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ABSTRACT 
 

In this work, we have designed and synthesized donor-acceptor D-A 

pyrazabole (PY-A) systems using different donors like triphenylamine 

(TPA-D), phenothiazine (PTZ-D') and ferrocene (Fc-D'’) with the help of 

Sonogashira cross-coupling reaction. The 1,1,4,4-tetracyanobutadiene 

(TCBD, A′) derivatives of the D-A pyrazabole systems are formed followed 

by a [2 + 2] cycloaddition–retroelectrocyclization reaction on treatment 

with tetracyanoethylene (TCNE).  The incorporation of TCBD act as an 

acceptor (A′) can further modulate the donor-acceptor strength, electronic 

and photophysical properties of the pyrazabole systems. The opted design 

helps up in opening new possibilities for development of near infrared 

(NIR) absorbing systems with various opto-electronic systems. 
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Chapter 1           Introduction 

1.1. General Introduction  
In recent years, donor–acceptor molecular systems have gained 

significant interest due to their potential applications in organic 

photovoltaics (OPVs), nonlinear optics, organic light emitting diodes 

(OLEDs), solid-state emission, stimuli responsive device, biological 

studies and other optoelectronic devices [1-9]. The donor-acceptor 

molecules possess an electron rich species attached to an electron 

deficient species which allows intramolecular charge transfer (ICT) 

within the system [10].  The optical and electronic properties of donor-

acceptor systems can be finely tuned by simple modifications such as 

alteration of the donor or acceptor ability or by the addition of different 

π linkers which have a direct effect on the ICT process [11-12]. In the 

donor-acceptor molecules, the donor moiety is used to be increase in 

HOMO level whereas the acceptor moiety is used to decrease in the 

LUMO level [13-14]. The integration of donor and acceptor units 

result in narrow HOMO-LUMO gap and a wide absorption spectrum 

[15]. Therefore, the D-A systems are majorly used in organic 

electronics and photovoltaic devices [16]. 

The use of π linkers is a very effective approach in controlling the 

photophysical and electronic properties of D-A systems. Organic 

donor-π-acceptor (D-π-A) compounds have been extensively studied 

experimentally and theoretically. The commonly used donors are 

triarylamines [17] (TPA), carbazole, ferrocence [18] (Fc), thiophene, 

oligothiophenes and phenothiazine (PTZ) [19-20], whereas pyrazabole 

(PY), TCNE (tetracynoethylene), TCNQ (tetracynoquinodimethane), 

diarylborons [21-22], quinolone, and quinoxaline [23], are commonly 

used as electron-accepting moieties. The incorporation of donor and 

acceptor units’ reveal endow the molecules with noteworthy 

intramolecular charge transfer (ICT) behavior which is revealed in their 
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UV–vis absorption and photoluminescence (PL) spectra [24-25]. The 

use of different donors can easily alter the electrochemical behavior of 

D-A compounds [13]. 

ACCEPTOR 

 

 

DONOR 

 

 

In this work we have selected, pyrazabole (PY) as our central acceptor 

unit. Pyrazabole system are a new kind of boron heterocyclic systems, 

which are can be easily functionalized at the pyrazole carbon as well 

as boron atom and are very stable. The pyrazabole system is a nitrogen-

boron heterocyclic compound and acts as a weak acceptor [26-28]. The 

tetra coordinated boron atom has a negative charge which is neutralized 

by nitrogen atoms, and the whole molecule become neutral and can be 

synthesized by the dimerization of two pyrazole rings The pyrazabole 

core can exist in either of this different confirmations like flat, chair or 

boat which is controlled by the charecter of the substituent linked with 

the boron atom and pyrazabole core [26]. The substitution of 
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pyrazabole unit with various donor groups on the pyrazabole moiety 

results in different donor-acceptor architectures i.e. D-A, D-A-D, D-π-

A, D-π-A-π-D etc. serving as excellent candidates in organic 

photovoltaics, photonics, sensors, stimuli responsive materials etc. 

