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Abstract

Automated classification of brain magnetic resonance (MR) images has been an exten-

sively researched topic in biomedical image processing. In this work, we propose a new

approach for classifying normal and abnormal brain MR images using bi-dimensional

empirical mode decomposition (BEMD) and autoregressive (AR) model. In our ap-

proach, brain MR image is decomposed into bi-dimensional intrinsic mode functions

(IMFs) using BEMD and AR coefficients from IMFs are used to form a feature vector.

Finally, a binary classifier, least square support vector machine (LS-SVM), is employed

to discriminate between normal and abnormal brain MR images. The proposed tech-

nique achieves 100% classification accuracy using second order AR model with linear

and radial basis function (RBF) as kernels in LS-SVM clissifier. Experimental results

also show that the performance of the proposed method is quite comparable with the

existing results.
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Chapter 1

Introduction

Computer aided diagnosis (CAD) [1] is a tool to help medical professionals in interpre-

tation of medical images and medical decision making. Radiologists can use computer

output as second opinion, and therefore CAD systems improve diagnosis accuracy. It

combines image processing, artificial intelligence, computer vision, and statistical ma-

chine learning techniques. CAD systems have been used for classification of various

types of images, for example images of brain, retina and mammograms etc [2].

1.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is commonly used method for investigating brain

abnormalities [3]. The MRI was developed based on observations in the experiments

related to nuclear magnetic resonance (NMR). Therefore, the technique was called

nuclear magnetic resonance imaging (NMRI). However, due to the negative connotation

associated with the word nuclear the technique is generally referred to as MRI. MRI

is a medical imaging technique used by radiologists to investigate internal structure of

the body or any part of it [4]. MRI is preferred to computerized tomography (CT) as it

does not use any ionizing radiation and both techniques provide same information [5].

Moreover, MRI is more sensitive to small tumors and provides better visualization

making it preferred choice for detecting neurological cancers [6]. MRI is useful for
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cardiovascular [7], musculoskeletal [8], and oncological [9] imaging.

1.1.1 Image contrast

Contrast in the MR image is due to differences in the strength of the nuclear magnetic

resonance (NMR) signal received from different locations in the brain [10]. Image con-

trast is dependent on relative density of excited nuclei and relaxation times (T1 and

T2 ) of the nuclei after the pulse sequence.

Two contrast mechanisms [11] that are commonly used in brain MR imaging are dis-

cussed below:

1. T1-weighted MRI

In T1-weighted MR imaging MR signal is measured after the magnetic field re-

covers. This is achieved by changing repetition time (TR). T1 weighted scans

use short echo time (TE) and short repetition time (TR). For brain imaging,

T1 weighted scans provide good contrast between gray matter and white mat-

ter [12, 13].

2. T2-weighted MRI

In T2-weighted MR imaging MR signal is measured after the magnetic field de-

cays. This is achieved by changing echo time (TE). T2 weighted scans use long

TE and long TR. They are specially suited to detect edema [12,13].

Figure 1.1 and 1.2 show samples of T1 weighted and T2 weighted MR images of brain

from the database [14].

1.2 Brain abnormalities

Images of brain with some abnormalities are characterised by abrupt changes in image

texture. For example, cancer in brain magnetic resonance image is characterised by

large cells with high contrast [15], thus making it feasible to differentiate them from

2



normal brain magnetic resonance images. Alzheimers disease [16] is the common cause

of age-related dementia. Multiple sclerosis [17] is a neurological disorder that results in

various dysfunctions. Other abnormalities related to the brain include glioma, herpes

encephalitis and metastatic bronchogenic carcinoma etc [18–20]. Images of brain hav-

ing above mentioned diseases are characterized by large cells and high contrast. Many

methods have been proposed in the literature to identify brain MR images having afore-

mentioned abnormalities. Abnormal images may have one or multiple abnormalities.

1.3 Classification of MRIs

Generally, the classification of medical images is performed using a two step procedure.

In the first step, discriminating information or features are extracted from medical

images.

(a) (b)

Figure 1.1: Sample T1 weighted brain MR images: (a) Normal tissue, (b) Abnormal

tissue.

