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ABSTRACT

The two critical problems faced by the present world are depreciation in agricul-

tural productivity and depleting human health. Specifically, due to climate change,

scarcity of water and excessive heat cause decrease in the productivity of crops. Thus,

the first part of this dissertation focuses on developing efficient variants of the stan-

dard clustering algorithm to obtain the species of crops that can be grown in less water

and high heat. Furthermore, cancer has emerged as an important cause of mortality

after the cardiac diseases. Hence, the second part focuses on developing image classi-

fication systems to accurately classify the cancer images for their early detection and

prevention.

To increase the agricultural productivity, it is very important to study the genetic

and phenotypic data associated with the crops (henceforth referred as plants). Genetic

data is in the form of Whole Genome Sequence (WGS), which is a sequence made

from a combination of four nucleotides: A (Adenine), T (Thymine), G (Guanine),

and C (Cytosine). Phenotypic data are all kinds of information regarding physical

characteristics of plants, such as Plant Height, 100 Seed Weight, Seed Yield Per Plant,

Number of Branches Per Plant, Days to 50% Flowering, Days to Maturity, etc.

We develop a Vector Quantized Spectral Clustering (VQSC) algorithm that is a

combination of Spectral Clustering (SC) and Vector Quantization (VQ) sampling for

grouping genome sequences of plants. The novelty of our algorithm is in developing the

crucial similarity matrix in SC as well as use of k-medoids in VQ. For genetic data of

Soybean plant, we compare VQSC with commonly used techniques like Un-weighted

Pair Graph Method with Arithmetic mean (UPGMA) and Neighbor Joining (NJ).

Experimental results on the standard set of 31 Soybean sequences show that our VQSC

outperforms both these techniques significantly in terms of cluster quality (average

improvement of 21% over UPGMA and 24% over NJ) as well as time complexity

(order of magnitude faster than both UPGMA and NJ).

Similarly, we develop a Probabilistically Sampled Spectral Clustering that is a

combination of SC and Pivotal Sampling for grouping phenotypic data. The novelty



of our algorithm is again in constructing the crucial similarity matrix for the clustering

algorithm and defining probabilities for the sampling technique. For phenotypic data of

Soybean plant, we compare our algorithm with the traditional Hierarchical Clustering

(HC) algorithm. Experimental results on commonly used 2400 Soybean genotypes

show that we get up to 45% better quality clusters than HC in terms of Silhouette

Value. Again, the complexity of our algorithm is more than a magnitude lesser than

HC.

The two common cancers prevailing in the world are breast cancer and thyroid

cancer. These cancers are becoming pervasive with their early detection forming a

big step in saving the life of any patient. The traditional diagnostic techniques highly

depend upon the personal knowledge and the experience of the doctor, where they di-

agnose the presence of cancerous tumor from images (X-ray image, ultrasound image,

magnetic resonance image etc.). Hence, now-a-days, automated imaging techniques

are commonly used for these cancer diagnosis. The most important step here is clas-

sification of the cancer images as benign or malignant. Mammography is the most

effective tool for early detection of breast cancer that uses a low-dose X-ray radiation,

and is commonly used. Similarly, ultrasound images (that use high frequency sound

waves) of thyroid gland of a human being are mostly used for detecting thyroid cancer.

Texture of a breast and thyroid in these images plays a significant role in classify-

ing them as benign or malignant. We propose a descriptor that is a combination of

Histogram of Gradients (HOG) and Gabor filter, which exploits textural information.

We term it as Histogram of Oriented Texture (HOT). We also revisit the Pass Band

- Discrete Cosine Transform (PB-DCT) descriptor that captures texture information

well. All features of the cancer images may not be useful. Hence, we apply a feature

selection technique called Discrimination Potentiality (DP). Our resulting descriptors,

DP-HOT and DP-PB-DCT, are compared with the standard descriptors. Experimen-

tal results on breast and thyroid images show that we achieve an average accuracy

of 92% and 96%, respectively which is substantially more than the existing standard

descriptors.
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Chapter 1

Introduction

Depreciation in agricultural productivity and depleting human health are two crit-

ical problems currently faced by humans throughout the world. Extreme climate

conditions, like drought or heat waves, cause reduced agricultural productivity [1].

This threatens the livelihoods of farmers and the food requirements of communities

worldwide. One possible solution to this problem is to increase the agricultural land

by cutting down the forests. However, loss of trees and other vegetations can cause

climate change, including soil erosion, flooding, increased greenhouse gases, etc.

An alternative solution to this problem is to develop a better species of crops

(henceforth referred as plants) having improved characteristics.1 Thus, it is crucial

to obtain the most diverse parent species that can be used for breeding. These di-

verse species can be obtained by studying the variation in genetic and phenotypic

data associated with plants. Clustering is an important tool to analyze this variation

present among different plant species. Thus, the first part of this dissertation focuses

on developing efficient variants of the standard clustering algorithms for clustering

plant species, with efficiency obtained by novel samplings. This aspect for genetic

and phenotypic data for plants is briefly discussed in Sections 1.1 and 1.2 below, and

further expanded in Chapters 3 and 4, respectively.

Cancer has emerged as a significant factor after the cardiac arrest that is severely

affecting human health. Cancer develops when the body’s cells start dividing uncon-

1For example, species that can grow in less water and survive high temperatures.
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trollably. The five most common cancer types globally are breast cancer, oral cancer,

cervical cancer, lung cancer, and stomach cancer [2]. Unlike benign cancerous tumors,

malignant tumors spread to the other parts of the body and can be life-threatening.

A possible solution to this problem is to classify the tumors as benign and malignant

in their early stages, which can reduce the chances of death of the patient. In this

dissertation, we mainly focus on the first two most common cancers, i.e. breast and

oral. In the oral cancer context, we focus on thyroid cancer.

Cancerous images can be better classified by using their texture properties. Thus,

the second part of this dissertation focuses on developing image classification systems

that capture the textural features of cancerous images for their more accurate classi-

fication as benign and malignant. This aspect for breast and thyroid images is briefly

discussed in Sections 1.3 and 1.4, which are further expanded in Chapters 5 and 6,

respectively. The standard algorithms that are used throughout this dissertation are

discussed in Chapter 2. Finally, Chapter 7 gives the concluding remarks and discusses

the future works.

1.1 Clustering Genetic Data of Plants

Clustering is one of the most widely used techniques of machine learning for data

analysis. People attempt to get a first impression of their data by trying to iden-

tify groups having similar behavior. Finding tight clusters, i.e. well separated and

compact, is very important. Commonly used clustering algorithms include k-means,

Partition Around Medoids (PAM), Clustering LARge Applications (CLARA), Bal-

anced Iterative Reducing and Clustering using Hierarchies (BIRCH), Density Based

Spatial Clustering of Applications with Noise (DBSCAN), Wave-Cluster, Expectation-

Maximization (EM), etc. [3]. Compared with these traditional algorithms, a promising

alternative is to use spectral methods for clustering.

Clustering algorithms that use spectral properties are widely used because of their

ability to generate good quality clusters (i.e. we get more tight clusters) and easy

implementation (these algorithms can be solved efficiently by using standard linear

2



algebra methods) [4]. However, when the input data are very large, they become

inefficient; computational complexity of O(n3), where n is the size of the input data.

Hence, considerable research has been done to reduce this complexity without affecting

the accuracy of the underlying algorithm.

One such method is sampling that can reduce the input size. Samples should be

selected in a manner such that they represent the whole dataset uniformly. Many

techniques exist for sampling like random sampling, stratified sampling, matrix fac-

torization, Vector Quantization (VQ), Pivotal Sampling, the strip method, the mean

method, the second derivative method, etc. [5, 6]. Among these, VQ [7] is commonly

used and is easy to implement because it provides the reduced data in a single scan

of elements.

Clustering of Whole Genome Sequences (WGSs)2 is useful in developing better

species of plants, e.g., disease resistant and drought resistant. Here, the traditional

methods for clustering, like Un-weighted Pair Graph Method with Arithmetic mean

(UPGMA)[8] and Neighbor Joining (NJ)[8], which are currently used by plant biolo-

gists, do not provide good quality clusters that are needed and are also not the most

efficient methods because of their high computational complexity O(n3).

In this work, we present a Vector Quantized Spectral Clustering (VQSC) algorithm

for grouping Single Nucleotide Polymorphism (SNP)3 data obtained from the WGSs

of plants. Although this combination of Spectral Clustering (SC) and VQ is not new

[7], the novelty of our work is using the two for clustering SNP data. We test our

algorithm on SNP sequences obtained from a standard plant database (Soybean) [9].

We also compare our results with currently used methods of clustering SNP data

(mentioned above). Experiments show that VQSC performs better than these two

popular existing techniques in terms of cluster quality (average improvement of 21%

over UPGMA and 24% over NJ) as well as time complexity (order of magnitude faster

than both UPGMA and NJ).

2A sequence made from a combination of 4 nucleotides: A (Adenine), T (Thymine), G (Guanine),

and C (Cytosine).
3The variation in the nucleotide that occurs at a specific position across sequences.

3



1.2 Clustering Phenotypic Data of Plants

As mentioned earlier, variabilities present among the different plant species (also

called genotypes) are useful in their breeding programs. Here, again, the selection of

diverse parent genotypes is important. More diverse the parents, the higher are the

chances of developing new plant varieties having excellent qualities [10]. A commonly

used technique here is to study the genetic variability which, as discussed in the pre-

vious section, looks at the different genome sequences. However, this kind of analysis

requires a large number of sequences, while very few are available [11, 12] because

genome sequencing is computationally and monetarily expensive [13].

Variabilities in plant genotypes can also be studied using their phenotypic charac-

teristics (physical characteristics). This kind of analysis can be relatively easily done

because a sufficiently large amount of data is available from different geographical

areas. In the phenotypic context, a few characteristics that play an important role are

Days to 50% Flowering, Days to Maturity, Plant Height, 100 Seed Weight, Seed Yield

Per Plant, Number of Branches Per Plant, etc.

As discussed for the genetic data earlier, cluster analysis is an important tool

to describe and summarize the variation present between different plant genotypes

using the phenotypic data as well [10]. This data for the genotypes of different plants

(e.g., Soybean, Wheat, Rice, Maize, etc.) usually have enough variation for better

clustering. However, if this data is obtained for the genotypes of the same plant, then

clustering becomes challenging due to less variation in the data, which forms our focus.

Hierarchical Clustering (HC) is a traditional and standard method that is currently

being used by plant biologists for grouping of phenotypic data [10, 14, 15]. However,

this method has a few disadvantages. First, it does not provide better quality clusters

when grouping similar genotypes [16]. Second, HC is based on building a hierarchical

cluster tree (also called dendrogram), which becomes cumbersome and impractical to

visualize when the data is too large.

To overcome these two disadvantages of HC, we propose the use of the SC al-

gorithm. SC is mathematically sound and is known to give the best quality cluster
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among the existing clustering algorithms [17]. As discussed in previous section, we

get substantial improvements in cluster quality by using SC for genetic data. Further-

more, unlike HC, SC does not generate the intermediate hierarchical cluster tree. To

the best of our knowledge, this algorithm has not been applied to phenotypic data in

any of the previous works (see Section 4.1).

HC, as well as SC, both are computationally expensive. They require substantial

computational time when clustering large amounts of data [17, 16]. Hence, we again

use sampling to reduce this complexity. Probability-based sampling techniques have

recently gained a lot of attention because of their high accuracy at reduced cost [5].

Among these, Pivotal Sampling is most commonly used [18], and hence, we apply it to

phenotypic data. Like for SC, using Pivotal Sampling for phenotypic data is also new.

Recently, VQ has given promising results for genetic data (discussed above). Hence,

here we adapt VQ for phenotypic data as well. This also serves as a good standard

against which we compare Pivotal Sampling.

To summarize, we develop a modified SC with Pivotal Sampling algorithm that is

especially adapted for phenotypic data. The novelty of our work is in constructing the

crucial similarity matrix for the clustering algorithm and defining the probabilities

for the sampling technique. Although our algorithm can be applied to any plant

genotypes, we test it on around 2400 Soybean genotypes obtained from Indian Institute

of Soybean Research, Indore, India [19]. In the experiments, we perform four sets

of comparisons. First, we show that use of Pivotal Sampling does not deteriorate

the cluster quality. Second, our algorithm outperforms all the proposed competitive

clustering algorithms with sampling in terms of cluster quality (i.e. modified SC with

VQ, HC with Pivotal Sampling, and HC with VQ). The computational complexities of

all these algorithms are similar because of the involved sampling. Third, our modified

SC with Pivotal Sampling doubly outperforms HC, which as earlier, is a standard

in the plant studies domain. In terms of Silhouette Value, we get up to 45% better

quality clusters. In terms of complexity, our algorithm is more than a magnitude

cheaper than HC. Fourth and finally, we demonstrate the superiority of our algorithm

by comparing it with two previous works that are closest to ours.
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1.3 Mammogram Patch Classification System

Breast cancer has become the most common killer disease in the female population.

Collectively India, China and US have almost one-third burden of global breast cancer

[20]. The abnormalities like the existence of a breast mass, change in shape, the

dimension of the breast, differences in the color of the breast skin, breast aches, etc.,

are the symptoms of breast cancer. Cancer diagnosis is performed based upon non-

molecular criteria like the tissue type, pathological properties and the clinical location.

Cancer begins with the uncontrolled division of one cell and results in the form of a

tumor.

There are several imaging techniques for examination of the breast, such as mag-

netic resonance imaging, ultrasound imaging, X-ray imaging, etc. Mammography is

the most effective tool for early detection of breast cancer that uses a low-dose X-

ray radiation. It can reveal pronounce evidence of abnormalities, such as masses and

calcification, as well as subtle signs, such as bilateral asymmetry and architectural

distortion. The diagnosis of breast cancer by classifying it as benign and malignant

in the early stage can reduce chances of the death of the patient.

Mammographic Computer Aided Diagnosis (CAD) systems enable evaluation of

abnormalities (e.g., micro-calcification, masses, and distortions) in mammography im-

ages. CAD systems are necessary to aid facilities in carrying out a more accurate

diagnosis. CAD systems are designed with either fully automatic or semi-automatic

tools to assist radiologists for detection and classification of mammography abnormal-

ities [21]. In semi-automated CAD systems, enhancement techniques are first applied

on a mammogram patch, radiologists then select a Region of Interest (ROI) or a patch,

and finally, the patch is classified by the system.

Mammogram patch classification is often done in one stage. However, classifying

a mammogram patch in multiple stages is also beneficial. Two-stage classification of

mammogram patches helps in reducing the possibility of a false positive classification.

In the first stage, mammogram patches are classified as normal or abnormal, then

in the second stage, abnormal patches are further classified into benign or malignant.
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This work proposes two-stage mammogram patch classification. The system is trained

with normal, benign and malignant mammogram patches separately.

Generally, Computer Aided Diagnosis (CAD) systems consist of basic modules as

follows: mammogram patch pre-processing, breast segmentation, enhancement, fea-

ture extraction and classification [22]. Pre-processing step helps in removal of irrele-

vant regions present in a mammogram patch such as pectoral muscles and digit infor-

mation. Breast region is segmented using a threshold. Enhancement techniques such

as adaptive histogram equalization, non-linear filtering are applied on the breast region

to improve visualization of tissues or a tumor in a mammogram patch [23, 24, 25].

In most works, shape features of a mammogram patch have only been considered.

The shape of a mammogram patch plays an important role for benign and malignant

classification. While benign masses have round or oval shapes with clear margins,

malignant masses with spicule have jagged edges [26]. Appropriate features of mam-

mogram patches help in accurate classification.

Mammogram patches can be better classified by using their texture properties.

This work proposes a descriptor that captures the textural features of a mammogram

patch, i.e. Histogram of Oriented Texture (HOT), which is a variation of Histogram

of Gradients (HOG) and Gabor filter combination. We also apply the existing Pass

Band - Discrete Cosine Transform based descriptor (PB-DCT) here because of its

advantage in helping filter textural features. These descriptors have not been used

yet for mammogram patch classification. We use Discrimination Potentiality (DP) to

select appropriate features of mammogram patches in these two descriptors, result-

ing in two new descriptors (DP-HOT and DP-PB-DCT). The proposed descriptors

are compared with the six standard descriptors for mammogram patch classification;

Zernike moments [27], MLPQ [28], GRsca [29], Wavelet Gray Level Co-occurrence Ma-

trix (WGLCM) [30], Local Configure Pattern (LCP) and HOG [31]. SVM is the most

suitable classifier for two-class classification and is widely used in this field. Hence,

we use this.

Breasts with high density have a higher chance of cancer. However, high dense

tissues and masses appear as mostly white in a gray scale of a mammogram patch.
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Hence, it is very difficult to detect a tumor in high dense tissues. Especially, the differ-

ence between benign and malignant tumors is hard to determine [21, 32, 33, 34, 35].

Generally, breasts are classified based upon density in three different ways by the

Breast Imaging Reporting And Database Systems (BIRADS); two classes (fatty and

dense), three classes (fatty, glandular, and dense) or four classes (mostly fatty, scat-

tered density, consistent density and extremely dense) [32, 33]. Most researchers in

this area have not considered the density of a breast for mammogram patch classifi-

cation. Hence, in this work, we test our two proposed descriptors for each BIRADS

class separately and combined.

CAD systems are usually tested on the MIAS and DDSM mammogram patch

datasets of the IRMA database [36]. The MIAS dataset consists of a small set of im-

ages, while DDSM includes few thousand images. Several descriptors and methodolo-

gies have been proposed for mammogram patch classification, but their performances

have been investigated only for a small set of images. Moreover, these systems have

not achieved desired accuracy [32, 35]. The performance of our system is tested on

all mammogram patches of the MIAS and DDSM datasets. The experimental results

show the effectiveness of our approach as we achieve near to 92% accuracy.

1.4 Thyroid Nodule Classification System

Thyroid nodule (or a lump) that develops in the thyroid gland of a human being,

is a disease in which cells grow abnormally and are likely to spread to the other

parts of the body [37]. Presence of this nodule may or may not be an indication of

thyroid cancer. When a thyroid nodule is found, scanning/ imaging of the thyroid

region is done to check if this nodule is a benign or a malignant nodule. Favorably,

most of the detected thyroid nodules are benign. However, the presence of a nodule

(whether benign or malignant) causes various health problems in patients like difficulty

in breathing and swallowing [38]. Moreover, malignant thyroid nodules can produce

an additional hormone called thyroxine, which causes some critical problems with

patient’s health and may result in his/ her death [38]. Hence, classifying these nodules
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at an early stage can reduce chances of the death of the patient.

Abnormalities like hoarseness, swollen glands in the neck, difficulty in swallowing,

difficulty in breathing, pain in the throat or neck, a lump in the front of the neck (near

the Adam’s apple), etc. are some of the symptoms of thyroid cancer [37]. There exist

several imaging techniques for examination of the thyroid, such as computed tomog-

raphy scanning, ultrasound imaging, X-ray imaging, etc. [37]. Ultrasound imaging is

the most effective tool for an early detection of thyroid cancer that uses high-frequency

sound waves to create a picture of the internal organs [39, 37, 38, 40].

