e1 + c5K(X2, D
T )T e2 = 0,

(6.16)

c1b1 + eTu
(
K(U,DT )w1 + eub1

)
− c3eT1 e1 + c5e

T
2 e2 = 0. (6.17)
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Rearranging the terms in Eqs. (6.16) and (6.17), and solving for w1 and b1, we get

c1u1 +RTRu1 − c3P T e1 + c5Q
T e2 = 0,

u1 = (RTR + c1I)−1(c3P
T e1 − c5QT e2), (6.18)

where P = [K(X1, D
T ) e1], Q = [K(X2, D

T ) e2], R = [K(U,DT ) eu], and u1 =

[w1 b1]
T .

Similarly, we obtain u2 = [w2 b2]
T as

u2 = (c4P
TP + c6Q

TQ+ c2I)−1(c4P
T e1 − c6QT e2 + c7u1). (6.19)

Here, Eqs. (6.18) and (6.19) involve two inverses of matrices having dimension

(m + 1) × (m + 1), where m = m1 + m2. To reduce the computational complexity

of inverse calculation, we use the Shermann-Morrison-Woodbury (SMW) formula [40]

i.e.,

(A+BCT )−1 = A−1 − A−1B(I + CTA−1B)−1CTA−1. (6.20)

Using SMW approach in Eq. (6.18), we get

u1 =
1

c1
(I −RT (c1I +RRT )−1R)(c3P

T e1 − c5QT e2). (6.21)

In Eq. (6.19), we use the SMW approach twice and obtain two conditions. If

m1 > m2, then we use the following:

V =
1

c2
(I − c4P T (c2I + c4PP

T )−1P ), (6.22)

u2 =
(
V −1 − c6V −1QT (I + c6QV

−1QT )−1QV −1
)(
c4P

T e1 − c6QT e2 + c7u1
)
. (6.23)

If m2 > m1, then u2 is obtained as
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W =
1

c2
(I − c6QT (c2I + c6QQ

T )−1Q), (6.24)

u2 =
(
W−1 − c4W−1P T (I + c4PW

−1P T )−1PW−1
)(
c4P

T e1 − c6QT e2 + c7u1
)
.

(6.25)

One can observe that in Eq. (6.21), one matrix inverse is calculated of size m3×m3.

For u2 (Eqs. (6.22-6.25), two matrix inverses need to be calculated of size m1 ×m1

and m2 × m2. Hence, three inverses of smaller size are calculated using the SMW

approach in comparison to two inverses of large size in Eqs. (6.18) and (6.19).

Finally, the decision function for a new data point x is given as

f(x) = sgn(K(xT , DT )w2 + b2). (6.26)

The algorithm for non-linear AULSTSVM is given in the following Alg. 6.2.

Algorithm 6.2 Non-linear AULSTSVM

1: Inputs:
1.1 Training samples X ∈ Rn, training labels Y ∈ {1,−1}.

2: Generate universum data:
2.1 Select samples randomly from binary classes in matrices A and B.
2.2 Compute the averages of samples as U = (A+B)/2.

3: Select optimal parameters:
3.1 Obtain optimal values for parameters i.e., ci > 0, i = 1, . . . 7, and µ for

the non-linear kernel function using k-fold cross validation on training data.
4: Construct kernel surface for universum:

4.1 Generate surface for universum data i.e., K(xT , DT )w1 + b1 using Eq.
(6.21).

5: Construct non-linear classifier:
5.1 Generate the classifying surface i.e., K(xT , DT )w2 + b2 using the following

if (m1 > m2)
Use Eq. (6.23)
else
Use Eq. (6.25).

6: Classification of testing data:
6.1 Assign labels to the data points based on decision function in Eq. (6.26).
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6.1.3 Proposed AULSTSVM vs ULSTSVM

For providing prior information about data distribution, the idea [10,27] is to keep

universum data within an ε-insensitive tube between the binary classes [27]. This is

achieved by adding constraints for the universum which keeps the twin hyperplanes

proximal to universum data. However, unlike UTSVM [27], the concept of ε-insensitive

tube does not hold in case of ULSTSVM, due to the incorporation of quadratic loss

instead of hinge loss. On the other hand, in case of proposed AULSTSVM, the prior

information of universum is given to the classifier using an angle based approach.

Consequently, the classifier of AULSTSVM aligns itself to the universum hyperplane,

and also classifies the data points of the binary classes. This angle based approach

was not used with universum data in the past. Moreover, the proposed AULSTSVM

includes linear loss in one of the optimization problems, while ULSTSVM uses the

quadratic loss function only. This leads to lesser computation cost of AULSTSVM as

compared to ULSTSVM.

6.1.4 Proposed AULSTSVM vs ATWSVM and LS-

ATWSVM

The formulation of ATWSVM solves a QPP and a system of linear equations to

obtain the classifying hyperplane, whereas the proposed AULSTSVM only solves two

systems of linear equations. In both ATWSVM and LS-ATWSVM, the angle between

the two classifying hyperplane is maximized, whereas AULSTSVM minimizes the angle

between the universum plane and the classifier.

Similar to the proposed AULSTSVM, LS-ATWSVM also solves two systems of

linear equations. However, LS-ATWSVM uses the angle information in separating the

data points of the binary classes [225]. On the contrary, the proposed AULSTSVM

uses the angle information for aligning the classifier with the universum hyperplane.

This results in prior information to the classifier for separating the data points of the

binary classes.
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6.1.5 Time complexity

The solution of proposed AULSTSVM involves computation of kernel matrices and

matrix inverses. The time complexity for generation of kernel matrix is O(m2), while

that of inverse calculation is O(m3) [167]. For addition of two square matrices, the

complexity is O(n2), where n is the number of features in the dataset.

In linear case, the proposed AULSTSVM has lesser time complexity than UL-

STSVM, due to the introduction of linear loss in place of quadratic. This leads

to lesser number of matrix addition operations in the proposed AULSTSVM. The

computation complexity of AULSTSVM is similar to LSTSVM and LS-ATWSVM.

Moreover, the training time of proposed AULSTSVM is very less in comparison to

TWSVM, ATWSVM, and UTSVM, as these algorithms involve solution of QPPs.

In non-linear case, SMW formula is used in the algorithms viz. LSTSVM, LS-

ATWSVM, ULSTSVM, and proposed AULSTSVM. In this case also, AULSTSVM

has lesser time complexity in comparison to ULSTSVM. This is due to lesser number

of matrix additions, as well as lesser matrix inverses in AULSTSVM. The solution

of AULSTSVM involves computation of 3 inverses, whereas ULSTSVM involves 5

inverses after applying the SMW approach. The other algorithms like LSTSVM, and

LS-ATWSVM also involve the computation of 3 inverses. However, AULSTSVM and

ULSTSVM involve the generation of kernel matrix for universum which has complexity

of O(m2). This leads to additional computation time.

One important observation is that in comparison to LSTSVM and LS-ATWSVM,

one matrix inverse in our proposed AULSTSVM is for universum, which is of very

less size. A comparison of computation time of the algorithms is shown in the next

subsection.

6.1.6 Experimental results

In this section, we present the comparison of proposed AULSTSVM with TWSVM

[12], ATWSVM [225], UTSVM [27], LSTSVM [18], LS-ATWSVM [225], and UL-

STSVM [71] algorithms. The experiments are performed for both linear and non-linear
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cases of the algorithms. We used 26 benchmark datasets to analyze the performance

of our proposed AULSTSVM. To show the applicability of the proposed AULSTSVM

on real world problems, an application on Alzheimer’s disease data is presented in

this section. Moreover, an analysis of computation time is shown for the existing and

proposed algorithms on large scale datasets. Statistical tests and insensitivity analysis

are presented for detailed analysis of the proposed approach.

6.1.6.1 Parameter settings

In case of real world datasets in Table 6.1 and 6.2, 50% of data samples are used

for training and rest for testing. The size of universum is chosen as 15% of total data

samples in real world datasets. 5-fold cross-validation is used for selecting optimal

parameters in all the algorithms. The parameters ci, i = 1, ..., 6 are selected from the

set {10−5, 10−4, ..., 105} for TWSVM, ATWSVM, UTSVM, LSTSVM, and proposed

AULSTSVM, while for ATWSVM and LS-ATWSVM parameters c1, c4 are chosen

from {10−9, 10−4, ..., 100} [225]. For UTSVM and ULSTSVM, ε is chosen from the

set {0.1, 0.2, ..., 0.9}. To reduce the computational complexity of grid search [226],

the parameters are set as c1 = c2 = cu in TWSVM and UTSVM, c1 = c2, c3 = c4 in

ULSTSVM, and c1 = c3 = c5, c2 = 1 − c4 [225] in ATWSVM and LS-ATWSVM. In

proposed AULSTSVM the parameters are set as c1 = c2, c3 = c5 = c1∗c4, c4 = c6. The

parameter c3 is for the linear loss. In order to maintain a tradeoff between linear and

quadratic loss, the parameter c3 is taken as product of the weighting parameters for

regularization term, and quadratic loss of the data points. The kernel parameter µ is

taken from the set {2−5, 2−4, ..., 25} in all the algorithms. In ATWSVM, LS-ATWSVM,

and proposed AULSTSVM the angle parameter c7 is chosen from {0.1, 0.2, ..., 1} [225].

In case of large datasets shown in Table 6.4, the hardware specifications are same

as in 3.2.6, the size of training data and universum is 60% and 10% of all samples

respectively. The values of ci, i = 1, 2 are fixed as 0.1, ci, i = 3, ..., 6 are fixed as 1, the

parameters c7, ε are set as 0.5, and µ is set as 24 [158] for all the algorithms. For ADNI

datasets, the size of universum is chosen from the set {10%, 15%}. The universum

data is generated by random averaging of data points [26, 27], and the same dataset
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is used in UTSVM, ULSTSVM, and proposed AULSTSVM.

6.1.6.2 Synthetic dataset

The classifiers constructed by the different algorithms on Half kernel synthetic

dataset [3] are shown in Fig. 6.2. The hyperplanes for the binary classes are shown in

red and blue colour, while black coloured hyperplane is the classifier. One can see that

instead of twin hyperplanes for the two classes, proposed AULSTSVM constructs one

plane for universum (green), and one for classification (black). The AULSTSVM tries

to minimize the angle between the hyperplanes, and thus provides prior information

to the classifier using the universum plane. In Fig. 6.2, one observation is that

the quadratic loss based methods shown in 6.2(a), 6.2(b), and 6.2(c) are showing

comparatively better performance than the hinge loss based models in 6.2(d), 6.2(e),

and 6.2(f). Among the quadratic loss based methods, the proposed AULSTSVM is

showing highest generalization performance shown in 6.2(f). This shows the benefit

of introducing the universum plane for providing prior information about the data.

6.1.6.3 Real world benchmark datasets

This subsection presents the experimental results with discussion on the perfor-

mance of the algorithms for both linear and non-linear cases.

I. Linear case:

The experimental results for the linear case are shown in Table 6.1. The perfor-

mance comparison with 6 existing algorithms is based on mean accuracy with standard

deviation and training time. One can observe in Table 6.1 that the accuracy of the

proposed AULSTSVM is more than existing algorithms in most of the datasets. This

is reflected in the average rank of AULSTSVM based on accuracy i.e., 2.2115. It is

the least rank among all the methods in Table 6.1. The proposed AULSTSVM is out-

performing all the existing algorithms in 10 out of 26 datasets. One can notice that

apart from AULSTSVM, other algorithms viz. UTSVM and ULSTSVM performed

better than other algorithms in terms of accuracy.
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Figure 6.2: Plot showing comparison of classifiers on Half kernel [3] synthetic dataset
using RBF kernel.
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Table 6.1: Performance comparison of the proposed AULSTSVM with existing algo-
rithms on real world datasets in linear case.

Dataset
(Size)

TWSVM
Accuracy (%)

(c1)
Time (s)

ATWSVM
Accuracy (%)

(c1, c4)
Time (s)

UTSVM
Accuracy (%)

(c1, ε)
Time (s)

LSTSVM
Accuracy (%)

(c1)
Time (ms)

LS-ATWSVM
Accuracy (%)

(c1, c4)
Time (ms)

ULSTSVM
Accuracy (%)

(c1, c3, ε)
Time (ms)

AULSTSVM
Accuracy (%)

(c4, c1, c7)
Time (ms)

Ecoli-0-1 vs 2-3-5
(246 × 7)

90.93±6.79
(100)

0.0091

91.03±3.45
(10−7, 0.7)

0.0046

93.47±5.48
(101, 0.2)

0.0082

92.53±3.53
(101)

0.0656

90.2±3.75
(10−5, 0.3)

0.0626

92.67±3.39
(102, 105, 0.9)

0.0754

94.3±6.71
(10−5, 10−5, 0.5)

0.0649

Ecoli-0-1 vs 5
(242 × 6)

92.39±5.56
(100)

0.0099

91.77±4.05
(10−6, 0.3)

0.0046

90.87±4.61
(104, 0.1)

0.0088

88.22±6.2
(101)

0.0759

86.7±6.9
(10−9, 0.1)

0.0541

87.63±5.78
(101, 10−5, 0.1)

0.0732

96.67±3.49
(100, 102, 0.4)

0.0627

Ecoli-0-1-4-7 vs 5-6
(334 × 6)

95.76±2.71
(100)

0.0113

94.05±4.16
(10−9, 0.1)

0.0067

97.01±0.05
(100, 0.4)

0.0151

95.76±4.6
(10−1)
0.0623

92.85±5.36
(10−9, 1)
0.0807

95.79±2.68
(100, 10−5, 0.9)

0.0806

97.61±2.47
(101, 103, 0.8)

0.0592

Ecoli-0-2-3-4 vs 5
(204 × 7)

89±4.18
(10−1)
0.0069

94.24±6.2
(10−6, 0.5)

0.0047

85.19±7.24
(10−1, 0.1)

0.0102

89±8.94
(10−1)
0.0646

92.24±4.14
(10−6, 0.6)

0.0581

87.33±7.33
(10−5, 103, 0.1)

0.0774

94.19±6.28
(10−5, 10−5, 0.1)

0.053

Ecoli-0-2-6-7 vs 3-5
(226 × 7)

93.68±4.09
(10−1)
0.0067

92.17±7.78
(10−1, 0.9)

0.0046

86.88±11.47
(10−1, 0.8)

0.0106

90.12±7.4
(100)

0.0587

89.57±11.34
(100, 0.9)

0.0676

90.36±6.44
(10−1, 10−1, 0.9)

0.1337

95.65±4.35
(100, 103, 0.8)

0.0725

Ecoli-0-3-4-6 vs 5
(206 × 7)

86.05±17.5
(100)

0.0063

92.29±9.9
(100, 0.5)

0.0041

93.19±2.7
(102, 0.3)

0.0108

92.05±4.51
(100)

0.0715

90.38±6.74
(10−9, 0.1)

0.0563

89.43±10.85
(10−3, 102, 0.1)

0.0752

97.05±4.45
(101, 101, 0.4)

0.0575

Ecoli-0-4-6 vs 5
(204 × 6)

95±3.54
(10−1)
0.0067

91.14±2.3
(10−9, 0.2)

0.004

89.29±7.76
(102, 0.6)

0.0086

94±4.18
(10−1)
0.0624

90.1±7.07
(10−9, 0.1)

0.052

94.14±4.09
(10−1, 10−5, 0.1)

0.1042

92.1±7.63
(104, 102, 0.5)

0.0549

Ecoli-0-6-7 vs 3-5
(224 × 7)

78.18±8.74
(101)

0.0069

86.64±6.16
(10−6, 0.7)

0.0045

80.43±16.72
(102, 0.1)

0.0081

80.91±19.92
(101)

0.0724

87.51±7.2
(10−8, 0.4)

0.0571

92.85±2.48
(100, 103, 0.4)

0.0776

96.4±3.79
(101, 103, 1)

0.0758

Led7digit-0-2-4-5-
6-7-8-9 vs 1
(444 × 7)

95±5.43
(100)

0.0177

95.05±3.69
(100, 0.8)

0.0135

92.8±1.86
(101, 0.2)

0.0255

91.82±1.24
(100)

0.0853

91.89±1.25
(100, 0.9)

0.0579

96.85±2.58
(100, 10−5, 0.6)

0.0989

97.29±2.95
(100, 101, 0.3)

0.066

Yeast-0-2-5-7-9
vs 3-6-8

(1006 × 8)

95.8±1.49
(100)
0.078

96.62±1.5
(100, 0.9)

0.0462

96.82±0.82
(100, 0.2)

0.1278

92.61±1.82
(100)

0.0838

92.65±2.84
(10−1, 0.9)

0.0675

95.43±0.87
(102, 102, 0.8)

0.098

96.23±1.9
(10−1, 100, 0.9)

0.0724

Yeast-2 vs 4
(516 × 8)

94.92±4.3
(102)

0.0165

93.02±1.76
(10−9, 0.7)

0.0171

95.73±1.63
(100, 0.5)

0.0231

94.13±3.11
(100)

0.0719

91.09±4.42
(10−2, 0.9)

0.063

93.03±2.56
(102, 102, 0.7)

0.1203

96.52±2.09
(100, 100, 0.5)

0.0698

Ecoli-0-1-4-6 vs 5
(282 × 6)

92.75±4.59
(101)

0.0106

97.86±3.19
(10−1, 0.8)

0.008

94.38±5.22
(100, 0.1)

0.0121

98.57±3.19
(10−1)
0.0716

93.67±4.45
(10−9, 0.1)

0.0749

99.31±1.54
(100, 10−5, 0.6)

0.0775

97.86±3.19
(105, 104, 0.4)

0.0563

Glass-0-6 vs 5
(110 × 9)

96.18±5.24
(10−5)
0.0075

94.55±8.13
(10−3, 0.7)

0.0033

87.27±15.21
(100, 0.2)

0.0079

88.73±10.32
(10−5)
0.0806

90.91±11.13
(10−9, 0.1)

0.0614

87.27±8.13
(10−3, 10−4, 0.1)

0.1314

89.09±7.61
(10−3, 10−3, 0.6)

0.0795

Abbreviations: s- seconds, ms- milliseconds.
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Table 6.1 (contd.)