3



(a) (b)

Figure 1.2: Sample T2 weighted brain MR images: (a) Normal tissue, (b) Abnormal

tissue.

In the second step, a classifier utilizes the extracted information to form a decision on

the category of the input image. Classification approaches are of two types, supervised

and unsupervised. Supervised methods include support vector machines (SVM) [18],

artificial neural network (ANN) [20] and K-nearest neighbor (KNN) [19]. Unsupervised

classification techniques includes self-organization map (SOM) [18] and fuzzy c-means

[21]. Supervised methods are more common than unsupervised methods because they

usally provide better accuracies [22].

1.4 Related work

In recent years, extensive research has been done in the area of automated classification

of MR images of normal and abnormal brain. Two-dimensional discrete wavelet trans-

form (2D-DWT) based approaches have been extensively explored for classification of

brain MR images. Specifically, the approaches presented in [18,23] explored approxima-

tion coefficients at level 2 and level 3 for discrimination, while the work in [24] presented

an approach based on two-dimensional discrete wavelet transform (2D-DWT) for fea-

ture extraction, principal component analysis (PCA) for feature space reduction and

back propagation neural network for classification of MR images. In another related
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work [25], generalized autoregressive conditional heteroscedasticity (GARCH) was em-

ployed to model wavelet coefficients of detail sub-bands to obtain feature vector for

classification of MR images.

Authors in [26] used the coefficients of the approximation sub-band of two-level 2D-

DWT of brain MRI as features, and self-organization map (SOM) based neural network

and SVM for classification. Maitra et al. [27] applied slantlet transform on intensity

histogram of the image and employed back propagation neural network (BPNN) for

classification of MR images. Authors in [19] proposed a hybrid method for brain MR

image classification using wavelet transform and PCA. Scaled conjugate gradient was

used for optimal weight setting in BPNN for classification of MR images. Saritha et al.

[28] used wavelet entropy based spider web plots for feature extraction and probabilistic

neural network for classification to achieve maximum classification accuracy. In [29],

authors proposed a three-stage approach for brain MR image classification using features

extracted from LH and HL sub-bands of two level 2D-DWT with ensemble classifier.

Subsequently, authors in [20] employed 2D-DWT followed by Gabor filter banks on HH

sub-band of 2D-DWT for feature extraction and SVM for classification of MR images.

Lahmiri et al. [30] employed 1D-EMD to generate intrinsic mode functions (IMFs) from

brain MR images. In this approach conversion of brain MR image to one dimensional

signal is done by concatenating successive rows of the image from left to right and top to

down. Statistical features were extracted from the IMFs and an entropy based selection

process was employed to identify the most informative features from each IMF followed

by SVM for classification. A detailed survey of CAD of human brain tumor using MR

images is presented in [31]. Authors in [31] also proposed a new approach employing

the feedback pulse coded neural network for image segmentation followed by DWT and

PCA for feature extraction and forward BPNN for classification of MR images.

In the presented work, we have proposed an approach for classification of normal and

abnormal brain MR images. To the best of our knowledge, this is the first time that bi-

dimensional empirical mode decomposition (BEMD) is applied for classification of brain

5



MR images. Experimental results show that the proposed approach has outperformed

existing approaches in terms of classification accuracy.

1.5 Organization

The rest of the thesis is organized as follows: A detailed description of the proposed

methodology is presented in Chapter 2, which includes brief review of AR model, EMD,

BEMD and SVM. Chapter 3 presents experimental results and discussion, followed by

concluding remarks in Chapter 4.

6



Chapter 2

Proposed Methodology for

Classification of Brain MRIs

The classification of brain MR images is carried out in a three step process. Firstly,

bi-dimensional empirical mode decomposition (BEMD) is used to decompose the image

into the intrinsic mode functions (IMFs). This is followed by modelling of individual

IMFs using autoregressive (AR) model to generate feature vectors in the form of AR

coefficients. Finally, based on the extracted features least square support vector machine

(LS-SVM) makes a decision as to whether the input brain MR image is of normal

or abnormal human brain. The schematic diagram of the proposed methodology is

presented in Figure 2.1.