These properties of pyrazabole have been exploited in our proposal by 

design and synthesis of pyrazabole functionalized donor-acceptor 

systems incorporating various donor systems such as ferrocene [18], 

triphenylamine [17], and phenothiazine [19-20]. The various donors 

are attached to pyrazabole by coupling reactions and the donor-

acceptor ability was tuned by introducing acetylenic linkage. To further 

increase the acceptor strength of pyrazabole moiety, 1,1,4,4-

tetracyanobutadiene (TCBD, A′) was introduced followed by a [2 + 2] 

cycloaddition–retroelectrocyclization reaction with 

tetracyanoethylene. 1,1,4,4-tetracyanobutadiene (TCBD, A′) also act 

as a strong acceptor because of four cyano group.  

We have chosen different donors like Triphenylamine (TPA-D), 

Phenothiazine (PTZ-D′) and Ferrocene (Fc-D′′) for formulating the 

whole molecule. All these three donors are extensively known to 

possess good electron donating ability. Phenothiazine is a well-known 

heterocyclic moiety comprising of nitrogen and Sulphur atom which 

was first synthesized by Bernthsen in 1883 [19-20].  It has low 

oxidation potential and high thermal and electrical stability. 

Triphenylamine is a star shaped molecule which also has an excellent 

electron donating ability. It was first synthesized by Merz and Weith 

in 1873.  It shows high hole mobility with non-coplanar structure which 

helps in restraining intermolecular aggregation [18]. Ferrocene is a 

sandwich shaped donor which was first synthesized by Kealy and 

Pauson in 1951. It also shows the reversible oxidation at low potential 

[17]. All these donors show wide range of applications in organic 

photonics, organic electronics, solid state emission and as NIR 
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absorbing Dyes, when joined with different acceptors All the 

molecules were well represented by 1H-NMR and HRMS. 

1.2. Aim and Strategy of our work 
The work was designed with an aim of precise tuning of the donor-acceptor 

ability of pyrazabole systems by incorporation of different donors, 

introduction of acetylenic linkage and utilization of strong acceptor like 

TCBD. The molecular strategy was designed to study the optical and 

electronic properties of different TCBD substituted D-A pyrazabole 

systems such as TPA (D), PTZ (D') and Fc (D'') substituted Pyrazabole. A 

series of D-π-A-π-D, D-A'-A-π-D, D-A'-A-A'-D were synthesized by 

utilization of pyrazabole as acceptor (A) and TPA, PTZ and Fc as donor and 

TCBD as acceptor (A'). Further, 1H NMR and Mass spectroscopic 

techniques was used to determine the structure of the compounds. 

 

 

Figure 1: Structure and molecular framework of different donor-acceptor 

system. 
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 Scheme 1: Overall Scheme 
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Chapter 2           Experimental Section 

2.1. Chemicals, reagents and methods 

All Chemicals which were used for synthesis and purification of 

compounds, were pure. These chemical includes phenothiazine (PTZ), 

bromine (Br2) (Sigma-Aldrich, 99.5%), ferrocene (Sigma-Aldrich, 98%), 

TPA (Sigma-Aldrich, 99SS%), iodopropane (Sigma-Aldrich, 99%), 

iodoimidazole, BBu3, xylene (Spectrochem, >99%), TCNE (Sigma-

Aldrich, 98%), TCNQ (Sigma-Aldrich, 98%), DCM (Spectrochem), DCE 

(Spectrochem), hexane (Spectrochem), CuI (Sigma-Aldrich, ≥99.5%), 

Pd(PPh3)2cl2 (Sigma-Aldrich, 99%), Et3N (Sigma-Aldrich, ≥99%), THF, 

DMF (Spectrochem, >95%), Dioxane (Spectrochem, ≥99.5%), NaOH, 

POCl3 (Spectrochem, >99%), AlCl3 (Sigma-Aldrich, 99.99%).   