Dataset
(Size)

TWSVM
Accuracy (%)

(c1)
Time (s)

ATWSVM
Accuracy (%)

(c1, c4)
Time (s)

UTSVM
Accuracy (%)

(c1, ε)
Time (s)

LSTSVM
Accuracy (%)

(c1)
Time (ms)

LS-ATWSVM
Accuracy (%)

(c1, c4)
Time (ms)

ULSTSVM
Accuracy (%)

(c1, c3, ε)
Time (ms)

AULSTSVM
Accuracy (%)

(c4, c1, c7)
Time (ms)

Abalone9-18
(732 × 7)

95.07±7.35
(102)

0.0441

94.29±6.31
(10−9, 0.6)

0.0258

95.64±4.23
(101, 0.5)

0.0556

94.79±6.81
(100)

0.0811

94.01±6.02
(10−1, 0.9)

0.0729

95.65±4.81
(101, 100, 0.7)

0.1108

95.92±4.69
(100, 10−1, 0.7)

0.0954

Pima Indians
(770 × 8)

74.16±6.81
(100)

0.0201

74.55±5.71
(100, 0.6)

0.0121

77.14±2.69
(10−1, 0.7)

0.0311

79.64±2.81
(100)

0.0866

64.42±8.88
(100, 0.9)

0.0702

72.99±4.54
(100, 10−1, 0.1)

0.103

77.66±2.32
(103, 103, 0.6)

0.0954

New-thyroid1
(216 × 5)

98.1±2.61
(101)

0.0064

89.78±6.02
(100, 0.9)

0.0041

95.37±0.12
(100, 0.8)

0.0099

95.32±3.22
(10−2)
0.1015

86.02±6.01
(10−1, 0.9)

0.0638

96.28±2.08
(10−2, 102, 0.1)

0.1104

97.23±2.53
(102, 104, 0.9)

0.0526

Yeast3
(1486 × 8)

95.27±1.36
(100)

0.1635

92.32±4.82
(10−1, 0.4)

0.1273

92.86±3.66
(101, 0.7)

0.2889

90.28±6.92
(100)
0.082

90.29±6.68
(10−1, 0.9)

0.0746

92.86±2.89
(100, 10−5, 0.7)

0.1504

92.32±3.27
(102, 102, 0.4)

0.0753

Yeast1vs7
(460 × 8)

93±3.55
(100)

0.0131

93.48±3.44
(10−2, 0.2)

0.0085

93.48±3.44
(100, 0.4)

0.0215

93.45±3.41
(100)

0.0688

92.17±3.64
(10−2, 0.9)

0.068

54.35±24.35
(102, 102, 0.8)

0.084

93.48±3.44
(10−1, 10−2, 1)

0.0653

Ecoli0137vs26
(312 × 7)

94.19±4.21
(10−1)
0.0105

94.21±8.04
(10−1, 0.8)

0.0076

96.79±3.23
(10−1, 0.1)

0.0122

96.77±2.28
(10−1)
0.0658

88.45±8.73
(10−1, 0.9)

0.077

95.5±6.69
(10−1, 10−5, 0.6)

0.1101

95.5±4.9
(10−1, 10−1, 0.5)

0.0633

Glass-0-1-6 vs 2
(194 × 9)

88.42±6.86
(100)

0.0088

91.79±5.91
(10−7, 0.5)

0.0045

93.89±4.15
(100, 0.1)

0.0089

93.68±4.4
(100)

0.0742

93.89±4.15
(10−9, 1)
0.0789

93.89±4.15
(100, 105, 0.9)

0.0856

93.89±4.15
(102, 102, 0.3)

0.07

Monk2
(602 × 7)

68.21±10.15
(100)

0.0105

45.24±11.44
(10−6, 0.8)

0.0092

58.79±13.85
(101, 0.4)

0.0225

56.77±16.17
(100)

0.0882

64.13±6.25
(10−9, 0.1)

0.085

54.13±15.02
(101, 10−5, 0.9)

0.0853

64.13±6.25
(10−5, 10−2, 0.1)

0.0632

Australian credit
(692 × 14)

86.34±4.65
(100)
0.018

83.52±2.25
(100, 0.8)

0.0106

84.68±6.54
(100, 0.1)

0.0298

85.78±7.32
(100)

0.0901

71.66±2.94
(10−9, 0.9)

0.0853

85.83±6.28
(101, 103, 0.8)

0.1145

85.25±3.77
(10−3, 100, 0.7)

0.084

Ripley
(1252 × 2)

88.15±2.59
(101)

0.0391

87.22±2.49
(100, 0.9)

0.0154

87.06±1.34
(101, 0.4)

0.0747

89.1±1.97
(10−5)
0.0992

68.69±4.03
(10−9, 0.9)

0.0656

88.5±2.38
(101, 100, 0.4)

0.1015

87.54±3.33
(10−5, 10−4, 0.1)

0.0823

Transfusion
(750 × 4)

70.3±15.98
(100)

0.0217

82.67±14.02
(10−6, 0.9)

0.0215

82.13±14.38
(100, 0.1)

0.0356

82.01±14.55
(101)

0.0856

82.4±14.19
(10−6, 0.6)

0.0569

79.47±23.24
(100, 10−1, 0.9)

0.0937

84.53±14.78
(102, 105, 0.3)

0.0712

Votes
(436 × 16)

97.22±1.05
(100)

0.0088

90.41±7.91
(10−9, 0.6)

0.0079

93.59±4.35
(100, 0.9)

0.0123

94.89±5.05
(10−5)
0.1304

60.06±3.83
(10−9, 1)
0.1112

84.38±6.28
(101, 10−5, 0.2)

0.1921

94.97±4.92
(100, 101, 0.2)

0.0821

Vowel
(990 × 10)

88.86±5.46
(10−1)
0.0622

89.49±6.09
(100, 0.4)

0.0523

92.12±6.9
(102, 0.4)

0.112

91.08±2.7
(100)

0.1129

90.1±1.81
(10−1, 0.8)

0.1125

92.12±6.68
(100, 10−1, 0.5)

0.1237

91.72±7.09
(104, 104, 0.5)

0.0755

Average accuracy 89.73 89.21 89.5 89.69 85.62 88 92.12

Average rank 3.8846 4.2885 3.8654 4.2692 5.6154 3.8654 2.2115
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In Table 6.1, the average ranks based on accuracy of UTSVM and ULSTSVM are

the same i.e., 3.8654. This can be attributed to the use of universum data in both

of these algorithms. In terms of computational efficiency, AULSTSVM takes very

less training time in comparison to TWSVM, ATWSVM, UTSVM, and ULSTSVM in

Table 6.1. This is because TWSVM, ATWSVM and UTSVM solve computationally

intensive QPPs, while AULSTSVM solves system of linear equations. The training

time of the proposed AULSTSVM is lesser than ULSTSVM due to the introduction of

linear loss in AULSTSVM. The difference in training time is clearly visible in the large

sample datasets viz. Yeast-0-2-5-7-9 vs 3-6-8, Yeast3 and Ripley. In these datasets,

the training time of proposed AULSTSVM is lesser than LSTSVM algorithm also. It

shows the benefit of the proposed algorithm which includes universum data for prior

information, but with lesser computation time.

II. Non-linear case:

In non-linear case also, the proposed AULSTSVM outperforms the existing al-

gorithms in terms of accuracy in Table 6.2. The proposed AULSTSVM performed

better than existing algorithms in 11 out of 26 datasets. This shows the superiority of

proposed AULSTSVM over the other algorithms. Among the 7 algorithms, proposed

AULSTSVM achieves lowest rank on accuracy i.e., 2.2692. The second algorithm

with better performance in terms of accuracy is UTSVM with a rank of 3.4615. This

shows the superiority of universum based SVM algorithms. One can observe that in

the non-linear case also, the training time of AULSTSVM is very less as compared

to TWSVM, ATWSVM, and UTSVM. However, the training time of AULSTSVM is

comparable to LSTSVM. This is due to the overhead of calculating the universum

kernel matrix in proposed AULSTSVM. In comparison to ULSTSVM, the training

time of AULSTSVM is very less. This means that proposed AULSTSVM utilizes the

universum data using kernel matrix like in ULSTSVM, but with reduced computation

cost. Thus, non-linear AULSTSVM also removes the drawback of increased computa-

tion time due to addition of universum data [20]. The computation time of proposed

AULSTSVM is comparable to the existing algorithms in the non-linear case, because

most computations are involved in the construction of kernel matrices.
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Table 6.2: Performance comparison of the proposed AULSTSVM with existing algo-
rithms on real world datasets for non-linear case.

Dataset
(Size)

TWSVM
Accuracy (%)

(c1, µ)
Time (s)

ATWSVM
Accuracy (%)

(c1, c4, µ)
Time (s)

UTSVM
Accuracy (%)

(c1, µ, ε)
Time (s)

LSTSVM
Accuracy (%)

(c1, µ)
Time (ms)

LS-ATWSVM
Accuracy (%)

(c1, c4, µ)
Time (s)

ULSTSVM
Accuracy (%)
(c1 = c3, ε, µ)

Time (s)

AULSTSVM
Accuracy (%)
(c4 = c1, c7, µ)

Time (s)

Ecoli-0-1 vs 2-3-5
(246 × 7)

92.63±7.25
(10−5, 25)

0.0204

91.83±6.41
(100, 0.1, 25)

0.0183

93.43±6.21
(10−5, 25, 0.1)

0.0227

91.03±5.99
(10−5, 24)

0.0117

90.2±3.75
(100, 0.1, 25)

0.0132

93.47±5.48
(103, 0.3, 25)

0.0166

94.27±4.72
(103, 0.3, 25)

0.0123

Ecoli-0-1 vs 5
(242 × 6)

95.87±4.17
(10−5, 25)

0.0211

94.2±2.31
(10−3, 0.6, 25)

0.0196

90.93±3.37
(10−2, 24, 0.4)

0.024

91.8±6.38
(103, 25)
0.0144

92.57±4.55
(10−1, 0.8, 25)

0.0135

96.7±3.48
(10−1, 0.6, 25)

0.0164

96.7±3.48
(100, 0.1, 25)

0.012

Ecoli-0-1-4-7 vs 5-6
(334 × 6)

97.61±2.47
(10−3, 25)

0.0324

97.01±2.99
(100, 0.6, 25)

0.0299

96.4±3.29
(10−1, 25, 0.7)

0.0374

95.81±4.53
(101, 25)
0.0216

93.44±5.68
(100, 0.9, 25)

0.022

97.01±2.99
(100, 0.6, 25)

0.0268

98.22±2.64
(102, 0.1, 25)

0.0217

Ecoli-0-2-3-4 vs 5
(204 × 7)

96.05±2.21
(10−5, 24)

0.0178

99.05±2.13
(10−1, 0.1, 25)

0.0128

99±2.24
(10−3, 24, 0.4)

0.0189

96.05±2.21
(10−5, 24)

0.0115

85.52±11.02
(10−1, 0.6, 25)

0.0084

98±2.74
(100, 0.3, 25)

0.013

98.1±4.26
(10−2, 0.4, 25)

0.0087

Ecoli-0-2-6-7 vs 3-5
(226 × 7)

95.65±4.35
(10−3, 25)

0.0229

95.65±4.35
(100, 0.7, 25)

0.0182

92.96±4.99
(10−3, 24, 0.5)

0.0277

91.15±6.15
(10−2, 25)

0.0113

93.04±6.59
(10−1, 0.8, 25)

0.0098

91.26±8.11
(104, 0.2, 25)

0.0148

96.52±3.64
(101, 0.1, 25)

0.0101

Ecoli-0-3-4-6 vs 5
(206 × 7)

95.14±3.54
(10−5, 25)

0.0135

98.05±2.67
(10−1, 0.8, 25)

0.0158

95.1±6.13
(10−1, 25, 0.7)

0.0197

96.14±4
(10−5, 24)

0.0117

91.33±7.08
(10−1, 0.1, 24)

0.0113

96.1±4.16
(10−3, 0.8, 25)

0.0132

97.05±2.7
(100, 0.2, 25)

0.0089

Ecoli-0-4-6 vs 5
(204 × 6)

90.14±5.06
(10−5, 24)

0.0192

95±5
(10−1, 0.9, 25)

0.0169

95±7.07
(10−3, 24, 0.4)

0.0198

91.14±6.54
(10−5, 24)

0.0108

90.14±3.63
(10−1, 0.9, 25)

0.0103

94.1±4.21
(101, 0.9, 25)

0.0154

96±5.48
(10−5, 0.1, 25)

0.0085

Ecoli-0-6-7 vs 3-5
(224 × 7)

92.06±5.66
(10−3, 24)

0.0193

94.7±3.62
(100, 0.9, 25)

0.0175

94.66±3.72
(10−2, 25, 0.2)

0.0219

91.07±6.36
(10−5, 25)

0.0109

90.24±4.68
(10−1, 0.9, 25)

0.0093

93.75±4.03
(10−2, 0.1, 25)

0.0145

94.66±3.72
(101, 0.2, 25)

0.01

Led7digit-0-2-4-5-
6-7-8-9 vs 1
(444 × 7)

94.64±5.1
(10−4, 21)

0.0529

96.39±3.45
(10−9, 0.8, 24)

0.0476

96.86±2.54
(10−2, 21, 0.9)

0.0596

96.39±3.41
(10−1, 23)

0.0363

91.89±1.25
(10−9, 0.5, 2−5)

0.036

95.95±2.94
(10−1, 0.1, 22)

0.0442

97.75±2.25
(103, 0.2, 21)

0.0376

Yeast-0-2-5-7-9
vs 3-6-8

(1006 × 8)

97.42±1.34
(10−1, 2−2)

0.2386

95.43±1.5
(10−5, 0.9, 2−3)

0.2398

96.23±0.81
(10−1, 21, 0.3)

0.2991

93.84±1.62
(10−1, 22)

0.166

92.85±1.89
(10−5, 0.9, 24)

0.1588

94.63±1.32
(100, 0.7, 2−2)

0.2229

97.22±1.29
(105, 0.4, 2−1)

0.1914

Yeast-2 vs 4
(516 × 8)

95.36±2.9
(10−2, 20)

0.0613

92.26±3.83
(10−1, 0.9, 2−1)

0.0594

96.12±1.36
(10−1, 20, 0.5)

0.076

95.36±3.21
(100, 20)
0.0568

88.79±4.12
(10−5, 0.9, 20)

0.0441

94.97±2.9
(10−2, 0.1, 20)

0.0588

97.29±1.71
(100, 0.7, 20)

0.0511

Ecoli-0-1-4-6 vs 5
(282 × 6)

98.62±3.08
(10−3, 25)

0.0224

99.31±1.54
(10−1, 0.7, 25)

0.0236

98.62±3.08
(10−4, 25, 0.7)

0.0282

99.31±1.54
(10−3, 25)

0.0128

85.1±13.23
(10−1, 0.1, 25)

0.0134

98.62±3.08
(10−2, 0.1, 25)

0.0161

99.31±1.54
(104, 0.6, 25)

0.0155

Glass-0-6 vs 5
(110 × 9)

92.73±7.61
(10−4, 20)

0.0103

92.73±7.61
(10−7, 0.9, 21)

0.0067

94.55±8.13
(101, 24, 0.1)

0.0113

92.73±7.61
(10−5, 20)

0.0036

78.18±34.38
(10−9, 0.2, 2−5)

0.004

90.91±9.09
(10−5, 0.4, 20)

0.0048

90.91±9.09
(10−5, 0.2, 2−1)

0.0028

Abbreviations: s- seconds, ms- milliseconds.
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Table 6.2 (contd.)

Dataset
(Size)

TWSVM
Accuracy (%)

(c1, µ)
Time (s)

ATWSVM
Accuracy (%)

(c1, c4, µ)
Time (s)

UTSVM
Accuracy (%)

(c1, µ, ε)
Time (s)

LSTSVM
Accuracy (%)

(c1, µ)
Time (ms)

LS-ATWSVM
Accuracy (%)

(c1, c4, µ)
Time (s)

ULSTSVM
Accuracy (%)
(c1 = c3, ε, µ)

Time (s)

AULSTSVM
Accuracy (%)
(c4 = c1, c7, µ)

Time (s)

Abalone9-18
(732 × 7)

93.18±4.61
(10−2, 20)

0.1214

93.75±7.32
(10−9, 0.8, 24)

0.1216

94.01±4.65
(10−1, 20, 0.9)

0.1527

92.9±2.96
(10−1, 21)

0.0883

94.01±6.54
(10−9, 0.7, 25)

0.0839

94.29±6.74
(10−1, 0.4, 20)

0.1103

95.1±4.64
(102, 0.4, 2−1)

0.1019

Pima Indians
(770 × 8)

75.06±5.15
(10−4, 25)

0.1268

71.69±5.46
(10−1, 0.2, 25)

0.1171

75.06±2.82
(10−3, 25, 0.9)

0.1538

68.83±6.3
(103, 23)
0.1062

68.05±9.74
(10−2, 0.5, 25)

0.0941

71.95±6.53
(10−40.6, 25)

0.1252

75.58±2.32
(10−5, 1, 25)

0.1121

New-thyroid1
(216 × 5)

97.19±2.57
(10−2, 24)

0.0163

97.19±2.57
(10−1, 0.9, 23)

0.0125

99.05±2.13
(10−3, 25, 0.3)

0.0179

96.32±3.82
(100, 24)

0.01

90.69±4.71
(100, 0.9, 24)

0.0092

94.33±7.83
(103, 0.8, 23)

0.0175

94.42±3.9
(100, 0.3, 23)

0.0095

Yeast3
(1486 × 8)

94.61±2.49
(10−2, 20)

0.5232

90.57±5.83
(10−3, 0.6, 22)

0.5205

94.61±2.66
(103, 22, 0.4)

0.7458

94.34±2.07
(10−1, 21)

0.3651

89.62±6.43
(100, 0.9, 2−1)

0.3628

94.07±2.89
(102, 0.9, 2−1)

0.4955

95.15±1.82
(104, 0.2, 2−1)

0.4305

Yeast1vs7
(460 × 8)

92.61±3.3
(10−1, 2−2)

0.0514

92.61±3.95
(10−3, 0.9, 2−2)

0.0487

91.3±1.54
(10−1, 2−2, 0.1)

0.0627

92.61±3.95
(100, 2−1)

0.0371

91.74±3.22
(10−8, 0.9, 25)

0.0363

90±2.92
(10−2, 0.3, 2−2)

0.0467

93.48±3.44
(101, 0.2, 2−1)

0.04

Ecoli0137vs26
(312 × 7)

95.52±3.65
(10−2, 2−2)

0.0273

91.09±9.63
(10−8, 0.9, 22)

0.0263

75.6±8.81
(102, 23, 0.3)

0.0329

93.61±5.05
(100, 2−1)

0.0156

88.43±10.38
(10−5, 0.9, 24)

0.0156

94.23±2.69
(10−2, 0.1, 22)

0.0196

97.48±4.08
(102, 0.3, 2−2)

0.0183

Glass-0-1-6 vs 2
(194 × 9)

91.84±4.34
(10−4, 21)

0.0172

92.89±5.66
(10−6, 0.2, 20)

0.0158

91.84±4.34
(10−4, 21, 0.1)

0.0193

93.89±4.15
(10−5, 2−5)

0.01

57.89±48.45
(10−9, 0.1, 2−5)

0.011

91.84±5.72
(10−2, 0.9, 2−1)

0.0141

93.89±4.15
(10−5, 0.6, 2−3)

0.0078

Monk2
(602 × 7)

64.13±6.25
(10−5, 2−5)

0.0743

64.13±6.25
(10−9, 0.1, 2−5)

0.0751

64.13±6.25
(10−5, 2−5, 0.1)

0.0918

64.13±6.25
(10−5, 2−5)

0.0614

58.88±14.46
(10−2, 0.9, 22)

0.0651

64.13±6.25
(10−5, 0.1, 2−5)

0.0738

64.13±6.25
(10−5, 0.1, 2−5)

0.0676

Australian credit
(692 × 14)

83.52±4.46
(10−2, 23)

0.0989

85.25±6.45
(10−2, 0.9, 25)

0.0938

83.52±4.46
(10−2, 23, 0.1)

0.1251

85.83±6.46
(100, 25)
0.0848

71.69±2.88
(100, 0.9, 23)

0.0799

82.66±2.25
(10−1, 0.1, 25)

0.1036

84.96±6.48
(10−5, 0.1, 22)

0.0959

Ripley
(1252 × 2)

89.46±1.88
(100, 2−1)

0.3209

89.46±1.05
(10−7, 0.9, 2−3)

0.2828

90.89±1.22
(10−1, 2−1, 0.9)

0.4103

91.22±1.76
(100, 2−1)

0.2551

60.54±9.74
(100, 0.9, 2−2)

0.258

90.42±2.19
(10−2, 0.9, 20)

0.3299

90.74±0.71
(10−3, 0.4, 2−2)

0.2947

Transfusion
(750 × 4)

81.6±13.84
(10−4, 2−5)

0.1216

82.4±13.87
(10−3, 0.6, 25)

0.1196

79.2±13.49
(10−1, 20, 0.4)

0.1566

82.4±14.19
(103, 23)
0.0905

75.47±10.48
(10−3, 0.6, 24)

0.0917

84.53±13.08
(10−1, 0.6, 24)

0.1139

81.6±13.84
(10−5, 0.1, 2−5)

0.109

Votes
(436 × 16)

94.5±4.7
(10−1, 25)

0.0472

93.59±2.45
(10−3, 0.7, 25)

0.0399

94.97±3.72
(10−1, 23, 0.6)

0.0558

94.97±4.92
(100, 24)
0.0357

82.56±6.73
(100, 0.9, 24)

0.0355

94.5±4.7
(10−3, 0.1, 24)

0.0416

94.05±4.41
(10−3, 0.5, 22)

0.038

Vowel
(990 × 10)

93.74±8.88
(10−1, 25)

0.2341

94.55±4.26
(10−4, 0.8, 25)

0.2234

96.97±3.98
(10−1, 23, 0.5)

0.3008

93.74±10.82
(10−1, 24)

0.1579

87.88±8.51
(10−4, 0.4, 24)

0.1627

94.95±5.1
(101, 0.6, 22)

0.2127

93.74±6.04
(102, 0.1, 22)

0.1894

Average accuracy 91.57 91.57 91.19 91.02 83.87 91.44 92.63

Average rank 3.9615 3.4808 3.4615 4.1538 6.5385 4.1346 2.2692
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6.1.6.4 Statistical analysis

To verify the statistical significance of the results, we perform statistical tests viz.

