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Abstract 

  

Coronary Artery Disease (CAD) is one of the very common type of cardiovascular diseases 

which is the killer of world’s 7.4 million population. Coronary artery disease is characterized by the 

narrowing and hardening of arteries supplying blood to the muscles of heart, owing to the deposition of 

waxy substance called plaque in them. The consequence of coronary artery disease may be a heart attack 

or heart stroke. Hence, the patient’s suffering from coronary artery disease are always at the risk of 

death. In the world, where trained cardiologists may diagnose coronary artery disease with manual 

errors, computer aided diagnostics methods may be of great help. Thus in this thesis we have proposed 

an efficient way to diagnose coronary artery disease using heart rate signals. We have used Empirical 

Mode Decomposition (EMD) to decompose the heart rate signal into Intrinsic Mode Functions (IMFs). 

The features namely: Area of Second Order Difference Plot (SODP area), Area of Analytical Signal 

Representation (ASR area), Amplitude Modulation (AM) bandwidth, Frequency Modulation (FM) 

bandwidth and Fourier Bessel expansion (FBE) based mean frequency are extracted from these IMFs of 

different signals. These features are then subjected to Kruskal-Wallis statistical test to check their 

statistical significance. 

 In the next part of this work, we have used the same dataset and derived the modes of each 

signal using Empirical Wavelet Transform (EWT). The same set of features is derived from these 

obtained modes of the signals. These features are again tested for their statistical significance and the 

best three features are selected to derive an integrated index for discrimination between normal and 

coronary artery disease heart rate signals using a single value. 
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CHAPTER 1 

 

Introduction  

Every human organ requires oxygen and nutrients to be in a healthy condition and function 

properly, including heart. This oxygen is provided to every cell and tissue of the body through 

blood which contains dissolved oxygen and nutrients in it. In one cardiac cycle of the heart the 

deoxygenated blood from whole body is brought to the heart, this blood is given from right 

ventricle to the lungs for oxygenation (adding oxygen to the blood from the air we breathe) and 

brought back to the heart in left atrial and further distributed to whole body through left ventricle 

[1]. This cycle continues without any disruption. Heart regulates the blood flow through the 

network of blood vessels. Blood vessels are of two types: (a). Arteries, which carries oxygenated 

blood from heart to the body and (b). Veins, which carries deoxygenated blood from the body to 

heart [2]. Any blockage in arteries or veins would disrupt the proper functioning of heart which 

may lead to various cardiovascular diseases [1, 2]. 

Cardiovascular diseases are responsible for 17 million deaths across the world every year, 

out of which most of the deaths are the results of Coronary Artery Disease (CAD) [1], most 

common kind of cardiovascular diseases. Early diagnosis of CAD can save many lives. 

   

1.1 Cardiovascular Disease and Its Types: 

Cardiovascular diseases are disorders involving heart and blood vessels such as: Cerebrovascular 

Disease, which is related to the blood vessels supplying to the brain [3]. Peripheral artery disease, 

which is related to infection of blood vessels supplying to the arms and legs and if the blood vessels 

supplying to the heart muscles itself is infected then the condition is said to be CAD [3]. 

Cardiovascular disease leads to more deaths in the world than any other disease. In 2012, due to 

cardiovascular diseases the death toll was estimated to be 17.5 million out of which CAD 

contributed to 7.4 million deaths [3].  
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1.2 Coronary Artery Disease: Causes, Symptoms and Diagnosis 

The CAD is a heart condition in which a waxy substance called plaque is deposited in the 

artery carrying blood to the heart muscles [2]. The plaque is deposited due to unhealthy eating 

habits, tobacco use, physical inactivity and drinking habit [1]. With time this plaque deposited 

inside arteries hardens them. This results in narrowing of the arteries which hinders the supply of 

blood and oxygen to the heart muscles [1].  When heart muscles do not get the proper amount of 

oxygen, it exhausts the cells and tissues of heart which may result in strokes and heart attacks. This 

may slowly and eventually lead to the death of an individual. The symptoms of CAD may involve 

chest pain, shortness of breath and fatigue.  