Mainly we are dealing with C-C coupling reactions (Sonogashira and 

Suzuki). All these reactions are mostly moisture sensitive reactions, so all 

the oxygen and wet sensitive reactions were performed in inert 

(nitrogen/argon) atmospheric conditions. 1H-NMR spectra of all 

compounds were recorded using a Bruker AV 400 MHz spectrometer. 

Chemical shifts are described in delta (δ) units, expressed in parts per 

million (ppm) downfield from tetramethylsilane (TMS) using left-over 

protonated able to make payment as an internal standard {CDCl3 and 

DMSO-d6}. The splitting patterns in 1H-NMR spectrum explained by the 

symbol as “s, singlet; d, doublet; t, triplet and m, multiplet.” Mass 

spectrometric analyses were done on Bruker-Daltonics, microTOF-Q II 

mass spectrometer. 

2.2. General Procedure for the Preparation of the 

Precursors 

The precursors B, C, D, E, F and H were synthesized as per reported 

procedure [29-32]. 

 



7 
 
 

2.2.1. Synthesis of central acceptor 

2.2.1.1. Synthesis of B [31].     			The intermediate 4,4,8,8-Tetrabutyl-2,6- 

diiodopyrazabole (B) was synthesized by 

condensation reaction, a mix of 4-iodopyrazole ‘A’ 

(5.0 g, 25.7 mmol) and 100 mL of xylene, 25 ml of 

a 1M solution of tributylborane in THF was added 

and refluxed at 120 ℃ for 12 hrs. After taking away 

the able to make payment under rotavap, the coming 

out product ‘B’ was washed with methanol to give 

in a white solid (5.6 g 3, 68.5%). 

2.2.2. Synthesis of adjacent Donor  

2.2.2.1. Synthesis of C [29]. 4-ethynyl-N,N-diphenylaniline was 

synthesized by earlier reported procedure, first monobromo derivative of 

triphenylamine (2 g, 6.168 mmol) was  reacted with trimethylsilylacetylene 

(1.5 ml, 9.25 mmol) by Sonogashira cross-coupling reaction. The 

intermediate N,N-diphenyl-4-((trimethylsilyl)ethynyl)aniline (2.76 g, 5.186 

mmol), was deprotected by K2CO3 (4.3 g, 31.1 mmol) with 1:1 solution of 

methanol and THF to obtain light yellow solid 4-ethynyl-N,N-

diphenylaniline at rt. with the yield of 78%. 

Scheme 2: Synthesis of C 

2.2.2.2. Synthesis of D [30]: 3-ethynyl-10-propyl-10H-phenothiazine was 

synthesized by four different steps. First 10H-phenothiazine (2 g, 10 mmol) 

moiety was reacted with propyliodide (3.56 g, 20.9 mmol) by alkylation 

method in presence of NaOH (3.2 g, 80 mmol), 50 ml DMSO and heated 

under reflux for 24 hrs. Then the reaction mixture was discharged into water 

and ethyl acetate (300 mL) was used to extract the organic phase. After that 

the organic part of the system was self-controlled and dried over anhydrous 
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MgSO4. After taking away the solvent rotavap, the rest was made clean by 

column chromatography using silica and DCM-hexane (1:9; v/v) as the 

filtrate to give a colorless viscous liquid (2.15 g, 85%). After this the 

alkylated product was employed bromination reaction, 10-propyl-10H-

phenothiazine (2 g, 8.28 mmol) was dissolved in 13 ml CHCl3 and a solution 

of NaOH (0.496 g, 12.42 mmol) in 50 ml glacial acetic acid was added to 

the above mixture. Then at last bromine (0.42 ml, 8.28 mmol, in 10 mL 

glacial acetic acid) was added dropwise at 0 ℃. The mix was stirred at 0 ℃ 

till the complete addition of bromine took place. After this mix was removed 

and workup with water and DCM, and the organic layer was dried over 

MgSO4. At last we got a light yellow liquid of mono-bromo alkylated PTZ 

(3-bromo-10-propyl-10H-phenothiazine) with the yield of 69% and then 

this mono-bromo PTZ derivative was reacted with 2-methylbut-3-yn-2-ol 

(1.5equi.) at 60 ℃ for 12 hrs. by Sonogashira cross-coupling reaction after 

this the deprotection of propan-2-ol by TPA, KOH at 50 ℃ and we got our 

desired product at the end. 