Friedman test [172], and Nemenyi posthoc test in the linear and non-linear cases.

I. Linear case:

Using Table 6.1, we perform the Friedman test and the corresponding post hoc test

on 7 algorithms and 26 datasets. First, we assume that there is no difference between

the methods as the null hypothesis. χ2
F for Friedman test is calculated using average

ranks from Table 6.1 to be 33.5038.

The FF value is calculated as

FF =
(26− 1)(33.5038)

26× (7− 1)− 33.5038
= 6.8377.

Here, the F -distribution has
(
7 − 1, (7 − 1)(26 − 1)

)
= (6, 150) degrees of freedom.

Thus, for the significance level at α = 0.05, the critical value for F (6, 150) is 2.1595.

Since FF = 6.8377 > 2.1595, we reject the null hypothesis.

Now, to check the pairwise difference between the proposed AULSTSVM and ex-

isting algorithms, we use the Nemenyi posthoc test. For significant pairwise difference

between the methods at significance level of α = 0.10, the average ranks of the meth-

ods shown in Table 6.1 should differ by atleast 2.693
√

7(7+1)
6×26

= 1.6135. The pairwise

difference between the methods is shown in Table 6.3. It can be stated that in the lin-

ear case, the proposed AULSTSVM is significantly better than TWSVM, ATWSVM,

UTSVM, LSTSVM, LS-ATWSVM, and ULSTSVM algorithms.

Table 6.3: Pairwise significance of the proposed AULSTSVM with existing algorithms.

Linear TWSVM ATWSVM UTSVM LSTSVM LS-ATWSVM ULSTSVM
Proposed AULSTSVM Yes Yes Yes Yes Yes Yes

Non-linear TWSVM ATWSVM UTSVM LSTSVM LS-ATWSVM ULSTSVM
Proposed AULSTSVM Yes No No Yes Yes Yes

II. Non-linear case:

First, we calculate the value of χ2
F for Friedman test using Table 6.2 as 55.9464.
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The FF value is calculated as

FF =
(26− 1)(55.9464)

26× (7− 1)− 55.9464
= 13.9791.

Since FF = 13.9791 > 2.1595, we reject the null hypothesis. Again, for checking

pairwise difference between proposed AULSTSVM and existing algorithms, we per-

form the Nemenyi post hoc test. The pairwise difference between the methods for the

non-linear case is shown in Table 6.3. It can be stated that the proposed AULSTSVM

is significantly better than TWSVM, LSTSVM, LS-ATWSVM, and ULSTSVM.

6.1.6.5 Insensitivity analysis

The proposed AULSTSVM involves many hyperparameters viz. penalty parame-

ters ci, i = 1, ..., 6, angle parameter c7, and kernel parameter µ. The performance of

proposed non-linear AULSTSVM for varying values of the user defined parameters c

i.e., penalty parameter, and µ is shown in Fig. 6.3.

The plots for classification accuracy on various parameters and datasets are shown

in Fig. 6.3. It is observable that the accuracy of proposed AULSTSVM increases for

higher values of µ. However, the value of c does not have any significant effect on the

accuracy of the model. This is due to the fact that in non-linear case, the value of µ

in the RBF kernel significantly affects the complexity of the classifier.

6.1.7 Large scale datasets

To further analyze the computation cost of the proposed approach, experiments

are performed on large scale NDC datasets [186]. A rectangular kernel [26] matrix

is used in all the algorithms with 10% of the samples of the binary classes. The

classification accuracy, and training time of different algorithms are shown in Table 6.4.

For the comparison on large datasets, LSTSVM and ULSTSVM are chosen because

of their better performance in Table 6.2 w.r.t. accuracy and computation time. It is

observable in Table 6.4 that our proposed AULSTSVM is performing better than the

other algorithms on most datasets.
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Figure 6.3: Insensitivity performance of proposed AULSTSVM on the user defined
parameters c and µ.
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Table 6.4: Performance comparison of the proposed AULSTSVM on large scale
datasets.

Dataset
LSTSVM

Accuracy (%)
Time (s)

ULSTSVM
Accuracy (%)

Time (s)

AULSTSVM
Accuracy (%)

Time (s)

NDC-2.5k
61.3

0.3167
59.7
0.33

61.5
0.2983

NDC-5k
59.3
1.271

56.9
1.7791

60.6
1.1822

NDC-10k
66.9

6.1947
59.28
8.5494

69.93
5.5014

NDC-15k
69.42

16.9719
45.7

24.2488
72.98

13.9909

NDC-20k
71.65

33.1673
48.08

51.1297
75.59

27.8415

NDC-25k
75.68
58.081

62.14
90.2783

80.65
48.2124

NDC-30k
78.03

109.999
63.39

161.552
82.97
101.05

NDC-35k
78.87

130.889
42.74

241.996
83.26

111.261

NDC-40k
83.78

195.487
81.5

393.959
87.23

179.878

NDC-45k
83.07

266.736
65.36

409.817
87.79

209.356

NDC-50k
85.34

356.511
57.99

538.553
87.65

281.122

NDC-55k
85.46
445.58

81.62
908.097

89.71
387.529

NDC-60k
85.35

555.833
69.98

931.383
92.86

435.448

NDC-70k
88.68

1007.36
69.18

1419.21
96.93

661.052

NDC-80k
88.09

1992.52
71.28

2195.76
93.36

995.134

Abbreviations: s- seconds.
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In terms of computation time, the proposed AULSTSVM is better than LSTSVM

and ULSTSVM in all the datasets. This is illustrated in Fig. 6.4, showing the com-

parative advantage of the proposed approach. One can observe that for very large

datasets, such as NDC-60k, NDC-70k, and NDC-80k, the training time of proposed

AULSTSVM is very less as compared to LSTSVM and ULSTSVM. This is due to the

matrix inverse calculation for universum data in the proposed AULSTSVM. The com-

plexity of constructing kernel matrix of m samples is O(m2), while inverse calculation

is O(m3). Consequently, for large datasets the computation time for inverse calcula-

tion is very high. However, the size of universum matrix in the proposed AULSTSVM

is very less size in comparison to the matrices of data points in LSTSVM. Therefore,

the proposed AULSTSVM algorithm is suitable for large scale datasets.
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ULSTSVM
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Figure 6.4: Plot showing comparison of LSTSVM, ULSTSVM, and proposed
AULSTSVM algorithm on training time for large scale datasets.

6.1.8 Application to Alzheimer’s disease

In order to verify the applicability of proposed AULSTSVM on real world appli-

cations, we present an application on classification of Alzheimer’s disease data. We

classify three classes namely control normal (CN), mild cognitive impairment (MCI),

and Alzheimer’s disease (AD) shown in Fig. 6.5. A total of 150 T1-weighted struc-

tural MRI images are used from ADNI database with the same specifications as in
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(a) CN (b) MCI

(c) AD

Figure 6.5: Structural MRI images from ADNI database showing coronol (left image)
and saggital (right image) view of head in CN, MCI, and AD subjects.

subsection 4.2.2. We used three types of VolBM features viz. SCV, WM, and CT as

specified in subsection 4.2.4.

We compared the performance of the proposed AULSTSVM with TWSVM,

UTSVM, LSTSVM, and ULSTSVM algorithms using linear kernel [2]. We performed

three types of classifications viz. CN vs AD, CN vs MCI, and MCI vs AD as shown

in Fig. 6.6. In case of CN vs AD, one can see in Fig. 6.6(a) that the proposed

AULSTSVM achieves highest 95% accuracy for SCV features. For CN vs MCI, the

proposed AULSTSVM obtains 84.21% accuracy, which is more than the best accuracy

of other algorithms. However, in case of MCI vs AD, highest accuracy of 68.42% is

obtained by ULSTSVM, as compared to 63.16% accuracy of AULSTSVM. This is

because MCI vs AD is a relatively difficult task for classification resulting in lower

accuracy [2, 98].

In the next section, we discuss a novel and efficient formulation for least squares

based SVM algorithm with universum data, using parametric-margin based approach.
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Figure 6.6: Plot showing classification performance for (a) CN vs AD, (b) CN vs MCI,
and (c) MCI vs AD by TWSVM, UTSVM, LSTSVM, ULSTSVM, and the proposed
AULSTSVM algorithm.

6.2 Proposed universum least squares twin

parametric-margin support vector machine

(ULSTPMSVM)

In this section, we present a novel parametric-margin based algorithm with uni-

versum data for classification problems. The proposed algorithm i.e., ULSTPMSVM

involves the solution of system of linear equations making it efficient w.r.t. computa-

tion time. The formulations of proposed ULSTPMSVM for the linear and non-linear

201



cases are discussed in the following subsections.

6.2.1 Linear ULSTPMSVM

The optimization problems of linear ULSTPMSVM are written as

min
w1,b1,η1,ψ1

1

2
(‖w1‖2 + b21) + ν1e

T
2 (X2w1 + e2b1) +

c1
2
ηT1 η1 +

cu
2
ψT1 ψ1

s.t. X1w1 + e1b1 = η1,

Uw1 + eub1 + (1− ε)eu = ψ1, (6.27)

min
w2,b2,η2,ψ2

1

2
(‖w2‖2 + b22)− ν2eT1 (X1w2 + e1b2) +

c2
2
ηT2 η2 +

cu
2
ψT2 ψ2

s.t. X2w2 + e2b2 = η2,

Uw2 + eub2 − (1− ε)eu = ψ2, (6.28)

where ci, i = 1, 2, cu are positive parameters, and ηi, ψi, i = 1, 2 are slack variables.

Using the constraints of Eqs. (6.27) and (6.28) in their respective objective func-

tions, we get

min
w1,b1

c1
2

(‖X1w1 + e1b1‖2) + ν1e
T
2 (X2w1 + e2b1) +

1

2
(‖w1‖2 + b21)

+
cu
2

(‖Uw1 + eub1 + (1− ε)eu‖2), (6.29)

min
w2,b2

c2
2

(‖X2w2 + e2b2‖2)− ν2eT1 (X1w2 + e1b2) +
1

2
(‖w2‖2 + b22)

+
cu
2

(‖Uw2 + eub2 − (1− ε)eu‖2). (6.30)

Now, taking the gradient of QPP (6.29) w.r.t. w1 and b1 and equating to 0, we get

c1X
T
1 (X1w1 + e1b1) + ν1X

T
2 e2 + w1 + cuU

T (Uw1 + eub1 + (1− ε)eu) = 0, (6.31)

c1e
T
1 (X1w1 + e1b1) + ν1e

T
2 e2 + b1 + cue

T
u (Uw1 + eub1 + (1− ε)eu) = 0. (6.32)
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Combining Eqs. (6.31) and (6.32) and solving, we get

[w1 b1]
T =− (c1H

TH + cuO
TO + I)−1(ν1G

T e2 + (1− ε)cuOT eu), (6.33)

where H = [A; e1], G = [B; e2], and O = [U ; eu].

Similarly, using Eq. (6.30), we get

[w2 b2]
T =(c2G

TG+ cuO
TO + I)−1(ν2H

T e1 + (1− ε)cuOT eu). (6.34)

The decision function of linear ULSTPMSVM is same as in Eq. (2.11).

6.2.2 Non-linear ULSTPMSVM

The formulation of non-linear ULSTPMSVM involves kernel generated surfaces.

The optimization problem comprises the following two QPPs,

min
w1,b1,η1,ψ1

1

2
(‖w1‖2 + b21) + ν1e

T
2 (K(X2, D

T )w1 + e2b1) +
c1
2
ηT1 η1 +

cu
2
ψT1 ψ1

s.t. K(X1, D
T )w1 + e1b1 = η1,

K(U,DT )w1 + eub1 + (1− ε)eu = ψ1, (6.35)

min
w2,b2,η2,ψ2

1

2
(‖w2‖2 + b22)− ν2eT1 (K(X1, D

T )w2 + e1b2) +
c2
2
ηT2 η2 +

cu
2
ψT2 ψ2

s.t. K(X2, D
T )w2 + e2b2 = η2,

K(U,DT )w2 + eub2 − (1− ε)eu = ψ2, (6.36)

where ci, i = 1, 2, cu are positive parameters, K(., DT ) is the kernel matrix, D = [A;B],

and ηi, ψi, i = 1, 2 represent the slack variables.

Substituting the constraints of Eqs. (6.35) and (6.36) in their respective objective

functions, we get
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min
w1,b1

1

2
(‖w1‖2 + b21) +

c1
2

(‖K(X1, D
T )w1 + e1b1‖2) + ν1e

T
2 (K(X2, D

T )w1 + e2b1)

+
cu
2

(‖K(U,DT )w1 + eub1 + (1− ε)eu‖2), (6.37)

min
w2,b2

1

2
(‖w2‖2 + b22) +

c2
2

(‖K(X2, D
T )w2 + e2b2‖2)− ν2eT1 (K(X1, D

T )w2 + e1b2)

+
cu
2

(‖K(U,DT )w2 + eub2 − (1− ε)eu‖2). (6.38)

Solving similar to the linear case, we get

[w1 b1]
T =− (c1P

TP + cuR
TR + I)−1(ν1Q

T e2 + (1− ε)cuRT eu), (6.39)

where P = [K(X1, D
T ); e1], Q = [K(X2, D

T ); e2], and R = [K(U,DT ); eu].

Similarly, using Eq. (6.38), we get

[w2 b2]
T =(c2Q

TQ+ cuR
TR + I)−1(ν2P

T e1 + (1− ε)cuRT eu). (6.40)

The decision function of non-linear ULSTPMSVM is same as in Eq. (2.10).

6.2.3 Time complexity

The time complexity of proposed ULSTPMSVM is lesser than existing algorithms

such as TWSVM and ULSTSVM. In comparison to TWSVM where QPPs are solved,

the proposed ULSTPMSVM solves a system of linear equations, leading to lesser

computation cost [227]. Moreover, in comparison to ULSTSVM, time complexity of

proposed ULSTPMSVM is lesser because ULSTSVM involves an additional matrix

multiplication term in its solution (Eqs. 2.36 and 2.37), as compared to proposed

ULSTPMSVM in Eqs. (6.33) and (6.34). However, the computation cost of the

proposed ULSTPMSVM is higher than LSTSVM. This is due to the incorporation of

universum data points in the proposed ULSTPMSVM algorithm.
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6.2.4 Experimental results

In this section, we show the results of experiments carried out on real world

datasets, along with an application on Alzheimer’s disease.

6.2.4.1 Parameter settings

For experiments on real world datasets, 50% data is used for training. The pa-

rameters c and ν are chosen from the set {10−5, 10−4, ..., 105}, while µ is chosen from

{2−5, 2−4, ..., 25}. The value for ε is selected from {0.1, 0.4, 0.7}. The universum data

is generated by performing random averaging of data points in all the cases [9,20,27].

In case of Alzheimer’s disease dataset, 40% of the samples are used for training.

Freesurfer’s recon-all pipeline (version 6.0.1) [205] is applied for processing the struc-

tural MRI (sMRI) images as in subsection 4.2.4.

6.2.4.2 Real world datasets

In Table 6.5, performance comparison of the proposed ULSTPMSVM is shown

with existing algorithms on 18 real world benchmark datasets. The existing algorithms

used for comparison in this work are TWSVM [12], LSTSVM [18], LSTPMSVM [227],

and ULSTSVM [71]. One can observe in Table 6.5 that the proposed ULSTPMSVM

is showing lowest average rank on the basis of accuracy. In terms of training time,

the time taken by proposed ULSTPMSVM is comparable or lesser than the existing

algorithms. It is noticeable that the training time of TWSVM is the highest. This is

because the solution of TWSVM involves a pair of QPPs, as compared to systems of

linear equations in least squares based algorithms.

6.2.4.3 Statistical analysis

To check the statistical difference, the Friedman test [172] is performed with the

corresponding posthoc test. First, we assume that there is no difference between the

methods. Now, the χ2
F value is calculated for Friedman test using average ranks ri

from Table 6.5 as 20.8605.
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Table 6.5: Comparison of the proposed ULSTPMSVM with existing algorithms on
classification of real world datasets using RBF kernel.

Dataset
(Size)

TWSVM
Accuracy (%)

(c, µ)
Time (s)

LSTSVM
Accuracy (%)

(c, µ)
Time (s)

LSTPMSVM
Accuracy (%)

(c, ν, µ)
Time (s)

ULSTSVM
Accuracy (%)
(c1, c2, ε, µ)

Time (s)

Proposed ULSTPMSVM
Accuracy (%)

(c, ν, ε, µ)
Time (s)

Ecoli-0-1 vs 5
(242 × 6)

94.2149
(10−5, 25)

0.0442

90.9091
(10−3, 25)

0.0033

95.0413
(10−2, 101, 24)

0.0035

95.0413
(10−5, 10−1, 0.1, 24)

0.0035

97.5207
(101, 102, 0.1, 25)

0.0035

Ecoli-0-1-4-7 vs 5-6
(334 × 6)

97.006
(10−3, 25)

0.0135

94.6108
(10−1, 25)

0.0016

97.6048
(100, 101, 24)

0.0018

98.8024
(100, 10−3, 0.7, 25)

0.0017

98.8024
(101, 10−2, 0.1, 25)

0.0016

Ecoli-0-2-6-7 vs 3-5
(226 × 7)

93.8053
(10−3, 25)

0.0079

97.3451
(102, 25)
0.0007

96.4602
(102, 102, 25)

0.0007

92.9204
(10−1, 10−5, 0.4, 25)

0.0009

96.4602
(10−1, 10−2, 0.1, 24)

0.0007

Ecoli-0-3-4-6 vs 5
(206 × 7)

97.0874
(10−5, 25)

0.0071

98.0583
(104, 25)
0.0006

95.1456
(105, 102, 25)

0.0009

98.0583
(10−1, 10−5, 0.7, 25)

0.0007

98.0583
(101, 10−1, 0.7, 25)

0.0007

Ecoli-0-6-7 vs 3-5
(224 × 7)

91.0714
(10−3, 24)

0.0106

94.6429
(101, 25)
0.0007

91.9643
(100, 101, 24)

0.0008

91.0714
(10−2, 10−3, 0.7, 25)

0.0008

95.5357
(101, 10−1, 0.1, 25)

0.0009

Ecoli4
(336 × 7)

97.6331
(10−2, 22)

0.0133

97.6331
(10−1, 24)

0.0013

97.6331
(103, 105, 21)

0.0015

98.2249
(10−2, 10−5, 0.1, 23)

0.0015

98.2249
(105, 103, 0.4, 21)

0.0019

Glass-0-1-6 vs 2
(194 × 9)

89.6907
(10−4, 21)

0.0064

91.7526
(10−3, 23)

0.0008

92.7835
(105, 102, 2−1)

0.0006

87.6289
(10−3, 10−5, 0.4, 22)

0.0006

92.7835
(10−5, 10−3, 0.4, 2−2)

0.0006

Glass-0-4 vs 5
(92 × 9)

91.4894
(10−1, 24)

0.0058

100
(10−1, 23)

0.0003

95.7447
(104, 105, 24)

0.0005

100
(10−1, 10−5, 0.1, 22)

0.0002

97.8723
(103, 100, 0.4, 20)

0.0002

Heart-stat
(270 × 13)

66.9118
(100, 25)
0.0077

62.5
(10−5, 25)

0.0013

65.4412
(100, 101, 25)

0.001

63.2353
(101, 102, 0.4, 25)

0.0009

67.6471
(10−1, 10−2, 0.7, 25)

0.001

Led7digit-0-2-4-5-6-
7-8-9 vs 1
(444 × 7)

91.8919
(10−4, 21)

0.0236

93.6937
(100, 22)
0.0024

96.8468
(10−2, 10−1, 20)

0.0026

92.3423
(10−1, 10−5, 0.1, 22)

0.0026

92.7928
(102, 102, 0.1, 21)

0.0026

Ecoli-0-1-4-6 vs 5
(282 × 6)

98.5816
(10−3, 25)

0.0103

98.5816
(103, 25)

0.001

98.5816
(101, 101, 24)

0.001

98.5816
(10−2, 10−3, 0.1, 25)

0.001

99.2908
(100, 10−2, 0.1, 25)

0.001

Ecoli2
(336 × 7)

91.716
(10−1, 20)

0.0116

86.9822
(10−2, 20)

0.0014

90.5325
(10−2, 10−1, 2−3)

0.0016

94.0828
(100, 101, 0.1, 2−2)

0.0013

92.3077
(101, 10−2, 0.4, 2−1)

0.0018

Glass4
(282 × 6)

94.4444
(10−5, 20)

0.0084

96.2963
(10−2, 21)

0.001

94.4444
(100, 102, 2−1)

0.0007

96.2963
(10−2, 10−5, 0.7, 21)

0.0007

97.2222
(102, 10−1, 0.7, 21)

0.0008

Breast cancer
Wisconsin
(683 × 9)

98.538
(10−4, 23)

0.032

98.2456
(101, 24)
0.0064

98.538
(10−1, 100, 24)

0.0066

98.2456
(10−4, 10−4, 0.4, 23)

0.0069

98.8304
(103, 103, 0.1, 25)

0.0068
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Table 6.5 (contd.)