2.1 Empirical mode decomposition

Empirical mode decomposition (EMD) [32] is a multi-resolution decomposition tech-

nique. EMD represents a nonstationary signal as a sum of of zero-mean amplitude

modulation frequency modulation (AM-FM) components [33]. The decomposition pro-

cess is adaptive and signal dependent. The decomposition does not require any condition

on the signal about linearity and singularity. It is suited for the analysis of 1D nonlinear

and non-stationary signals. EMD decomposes a 1D signal into a set of band-limited

7



��������		���
�	

��	
���

�����	����	��	����
�	

����

�������	��	�����
�
����	

����	����

���	���
�
�	��
�	

�������	������

������		���
�	

��	
���

���
�	��	
���

���	

�����
�
���
��

Figure 2.1: Schematic diagram of the proposed approach for classifying brain MR im-

ages.

signals called intrinsic mode functions (IMFs).The procedure used to extract IMFs from

the signal is termed as sifting.

The decomposition is based on the following assumptions [32]:

1. The signal should have at least one maxima and one minima).

2. The time scale depends on the time interval between the extrema points.

3. If the data does not have any extrema and contains only inflection points, then

it can be differentiated multiple times to obtain the extrema. The integration

operation can be applied after the processing of these components.

8



Figure 2.2: Sifting process to extract IMFs from the signal.

IMFs obtained from the 1D signal using sifting process satisfy two basic conditions

[32]:

1. The total number of maxima and minima and the total number of zero-crossings

should be equal or different by one.

2. At any sample instant, the average value of the envelopes specified by the local

maxima and the local minima should be equal to zero.

The first condition is identical to the narrow-band requirement for a stationary Gaussian

process. The second condition is required so as to avoid unwanted fluctuations induced

by asymmetric wave forms for instantaneous frequency.

Sifting process is depicted in Figure 2.2. For signal x(t), sifting process can be

summarized as follows [32]:

1. Let g(t) = x(t).

2. obtain the extrima from g(t).

9



3. find out upper envelope eu(t) and lower envelope el(t) by connecting maxima and

minima respectively.

4. Compute the mean envelope em(t) by averaging these two envelopes as

em(t) =
eu(t) + el(t)

2

5. Subtract em(t) from the signal g(t) as g(t) = g(t)− em(t).

6. Determine whether g(t) is a valid IMF or not, by applying conditions of IMF.

7. If g(t) is not a valid IMF, repeat steps 2 to 6 until a valid IMF g(t) is obtained.

Once a valid IMF is obtained, assign D1(t) = g(t). Obtain r(t) by applying subtraction

operation as r(t) = x(t) − D1(t). Replace x(t) by r(t) i.e. x(t) = r(t). To generate

the next IMF, repeat steps 2 to 7 by considering g(t) = r(t). The signal x(t) can be

represented as follows [32]:

x(t) =
M∑
i=1

Di(t) + r(t) (2.1)

where M represents total number of the IMFs present in the signal and r(t) is the

residual component of the signal.

Figure 2.3 shows a sample 1D EEG signal and corresponding IMFs extracted from

it.

EMD has numerous applications in various areas such as electroencephalogram

(EEG) signal analysis [34–40], gear fault diagnosis [41], analysis of center of pressure

(COP) signals [42] and speech signal analysis [43].

2.2 Bidimensional empirical mode decomposition

Bidimensional empirical mode decomposition (BEMD) is used to obtain 2D IMFs using

the sifting method. A 2D IMF can be considered as a zero-mean 2D AM-FM component

[44].
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Figure 2.3: A sample 1D EEG signal and corresponding IMFs: (a) Signal, (b) First

IMF, (c) Second IMF, (d) Third IMF, (e) Fourth IMF, (f) Fifth IMF, (g) Sixth IMF,

(h) Seventh IMF, (i) Eighth IMF, (j) Ninth IMF, (k) Tenth IMF, (l) Eleventh IMF.