CAD can be diagnosed on the basis of some clinical tests and physical examination. These 

include Exercise Stress Test (EST), coronary angiography, Electrocardiogram (ECG), cardiac 

catheterization, blood tests and chest X-rays [2, 4]. In EST, a patient is given some physical 

exercise such as walking on a tread mill and hence, targeted heart rate is to be achieved by the 

heart. This may increase the work load of heart [5]. This method is not preferred as it may give a 

normal ECG recording even for a person suffering from CAD [4]. The other techniques such as 

angiography and cardiac catheterization are invasive, causing pain and discomfort to the body [2, 

4]. Moreover, these methods can be performed by trained persons only. Hence, developing any 

method which may avoid invasion of body is recommended and in that case analysis of Heart Rate 

Variability (HRV) using signal processing method is very useful. 

Time variation of heart rate between successive heartbeats in ECG signal is called HRV 

signal [6]. HRV signal is complex in nature. Linear statistical measures like standard deviation, 

mean and variance may miss some small but useful information [4]. It was shown that circadian 

rhythm in HRV is reduced in CAD patients than normal patients [7]. 

 

1.3 Electrocardiogram 

The ECG is the simple and painless test which records the electrical activity of the heart [4]. 

This electrical signal originate from sinus node and travel through the length of heart. Once the 
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signal has travelled the entire length, it constitute a heartbeat [4]. The complete process is repeated 

and form a periodic signal called electrocardiogram signal, consisting of repeated pulses.  

 A normal ECG recording consist of P-wave followed by QRS-complex and T-wave. P-

wave occur due to left and right atrial depolarization whereas left and right ventricular 

depolarization causes QRS-complex [4]. T-wave corresponds to ventricular repolarization. R-

wave has the maximum amplitude [4].  

 

1.4 Related Work 

Giri et al. [5] used data reduction techniques on the discrete wavelet transform coefficients. 

Better classification result is obtained with independent component analysis and Gaussian mixture 

model classifier. Acharya et al. [6] studied the results of the nonlinear analysis on CAD HRV 

signals to show more rhythmic nature of CAD HRV signals than normal signals. Acharya et al. [7] 

presented various nonlinear and linear parameters for the analysis of cardiac abnormalities of eight 

different types with more than 90% confidence level. Huikiri et al. [8] studied the effects of upright 

and arousal postures in circadian rhythm of CAD affected patients. They also used the heart rate 

variability signals. Bigger et al. [9] studied HRV signals of CAD and normal subjects and analyzed 

them in time and frequency domain. All parameters in these domain are found lower in CAD 

patients. Various nonlinear methods are applied to analyze the HRV signals due to its nonlinear 

nature [10, 11, 12, 13, 14].  

Acharya et al. [10] studied various cardiac abnormalities and analyzed them using 

scalogram plots and FD. Scalogram plots and values of FD are unique for each abnormalities. 

Karamanos et al. [11] used block entropy to examine the coarse-grained statistics of CAD and 

normal HRV signals. For normal subject, more complex statistics are observed than CAD subjects.  

Chua et al. [15] studied Higher Order Spectrum (HOS) on HRV signals of seven different cardiac 

arrhythmia, and unique bi-spectrum plots are proposed for these classes of arrhythmia. 

Antanavicius et al. [12] found Fractal Dimension (FD), embedding dimension error, recurrence 

dimension and mutual information to be lower for non-CAD subjects. Babaoglu et al. [16] studied 

Binary Particle Swarm Optimization (BPSO) and Genetic Algorithm (GA)-based feature 

extraction method combined with SVM classifier for diagnosing CAD. 
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Patidar et al. [13] studied the values of correntropy and found them to be lower for CAD 

HRV signals than normal HRV signals. Lee et al. [17] used various classifiers to test the linear and 

nonlinear features extracted from HRV signals of normal and CAD subjects, and found better 

results with support vector machine classifier.   

 

1.5 Thesis Organization 

The rest of thesis is organized as below: 

Chapter 2 gives detailed description of EMD based feature analysis, its methodology, results and 

discussion. Chapter 3 includes EWT based derivation of integrated index, its results and 

discussion. In the end chapter 4 gives conclusion and the future scope of the present work followed 

by the references. 
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CHAPTER 2 

 

Empirical Mode Decomposition based Analysis of Normal and CAD 

Signals 

Computer aided diagnosis is performed on the normal and CAD signals as firstly, the EMD 

is applied to the two classes of signals and then five features namely, Area of Second Order 

Difference Plot (SODP area), Area of Analytical Signal Representation (ASR area), Amplitude 

Modulation (AM) bandwidth, Frequency Modulation (FM) bandwidth and Fourier Bessel 

Expansion (FBE) based mean frequency are extracted from the Intrinsic Mode Functions (IMFs). 