Dataset
(Size)

TWSVM
Accuracy (%)

(c, µ)
Time (s)

LSTSVM
Accuracy (%)

(c, µ)
Time (s)

LSTPMSVM
Accuracy (%)

(c, ν, µ)
Time (s)

ULSTSVM
Accuracy (%)
(c1, c2, ε, µ)

Time (s)

Proposed ULSTPMSVM
Accuracy (%)

(c, ν, ε, µ)
Time (s)

Ecoli3
(336 × 7)

91.716
(10−1, 20)

0.012

86.9822
(10−2, 20)

0.0016

90.5325
(10−2, 10−1, 2−3)

0.0021

94.0828
(100, 101, 0.1, 2−2)

0.0016

92.3077
(101, 10−2, 0.4, 2−1)

0.0015

Yeast1vs7
(460 × 8)

91.7391
(10−1, 2−2)

0.0219

93.0435
(100, 2−1)

0.003

93.4783
(10−4, 10−2, 2−1)

0.0032

93.4783
(10−2, 10−3, 0.4, 2−2)

0.0031

93.913
(101, 10−1, 0.1, 2−1)

0.0042

Ecoli0137vs26
(312 × 7)

95.5128
(10−2, 2−2)

0.0108

96.1538
(10−1, 2−1)

0.0015

97.4359
(10−5, 10−4, 2−2)

0.0013

96.1538
(101, 103, 0.4, 2−1)

0.0013

96.7949
(10−1, 10−2, 0.4, 2−1)

0.0012

Votes
(436 × 16)

94.4954
(10−1, 25)

0.0141

94.4954
(100, 24)
0.0023

94.4954
(103, 102, 24)

0.0025

94.0367
(101, 10−4, 0.7, 24)

0.0025

94.9541
(101, 100, 0.4, 22)

0.0025

Average accuracy 92.6414 92.8848 93.4836 93.4602 94.5177

Average rank 3.8889 3.4167 3.0278 3.0556 1.6111

The FF value is calculated as

FF =
(18− 1)(20.8605)

18× (5− 1)− 20.8605
= 6.9345.

This F -distribution involves
(
5−1, (5−1)(18−1)

)
= (4, 68) degrees of freedom. Thus,

for the significance level at α = 0.05, the critical value for F (4, 68) is 2.5066. Since

FF = 6.9345 > 2.5066, the null hypothesis is rejected.

To check the pairwise difference between the proposed ULSTPMSVM and exist-

ing algorithms, we perform the Nemenyi posthoc test [172]. For significant pairwise

difference between the methods at significance level of α = 0.10, the average ranks of

the algorithms shown in Table 6.5 should differ by atleast 2.459
√

5(5+1)
6×18

= 1.296. The

pairwise difference between the methods is shown in Table 6.6.

Table 6.6: Pairwise significant difference between the proposed ULSTPMSVM and
existing algorithms.

Statistical difference TWSVM LSTSVM LSTPMSVM ULSTSVM
Proposed ULSTPMSVM Yes Yes Yes Yes

It can be stated from Table 6.6 that the proposed ULSTPMSVM is significantly

better than TWSVM, LSTSVM, LSTPMSVM, and ULSTSVM algorithms.
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Figure 6.7: Plots showing insensitivity performance for the penalty parameter c =
c1 = c2 with ν = ν1 = ν2 for proposed ULSTPMSVM using RBF kernel.

6.2.4.4 Insensitivity performance

The insensitivity analysis of proposed ULSTPMSVM is presented in Fig. 6.7. The

variation of accuracy w.r.t. the penalty parameter c and ν is shown for 4 datasets viz.

Ecoli-0-1-4-7 vs 5-6, Ecoli-0-6-7 vs 3-5, Glass4, and Votes.

One can observe that the accuracy of proposed ULSTPMSVM increases with higher

value of c, while ν does not have much effect on the accuracy. However, the accuracy

is slightly higher for larger values of ν.
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6.2.4.5 Alzheimer’s disease classification

In Alzheimer disease data, we have considered three classes namely control normal

(CN), Alzheimer’s disease (AD), and mild cognitive impairment (MCI) [2, 28]. We

include 50 sMRI images of CN and AD each, and 49 sMRI images of MCI, since

one MCI image failed to process. The performance of proposed ULSTPMSVM and

existing algorithms on classification of Alzheimer data is shown in Table 6.7.

Table 6.7: Performance comparison of proposed ULSTPMSVM on classification of
Alzheimer’s data.

Dataset
TWSVM

Accuracy (%)
LSTSVM

Accuracy (%)
LSTPMSVM
Accuracy (%)

ULSTSVM
Accuracy (%)

Proposed ULSTPMSVM
Accuracy (%)

CN vs AD 85 80 80 85 76.6667
CN vs MCI 74.5763 59.322 76.2712 74.5763 76.2712
MCI vs AD 61.0169 44.0678 61.0169 42.3729 64.4068

One can see that the proposed ULSTPMSVM performed better than other algo-

rithms in 2 out of 3 datasets i.e., CN vs MCI, and MCI vs AD. The highest accuracy of

proposed ULSTPMSVM in MCI vs AD indicates that it may be used for the early di-

agnosis of Alzheimer’s disease. Moreover, the proposed ULSTPMSVM can be used for

other diseases such as epilepsy, where the universum data is selected from the dataset

itself [20, 26]. This may lead to higher classification accuracy for such problems.

In the next section, we present an improved version of the efficient UTSVM algo-

rithm by introducing regularization in the formulation.

6.3 Proposed improved universum twin support

vector machine (IUTSVM)

In this section, we propose an improved universum twin support vector machine

(IUTSVM). The SRM principle is implemented by regularization in the primal prob-

lems to propose a robust algorithm involving universum data. Moreover, the proposed

IUTSVM implicitly makes the matrices non-singular in the optimization problem. The

following subsections describe the formulations of the proposed IUTSVM algorithm
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in the linear and non-linear forms.

6.3.1 Linear IUTSVM

The linear IUTSVM algorithm comprises the following pair of QPPs:

min
w1, b1, ξ1, η1

1

2
c3(‖w1‖2 + b21) +

1

2
‖X1w1 + e1b1‖2 + c1e

T
2 ξ1 + cue

T
uη1,

s.t. − (X2w1 + e2b1) + ξ1 ≥ e2,

(Uw1 + eub1) + η1 ≥ (−1 + ε)eu,

ξ1 ≥ 0, η1 ≥ 0 (6.41)

min
w2, b2, ξ2, η2

1

2
c4(‖w2‖2 + b22) +

1

2
‖X2w2 + e2b2‖2 + c2e

T
1 ξ2 + cue

T
uη2,

s.t. (X1w2 + e1b2) + ξ2 ≥ e1,

− (Uw2 + eub2) + η2 ≥ (−1 + ε)eu,

ξ2 ≥ 0, η2 ≥ 0, (6.42)

where ci(i = 1, 2, 3, 4) and cu are positive real parameters; ξi, ηi(i = 1, 2) are slack

variables; and ei(i = 1, 2), eu are vectors of ones of suitable dimensions.

The Lagrangian of problems (6.41) and (6.42) are written as:

L1 =
1

2
c3(‖w1‖2 + b21) +

1

2
‖X1w1 + e1b1‖2 + c1e

T
2 ξ1 + cue

T
uη1

+ αT1 (X2w1 + e2b1)− ξ1 + e2)− βT1 ξ1

− µT1 ((Uw1 + eub1) + η1 + eu(1− ε))− γT1 η1, (6.43)

L2 =
1

2
c4(‖w2‖2 + b22) +

1

2
‖X2w2 + e2b2‖2 + c2e

T
1 ξ2 + cue

T
uη2

+ αT2 (−(X1w2 + e1b2)− ξ2 + e1)− βT2 ξ2

+ µT2 ((Uw2 + eub2)− η1 − eu(1− ε))− γT2 η2, (6.44)
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where αi, βi, µi and γi (i = 1, 2) are the Lagrange multipliers.

Using the K.K.T. necessary and sufficient conditions on Eqs. (6.43) and (6.44),

the Wolfe duals are obtained as

max
α1, µ1

eT2 α1 −
1

2
(αT1Q− µT1R)(P TP + c3I)−1(QTα1 −RTµ1) + (ε− 1)eTuµ1,

s.t. 0 ≤ α1 ≤ c1, 0 ≤ µ1 ≤ cu, (6.45)

max
α2, µ2

eT2 α2 −
1

2
(αT2 P − µT2R)(QTQ+ c4I)−1(P Tα2 −RTµ2) + (ε− 1)eTuµ2,

s.t. 0 ≤ α2 ≤ c2, 0 ≤ µ2 ≤ cu, (6.46)

where P = [X1 e1], Q = [X2 e2], R = [U eu] and I is an identity matrix of appropriate

dimension.

The non-parallel hyperplanes xTw1 + b1 = 0 and xTw2 + b2 = 0 are obtained by

using the parameters wi and bi, i = 1, 2 from the following Eqs. (6.47) and (6.48),

w1

b1

 = −(P TP + c3I)−1(QTα1 −RTµ1), (6.47)

w2

b2

 = (QTQ+ c4I)−1(P Tα2 −RTµ2). (6.48)

It can be observed that both the matrices (P TP+c3I) and (QTQ+c4I) are positive

definite, and hence the solution of IUTSVM is more robust and stable than that of

UTSVM. A new data point is classified to a class using Eq. (2.11).
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6.3.2 Non-linear IUTSVM

In non-linear IUTSVM, we consider the following pair of minimization problems:

min
w1, b1, ξ1, η1

1

2
c3(‖w1‖2 + b21) +

1

2
‖K(X1, D

T )w1 + e1b1‖2 + c1e
T
2 ξ1 + cue

T
uη1

s.t. − (K(X2, D
T )w1 + e2b1) + ξ1 ≥ e2

(K(U,DT )w1 + eub1) + η1 ≥ (−1 + ε)eu

ξ1 ≥ 0, η1 ≥ 0, (6.49)

min
w2, b2, ξ2, η2

1

2
c4(‖w2‖2 + b22) +

1

2
‖K(X2, D

T )w2 + e2b2‖2 + c2e
T
1 ξ2 + cue

T
uη2

s.t. (K(X1, D
T )w2 + e1b2) + ξ2 ≥ e1

− (K(U,DT )w2 + eub2) + η2 ≥ (−1 + ε)eu

ξ2 ≥ 0, η2 ≥ 0, (6.50)

where ci(i = 1, 2, 3, 4) and cu are positive real parameters; ξi, ηi(i = 1, 2) are slack

variables and ei(i = 1, 2) and eu are the vectors of ones of suitable dimensions.

The Lagrangian of problems (6.49) and (6.50) are written as:

L1 =
1

2
c3(‖w1‖2 + b21) +

1

2
‖K(X1, D

T )w1 + e1b1‖2 + c1e
T
2 ξ1 + cue

T
uη1

+ αT1 ((K(X2, D
T )w1 + e2b1)− ξ1 + e2)− βT1 ξ1

− µT1 ((K(U,DT )w1 + eub1) + η1 + eu(1− ε))− γT1 η1, (6.51)

L2 =
1

2
c4(‖w2‖2 + b22) +

1

2
‖K(X2, D

T )w2 + e2b2‖2 + c2e
T
1 ξ2 + cue

T
uη2

+ αT2 (−(K(X1, D
T )w2 + e1b2)− ξ2 + e1)− βT2 ξ2

+ µT2 ((K(U,DT )w2 + eub2)− η1 − eu(1− ε))− γT2 η2. (6.52)

Applying the K.K.T. necessary and sufficient conditions on Eqs. (6.53) and (6.54),
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the Wolfe duals are written as

max
α1, µ1

eT2 α1 −
1

2
(αT1N − µT1O)(MTM + c3I)−1(NTα1 −OTµ1) + (ε− 1)eTuµ1

s.t. 0 ≤ α1 ≤ c1, 0 ≤ µ1 ≤ cu, (6.53)

max
α2, µ2

eT2 α2 −
1

2
(αT2M − µT2O)(NTN + c4I)−1(MTα2 −OTµ2) + (ε− 1)eTuµ2

s.t. 0 ≤ α2 ≤ c2, 0 ≤ µ2 ≤ cu, (6.54)

where M = [K(X1, D
T ) e1], N = [K(X2, D

T ) e2], O = [K(U,DT ) eu], and I is an

identity matrix of appropriate dimension.

The classifying hyperplanes K(xT , DT )w1 + b1 = 0 and K(xT , DT )w2 + b2 = 0 are

constructed using the values of the parameters wi and bi, i = 1, 2 from the following

Eqs. (6.55) and (6.56),

w1

b1

 = −(MTM + c3I)−1(NTα1 −OTµ1), (6.55)

w2

b2

 = (NTN + c4I)−1(MTα2 −OTµ2). (6.56)

It is visible from Eqs. (6.55) and (6.56) that both (MTM + c3I) and (NTN + c4I)

are positive definite due to the regularization term, leading to a more stable solution.

A new data point is classified using Eq. (2.10).

6.3.3 Experimental results

The comparison of the proposed IUTSVM is performed with USVM, TWSVM and

UTSVM. The RBF kernel is used in all the algorithms. We selected the values of the

parameters c, c1 = c2 = cu, and c3 = c4 from the set {10−5, . . . , 105} for the different
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algorithms. The number of universum samples i.e., r is taken as 10% of the training

data for the existing algorithms i.e., USVM, UTSVM and proposed IUTSVM. The

value of ε is chosen from the set {0.1, 0.3, 0.5, 0.6}. Universum data is selected from

the set obtained by random averaging [27] of data points of the binary classes. The

parameter µ is calculated as used in [195] for all the methods.

Table 6.8 shows the performance of the proposed and related algorithms in terms

of classification accuracy and training time. The corresponding average ranks are

also shown based on accuracy. It can be observed from Table 6.8 that the proposed

IUTSVM is having least rank among all the methods. It shows the supremacy of

the proposed IUTSVM in comparison to the compared algorithms. The algorithms

USVM, UTSVM and proposed IUTSVM take more training time in comparison to

TWSVM. This is due to the additional data points of the universum data, which can

be traded for the classification accuracy.

To check the significant difference between the methods we performed the Friedman

test [172] using Table 6.8. For the Friedman test, we take the null hypothesis that

there is no significant difference between the algorithms. Under the null hypothesis,

the Friedman statistics is distributed according to X 2
F with (k − 1) degree of freedom

and N methods. The χ2 value is found to be 8.3161. The FF value is calculated as

FF =
(18− 1)× 8.3161

18× (4− 1)− 8.3161
= 3.0946,

where FF is calculated for (3, 3 × 17) = (3, 51) degrees of freedom on 4 methods and

18 datasets. The critical value for of F (3, 51) at α = 0.05 level of significance is 2.786.

Here, we reject the null hypothesis since the value of FF = 3.0946 > 2.786. So, there is

significant difference between the algorithms. In the Nemenyi posthoc test, the CD is

found to be 0.9859. So, according to Table 6.8, there is pairwise significant difference

between TWSVM, UTSVM and the proposed IUTSVM.

The insensitivity performance of the proposed IUTSVM for the parameters c3 = c4

and ε is shown in Fig. 6.8. The variation in accuracy is illustrated with changing

values of the parameters for datasets i.e., Votes, Bupa or liver-disorders, Ionosphere,
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Table 6.8: Performance comparison of the proposed IUTSVM with USVM, TWSVM
and UTSVM using RBF kernel.

Dataset
(Train size, Test size)

USVM
Accuracy (%)

(c, µ, ε)
Time(s)

TWSVM
Accuracy (%)

(c1, µ)
Time(s)

UTSVM
Accuracy (%)

(c1, µ, ε)
Time(s)

Proposed IUTSVM
Accuracy (%)

(c1, c3, µ, ε)
Time(s)

Bupa or liver-disorders
(240× 6, 105× 6)

69.5238
(101, 66.2, 0.3)

0.8337

70.4762
(10−1, 66.2)

0.049

68.5714
(101, 66.2, 0.6)

0.0548

73.3333
(10−1, 10−5, 66.2, 0.5)

0.0529

Cleveland
(150× 13, 147× 13)

80.9524
(100, 5.26, 0.1)

0.3216

75.5102
(10−5, 5.26)

0.0109

73.4694
(10−2, 5.26, 0.5)

0.0103

82.3129
(100, 101, 5.26, 0.5)

0.0099

Ionosphere
(150× 33, 201× 33)

90.0498
(101, 4.39, 0.5)

0.3278

92.5373
(10−2, 4.39)

0.0083

92.5373
(10−2, 4.39, 0.6)

0.0095

93.5323
(10−1, 10−2, 4.39, 0.3)

0.0093

Votes
(200× 16, 235× 16)

95.3191
(100, 5.31, 0.5)

0.5761

95.7447
(10−2, 5.31)

0.0125

95.7447
(10−2, 5.31, 0.5)

0.018

95.7447
(10−2, 10−4, 5.31, 0.5)

0.0192

Breast cancer wisconsin
(350× 9, 333× 9)

99.0991
(101, 12.53, 0.1)

1.7746

98.4985
(10−4, 12.53)

0.0312

98.7988
(10−3, 12.53, 0.1)

0.0406

98.7988
(10−4, 10−5, 12.53, 0.1)

0.0391

Heart-stat
(180× 13, 90× 13)

77.7778
(102, 85.98, 0.3)

0.4637

81.1111
(10−1, 85.98)

0.0104

81.1111
(100, 85.98, 0.1)

0.012

80
(100, 10−3, 85.98, 0.5)

0.0117

Ndc1k
(400× 32, 700× 32)

91.7143
(103, 571.16, 0.1)

2.338

90.1429
(10−1, 571.16)

0.0462

91
(10−1, 571.16, 0.6)

0.058

91.5714
(10−1, 10−5, 571.16, 0.6)

0.059

Pima
(350× 8, 418× 8)

78.2297
(103, 2.23, 0.3)

1.7374

75.1196
(100, 2.23)

0.0329

77.512
(100, 2.23, 0.6)

0.04

79.4258
(100, 10−5, 2.23, 0.3)

0.0403

Splice
(1000× 60, 2175× 60)

90.023
(101, 11.98, 0.6)

15.2782

89.6552
(10−1, 11.98)

0.4038

89.1494
(10−1, 11.98, 0.6)

0.528

89.7011
(101, 10−2, 11.98, 0.5)

0.5272

Wdbc
(250× 30, 319× 30)

92.79
(105, 944.41, 0.3)

0.943

95.9248
(101, 944.41)

0.0239

95.6113
(100, 944.41, 0.3)

0.0276

93.1034
(10−2, 10−5, 944.41, 0.6)

0.0275

Australian-credit
(540× 14, 150× 14)

90.6667
(10−1, 5.31, 0.3)

4.3106

88
(10−1, 5.31)

0.0883

88
(10−1, 5.31, 0.6)

0.1159

90
(10−1, 10−2, 5.31, 0.6)

0.1105

Yeast3
(500× 8, 984× 8)

93.1911
(103, 0.41, 0.3)

3.7007

94.4106
(10−2, 0.41)

0.1377

94.4106
(10−1, 0.41, 0.6)

0.1561

93.8008
(104, 104, 0.41, 0.6)

0.1708
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Table 6.8 (contd.)