13



BEMD has applications in many areas such as texture analysis [45, 46], image de-

noising [47], image watermarking [48], iris recognition [49], image fusion [50], image

feature extraction [51], image classification [52], texture classification and segmenta-

tion [53], etc. For BEMD technique MATLAB codes are available at MATLAB central

file exchange [54].

Bidimensional sifting process [44,55] can be summarized as:

1. Locate the extrema points of the image I based on morphological reconstruction

using geodesic operators [56].

2. Interpolate the surface between all the maxima and all the minima with RBF to

build the 2D envelope Xmax and Xmin, respectively [57].

3. Determine the mean envelope Xm using average of the two envelopes as follows:

Xm =
Xmax +Xmin

2

4. subtract out the mean from the image to get h1 = I −Xm.

5. Repeat the above mentioned process till h1 satisfy conditions of an IMF.

2.2.1 Extrema detection

To detect the image extrema geodesic operators based morphological reconstruction has

been used. To obtain grayscale reconstruction IrI(J) of I from J grayscale geodesic

dilations ∂n1 of J under I is iterated until a stability is reached, i.e. IrI =
∨

n≥1 ∂
n
1 (J).

To detect the maxima following procedure has been used [58]:

1. Subtract one gray level from every pixel of original image I to construct J , i.e.

J = I − 1

2. Perform reconstruction Ir of J by I by geodesic dilation

3. Subtract Ir from I to obtain the indicator function of maxima of I.

14



Similarly, to detect the minima following procedure has been used [58]:

1. Subtract one gray level from every pixel of original image I to construct J , i.e.

J = I − 1

2. Perform reconstruction Ir of J by I by geodesic erosion.

3. Subtract Ir from I to obtain the indicator function of minima of I.

2.2.2 Image interpolation

RBF function has been used for interpolation. A RBF function is defined as [57]:

s(x) = pm(x) +
N∑
i=1

λiΦ(‖x− xi‖), x ∈ Rd, λi ∈ R (2.2)

where s is the radial basis function, pm represents low degree polynomial, typically

linear or quadratic, a member of mth degree polynomials in d variables, ‖.‖ denotes the

Euclidian norm, the λi’s are the RBF coefficients, Φ is a real valued function called the

basic function, xi’s are the RBF centres.

2.3 Autoregressive model

Autoregressive model (AR) is used in signal processing and statistics for representing

signals based on parametric approach. The AR model specifies that output variable of

a process is linearly dependent on it’s previous output’s. AR model is a special case of

autoregressive moving average (ARMA) model.

2.3.1 1D autoregressive model

1D AR model of order p is defined as [59]:

X(t) =

p∑
i=1

aiX(t− i) + w(t) (2.3)

15



where, ai are known as AR parameters and w represents white noise. From 2.3 AR

model can be considered as output of all pole filter with white noise as input. Yule-

Walker equations can be used to determine the AR model parameters.

2.3.2 2D autoregressive model

A 2D AR model for image analysis is explained in [60]. In our study, 2D AR model is

employed on 2D IMFs of the brain MR images. In order to analyze 2D IMFs with 2D

AR model, it is considered as a 2D random field x[p, q], (p, q) ∈ Z2. For the N1 × N2

image I = {x[p, q] : 0 ≤ p ≤ N1 − 1, 0 ≤ q ≤ N2 − 1}, 2D AR (r1, r2) model is defined

by the following difference equation [60]:

x[p, q] +

r1∑
i=0

r2∑
j=0

aijx[p− i, q − j] = w[p, q] (2.4)

where w[p, q] is a stationary white noise field with variance σ2, r1 and r2 represent order

of the AR model and the coefficients aij are the parameters of the 2D AR model.