The traditional diagnostic technique, where doctors diagnose the presence of can-

cerous tumor from the ultrasound images, may give false results as this diagnosis

heavily relies upon the personal knowledge and the experience of the doctor. That is,

determining whether a thyroid nodule is benign or malignant is a hard task for doctors

as well because it is based only upon symptoms and/ or experience. Hence, now-a-

days, researchers are focusing on developing Artificial Intelligence (AI) based imaging

techniques for this purpose [39, 38]. Development of an image-based Computer-Aided

Diagnosis (CAD) system in medical research serves as an additional expert that assists

doctors in accurate diagnosis.

Similar to the mammographic CAD system, CAD system for thyroid nodule clas-

sification also consists of following basic modules: pre-processing thyroid ultrasound

images, image enhancement, feature extraction and classification. Here, pre-processing

step helps in removal of background and artifacts (additional text or indicator made

by the capturing system). Enhancement techniques are applied on the thyroid images

to improve visualization of tissues or a tumor. Finally, a feature extraction technique

is employed to obtain the features from images and a classifier to classify them.

Similar to the mammogram patches, thyroid images can also be better classified

by using their texture properties [41]. Hence, for classifying thyroid nodules, we again

propose use of the two descriptors that capture the textural features, i.e. HOT and

PB-DCT. These descriptors have not been used yet for this type of classification. As

mentioned earlier, we use DP to select the appropriate features.

A few characteristics of thyroid nodules from the ultrasound image are used as
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suggestive features for malignancy. These include micro-calcifications, absence of a

halo, solidity, intra-nodular flow, hypo-echogenicity and taller-than-wide shape [42].

Accordingly, thyroid nodules are classified into following categories by the Thyroid

Imaging Reporting And Data System (TIRADS) [43]; not suspicious, probably benign,

one suspicious features, two suspicious features, three or more suspicious features and

probable malignancy. These categories are represented by the TIRADS scores of 2,

3, 4a, 4b, 4c and 5, respectively. Based upon this, we consider the ultrasound images

with TIRADS scores of 2 or 3 as the benign cases, while the ultrasound images with

TIRADS scores of 4a, 4b, 4c and 5 as the malignant cases. Support Vector Machine

(SVM) is the most suitable and widely used classifier for the two-class classification

problem. Hence, we use this.

CAD systems are usually tested on the Thyroid Digital Image Dataset (TDID), an

open access database of thyroid ultrasound images created by Universidad Nacional

de Colombia [44]. Several methodologies have been proposed for thyroid nodules

classification, but these systems have not achieved the desired accuracy [39]. That

is, image augmentation [45], VGG-16 [46], GoogLeNet [47], Circular Mask [39] and

Convolutional Neural Network (CNN) [39]. The performance of our classification

system is tested on all thyroid ultrasound images of TDID. The experimental results

show the effectiveness of our approach; we achieve near to 96% accuracy.
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Chapter 2

Background

Clustering and classification are the machine learning techniques used to catego-

rize the input instances into one or more groups/ classes based upon their features

[48]. There is a fundamental difference between these two techniques. In clustering,

instances are grouped based upon their similarities without having any prior informa-

tion about the resulting groups. Thus, this technique comes under the unsupervised

learning category. On the other hand, in classification, we classify the instances based

upon their corresponding predefined class labels, and hence, this comes under the

supervised learning category.

As mentioned in Chapter 1, we mainly focus on Spectral Clustering (SC) in this

dissertation. Hence, the standard algorithm for SC is given in Section 2.1 of this

chapter. As also mentioned earlier, to reduce the complexity of our SC variants, we

use two sampling techniques: Vector Quantization (VQ) and Pivotal Sampling. These

techniques are explained in Sections 2.2 and 2.3, respectively. Finally, for classification,

as stated earlier as well, we use Support Vector Machine (SVM), which is the most

commonly used classifier for the two-class classification (as needed here). This is

explained in Section 2.4.
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2.1 Spectral Clustering

SC algorithms are widely used because they generate better quality clusters (we

get more tight and well separated clusters) and easy implementation (these algorithms

can be solved efficiently by using standard linear algebra methods) [17, 4, 49]. Next,

we provide a brief introduction to the mathematical aspects used by SC: the similarity

matrix in Section 2.1.1 and the Laplacian matrix in Section 2.1.2. Finally, we present

the standard algorithm for SC in Section 2.1.3.

2.1.1 The Similarity Matrix

The first step in the SC algorithm is the construction of a matrix called the similar-

ity matrix. Building this matrix is the most important aspect of this algorithm; better

its quality, better the quality of clusters. This matrix captures the local neighborhood

relationships between the instances via similarity graphs and is usually built in three

ways [17]. The first such graph is a ε-neighborhood graph, where all the vertices whose

pairwise distances are smaller than ε are connected. The second is a k-nearest neigh-

borhood graph, where the goal is to connect vertex vi with vertex vj if vj is among

the k-nearest neighbors of vi. The third and the final is the fully connected graph,

where each vertex is connected with all the other vertices. Similarities are obtained

between the connected vertices only. Thus, similarity matrices obtained by the first

two graphs are usually sparse, while the fully connected graph yields a dense matrix.

We can use any of the graphs mentioned above to generate the similarity matrix

for SC. Since no theoretical analysis is available for helping chose a particular type

of the similarity graph [17], throughout this dissertation, we use the fully connected

graph.

2.1.2 The Laplacian Matrix

The next important aspect of SC is the Laplacian matrix, which is constructed

from the similarity matrix. This matrix is either non-normalized or normalized. The
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non-normalized Laplacian matrix is defined as

L = D − S,

where S is the similarity matrix and D is a diagonal matrix whose elements are

obtained by adding together the elements of all the columns for every row of S.

Normalized Laplacian matrix is again of two types: the symmetric Laplacian (Lsym)

and the random walk Laplacian (Lrw). Both these matrices are closely related to each

other and are defined as

Lsym = D−1/2LD−1/2 = I −D−1/2SD−1/2 and

Lrw = D−1L = I −D−1S,

where I is the identity matrix. In literature, it is suggested to use the normalized

Laplacian matrix instead of the non-normalized one, and specifically the random walk

Laplacian matrix [17]. Hence, in this dissertation, we use this Laplacian matrix.

2.1.3 The SC Algorithm

Corresponding to the three Laplacian matrices discussed above, three variants of

the SC algorithms have been successfully used in literature. That is, there exist two

variants of the normalized SC and a non-normalized SC. Here, we present the normal-

ized SC algorithm proposed by Shi and Malik (2000) [49] that is most commonly used

(see Algorithm 1). This algorithm uses the random walk Laplacian matrix as discussed

above. We refer the readers to [17] for non-normalized SC and [4] for normalized SC

using Lsym.

2.2 Vector Quantization Sampling

VQ is a data compression technique that encodes/ maps each input data (also called

input vector) to its closest matching representative vector [7]. The most important

component of VQ is a codebook that contains the set of representative vectors [51].
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Algorithm 1 Normalized SC by Shi and Malik (2000) [49]

Input: Similarity function defined in [50] and number k, which denotes the number of

clusters. . Here, we consider that the data consists of n instances x1, ..., xn. We obtain

the similarities sij = s(xi, xj) for i, j = 1, ..., n by using a similarity function defined in

[50]. The corresponding similarity matrix is denoted by S = (sij)i,j=1,...,n.

1: Construct a similarity graph by one of the ways described in Section 2.1.1. Let S be its

similarity matrix.

2: Compute the non-normalized Laplacian L discussed in Section 2.1.2.

3: Compute the first k generalized eigenvectors u1, ..., uk of the generalized eigenproblem

Lu = λDu.

4: Let U ∈ Rn×k be the matrix containing the vectors u1, ..., uk as columns.

5: For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the ith row of U .

6: Cluster the points of yi with the k-means algorithm into clusters A1, ..., Ak.

Output: Clusters C1, ..., Ck with Ci = {j|yj ∈ Ai}.

This codebook is designed in such a manner that the difference between the original

and the representative set is minimized. The most common algorithm for designing

this codebook is the Linde-Buzo-Gray algorithm or the Generalized Lloyd algorithm

[52]. This algorithm uses the traditional k-means clustering approach to obtain the

representative vectors.

Given a set of data points x1, x2, ..., xn, where each xi ∈ Rd (i.e. d-dimensional

vector), k-means randomly selects m
(1)
1 ,m

(1)
2 , ...,m

(1)
k as the initial means, where su-

perscript denotes the iteration number and subscript the cluster index. The distances

between all the n data points and these k means are calculated and each data point is

assigned to the nearest mean.1 Then, updated means m
(2)
1 ,m

(2)
2 , ...,m

(2)
k are obtained

for each cluster using the data points assigned to that particular cluster. This algo-

rithm converges when the change in the means is less than a certain tolerance. Finally,

m
(t)
1 ,m

(t)
2 , ...,m

(t)
k are selected as the set of representative vectors, where t denotes the

number of iterations required for convergence.

1These distances can be calculated by using any of the popular distance measures, e.g., Euclidean,

Square Euclidean, Cosine Distances, etc. [50].
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2.3 Pivotal Sampling

This is a well-developed sampling theory that handles complex data with unequal

probabilities. The method is attractive because it can be easily implemented by a

sequential procedure, i.e. by a single scan of the data [53]. Thus, the complexity

of this method is O(n), where n is the population size. This can also be applied to

streaming data where we do not have the list of all the units at the beginning of the

sampling process. It is important to emphasize that this method is independent of

the density of the data.

Consider a finite population U of size n with its each unit identified by a label

i = 1, 2, ..., n. A sample S is a subset of U with its size, either being random (N(S))

or fixed (N). Like any sampling algorithm with unequal probabilities, this technique

requires that the inclusion probabilities of all the units in the population, denoted by

πi with i = 1, 2, ..., n, may be computed before a unit is first considered for a contest.

This forms an important aspect of this unequal probability sampling technique. To

select a sample of size N , where N � n, we obtain these probabilities as [53]

πi = N
κi∑
i∈U κi

,

where κi can be a property associated with the data. Obtaining πi in such a way also

ensures that
∑n

i=1 πi = N , i.e. we get exactly N selection steps (discussed next), and

in turn, exactly N samples.

As above, this method is based on a principle of contests between units [5]. At

each step of the method, two units compete to get selected (or rejected). Consider

unit i with probability πi and unit j with probability πj, then we have the two cases

as below.

1. Selection step (πi+πj ≥ 1): Here, one of the units is selected, while the other

one gets the residual probability πi + πj − 1 and competes with another unit at

the next step. More precisely, if (πi, πj) denotes the selection probabilities of the

two units, then
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(πi, πj) =

(1, πi + πj − 1) with probability
1−πj

2−πi−πj

(πi + πj − 1, 1) with probability 1−πi
2−πi−πj

2. Rejection step (πi + πj < 1): Here, one of the units is definitely rejected (i.e.

not selected in the sample), while the other one gets the sum of the inclusion

probabilities of both the units and competes with another unit at the next step.

More precisely,

(πi, πj) =

(0, πi + πj) with probability
πj

πi+πj

(πi + πj, 0) with probability πi
πi+πj

This step is repeated for all the units present in the population until we get the sample

of size N(S) or N . The worst-case occurs when we obtain the last sample (i.e. N th

sample) in the last iteration.

2.4 Support Vector Machine Classifier

SVM is a supervised learning technique that is used to solve both pattern classifi-

cation and nonlinear-regression problems [54]. Mostly, it is used to perform two-class

classification. Consider a set of training instances, where each instance belongs to one

of the two classes. SVM uses the training instances to construct an optimal hyper-

plane in such a manner that the margin of separation (or gap) between the two classes

is maximized.

While testing, new instances are classified based on which side of the hyperplane

they fall. Figure 2.1 gives an example of an optimal hyperplane that separates the

instances of two classes (represented as circles and squares). Here, the instances

colored in blue are the support vectors and d is the distance between the optimal

hyperplane and the nearest training instance of a class (or support vector). Besides

linear classification, SVM performs non-linear classification as well where a kernel trick

is used. Here, we only need to perform linear classification, and hence, we use a linear

SVM.
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Figure 2.1: Example of an optimal hyperplane in a SVM.





Chapter 3

Vector Quantized Spectral

Clustering (VQSC) for Genetic

Data

Every specie of a plant is genetically represented as combinations of four nu-

cleotides: A (Adenine), T (Thymine), G (Guanine), and C (Cytosine), which are

called the Whole Genome Sequences (WGSs). Every WGS is very long consisting of

several billions of such nucleotides. Hence, typically the size of each WGS runs into

tens of GBs. Single Nucleotide Polymorphisms (SNPs) are the variations present in

different WGSs at the nucleotide level. Instead of working with WGSs, scientist of-

ten work with SNPs because these variations affect how plants develop diseases and

respond to pathogens, chemicals, drugs etc. [55].

Out of all the available WGSs (or SNPs) for different species of a plant, only

a few are known to have a particular trait, e.g., disease resistant, drought resistant

etc. Clustering of these WGSs (or SNPs) is very useful in determining the similar

sequences, which in turn can be used to develop plant species with a combination of

useful traits. Hence, we need better quality clustering of these WGSs (or SNPs), i.e.

the clusters obtained should be compact and well separated from each other. This

should be done efficiently as well.

In this chapter, we present a Vector Quantized Spectral Clustering (VQSC) algo-
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rithm that is a combination of Spectral Clustering (SC) and Vector Quantization (VQ)

sampling for grouping genome sequences of plants. The inspiration here is to use SC

that gives good quality clusters and VQ to make the algorithm computationally cheap

(the complexity of SC is cubic in terms of the input size). Although the combination

of SC and VQ is not new, the novelty of our work is in developing the crucial similarity

matrix in SC as well as use of k-medoids in VQ, both adapted for the plant genetic

data. For Soybean genome sequences, we compare our approach with commonly used

techniques like Un-weighted Pair Graph Method with Arithmetic mean (UPGMA)

and Neighbor Joining (NJ). Experimental results show that our VQSC outperforms

both these techniques significantly in terms of cluster quality (average improvement of

21% over UPGMA and 24% over NJ) as well as time complexity (order of magnitude

faster than both UPGMA and NJ).

3.1 Literature Review

Here, we present literature regarding usage of SC and VQ in the field of plant

genome, and the novelty of our approach. SC can be performed in two ways: recursive

and non-recursive. Bouaziz et al. [56] in 2012 used this method in a recursive way for

genetic studies. However, we use a common non-recursive way [17, 4], because it is

simpler and cheaper. It also gives tight and compact clusters.

The construction of the similarity matrix is the most important part of the SC

algorithm. This can be done either by using basic techniques like pairwise distance

[57], Jukes Cantor [58], Alignment Score [59], cosine similarity and others [50], or by

using advanced techniques [60] like identity-by-state, allele sharing distance, SNP edit

distance, covariance, normalized covariance, and coancestry.

Li et al. [61] in 2010 used SC for clustering gene sequences (which are a subset

of WGSs) where they constructed the similarity matrix by cosine similarity. We use

the earlier mentioned basic techniques besides cosine similarity because they capture

the similarity between the SNP sequences in a better way. We do not use advanced

techniques because they are more involved (and also not needed since basic work well).
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Zhang et al. [62] in 2011 used VQ to reduce the number of genome sequences of

influenza A virus for better visualization of phylogenetic trees, which is an essential

step in earlier mentioned clustering algorithms of UPGMA and NJ. They used the

neural gas method as the basis of their sampling.

We use VQ as well, but in a different sense. We use k-medoids as the basis of

our sampling instead of the neural gas method. This is because it is easy to find the

medoids of the kind of data we have.

3.2 The VQSC Algorithm

As mentioned earlier, construction of the similarity matrix is significant in the SC

algorithm because better the quality of this matrix, better is the quality of clusters

generated by this algorithm. Hence, in this work, for constructing the similarity

matrix, we compare every character in one SNP sequence with every character in other

SNP sequences. This represents how much one sequence is different from another

sequence. The dissimilarity D(i, j) between any two SNP sequences Xi and Xj is

defined as the number of positions at which Xi and Xj differ. The similarity value is

calculated as

S(i, j) = l(seq)−D(i, j),

where, l(seq) is the length of the SNP sequence. This value is normalized and used as

the similarity value for (i, j) index. We also use other similarity measures like pair-

wise distance, Jukes Cantor, and Alignment Score to construct the similarity matrix.

Results show that the quality of clusters is sensitive to the quality of the similarity

matrix used.

As mentioned earlier, we use VQ to compress the original data into a small set

of representative data entities. The goal now is to minimize the difference between

the original and this representative set. Although the standard VQ algorithm uses k-

means, we achieve this minimized difference by using the k-medoids algorithm. This

is because, as discussed earlier, data here are in the form of sequences of strings of A,

T, G, and C characters and mean of these data does not exist. On the other hand,
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k-medoids provide us with representative sequences from the set of given sequences

itself. We briefly summarize VQSC in Algorithm 2 below.

Algorithm 2 The VQSC Algorithm

Input: n SNP sequences {xi} for i = 1, ..., n; k number of sample sequences to

be selected; and m number of clusters to be formed.

1: Perform k-medoids as follows:

(a) Compute medoids y1, ..., yk as the k sample sequences.

(b) Build a correspondence table to associate each xi with the nearest medoid

yj.

2: Run the SC algorithm on y1, ..., yk to obtain cluster indexes Cl; l = 1, ...,m for

each of yj.

3: Recover the cluster membership for each xi by looking up the correspondence

table.

Output: clustered SNP sequences.

3.3 Discussion

We use SNP data of 31 Soybean sequences, which are taken from the database

as follows: http://chibba.pgml.uga.edu/snphylo/ [9]. These data contain 62,89,747

SNPs. As this is a raw data, we use SNPhylo software [9] to remove low-quality data.

Specifically, false SNPs are removed and we get 31 SNP sequences each of length

4847.1 Please refer to Figure 1 of Lee et al. [9], which shows the flowchart of SNPhylo

pipeline, which is a commonly used standard procedure. Finally, these sequences are

used to obtain the similarities among each other leading to the construction of the

similarity matrix, which is an input to our VQSC algorithm.

Next, we first discuss the computational complexity of our and other standard

algorithms (for SNP clustering). Then, we describe the criteria used to check the

1This software also constructs a phylogenetic tree as used by other standard genome clustering

algorithms.
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goodness of generated clusters, termed as validation metrics.

3.3.1 Computational Complexity

As mentioned in Chapter 1, complexities of the standard SC, UPGMA, and NJ

algorithms are all O(n3), where n is the size of the input data. This makes these

algorithms computationally less efficient. However, the use of VQ sampling with SC

reduces the complexity of VQSC to O(k3 + n2kt), where k is the number of represen-

tative samples chosen via k-medoids in VQ, and t is the number of iterations taken by

VQ. Here, the first term (k3) comes from SC, and the second term (n2kt) comes from

VQ. Application of VQ to UPGMA and NJ also leads to a comparable reduction in

their complexities.

3.3.2 Validation Metrics

There are various metrics available for the validation of clustering algorithms.

These include Cluster Accuracy (CA), Normalized Mutual Information (NMI), Ad-

justed Rand Index (ARI), Compactness (CP), Separation (SP), Davis-Bouldin Index

(DB), and Silhouette Value [3, 63]. For using the first three metrics, we should have a

prior knowledge of the cluster labels. However, here we do not have this information.