Dataset
(Train size, Test size)

USVM
Accuracy (%)

(c, µ, ε)
Time(s)

TWSVM
Accuracy (%)

(c1, µ)
Time(s)

UTSVM
Accuracy (%)

(c1, µ, ε)
Time(s)

Proposed IUTSVM
Accuracy (%)

(c1, c3, µ, ε)
Time(s)

Ecoli-0-1 vs 2-3-5
(120× 7, 124× 7)

97.5806
(101, 67.42, 0.5)

0.2116

94.3548
(10−1, 67.42)

0.008

93.5484
(10−2, 67.42, 0.5)

0.0091

95.1613
(100, 10−1, 67.42, 0.1)

0.0093

Ecoli-0-1-4-7 vs 5-6
(150× 6, 182× 6)

97.2527
(101, 67.54, 0.3)

0.3281

98.3516
(10−2, 67.54)

0.0116

98.3516
(10−1, 67.54, 0.1)

0.0125

98.9011
(10−1, 10−3, 67.54, 0.1)

0.0123

Ecoli-0-2-6-7 vs 3-5
(110× 7, 114× 7)

94.7368
(102, 59.17, 0.1)

0.1779

92.9825
(10−1, 59.17)

0.007

93.8596
(10−2, 59.17, 0.1)

0.0081

95.614
(10−5, 10−3, 59.17, 0.1)

0.0074

Ecoli-0-3-4-6 vs 5
(100× 7, 105× 7)

98.0952
(100, 65.84, 0.3)

0.1482

94.2857
(10−4, 65.84)

0.0068

98.0952
(10−1, 65.84, 0.1)

0.0074

98.0952
(101, 100, 65.84, 0.3)

0.0073

Ecoli-0-6-7 vs 3-5
(110× 7, 112× 7)

97.3214
(101, 57.95, 0.1)

0.178

93.75
(10−2, 57.95)

0.0073

91.9643
(10−1, 57.95, 0.6)

0.0086

96.4286
(10−1, 10−3, 57.95, 0.1)

0.0082

Yeast-2 vs 4
(250× 8, 264× 8)

95.8333
(101, 0.35, 0.1)

0.9188

95.0758
(10−1, 0.35)

0.0239

96.5909
(10−1, 0.35, 0.3)

0.0294

97.7273
(10−1, 10−2, 0.35, 0.3)

0.0298

Average accuracy 90.5643 89.774 89.907 91.2918

Average rank 2.4444 2.9167 2.8333 1.8056

and Pima-Indians with accuracies as 95.74%, 73.33%, 93.53%, and 79.43%. For these

datasets, IUTSVM is performing better for lower values of c3, which is also reflected

in Table 6.8. This shows that small values of the regularization parameter c3 are more

suitable for the proposed IUTSVM on these datasets. However, the parameter ε does

not show much effect on the performance of IUTSVM in terms of accuracy.

6.4 Summary

In this chapter, we presented three novel algorithms based on universum based

twin SVM algorithms. The proposed algorithms incorporate some important im-

provements over the existing formulations. First, we presented a novel universum
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(a) Votes (b) Bupa or liver disorders

(c) Ionosphere (d) Pima Indians

Figure 6.8: Insensitivity performance of the proposed IUTSVM to the parameters
c3 = c4 with ε using RBF kernel.

based algorithm, termed as efficient angle based universum least squares twin support

vector machine (AULSTSVM). The proposed AULSTSVM removes the drawback of

existing least squares based algorithms w.r.t. computation time. Moreover, the pro-

posed AULSTSVM gives better generalization performance due to the incorporation

of prior information in the training. Instead of the traditional twin hyperplane based

approach for obtaining the decision function, the proposed AULSTSVM needs only

one hyperplane for classification.

We also proposed a novel universum based algorithm in this chapter termed

as universum least squares twin parametric-margin support vector machine (UL-
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STPMSVM). The formulation of ULSTPMSVM is an alternative approach towards

universum based learning. Lastly, we presented an improved universum twin support

vector machine. The proposed algorithm introduces the SRM principle in the for-

mulation of UTSVM. There is no ill-conditioning of the matrices in calculating the

inverse in the proposed IUTSVM. The proposed algorithms show high generalization

performance with lesser training time in comparison to existing algorithms. More-

over, the proposed AULSTSVM, and ULSTPMSVM performed well for classification

of Alzheimer’s disease, showing their applicability on real world biomedical applica-

tions.

In the next chapter, we discuss the paradigm of unsupervised learning using SVM.

We present a novel formulation for twin SVM based clustering using a projection based

approach.
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Chapter 7

Projection based twin support vector

clustering

In this chapter, we present an unsupervised learning algorithm using a twin SVM

based approach. Clustering is a prominent unsupervised learning technique. In the

literature, various plane based clustering algorithms are proposed, such as the twin

support vector clustering (TWSVC) algorithm. In this work, we propose an alternative

algorithm based on projection axes termed as least squares projection twin support

vector clustering (LSPTSVC)1. The proposed LSPTSVC finds projection axis for every

cluster in a manner that minimizes the within class scatter, and keeps the clusters of

other classes far away. The following sections discuss the proposed algorithm both

theoretically as well as experimentally.

7.1 Proposed algorithm

In this section, we present the formulations of proposed least squares projection

twin support vector clustering (LSPTSVC) with detailed analysis of the experimental

results. The idea of proposed scheme is illustrated in Fig. 7.1, where a projection

axis is generated to cluster the data points. The proposed LSPTSVC minimizes the

1B. Richhariya, M. Tanveer, Alzheimer’s Disease Neuroimaging Initiative. Least squares pro-
jection twin support vector clustering (LSPTSVC). Information Sciences, Elsevier, 533:1-23, 2020,
DOI: https://doi.org/10.1016/j.ins.2020.05.001.
[SCI Indexed Impact Factor: 6.795]
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scatter of a cluster, while keeping the data points of other clusters far away. We also

include the regularization term in the objective function to control the structural risk

of the model [5]. The regularization term also helps in avoiding the ill-conditioning of

the matrices for calculating the inverse [167].

X
1

X
2

Projections of
data points

Centre point 
of cluster 1

    Cluster 1
    Cluster 2
    Cluster 3

Projection axis

w

Figure 7.1: Clustering by proposed LSPTSVC.

7.1.1 Linear LSPTSVC

The optimization problem of linear LSPTSVC is described as

min
wj+1

i

1

2

mi∑
p=1

(
(wj+1

i )Tx(i)p − (wj+1
i )T

1

mi

mi∑
p=1

x(i)p

)2
+
c1
2

mi∑
q=1

(ξj+1
iq )2 +

c2
2
‖wj+1

i ‖2

s.t.
∣∣∣(wj+1

i )Tx(i)q − (wj+1
i )T

1

mi

mi∑
p=1

x(i)p

∣∣∣+ ξj+1
iq = 1,

q = 0, 1, . . . ,mi, i = 0, 1, . . . , N, (7.1)

where c1, c2 > 0 are parameters, wj+1
i represents the weight vector of (j + 1)th itera-

tion, j = 0, 1, . . . , and the slack variable is represented by ξj+1
iq . The data points of a

cluster, and rest of the clusters are represented by x
(i)
p and x(i)q respectively. Here, N

is the number of clusters, and mi = (m−mi).
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The QPP (7.1) is formulated by setting an objective function that minimizes intra

class variance, while maximizing the inter class distance using the constraints. To

solve this optimization problem, we use the concave-convex (CCCP) procedure [228].

Thus, the objective function of QPP (7.1) can be rewritten as

min
wj+1

i

1

2
(wj+1

i )TSiw
j+1
i +

c1
2

mi∑
q=1

(ξj+1
iq )2 +

c2
2
‖wj+1

i ‖2

s.t. T
(∣∣∣X iw

j+1
i − 1

mi

e ie
T
i Xiw

j+1
i

∣∣∣)+ ξj+1
iq = e i, (7.2)

where T (.) is the first order Taylor series expansion, ei and e i represent the vector of

ones of size p and q respectively. The matrix Si is written as

Si =

mi∑
p=1

(x(i)p − si)(x(i)p − si)
T
, (7.3)

where si = 1
mi

mi∑
p=1

x
(i)
p is the centre point of each cluster. Eq. (7.4) can be rewritten as

Si = (Xi − eisTi )
T

(Xi − eisTi ). (7.4)

The QPP (7.2) can be rewritten by substituting the constraints in the objective func-

tion as

L =
1

2
(wj+1

i )TSiw
j+1
i +

c1
2

∥∥∥−T(∣∣∣X iw
j+1
i − 1

mi

e ie
T
i Xiw

j+1
i

∣∣∣)+ e i

∥∥∥2 +
c2
2
‖wj+1

i ‖2.

(7.5)

Now, the value of the Taylor series expansion is written by using the subgradient

[168,169] of
∣∣∣X iw

j
i − 1

mi
e ie

T
i Xiw

j
i

∣∣∣ w.r.t. wji as

T
(∣∣∣X iw

j+1
i − 1

mi

e ie
T
i Xiw

j+1
i

∣∣∣) = diag
(
sign

(
X iw

j
i −

1

mi

e ie
T
i Xiw

j
i

))
(
X iw

j+1
i − 1

mi

e ie
T
i Xiw

j+1
i

)
. (7.6)
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Substituting the value of T(.) in Eq. (7.6), we get

L =
1

2
(wj+1

i )TSiw
j+1
i +

c2
2
‖wj+1

i ‖2+
c1
2

∥∥∥−diag(sign(X iw
j
i −

1

mi

e ie
T
i Xiw

j
i

))(
X iw

j+1
i − 1

mi

e ie
T
i Xiw

j+1
i

)
+ e i

∥∥∥2.
(7.7)

Solving the gradient of Eq. (7.7) w.r.t. wj+1
i and equating to 0, we get

Siw
j+1
i + c2w

j+1
i + c1G

T
i

(
Giw

j+1
i − e i

)
= 0,

where

Gi = diag
(
sign(X iw

j
i −

1

mi

e ie
T
i Xiw

j
i

)(
X i −

1

mi

e ie
T
i Xi

)
. (7.8)

Solving Eq. (7.8) for wj+1
i , we get

wj+1
i =

(
GT
i Gi +

Si
c1

+
c2
c1
Ii

)−1

GT
i e i. (7.9)

For a testing sample xt, the label y is determined by the following formula:

y(xt) = arg min
i=1,2,...,N

∣∣∣wTi xt − 1

mi

eTi Xiwi

∣∣∣. (7.10)

For the initialization of the labels, nearest neighbour graph (NNG) [166] algorithm

is used in LSPTSVC. The algorithm for linear LSPTSVC is shown in Alg. 7.1.
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Algorithm 7.1 Linear LSPTSVC

1: Inputs:
1.1 Unlabelled data X ∈ Rn.

2: Initialization:
2.1 Label assignment: Y0 ← NNG(X).
2.2 Initialize weight vector w0

i for each cluster i = 0, 1, . . . , N :
w0
i = Eigenvector(Si), for smallest eigenvalue of Si.

3: CCCP process:
3.1 For each cluster i, calculate wj+1

i for j = 0 using the initial weight vector
w0
i .

3.1.1 wj+1
i = LSPTSV C(X,wji ) using Eq. (7.9).

3.1.2 if (‖wj+1
i − wji ‖ > tolerance)

j = j + 1
go to step 3.1.1

3.1.3 else
go to step 4

4: Assign cluster labels:
4.1 Assign new labels to the data points for each cluster i.

4.1.1 Yk+1 = Decision function(X,wi) using Eq. (7.10), initially with
k = 0.

4.1.2 if
(
‖Yk+1 − Yk‖ 6= 0

)
k = k + 1
go to step 3

4.1.3 else
go to step 5

5: Output:
Return data labels Y , and projection vectors wi, i = 0, 1, . . . , N .

7.1.2 Non-linear LSPTSVC

The optimization problem of non-linear LSPTSVC is described as

min
wj+1

i

1

2
(wj+1

i )TZiw
j+1
i +

c1
2

mi∑
q=1

(ξj+1
iq )2 +

c2
2
‖wj+1

i ‖2

s.t. T
(∣∣∣K(X i,M

T )wj+1
i − 1

mi

e ie
T
i K(Xi,M

T )wj+1
i

∣∣∣)+ ξj+1
iq = e i,

q = 0, 1, . . . ,mi, i = 0, 1, . . . , N, (7.11)

where c1, c2 > 0 are parameters, j = 0, 1, . . . , and ξj+1
iq represents the slack variable,

T (.) is the first order Taylor series expansion, K(.,MT ) is the kernel function [159],
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and M = [X1, X2, . . . , XN ]. The matrix Zi is written as

Zi =

mi∑
p=1

(
K(x(i)p ,M

T )− zi
)(
K(x(i)p ,M

T )− zi
)T
, (7.12)

where zi = 1
mi

mi∑
p=1

K(xp
(i),MT ). Now, Eq. (7.12) can be rewritten as

Zi =
(
K(Xi,M

T )− eizTi
)T (

K(Xi,M
T )− eizTi

)
. (7.13)

Now, QPP (7.13) can be written by using the constraints in the objective function as

L =
1

2
(wj+1

i )TZiw
j+1
i +

c1
2

∥∥∥−T(∣∣∣K(X i,M
T )wj+1

i − 1

mi

e ie
T
i K(Xi,M

T )wj+1
i

∣∣∣)+ e i

∥∥∥2
+
c2
2
‖wj+1

i ‖2. (7.14)

Substituting the value of T(.) in (7.14) for the CCCP procedure, we get

L =
1

2
(wj+1

i )TZiw
j+1
i +

c2
2
‖wj+1

i ‖2+
c1
2

∥∥∥−diag(sign(K(X i,M
T )wji −

1

mi

e ie
T
i K(Xi,M

T )wji
))

(
K(X i,M

T )wj+1
i − 1

mi

e ie
T
i K(Xi,M

T )wj+1
i

)
+ e i

∥∥∥2. (7.15)

Now, solving the gradient of (7.15) w.r.t. wj+1
i and equating to 0, we get

Ziw
j+1
i +

c2
2
wj+1
i + c1U

T
(
Uwj+1

i − e i
)

= 0,

where

Ui = diag
(
sign

(
K(X i,M

T )wji −
1

mi

e ie
T
i K(Xi,M

T )wji
))

(
K(X i,M

T )− 1

mi

e ie
T
i K(Xi,M

T )
)
, (7.16)
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Solving Eq. (7.16) for wj+1
i , we get

wj+1
i =

(
UT
i Ui +

Zi
c1

+
c2
c1
Ii

)−1

UT
i e i. (7.17)

The above equation involves matrix inversion of order m × m. This leads to

high computation time for datasets having very large m as compared to number of

features. In order to reduce the computation cost of calculating the inverse, we use

the Sherman-Morrison-Woodbury (SMW) formula [40].

We can write Eq. (7.17) as

wj+1
i =

(
UT
i Ui +

c2
c1
Ii +

DT
i Di

c1

)−1

UT
i e i, (7.18)

where D =
(
K(Xi,M

T )− eizTi
)
. Now, using the SMW formula (Eq. 6.20), we obtain

the following expression:

wj+1
i =

(
A−1
i − A−1

i UT
i (Ii + UiA

−1
i UT

i )−1UiA
−1
i

)
UT
i e i, (7.19)

where A−1
i = c1

c2

(
Ii −DT

i (c2Ii +DiD
T
i )−1Di

)
.

For calculating wj+1
i , instead of computing inverse of size (m × m), we need to

compute one inverse of size (mi ×mi), and other of size (m −mi) × (m −mi), ∀i =

1, 2, . . . , N .

For a testing sample xt, the label y is determined as follows,

y(xt) = arg min
i=1,2,...,N

∣∣∣wTi K(xt,M
T )− 1

mi

eTi K(Xi,M
T )wi

∣∣∣. (7.20)

The algorithm for non-linear LSPTSVC is shown in Alg. 7.2.

Lemma 7.1.1 Let X ∈ Rm×n, S ∈ Rn×n, m > n. Then, S = (X − es)T (X − es) is

a positive semidefinite matrix, where s = 1
m

m∑
p=1

xTp .

Proof: Let T = (X − es). Then, S = T TT is a symmetric matrix.
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Algorithm 7.2 Non-linear LSPTSVC

1: Inputs:
1.1 Unlabelled data X ∈ Rn.
1.2 Kernel matrix K obtained using kernel function.

2: Initialization:
2.1 Label assignment: Y0 ← NNG(K).
2.2 Initialize weight vector w0

i for each cluster i = 0, 1, . . . , N :
w0
i = Eigenvector(Zi), for smallest eigenvalue of Zi.

3: CCCP process:
3.1 For each cluster i, calculate wj+1

i for j = 0 using the initial weight vector
w0
i .

3.1.1 wj+1
i = LSPTSV C(K,wji ) using Eq. (7.17).

3.1.2 if (‖wj+1
i − wji ‖ > tolerance)

j = j + 1
go to step 3.1.1

3.1.3 else
go to step 4

4: Assign cluster labels:
4.1 Assign new labels to the data points for each cluster i.

4.1.1 Yk+1 = Decision function(K,wi) using Eq. (7.20), initially with
k = 0.

4.1.2 if
(
‖Yk+1 − Yk‖ 6= 0

)
k = k + 1
go to step 3

4.1.3 else
go to step 5

5: Output:
Return data labels Y , and projection vectors wi, i = 0, 1, . . . , N .

Now, for any w ∈ Rn,

wTSw = wTT TTw

=⇒ wTSw = ‖Tw‖2 ≥ 0. (7.21)

Therefore, S is positive semidefinite.

Theorem 7.1.1 Let X ∈ Rp×n, m > n, and S = (X − es)T (X − es). Then, the

global minimum of:
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min
w

wTSw

s.t. wTw = 1, (7.22)

is obtained for any eigenvector w of S with minimum eigenvalue. The minimum value

of (7.22) is positive iff S is positive definite or equivalently iff rank(X − es) = n.

Proof: Firstly, we write the Lagrangian of Eq. (7.22),

L = wTSw − λ
(
wTw − 1

)
. (7.23)

Now, we use the Karush-Kuhn-Tucker (K.K.T.) optimality conditions,

∂L

∂w
= Sw − λw = 0, (7.24)

∂L

∂λ
= wTw − 1 = 0. (7.25)

From (7.24) and (7.25), we get

λ = wTSw. (7.26)

Putting the value of λ in (7.24), we get

Sw = (wTSw)w, (7.27)

which is equivalent to

Sw = kw, (7.28)

where k = wTSw, which is to be minimized in Eq. (7.22). Hence, the smallest

eigenvalue of S gives the eigenvector w to achieve global minimum of (7.22) [163].
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Remark: If S ∈ Rn×n is positive definite, then S is non-singular.

Theorem 7.1.2 Let X ∈ Rp×n, G ∈ Rq×n, S = (X − es)T (X − es) ∈ Rn×n, and

I ∈ Rn×n is the identity matrix. Then, the matrix
(
GTG + S

c1
+ c2

c1
I
)

is invertible

∀ c1, c2 > 0.

Proof: Here, GTG and S are positive semidefinite matrices from Lemma 7.1.1, and

c2
c1
Ii is positive definite for c1, c2 > 0. Also, for any vector w ∈ Rn, w 6= 0, the sum of a

positive semidefinite and positive definite matrix is always positive definite as shown

below:

Let A and B be a positive definite and positive semidefinite matrix respectively.

Then, for any vector w ∈ Rn, w 6= 0,

wTAw > 0, (7.29)

wTBw ≥ 0, (7.30)

Adding (7.29) & (7.30), we get

(wTAw + wTBw) > 0, (7.31)

wT (A+B)w > 0. (7.32)

Therefore, the square matrix
(
GTG + Si

c1
+ c2

c1
I
)

is always non-singular, and thus

invertible.

7.1.3 Convergence

The proposed LSPTSVC described in Algs. 7.1 and 7.2 converges in a finite number

of steps. This is because CCCP method always finds a local minimum, and thus

converges as discussed in [228]. Moreover, in the cluster assignment process, every data

point is assigned to closest hyperplane [163]. So, the overall objective function cannot

increase. Thus, the algorithm converges based on any of the following terminating

conditions:
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(i). Same labels assigned to data points in two consecutive iterations.