 

Scheme 3: Synthesis of D 

2.2.2.3. Synthesis of E [31]: Ethynylferrocene was also synthesized by 

three steps starting from ferrocene (Fc). Firstly, Fc was functionalized to  

monoacetyl ferrcene by alkylation process, in which a solution of AlCl3 (2.2 

g, 16.3 mmol) in 10 ml DCM was added to 2-neck RB, stirred it on magnetic 

stirred with the addition of acetylchloride (1.1 ml) dropwise, then a mixture 
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of Fc (2.8 g, 15 mmol and 10 ml DCM) was added to the above solution 

and stirred the whole mixture for half an hour and we got dark violet color 

mixture which was further quenched and the organic layer was extracted 

with DCM, at last resulted in monoacetyl ferrocene (orange color, m.p. = 

82 ℃) with the yield of 81.72%. Further a solution of monoacetyl ferrocene 

(1.7 g, 7.45 mmol) in DMF (10 ml) was added to a three neck RB at 0 ℃ 

after this a red complex solution of POCl3 (3 ml) in DMF (10 ml) was added 

dropwise to the above mixture at 0 ℃ by Vilsmeier-Haack reaction and the 

change of color was observed from dark brown to deep blue and at last the 

complete solution was quenched with sodium acetate, after that the product 

which was extracted with hexane, (1-chloro-2-formylvinyl)ferrocene (2 g, 

7.2 mmol) dissolved in 1N NaOH in 30 ml 1,4-Dioxane and the complete 

solution was refluxed for half an hour and at the end our desired product 

ethynylferrocene was obtained with the yield of 78%. 

 

Scheme 4: Synthesis of E 

 

2.2.3. Synthesis of Donor Acceptor molecules 

2.2.3.1. Synthesis of F [32]: ‘F’ was synthesized as earlier reported 

procedure, in which 4,4,8,8-Tetrabutyl-2,6-   diiodopyrazabole ‘B’ and 4-

ethynyl-N,N-diphenylaniline (C) undergoes Pd-catalysed Sonogashira 

cross-coupling reaction in presence of CuI as co-catalyst, trimethylamine 

(Et3N) as a base and THF as solvent in inert condition. 1H NMR (400 MHz, 

CDCl3): δ 7.73 (s, 4H), 7.76–6.99 (m, 20H, TPA aromatic H), 1.18 (d, 8H, 

J = 8Hz), 0.88–0.78 (m, 20H), 0.655 (d, 8H, J = 8Hz). 

2.2.3.2. Synthesis of H [31]: Similar procedure as in ‘F’ was used in the 

synthesis of ‘H’ in which 4,4,8,8-Tetrabutyl-2,6-   diiodopyrazabole ‘B’ and 
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Ethynylferrocene ‘E’ undergoes Pd-catalysed Sonogashira cross-coupling 

reaction in presence of CuI as co-catalyst, trimethylamine (Et3N) as a base 

and THF as solvent in inert condition. 1H NMR (400 MHz, CDCl3): δ 7.69 

(s, 4H), 4.51 (s, 4H), 4.30 (t, 13H, J = 8Hz), 1.26 (t, 8H, J = 8Hz), 0.79 (m, 

20H), 0.68–0.64 (m, 8H). Observed mass [M]+ = 800.35 Calculated mass 

[M]+ = 800.35. 