These features are studied individually and Kruskal-Wallis statistical test [18] is applied to them. 

Features giving p-values less than 0.05 are considered to be significant. 

   

2.1 Data Acquisition 

Normal and CAD ECG signals were acquired using BIOPAC [19] instrument at Iqraa 

hospital, Kerela, India. These signals are sampled at a rate of 500 Hz. The average age for both 

classes is 50 years varying from 40 to 70 years.  The ECG signals from 10 CAD and 10 normal 

subjects were recorded out of which 61 normal and 82 CAD signals files were formed with each 

file containing 1000 samples. The subjects suffering from hypertrophy, atrial fibrillation, 

congestive heart failure, bundle branch block and myopathy were excluded from CAD subjects.  

 ECG signal thus obtained contains power line interference, baseline wanders [20] and 

unwanted noise. These can be removed using band pass filters having higher cut off frequency of 

15 Hz and lower cut off frequency of 0.3 Hz. Band stop filter with cut off frequency of 50 Hz is 

also used. The time interval (TRR) between consecutive R peaks is calculated as RR interval and R 

peaks is found using Pan-Tompkins Algorithms [21]. Finally Heart Rate (in beats per minute) = 

60/TRR is calculated. Figure 2.1 depicts CAD and a normal heart rate signal. 
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      (a) 

 

      (b)  

Figure 2.1: The heart rate signal of (a) CAD and (b) Normal subject. 
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2.2 Empirical Mode Decomposition 

Every non-stationary signal is assumed to be made up of different oscillatory components 

which can be derived using EMD technique [22]. Hence, EMD is a technique to decompose a non-

stationary and nonlinear signal into its constituting signals which are termed as IMFs [22]. The 

IMFs are frequency and amplitude modulated signals. These IMFs can be derived from a signal 

𝑧(𝑡) using sifting process as explained in [22]: 

The EMD method can be represented by the following steps [22, 23]: 

Step 1. Locate local minima and local maxima in signal 𝑧(𝑡) 

Step 2.  Form 𝑈(𝑡), upper envelope by joining the local maxima and similarly 𝐿(𝑡), lower 

envelope by joining the local minima. 

Step 3.  Calculate the signal formed by averaging the upper envelope and lower envelope 

as: 𝜇(𝑡) =
𝑈(𝑡)+𝐿(𝑡)

2
  

Step 4. Subtract the mean signal 𝜇(𝑡) from the original signal 𝑧(𝑡):   𝐼(𝑡) = 𝑧(𝑡) − 𝜇(𝑡)  

Step 5. Check whether 𝐼(𝑡) is the desired IMF by testing it for two necessary IMF 

conditions. They are: 

1. The number of maxima and minima must be equal to the number of zero 

crossings in the signal 𝐼(𝑡) or differ at most by one. 

2. The average value of upper envelope of local maxima and lower envelope of 

local minima at any point in 𝐼(𝑡) must be zero. 

Step 6. If 𝐼(𝑡) does not satisfy the above conditions then repeat the steps (a) to (e) till the 

signal 𝐼(𝑡) is obtained which satisfies the IMF conditions. This signal is considered 

the first IMF denoted by IMF1. 

Step 7.  The remaining IMFs are obtained from the residual signal given as: 

  𝑟(𝑡) = 𝑧(𝑡) − IMF1 using the same sifting process. 

Step 8. The complete process is continued till the residual signal becomes monotonic and 

no further IMFs can be derived from it. 
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Step 9. Finally, the signal 𝑧(𝑡) can be expressed as: 

 

 𝑧(𝑡) =  ∑ IMF𝑖 + 𝑅(𝑡)
𝑁
𝑖=1        (2.1) 

 

where, i gives the number of IMFs obtained from sifting process and 𝑅(𝑡) gives the final residue 

signal which further cannot be decomposed into IMFs. 

The IMFs of normal and CAD signal are shown in the Figure 2.2. 

 

2.3 Features Extracted 

The features extracted from the obtained IMFs are given in detail below. 