(ii). Non-decrease in the overall objective function.

7.1.4 Time complexity

In comparison to TWSVC which solves large sized QPPs to solve the clustering

problem, the proposed LSPTSVC only needs to solve sets of linear equations. The

time complexity of solving the QPP in linear TWSVC is O(N(mi)
3) for m = mi +mi

samples, N classes and mi constraints, i = 1, 2, . . . , N . The complexity of calculating

the matrix inverse is about O(Nn3) [167]. So, the complexity of TWSVC becomes

O(N(m3
i + n3)). In case of non-linear TWSVC, the complexity for QPP is O(Nm3

i ),

where mi is the number of constraints, and for inverse is about O(Nm3). Therefore,

the complexity becomes O(N(m3
i +m3)). The time complexity of TBSVC is same as

TWSVC.

The solution of linear LSPTSVC requires the inversion of N matrices of size n×n.

Thus, the time complexity of solving the inverses in Eq. (7.9) is O(Nn3). In the non-

linear case, N matrix inverses of size mi, and mi need to be calculated. Therefore, the

time complexity is O(N(m3
i +m3

i ), i = 1, 2, . . . , N . The time complexity of LSPTSVC

is lower than TWSVC which leads to lesser training time. LSTWSVC has similar

time complexity as LSPTSVC, except the fact that it needs to calculate the bias.

Consequently, the number of linear equations in LSPTSVC is less than LSTWSVC by

one equation.

Moreover, in the initialization process, the proposed LSPTSVC only needs to find

w. On the other hand, the bias b is also calculated in case of existing plane based

clustering algorithms.

7.1.5 Proposed LSPTSVC vs LSPTSVM

The LSPTSVM [158] is a supervised learning algorithm that performs classification

of data points by constructing projection axes for each class. The decision function

shown in Eq. (2.45) is constructed in a manner to keep the projected data well
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separated. However, LSPTSVM minimizes the within class variance of one class, and

keeps the scatter of the other class far away on one side of the axis. This is shown by

the constraints of QPP (2.38).

We extended the projection axes based approach for unsupervised learning. The

proposed LSPTSVC performs clustering by minimizing the within cluster variance,

and keeping the scatter of the other clusters far away on both sides of the axes as

shown in Fig. 7.1. This is a result of the constraints of QPP (7.1). Moreover,

LSPTSVM solves the optimization problem by system of linear equations, whereas

proposed LSPTSVC solves linear equations in multiple iterations of the CCCP proce-

dure to obtain the projection axes.

In contrast to LSPTSVM, the proposed LSPTSVC involves an initialization pro-

cedure for the weights. Since the scatter matrix S involved in the projection based

algorithms is positive semidefinite, we presented the initialization procedure based on

eigenvalue of S. In terms of time complexity, LSPTSVC requires more computation

time than LSPTSVM, since it involves the CCCP iterative procedure, and mostly

deals with multiclass clustering of data. However, the proposed LSPTSVC is compu-

tationally more efficient than LSTWSVC. This is analogous to the lesser computation

cost of LSPTSVM in comparison to LSTSVM [158].

7.1.6 Experimental results

In this section, performance of the proposed LSPTSVC is compared with existing

techniques on the basis of clustering accuracy and training time. The algorithms used

for comparison are FCM [162], kPC [163], TWSVC [166], TBSVC [167], LSTWSVC

[168], and FLSTWSVC [168]. Among these, FCM is a distance based technique using

fuzzy memberships, while rest are plane based algorithms. We use 13 synthetic and 10

real world benchmark datasets to assess the performance of the proposed model with

linear and non-linear kernels. Moreover, the performance of LSPTSVC is compared

with existing algorithms on 12 large scale datasets. Performance comparison on real

world applications are also presented viz. clustering of faces, facial expressions, and

Alzheimer’s disease data.
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The synthetic benchmark datasets are downloaded from the website (https:

//github.com/deric/clustering-benchmark), while the real world and large scale

datasets are taken from UCI repository [170]. For applications, facial images

are downloaded from AT&T database (https://www.cl.cam.ac.uk/research/dtg/

attarchive/facedatabase.html) of AT&T Laboratories Cambridge, and facial ex-

pression data is taken from JAFFE database [229]. For application on Alzheimer’s

data, the same dataset is used as in 4.2.2, with the same pre-processing pipeline.

7.1.6.1 Parameter settings

In Table 7.1 and 7.2, 50% of total data samples are used for training and rest for

testing. The value of the parameters c1, c2 are selected as in subsection 3.1.5 for all the

cases. The tolerance value for the CCCP process is set as 0.001 in all the algorithms. In

FCM, the weighting exponent i.e., m is selected from the set {1.25, 1.5, 1.75, 2} [162].

In case of large datasets, the value of c1, c2 is fixed as 1 [158], and µ is set as 25 for all

the algorithms.

In all the existing algorithms except FCM, the initialization of weights is per-

formed using kPC algorithm [163], while LSPTSVC is initialized using Theorem 7.1.1.

For initialization of cluster labels, the well known nearest neighbour graph (NNG)

technique [166] is used for all the algorithms except FLSTWSVC which uses fuzzy

NNG [168]. However, in case of large datasets, a set of randomly generated cluster

labels are used for initialization of all the algorithms.

7.1.6.2 Results on benchmark datasets

The comparison of the proposed LSPTSVC with existing methods viz. FCM [162],

kPC [163], TWSVC [166], TBSVC [167], LSTWSVC [168], and FLSTWSVC [168] is

shown in Table 7.1 for linear case. One can observe that the proposed LSPTSVC

is showing better performance w.r.t. clustering accuracy in comparison to existing

algorithms. This is also justified by the lowest average rank of LSPTSVC i.e., 2.0217

for all the datasets. Moreover, the training time of LSPTSVC is lesser than TWSVC

and TBSVC. This is due to the fact that the proposed LSPTSVC solves a set of
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linear equations to obtain the projection axis. In contrast, TWSVC and TBSVC solve

computationally expensive QPPs.

In comparison to LSTWSVC, LSPTSVC is slightly faster in most datasets since it

only needs to calculate the weight vector w and not the bias b. For FLSTWSVC, the

training time is higher than proposed LSPTSVC due to the overhead of calculation

of fuzzy membership. The comparison of computation time of kPC and FCM with

proposed LSPTSVC is not given, since they are not twin SVM based algorithms.

However, we have shown the training time of all the algorithms in the tables.

Table 7.1 also shows the number of mis-clustered [230] data points for every al-

gorithm. The mis-clustered data points are calculated by counting the pair of data

points with cluster mismatch. One can observe in Table 7.1 that even in terms of the

mis-clustered data points, proposed LSPTSVC obtains the least rank i.e., 2.3696. One

can notice that for some datasets, the best performing algorithm in terms of accuracy

is not having the least number of mis-clustered data points. This can be attributed

to the imbalance in the number of data points of clusters in a dataset.

The Win-Tie-Loss comparison is also shown in Table 7.1. The clustering accu-

racy of proposed LSPTSVC is compared with existing algorithms in a Win-Tie-Loss

scenario for all the datasets. It is evident that LSPTSVC is having a ‘Win’ scenario

for all the compared algorithms. The highest ‘Win’ case is in comparison to FCM,

kPC, and TWSVC algorithm. This is because FCM algorithm is based on distance

from neighbouring data points, while the datasets have varying data distributions.

Moreover, LSPTSVC initializes its weights using the eigenvectors and then converges,

while kPC obtains its hyperplanes as the eigenvectors. In comparison to TWSVC,

proposed LSPTSVC involves the concept of within class scatter minimization leading

to better clustering accuracy. However, the proposed LSPTSVC is having some losses

in case of TBSVC, LSTWSVC, and FLSTWSVC. For more analysis on significance of

the proposed algorithm, statistical analysis is presented in section 4.4.

The clusters identified by the proposed and existing algorithms using linear kernel

for 3MC synthetic dataset are shown in Fig. 7.2. The actual clusters in the dataset are

shown in Fig. 7.2(a). One can easily notice that the clusters labelled by the proposed
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Table 7.1: Performance comparison on clustering accuracy (%), number of mis-
clustered data points (# Miss), and training time of the proposed LSPTSVC with
existing algorithms using linear kernel. The Win-Tie-Loss calculation is based on
accuracy, and ‘s’ represents time in seconds.

Dataset
(Size, clusters)

FCM
[162]

Accuracy
# Miss

-
Time (s)

kPC
[163]

Accuracy
# Miss

-
Time (s)

TWSVC
[166]

Accuracy
# Miss

(c1)
Time (s)

TBSVC
[167]

Accuracy
# Miss
(c1, c2)

Time (s)

LSTWSVC
[168]

Accuracy
# Miss
(c1, c2)

Time (s)

FLSTWSVC
[168]

Accuracy
# Miss
(c1, c2)

Time (s)

Proposed
LSPTSVC

Accuracy
# Miss
(c1, c2)

Time (s)

Synthetic

3MC
(400×2, 3)

51.37
89
-

0.0151

66.3
89
-

0.00008

68.96
80

(100)
0.0191

90.1
18

(10−5, 102)
0.0162

90.1
18

(10−5, 102)
0.00015

89.29
16

(101, 101)
0.0037

96.02
6

(102, 105)
0.00009

Aggregation
(788×2, 7)

77.64
152

-
0.1394

79.36
189

-
0.00015

79.97
183

(10−1)
0.2811

78.86
178

(100, 100)
0.2869

80.82
187

(10−3, 10−1)
0.00324

89.62
95

(10−1, 10−1)
0.0418

83.55
149

(101, 105)
0.00185

Compound
(399×2, 6)

78.41
72
-

0.0718

73.56
97
-

0.0001

79.88
81

(100)
0.055

80.14
84

(10−1, 10−4)
0.054

79.88
92

(10−3, 10−4)
0.00039

79.76
80

(10−2, 10−2)
0.0077

86.61
51

(10−5, 103)
0.00026

R15
(600×2, 15)

92.17
126

-
0.0243

91.4
133

-
0.00019

96.18
64

(10−2)
0.3949

93.49
102

(10−1, 10−3)
0.4091

95.58
75

(10−3, 10−5)
0.00238

97.71
36

(100, 10−5)
0.0486

97.07
48

(100, 104)
0.00123

Zelnik5
(512×2, 4)

68.73
112

-
0.0163

78.73
96
-

0.00011

78.43
99

(102)
0.055

95.08
15

(101, 10−1)
0.0472

85.99
58

(10−5, 10−2)
0.00044

82.75
72

(10−5, 10−5)
0.0107

91.4
26

(102, 10−5)
0.00022

2d-4c-no9
(876×2, 4)

85.77
114

-
0.0931

77.66
130

-
0.00014

97.49
14

(10−2)
0.1426

96.85
18

(10−1, 101)
0.1436

97.01
17

(10−1, 101)
0.00169

96.37
22

(100, 10−5)
0.0244

98.59
8

(10−3, 102)
0.00084

Longsquare
(900×2, 6)

81.67
179

-
0.0114

83.46
159

-
0.00016

84.27
127

(10−5)
0.228

86.47
128

(10−5, 10−1)
0.2248

85.78
130

(10−4, 10−1)
0.00408

90.15
101

(10−2, 10−4)
0.0537

90.93
94

(102, 104)
0.00259

Hepta
(212×3, 7)

77.05
43
-

0.006

87.57
38
-

0.00011

99.03
2

(10−3)
0.0268

99.03
2

(10−3, 10−5)
0.0268

98.49
3

(10−3, 10−5)
0.00016

94.9
11

(10−1, 10−2)
0.0031

100
0

(10−3, 100)
0.00015

Zelnik3
(266×2, 3)

74.87
31
-

0.0054

81.6
20
-

0.00007

80.25
22

(10−5)
0.0113

80.25
22

(10−5, 10−2)
0.0109

80.25
22

(10−2, 10−2)
0.00009

75.1
30

(10−5, 10−5)
0.0018

83.96
17

(102, 10−5)
0.00006
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Table 7.1 (contd.)

Dataset
(Size, clusters)

FCM
[162]

Accuracy
# Miss

-
Time (s)

kPC
[163]

Accuracy
# Miss

-
Time (s)

TWSVC
[166]

Accuracy
# Miss

(c1)
Time (s)

TBSVC
[167]

Accuracy
# Miss
(c1, c2)

Time (s)

LSTWSVC
[168]

Accuracy
# Miss
(c1, c2)

Time (s)

FLSTWSVC
[168]

Accuracy
# Miss
(c1, c2)

Time (s)

Proposed
LSPTSVC

Accuracy
# Miss
(c1, c2)

Time (s)

Pathbased
(300×2, 3)

61.71
74
-

0.0156

70.36
48
-

0.00007

71.22
45

(10−1)
0.0135

71.44
45

(10−2, 10−1)
0.0131

70.7
47

(10−2, 10−1)
0.00011

71.44
45

(10−5, 10−5)
0.0023

71.35
45

(101, 105)
0.00008

Zelnik1
(399×2, 3)

56.47
70
-

0.022

58.72
71
-

0.00009

56.05
71

(10−1)
0.0136

59.59
72

(102, 100)
0.0144

56.05
70

(10−2, 10−3)
0.00011

49.58
74

(100, 10−1)
0.0031

59.65
69

(102, 10−5)
0.00008

Ds2c2sc13
(588×2, 13)

87.44
115

-
0.4318

90.46
103

-
0.00035

93.08
69

(10−3)
0.3133

93.01
70

(10−3, 10−5)
0.3154

93.17
72

(10−3, 10−5)
0.0021

93.06
79

(10−1, 10−2)
0.0437

93.45
81

(101, 101)
0.00128

2d-4c-no4
(863×2, 4)

87.68
66
-

0.0048

62.52
205

-
0.0003

67.13
131

(102)
0.1697

85.22
70

(100, 105)
0.0754

85.22
70

(10−5, 105)
0.00261

62.96
205

(103, 10−3)
0.0275

93.38
24

(101, 105)
0.00148

Real world

Ecoli
(336×7, 8)

71.02
71
-

0.0144

37.79
81
-

0.00034

63.47
81

(105)
0.1092

63.44
82

(103, 104)
0.0563

61.98
80

(101, 10−5)
0.00033

56.19
81

(102, 105)
0.0083

68.25
84

(101, 101)
0.00035

Zoo
(101×16, 7)

54.53
24
-

0.0181

72.73
15
-

0.0023

82.04
14

(10−3)
0.0309

89.8
11

(10−1, 100)
0.0217

88.98
11

(10−5, 103)
0.00026

90.12
11

(10−1, 101)
0.0057

88.41
12

(102, 10−5)
0.00022

Wine
(178×13, 3)

34.22
43
-

0.0048

56.03
43
-

0.00016

73.88
25

(10−2)
0.0087

71.71
26

(10−5, 100)
0.009

75.74
21

(10−3, 10−1)
0.00011

79.01
17

(101, 10−3)
0.0026

74.06
23

(10−1, 105)
0.00009

Iris
(150×4, 3)

32.68
37
-

0.0059

62.7
29
-

0.00007

91.53
5

(10−5)
0.0083

93.08
4

(10−1, 100)
0.0083

94.7
3

(10−1, 101)
0.00007

94.7
3

(10−5, 100)
0.0009

94.7
3

(10−5, 100)
0.00006

Seeds
(210×7, 3)

32.77
52
-

0.0072

76.58
33
-

0.00015

75.66
33

(10−2)
0.0116

75.99
34

(10−5, 10−2)
0.0103

75.44
35

(10−5, 10−2)
0.00008

75.66
33

(10−1, 10−4)
0.0022

74.56
27

(102, 102)
0.00008

Teachingeval
(151×5, 3)

33.98
36
-

0.0047

42.85
37
-

0.00009

48.32
37

(102)
0.0093

52.65
37

(10−1, 100)
0.0083

51.32
37

(10−2, 102)
0.0001

49.05
37

(10−5, 101)
0.0011

56.25
36

(101, 10−1)
0.00006
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Table 7.1 (contd.)

Dataset
(Size, clusters)

FCM
[162]

Accuracy
# Miss

-
Time (s)

kPC
[163]

Accuracy
# Miss

-
Time (s)

TWSVC
[166]

Accuracy
# Miss

(c1)
Time (s)

TBSVC
[167]

Accuracy
# Miss
(c1, c2)

Time (s)

LSTWSVC
[168]

Accuracy
# Miss
(c1, c2)

Time (s)

FLSTWSVC
[168]

Accuracy
# Miss
(c1, c2)

Time (s)

Proposed
LSPTSVC

Accuracy
# Miss
(c1, c2)

Time (s)

Tae
(150×5, 3)

32.68
37
-

0.0088

45.15
36
-

0.0001

52.61
37

(103)
0.0094

52.61
37

(105, 10−5)
0.0098

49.48
35

(101, 103)
0.00011

32.68
37

(10−5, 10−5)
0.0012

56.61
36

(102, 104)
0.00006

Hayes-roth
(132×4, 3)

62.75
27
-

0.0098

57.67
31
-

0.00007

55.99
32

(101)
0.0077

55.34
33

(100, 10−4)
0.0077

53.38
32

(10−2, 10−2)
0.00008

52.73
28

(100, 10−5)
0.0008

53.94
32

(102, 103)
0.00005

Shuttle
(1486×9, 5)

63.25
167

-
0.3162

51.55
359

-
0.00235

62.85
251

(10−1)
1.1994

87.77
54

(10−2, 102)
1.4062

78.54
124

(100, 105)
0.00828

82.12
104

(102, 104)
0.1927

78.54
112

(100, 104)
0.00783

Libras
(360×90, 15)

70.99
89
-

0.4334

64.14
88
-

0.0491

66.16
89

(10−5)
0.1845

83.27
88

(10−1, 10−1)
0.1641

86.72
87

(101, 10−4)
0.00584

87.65
85

(10−4, 10−3)
0.0261

87.81
88

(100, 10−4)
0.00503

Average
accuracy

65.23 69.38 75.81 80.25 79.41 77.9 82.22

Average rank
(Accuracy)

5.8043 5.4783 4.1522 3.1522 3.6304 3.7609 2.0217

Average rank
(# Miss)

5.1304 5.3696 4.1957 3.9783 3.6304 3.3261 2.3696

Win-Tie-Loss 21-0-2 21-0-2 21-0-2 17-0-6 18-2-3 15-1-7

LSPTSVC in Fig. 7.2(f) are similar to the original clusters in Fig. 7.2(a). This may

be attributed to minimization of the within class variance of projected data, while

keeping the projected data of other classes at unit distance from centre of the cluster.

Table 7.2 shows the performance of the proposed LSPTSVC for non-linear case.

One can notice that clustering accuracy of the proposed LSPTSVC is better than

existing algorithms for most of the datasets. This is also evident from the average

rank of LSPTSVC which is the lowest among algorithms in Table 7.2 i.e., 1.7391.

Moreover, the proposed non-linear LSPTSVC is having ‘Win’ situation with all the

algorithms in most datasets. This is due to the effect of RBF kernel resulting in

non-linear projection axes. Similar to the linear case, the training time of proposed

LSPTSVC is also lesser than existing algorithms.
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(d) LSTSVC
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(f) Proposed LSPTSVC

Figure 7.2: Plot showing performance of proposed LSPTSVC in comparison to existing
algorithms using linear kernel for 3MC dataset. In the legend ‘C’ means cluster.
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Table 7.2: Performance comparison on clustering accuracy (%), number of mis-
clustered data points (# Miss), and training time of the proposed LSPTSVC with
existing algorithms using RBF kernel. The Win-Tie-Loss calculation is based on ac-
curacy, and ‘s’ represents time in seconds.