2.3. Synthesis of Final Compounds 

The [2 + 2] cycloaddition−retroelectrocyclization reaction of pyrazabole F, 

G and H with TCNE resulted in mono and di substituted TCBD-

functionalized pyrazabole F-1, G-1, H-1 (mono substituted TCNE) and F-

2, G-2, H-2 (di substituted TCNE) respectively. 

2.3.1. Synthesis of F-1 and F-2: For obtained the mono substituted TCBD-

functionalized pyrazabole ‘F-1’ by [2 + 2] 

cycloaddition−retroelectrocyclization reaction from pyrazabole ‘F’. The 

TCNE was used to be 1.1 equivalents with respect pyrazabole ‘F’ in 

presence of DCM and the whole reaction is conducted at rt. for 4 hrs. caused 

to result in pyrazabole ‘F-1’ with the yield of 66.72%. On the other side for 

obtained the di substituted TCBD-functionalized pyrazabole ‘F-2’ from ‘F’, 

TCNE was used to be 2 equivalents with respect to pyrazabole ‘F’ at 60 °C 

for 12 hrs. caused to result in pyrazabole ‘F-2’ with the yield of 78.34%. 

(F-1) 1H NMR (400 MHz, CDCl3): δ 8.10 (s, 2H), 7.72 (s, 2H), 7.635 (d, 

2H, J = 1.2Hz), 7.40 (d, 4H, J = 8Hz), 7.34 (d, 2H, J = 8Hz), 7.31–7.27 (m, 

6H), 7.21 (t, 4H, J = 8Hz), 7.05 (t, 4H, J = 8Hz), 7.12 (d, 2H, J = 8Hz), 7 

(d, 2H, J = 8Hz), 6.92 (d, 2H, J = 8Hz), 1.16 (t, 8H, J = 4Hz), 0.78–0.67 

(m, 28H). Observed mass [M+Na]+ = 1069.57 Calculated mass [M+Na]+ = 

1069.58. (F-2) 1H NMR (400 MHz, CDCl3): δ 8.10 (s, 4H, J = 4Hz), 7.62 

(d, 4H, J = 8Hz), 7.40 (t, 8H, J = 8Hz), 7.29 (d, 4H, J = 8Hz), 7.21 (d, 8H, 

J = 8Hz), 6.92 (t, 4H, J = 4Hz), 1.16 (t, 8H, J = 8Hz), 0.77–0.71 (m, 28H). 

Observed mass [M+Na]+ = 1097.5894 Calculated mass [M+Na]+ = 1197.59. 
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2.3.2. Synthesis of G: Phenothiazine functionalized pyrazabole ‘G’ was 

synthesized by Pd-catalysed Sonogashira cross-coupling reaction between 

diiodopyrazabole (B) and 3-ethynyl-10-propyl-10H-phenothiazine (D) in 

presence of CuI as co-catalyst, trimethylamine (Et3N) as a base and THF as 

solvent in inert atmosphere. 1H NMR (400 MHz, CDCl3): δ 7.72 (s, 4H), 

7.26 (s, 4H), 7.12 (d, 4H, J = 8Hz), 6.92–6.86 (m, 6H), 6.79 (d, 2H, J = 

8Hz), 3.81 (t, 4H, J = 8Hz), 1.81 (t, 4H, J = 8Hz), 1.18 (d, 4H, J = 8Hz), 

1.01 (s, 6H), 0.78 (m, 20H), 0.67 (t, 8H, J = 8Hz). Observed mass [M]+ = 

910.5246 Calculated mass [M]+ = 910.52. 

2.3.3. Synthesis of G-1 and G-2: For obtained the mono substituted TCBD-

functionalized pyrazabole ‘G-1’ by [2 + 2] 

cycloaddition−retroelectrocyclization reaction from pyrazabole ‘G’. The 

TCNE was used to be 1.1 equivalents with respect pyrazabole ‘G’ in 

presence of DCM and the whole reaction is conducted at rt. for 4 hrs. caused 

to result in pyrazabole ‘G-1’. On the other side for obtained the di 

substituted TCBD-functionalized pyrazabole ‘G-2’ from ‘G’, TCNE was 

used to be 2 equivalents with respect to pyrazabole ‘G’ at 60 °C for 12 hrs. 