Hence, we cannot use these validation metrics. Rest of the techniques do not have

this requirement, and hence, can be used for validation here. We use Silhouette Value

because of its popularity [63].

Silhouette Value is a measure of how similar an object is to its own cluster (intra-

cluster similarity) compared with other clusters (inter-cluster similarity). For any

cluster Cl (l = 1, ..., k; say l = 1), let a(i) be the average distance between the ith

data point and all other points in the cluster C1, and let b(i) be the average distance

between this ith data point in the cluster C1 and all other points in clusters C2, ..., Ck.

Silhouette Value for the ith data point is defined as [63]

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (3.1)
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where, a(i) and b(i) signify the intra-cluster and the inter-cluster similarities, respec-

tively. Silhouette Value lies between −1 and 1,2 and average over all the data points

is computed. A positive value (tending towards 1) indicates good clustering (compact

and well-separated clusters), while a negative value (tending towards -1) indicates

poor clustering.

3.4 Results

We first present the results of SC, UPGMA, and NJ without VQ. These data are

given in Table 3.1. Column 1 gives the number of clusters chosen. As 2 to n
2

clusters,

where n is the number of input data points, are commonly used in literature, we follow

this. Hence, we provide results from 2 to 16 clusters (for us n = 31, and hence, n
2

= 15.5 ≈ 16). Columns 2 to 5 refer to the Silhouette Values of the SC algorithm

with four different similarity measures discussed earlier. Columns 6 and 7 give the

Silhouette Values for UPGMA and NJ. As evident (highlighted in bold), SC with

Alignment Score gives the best results for all the clusters. We also obtain the ideal

number of clusters using eigenvalue gap heuristic [17, 74]. It comes out to be m=2.

The percentage improvement in SC (using Alignment Score as the similarity mea-

sure) in comparison with UPGMA and NJ is given in Table 3.2. We can observe from

this table that the average improvement in SC over UPGMA is around 34% and over

NJ is around 37%, which is considered to be a substantial improvement.

Next, we discuss the results for the same three clustering algorithms with VQ.

Results for these experiments are given in Table 3.3 (structure of which is similar

to that of Table 3.1). From this table, we see a similar pattern, i.e. our VQSC

algorithm with Alignment Score is the best (highlighted in bold) as compared to

Vector Quantized UPGMA (VQUPGMA) and Vector Quantized NJ (VQNJ).

We also calculate percentage improvement in VQSC over VQUPGMA and VQNJ.

The data for this is given in Table 3.4. Again, we observe substantial improvement

by using VQSC. The average percentage improvement in VQSC over VQUPGMA is

2This is because the denominator of (3.1) is always greater than its numerator.

24



Table 3.1: Silhouette Values for different clustering algorithms without VQ.

# of

Clusters

SC
UPGMA NJ

Similarity

S(i, j)

Pairwise

Distance

Jukes

Cantor

Alignment

Score

2 0.2012 0.2012 0.2590 0.3169 0.1831 0.2206

3 0.1987 0.1722 0.2440 0.2845 0.2002 0.2258

4 0.2053 0.2037 0.2621 0.3241 0.2546 0.2192

5 0.2488 0.2421 0.3017 0.3528 0.2791 0.2488

6 0.2771 0.2771 0.3214 0.3886 0.2389 0.2771

7 0.2990 0.3231 0.3414 0.3882 0.2612 0.2736

8 0.3451 0.3451 0.3811 0.4007 0.2906 0.2874

9 0.3490 0.3140 0.3785 0.4130 0.3112 0.3031

10 0.3522 0.3507 0.3771 0.4464 0.3430 0.2966

11 0.3687 0.3681 0.4045 0.4589 0.3831 0.3476

12 0.3799 0.4046 0.4258 0.5031 0.4089 0.3569

13 0.4329 0.3948 0.4611 0.5375 0.4153 0.3829

14 0.4470 0.4527 0.4646 0.5415 0.4610 0.4403

15 0.4481 0.4590 0.5093 0.5701 0.4881 0.4366

16 0.5014 0.5134 0.5301 0.5917 0.5139 0.4665

around 28% and over VQNJ it is around 347%.

Next, we calculate the loss in the cluster quality incurred in terms of Silhouette

Value because of sampling in the proposed SC algorithm (with Alignment Score as

the similarity measure). For this, we compare the relevant SC and VQSC data from

Tables 3.1 and 3.3, respectively. This loss for the different number of clusters chosen

is listed in Table 3.5. We can observe from these data that the average of the loss in

terms of Silhouette Values comes around 11%, which is considered acceptable because

we are still better than the existing best algorithms (UPGMA and NJ; please see Table

7 and the accompanying discussion below).
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Table 3.2: Comparison of SC with UPGMA and NJ.

# of

Clusters

% improvement in SC

Over UPGMA Over NJ

2 73.07 43.65

3 42.11 26.00

4 27.30 47.86

5 26.41 41.80

6 62.66 40.24

7 48.62 41.89

8 37.89 39.42

9 32.71 36.26

10 30.15 50.51

11 19.79 32.02

12 23.04 40.96

13 29.42 40.38

14 17.46 22.98

15 16.80 30.58

16 15.14 26.84

Average 33.50 37.43

We further validate the quality of these clusters using tools used by biologists

at Indian Institute of Soybean Research, Indore, India. Here, we compare cluster

formation for SC and VQSC for the different number of clusters. As above, we use the

data corresponding to Alignment Score as the similarity measure because that gives

the best results.

We do this comparison in two ways. For two cases (m = 11 and 12), we diagram-

matically identify the sequences that are wrongly clustered by VQSC as compared

with SC (in Figures 3.1 and 3.2). For all other values of m, we give the number

of sequences wrongly clustered by VQSC as compared with SC (in Table 3.6). This
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Table 3.3: Silhouette Values for different clustering algorithms with VQ.

# of

Clusters

VQSC VQ-

UPGMA
VQNJ

Similarity

S(i, j)

Pairwise

Distance

Jukes

Cantor

Alignment

Score

2 0.2012 0.2012 0.2590 0.3169 0.1835 0.0128

3 0.2002 0.2002 0.2474 0.2876 0.2002 0.0427

4 0.2159 0.2181 0.2610 0.3052 0.2192 0.0752

5 0.2211 0.2488 0.2887 0.3232 0.2488 0.0827

6 0.2639 0.2528 0.2922 0.3046 0.2532 0.0476

7 0.2446 0.2184 0.2867 0.3259 0.2604 0.0821

8 0.2727 0.2718 0.3189 0.2935 0.2752 0.1195

9 0.2861 0.3209 0.2890 0.4004 0.2886 0.1506

10 0.3361 0.2429 0.3561 0.3726 0.3264 0.1523

11 0.3035 0.2877 0.3672 0.4594 0.3456 0.2273

12 0.3299 0.3783 0.4078 0.4743 0.3650 0.2513

13 0.4268 0.4184 0.3811 0.4843 0.4216 0.3002

14 0.4128 0.4251 0.4450 0.4966 0.4111 0.3465

15 0.4560 0.4592 0.4796 0.5334 0.4592 0.3552

16 0.4552 0.4434 0.4587 0.5004 0.4434 0.4434

two-way strategy comprehensively depicts the goodness of VQSC.

In Figures 3.1 and 3.2, the x-axis lists the 31 sequences and the y-axis refers to

the clustering algorithms used. The Silhouette Values from Tables 3.1 and 3.3 are

given on the right. The different colors denote the different clusters, and the colored

boxes signify which cluster each sequence belongs to. From Figure 3.1, we observe

that our VQSC algorithm does not cluster sequences W08, W11, and C01 (i.e. only 3

out of 31) in their respective clusters when compared with SC. Similar behavior can

be observed from Figure 3.2. Sequences W05, C01, and C19 (again only 3 out of 31)

are not correctly clustered by VQSC when compared with SC.
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Table 3.4: Comparison of VQSC with VQUPGMA and VQNJ.

# of

Clusters

% improvement in VQSC

Over VQUPGMA Over VQNJ

2 72.70 2375.78

3 43.66 573.54

4 39.23 305.85

5 29.90 290.81

6 20.30 539.92

7 25.15 296.95

8 6.65 145.61

9 38.74 165.87

10 14.15 144.65

11 32.93 102.11

12 29.95 88.74

13 14.87 61.33

14 20.80 43.32

15 16.16 50.17

16 12.86 12.86

Average 27.87 346.50

Figure 3.1: Cluster formation for SC and VQSC with Alignment Score and m = 11.

Figure 3.2: Cluster formation for SC and VQSC with Alignment Score and m = 12.
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Table 3.5: Loss in cluster quality in terms of Silhouette Values because of sampling in

SC.

# of Clusters % Loss in Silhouette Values

2 0

3 +1.08

4 –6.19

5 –9.16

6 –27.58

7 –19.12

8 –36.52

9 –3.15

10 –19.81

11 –0.11

12 –6.07

13 –10.98

14 –9.04

15 –6.88

16 –18.25

Average -11.45

As evident from Table 3.6, on an average only 4 out of 31 (about 13%) sequences

are wrongly clustered by VQSC as compared with SC. This is considered acceptable

because, as earlier, we are still better than the existing best algorithms (please see

Table 3.7 and the accompanying discussion below).3 To sum up, by using VQSC, we

get almost the same cluster formation as SC, but at a reduced computational cost.

Finally, we compare results of our efficient and accurate algorithm (VQSC using

Alignment Score) with the existing best (UPGMA and NJ). Results for this are given

in Table 3.7. As evident from this table, our VQSC is on an average 21% better than

3The outlier case of m = 8 needs further analysis and experimentation with more data.
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Table 3.6: Wrongly clustered sequences by VQSC when compared with SC.

# of Clusters
# of Sequences

Wrongly Clustered

2 0

3 1

4 4

5 4

6 4

7 4

8 12

9 2

10 5

11 3

12 3

13 5

14 6

15 4

16 4

Average 4.07

UPGMA and on an average 24% better than NJ in terms of Silhouette Values. As

earlier, we also have the added benefit of reduced computational complexity for VQSC

as compared with both UPGMA and NJ.
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Table 3.7: Comparison of VQSC with UPGMA and NJ.

# of

Clusters

% improvement in VQSC

Over UPGMA Over NJ

2 73.07 43.65

3 43.66 27.37

4 19.87 39.23

5 15.80 29.90

6 27.50 9.92

7 24.77 19.12

8 1.00 2.12

9 28.66 32.10

10 8.63 25.62

11 19.92 32.16

12 15.99 32.89

13 16.61 26.48

14 7.72 12.79

15 9.28 22.17

16 -2.63 7.27

Average 20.66 24.19





Chapter 4

Probabilistically Sampled Spectral

Clustering for Phenotypic Data

The terms genotype and phenotype may sound similar but there is a considerable

difference between them. A genotype refers to a plant variant defined by its Whole

Genome Sequence (WGS), which is responsible for a particular trait or characteristics

in the plant. For example, consider the following WGSs of an arbitrary plant, which

map to different genotypes:

. . . A C G T G C C T A . . . Genotype 1

. . . A A G T C C C A A . . . Genotype 2

. . . A C G T G C C C A . . . Genotype 3
...

. . . A T G T G C C G A . . . Genotype n

On the other hand, a phenotype refers to a plant variant defined by its physi-

cal characteristics. Let two similar plants may have different leaf colors or different

heights. These differences between the color or the height might imply that these two

plants are different phenotypes of the same genotype or they may belong to different

genotypes altogether.

As mentioned above, phenotypic characteristics of a plant genotype refer to its

physical properties as cataloged by plant biologists at different research centers around
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the world. Clustering genotypes based upon their phenotypic characteristics is used

to obtain diverse sets of parents that are useful in their breeding programs. The

Hierarchical Clustering (HC) algorithm is the current standard in clustering of pheno-

typic data. This algorithm generates poor quality clusters and has high computational

complexity. To address the cluster quality challenge, we propose the use of Spectral

Clustering (SC) algorithm. To make the algorithm computationally cheap, we pro-

pose using sampling, specifically, Pivotal Sampling that is probability based. Since

application of samplings to phenotypic data has not been explored much, for effective

comparison, another sampling technique called Vector Quantization (VQ) is adapted

for this data as well. Also, it has given promising results for genetic data as discussed

in the previous chapter.

The novelty of our SC with Pivotal Sampling algorithm is in constructing the

crucial similarity matrix for the clustering algorithm and defining probabilities for the

sampling technique. Although our algorithm can be applied to any plant genotypes,

we test it on the phenotypic data obtained from about 2400 Soybean genotypes. SC

with Pivotal Sampling generates better quality clusters (in terms of Silhouette Values)

than all the other proposed competitive clustering with sampling algorithms (i.e. SC

with VQ, HC with Pivotal Sampling, and HC with VQ). The complexities of our SC

with Pivotal Sampling algorithm and these three variants are almost same because

of the involved sampling. In addition to this, SC with Pivotal Sampling outperforms

the standard HC algorithm in both cluster quality and computational complexity.

We experimentally show that we get 45% better quality clusters than HC in terms

of Silhouette Values. The computational complexity of our algorithm is more than a

magnitude lesser than HC.

The rest of this chapter is organized as follows. Section 4.1 provides a brief sum-

mary of the previous works on clustering of phenotypic data.1 The crucial adaptations

done in SC and Pivotal Sampling for phenotypic data are discussed in Section 4.2. Fi-

nally, Section 4.3 describes the experimental set-up, and the results.

1Since none of the previous works have used sampling for phenotypic data, we could not review

this aspect.
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4.1 Literature Review

In this section, we present some relevant previous studies on phenotypic data and

the novelty of our approach. Broadly, these studies can be classified into two cate-

gories. The first category consists of the works that identify relationships between

the different phenotypic characteristics (for example, lower plant height may relate

to lower plant yield or vice versa). These works are discussed in Section 4.1.1. The

second category consists of the studies that identify the genotypes having dissimilar

phenotypic characteristics for the breeding program. These studies are discussed in

Section 4.1.2. Finally, we present a set of works that belong to both the categories in

Section 4.1.3.

4.1.1 First Category Previous Studies

Immanuel et al. [64] in 2011 measured nine characteristics of 21 Rice genotypes.

Grain Yield (GY) was kept as the primary characteristic, and its correlations with

all others were obtained. It was observed that characteristics like Plant Height (PH),

Days to 50% Flowering (DF), Number of Tillers per Plant (NTP), Filled Grains per

Panicle (FGP) and Panicle Length (PL) were positively correlated with GY. The

remaining characteristics were negatively correlated with GY.

Divya et al. [65] in 2015 recorded 21 characteristics of two Rice genotypes. The

authors investigated the association between Infected Leaf Area (ILA), Blast Disease

Susceptibility (BDS), Number of Tillers per Plant (NTP), Grain Yield (GY) and

others. The authors concluded that, for example, (a) ILA had a significant positive

correlation with leaf’s BDS, (b) NTP exhibited the highest association with GY.

Gireesh et al. [19] in 2015 analyzed eight characteristics of 3443 Soybean genotypes.

The authors sampled these genotypes using two methods, and correlations of all the

characteristics with each other for both the samples were estimated. It was observed

that, for example, Days to 50% Flowering (DF) was positively correlated with Days to

Pod Initiation (DPI) in both the samples, while Number of Pods Per Plant (NPPP)

showed a negative correlation with Nodes Per Plant (NPP).
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Huang et al. [66] in 2018 studied six characteristics of 206 Soybean genotypes.

These characteristics were correlated with the three types of leaves; elliptical leaves,

lanceolate leaves and round leaves. The authors deduced that Soybean plants with

lanceolate leaves had maximum average Plant Height (PH), Number of Pods per Plant

(NPP), Number of Branches per Plant (NBP), and 100-Seed Weight (SW), while

Soybean plants with other two types of leaves had lower values of these characteristics.

Carpentieri-Pipolo et al. [67] in 2019 investigated 45 phenotypic characteristics

of a Soybean genotype. The authors then studied the effect of 20 bacteria isolated

from roots, leaves, and stems on these characteristics (i.e. whether the bacteria had

positive or negative activity on (correlation with) the 45 characteristics). For ex-

ample, Enterobacter Ludwigii (EL) bacteria, which is isolated from leaves, showed

a positive correlation with 25 characteristics (e.g., Plant Growth Promotion (PGP))

and a negative correlation with remaining 20 characteristics (e.g., Phenylacetic Acid

(PAC) assimilation). For better exposition, the above five studies are summarized in

Table 4.1. Here, =⇒ represents positive correlation and 6=⇒ represents negative

correlation.

Table 4.1: Summary of first category previous studies.

Studies Plant
# of

Genotypes

Inferred

Relationship

Immanuel et al.

(2011)
Rice 21 PH, DF, NTP, FGP, PL =⇒ GY

Divya et al.

(2015)
Rice 2 ILA =⇒ BDS

Gireesh et al.

(2015)
Soybean 3443 DF =⇒ DPI and NPPP 6=⇒ NPP

Huang et al.

(2018)
Soybean 206

Lanceolate leaves =⇒

max avg PH, NPP, NBP and SW

Carpentieri-Pipolo et al.

(2019)
Soybean 1 EL =⇒ PGP and EL 6=⇒ PAC
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4.1.2 Second Category Previous Studies

Sharma et al. [14] in 2014 performed clustering of 24 synthetic Wheat genotypes

(lines). Cluster analysis was performed using HC, and the genotypes were grouped into

three clusters using the polymorphic Inter Simple Sequence Repeat (ISSR) markers.

The authors argued that genotypes belonging to different clusters were diverse in terms

of heat tolerance, and could be used to develop better heat tolerant genotype.

Kahraman et al. [15] in 2014 analyzed the field performance of 35 Common Bean

genotypes by grouping them. The authors used HC, and the genotypes were clustered

into three groups based upon the matrix of relationship between the genotypes. The

genotypes belonging to different clusters were considered diverse, and were used to

select promising genotypes for breeding.

Painkra et al. [10] in 2018 performed clustering of 273 Soybean genotypes. Here,

the authors used HC, and the genotypes were grouped into seven clusters using Pearson

Correlation Coefficient. According to the authors, the genotypes belonging to the

distant clusters were more diverse such that choosing them maximized heterosis2 in

cross-breeding.

Islam et al. [68] in 2020 clustered ten Upland Rice genotypes. Here, HC was

used and the genotypes were grouped into three clusters using a similarity coefficient

between the genotypes. The authors identified the two best genotypes that could be

used to obtain new genotypes having higher plant yield. As earlier, here also, we

summarize the above four studies in Table 4.2 below.

4.1.3 Both Categories Previous Studies

Fried et al. [69] in 2018 analyzed 11 characteristics of 49 Soybean genotypes. The

authors determined correlations between the root characteristics and other phenotypic

characteristics. For example, Shoot Dry Weight (SDW) and Chlorophyll Index (CI)

were positively correlated with Total Root Length (TRL) and Total Root Surface Area

2Heterosis refers to the phenomenon in which a hybrid plant exhibits superiority over its parents

in terms of Plant Yield or any other characteristic.
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Table 4.2: Summary of second category previous studies.

Studies Plant
# of

Genotypes

Clustering

Algorithm

# of

Clusters

Development

of Better

Genotypes

Sharma et al.

(2014)
Wheat 24 HC 3

Heat

Tolerant

Kahraman et al.