Dataset
(Size, clusters)

FCM
[162]

Accuracy
# Miss

-
Time (s)

kPC
[163]

Accuracy
# Miss

-
Time (s)

TWSVC
[166]

Accuracy
# Miss
(c1, µ)

Time (s)

TBSVC
[167]

Accuracy
# Miss

(c1 = c2, µ)
Time (s)

LSTWSVC
[168]

Accuracy
# Miss

(c1, c2, µ)
Time (s)

FLSTWSVC
[168]

Accuracy
# Miss

(c1, c2, µ)
Time (s)

Proposed
LSPTSVC

Accuracy
# Miss

(c1, c2, µ)
Time (s)

Synthetic

3MC
(400×2, 3)

51.37
89
-

0.0151

69.18
63
-

0.0383

66.32
97

(100, 25)
0.0977

60.81
93

(101, 20)
0.0993

88.85
18

(10−3, 10−1, 25)
0.045

72.27
62

(103, 10−4, 24)
0.0455

82.31
29

(101, 101, 25)
0.0444

Aggregation
(788×2, 7)

77.64
152

-
0.1394

92.21
77
-

0.638

92.36
77

(10−3, 23)
0.8281

92.85
70

(10−5, 21)
0.7539

92.8
71

(10−5, 10−2, 21)
0.29

94.97
42

(10−1, 10−1, 23)
0.2958

92.99
70

(10−5, 10−5, 21)
0.2835

Compound
(399×2, 6)

78.41
72
-

0.0718

88.57
53
-

0.1013

91.34
44

(10−5, 20)
0.1506

91.37
41

(10−2, 21)
0.1482

93.24
38

(10−3, 10−4, 20)
0.0557

90.81
43

(10−3, 10−5, 21)
0.0588

93.05
40

(10−2, 102, 22)
0.0527

R15
(600×2, 15)

92.17
126

-
0.0243

99.43
8
-

0.6568

99.73
4

(10−5, 25)
0.6917

99.8
3

(10−5, 24)
0.7201

99.42
7

(10−5, 10−4, 2−1)
0.2268

99.43
7

(10−5, 10−5, 2−1)
0.23

99.57
5

(10−5, 10−4, 2−1)
0.2197

Zelnik5
(512×2, 4)

68.73
112

-
0.0163

75.96
87
-

0.0946

82.07
76

(10−3, 25)
0.1574

86.85
53

(10−2, 21)
0.1356

84.03
80

(10−1, 10−2, 21)
0.0837

85.64
67

(10−5, 10−5, 22)
0.0876

84.86
61

(102, 105, 2−3)
0.0794

2d-4c-no9
(876×2, 4)

85.77
114

-
0.0931

98.66
8
-

0.3521

98.39
7

(10−5, 22)
0.6216

97.81
10

(10−5, 21)
0.6215

97.07
15

(10−2, 101, 22)
0.2801

99.16
5

(10−5, 10−4, 21)
0.2892

98.28
8

(10−4, 10−2, 22)
0.2798

Longsquare
(900×2, 6)

81.67
179

-
0.0114

89.27
107

-
0.5345

64.72
200

(10−2, 21)
1.0026

78.86
192

(100, 22)
0.8856

81.08
198

(10−4, 102, 22)
0.3905

93.22
65

(10−3, 10−4, 22)
0.3796

93.76
49

(100, 104, 22)
0.3779

Hepta
(212×3, 7)

77.05
43
-

0.006

100
0
-

0.018

100
0

(10−5, 21)
0.0563

100
0

(10−5, 21)
0.0553

100
0

(10−5, 10−5, 23)
0.0156

100
0

(10−5, 10−5, 20)
0.0176

100
0

(10−5, 10−5, 21)
0.0144

Zelnik3
(266×2, 3)

74.87
31
-

0.0054

83.12
19
-

0.0253

83.39
18

(10−1, 25)
0.048

81.7
20

(10−4, 22)
0.0455

84.51
17

(101, 104, 2−4)
0.0206

100
0

(10−5, 10−3, 2−5)
0.0214

100
0

(100, 103, 2−4)
0.0192

Pathbased
(300×2, 3)

61.71
74
-

0.0156

63.9
64
-

0.0252

57.49
74

(104, 25)
0.0638

68.21
60

(100, 25)
0.0571

70.56
46

(10−5, 100, 25)
0.0256

75.7
34

(10−2, 10−5, 22)
0.026

82.26
23

(101, 103, 22)
0.0255
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Table 7.2 (contd.)

Dataset
(Size, clusters)

FCM
[162]

Accuracy
# Miss

-
Time (s)

kPC
[163]

Accuracy
# Miss

-
Time (s)

TWSVC
[166]

Accuracy
# Miss
(c1, µ)

Time (s)

TBSVC
[167]

Accuracy
# Miss

(c1 = c2, µ)
Time (s)

LSTWSVC
[168]

Accuracy
# Miss

(c1, c2, µ)
Time (s)

FLSTWSVC
[168]

Accuracy
# Miss

(c1, c2, µ)
Time (s)

Proposed
LSPTSVC

Accuracy
# Miss

(c1, c2, µ)
Time (s)

Zelnik1
(399×2, 3)

56.47
70
-

0.022

52.6
74
-

0.0217

59.82
69

(10−2, 24)
0.0433

58.52
69

(10−2, 21)
0.0381

68.57
57

(102, 100, 2−4)
0.0268

73.41
53

(105, 103, 2−4)
0.0275

74.16
56

(104, 101, 22)
0.0248

Ds2c2sc13
(588×2, 13)

87.44
115

-
0.4318

84.25
114

-
0.3848

94.28
45

(10−5, 2−3)
0.5756

94.78
43

(10−3, 2−4)
0.5546

95.14
41

(10−5, 10−5, 2−4)
0.1956

93.47
77

(10−3, 10−4, 2−3)
0.2095

95
41

(10−5, 10−4, 2−5)
0.1902

2d-4c-no4
(863×2, 4)

87.68
66
-

0.0048

71.55
101

-
0.3495

65.39
155

(10−4, 21)
0.5077

64.93
156

(100, 22)
0.4275

62.14
162

(10−5, 105, 22)
0.2884

89.65
66

(10−1, 103, 21)
0.2889

95.27
20

(101, 105, 22)
0.2773

Real world

Ecoli
(336×7, 8)

71.02
71
-

0.0144

68.31
69
-

0.0496

61.13
84

(10−5, 23)
0.1331

60.61
83

(104, 23)
0.1175

63.45
74

(101, 10−4, 25)
0.0434

55.01
67

(10−1, 100, 25)
0.0466

73.28
81

(101, 103, 25)
0.0407

Zoo
(101×16, 7)

54.53
24
-

0.0181

81.71
16
-

0.0039

86.53
11

(10−5, 23)
0.0379

86.86
14

(10−2, 22)
0.0311

85.88
13

(103, 10−5, 23)
0.0039

80.33
15

(10−1, 10−5, 22)
0.0078

89.31
9

(101, 10−1, 23)
0.0035

Wine
(178×13, 3)

34.22
43
-

0.0048

65.27
30
-

0.0067

68.69
27

(10−5, 24)
0.0262

72.32
22

(10−2, 24)
0.0258

74.26
23

(10−1, 100, 25)
0.0096

59.24
38

(10−5, 10−2, 25)
0.0103

75.18
21

(10−1, 10−3, 25)
0.009

Iris
(150×4, 3)

32.68
37
-

0.0059

78.31
16
-

0.0051

94.7
3

(10−1, 25)
0.019

94.7
3

(10−5, 25)
0.0197

96.4
2

(10−1, 10−3, 22)
0.0063

90.05
6

(10−1, 10−2, 20)
0.007

94.7
3

(10−1, 10−2, 22)
0.0062

Seeds
(210×7, 3)

32.77
52
-

0.0072

76.1
33
-

0.0127

76.58
33

(10−5, 25)
0.0311

87.09
12

(10−3, 25)
0.0322

87.01
12

(10−5, 10−3, 25)
0.0123

73.79
33

(101, 103, 23)
0.0133

87.71
11

(10−1, 102, 24)
0.0121

Teachingeval
(151×5, 3)

33.98
36
-

0.0047

44
35
-

0.0033

40.76
36

(10−3, 22)
0.021

46.74
37

(100, 22)
0.0206

46.52
36

(104, 101, 22)
0.0067

49.05
37

(101, 103, 23)
0.0074

53.08
36

(104, 103, 25)
0.0064

Tae
(150×5, 3)

32.68
37
-

0.0088

54.67
36
-

0.0021

32.68
37

(10−5, 2−5)
0.0199

42.13
35

(101, 22)
0.0201

47.53
37

(100, 104, 23)
0.0068

32.68
37

(10−5, 10−5, 2−5)
0.0071

54.88
37

(104, 102, 25)
0.0061

Hayes-roth
(132×4, 3)

62.75
27
-

0.0098

33.19
33
-

0.0026

63.92
29

(10−5, 2−1)
0.0173

63.92
29

(10−5, 2−1)
0.017

52.96
33

(10−3, 10−1, 22)
0.0051

54.5
30

(105, 10−4, 21)
0.0056

70.35
24

(100, 102, 21)
0.0049
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Table 7.2 (contd.)

Dataset
(Size, clusters)

FCM
[162]

Accuracy
# Miss

-
Time (s)

kPC
[163]

Accuracy
# Miss

-
Time (s)

TWSVC
[166]

Accuracy
# Miss
(c1, µ)

Time (s)

TBSVC
[167]

Accuracy
# Miss

(c1 = c2, µ)
Time (s)

LSTWSVC
[168]

Accuracy
# Miss

(c1, c2, µ)
Time (s)

FLSTWSVC
[168]

Accuracy
# Miss

(c1, c2, µ)
Time (s)

Proposed
LSPTSVC

Accuracy
# Miss

(c1, c2, µ)
Time (s)

Shuttle
(1486×9, 5)

63.25
167

-
0.3162

68.37
145

-
0.565

70.33
150

(10−4, 25)
2.5814

70.59
149

(10−5, 24)
2.5527

75.73
137

(101, 104, 25)
1.1689

64.66
160

(10−3, 10−5, 22)
2.168

79.96
132

(10−1, 104, 25)
1.1518

Libras
(360×90, 15)

70.99
89
-

0.4334

71.75
83
-

0.1532

85.68
88

(10−5, 2−1)
0.251

81.56
86

(10−3, 20)
0.2675

86.41
88

(103, 102, 2−1)
0.0799

88.6
87

(10−4, 10−5, 20)
0.08

87.15
88

(104, 100, 24)
0.074

Average
accuracy

65.23 75.45 76.88 78.87 80.9 80.36 85.84

Average rank
(Accuracy)

6.1739 4.8696 4.3478 3.7391 3.4565 3.6739 1.7391

Average rank
(# Miss)

5.8913 4.4348 4.4783 3.6957 3.6522 3.5435 2.3043

Win-Tie-Loss 23-0-0 21-1-1 19-2-2 19-2-2 18-1-4 17-2-4

In terms of mis-clustered data points also, the proposed LSPTSVC performs better

than the existing algorithms with an average rank of 2.3043 (Table 7.2). A similar

trend is observed for the average ranks of the different algorithms. However, the

average rank of FLSTWSVC is lesser than LSTWSVC in terms of mis-clustered data

points.

The clusters labelled by all the algorithms using non-linear kernel for Longsquare

synthetic dataset are shown in Fig. 7.3. There are 6 clusters in this dataset labelled

using non-linear kernel. It is clear from the illustration in Fig. 7.3(f) that LSPTSVC

is able to label the clusters better than the other algorithms. Also, FLSTWSVC is

showing similar performance in Fig. 7.3(e). A similar trend is visible in Fig. 7.4 for

Pathbased dataset, where proposed LSPTSVC outperforms the other algorithms.

7.1.6.3 Statistical analysis

In this section, we check the statistical significance of proposed LSPTSVC with

existing techniques in terms of clustering accuracy. We perform the Friedman test [172]

with the corresponding Nemenyi post hoc test. Initially, we assume that there is no

difference between the methods as the null hypothesis.
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Figure 7.3: Plot showing performance of proposed LSPTSVC in comparison to existing
algorithms using RBF kernel for Longsquare dataset. In the legend ‘C’ means cluster.
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Figure 7.4: Plot showing performance of proposed LSPTSVC in comparison to existing
algorithms using RBF kernel for Pathbased dataset. In the legend ‘C’ means cluster.
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I. Linear case:

The χ2
F value for Friedman test is calculated using Table 7.1 as 50.7162. The FF

value is calculated as

FF =
(23− 1)× 50.7162

23× (7− 1)− 50.7162
= 12.7831.

Here, the F -distribution has
(
7− 1, (7− 1)(23− 1)

)
= (6, 132) degrees of freedom.

Now, for the level of significance at α = 0.05, the critical value of F (6, 132) is 2.1680.

Since FF = 12.7831 > 2.1680, we reject the null hypothesis.

Now, to check pairwise difference between the proposed method and existing algo-

rithms, we use the Nemenyi post hoc test. For significant pairwise difference between

the methods at α = 0.10 level of significance, the average ranks of the methods shown

in Table 7.1 should differ by atleast 2.693
√

7(7+1)
6×23

= 1.7155. Table 7.3 shows the

pairwise difference between the methods.

Table 7.3: Pairwise significance of the proposed LSPTSVC with existing algorithms.

Linear FCM kPC TWSVC TBSVC LSTWSVC FLSTWSVC
Proposed LSPTSVC Yes Yes Yes No No Yes

Non-linear FCM kPC TWSVC TBSVC LSTWSVC FLSTWSVC
Proposed LSPTSVC Yes Yes Yes Yes Yes Yes

It can be inferred from Table 7.3 that in the linear case, the proposed LSPTSVC

is significantly better than FCM, kPC, TWSVC, and FLSTWSVC algorithms.

II. Non-linear case:

Similar to the linear case, first we calculated the χ2 value using Table 7.2 as 55.1196.

The FF value is given as

FF =
(23− 1)× 55.1196

23× (7− 1)− 55.1196
= 14.6311.

Since FF = 14.6311 > 2.1680, we reject the null hypothesis. Now, similar to linear

case, we perform the Nemenyi post hoc test using Table 7.2 to check the pairwise

difference between the proposed method and existing algorithms. The results for
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the pairwise statistical difference are shown in Table 7.3. It is clear that in terms of

clustering accuracy, the proposed LSPTSVC is significantly better than all the existing

algorithms for the non-linear case.
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Figure 7.5: Insensitivity of proposed LSPTSVC for clustering to the user specified
parameters c1 = c2 and µ using RBF kernel for real world benchmark datasets.

To analyze the effect of parameter values on the clustering performance, insensi-

tivity analysis of LSPTSVC is performed for the parameters c and µ. Fig. 7.5 shows

the change in accuracy w.r.t. varying values of parameters for real world datasets. It

can be observed in Fig. 7.5 that for higher values of µ, the clustering performance is

better. This is due to the fact that in non-linear case, µ decides the value of kernel
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function, leading to non-linear transformation of data. However, the value of c1 = c2

does not have any significant effect on the clustering accuracy.

7.1.6.4 Large scale datasets

To show the effectiveness of the proposed LSPTSVC on large sized datasets, exper-

iments are performed on datasets with large number of samples as well as features. A

total of 12 large scale datasets are included, where 7 datasets are having large number

of samples, while five are having large feature size. The algorithms involving QPPs

incur high computation time for large number of samples. Therefore, for large sample

datasets, we compared the proposed algorithm with algorithms involving solution of

linear equations in Table 7.4. Moreover, linear kernel is used for the comparison.

Table 7.4: Performance comparison on accuracy (%) and training time of proposed
LSPTSVC with existing algorithms on large sample datasets using linear kernel. Av-
erage rank is based on accuracy.

Dataset
(Train size, Test size)

Clusters
LSTWSVC

Accuracy
Time (s)

FLSTWSVC
Accuracy
Time (s)

Proposed
LSPTSVC

Accuracy
Time (s)

Pendigits
(5996×17, 1498×17)

10
84.76
1.3836

79.77
1.5956

83.31
1.0081

Penbased
(8794×16, 2198×16)

10
75.62
2.6765

71.7
2.9576

81.59
2.0746

Letter 10k
(8000×16, 2000×16)

26
86.21
6.2636

86.64
6.9988

91.51
5.1504

Letter 20k
(16000×16, 4000×16)

26
81.16

23.0756
87.54

24.9343
90.17

19.9956

Poker 30k
(24000×10, 6000×10)

8
54.71

13.3279
53.28

16.7914
54.68

10.6532

Poker 40k
(32000×10, 8000×10)

9
54.78

30.5703
53.98

36.0595
55.29

22.2977

Poker 50k
(40000×10, 10000×10)

9
54.41

48.7161
54.51

62.3994
54.99

36.6232

Average rank 2.1429 2.5714 1.2857
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It is evident from Table 7.4 that the proposed LSPTSVC takes least amount of time

for large sample datasets. Moreover, the generalization performance of LSPTSVC is

also better in most datasets with an average rank of 1.2857. The training time is

highest for FLSTWSVC, since it involves the calculation of fuzzy membership matrix.

In case of datasets with large features, we used RBF kernel in all the algorithms.

Here, the SMW formula is not used in LSTWSVC, FLSTWSVC, and LSPTSVC, since

the feature size is more than the number of samples. Table 7.5 shows the performance

for datasets with large feature size. One can observe that the proposed LSPTSVC is

efficient on datasets with large number of features. On TTC-3600 dataset, the training

time of LSPTSVC is significantly lesser than the other algorithms. Also, the accuracy

of LSPTSVC is better for all the datasets. However, the differences in training time of

the algorithms are not high. This is due to inclusion of time for generation of kernel

matrices in all the algorithms. The time required for generation of kernel matrices is

very high in comparison to other steps in the algorithms.

Table 7.5: Performance comparison on accuracy (%) and training time of proposed
LSPTSVC with existing algorithms on large feature datasets using RBF kernel. Av-
erage rank is based on accuracy.

Dataset
(Train size, Test size)

Clusters
TSVC

Accuracy
Time (s)

TBSVC
Accuracy
Time (s)

LSTWSVC
Accuracy
Time (s)

FLSTWSVC
Accuracy
Time (s)

Proposed
LSPTSVC

Accuracy
Time (s)

Dbworld emails
(52×4702, 12×4702)

2
83.33
0.075

69.7
0.0716

69.7
0.0611

69.7
0.0669

100
0.0598

Hydraulic condition ps1
(1103×6000, 1102×6000)

2
50.03

61.3294
62.06

61.5112
50.93

60.8006
59.21

60.8788
62.97

60.6945

Hydraulic condition ps2
(1103×6000, 1102×6000)

2
59.85

60.6696
52.45

61.1182
56.03

60.4428
53.52

60.5068
70.85

60.2428

Hydraulic condition ps4
(1544×6000, 661×6000)

2
66.39

119.679
66.74

119.708
67.63

118.259
62.33

118.567
68.91

117.561

TTC-3600
(2880×7507, 720×7507)

6
68.54

687.917
66.76

660.138
65.09

632.627
60.59

632.861
69.31

613.667

Average rank 3 3.4 3.4 4.2 1
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Figure 7.6: AT&T face recognition data (AT&T Laboratories Cambridge) comprising
of 40 individuals.

7.1.7 Applications

In this section, we present some real world applications of the proposed LSPTSVC,

along with comparisons to existing algorithms. Experiments are performed on bio-

metric data viz. facial, and facial expression images. Moreover, we also present the

application of LSPTSVC on biomedical data. We use ADNI MRI data to evaluate

clustering ability of LSPTSVC on Alzheimer’s disease. For all the applications, RBF

kernel is used in proposed and existing algorithms.

7.1.7.1 Face images

A total of 400 images are included from the AT&T face recognition database shown

in Fig. 7.6. The dataset consists of 10 images of 40 individuals, each having dimension

of 112× 92. 200 images are used in the training as well as testing phase. The dataset

is constructed by using all pixel values of an image in one row of the dataset matrix.

To avoid overfitting of model, we use principal component analysis (PCA) and class

discriminatory ratio (CDR) [9] to reduce the dimension of the dataset to 400 × 100.

The results for face clustering are shown in Fig. 7.7. It is evident that LSPTSVC is

able to cluster facial data with better accuracy i.e., 95.53% in comparison to other

algorithms.
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Figure 7.7: Performance comparison of the proposed LSPTSVC with existing algo-
rithms for clustering of AT&T face recognition data.

7.1.7.2 Facial expression images

A total of 210 images are downloaded from the well known JAFFE facial expression

database [229] having 30 images of each expression. The dataset contains 7 classes as

shown in Fig. 7.8. A total of 140 images are used for training consisting of 20 images

of each class, and 70 for testing containing 10 images of each class. The dimension of

all the images is 256× 256.