caused to result in pyrazabole ‘G-2’. (G-1) 1H NMR (400 MHz, CDCl3): δ 

8.11 (s, 2H), 7.72 (s, 2H), 7.65 (d, 1H, J = 8Hz), 7.36–6.78 (m, 13H). 3.87–

3.80 (p, 4H, J = 8Hz), 1.85 (q, 4H, J = 8Hz), 1.42–1.26 (m, 6H), 1.04 (t, 

8H), 0.88–0.70 (m, 28H), (G-2) 1H NMR (400 MHz, CDCl3): δ 8.10 (s, 

4H), 7.64 (d, 2H, J = 8Hz), 7.33 (s, 2H), 7.18 (s, 2H), 7.03 (t, 4H, J = 8Hz), 

6.87 (t, 4H, J = 8Hz), 3.85 (t, 4H, J = 8Hz), 1.85 (q, 4H, J = 8Hz), 1.28–

1.14 (m, 8H), 1.04 (t, 6H, J = 8Hz), 0.71 (m, 28H). 

2.3.4. Synthesis of H-1 and H-2: For obtained the mono substituted TCBD-

functionalized pyrazabole ‘H-1’ by [2 + 2] 

cycloaddition−retroelectrocyclization reaction from pyrazabole ‘H’. The 

TCNE was used to be 1.1 equivalents with respect pyrazabole ‘H’ in 

presence of DCM and the whole reaction is conducted at rt. for 4 hrs. caused 
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to result in pyrazabole ‘H-1’. On the other side for obtained the di 

substituted TCBD-functionalized pyrazabole ‘H-2’ from ‘H’, TCNE was 

used to be 2 equivalents with respect to pyrazabole ‘H’ at 60 °C for 12 hrs. 

caused to result in pyrazabole ‘H-2’. (H-1) 1H NMR (400 MHz, CDCl3): δ 

7.92 (s, 2H), 7.67 (s, 2H), 5.715 (d, 2H, J = 4Hz), 5.09 (t, 1H, J = 4Hz), 4.83 

(t, 1H), 4.47 (s, 3H), 4.255 (d, 7H, J = 4Hz), 1.25 (t, 8H, J = 4Hz), 0.88–0.63 

(m, 28H). (H-2) 1H NMR (400 MHz, CDCl3): δ 7.87 (s, 4H), 5.72 (d, 2H, J = 

8Hz), 5.10 (s, 2H), 4.83 (s, 2H), 4.52 (s, 10H), 4.22 (d, 2H, J = 8Hz), 1.09–

1.02 (m, 8H), 0.81–0.53 (m, 28H).  
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Chapter 3        Results and discussion  

3.1. Synthesis of Donors (D), Acceptors (A), Donor-Acceptor 

(D-A) system and characterization 

The synthesis of TCNE substitued Pyrazabole compounds D-A systems ‘B’ 

to ‘H-2’ are shown in different schemes one by one. The diiodopyrazabole 

‘B’ was synthesized by condensation reaction between 4-iodopyrazole in 

presence of xylene and tributyborane at 120℃, according to following 

earlier reports. The compound ‘B’ was obtained with 68.5% yield. 

 

Scheme 5: Synthesis of B 

The Sonogashira cross-coupling reactions of diiodopyrazabole ‘B’ with 2.1 

equivalent of 4-ethynyl-N,N-diphenylaniline ‘C’, 3-ethynyl-10-propyl-

10H-phenothiazine ‘D’ and Ethynylferrocene ‘E’ resulted in formation of 

symmetrical pyrazabole systems ‘F’, ‘G’ and ‘H’ respectively of 

architecture like D-π-A-π-D. 