 

2.3.1 Area of Second Order Difference Plot 

The Second Order Difference Plot (SODP) is defined as the graphical representation of 

first order derivative and the second order derivate of the signal against each other [24, 25]. The 

graphical shape of SODP of the IMFs is elliptical. The area of these SODPs corresponding to 95% 

Central Tendency Measures (CTM) [26, 27] is used in this work to analyze the normal and CAD 

classes. The SODP of any signal 𝑧(𝑗) is computed as [24]: 

𝑃(𝑗) = 𝑧(𝑗 + 1) − 𝑧(𝑗)      (2.2) 

 



 

9 
 

 

      (a) 

 

      (b) 

Figure 2.2: First 7 IMFs obtained with EMD of (a) CAD subject and (b) Normal subject. 
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𝑄(𝑗) = 𝑧(𝑗 + 2) − 𝑧(𝑗 + 1)     (2.3)      

      

Where, 𝑃(𝑗) and 𝑄(𝑗) are first order and second order derivatives of signal 𝑧(𝑗). Plotting 

𝑃(𝑗) and 𝑄(𝑗) against each other will give SODP.  

The steps to compute 95% ellipse area [28, 29, 30, 31] of SODP thus obtained are given below: 

1. Calculate mean of 𝑃(𝑗) and 𝑄(𝑗) as:  

𝑀𝑃 = √
1

𝑁
∑ 𝑃(𝑗)2𝑁−1
𝑗=0     (2.4) 

     

𝑀𝑄 = √
1

𝑁
∑ 𝑄(𝑗)2𝑁−1
𝑗=0     (2.5)  

𝑀𝑃𝑄 = 
1

𝑁
∑𝑃(𝑗) 𝑄(𝑗)    (2.6) 

      2.    Calculate parameter X as:   

𝑋 = √(𝑀𝑃
2 +𝑀𝑄

2) − 4(𝑀𝑃
2𝑀𝑄

2 −𝑀𝑃𝑄
2)  (2.7)  

      3.     Parameter D and E are calculated as: 

𝐷 = 1.732√(𝑀𝑃
2 +𝑀𝑄

2) + 𝑋    (2.8)  

𝐸 =  1.732√(𝑀𝑃
2 +𝑀𝑄

2) − 𝑋    (2.9) 

      4.    Area of the ellipse is:    

SODP area =  𝜋𝐷𝐸     (2.10) 
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2.3.2 Area of Analytical Signal Representation 

The ASR of any signal 𝑧(𝑡) is a complex signal with its real part as the signal itself and the 

imaginary part as its Hilbert transform [32].  The ASR of a signal is circular in nature with a unique 

center [33]. In this work we have calculated the area of ASR corresponding to 95% CTM [33]. 

CTM correspond to the number of points lying within the chosen radius to the total points in ASR 

of IMFs of the signal. The computational steps for calculating the area of ASR are given below 

[33, 34, 35, 36]: 

Step 1.   The analytical signal representation of a signal 𝑧(𝑡) is given by:  

𝑂(𝑡) = 𝑧(𝑡) + 𝑗𝑧ℎ(𝑡)     (2.11) 

This can also be written as: 

𝑂(𝑡) = 𝑍(𝑡)𝑒𝑖𝜃(𝑡)     (2.12)  

Here, 𝑍(𝑡) is the magnitude of analytical signal representation 𝑂(𝑡) and 𝜃(𝑡) is the angle of          

signal 𝑧(𝑡).  The expression for 𝑍(𝑡) and 𝜃(𝑡) are as follows: 

     𝑍(𝑡) =  √𝑧2(𝑡) + 𝑧ℎ2(𝑡)     (2.13) 

      𝜃(𝑡) =  tan−1 [
𝑧ℎ(𝑡)

𝑧(𝑡)
]    (2.14) 

Step 2.   CTM is given by:  

CTM =  
∑ 𝑛(𝑚)𝑀
𝑚=1

𝑀
     (2.15) 

Where,   𝑛(𝑚) =  {1,    ([re(𝑂(𝑡))]
2
+ [im(𝑂(𝑡))]2)

1/2

< 𝑎

0,      otherwise
 

 

Here, 𝑎 is the chosen radius and 𝑛(𝑚) denotes the number of points lying within the chosen 

radius. Now, the radius (say R) which gives the 95% CTM is considered to find the area of 