Figure 7.8: Sample images of JAFFE database showing different facial emotions.

In comparison to face recognition, facial expression is a much more difficult problem

due to large variations in facial expressions among individuals [231]. However, edge

based information is useful for identifying facial expressions [232]. Wavelet transform is
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Figure 7.9: Performance comparison of proposed LSPTSVC with existing algorithms
for clustering of JAFFE facial expression data.

used for extracting high frequency components [9] responsible for the edges. Therefore,

we used PCA along with wavelet transform for dimension reduction, and extraction of

useful information for expression detection. Wavelet transform [9] is performed using

‘Daeubechies-4’ wavelet upto 3 levels of decomposition. Further, CDR is utilized

to select the prominent features. After dimension reduction, the size of the dataset

becomes 210× 50. The results for clustering are shown in Fig. 7.9. In comparison to

face recognition, the accuracy is lower in all the algorithms for both features. However,

it can be observed that the proposed LSPTSVC is showing highest clustering accuracy

for both feature sets i.e., PCA and wavelet for the facial expression dataset.

Other algorithms obtaining high clustering accuracy are TBSVC and FLSTWSVC.

This is because TBSVC involves the regularization term, and FLSTWSVC includes

fuzzy membership information about the data points.

7.1.7.3 Alzheimer’s disease

Alzheimer’s disease is an incurable disease affecting 50 million people worldwide

[11]. Classification of Alzheimer’s disease data is a challenging task [2]. For unlabelled

Alzheimer data, clustering is a very useful option. As per our search, there is no

work on application of SVM based clustering techniques for Alzheimer’s disease data.

Therefore, we used Alzheimer’s data for clustering by the proposed LSPTSVC and

compared with other algorithms.

248



Figure 7.10: MRI images of CN, MCI, and AD subject from ADNI database.
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Figure 7.11: Performance comparison of proposed LSPTSVC with existing algorithms
for clustering of ADNI Alzheimer’s disease data.

The preprocessing and image details are same as in subsection 4.2.2. The images

belonging to three categories i.e., control normal (CN), mild cognitive impairment

(MCI), and Alzheimer’s disease (AD) as shown in Fig. 7.10. 74 images are used for

training and 75 for testing. The results are shown in Fig. 7.11.

It is evident that the proposed LSPTSVC is effective in clustering Alzheimer’s data

in comparison to other algorithms. LSPTSVC obtains a clustering accuracy of 63.09%

for CN, MCI and AD subjects. The clustering accuracy of LSPTSVC is similar to

previous works [206, 233] on multiclass classification of Alzheimer’s data. However,

the clustering accuracy of FLSTWSVC is lowest among all the methods. This may

be attributed to the presence of outliers in the data. Indeed, the clustering accuracies

of all the algorithms are comparatively lower than the applications discussed in the
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previous subsections. This is because the data points belonging to the classes MCI and

AD are non-linear in their distribution, and are overlapping in nature [28] as shown

in Fig. 4.19. Moreover, MCI is an intermediate stage between CN and AD, leading to

incorrect labelling of data points [234]. Therefore, the Alzheimer’s dataset is difficult

to classify [2] or cluster.

7.2 Summary

In this chapter, we proposed a novel twin SVM based unsupervised learning tech-

nique. The proposed technique is a projection based clustering algorithm termed as

LSPTSVC. The proposed LSPTSVC finds projection axes instead of projection planes

for clustering. This is an alternative to the plane based clustering algorithms. The

solution of proposed LSPTSVC is obtained by solving a set of linear equations, leading

to lesser computational cost. Consequently, no optimization toolbox is required for

LSPTSVC. Moreover, LSPTSVC is an efficient algorithm for clustering on datasets

with large sample and feature size.

In case of real world applications, LSPTSVC performed better than the exist-

ing algorithms. This justifies its applicability for real world applications. In case of

Alzheimer’s disease, the proposed LSPTSVC has shown significantly better perfor-

mance, justifying its use for healthcare applications.

The following chapter concludes the works presented in this thesis with possible

future directions.
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Chapter 8

Conclusions and Future Work

The works presented in this thesis involve novel ideas for the improvement and

application of SVM based models. First, the thesis gave a comprehensive review on

the various variants of SVM developed in the past. Then, various novel SVM based

algorithms are presented primarily for supervised learning. However, one SVM based

unsupervised algorithm is proposed for clustering of data. The works presented in

this thesis addresses many drawbacks in the existing SVM based algorithms. Also,

applications are shown for the proposed algorithms on biomedical datasets. One of

the problems addressed in this thesis is class imbalance. This problem is solved by

using fuzzy memberships, and with a reduced kernel based approach using universum

data. Another problem is of noisy data, which has been dealt by a fuzzy based SVM

approach with novel fuzzy functions.

Moreover, reviews are presented for applications of SVM on biomedical data. Var-

ious applications of SVM have been discussed, especially for diseases, such as epilepsy,

Alzheimer’s disease, and breast cancer. The disease which is reviewed extensively in

this thesis is Alzheimer’s disease. Further, one of the key aspect of this thesis is to

develop better universum based SVM algorithms, and apply on biomedical data. The

appropriate selection of universum is a research problem. Therefore, we utilized uni-

verum data from the EEG dataset itself, leading to better classification accuracy. We

extended USVM algorithm for feature selection by proposing a universum based RFE

algorithm, and showed its applicability on Alzheimer’s disease data. Since the USVM

251



based model is transparent and clearly interpretable, it can be used for identifying the

features from data. These features can then be analysed for identifying biomarkers in

biomedical data of diseases.

Further, to address the drawback of high computation time in USVM based al-

gorithms, we proposed novel variants of USVM to reduce the training time, as well

as improve the generalization performance. All the proposed algorithms have been

tested on benchmark datasets viz. synthetic, real world, as well as related to biomed-

ical domain. The proposed algorithms showed statistically significant results in these

experiments.

In the following subsections, the conclusions of the novel approaches proposed in

this thesis is given, followed by a discussion on the possible future directions.

8.1 Conclusions of the proposed works

The conclusions on the different works proposed in this thesis are given under the

objectives accomplished in the following:

(i). Reducing class imbalance: The problem of class imbalance in SVM learning

is addressed in this thesis by proposing two novel algorithms viz. RFLSTSVM-

CIL and RUTSVM-CIL. The RFLSTSVM-CIL algorithm is proposed using 2-

norm of the slack variable, making the optimization problem strongly convex

and implies a globally unique solution. We also proposed a novel fuzzy mem-

bership function specifically for class imbalance learning, which gives different

range of fuzzy membership values for different imbalanced datasets. The differ-

ent range of the fuzzy membership function helps in giving proper weights to the

data points in different imbalance scenarios. The proposed approach has shown

good generalization performance with noisy data as compared to the existing

algorithms. From the experiments, it is clear that the proposed RFLSTSVM-

CIL approach is having the least ranks for most of the datasets on the basis

of AUC, justifying its robustness. Moreover, RFLSTSVM-CIL takes less com-

putation time as compared to the existing fuzzy based algorithms for parallel
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and non-parallel support vector machines which justifies its applicability to real

world applications.

The second method i.e., proposed RUTSVM-CIL incorporates prior infor-

mation from the universum data, and creates a balance situation for the classifi-

cation. The reduced kernel based approach leads to a computationally efficient

model of universum based SVM. This removes the overhead of higher computa-

tion cost of universum based algorithms. The memory requirement for executing

the proposed algorithm is also very less, which makes it suitable for large scale

imbalanced datasets. The approach of combining undersampling with oversam-

pling using universum data is found to be helpful in classification of class imbal-

ance datasets. The proposed model has shown good generalization performance

with less training time on several synthetic and real world datasets. Moreover,

RUTSVM-CIL shows high efficiency for large scale datasets with better classi-

fication accuracy. However, due to the use of undersampling and rectangular

kernel, the proposed RUTSVM-CIL gives lesser accuracy for high imbalance

ratio, but with lesser computation cost.

(ii). Review on Alzheimer’s disease: For showing application of SVM on brain

disorder, we presented a comprehensive survey on the use of SVM based tech-

niques for Alzheimer’s disease. We concluded that SVM has been the most

frequently used algorithm for classification of Alzheimer’s disease data. As dis-

cussed earlier, different variants of SVM have been employed in the past for

classification of Alzheimer’s. However, it is observed that only 7% of the papers

are in the others category. This category involves the algorithms based on SVM

which are modified especially for Alzheimer’s. Also, it is observed that very few

variants of SVM have been applied for AD. It shows the need for research in

application of other variants of SVM for AD.

(iii). Universum learning for brain disorders: We proposed two novel univer-

sum based techniques for brain disorders viz. epilepsy, and Alzheimer’s disease.

The USVM based technique is proposed for detection of seizure and healthy
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EEG signals, while the USVM-RFE technique is proposed with application to

feature selection in Alzheimer’s disease. In case of seizure detection, on the

basis of the experimental results, it can be stated that the proposed universum

based approach gives better generalization performance for the classification of

EEG signals as compared to the existing approaches. The proposed method of

selection of universum points has proved to be a promising approach for the

classification of healthy and seizure EEG signals. Also, the effect of outliers on

the universum is reduced by using the universum from the EEG dataset itself

i.e., the seizure free EEG signal. The distribution of interictal (seizure free)

signals provides prior information about the distribution of healthy and seizure

signals and also lies in between the two classes. Based on the experimental

results, it is evident that universum twin support vector machine (UTSVM) is

better in comparison to other support vector machine algorithms for EEG signal

classification. Among the different feature extraction techniques, ICA shows the

best results using the proposed approach with 99% accuracy.

Moreover, the second proposed method i.e., USVM-RFE provides an im-

provement over SVM-RFE algorithm by giving prior information about data.

On the basis of our analysis on Alzheimer’s disease, the proposed USVM-RFE

has performed better than SVM-RFE in most of the cases for classification of

CN, MCI, and AD subjects. Moreover, we presented an approach of using VBM

on training and testing phase separately. This is useful in real world scenarios.

We provided an analysis of the feature extraction methods for MRI images i.e.,

voxel based and volume based features. On the basis of our work on VBM and

VolBM features, USVM-RFE achieved relatively better classification accuracy

of CN vs AD and MCI vs AD in VolBM as 100% and 73.68% respectively.

For CN vs MCI, VBM features provided highest accuracy of 90%. According

to our feature analysis, amygdala volume is a prominent discriminative feature

for detection of Alzheimer’s. One of the important advantages of the proposed

universum based algorithm is the global or holistic approach in feature selec-

tion as compared to SVM-RFE. Therefore, there is robustness in the proposed
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USVM-RFE for each iteration of the feature elimination process.

(iv). Noise insensitive USVM based classifiers: To reduce the effect of noise in

USVM based algorithms, we used fuzzy based techniques to propose three novel

algorithms viz. FUSVM, FUTSVM, and FULSTSVM. First, we proposed a

fuzzy based approach for USVM and UTSVM algorithms to remove the effect of

outliers. The proposed FUSVM and FUTSVM have shown better generalization

performance for most of the datasets. This fuzzy based approach for universum

helps in giving prior information to the data in an effective manner. The use

of information entropy of the universum points is helpful in giving optimum

membership values to the universum data points.

Further, we proposed a novel and efficient fuzzy based learning algorithm,

termed as fuzzy universum least squares twin support vector machine (FUL-

STSVM). The proposed algorithm gives prior information about data distribu-

tion to the classifier, and also provides fuzzy membership to the data points and

universum. Moreover, the optimization problem of FULSTSVM is solved by a

system of linear equations. This makes FULSTSVM efficient in terms of train-

ing time. The proposed FULSTSVM is a robust universum based algorithm

for classification of data with outliers. Statistical tests on experimental results

confirm the significance of the proposed algorithm. Proposed FULSTSVM also

performed better on large sized datasets in terms of accuracy, showing its scal-

ability on large datasets. Results on applications i.e., Alzheimer’s disease and

breast cancer clearly show the applicability of the proposed FULSTSVM for

healthcare data.

(v). Efficient UTSVM based classifiers: To reduce the computation time of ex-

isting universum based techniques, we proposed three novel twin USVM based

algorithms viz. AULSTSVM, IUTSVM, and ULSTPMSVM. These techniques

also showed improved generalization performance of the model. The proposed

AULSTSVM removes the drawback of existing least squares based algorithms

w.r.t. computation time. Moreover, the proposed AULSTSVM gives better
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generalization performance due to the incorporation of prior information in the

training process. Instead of the traditional twin hyperplane based approach

for obtaining the decision function, the proposed AULSTSVM needs only one

hyperplane for the classification. In contrast to ULSTSVM, AULSTSVM con-

structs hyperplane for universum data, and utilizes the prior information about

data using an angle based approach. Statistical tests confirm the advantage of

proposed AULSTSVM in comparison to existing algorithms. The lesser com-

putation time of proposed AULSTSVM is due to the introduction of linear

loss in the construction of universum hyperplane. This shows the applicability

of proposed AULSTSVM on various real world applications using universum

data. Various experiments on large scale datasets clearly show the benefit of

the proposed AULSTSVM on large sample datasets. Moreover, an application

on Alzheimer’s disease data is also presented, where the proposed AULSTSVM

obtains highest classification accuracy of 95% for CN vs AD.

A novel and efficient formulation is proposed as universum least squares twin

parametric-margin support vector machine (ULSTPMSVM). The proposed al-

gorithms show high generalization performance with lesser training time in com-

parison to existing algorithms. The formulation of ULSTPMSVM is an alterna-

tive approach towards universum based learning. The optimization problem of

ULSTPMSVM involves a parametric model, solved by a system of linear equa-

tions. In terms of statistical difference in the generalization performance, the

proposed ULSTPMSVM turns out to be significantly better than the existing

algorithms. Moreover, the proposed ULSTPMSVM performed well for classifi-

cation of Alzheimer’s disease, showing its applicability on real world biomedical

applications.

Moreover, to introduce the SRM principle in the formulation of UTSVM,

we proposed an improved universum twin support vector machine (IUTSVM).

There is no ill-conditioning of the matrices in calculating the inverse in the

proposed IUTSVM. The proposed algorithm takes less computation time than
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USVM since it solves a pair of QPP. It can be inferred from the experimental

results that IUTSVM shows better generalization performance in comparison to

the related algorithms.

(vi). Unsupervised SVM algorithm: Lastly, we proposed a unsupervised learning

algorithm in this thesis using a projection based twin SVM based approach.

The proposed LSPTVSC involves a least squares based approach, leading to

less computation cost, and finds projection axes instead of projection planes

for clustering. This is an alternative to the plane based clustering algorithms.

The solution of the proposed LSPTSVC is obtained by solving a set of linear

equations, leading to lesser computational cost. Experimental results show that

proposed LSPTSVC obtains better clustering accuracy than existing algorithms

with lesser training time. Statistical analysis also implies that the proposed

algorithm is significantly better than existing algorithms. Moreover, it is showed

that LSPTSVC is an efficient algorithm for clustering on datasets with large

sample and feature size.

8.2 Future directions

The possible future works are discussed under the different objectives accomplished

in this thesis in the following:

(i). Reducing class imbalance: The procedure of parameter selection for the

fuzzy membership function can be improved by using heuristic based approaches.

The fuzzy membership function proposed with RFLSTSVM-CIL can be applied

to various applications involving class imbalance. The proposed approach can be

extended to multiclass classification, since in most of the multiclass classification

problems there is imbalance of data belonging to the different classes.

The accuracy of the proposed RUTSVM-CIL can be improved by proper

selection of universum. The proper selection of universum is also a field of re-

search, and depends on the type of application. The proposed approach can be
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used with proper selection of universum from the imbalanced data itself. Fur-

ther, different types of undersampling and oversampling techniques can be used

for the proposed RUTSVM-CIL to improve the performance. Multiclass classifi-

cation of data can also be performed by modifying the proposed RUTSVM-CIL.

Since RUTSVM-CIL involves sampling of data with reduced kernel, it can be

useful on applications involving undersampling or oversampling of data. The

proposed model can be applied on classification problems involving large scale

imbalanced datasets.

(ii). Review on Alzheimer’s disease: For the classification of AD data, it is ob-

served that researchers have given more importance to the feature extraction

phase, and not much to the classification phase. This can be addressed in fu-

ture research, since novel models can give some new insight in the diagnosis of

Alzheimer’s. More work is required in formulation of machine learning mod-

els which can integrate information from various modalities for early diagnosis

of Alzheimer’s disease. Moreover, other than the existing models, some novel

variants of SVM also need to be developed for Alzheimer’s disease as was done

in [140]. Also, one can develop and use novel kernel functions for diagnosis

of AD using SVM. Such kind of novel models can increase the classification

performance of SVM.

(iii). Universum learning for brain disorders: The universum based SVM ap-

proach needs to be applied to other diseases which are diagnosed using EEG sig-

nals with the proper selection of universum. In future, the proposed universum

based approach of EEG classification can be improved in terms of computation

time. The proposed universum based approach can be extended to multiclass

classification of EEG signals using EEG datasets generated with different fea-

ture extraction techniques. It is evident from the experimental results that other

variants of SVM such as TWSVM and UTSVM give good generalization and

computational performance, and thus can be applied for the classification of

different EEG signals.
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The proposed USVM-RFE can be improved w.r.t. computation time. Also,

more research is needed in the proper selection of universum, as it is dependent

on the classification problem. Moreover, the proposed USVM-RFE can be mod-

ified for multiclass classification problems, and used on various other real world

applications.

(iv). Noise insensitive USVM based classifiers: The proposed fuzzy based ap-

proach for universum support vector machine can be extended to multiclass

classification problems, and can be applied in other variants of USVM as well.

Moreover, the proposed FUSVM, FUTSVM and FULSTSVM can be improved

by implementing new techniques for selecting the universum. The universum

data can be selected from a dataset related to a particular application. More-

over, other novel fuzzy membership functions can also be used with the proposed

fuzzy based USVM algorithms for various applications.

(v). Efficient UTSVM based classifiers: The proposed AULSTSVM, UL-

STPMSVM, and IUTSVM algorithms can be applied on real world problems,

where universum sample are selected from the dataset itself. More work is

needed for the proper generation of universum data in various applications. The

proposed algorithms can be applied on other biomedical applications utilizing

the benefit of universum learning with less training time. The generalization

performance of proposed angle based approach can be improved by the use of

multiple kernel learning. Moreover, the proposed AULSTSVM can also be ex-

tended for multiclass classification of data. Due to its lesser computation cost,

the proposed AULSTSVM can be very effective for multiclass classification.

In future, more work can be done on improving the computation cost of

the universum based SVM algorithms. For example, the solution of universum

based SVM algorithms can be obtained by using novel iterative methods for

solving an unconstrained version of the optimization problem. Moreover, the

loss function can be formulated based on different types of smoothing techniques.

Also, novel formulations can be proposed in order to reduce the computation
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cost of calculating matrix inversions in the solution.

(vi). Unsupervised SVM algorithm: In future, the proposed LSPTSVC can be

extended for multiple projection axes, and can be applied on other real world

clustering problems. In case of Alzheimer’s disease, proposed LSPTSVC has

shown significantly better performance, justifying its use for other healthcare

applications.

The works presented in this thesis provided some significant improvements on ex-

isting SVM algorithms. Moreover, the applications on biomedical data puts emphasis

on the development and use of SVM based algorithms for such problems. In future

more novel SVM based models can be developed to help the diagnosis of various kinds

of diseases, which involve very large sized data. This will lead to automated diagnosis

of various types of diseases at the early stages, which will lead to a better quality of

life for people, especially the elderly population.
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Jack Jr, Gunnar Krueger, Stefan Klöppel, and Alzheimer’s Disease Neuroimag-

ing Initiative. Effects of hardware heterogeneity on the performance of SVM

Alzheimer’s disease classifier. NeuroImage, 58(3):785–792, 2011.

[125] Daniel Schmitter, Alexis Roche, Bénédicte Maréchal, et al. An evaluation of
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Kálmán, and Ildikó Hoffmann. Identifying mild cognitive impairment and mild

Alzheimer’s disease based on spontaneous speech using ASR and linguistic fea-

tures. Computer Speech & Language, 53:181–197, 2019.
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