     

                          Scheme 6: Synthesis of ‘F’, ‘G’ and ‘H’ 
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The [2 + 2] cycloaddition−retroelectrocyclization reaction of pyrazabole 

‘F’, ‘G’ and ‘H’ with TCNE resulted in TCBD functionalized mono-di 

pyrazabole F-1, F-2, G-1, G-2, H-1 and H-2.  1.1 equivalent of TCNE with 

pyrazabole ‘F’, ‘G’ and ‘H’ in methylenedichloride (DCM) at room 

temperature resulted in mono substituted TCNE pyrazabole ‘F-1’, ‘G-1’ 

and ‘H-1’, whereas the reaction of 2 equivalents of TCNE with pyrazabole 

‘F’, ‘G’ and ‘H’ at 40℃ resulted in di substituted TCNE pyrazabole F-2, 

G-2 and H-2 respectively. 

 

     

          Scheme 7: Synthesis of ‘F-1 and F-2’. 
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         Scheme 8: Synthesis of ‘G-1 and G-2’. 

 

     

           Scheme 9: Synthesis of ‘H-1 and H-2’ 

 

The purification of all pyrazabole compounds were carried out by column 

chromatography, and all the compounds were characterized by 1H NMR 

and Mass spectra. 
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3.2. Photophysical properties:  

The photophysical properties of TCBD substituted TPA pyrazaboles (F-1 

and F-2) were studied using electronic absorption spectroscopy. A solution 

of F-1 and F-2 in 10-5 M DCM solution was used studying the photophysical 

properties. The UV-vis spectra (Figure 2) of F-1 and F-2 displayed 

absorption bands between 250-350 nm corresponding to the π-π* 

transitions. The molecules also showed absorption bands in the higher 

wavelength region (500-600 nm) which could be ascribed to the 

intramolecular charge transfer (ICT) occurring from the donor to acceptor 

moieties. The ICT band in molecules F-1 and F-2 is red-shifted as compared 

to the ICT band in molecule [32]. The addition of TCBD increases the 

acceptor strength by tuning of LUMO level which further shifts the ICT of 

TCBD derivatives to longer wavelength. 

 

Figure 2: Absorption spectra of F-1 and F-2 in 10-5 M DCM solution. 

 



17 
 
 

Chapter 4: Conclusion and Future Prospective  

4.1. Conclusion: We have successfully synthesized donor-acceptor D-A 

pyrazabole (PY-A) using different donors like TPA, PTZ and Fc with the 

help of Sonogashira cross- coupling reaction followed by the addition of 

TCNE by cycloaddition–retroelectrocyclization reaction. The incorporation 

of TCBD act as an acceptor (A′) can further modulate the donor-acceptor 

strength, which is shown by the red shift in ICT band of F-1 and F-2. All 

these molecules were characterized using 1H and Mass spectroscopic 

techniques. This scheme can be further used for the development of opto-

electronics, NIR-absorbing Dyes. 
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APPENDIX A 

1H and Mass Spectra 

 

Figure 3: 1H NMR spectrum of F. 

 

Figure 4: Mass spectrum of F-1. 

Mol. Wt. of TP1 = 1046.58 g/mol 

(M+Na)
+
peak = 1069.57 
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Figure 5: 1H NMR spectrum of F-1. 
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Figure 6: Mass spectrum of F-2. 

 

Figure 7: 1H NMR spectrum of F-2. 
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Figure 8: Mass spectrum of G. 

 

Figure 9: 1H NMR spectrum of G. 
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Figure 10: 1H NMR spectrum of G-1. 

 

Figure 11: 1H NMR spectrum of G-2. 
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Figure 12: Mass spectrum of H. 

 

 

Figure 13: 1H NMR spectrum of H. 
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Figure 14: 1H NMR spectrum of H-1. 

 

 

Figure 15: 1H NMR spectrum of H-2. 
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