(2014)

Common

Bean
35 HC 3

Promising

Genotypes for

Breeding

Painkra et al.

(2018)
Soybean 273 HC 7

Improved

Characteristics

Islam et al.

(2020)
Rice 10 HC 3

Higher Plant

Yield

(TRSA), while Plant Height (PH) was negatively correlated with TRSA and Average

Root Diameter (ARD). In this work, Principal Component Analysis (PCA) biplot

was used to separate the genotypes into seven clusters. According to the authors,

this research was critical for Soybean improvement programs since it helped select

genotypes with the improved root characteristics.

Stansluos et al. [70] in 2019 analyzed 22 phenotypic characteristics for 11 Sweet

Corn genotypes (cultivars). For example, the authors showed a positive and signif-

icant correlation of Yield of Marketable Ear (YME) with Ear Diameter (ED) and

Number of Marketable Ear (NME), while a negative correlation between YME and

Thousand Kernel Weight (TKW). Cluster analysis was performed using HC, and the

corn genotypes were grouped into four clusters using the Ward Linkage. The authors

inferred substantial variation in morphological and agronomic capabilities of different

genotypes. Again, we summarize the above two studies in Table 4.3 below.

With the focus on the study of genetic diversity using phenotypic data, we have

multiple novel contributions as below.

1. We focus on the second category above, and perform grouping of several thou-
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Table 4.3: Summary of both categories previous studies.

Studies Plant
# of

Genotypes

Inferred

Relationship

Clustering

Algorithm

# of

Clusters

Development

of Better

Genotypes

Fried et al.

(2018)
Soybean 49

SDW, CI =⇒ TRL, TRSA

PH 6=⇒ TRSA, ARD
PCA 7

Improved Root

Characteristics

Stansluos et al.

(2019)

Sweet

Corn
11

YME =⇒ ED, NME

YME 6=⇒ TKW
HC 4

Better

Morphological

Capabilities

sand genotypes as compared to a few hundred in the papers cited above. Note

that from the first category, Gireesh et al. [19] did work with about three thou-

sand genotypes, and we do compare one aspect of our work with this previous

work (more on this in the point 2a below).

2. Clustering becomes computationally expensive when the size of the data is very

large. Hence, sampling is required to make the underlying algorithm scalable.

Thus, we perform clustering on the sampled data rather than the full one, which

is not done in any of the papers above. We have two more innovations in this

aspect as below.

(a) We use a probability-based sampling technique (Pivotal Sampling as men-

tioned earlier) that is highly accurate, and forms a completely new con-

tribution. We demonstrate the superiority of our sampling by comparing

it with the one done in Gireesh et al. [19]. This comparison is discussed

towards the end of the Results section. Please note that Gireesh et al. only

performed sampling and did not cluster their data.

(b) HC, which is the most common clustering algorithm (and some other spo-

radically used algorithms like k-means and UPGMA), do not generate the

good quality clusters. Again, as earlier, we develop a variant of the SC

algorithm, which is considered to give high quality clusters, especially for

phenotypic data. Use of SC in this context is also completely new. We

show the dominance of our clustering algorithm over the one proposed in
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the most recent past work by Islam et al. [68] towards the end of the Re-

sults section. Again, please note that Islam et al. only performed clustering

and did not sample their data.

4.2 Our Algorithm

Consider that the phenotypic data of a plant consists of n genotypes with each

genotype evaluated for m different characteristics/ traits. These characteristics may

have categorical (non-numerical) or numerical values. Hence, we need to convert the

categorical values into numerical ones. For this, we use the label encoder method [71].

This method transforms non-numerical labels into numerical values between 0 and

(number of categories) – 1. For example, if a characteristic has three possible labels;

poor, good, and very good, we use 0, 1, and 2 to represent them, respectively.

Since different characteristics have values in different ranges, we start by normal-

izing them as below [72, 73]

(Xj)i =
(xj)i −min(xj)

max(xj)−min(xj)
. (4.1)

Here, (Xj)i and (xj)i are the normalized value and the actual value of the jth character-

istic for the ith genotype, respectively with j = 1, ...,m and i = 1, ..., n. Furthermore,

max(xj) and min(xj) are the maximum and the minimum values of the jth characteris-

tic among all the genotypes. We use this normalized data for clustering and sampling.

Now, we give the implementation of our modified SC algorithm on phenotypic data.

Subsequently, we present the application of Pivotal Sampling to obtain the samples

from the same data.

4.2.1 Implementing Modified SC for Phenotypic Data

Similar to the standard SC algorithm discussed in Section 2.1, the first step in our

modified SC is to obtain the similarity matrix. Let vector pi contain the normalized

values of all the characteristics (m) for the ith genotype. We define the similarity

between the vectors p1 and p2 (without loss of generality, representing the genotypes
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1 and 2, respectively) as the inverse of the distance between these vectors obtained by

using the seven different distance measures: Euclidean, Squared Euclidean, City-block,

Cosine, Correlation, Hamming and Jaccard [50]. This is intuitive because smaller the

distance between any two genotypes, larger the similarity between them and vice

versa. We denote this distance by dp1p2 and build the similarity matrix by obtaining

the similarities among all the genotypes.

The next step is to compute the Laplacian matrix, which when obtained from

the above-discussed similarity matrix, generates poor eigenvalues,3 and in turn poor

corresponding eigenvectors that are required for clustering.4 Thus, instead of taking

only the inverse of dp1p2 , we also take its exponent, i.e. we define the similarity

between the genotypes 1 and 2 as e−dp1p2 [4]. This, besides fixing the poor eigenvalues/

eigenvectors problem, also helps perform better clustering of the given data. Further,

we follow the remaining steps of standard SC as given in Section 2.1.3.

4.2.2 Applying Pivotal Sampling to Phenotypic Data

Pivotal Sampling requires that the inclusion probabilities (i.e. πi for i = 1, ..., n),

of all the units (genotypes here) in the population U , be computed before a unit is

considered for a contest. The set of characteristics associated with a genotype can be

exploited in computing these probabilities. As mentioned in Section 2.3, to obtain a

sample of size N , where N � n, we calculate these probabilities as

πi = N
κi∑
i∈U κi

, (4.2)

where κi can be a property associated with the data.

In our implementation, we use the deviation property of the genotypes to obtain

κi, which for the ith genotype is calculated using the normalized values as

devi =
m∑
j=1

max(Xj)− (Xj)i,

3Zero/ close to zero and distinct eigenvalues are considered to be a good indicator of the connected

components in a similarity matrix. Thus, eigenvalues are considered poor when they are not zero/

not close to zero or indistinct.
4For some distance matrices (like Euclidean distance), the eigenvalues don’t even converge.
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where max(Xj) denotes the maximum normalized value of the jth characteristic among

all the genotypes and (Xj)i is given by (4.1). Practically, a relatively large value of devi

indicates that the ith genotype is less important, and hence, its probability should be

small. Thus, the inclusion probability of a genotype is calculated by taking κi = 1
devi

in (4.2) or

πi = N
1

devi∑
i∈U

1
devi

.

Once these probabilities are obtained, we follow the two steps (selection and rejection)

as discussed in Section 2.3 to obtain N samples. These N sampled genotypes are then

grouped into k clusters using our modified SC discussed in the previous subsection.

However, our goal is to cluster all n genotypes and not just N . Hence, there is a

need to reverse-map the remaining n−N genotypes to these k clusters. For this, we

define the notion of average similarity, which between the non-clustered genotype p̃

and the cluster Cl is given as

AS(Cl, p̃) =
1

#(Cl)

∑
q∈Cl

e−dp̃q .

Here, #(Cl) denotes the number of genotypes present in Cl and q is a genotype origi-

nally clustered in Cl by our modified SC algorithm with Pivotal Sampling. As earlier,

dp̃q denotes the distance between the genotypes p̃ and q. We obtain the average sim-

ilarity of p̃ with all the k clusters (i.e. with Cl for l = 1, ..., k), and associate it with

the cluster with which p̃ has the maximum similarity.

Next, we perform the complexity analysis of our algorithm. Since SC and Piv-

otal Sampling form the bases of our algorithm, we discuss the complexities of these

algorithms before ours.

1. SC (n: number of genotypes, m: number of characteristics)

(a) Constructing Similarity Matrix: O(n2m)

(b) Obtaining Laplacian Matrix: O(n3)

2. Pivotal Sampling (n, N : sample size)

(a) Obtaining Probabilities: O(n)

(b) Obtaining Samples: O(n)
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3. Our Algorithm (n, m, N)

(a) Obtaining Samples: O(n)

(b) Constructing Similarity Matrix: O(N2m)

(c) Obtaining Laplacian Matrix: O(N3)

(d) Reverse Mapping: O
(
(n−N)N

)
Thus, the overall complexity of our algorithm is O(nN + N3 + N2m). Here, we have

kept three terms because any of these can dominate (here, n � N,m). When we

compare complexity of our algorithm with that of HC, which is O(n3), it is evident

that we are more than a magnitude faster than HC. We revisit this complexity analysis

after discussing data in the next section, which supports our claim further.

4.3 Results

In this section, we first briefly discuss the data used for our experiments. Next, we

describe the clustering set-up, where the ideal number of clusters, the suitable distance

measures for building similarity matrices, and the most useful Laplacian matrix are

discussed. Subsequently, we present the results for our modified SC with Pivotal

Sampling. Here, we compare our algorithm with (a) SC with VQ, HC with Pivotal

Sampling, HC with VQ and (b) non-sampled HC. Finally, we give the goodness of our

sampling technique by estimating a measure called the population total.

4.3.1 Data Description

As mentioned earlier, our techniques can be applied to any plant data. However,

here we experiment on phenotypic data of Soybean genotypes. This data is taken

from Indian Institute of Soybean Research, Indore, India, and consists of 29 different

characteristics/ traits for 2376 Soybean genotypes [19]. Among these, we consider the

following eight characteristics that are most important for higher yield: Early Plant

Vigor (EPV), Plant Height (PH), Number of Primary Branches (NPB), Lodging Score

(LS), Number of Pods Per Plant (NPPP), 100 Seed Weight (SW), Seed Yield Per

Plant (SYPP) and Days to Pod Initiation (DPI). Out of these, EPV and LS have
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categorical values, while the remaining characteristics have numerical values. Hence,

we convert these two categorical values into numerical ones using the label encoder

method discussed in the previous section. A snapshot of this phenotypic data for a

few Soybean genotypes is given in Appendix A. Here, we also perform validation of

this data by comparing it with a similar dataset.

Next, we compare the complexities of our algorithm and HC using the selected

data; see Table 4.4. It is evident from this table that our algorithm achieves substantial

savings.

Table 4.4: Computational complexity comparison for the given data.

# of

Genotypes

(n)

# of

Characte-

ristics (m)

Sample

Size

(N)

Our Algorithm

(nN +N3 +N2m)

HC

(n3)

2376 8 500
(2376× 500) + (500)3 + (500)2 × 8

= 1.28× 108

(2376)3

= 1.34× 1010

2376 8 300
(2376× 300) + (300)3 + (300)2 × 8

= 2.84× 107

(2376)3

= 1.34× 1010

4.3.2 Clustering Setup

Here, first, we determine the ideal number of clusters by using the eigenvalue gap

heuristic [17, 74]. If λ1, λ2, ..., λn are the eigenvalues of the matrix used for clustering

(e.g., the Laplacian matrix), then often the initial set of eigenvalues, say k, have a

considerable difference between the consecutive ones in this set. That is, |λi−λi+1| 6≈ 0

for i = 1, ..., k − 1. After the kth eigenvalue, this difference is usually approximately

zero. According to this heuristic, this k gives a good estimate of the ideal number of

clusters.

For this experiment, without loss of generality, we build the similarity matrix using

the Euclidean distance measure on the above discussed phenotypic data. As mentioned

in Section 2.1.2, it is recommended to use the random walk Laplacian matrix (Lrw)
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[17]. Hence, we use its eigenvalues for estimating k. Figure 4.1 represents the graph

of the first fifty smallest eigenvalues (in absolute terms) of this Laplacian matrix. On

the x-axis, we have the eigenvalue number, and on the y-axis its corresponding value.
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Figure 4.1: Fifty Smallest Eigenvalues of the Type-3 Laplacian Matrix Obtained from

the Euclidean Similarity Matrix (for estimating the ideal number of clusters).

From this figure, we can see that there is a considerable difference between the first

ten consecutive eigenvalues. After the tenth eigenvalue, this difference is very small

(tending to zero). Hence, based upon the earlier argument and this plot, we take k as

ten. To corroborate this choice more, we experiment with k as twenty and thirty as

well. As expected, and discussed in detail later in this section, Silhouette Values for

these numbers of clusters are substantially lower than those for ten clusters.

Second, and final, we perform experiments to identify the suitable similarity mea-

sures to build the similarity matrix, and also verify that, as recommended, the Lrw

Laplacian matrix is the best. For this work as well, we use Silhouette Value as the

validation metric, which is discussed in Section 3.3.2. Table 4.5 below gives Silhouette

Values of our modified SC for all seven similarity measures5 and three Laplacians6

when clustering the earlier presented phenotypic data into 10, 20, and 30 clusters.

From this table, it is evident that Silhouette Values for the Euclidean, Squared Eu-

5We use Euclidean, Squared Euclidean, City-block, Cosine, Correlation, Hamming, and Jaccard

similarity measures [50].
6One non-normalized Laplacian matrix (L) and two normalized Laplacian matrices (Lsym & Lrw).
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Table 4.5: Silhouette Values for modified SC with seven similarity measures and three

Laplacian matrices for k = 10, 20, and 30. Silhouette Values in bold represent good

clustering.

Sr. Similarity # of L Lsym Lrw

No. Measure Clusters (k)

1. Euclidean 10 0.0828 -0.0273 0.2422

20 0.0455 -0.1096 0.2069

30 0.0887 -0.1536 0.1783

2. Squared 10 0.0815 -0.0555 0.3836

Euclidean 20 -0.0315 -0.1809 0.2612

30 0.0354 -0.2367 0.1538

3. City-block 10 0.0687 0.2375 0.2647

20 -0.0356 0.1347 0.2082

30 -0.0870 0.0866 0.1887

4. Cosine 10 0.1737 -0.1408 0.0694

20 0.0359 -0.1973 0.0277

30 0.0245 -0.2456 -0.0316

5. Correlation 10 0.1926 -0.1259 0.3426

20 0.0970 -0.2198 0.2313

30 0.2383 -0.2604 0.1556

6. Hamming 10 0.0643 0.0706 0.0775

20 0.0683 0.0311 0.0382

30 0.0715 0.0283 0.0229

7. Jaccard 10 0.0716 0.0303 0.0458

20 0.0446 0.0276 0.0236

30 0.0279 0.0298 0.0318

clidean, City-block and Correlation similarity measures and the Lrw Laplacian matrix

are the best. Hence, we use these four similarity measures and this Laplacian matrix.

Also, as mentioned earlier, Silhouette Values decrease for twenty and thirty cluster

sizes.
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4.3.3 Clustering and Sampling Results

Using the earlier presented dataset, and clustering-sampling setups, we compare

our proposed algorithm (modified SC with Pivotal Sampling) with the existing variants

in four ways. Again, as earlier, we use Silhouette Values for comparison. Quantifying

statistical difference between different Silhouette Values is a hard task. In general, the

more closer these values are to one, the better is the clustering (see Section 3.3.2).

First, we demonstrate that use of sampling with modified SC does not deteriorate

the quality of clustering. Second, we compare our algorithm with modified SC with

VQ, HC7 with Pivotal Sampling and HC with VQ for a sample size of 500. Since the

results for modified SC with VQ come out to be closest to our algorithm, next, for

broader appeal we compare these two algorithms for a sample size of 300. Third, we

compare our algorithm with the current best in literature for this kind of data (i.e.

HC without sampling) for both the sample sizes of 500 and 300. Fourth and finally,

as discussed in the Literature Review section, we compare our sampling with that in

Gireesh et al. [19] and our clustering with the one in Islam et al. [68].

Initially, we calculate the loss in cluster quality incurred in terms of Silhouette

Values because of Pivotal Sampling in our algorithm. This loss for both the sample

sizes and cluster size ten is listed in Table 4.6. Columns 1 and 2 give the sample sizes

and the similarity measures chosen, respectively. Columns 3 and 4 give the Silhouette

Values for modified SC without sampling (from Table 4.5) and our algorithm, respec-

tively. The last column gives the percentage loss in Silhouette Values. We can observe

from this data that the loss for one type of similarity measure (Correlation) is almost

as low as -2% for both the sample sizes. This is considered acceptable because we are

still better than the existing best algorithm (HC without sampling; please see Table

4.9 and its accompanying discussion below).

Here, we also perform a statistical test to support the above conjecture that using

Pivotal Sampling does not substantially deteriorate the quality of clusters obtained

by our modified SC. For this, we use the ANOVA (analysis of variance) test [75].

7HC also requires building a similarity matrix.
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Table 4.6: Loss in Silhouette Values because of Pivotal Sampling in modified SC for

cluster size ten.

Sample Similarity modified modified SC with Percentage Loss in

Size Measure SC Pivotal Sampling Silhouette Value

Euclidean 0.2422 0.2152 -11.15%

N = 500 Squared Euclidean 0.3836 0.3362 -12.36%

City-block 0.2647 0.2369 -10.50%

Correlation 0.3426 0.3367 -1.72%

Euclidean 0.2422 0.2104 -13.13%

N = 300 Squared Euclidean 0.3836 0.3280 -14.49%

City-block 0.2647 0.2392 -9.63%

Correlation 0.3426 0.3368 -1.69%

This test uses the variance between the different groups and the variance within each

group to compute a value called the F-value, which is then compared with a standard

estimate called F-critical. If F-value is less than F-critical, then it is inferred that the

means of all the groups are equal.

The two groups for us refer to the modified SC results (column 3) and the modified

SC with Pivotal Sampling results (column 4). The F-values here (using the Silhouette

Values of the two groups) come out to be 0.3432 and 0.4202 for N = 500 and N =

300, respectively. Both these values are less than the F-critical value given in the F-

distribution table of [76], which is 5.9873. Thus, using the above mentioned ANOVA

test theory, we infer that that the mean Silhouette Value of modified SC is similar to

the mean Silhouette Value of modified SC with Pivotal Sampling for both the sample

sizes.

The results for the second set of comparisons are given in Table 4.7. Columns 2

and 3 give the similarity measures and the number of clusters chosen, respectively.

Columns 4 and 5 give Silhouette Values of modified SC with Pivotal Sampling and

VQ, respectively, while columns 6 and 7 give Silhouette Values of HC with Pivotal
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Sampling and VQ, respectively.

Table 4.7: Silhouette Values for modified SC and HC with Pivotal Sampling and VQ

for N = 500. Silhouette Values in bold represent good clustering.