In (2.4), the image x[p, q] can be interpreted as the output of the linear time-invariant

(LTI) causal system with transfer function H(z1, z2) and a white noise as an input. The

transfer function is given as [60]:

H(z1, z2) =
1

A(z1, z2)
=

1
r1∑
i=0

r2∑
j=0

aijz
−i
1 z

−j
2

(2.5)

with a00 = 1. Assuming that the noise sequence w[p, q] are known, the parameters in

the AR model (2.4) can be determined by the least-squares (LS) method as follow [60]:

x[p, q] + φT [p, q]θ = w[p, q] (2.6)

where

φT [p, q] = [x[p, q − 1], · · · , x[p− r1, q − r2]] (2.7)

and

θ = [a01, · · · , ar1r2 ]T (2.8)

16



The matrix form of (2.6) for p = L + 1, · · · , N1 − 1, and q = M + 1, · · · , N2 − 1, for

arbitrary L > r1, and M > r2, provides [60]:

X + Φθ = W (2.9)

where

X = [x[L+1,M+1], · · · , x[N1−1, N2−1]]T ,W = [w[L+1,M+1], · · · , w[N1−1, N2−1]]T

and Φ is given as [60]:

Φ =


x[L+ 1, 1] · · · x[L+ 1− r1,M + 1− r2]

x[L+ 2, 1] · · · x[L+ 2− r1,M + 1− r2]
...

. . .
...

x[N1 − 1, N2 − 1] · · · x[N1 − 1− r1, N2 − 1− r2]


Assuming that Φ is known, a least-squares estimate of the parameter vector θ in (2.9)

can be obtained as [60]:

θ̂ = −(ΦTΦ)−1ΦTX (2.10)

AR model has been employed for many applications such as shape classification [61],

electroencephalogram (EEG) and electrocardiogram (ECG) signal classification [62,63],

image texture analysis [64], etc.

2.4 Least square suppport vector machine

SVM was introduced in [65]. It is based on statistical learning theory. To classify the

data, SVM constructs optimal separating hyperplane which maximizes the separation

between the two nearest data points which belongs to two different classes.

Figure 2.4 demonstrates basic concept of SVM. As shown in figure there are two

different sets of data represented by o and �. Hyperplane P1 is not a good solution

because it does not separate two datasets completely. Between two possible solutions

P2 and P3, hyperplane P3 is an optimal solution because it provides maximum margin

between two datasets.
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Consider N number of data points {xi, yi}Ni=1 , where xi ε R is input and yi ε {+1,−1}

is class label.

�
�

�
�

�
�

�

�

Figure 2.4: Feature space of SVM.

For two-class classification problem, separation hyperplane is given as [66]:

f(x) = sign[ΩTg(x) + β] (2.11)

where Ω is d-dimensional weight vector and g(x) is a mapping function that maps x

into the d-dimensional space and β is a bias. The least square version of SVM, which

is known as least-square SVM (LS-SVM) was introduced in [67]. The classification

problem using LS-SVM can be formulated as [67]:

min J(Ω, β, ε) =
1

2
ΩTΩ +

γ

2

N∑
i=1

ε2i (2.12)

subject to the following equality constraint,

yi[Ω
Tg(xi) + β] = 1− εi, i = 1, 2, . . . , N (2.13)
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where ε = (ε1, ε2, · · · , εN)T .

The Lagrangian multiplier αi for (2.12) can be defined as [67]:

L(Ω, β, ε;α) = J(Ω, β, ε)−
N∑
i=1

αi{yi[ΩTg(xi) + β]− 1 + εi} (2.14)

On solving (2.14) by considering the optimal conditions, LS-SVM classifier is obtained

as [67]:

f(x) = sign

(
N∑
i=1

αiyiK(x, xi) + β

)
(2.15)

where K(x, xi) is kernel function. In the presented work, different kernel functions have

been used which are defined as follows [66]:

1. Linear kernel function:

K(x, xi) = x.xi (2.16)

2. Polynomial kernel function:

K(x, xi) = (x.xi + 1)d (2.17)

where d is the degree of the polynomial.

3. Radial basis function (RBF) kernel:

K(x, xi) = e
−‖x−xi‖

2

2σ2 (2.18)

where σ controls the width of RBF function.