ASR.  
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Step 3.   Area of ASR denoted by ASR area is given by:  

 

ASR area =  𝜋𝑅2     (2.16)  

 

2.3.3 Amplitude and Frequency Modulation Bandwidths 

 As stated earlier the IMFs of any signal obtained from EMD technique are amplitude and 

frequency modulated oscillatory signals [22]. This clearly implies that the IMFs have amplitude 

and frequency modulation bandwidths. The amplitude modulated bandwidth refers to the spread 

in signal frequencies due to amplitude variations and frequency modulation bandwidth refers to 

the spread of frequencies due to deviation from central frequency of the signal [37]. We know that 

𝐵2 = 𝐵𝐴𝑀
2 + 𝐵𝐹𝑀

2 where, B is bandwidth of the signal, BAM is amplitude modulated bandwidth 

and BFM is frequency modulated bandwidth [37, 38]. Bandwidth of a signal is also given by:  

𝐵2 = 
1

𝐸
∫ (

𝑑𝑍(𝑡)

𝑑𝑡
)
2
𝑑𝑡 +

1

𝐸
∫ ((

𝑑𝜃(𝑡)

𝑑𝑡
−< 𝜔 >)𝑍(𝑡))

2

𝑑𝑡   (2.17)  

 

Hence,    𝐵𝐴𝑀
2 = 

1

𝐸
∫ (

𝑑𝑍(𝑡)

𝑑𝑡
)
2

𝑑𝑡      (2.18) 

    

𝐵𝐹𝑀
2 = 

1

𝐸
∫ ((

𝑑𝜃(𝑡)

𝑑𝑡
−< 𝜔 >)𝑍(𝑡))

2

𝑑𝑡    (2.19)  

 

Here, E signifies energy of the signal. For calculating amplitude and frequency modulation 

bandwidths, we need to calculate 𝑍(𝑡) and 𝜃(𝑡) which is shown in the previous sections. Hence, 

𝐵𝐴𝑀 and 𝐵𝐹𝑀 of IMFs are used to analyze normal and CAD subjects effectively. 
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2.3.4 Mean Frequency Computed using Fourier-Bessel Expansion  

 The mean frequency of the signal in this work is calculated using Fourier-Bessel expansion. 

The Fourier-Bessel coefficients are unique for a signal [39]. The computation of mean frequency 

(𝑀𝐹) involves steps which are listed below [40]:  

𝑀𝐹 = 
∑ 𝐹𝑗𝐸𝑗
𝐾
𝑗=1

∑ 𝐸𝑗
𝐾
𝑗=1

     (2.20) 

  

The parameters 𝐹𝑗 and 𝐸𝑗 are frequency and energy of the jth coefficient. They can be expressed 

mathematically as [39, 40]: 

     𝐹𝑗 = 
𝛾𝑗

2𝜋𝑇
      (2.21) 

And,      𝐸𝑗 = 
𝐶𝑗
2[𝐽1(𝛾𝑗)]

2𝑇2

2
     (2.22) 

𝛾𝑗 are the roots of 𝐽0(𝛾) = 0. Mean frequency represents the center frequency or centroid of the 

desired signal’s frequency spectrum [41-47]. The mean frequency measure of IMFs is used to 

analyze normal and CAD signals in this work. 

In this work, after extracting these above mentioned features from the IMFs of the normal and 

CAD signals, we have applied Kruskal-Wallis statistical test to them and p-values are noted. The 

features having p-value less than 0.05 are considered to be significant and can distinguish well 

between normal and CAD signals.  

 

2.4 Results 

In the present work, CAD and normal signals are analyzed for three different signal lengths 

1000, 500 and 250 samples. Firstly, we obtained IMFs by applying EMD method on these signals. 

Further, five features namely; SODP area, ASR area, AM bandwidth, FM bandwidth and FBE-

based mean frequency are computed from these IMFs. The effectiveness of these features for 

analyzing normal and CAD signals are tested by observing the p-values computed using Kruskal-
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Wallis statistical test. The features with p-values less than 0.05 are considered statistically 

significant. 

 

 

Table 2.1: p-values of features extracted from different IMFs for normal and CAD signals    with 

1000 samples. 