Sr. Similarity # of modified SC HC

No. Measure Clusters Pivotal VQ Pivotal VQ

(k) Sampling Sampling

1. Euclidean 10 0.2152 0.2061 0.2105 -0.1040

20 0.1905 0.1448 0.2263∗ -0.1620

30 0.1741 0.1021 0.1933∗ -0.2874

2. Squared 10 0.3362 0.2969 0.2634 -0.2096

Euclidean 20 0.2469 0.1522 0.3726∗ -0.5899

30 0.1658 0.0440 0.2933∗ -0.6083

3. City-block 10 0.2369 0.2354 0.1703 -0.2278

20 0.2019 0.1870 0.1879 -0.2398

30 0.1752 0.1524 0.1988∗ -0.2868

4. Correlation 10 0.3367 0.2560 0.2582 -0.0060

20 0.2291 0.0899 0.0867 -0.4120

30 0.1742 -0.0349 0.0998 -0.7018

When we compare our algorithm (values in the fourth column, and highlighted in

bold) with other variants, it is evident that we are clearly better than modified SC

with VQ and HC with VQ (values in the fifth and the seventh columns) as our values

are higher than those from these two algorithms.

When we compare our algorithm with HC with Pivotal Sampling (values in the

sixth column), we again perform better for many cases. However, for some cases,

our algorithm performs worse than HC with Pivotal Sampling (highlighted with a

*). Upon further analysis (discussed below), we realize that segregation of genotypes

by HC with Pivotal Sampling into fewer clusters than practically observed, results in

these set of Silhouette Values getting wrongly inflated.

To further assess the quality of the proposed technique, we present the distribution

of genotypes into different clusters (after reverse-mapping) for HC with Pivotal Sam-

pling and our algorithm. Without loss of generality, this comparison is done using the
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Squared Euclidean similarity measure and cluster size ten. The results for HC with

Pivotal Sampling are given in Figure 4.2 and for our algorithm are given in Figure

4.3. In both the figures, on the x-axis, we have the cluster number and on the y-axis,

the number of genotypes present in them.
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Figure 4.2: Distribution of Genotypes (HC with Pivotal Sampling) for Squared Eu-

clidean similarity measure and cluster size ten.
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Figure 4.3: Distribution of Genotypes (modified SC with Pivotal Sampling) for

Squared Euclidean similarity measure and cluster size ten.

As evident, Figure 4.2 depicts a very skewed distribution, i.e. most genotypes are

segregated into only a few clusters, while the remaining clusters contain only one or

two genotypes. At a broader level, this biased distribution of genotypes obtained by
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HC with Pivotal Sampling is correct since all genotypes belong to the same plant.

On the contrary, the distribution in Figure 4.3 is fairly equal. That is, our algorithm

equally distributes all genotypes between the different clusters. At a finer level, this

distribution is better since our algorithm is able to perform a more detailed clustering,

i.e. it splits the bigger clusters into multiple smaller ones, which better captures the

similarity between genotypes.

This is also the reason for the inflation of Silhouette Values of HC with Pivotal

Sampling in Table 4.7 since the intra-cluster similarity for solitary genotype is zero

leading to its respective Silhouette Value to become one (the maximum possible; see

(3.1)). Thus, our algorithm also outperforms HC with Pivotal Sampling, which from

Table 4.7 was not very evident.

Next, as mentioned earlier, to further demonstrate the applicability of our work,

we also present the results with a sample size 300. Since modified SC with VQ turns

out to be our closest competitor, we compare our algorithm with this one only. This

comparison is given in Table 4.8, with its columns mapping the respective columns

of Table 4.7. As evident from Table 4.8, our modified SC with Pivotal Sampling

substantially outperforms modified SC with VQ (see values in columns 4 and 5).

As earlier, third, we compare the results of our algorithm (modified SC with Pivotal

Sampling) with the currently popular clustering algorithm in the plant studies domain

(i.e. HC without sampling). For this set of experiments, without loss of generality,

we use the cluster size of ten. The results of this comparison are given in Table 4.9,

where the first four columns are self-explanatory (based upon the data given in Tables

4.7 and 4.8 earlier). In the last column of this table, we also evaluate the percentage

improvement in our algorithm over HC. As evident from this table, our algorithm

generates 45% better quality clusters than HC in terms of Silhouette Values for both

the sample sizes. As earlier, our algorithm also has the crucial added benefit of reduced

computational complexity as compared to HC.

Fourth and finally, as mentioned in the Literature Review section, we also compare

our work with two previous works that are closest to ours. With the dataset almost the

same as used by us, that is, a slightly larger phenotypic data for Soybean genotypes,
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Table 4.8: Silhouette Values for modified SC with Pivotal Sampling and VQ for N =

300.

Sr. Similarity # of modified SC

No. Measure Clusters Pivotal VQ

(k) Sampling

1. Euclidean 10 0.2104 0.1833

20 0.1968 0.0955

30 0.1743 0.0722

2. Squared 10 0.3280 0.2589

Euclidean 20 0.2424 0.1322

30 0.1613 0.0044

3. City-block 10 0.2392 0.2157

20 0.1990 0.1696

30 0.1752 0.1373

4. Correlation 10 0.3368 0.2229

20 0.2312 0.0336

30 0.1725 -0.0788

Table 4.9: Silhouette Values of modified SC with Pivotal Sampling and HC for cluster

size ten.

Sample Similarity modified SC with HC Percentage

Size Measure Pivotal Sampling Improvement

Euclidean 0.2152 0.2173 -0.97%

N = 500 Squared Euclidean 0.3362 0.3257 3.22%

City-block 0.2369 0.2135 10.96%

Correlation 0.3367 0.2307 45.95%

Euclidean 0.2104 0.2173 -3.28%

N = 300 Squared Euclidean 0.3280 0.3257 0.71%

City-block 0.2392 0.2135 12.04%

Correlation 0.3368 0.2307 45.99%

Gireesh et al. [19] performed Principal Component and Power Core based samplings

to identify relationships between the different phenotypic characteristics (from Section

4.1.1). We compare our sampling results with the best from [19] in Appendix B, which
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demonstrates the superiority of our sampling method. Islam et al. [68] performed HC

on phenotypic data for Rice genotypes (from Section 4.1.2). In Appendix C, we apply

modified SC on this dataset to again demonstrate that our clustering technique is

better.

4.3.4 Sampling Estimators

To inspect the quality of our sampling techniques, we estimate a measure called

the population total, which is the addition of values of a particular characteristic for

all the n units (genotypes here) present in the population U . For example, if “Plant

Height (PH)” is the characteristic of interest, then the population total is the addition

of PH values for all the n genotypes. Mathematically, the exact (or actual) population

total for a characteristic of interest xj is given as

Y =
∑
i∈U

(xj)i, (4.3)

where, as earlier, (xj)i is the value of the jth characteristic for the ith genotype and

U is the set of all genotypes. By the definition of this measure (and also for two

more measures listed below), we work with original (non-normalized) values of the

characteristics rather than normalized ones. Also, based upon the same argument, we

work with only those characteristics that are originally numerical.

In this work, we use two different estimators to compute an approximation of the

population total from the sampled data. Closer the value of an estimator to the actual

value, better the sampling. First is the Horvitz-Thompson (HT)-estimator (also called

π-estimator), which is defined as [77]

Y
′

HT = Y
′

π =
∑
i∈S

(xj)i
πi

, (4.4)

where, πi is the inclusion probability of the ith genotype as evaluated in Section 4.2.2

and S is the set of sampled genotypes. Another estimator that we use is the Hájek-

estimator. It is usually considered better than the HT-estimator and is given as [78]

Y
′

Hájek = n

∑
i∈S

(xj)i
πi∑

i∈S
1
πi

, (4.5)
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here, as earlier, n is the total number of genotypes.

The actual population total and the values of the above two estimators for six

characteristics (that have numerical values) when using Pivotal Sampling and 500

samples are given in Table 4.10 (see columns 3, 4, and 6, respectively). From this

table, it is evident that the approximate values of the population total are very close

to the corresponding actual values. Thus, Pivotal Sampling works well in an absolute

sense. Here, we also compute the values of the two estimators when using VQ (see

columns 5 and 7). We can notice from these results that VQ also works reasonably

well, but Pivotal Sampling is better.

Table 4.10: HT and Hájek estimators values for Pivotal Sampling and VQ as compared

to the actual population total with N = 500 as the sample size.

Characteristics Actual Pivotal VQ Pivotal VQ

Population Sampling (HT) Sampling (Hájek)

Total (HT) (Hájek)

PH 121773.05 122507.84 123407.80 123716.09 113168.90

NPB 8576.56 8585.28 9669.29 8669.95 8867.05

NPPP 99712.72 100193.53 114465.66 101181.70 104968.67

SW 20073.32 19907.10 20966.86 20103.44 19227.28

SYPP 10048.04 10137.57 10536.08 10237.55 9661.92

DPI 136810 135309.78 149242.17 136644.29 136859.84
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Chapter 5

Classification of the Mammogram

Patches

Breast cancer is becoming pervasive with each passing day. Hence, its early detec-

tion is a big step in saving the life of any patient. Mammography is a common tool in

breast cancer diagnosis. The most important step here is classification of mammogram

patches as normal–abnormal and benign–malignant.

As mentioned earlier, texture of a breast in a mammogram patch plays a significant

role in these classifications. Hence, we propose a variation of Histogram of Gradients

(HOG) [31] and Gabor filter [79] combination called Histogram of Oriented Texture

(HOT) that exploits this fact. We also revisit the Pass Band - Discrete Cosine Trans-

form (PB-DCT) descriptor that captures texture information well. All features of a

mammogram patch may not be useful. So, we apply a feature selection technique

called Discrimination Potentiality (DP). Support Vector Machine (SVM) is the most

suitable classifier for two-class classification and is widely used in this field. Hence,

we use this.

Density of a mammogram patch is important for classification, and has not been

studied exhaustively. The Image Retrieval in Medical Application (IRMA) database

[36] from RWTH Aachen, Germany is a standard database that provides mammogram

patches, and most researchers have tested their frameworks only on a subset of patches

from this database. We apply our two descriptors (DP-HOT and DP-PB-DCT) on
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all images of the IRMA database for density-wise classification, and compare with the

standard descriptors. We achieve higher accuracy than all of the existing standard

descriptors (more than 92%).

The rest of this chapter is organized as follows. Section 5.1 provides the summary of

the related work. The proposed mammogram patch classification system is explained

in Section 5.2. Finally, Section 5.3 presents the experimental results.

5.1 Literature Review

Researchers have reviewed existing techniques for detection and analysis of ab-

normalities in mammogram patches like calcification, masses, tumors, bilateral asym-

metry, and architectural distortion, etc. [22]. Some people have also reviewed the

contribution of texture to risk assessment for each density separately [21]. Mammo-

gram patches consist of directionally oriented, texture image due to its fibro-glandular

tissues, ligaments, blood vessels and ducts. These texture features for mammogram

patches can be categorized into four groups; statistical [80, 34, 81, 82, 83] local pattern

histogram [84, 32, 31, 35], directional [85, 86, 87], and transform-based [88, 89].

Statistical features such as mean, variance, energy, entropy, skewness, and kurtosis

are mostly utilized as a descriptor for classification [80, 34, 81, 82, 83]. Gray Level Co-

occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM) provide the

relationship between neighboring pixels of a mammogram patch. Statistical properties

of these matrices have also been exploited for mammogram patch classification. These

features are extracted by directly using spatial data from images.

Some works have exploited local distribution of textural properties of mammo-

gram patches for classification. HOG [31], Local Configure Pattern (LCP) [31], Uni-

form Directional Pattern (UDP) [84], Local Ternary Pattern (LTP) [90], Local Phase

Quantization (LPQ) [91] and Local Binary Pattern (LBP) [92] are some such exam-

ples. There are three different variants of LBP, which are usually used for exploiting

local textural properties; Uniform Local Binary Pattern (LBP-u), Rotation Invariant

Local Binary Pattern (LBP-ri) and Rotation Invariant Uniform Local Binary Pattern
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(LBP-riu) [93]. Block-wise feature extraction gives better performance as compared

to global feature vectors. Statistical properties of local histogram have also been used

as a mammogram patch descriptor for classification [94].

Coming to directional features, wavelet, dual-tree complex wavelet Gabor, Con-

tourlet, finite Shearlet, etc. have been exploited for multi-resolution and multi-

orientation texture or tissue analysis of a mammogram patch [86, 87, 26, 95]. Ga-

bor based feature extraction schemes are widely used for mass classification as be-

nign–malignant. Gabor features can be extracted from mammogram patches in dif-

ferent ways [85, 96]. Recently, some people have proposed directional features of

mammogram patches computed by a Gabor wavelet for four different scales and eight

different orientations [85]. Optimal parameters of a Gabor filter increases discrimina-

tion between normal and abnormal properties.

Finally, the fourth category for texture feature extraction is by using a mathemat-

ical transform. For example, Discrete Cosine Transform is one such option [88, 89].

In this work, we first propose a descriptor that exploits local distribution of textural

property (HOG) as well as considers directional features (Gabor). We term it as HOT.

The reason for deriving this descriptor is that, for density-based mammogram patch

classification, individually these two descriptors have their own drawbacks, which are

eliminated in their combination. The width of tissues may vary with the density of a

mammogram patch, and it is difficult to estimate with HOG. Applying a Gabor filter

for feature extraction on the whole mammogram patch is not useful since abnormalities

are usually very local. The combination of HOG and Gabor filter is not new (see [97,

98, 99]). However, none of these works have applied this combination to mammogram

patch classification. Moreover, our combination is optimally designed for solving the

problem at-hand. We do a detailed comparison of our descriptor with these existing

ones at the end of Section 5.2.2.1, i.e. after describing our descriptor.

The HOT descriptor mentioned above has few drawbacks in terms of capturing all

textural features. Next, we revisit a transform based descriptor; Pass Band - Discrete

Cosine Transform (PB-DCT). This descriptor has not been used yet for density-based

mammogram patch classification. DCT has very strong energy compaction capability,
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i.e., an image can be represented by a small set of coefficients. DCT coefficients

are divided into three bands; high, middle and low. The high-frequency coefficients

correspond to irrelevant information, the medium frequency coefficients carry textural

information, and the low-frequency coefficients contain illumination information. We

use PB-DCT like a band pass filter to extract mostly the middle frequencies with some

amount of low frequencies as well.

The dimension of features can be reduced by either using a feature selection scheme

or a dimension reduction scheme [86]. Feature selection schemes select the appropri-

ate feature set based upon a criterion (such as entropy, fisher, maximum mutual

information, etc.), while dimension reduction schemes project features onto an other

dimensional subspace using orthogonal matrices. If the number of training samples

for each class is less than the dimension of features, it is known as small sample size

(SSS). Under this circumstance, which is common, some matrices in the dimension

reduction approach become singular leading to difficulty in further computation [86].

In general, it has been found from literature that the rank-based feature selection ap-

proach is more suitable for feature reduction. Hence, we use this. Genetic algorithm

can also be utilized for selecting suitable features from intensity, texture and shape

features for benign and malignant classification of mammogram patches. This is part

of future work.

Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Fisher Linear Dis-

criminant (FLD), Naive Bayes and Neural Network with Multi-Layer Perception Learn-

ing have been utilized for mammogram patch classification [86, 80, 94]. SVM is the

most suitable classifier for two class classification and is widely used in this field.

Hence, we use this. Recently, ensembles of two or more classifiers (also called as mul-

ticlassifiers) have been used to improve the classification accuracy (see [93]). In this

work, first, different descriptors are obtained by varying certain parameters. Then,

after extracting features by using each of these descriptors, different classifiers are

trained. Finally, these classifiers are combined by some technique (e.g., different SVMs

are combined by a sum rule). This type of work will be explored in future.

Mammogram patches are usually categorized into four classes based upon the level
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of density (i.e. fat transparent (d), fibro-glandular (e), heterogeneously dense (f),

and extremely dense (g)). This is called the Breast Imaging Reporting And Database

Systems (BIRADS) classification. Each BIRADS category is divided into three classes

as normal, benign and malignant [100, 36, 101].

The IRMA reference database is a repository of mammogram patches and has been

created by Deserno et al. [36] to test the accuracy of approaches for mammogram patch

classification. It contains the two datasets, MIAS and DDSM. This database provides

information about images based on the type of background tissue and the class of

abnormality present in the mammogram patch. Table 5.1 lists the number of images

in both the MIAS and DDSM datasets based upon the above discussed classification.

Some sample patches are shown in Fig. 5.1

Table 5.1: Distribution of normal, benign, and malignant mammogram patches of

the two different datasets for the four BIRADS classes.

IRMA: MIAS Patch Dataset

BIRADS Normal Benign Malignant Total

d 12 14 11 37

e 28 1 5 34

f 24 8 6 38

g 26 9 6 41

Total 90 32 28 150

IRMA: DDSM Patch Dataset

d 203 219 222 644

e 168 232 228 628

f 195 225 227 647

g 207 224 226 657

Total 773 900 903 2576

Some of these related works are summarized in Table 5.2, along with the details of

feature vectors, classifiers, and a number of images used in experiments. The accuracy
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Figure 5.1: Samples of mammogram patches from the IRMA database. Row denotes

the density of patches.

obtained for both types of classification (normal–abnormal and benign–malignant) is

also given. The performance of approaches depends on different factors of mammo-

gram patches such as dimension, number of training and testing samples, resolution

and the type of abnormality. Most of the works in this area have tested on a subset

of images instead of all mammogram patches, which we use.

Table 5.2: Summary of some related works on mammogram patch classification.

Feature Classifier Database
# of

images

Accuracy

(normal-

abnormal)

Accuracy

(benign-

malignant)

Gabor + PCA [85] SVM DDSM NA 84.00% 78.00%

GLCM + DWT [80] BPNN
MIAS 332 98.10% 95.04%

DDSM 550 99.45% 97.61%

HOG, DSIFT,

& LCP [31]
SVM DDSM 600 84.00% 78.00%

FFST [86] SVM
MIAS 228 98.29% 100.00%

DDSM 228 100.00% 98.29%

Gabor [96]
PSO +

SVM
DDSM 1024 98.82% 91.61%
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5.2 Proposed Mammogram Patch Classification Sys-

tem

As mentioned earlier, this work proposes a two-stage mammogram patch classifica-

tion system. In the first stage, mammogram patches are classified as normal–abnormal,

and in the second stage, abnormal mammogram patches are further classified as be-

nign–malignant. The framework of the proposed work for training and testing phase

is shown in Figure 5.2.

(a) Training phase

(b) Testing phase

Figure 5.2: Flow diagram of the proposed mammogram patch classification system.

Here, we first discuss image pre-processing and enhancement techniques used by
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us. Mammogram patches are preprocessed for illumination normalization and visi-

bility enhancement of tumors and tissues [23, 25]. A two-stage adaptive histogram

equalization enhancement technique is used here for texture enhancement of mammo-

gram patches [23]. Second, we discuss our two proposed feature extraction techniques,

where features of mammogram patches are extracted from enhanced images. Finally,

we discuss the feature selection technique used by us.

5.2.1 Pre-processing and Enhancement

In this work, for pre-processing, we only normalize the intensity of pixels and

that too for a few mammogram patches. This is because while capturing images,

illumination conditions are usually not the same. So, the range of the gray level is

different for different mammogram patches. Hence, we use a simple and the most

commonly used normalization formula (given below), which normalizes the intensity

of pixels between 0 and 1 [72, 73]

I ′(x, y) =
I(x, y)−min(I)

max(I)−min(I)
.

where (x, y) is the pixel position, I ′(x, y) is the normalized pixel intensity, I(x, y) is

the actual pixel intensity, min(I) is the minimum intensity over all the pixels, and

max(I) is the maximum intensity over all the pixels.