LS-SVM has been widely used for classification of EEG signals [68,69], ECG signals [70],

electromyogram (EMG) signals [71], MR images [72], etc.
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Chapter 3

Results and Discussions

Experimental evaluation of the proposed method was performed on a publicly available

AANLIB database of Harvard medical school [14]. Figure 3.1 presents a set of brain

MR images from the database. For our experiments, a total of 88 axial, T2-weighted

brain MR images are used, out of which 25 images correspond to normal human brain

and the remaining 63 images correspond to human brain affected by diseases such

as herpes encephalitis, alzheimer’s, glioma, metastatic bronchogenic carcinoma and

multiple sclerosis. Number of images corresponding to each of these diseases is presented

in Table 3.1.

Table 3.1: Distribution of abnormal brain MR images in database

Disease Number of images

Alzheimer’s 10

Glioma 12

Herpes encephalitis 16

Metastatic bronchogenic carcinoma 11

Multiple sclerosis 14

In our experiments, BEMD is applied on each of the brain MR images to extract

2D IMFs. Figures 3.2 and 3.3 show a sample brain MR image and corresponding IMFs
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Sample brain MR images in the AANLIB database: (a) Normal, (b)

Alzheimer’s disease, (c) Glioma, (d) Herpes encephalitis, (e) Metastatic bronchogenic

carcinoma, (f) Multiple sclerosis.
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(a)

(b) (c)

(d) (e)

Figure 3.2: Sample normal brain MR image and corresponding IMFs: (a) Image, (b)

First IMF, (c) Second IMF, (d) Third IMF, (e) Fourth IMF.
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(a)

(b) (c)

(d) (e)

Figure 3.3: Sample abnormal brain MR image and corresponding IMFs: (a) Image, (b)

First IMF, (c) Second IMF, (d) Third IMF, (e) Fourth IMF.
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for normal and abnormal category, respectively.

As can be observed from Figures 3.2 and 3.3, the visual information contained in 2D

IMFs decreases as the mode of 2D IMFs is increased. Therefore, in our experiments,

only the first four 2D IMFs are used for further processing.

In our approach, each of the 2D IMF is modeled using a 2D AR model. In this way,

we obtained AR coefficients for each of the IMFs, which are concatenated to form the

feature vectors. Finally, LS-SVM is employed for classification of brain MR images. A

set of experiments have been performed to investigate the performance of our approach

with different orders of the AR model and different kernel functions of SVM. Specifically,

the performance of the proposed methodology is evaluated with linear, polynomial and

RBF kernel functions in SVM for 1st, 2nd and 3rd order AR models. In addition,

in order to study the effect of kernel parameters on the classification accuracy, we

performed experiments by varying the degree of the polynomial kernel from 2 to 4 in

steps of 1. Similarly, the sigma (σ) value of RBF kernel function was varied from 0.1 to

10 in steps of 0.1. Specifically, we have performed 10-fold cross validation experiments.

Performance of the proposed method was evaluated using performance measures

such as accuracy, sensitivity and specificity. Suppose TP and TN represent the number

of correctly classified positive and negative samples and FP and FN represent the

number of falsely classified negative and positive samples respectively. The performance

measures are defined as follows [73]:

1. Accuracy (ACC): It is defined as the fraction of correctly classified positives and

negative samples out of the total number of test samples and it is given as:

ACC =
TP + TN

TP + TN + FP + FN
× 100 (3.1)

2. Sensitivity (SEN): It is defined as the ratio of numbers of correctly classified

positive samples to the total number of positive test samples and it is given as:

SEN =
TP

TP + FN
× 100 (3.2)
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3. Specificity (SPF ): It is defined as ratio of number of correctly classified negative

samples to the total number of negative test samples and it is given as:

SPF =
TN

TN + FP
× 100 (3.3)

A plot of classification accuracy vs degree of polynomial kernel function in SVM is

shown in Figure 3.4, from which it can be observed that 1st order AR model provides

the least classification accuracy consistently for for 2nd, 3rd and 4th degree polynomial

kernel function. On the other hand, 2nd and 3rd order AR models achieve maximum

accuracy for 2nd degree of polynomial kernel function in SVM.