 

Features IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 IMF 7 

SODP area 7.7 x 10-1 5.0 x 10-1 5.5 x 10-1 4.4 x 10-1 8.8 x 10-1 8.4 x 10-1 5.6 x 10-1 

ASR area 8.5 x 10-1 6.4 x 10-1 6.2 x 10-1 8.7 x 10-1 3.4 x 10-1 7.2 x 10-2 1.9 x 10-1 

AM bandwidth 4.3 x 10-7 4.6 x 10-1 1.0 x 10-3 1.4 x 10-1 7.8 x 10-1 3.7 x 10-1 1.9 x 10-1 

FM bandwidth 8.2 x 10-4 2.5 x 10-3 8.6 x 10-2 4.2 x 10-4 4.3 x 10-3 6.7 x 10-3 3.3 x 10-4 

FBE-based 

mean frequency 

3.5 x 10-1 1.4 x 10-4 4.8 x 10-2 7.7 x 10-5 5.5 x 10-5 1.7 x 10-6 3.3 x 10-4 

 

 

For signal with 1000 samples, at least seven IMFs are present for normal and CAD signals.  

In case of signal with 500 samples, all normal and CAD signals have at least six IMFs. For signals 

with 250 samples also, at least six IMFs are present for normal and CAD signals. The box plots 

for the sample length of 1000, 500 and 250 samples are also shown in Figure 2.3 - 2.17. The 

corresponding p-values are shown in Table 2.1, 2.2 and 2.3 respectively.  
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Table 2.2: p-values of features extracted from different IMFs for normal and CAD signals with 

500 samples. 

Features IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 

SODP area 1.3 x 10-1 3.8 x 10-2 2.5 x 10-1 2.0 x 10-1 4.1 x 10-1 2.1 x 10-1 

ASR area 7.1 x 10-3 2.4 x 10-2 9.8 x 10-1 6.2 x 10-1 3.5 x 10-1 2.7 x 10-2 

AM bandwidth 3.2 x 10-8 4.4 x 10-1 4.9 x 10-2 8.2 x 10-1 5.2 x 10-1 2.6 x 10-2 

FM bandwidth 3.3 x 10-3 6.7 x 10-3 4.8 x 10-1 3.8 x 10-2 8.4 x 10-1 6.2 x 10-1 

FBE-based 

mean frequency 

3.0 x 10-1 5.6 x 10-8 1.1 x 10-1 1.7 x 10-2 1.8 x 10-2 1.1 x 10-3 

 

Table 2.3: p-values of features extracted from different IMFs for normal and CAD signals with 

250 samples. 

Features IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 

SODP area 5.9 x 10-2 6.3 x 10-3 6.1 x 10-2 1.6 x 10-2 1.1 x 10-1 4.1 x 10-2 

ASR area 4.8 x 10-2 2.0 x 10-2 3.5 x 10-1 2.9 x 10-1 6.5 x 10-2 2.1 x 10-2 

AM bandwidth 6.8 x 10-5 5.0 x 10-1 1.5 x 10-1 5.6 x 10-1 5.4 x 10-1 8.5 x 10-2 

FM bandwidth 5.2 x 10-2 1.8 x 10-2 4.7 x 10-1 8.0 x 10-2 7.5 x 10-1 3.2 x 10-2 

FBE-based 

mean frequency 

6.6 x 10-1 1.1 x 10-4 8.9 x 10-1 3.6 x 10-2 1.3 x 10-1 5.0 x 10-2 
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Figure 2.3: Box-plot of SODP area for normal and CAD heart rate signals with 1000 

samples. 

 

Figure 2.4: Box-plot of ASR area for normal and CAD heart rate signals with 1000 

samples. 
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Figure 2.5: Box-plot of AM bandwidth for normal and CAD heart rate signals with 1000 

samples. 

 

Figure 2.6: Box-plot of FM bandwidth for normal and CAD heart rate signals with 1000 

samples. 
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Figure 2.7: Box-plot of FBE based mean frequency for normal and CAD heart rate 

signals with 1000 samples. 

 

Figure 2.8: Box-plot of SODP area for normal and CAD heart rate signals with 500 

samples. 
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Figure 2.9: Box-plot of ASR area for normal and CAD heart rate signals with 500 

samples. 