Next, we discuss tissue enhancement of mammogram patches. Histogram equal-

ization is the one of the most basic technique here, which stretches the contrast of the

high histogram regions and compresses the contrast of the low histogram regions. As

a result, if the region of interest in an image occupies only a small portion, it will not

be properly enhanced during histogram equalization.

This leads to more advanced techniques for enhancement, e.g., Adaptive Histogram

Equalization (AHE), Contrast Limited Adaptive Histogram Equalization (CLAHE),

Unsharp Masking (UM), Non-Linear Unsharp Masking (NLUM), Two-Stage Adaptive

Histogram Equalization (TSAHE), etc. [23, 102].

CLAHE has been found to be more suitable for tissue enhancement in mammo-

gram patches. One aspect of enhancement is to capture the texture of the breast in
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mammogram patches better, which is defined by entropy. In the work of [23], authors

have shown that TSAHE performs better than most of the existing techniques in not

just the overall enhancement (defined by EME, i.e. Measure of Enhancement) but

entropy as well.

Since cancerous cells mostly develop in tissues and our proposed descriptors (HOT

and PB-DCT) are strongly tied to breast texture, we use a combination of CLAHE

and TSAHE. We term it as TS-CLAHE.

We apply two stages of CLAHE on mammogram patches in a cascaded order.

Firstly, histogram equalization is applied to 8×8 sized blocks, followed by an applica-

tion to 4× 4 sized of blocks. Fig. 5.3 shows the normalized and the enhanced image

of a mammogram patch. It is observed that mass tissues are clearly visible in the

enhanced image.

Figure 5.3: A preprocessed and enhanced mammogram patch.

5.2.2 Feature Extraction Techniques

As discussed in the previous sections, we propose two descriptors (HOT and PB-

DCT) for mammogram patch classification. HOT is a modification of the HOG de-

scriptor where a Gabor filter is used to calculate the angle and the magnitude response

of texture of a mammogram patch. Selected PB-DCT coefficients based features are

used here to improve the classification accuracy for each density class. Next, we dis-

cuss these two techniques separately. To the best of our knowledge, these strategies

have not been applied anywhere for mammogram patch classification.
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5.2.2.1 The Histogram of Oriented Texture

Here, we derive our HOT descriptor. Firstly, we discuss the calculations of gra-

dient and orientation of an image as well as the HOG descriptor calculation from

cells and blocks partitions [31]. Secondly, we describe a Gabor filter, which is used to

extract magnitude and orientation of tissue texture information, and finally, we dis-

cuss modifications to the HOG descriptor that involves a Gabor filter and parameter

selection.

Gradient of an image I in horizontal and vertical directions, for a pixel position

(x, y) is computed as

dx = I(x+ 1, y)− I(x− 1, y) and

dy = I(x, y + 1)− I(x, y − 1),

respectively. For each pixel, I(x, y), the gradient magnitude m(x, y) and orientation

θ(x, y) are computed as below.

m(x, y) =
√
dx2 + dy2 and (5.1)

θ(x, y) = tan−1

(
dy

dx

)
. (5.2)

Orientation range (0
◦ − 180

◦
) is quantized into B bins (i.e. θ(x, y) ∈ bin(b) with

b = 1, 2, 3, . . . , B). The image is divided into c × c non-overlapping cells, and l × l

cells are integrated as one block. Two adjacent blocks can overlap. The histogram of

orientations (HC(b)i) of bin(b) within ith cell is computed as

HC(b)i = HC(b)i +m(x, y),

m(x, y) ∈ Celli,

b = 1, 2, 3, . . . , B, and

i = 1, 2, 3, . . . , c× c.

The histogram of jth block (HBj) is obtained by integrating HCs (Histogram of Cells)

within this block as follows:

HBj = HC1‖HC2‖ . . . ‖HCl×l,
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where ‖ denotes histograms concatenation into a vector. The vector of HBj is finally

normalized by L2-norm block normalization as below to obtain NHBj.

NHBj =
HBj√

‖HBj‖2
2 + e2

,

where e is a small constant to avoid problem of division by zero. HOG can be obtained

by integrating normalized histograms of all blocks as below.

HOG = NHB1‖NHB2‖ . . . NHBj‖ . . . ‖NHBN ,

where N is the number of possible blocks in an image, which is equal to (c− l + 1)×

(c− l+1). Fig. 5.4 shows an example of cell partitions, formation of overlapped blocks

and concatenation of histograms to get the HOG descriptor. Finally, the length of

HOG is l2 × (c− l + 1)2 ×B.

Figure 5.4: The HOG descriptor calculation.

Different line-shape filters or tools are available in the literature to extract lines

and orientation features of a texture image [96]. 2-D Gabor filters have been found

more suitable filter bank to extract biological-like textural features of simple cells in

the mammalian visual system [103]. Thus, a Gabor filter is ideal for calculating multi-

orientation texture features of a mammogram patch. A Gabor function is defined as
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follows:

G(x, y, θ, µ, σ) = 1
2πσ2 exp

{
−x2+y2

2σ2

}
exp [2πi (µx cos θ + µy sin θ)] ,

where i =
√
−1, µ is the frequency of the sinusoidal wave, θ controls the orientation

of the function, and σ is the standard deviation of the Gaussian envelop. Based upon

this Gabor function, a set of Gabor filters can be created for different scales and

orientations.

Here, texture feature extraction for a given mammogram patch image (I) is cal-

culated by the real part of a Gabor filter bank with eight different orientations and

a fixed scale. Gabor magnitude, m(x, y)Gabor, and Gabor orientation, θ(x, y)Gabor, of

each pixel (x, y) are computed as

mGabor(x, y) = min(I(x, y) ∗G(x, y, θt, µ, σ)) and

θGabor(x, y) = argmint(I(x, y) ∗G(x, y, θt, µ, σ)),

where ∗ means the convolution operation. The direction θt is calculated as follows:

θt =
π(t− 1)

8
, t = 1, 2, . . . , 8.

The features are calculated by varying the values of σ and µ. Fig. 5.5 shows the

magnitude and angle image of a mammogram patch.

Enhanced Image Magnitude Angle 

Figure 5.5: Gabor magnitude and angle image.

We combine HOG with a Gabor filter and name it as HOT. HOT is computed in

the same way as HOG, but mGabor(x, y) and θGabor(x, y) are used as magnitude and

orientation of texture line instead of (5.1) and (5.2), respectively.
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Finally, optimum parameters of the HOT descriptor, for both types of classification,

are chosen by experiments. The value of σ is varied from one to five to obtain an

optimum number. The value of µ is computed as 1√
2σ

. Here, the magnitude image is

divided into equal sized 16 × 16 cells. Size of a block considered is 2 × 2, therefore,

15× 15 overlapped blocks are formed. The orientation range (0
◦ − 180

◦
) is quantized

into 8 bins, and therefore, the final length of the resultant HOT descriptor is 7200. The

length of the HOT descriptor is large, and all features do not have same discrimination

capability [104]. Feature selection schemes help to select more appropriate features.

This is discussed in Section 5.2.3.

Next, we compare our proposed HOT descriptor with other works that use a com-

bination of HOG and Gabor filter. In work by [99], authors use a Gabor filter to

extract features and HOG to reduce the dimension of the extracted feature vector.

However, we use a combination of both to extract features. Comparison with two

other works in this area is given in Table 5.3. Apart from the differences discussed

until now, we (i.e. in the HOT descriptor) use DP for feature selection, which none of

the other works use.

Table 5.3: Comparison of various descriptors using a combination of HOG and Gabor

filter

Parameters HoGG Gabor-HOG HOT

# of Orientations 9 4 8

# of Bins 9 9 8

# of Cells to Divide

Image
4 × 8

Retangular Cells

(Number not given)
16 ×16

Overlapped Image Area 3 × 7 Half of the Image 15 × 15

Feature Vector Length 756 81 7200

Application Area Human Detection Face Recognition
Mammogram

Classification
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5.2.2.2 Pass Band - Discrete Cosine Transform

2D Discrete Cosine Transform (DCT) transforms images into frequency represen-

tation from the spatial form. It also provides energy compaction, that helps to reduce

the information redundancy by retaining only a few coefficients. DCT coefficients of

I(x, y) image of M ×N size are calculated as follows:

F (u, v) =
1√
MN

α(u)α(v)
M−1∑
x=0

N−1∑
y=0

I(x, y)× cos

(
(2x+ 1)uπ

2M

)
× cos

(
(2y + 1)vπ

2N

)
with u = 0, 1, 2, . . . ,M, v = 0, 1, 2, . . . , N,

where α(ω) is defined by

α(ω) =

 1√
2

ω = 0

1 otherwise.

DCT based various feature extraction and compression techniques have been pro-

posed in literature [88]. Usually, DCT features are formed by selecting the most

prominent and discriminating coefficients based upon some criterion [88]. The DCT

coefficients can be divided into three sets, low frequencies, middle frequencies and

high frequencies. Low frequencies are correlated with illumination conditions, middle

frequencies represent texture features, while high frequencies represent small variance

or noise. Illumination and texture properties are important for mammogram patch

classification. Therefore, this work uses low and middle coefficients to form the de-

scriptor (the Pass Band - Discrete Cosine Transform descriptor or abbreviated as

PB-DCT). Finally, the more discriminate DCT coefficients are selected based upon a

discrimination criterion, which is discussed in the next section.

5.2.3 Feature Selection with Discrimination Potentiality

All features do not have the same ability to discriminate various classes (normal-

abnormal and benign-malignant) [104], and they do not increase the accuracy based on

available information for each class. Therefore, it is necessary to eliminate irrelevant

features and select the most discriminative features among a given set of features [105].
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Determining features to improve accuracy as well as reduce searching time is a difficult

task. As discussed in Section 5.1, feature subset selection techniques have been found

to be more suitable for mammogram patch classification as compared to dimension

reduction techniques.

There exist many techniques for feature selection. Some of the common ones are

as follows: PCA (Principal Component Analysis) method, Markov blanket method,

wrapper methods (e.g., sequential selection algorithm, genetic algorithms etc.), filter

methods (e.g., Pearson correlation criteria, mutual information etc.), embedded meth-

ods, and statistical measures based methods (e.g., T-test, Kolmogorov-Smirnov test,

Kullback-Leibler divergence etc.) [106, 107].

Out of these, wrapper methods, filter methods, and statistical measures based

methods are usually used for mammogram patch classification. Wrapper methods are

computationally expensive since the number of steps required for obtaining the feature

subset are very high. Filter methods sometimes lead to a redundant feature subset,

and hence, are not optimal in this sense. [106]. Thus, we go for statistical measures

based methods since they do not have the above discussed drawbacks. These methods

also have the advantage in reducing the feature space without significantly degrading

the classification performance [108].

The T-test method is one such method that gives a high score to features that

capture the texture and the shape of mammograms [109]. As earlier, capturing texture

is very important to us. Moreover, the T-test method is computationally light, easy

to implement, and has been very recently successfully applied in mammogram context

[86, 24]. Thus, we use this feature selection method and show in the results section

that this works very well with our proposed descriptors (DP-HOT and DP-PB-DCT).

We term it as DP because of its capability in discriminating between the available

features.

The discrimination potentiality DPk of the kth feature between two classes (a and

b) is computed from a given training set as follows:

DPk =
µa,k − µb,k√
δ2a,k
na
− δ2b,k

nb

,
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where µa,k, µb,k, and δa,k, δb,k, are mean and standard deviation values of the kth

feature for a and b classes, respectively. na and nb are the number of mammogram

patches for a and b classes, respectively. A high value of DP means high discrimination

ability of the corresponding feature [24].

All features (columns) of the feature matrix are arranged in descending order of

their DP value. Initially, first five features with highest DP values are chosen for

classification accuracy. Then, classification accuracy is calculated by adding features,

with next higher value of DP , one by one until we get the highest accuracy. The

optimum subset of features corresponding to the highest accuracy is selected as the

final descriptor.

5.3 Experimental Results

Experiments are carried out in MATLAB R© 2016 on a machine with Intel i5 pro-

cessor @ 2.5 GHz and 4GB RAM. As discussed earlier, mammogram patches are

taken from the IRMA database (the MIAS and DDSM datasets). All images from

this database (density wise), as given earlier in Table 5.1, are used. The size of each

mammogram patch is 128× 128.

We first use two-fold cross-validation, where the dataset is randomly divided into

two equal parts. One part is used for training and the other is used for testing. Then,

the two parts are swapped. That is, the one used for training earlier is now used for

testing, and the one used for testing earlier is now used for training. At the end of this

exercise, average performance is saved. Finally, we repeat two-fold cross-validation

ten times so as to remove any bias related to the division of the dataset. Use of two-

fold cross-validation and repeating it ten times ensures that the classification system

is not over-fitted.

The performance of our system (and comparative systems) is evaluated by standard

metrics of sensitivity, specificity, accuracy and AUC (Area Under the ROC Curve).

Sensitivity is computed as the number of true positive cases over the number of
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actual positive cases. It is represented as follows:

Sensitivity =
TP

TP + FN
(%),

where TP means True Positive cases and FN means False Negative cases.

Specificity is computed as the number of true negative cases over the number of

actual negative cases. It is represented as follows:

Specificity =
TN

FP + TN
(%),

where TN means True Negative cases and FP means False Positive cases.

Accuracy is computed as the number of correct classifications over the number of

given cases. It is represented as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(%).

AUC (Area Under the ROC Curve) provides a measure of the overall performance

of the classifier, i.e. larger the area, better the classification. It is calculated from the

trapezoidal rule as below [110].

AUC =
1

2

n∑
k=1

((Spec(k)− Spec(k + 1)) ∗ (Sens(k) + Sens(k + 1)))(%),

where n is the total number of test cases, and Spec(k) and Sens(k) are Specificity

and Sensitivity for the kth test case, respectively. In the case of an ideal classification

system, the value of all the four metrics should be close to 100%.

This section has three subparts. In Section 5.3.1, experiments related to finding

the optimum parameters of the HOT descriptor with DP, from now on referred as DP-

HOT, are given. Similar experimental results for the PB-DCT descriptor with DP,

from now on referred as DP-PB-DCT, are given in Section 5.3.2. Finally, in Section

5.3.3, the performance of both our proposed descriptors, DP-HOT and DP-PB-DCT,

is compared with the performance of the existing (and popular) descriptors.

For fixing the parameters, only the training data is used (i.e. 50%, as we use

two-fold cross-validation) and the validation data for testing is kept blind.

71



5.3.1 Performance of DP-HOT

Firstly, experiments are performed to find optimum parameters of Gabor filter for

all the classes (i.e. d, e, f , g, and “all”)1. Performance parameters are calculated by

varying the value of σ from one to five to obtain suitable scale for each density class.

The best accuracy obtained by varying σ is mentioned here.

Figure 5.6: Comparison of normal-abnormal classification accuracies obtained by vary-

ing the value of σ from one to five for each individual BIRADS class.

Fig. 5.6 compares normal-abnormal classification accuracy for different values of

σ for each class. It is observed that the DP-HOT descriptor achieves approximately

100% accuracy for all values of σ for all the classes of the MIAS dataset. The maximum

normal-abnormal classification accuracy of all the classes combined is achieved with

σ as one. It is difficult to infer the optimum value of σ by observing the bar chart of

the MIAS dataset only. In case of the DDSM dataset, the DP-HOT descriptor with

σ as one gives the best accuracy for all the classes individually as well as combined.

For classes e and f , DP-HOT achieves an accuracy of around 95%, while it does not

achieve good accuracy for classes d and g (around 70%).

Fig. 5.7 compares benign-malignant classification accuracy for different values of σ

for each class. The DP-HOT descriptor again achieves approximately 100% accuracy

for all values of σ for all the classes of the MIAS dataset. The maximum benign-

malignant classification accuracy for all the classes combined is achieved with σ as 3.

For the DDSM dataset, the DP-HOT descriptor performs equally for all σ for all the

1For the “all” class, we have combined all the images from d, e, f , and g class and this is available

from the dataset itself.
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Figure 5.7: Comparison of benign-malignant classification accuracies obtained by vary-

ing the value of σ from one to five for each individual BIRADS class.

classes (around 70%).

First observation is that DP-HOT does not perform very well for both types of clas-

sification (normal-abnormal and benign-malignant) for the DDSM dataset (although

it does perform well for MIAS). The reason, as discussed in Section 5.1, is that tex-

ture information plays a big role in both types of classifications (normal-abnormal and

benign-malignant), and DP-HOT does not capture that well for the DDSM dataset.

The DP-PB-DCT descriptor overcomes this drawback to a great extent. Another

observation is that the classification accuracy for an individual class is better as com-

pared to the accuracy for the “all” class. This is intuitive because images from an

individual class have similar features (they belong to same density class). On the other

hand, images from the “all” class have features that vary substantially (again, due to

varying density). For all the forthcoming experiments, a similar behavior is observed

for both the descriptors.

Table 5.4 lists the feature length used for both types of classification (normal-

abnormal and benign-malignant) done on both the datasets (MIAS and DDSM) for

each density class.

5.3.2 Performance of DP-PB-DCT

As in the case of the DP-HOT descriptor, in Table 5.5 we list the feature length

used for both types of classification (normal-abnormal and benign-malignant) done on

both the datasets (MIAS and DDSM) for each density class when using the DP-PB-

73



Table 5.4: Feature length for the DP-HOT descriptor.

BIRADS Class MIAS: Feature Length DDSM: Feature Length

Normal-Abnormal

d 2655 210

e 10 100

f 30 75

g 20 200

All 40 140

Benign-Malignant

d 2000 225

e All Benign 130

f 2000 405

g 1790 170

All 2000 990

DCT descriptor.

Since, the selection of features in the DP-PB-DCT descriptor is more critical, we

do further feature selection analysis here. Fig. 5.8 compares accuracy against the

number of features for normal-abnormal and benign-malignant classification for each

density class separately and combined. As in the case of DP-HOT, the performance

for individual density is better than combined. Moreover, multiple points with the

high classification accuracy are observed.

5.3.3 Comparison with Other Techniques

The performance of the two proposed descriptors is compared with some related

descriptors such as Zernike moment [27], Multiple LPQ (MLPQ) [28], GRsca [29],

Wavelet Gray Level Co-occurrence Matrix (WGLCM) [30], LCP [31] and HOG [31] for

each density class separately as well as combined. The performance of each descriptor

is evaluated in the same experimental setup including the use of the same testing

protocol.
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Table 5.5: Feature length for the DP-PB-DCT descriptor.

BIRADS Class MIAS: Feature Length DDSM: Feature Length

Normal-Abnormal

d 5 4000

e 5 4000

f 5 995

g 5 1315

All 5 430

Benign-Malignant

d 5 4350

e 5 4005

f 5 3995

g 5 4625

All 5 5065

The parameters of each of these descriptors are selected as given in the literature to

achieve the best performance for mammogram patch classification. These parameters

are summarized below.

The Zernike moment descriptor is computed by dividing a mammogram patch into

4×4 blocks. 120 Zernike moments are used for obtaining the final mammogram patch

descriptor. Therefore, the length of the feature vector is 4× 4× 120 [27].