Figure 3.5 presents a plot of classification accuracy vs sigma values for RBF kernel

function in SVM obtained by varying sigma values from 0.1 to 10. It can be observed

from the Figure 3.5 that accuracy of 1st order AR model varies significantly for different

values of sigma and the accuracy decreases as sigma value is increased. 1st order AR

model achieves accuracy less than 97% for all values of sigma, whereas 2nd order AR

model achieves 100% accuracy for sigma values greater than 8 and 3rd order AR model

achieves 100% accuracy for sigma values greater than 6.5. Thus, it can be concluded

that 3rd order AR model achieves the maximum accuracy for the least value of sigma.

The results of our experiments are summarized in the Table 3.2. From the results,

it is observed that the 2nd order linear and RBF kernel function achieves 100% accu-

racy, sensitivity and specificity. Polynomial function achieves a maximum classification

accuracy of 99% for 2nd degree polynomial and 2nd order AR model. Also it can be

noticed that in the case of 2nd order AR model, Linear kernel function provides better

accuracy as compared to polynomial (Non-linear) kernel function. This may be due to

overfitting, which occurs when model is excessively complex and size of training dataset

is too small in comparison to model complexity. Overfitting can be considered as a sit-

uation when model begins to memorize training data rather than learning to generalize

from trend.

The performance of the proposed methodology is compared with that of the existing

approaches on the same database and the classification accuracy is shown in Table
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3.3. In the literature, different approaches have been used to partition the dataset

for classification. Some of the existing methods used fixed approach, in which some

percentage of the data is used for training and remaining data is used for testing.

However, the percentage of the data used for training and testing vary from method to

method. Other existing works used leave one out method (LOOM). In the presented

work, 10-fold cross validation method is used for evaluating classification performance.

It can observed that proposed method outperforms the existing methods, specifically

our results are better than the 1D-EMD based approach presented in [30].
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Figure 3.4: Plot of classification accuracy versus degree of polynomial kernel function

in SVM.
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Figure 3.5: Plot of classification accuracy versus sigma of RBF kernel function in SVM.
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Table 3.2: Performance of the proposed approach for classification of brain MR images

Order of AR model kernel Accuracy (%) Sensitivity (%) Specificity (%)

1st Polynomial 94.27 95.23 96.66

1st Linear 93.30 95.47 100

1st RBF 96.63 90.70 100

2nd Polynomial 99 98.57 86.67

2nd Linear 100 100 100

2nd RBF 100 100 100

3rd Polynomial 98.75 98.33 90.00

3rd Linear 97.63 96.66 100

3rd RBF 100 98.57 90

Table 3.3: Comparison of the proposed methodology with the existing methods studied

on the same database

Methodology Classification evaluation approach Accuracy (%)

DWT and SOM [18] Fixed partition 94

DWT and SVM [18] Fixed partition 98

DWT, PCA and FP-ANN [23] Fixed partition 97

DWT, PCA and k-NN [23] Fixed partition 98

DWT, PCA and BPNN [19] Fixed partition 100

DWT, Entropy and SVM [30] LOOM 97

EMD, Entropy and SVM [30] LOOM 99

Proposed work 10-fold cross validation 100
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Chapter 4

Conclusions and Future Work

In this chapter, conclusions and future scope related to this research work have been

provided.

4.1 Conclusions

In this work, we have proposed a new method based on the bi-dimensional empirical

mode decomposition (BEMD) for automatic classification of brain MRIs. The features

extracted from the autoregressive (AR) model of bi-dimensional intrinsic mode func-

tions (IMFs) have been developed for classification of brain MRIs. The least squares

support vector machine (LS-SVM) together with radial basis function (RBF) kernel

function has provided maximum classification accuracy in the classification of brain

MR images. In the proposed method, the kernel parameters have been selected based

on the trial and error method. In future, it would be of interest to develop an automatic

strategy for selecting kernel parameters and kernel function. The proposed technique

for classification of brain MR images has been studied on limited database. It is nec-

essary to study proposed method on large database before applying this methodology

for clinical purpose.
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4.2 Scope for future work

This methodology can be studied for multi-class classification problem, wherein images

of brain affected with each disease can be considered as seperate class. Further perfor-

mance of the propossed methodology can be validated on larger databases. In addition,

this methodology can be studied on images of other parts of the body, for example

retina, mammogram etc.
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