The MLPQ descriptor is computed by concatenating different LPQ descriptors.

Each LPQ descriptor is obtained by varying values of three different parameters. This

includes filter size (r with values 1, 3, 5), the scalar frequency (a with values 0.8, 1.0,

1.2, 1.4, 1.6), and the correlation coefficient (ρ with values 0.75, 0.95, 1.15, 1.35, 1.55,

1.75, 1.95). Each LPQ descriptor’s length is standard (256). Therefore, the length of

the feature vector is 3× 5× 7× 256 [28].

The GRsca descriptor extracts features from the three gray-level run length co-

occurrence matrices corresponding to the original image and two filtered images (using

a filter of size 3 and 5). These images are divided into four blocks. Features are ob-
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Figure 5.8: Performance accuracy against the number of DP-PB-DCT features.

tained from co-occurrence matrix and these four blocks. A set of ten different descrip-

tors is calculated at four different orientations and two different distances. Therefore,

the length of the feature vector is 3× 5× 10× 4× 2 [29].

The WGLCM descriptor is computed by decomposing the image into one approx-

imation. Detail coefficients up to two levels with a wavelet filter are used. For each

level, three decompositions (along horizontal, vertical and diagonal directions) are

obtained. The normalized GLCM (NGLCM) matrices of all detail coefficients are cal-

culated in four directions (0◦, 45◦, 90◦, and 135◦) with a single displacement. Contrast,

homogeneity, energy, and correlation statistical properties of all NGLCM matrices are
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calculated and concatenated into a vector. Therefore, the length of the feature vector

is 2× 3× 4× 4 [30].

The LCP is a modification of Local Binary Pattern (LBP). Here, first, the weights

associated with intensities of neighboring pixels are used to linearly reconstruct the

central pixel intensity. Then, the error between the central pixel and its neighbor is

minimized. In this work, LCP images are computed for radius 1 to 5. Each LCP

image is divided into 4× 4 blocks. The histogram of each block is concatenated with

58 bins, and the result is used as a mammogram patch descriptor. Therefore, the

length of the feature vector is 5× 4× 4× 58 [31].

The HOG is calculated using 16×16 cell partitions. The size of the block considered

is 2×2, thus, 15×15 overlapped blocks are formed. The orientation range is quantized

into 8 bins. Therefore, the length of the feature vector is 2× 2× 15× 15× 8 [31].

The optimum parameters of DP-HOT and DP-PB-DCT are selected based upon

experiments as discussed in the previous subsections. The length of each descriptor

is different and the appropriate feature set for each descriptor is selected based upon

the DP values as described earlier.

Table 5.6 compares sensitivity, specificity, accuracy and AUC for normal-abnormal

classification with all the above descriptors on the MIAS and DDSM datasets. The

performance parameters for all the descriptors are provided for each density class

separately as well as combined. The best performing systems are highlighted in bold.

For the MIAS dataset, both the proposed descriptors (DP-HOT and DP-PB-HOT)

achieve near 100% sensitivity, specificity, accuracy, and AUC for all the classes. This is

better than the six standard descriptors (Zernike moment, MLPQ, GRsca, WGLCM,

LCP, and HOG).

For the DDSM dataset, although our DP-HOT descriptor performs almost as badly

as the other six descriptors for all the classes (as low as around 65% for one performance

parameter), DP-PB-DCT performs extremely well for all the classes (more than 92%

for most performance parameters), which is better than the six standard descriptors.

All the eight descriptors (the six standard and the two new) perform well for classes

e and f but have a dip in the performance for classes d and g. This is because for the
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Table 5.6: Mammogram patch classification results as normal-abnormal for the MIAS

and DDSM datasets.

Descriptor BIRADS
MIAS DDSM

Sens. Spec. Acc. AUC Sens. Spec. Acc. AUC

Zernike

[27]

d 99.12 93.59 97.32 90.28 90.01 68.64 83.32 91.69

e 94.98 99.63 98.81 100 99.78 85.12 95.86 100

f 92.86 99.88 97.29 100 99.56 95.91 98.46 100

g 91.31 97.87 95.42 75.82 83.32 36.72 68.63 81.89

All 75.92 91.70 85.39 85.11 91.90 61.99 82.95 82.03

MLPQ

[28]

d 89.21 75.00 84.70 90.28 80.29 73.51 78.16 89.71

e 100 96.30 96.96 100 99.97 99.97 99.97 100

f 100 100 100 100 99.91 99.91 99.91 100

g 68.75 92.31 83.10 90.66 83.14 54.06 73.97 81.80

All 72.60 88.50 82.14 88.15 86.07 88.14 86.69 93.59

GRsca

[29]

d 76.92 70.00 74.59 85.90 86.03 79.53 84.00 88.23

e 100 100 100 100 100 100 100 100

f 100 100 100 100 100 100 100 100

g 66.96 100 87.86 84.13 83.41 63.85 77.24 82.26

All 68.95 98.79 86.85 91.26 88.44 88.64 88.50 95.48

WGLCM

[30]

d 92.15 50.83 78.71 73.61 85.54 84.92 85.34 94.38

e 90.91 100 98.40 100 99.84 99.98 99.87 100

f 100 100 100 100 99.70 100 99.79 100

g 60.96 100 85.93 80.77 84.94 62.25 77.78 85.81

All 64.72 100 85.89 93.41 86.24 93.21 88.33 94.97

LCP [31]

d 92.31 66.67 83.63 80.56 87.99 89.07 88.32 90.39

e 100 100 100 100 100 100 100 100

f 100 100 100 100 100 100 100 100

g 73.21 96.15 87.74 64.42 86 69.10 80.67 74.93

All 75 97.78 88.67 85.70 87.80 93.39 89.47 92.88

HOG [31]

d 88.46 91.67 89.47 100 84.36 78.62 82.56 87.58

e 100 100 100 100 99.57 94.64 98.25 98.79

f 100 95.83 97.36 100 98.23 88.73 95.36 97.67

g 85.71 100 95 100 82.22 56.52 74.12 77.70

All 70 87.78 80.67 85.85 87.69 77.95 84.77 88.32

DP-HOT

d 100 100 100 100 83.44 64.69 77.57 91.20

e 100 100 100 100 96.96 95.24 96.50 100

f 100 100 100 100 94.69 89.75 93.20 100

g 100 100 100 100 77.78 57.06 71.24 76.05

All 87 98 93 97.26 84.80 77.30 82.56 86.21

DP-PB-

DCT

d 100 100 100 100 98.19 94.01 96.88 98.39

e 100 100 100 100 100 100 100 100

f 100 100 100 100 100 100 100 100

g 100 100 100 100 97.78 80.70 92.39 98.68

All 97.18 98.89 97.33 100 87.18 79.37 84.84 92.20
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DDSM dataset, texture discrimination for e and f classes is better than for d and g

classes, which is crucial in normal-abnormal classification.

Table 5.7 compares performance parameters for benign-malignant classification

with all the above eight descriptors for all the classes (and combined) of the MIAS

and DDSM datasets. As earlier, the best performing systems are highlighted in bold.

The results are similar to those for normal-abnormal classification. Note that in the

MIAS dataset, the e class has all benign images, so, classification was not performed

for this. The corresponding rows in this table are left empty.

For the MIAS dataset, both the proposed descriptors (DP-HOT and DP-PB-DCT)

perform slightly better than the six standard descriptors for all the classes (achieve

near 100% sensitivity, specificity, accuracy, and AUC).

For the DDSM dataset, DP-HOT is slightly better than the existing descriptors

(around 70% for all performance parameters), while DP-PB-DCT is much better than

the six standard descriptors for all the classes (more than 92% for most performance

parameters).

To summarize, as mentioned in Section 5.1 as well as Section 5.3.1, capturing

texture information is of utmost importance for mammogram patch classification (both

normal-abnormal and benign-malignant). In general, DP-HOT captures this texture

information slightly better than the six standard descriptors, and hence, it performs

slightly better than these. DP-PB-DCT captures texture information best, and hence,

performs much better than all the others.
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Table 5.7: Mammogram patch classification results as benign-malignant for the MIAS

and DDSM datasets.

Descriptor BIRADS
MIAS DDSM

Sens. Spec. Acc. AUC Sens. Spec. Acc. AUC

Zernike

[27]

d 93.23 97.05 95.39 54.76 60.36 54.34 57.37 56.78

e - - - - 60.09 60.34 60.22 58.39

f 97.26 99.83 98.73 100 58.62 56.02 57.30 63.26

g 95.61 98.96 97.62 100 57.96 70.98 64.44 57.22

All 80.47 84.15 82.44 72.77 56.92 55.11 56.02 53.87

MLPQ

[28]

d 71.43 75.00 71.79 96.43 59.59 57.43 58.50 62.70

e - - - - 61.72 59.36 60.55 63.24

f 96.43 97.62 96.94 100 49.79 64.76 57.31 59.18

g 100 83.33 93.75 93.34 95.98 17.70 56.67 57.66

All 73.96 76.19 75.00 86.16 57.40 54.62 56.01 56.04

GRsca

[29]

d 64.29 58.33 60.26 62.86 66.83 54.21 60.47 62.01

e - - - - 71.09 53.94 52.59 66.24

f 85.71 28.57 61.22 58.34 63.59 56.54 60.05 64.32

g 77.59 58.28 69.49 50 81.70 40.27 60.89 64.58

All 96.88 35.71 68.33 68.75 67.69 52.63 60.15 64.21

WGLCM

[30]

d 35.83 92.86 67.95 80.95 53.15 62.99 58.04 60.35

e - - - - 50.88 63.79 57.39 56.32

f 45.83 90.63 71.43 91.67 59.92 52.01 55.97 59.24

g 47.22 86.25 70.83 93.34 57.08 60.71 58.89 57.59

All 53.81 74.72 64.96 70.09 53.20 56.98 55.09 56.59

LCP [31]

d 99.72 99.84 99.77 100 51.80 66.66 59.18 63.38

e - - - - 57.89 62.93 60.43 60.86

f 100 99.9 99.98 100 51.96 62.24 57.08 60.33

g 99.99 99.96 99.98 100 56.64 61.16 58.89 60.04

All 98.94 95.57 97.37 72.32 55.26 59.33 57.29 57.38

HOG [31]

d 100 100 100 95.24 64.86 65.30 65.08 66.27

e - - - - 59.65 65.52 62.61 70.01

f 100 100 100 100 66.95 65.32 66.14 67.92

g 100 100 100 100 63.27 66.07 64.67 68.07

All 80.67 92.86 87.5 94.20 54.93 61.89 58.40 65.06

DP-HOT

d 100 100 100 100 72.07 68.49 70.29 80.44

e - - - - 70.18 75 72.61 74.92

f 100 100 100 100 72.66 69.31 71.02 83.91

g 100 100 100 100 73.45 68.75 71.11 81.09

All 98.83 97.57 98.24 100 64.56 64.67 64.61 68.89

DP-PB-

DCT

d 100 100 100 100 96.85 94.53 95.69 98.13

e - - - - 96.05 93.53 94.78 98.78

f 100 100 100 100 97.35 96.45 96.90 98.87

g 100 100 100 100 91.59 95.98 93.78 99

All 100 100 100 100 73.53 71.33 72.43 82.93
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Chapter 6

Classification of the Thyroid

Nodules

Thyroid cancer (that comes in the oral cancer category) is the second most com-

monly occurring cancer in the world. Ultrasound images of the thyroid nodule are of-

ten used in thyroid cancer diagnosis. As mentioned in Chapter 1, a malignant thyroid

nodule produces an additional hormone called thyroxine, which causes some critical

problems with patient’s health and may result in his/ her death [38]. Hence, an early

diagnosis of this nodule by classifying it as benign or malignant is very important.

Similar to the classification of mammogram patches, texture of a thyroid nodule,

as captured in an ultrasound image, plays a crucial role in this classification [41].

Hence, we use our two earlier proposed texture-exploiting descriptors, i.e. Histogram

of Oriented Texture (HOT) and Pass Band - Discrete Cosine Transform (PB-DCT)

here. Since ultrasound images are large in size (200 × 320 after pre-processing), all

extracted features may not be useful for classification. So, we again use Discrimination

Potentiality (DP) to select most appropriate features. Finally, the selected features

are classified using the Support Vector Machine (SVM) classifier into benign and ma-

lignant classes (binary classification). Here, we do not perform two-stage classification

as done in the previous chapter because all the images present in our dataset belong

to the abnormal class.

The Thyroid Digital Image Dataset (TDID) from the Universidad Nacional de
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Columbia [44] is a standard database that provides ultrasound images of thyroid nod-

ules, and most researchers test their frameworks on this dataset. hence, we apply

our proposed system on all the images of TDID and compare it with the existing

techniques. We achieve higher accuracy than all others (around 96%).

The rest of this chapter is organized as follows. Section 6.1 provides the summary of

the related work. The proposed thyroid nodule image classification system is explained

in Section 6.2. Finally, Section 6.3 presents the experimental results.

6.1 Literature Review

Previous works on the thyroid nodule classification can be grouped into two cat-

egories: deep learning-based and handcrafted-based methods [39, 38]. In the for-

mer, one constructs a learning model for feature extraction as well as classification

of thyroid nodules from the captured ultrasound images. In [47], authors proposed

a classification framework based upon Convolutional Neural Network (CNN). Here,

they extracted the features from the input ultrasound thyroid nodule images using

a pre-trained CNN, and then used SVM to classify the images into benign and ma-

lignant. The authors constructed a CNN for image classification as well where the

features were extracted using a transfer learning techniques (like in VGG16-Net [46]

or Inception-Net [111]). Another work that applied a transfer learning technique to

classify the thyroid nodules was by Song et al. [112]. In [113], authors developed a

multitask cascade convolution neural network (MC-CNN) framework to exploit the

context information of thyroid nodules. Similarly, in [114], authors used deep learning

via the YOLOv2 neural network to classify the thyroid nodules.

Unlike the deep learning-based methods mentioned above, the handcrafted-based

methods use several traditional feature extraction techniques to extract efficient im-

age features and a classifier to classify these features. In [41], authors used textural

features like Gray Level Co-occurrence Matrix (GLCM), Gray Level Run-Length Ma-

trix (GLRLM) and Law’s texture energy measures to obtain the features. These

features were then classified using the standard SVM. In [115], authors used the
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Discrete Wavelet Transform (DWT) to locate the tumor region and to extract sub-

tle information from isolated tumor region for classification. The authors in [116]

performed analysis of linear and non-linear classifiers for ultrasound images. They

showed that both the methods give comparable accuracy. Another study that em-

ployed handcrafted-based method was done by Raghavendra et al. [117], where they

used Segmentation-based Fractal Texture Analysis (SFTA) to extract the features.

The deep learning-based methods although have high classification accuracy, they

require high performance hardware as well as large amount of computational time. On

the other hand, handcrafted-based methods are easy to implement without stringent

hardware requirements but have low accuracy.

As mentioned earlier, in this work, we use our earlier proposed two textural de-

scriptors (HOT and PB-DCT) with feature selection via DP for thyroid classification.

Our approach belongs to the handcrafted-based methods category and overcomes the

low accuracy disadvantage of these techniques. This is because a) the performance of

handcrafted-based methods depends highly upon the extraction of features and little

on the classifier used [38], and b) we use the texture information in a better way than

other handcrafted-based methods, which also predominantly use textural properties

of ultrasound images.

In Table 6.1, we summarize the strengths and weaknesses of the existing approaches

as well as our proposed methods.

6.2 Classification Process

As mentioned in the previous chapter, breast cancer classification is performed

on the mammogram patches that contain the cancerous tumor. These patches, also

called as Region of Interests (ROIs), are identified by medical experts. However, for

the thyroid nodule classification, complete unprocessed ultrasound images are available

instead of these patches. Hence, a few image pre-processing steps are required before

we extract the features using our proposed descriptors.

Every ultrasound thyroid image contains a background and artifacts other than the
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Table 6.1: Comparison of existing and proposed classification systems.

Category Advantages Disadvantages

Deep Learning-based

Methods
High accuracy

• High-performance hardware

required

• Require more processing time

• There is scope for improvement

Handcrafted-based

Methods

• Easy implementation

• High-performance hardware not

required

Low accuracy

Proposed Methods

(DP-HOT and

DP-PB-DCT)

• Easy implementation

• High-performance hardware

not required

• High accuracy due to texture

exploiting descriptors

DP-PB-DCT performance is

poor as compared to HOT

thyroid region (see Figure 6.1a below). This background and artifact regions reduce

the overall accuracy of the classification system as unwanted features get extracted

due to their presence. Hence, the first step in pre-processing requires removal of these

extra regions.

We use the image binarization method proposed by Otsu’s et al. [118], to remove

these extra regions. This method performs binarization by selecting a suitable thresh-

old value for pixel intensity. The pixels that are darker than some threshold value are

kept black, while the pixels lighter than the threshold are made white. The binarized

image corresponding to input image Figure 6.1a is given in Figure 6.1b. The threshold

value here is taken as 10. We can observe from Figure 6.1b that there are some bright

extraneous regions detected other than the thyroid region. We simply discard these

other regions and detect the region with largest size as given in Figure 6.1c. Finally,

the resultant extracted thyroid region is shown in Figure 6.1d.

Once we have the extracted thyroid regions from all the images, we use the two-

stage adaptive histogram equalization, as discussed earlier, to enhance them. Finally,
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(a) (b)

(c)
(d)

Figure 6.1: Steps in image binarization: (a) an input ultrasound thyroid image; (b)

binarized image with threshold = 10; (c) largest object detection; (d) final extracted

thyroid region.

we use our two earlier proposed descriptors (DP-HOT and DP-PB-DCT), to extract

the features from these enhanced images.

6.3 Experimental Results

Experiments are carried out in MATLAB R© 2016 on a machine with Intel i5 pro-

cessor @ 2.5 GHz and 4GB RAM. As mentioned in Chapter 5, the performance of

our system (and comparative systems) is evaluated by standard metrics of Sensitivity,

Specificity, Accuracy, and Area Under the Curve (AUC). Again, we use a two-fold

cross-validation, where the dataset is randomly divided into two equal parts. One

part is used for training and the other is used for testing. We repeat two-fold cross-
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validation ten times to remove any bias related to the division of the dataset.

As mentioned earlier, we use TDID [44] database for our experiments, which con-

sists of 349 images. Each original image is of size 360 × 560, which becomes of size

200× 320 after pre-processing. Out of these, 61 are benign, while 288 are malignant.

Table 6.2 lists the number of images in TDID based on the TIRADS classes.

Table 6.2: Distribution of benign and malignant images according to the TIRADS

classes.

TIRADS

Class

# of

Images

Classification

(Total Images)

2 42 Benign

(61)3 19

4a 96

Malignant

(288)

4b 79

4c 68

5 45

Since the instances of one class (benign here or minority class) are quiet less than

the instances of the other class (malignant here or majority class), this dataset comes

under the category of an “imbalanced” dataset [119]. Thus, in this context, many

classification algorithms have low accuracy for the minority class. Most common way

to solve this problem is to use Synthetic Minority Over-sampling TEchnique (SMOTE)

[119]. This technique re-samples the original dataset, either by under-sampling the

majority class and/ or over-sampling the minority class. Here, we perform the over-

sampling of benign class so that number of instances for both the benign class and

the malignant class are almost similar.

In over-sampling approach, the minority class is over-sampled by creating synthetic

instances of minority class. For this, we obtain the k-nearest neighbors (from the mi-

nority class itself) for each instance of the minority class. For example, consider that

one instance from the minority class has five instances in its k-nearest neighbor set.
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If the amount of over-sampling required is 200% (i.e. we want to double the number

of instances), then we select two neighbors from these five nearest neighbors. Subse-

quently, two synthetic instances are generated in the same direction as the respective

neighbor and a different slope.

Finally, we compare the classification performances of our descriptors with the five

existing ones mentioned earlier. The results for this are given in Table 6.3. The empty

cells represent that the values are not available from their respective papers. From this

table, it is evident that although DP-PB-DCT performs poorly, our DP-HOT gives

almost the best results among all the descriptors.

Table 6.3: Comparison of classification accuracies for various descriptors on the TDID

dataset.

Sr.

No.
Descriptors Sensitivity Specificity Accuracy AUC

1
Image

Augmentation [45]
94% 93% 94% -

2 VGG-16 [47] 100% 88% 94% -

3 GoogLeNet [47] - - 79% -

4 Circular Mask [39] 95% 64% 91% -

5 CNN [39] 96% 66% 92% -

6 DP-HOT 100% 90% 96% 95%

7 DP-PB-DCT 90% 70% 90% 88%

To summarize, we exploit the textural features of thyroid ultrasound images and

use them to classify them as benign and malignant. In general, DP-HOT captures

this information slightly better than DP-PB-DCT. When compared with the existing

techniques, DP-HOT gives substantially better results.
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Chapter 7

Conclusions and Future Work

This dissertation proposed different machine learning algorithms that focused on

solving two critical real-life problems, i.e. depreciation in agricultural productivity and

depleting human health. In the first-half of the dissertation, we focused on developing

sampled (and hence, efficient) clustering algorithms to obtain a diverse set of plant

species (or genotypes). This in turn could be used to develop better genotypes (with

enhanced properties), e.g., that can be grown in less water and can survive high

temperature. In the second-half of the dissertation, we presented image classification

systems to accurately classify breast and thyroid cancer images as benign or malignant.

Here, we developed descriptors to capture the textural properties of an image, which

helped to obtain more relevant features leading to better classification.

7.1 Clustering Algorithm Variants

Variabilities in plant genotypes can be studied using their genetic and phenotypic

data. Thus, Chapter 3 presented the Vector Quantized Spectral Clustering (VQSC)

algorithm that is a combination of Spectral Clustering (SC) and Vector Quantiza-

tion (VQ) sampling for clustering genetic data of plants. We used SC for its better

clustering and VQ for its accurate sample selection. Use of this combination made

our algorithm scalable for large data as well. As building the similarity matrix is

critical to the SC algorithm, we exhaustively adapted four ways to build such a ma-
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trix for plant genetic data. Adapting VQ for these data required using k-medoids

instead of traditional k-means for finding representative samples. For a sample plant

data (Soybean), we compared the performance of our VQSC algorithm with other

traditional and commonly used techniques of Un-weighted Pair Graph Method with

Arithmetic mean (UPGMA) and Neighbor Joining (NJ). VQSC outperformed both of

these in terms of Silhouette Values (on an average 21% better than UPGMA and 24%

better than NJ) and computational complexity (order of magnitude faster than both

UPGMA and NJ).

Similarly, Chapter 4 presented the modified SC with Pivotal Sampling algorithm

for clustering plant genotypes using their phenotypic data. Again, we used SC for its

better clustering and Pivotal Sampling for its effective sample selection that in turn

made our algorithm scalable for large data. For this work as well, we adapted seven

different similarity measures to build the similarity matrix, which is crucial for the

SC algorithm. We also presented a novel way of assigning probabilities to different

genotypes for Pivotal Sampling. We performed four sets of experiments on about 2400

Soybean genotypes that demonstrated the superiority of our algorithm. First, we com-

pare the Silhouette Values of modified SC without and with Pivotal Sampling, and

show that the difference between these values is not significant. Second, when com-

pared with the competitive clustering algorithms with samplings (i.e. SC with VQ,

Hierarchical Clustering (HC) with Pivotal Sampling, and HC with VQ), Silhouette

Values obtained when using our algorithm are higher. Third, our algorithm doubly

outperformed the standard HC algorithm in terms of cluster quality and computa-

tional complexity (45% better clusters in terms of Silhouette Values and an order

of magnitude faster than HC). Fourth and finally, we illustrate the excellence of our

algorithm by comparing it with two previous works that are closest to ours.

Next, we present the future work in this context. Since the choice of the similarity

matrix has a significant impact on the quality of clusters, in the future, we intend

to adapt other ways of constructing this matrix such as Pearson χ2, Squared χ2,

Bhattacharyya, Kullback-Liebler etc. [50]. Furthermore, we also plan to observe the

performance of Cube Sampling, which is another probabilistic sampling technique
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with data analysis properties complementary to Pivotal Sampling [5]. Both Pivotal

and Cube belong to the balanced sampling category, i.e. they satisfy Y ≈ Y
′
HT and

Y ≈ Y
′

Hájek (recall Eqs. (4.3), (4.4), and (4.5)). Cube Sampling automatically obtains

the samples (without specifying the sample size), which does not happen in Pivotal.

Our algorithms have been tested on the genetic and phenotypic data of Soybean plant.

However, these can be applied to data of other similar plants. For example, genome

sequences of Wheat, Rice, and Maize are also made from a combination of nucleotides

A, T, G, and C. The only difference between Soybean sequences and sequences of these

plants is the length of sequences and the numbers of Single Nucleotide Polymorphisms

(SNPs) present in them, and both these things do not affect our algorithm. Similarly,

phenotypic data of other plants vary only in the number of characteristics and type of

characteristics, both of which again do not affect our algorithm. We have preliminarily

discussed this aspect for Maize and Rice in Appendix C, with extensive experiments

for these two plants planned for future [120, 64].

7.2 Cancerous Image Classification System

Early detection of cancerous tumor by classifying it as benign or malignant is

important step in saving the life of the patient. Thus, Chapter 5 proposed a variant

of Histogram Of Gradients (HOG) and Gabor filter combination called Histogram of

Oriented Texture (HOT) for mammogram patch classification. We also revisited the

Pass Band - Discrete Cosine Transform (PB-DCT) descriptor for the same. We used

the feature selection technique of Discrimination Potentiality (DP) with the above

two descriptors for reduction in feature space. This resulted in two new descriptors

(DP-HOT and DP-PB-DCT). We considered the density of mammogram patches as

a factor for classification (this was not done earlier), and showed that this plays an

important role in classification.

We tested our two-stage mammogram patch classification system (normal–abnormal

and benign–malignant), using the two new descriptors for each density class, on all

the images of the MIAS and DDSM datasets from the Image Retrieval in Medical
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Application (IRMA) repository (in literature, experiments had been done only on a

subset of these images). This helped achieve a high classification performance (in

terms of specificity, sensitivity, accuracy and AUC) in an absolute sense as well as in

relative sense (compared with the six standard descriptors). We achieved an average

accuracy of more than 92%, which turned out to be categorically more than all of the

existing standard descriptors. Our descriptors captured the textural information in a

mammogram patch well, which led to this improvement.

Similar to the mammogram patch classification, the texture of a thyroid nodule also

plays a vital role in classification of the nodule as benign or malignant. Therefore,

Chapter 6 proposed a thyroid image classification method by applying the above-

mentioned texture exploiting descriptors. Apart from pre-processing the images for

illumination normalization and visibility enhancement, we also applied image bina-

rization to remove the background and artifact regions from the thyroid ultrasound

images. We used the Thyroid Digital Image Dataset (TDID) for our experiments.

Results showed that although our system performed poorly with DP-PB-DCT, we

achieved a high average classification accuracy with DP-HOT (around 96%; substan-

tially more than multiple previously proposed methods).

The first future direction here involves developing a Computer-Aided Diagnosis

(CAD) application for breast and thyroid cancer diagnoses using our framework. This

will aid doctors (radiologists) reach more accurate results. Apart from the diagnosis,

the prognoses of the cancer is equally difficult. This includes predicting the further

development of the cancer [121]. Although a large number of research articles are avail-

able for diagnoses of different cancers, very few talk about their prognoses [122, 123].

Thus, the second future direction is to develop prognostic classification models using

machine learning algorithms. These models could save the patients from receiving

superfluous treatment and its associated medical cost. Furthermore, lung cancer is

another commonly prevailing cancer whose cases are increasing at an alarming rate.

Hence, third, we plan to develop an accurate feature extraction technique that can

obtain the features from the computed tomography images of the lung cancer patient

[124]. Fourth, we plan to perform two-stage classification for thyroid ultrasound as
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well. Here, we wish to classify the benign images into the TIRADS score of 2 & 3,

and malignant images into TIRADS score of 4 & 5.

Finally, we present the future work that aims to bring the two application areas

together. Since both clustering and classification are machine learning techniques to

group similar data, there is always a scope that we can use these techniques for any

application area. For example, in the cancer image classification context, we plan to

develop a clustering technique that can be used to obtain the crucial features from

all the available features. Here, we intend to cluster all the features and select that

cluster, which contains the most important features that can be used to distinguish

the two classes. Similarly, classification techniques can be applied in the plant domain,

where we obtain the features from several images of the given plant and decide whether

they have a disease or not. Here, we plan to build the classification model that would

be trained on several healthy and diseased plant images. Then, we can use this model

to predict the unknown images of the plant.
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[78] J. Hájek. Comment on “an essay on the logical foundations of survey sampling,

part one”. In V. Godambe and D. Sprott, editors, The Foundations of Survey

Sampling. Holt, Rinehart and Winston, Toronto, 1971.

[79] J. Kamarainen, V. Kyrki, and H. Kalviainen. Invariance properties of gabor

filter-based features - overview and applications. IEEE Transactions on Image

Processing, 15(5):1088–1099, 2006.

[80] S. Beura, B. Majhi, and R. Dash. Mammogram classification using two di-

mensional discrete wavelet transform and gray-level co-occurrence matrix for

detection of breast cancer. Neurocomputing, 154:1–14, 2015.

[81] W. Peng, R. Mayorga, and E. Hussein. An automated confirmatory system for

analysis of mammograms. Computer Methods and Programs in Biomedicine,

125:134–144, 2016.

[82] G. Rabottino, A. Mencattini, M. Salmeri, et al. Mass contour extraction in

mammographic images for breast cancer identification. In Proceedings of IMEKO

103



TC4 Symposium - Exploring New Frontiers of Instrumentation and Methods for

Electrical and Electronic Measurements, 2008.

[83] S. Shanthi and V. Bhaskaran. Computer aided detection and classification of

mammogram using self-adaptive resource allocation network classifier. In Pro-

ceedings of International Conference on Pattern Recognition, Informatics and

Medical Engineering, pages 284–289, 2012.

[84] M. Abdel-Nasser, H. Rashwan, D. Puig, et al. Analysis of tissue abnormality

and breast density in mammographic images using a uniform local directional

pattern. Expert Systems with Applications, 42(24):9499–9511, 2015.

[85] I. Buciu and A. Gacsadi. Directional features for automatic tumor classification

of mammogram images. Biomedical Signal Processing and Control, 6(4):370–378,

2011.

[86] N. Gedik. A new feature extraction method based on multi-resolution represen-

tations of mammograms. Applied Soft Computing, 44:128–133, 2016.

[87] J. Leena Jasmine, A. Govardhan, and S. Baskaran. Microcalcification detection

in digital mammograms based on wavelet analysis and neural networks. In Pro-

ceedings of International Conference on Control, Automation, Communication

and Energy Conservation, pages 1–6, 2009.

[88] S. Dabbaghchian, M. Ghaemmaghami, and A. Aghagolzadeh. Feature extraction

using discrete cosine transform and discrimination power analysis with a face

recognition technology. Pattern Recognition, 43(4):1431–1440, 2010.

[89] M. Laadjel, S. Al-Maadeed, and A. Bouridane. Combining Fisher locality pre-

serving projections and passband DCT for efficient palmprint recognition. Neu-

rocomputing, 152:179–189, 2015.

[90] C. Muramatsu, T. Hara, T. Endo, et al. Breast mass classification on mammo-

grams using radial local ternary patterns. Computers in Biology and Medicine,

72:43–53, 2016.

104
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Appendix A

Validation of Soybean Phenotypic

Data

Here, we first present phenotypic data of the Soybean genotypes used for our

experiments in Chapter 4. Please see Table A.1 below. As mentioned earlier, EPV:

Early Plant Vigor, PH: Plant Height, NPB: Number of Primary Branches, LS: Lodging

Score, NPPP: Number of Pods Per Plant, SW: 100 Seed Weight, SYPP: Seed Yield

Per Plant, and Days to Pod Initiation (DPI).

Table A.1: Phenotypic data of the Soybean genotypes used for experiments.

Genotypes EPV PH NPB LS NPPP SW SYPP DPI

1 Poor 54 6.8 Moderate 59.8 6.5 2.5 65

2 Poor 67 3.4 Severe 33 6.2 3.9 64

3 Good 38.4 2.8 Slight 68 6.9 4.4 61
...

...
...

...
...

...
...

...
...

n
Very

Good
89.6 5 Severe 32.6 7.3 3.4 62

Next, we validate this data. For this, we compare our phenotypic data with a simi-

lar Soybean phenotypic data from [19] for the common set of phenotypic characteristics

(PH, NPPP, DPI). For comparison purpose, we work with original (non-normalize)
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values of these characteristics. This comparison is done using standard statistical

metrics and is given in Table A.2 below.

Table A.2: Comparison of SD, CV, mean, and range for our phenotypic data and

similar previous data.

Parameter Work PH NPPP DPI

Standard Our Work 16.61 20.16 7.85

Deviation (SD) Previous Work [19] 18.6 24.1 8

Coefficient of Our Work 31.80 47.13 13.62

Variance (CV) Previous Work [19] 30.9 55.2 17.8

Mean
Our Work 52.24 42.78 57.60

Previous Work [19] 60.3 43.6 54.7

Range
Our Work 13-102 4.33-197.66 24-80

Previous Work [19] 5.4-118.8 1.33-301 30-98

From this table, it is evident that the Standard Deviation (SD), Coefficient of

Variance (CV), and Mean of our data and the data from the previous work are very

close (for all three characteristics of PH, NPPP, and DPI). The slight variation in the

metrics between the two data for all the characteristics is due to the difference in the

ranges of the respective characteristics (due to the slightly differing selection of the

genotypes by the two works).
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Appendix B

Comparison of Pivotal Sampling

with Other Samplings

Here, we compare the Pivotal Sampling technique discussed in Chapter 4 with

those proposed by Gireesh et al. [19] for a similar dataset. As earlier, we do sampling

on 2376 Soybean genotypes while Gireesh et al. performed the Principal Component

Score (PCS) and the Power Core (PC) samplings on 3443 Soybean genotypes. Since

the samples obtained by the PC method are better, we compare our results with this

sampling only.

This comparison is done using the statistical metrics of Standard Deviation (SD),

Coefficient of Variance (CV) and Mean, and is given in Table B.1 below. In the table,

PH: Plant Height, NPPP: Number of Pods Per Plant, DPI: Days to Pod Initiation.

Again, for comparison, we work with original (non-normalize) values of the charac-

teristics. Since the metrics of our sampled data are more closer to our respective full

data as compared to the metrics of the previous works’ sampled data to its respective

full data, our sampling is better.
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Table B.1: Comparison of Pivotal Sampling and Power Core method for three char-

acteristics.

Parameters Work Population PH NPPP DPI

Our Work
Overall 16.61 20.16 7.85

Standard Sampled 17.34 18.90 7.42

Deviation (SD)
Previous Work [19]

Overall 18.6 24.1 8

Sampled 22.15 45.33 11.73

Our Work
Overall 31.80 47.13 13.62

Coefficient of Sampled 31.91 43.97 13.03

Variance (CV)
Previous Work [19]

Overall 30.9 55.2 17.8

Sampled 39.86 91.06 25.46

Mean

Our Work
Overall 52.24 42.78 57.60

Sampled 54.34 42.99 56.94

Previous Work [19]
Overall 60.3 43.6 54.7

Sampled 55.57 49.78 56.65

112



Appendix C

Modified Spectral Clustering for

Maize and Rice Phenotypic Data

In Chapter 4, we have demonstrated the usefulness of our proposed algorithm

(modified Spectral Clustering (SC) with Pivotal Sampling) on the genotypes of the

Soybean plant. Here, we demonstrate our algorithms’ applicability to the genotypes of

the other two plants (Maize and Rice). The phenotypic data for the Maize genotypes

is given in Table C.1 [125], and for the Rice genotypes is given in Table C.2 [64, 68]. In

the tables, DS: Days to Silking, PH: Plant Height, EH: Ear Height, ED: Ear Diameter,

EL: Ear Length, SW: 100 Seed Weight, TN: Tiller Number, PN: Panicle Number, PL:

Panicle Length, BDR: Blast Disease Resistance.

Table C.1: Phenotypic data of the Maize genotypes.

Genotypes DS PH EH ED EL SW

1 77 75 33 3.2 11.6 2.3

2 98 45 14 2.7 8.1 1.6

3 68 132 80 3.7 16.2 3.6
...

...
...

...
...

...
...

n 70 50 35 3.1 10.6 2.6
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Table C.2: Phenotypic data of the Rice genotypes.

Genotypes TN PH PN PL SW BDR

1 6.8 124.2 5.5 25.6 22.1 Resistant

2 6.5 121.6 6.8 24.8 23.1 Moderately Resistant

3 7.2 126.4 4.5 26.1 19.5 Moderately Susceptible
...

...
...

...
...

...
...

n 7.1 131.4 5.1 25.9 18.5 Susceptible

We can observe from Tables A.1, C.1, and C.2 that there is a set of common

phenotypic characteristics for the three plant genotypes. Also, the values of all the

characteristics are either categorical or numerical. As mentioned earlier, the categori-

cal values can be easily converted to numerical ones. Since the input to our algorithm

is a matrix built using the phenotypic data for given genotypes, it can be applied to

any of these plants.

To demonstrate the usefulness of our algorithm to the two new plant genotypes,

without loss of generality, we perform clustering of Rice genotypes using our modified

SC1. For this, we use the data from Islam et al. [68], where the authors have used

Hierarchical Clustering (HC) to cluster ten Rice genotypes into three clusters. Hence,

we also cluster these ten genotypes into three clusters using our modified SC. In [68],

the output is in the form of a hierarchical tree, which is non-numerical, and hence,

difficult to compare. Thus, we compute Silhouette Values for our modified SC and

HC. This data for the four similarity measures are given in Table C.3. As evident

from this table, our algorithm substantially outperforms HC.

1Recall that Islam et al. does not perform any sampling. Hence, for fair comparison, we also

perform only clustering and not sampling.
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Table C.3: Silhouette Values of modified SC and HC for three clusters of ten Rice

genotypes.

Similarity Measure modified SC HC

Euclidean 0.2743 0.0076

Squared Euclidean 0.3276 0.0253

City-block 0.2561 0.0219

Correlation 0.3265 0.0433
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