 

Figure 2.10: Box-plot of AM bandwidth for normal and CAD heart rate signals with 500 

samples. 
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Figure 2.11: Box-plot of FM bandwidth for normal and CAD heart rate signals with 500 

samples. 

 

Figure 2.12: Box-plot of FBE based mean frequency for normal and CAD heart rate 

signals with 500 samples. 
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Figure 2.13: Box-plot of SODP area for normal and CAD heart rate signals with 250 

samples. 

 

Figure 2.14: Box-plot of ASR area for normal and CAD heart rate signals with 250 

samples. 
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Figure 2.15: Box-plot of AM bandwidth for normal and CAD heart rate signals with 250 

samples. 

 

Figure 2.16: Box-plot of FM bandwidth for normal and CAD heart rate signals with 250 

samples. 
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Figure 2.17: Box-plot of FBE based mean frequency for normal and CAD heart rate signals with 

250 samples. 

 

 

2.5 Discussion 

The IMFs derived by EMD method from heart rate signals of normal and CAD subjects 

are arranged in a sequence of high frequency component to low frequency component. The five 

features obtained from these IMFs are tested using Kruskal-Wallis statistical test to analyze their 

statistical significance. The 95% ellipse area of SODP is used for analysis of normal and CAD 

signals. It can be observed from Table 2.1 that p-values for SODP area for all the IMFs are greater 

than 0.05 for signals with 1000 samples. Thus, for this case SODP area is not statistically 

significant for analysis of normal and CAD signals. For signal with 500 samples, it shows 

statistical significance (p < 0.05) for normal and CAD subjects for IMF 2 that can be observed in 

Table 2.2. It provides significant difference (p < 0.05) between normal and CAD heart rate signals 

for IMF 2, IMF 4 and IMF 6, in case of signal length of 250 samples which can be seen in Table 

2.3. 



 

24 
 

For signal with 1000 samples, ASR area is not found to be statistically significant to 

distinguish normal and CAD heart rate signals. For each IMF, p-value for ASR area is greater than 

0.05 which can be seen in Table 2.1. From Table 2.2, we can observe that for signal length of 500 

samples normal and CAD heart rate signals are significantly discriminated (p < 0.05) based on 

ASR area for IMF 1, IMF 2 and IMF 6. Similarly, for signal length of 250 samples, the normal 

and CAD heart rate signals are differentiated significantly (p < 0.05) using ASR area parameter 

for first, second and sixth IMFs which is clear from Table 2.3. 

The p-values of the AM bandwidth feature for IMF 1 and IMF 3 are significantly less  

(p < 0.05) for signals length of 1000 samples which can be observed from Table 2.1. Hence, IMF 

1 and IMF 3 are suitable for discrimination of normal and CAD heart rate signals in this case. For 

signal length of 500 samples, p-values of AM bandwidth feature for IMF 1, IMF 3 and IMF 6 are 

significantly less (p < 0.05). Therefore, these IMFs are able to give significant difference for 

normal and CAD heart rate signals which can be seen in Table 2.2. It can be observed from Table 

2.3 that, first IMF shows significantly less p-value (p < 0.05) corresponding to AM bandwidth 

feature. Hence differentiate significantly between normal and CAD heart rate signals in case of 

signal length of 250 samples. 

The p-values of FM bandwidth feature for IMF 1, IMF 2 and IMF 4 to IMF 7 are significant 

(p < 0.05) for discrimination of normal and CAD heart rate signals, for signal length of 1000 

samples which can be seen in Table 2.1. From Table 2.2, we can observe that for signal length of 

500 samples the IMF 1, IMF 2 and IMF 4 have significantly less p-value (p < 0.05) for FM 

bandwidth parameter. Thus, provide significant difference for normal and CAD heart rate signals 

for this case. Similarly, IMF 2 and IMF 6 show significant difference (p < 0.05) for normal and 

CAD heart rate signals corresponding to FM bandwidth feature, in case of signal length of 250 

samples which is clearly shown in Table 2.3. 

From Table 2.1, we can observe significant difference for FBE-based mean frequency (p 

< 0.05) between normal and CAD heart arte signals for IMF 2 to IMF 7, in case of signal with 

1000 samples. For signal length of 500 samples, normal and CAD heart rate signals are 

significantly differentiated using FBE-based mean frequency (p < 0:05) for IMF 2, IMF 4, IMF 5 

and IMF 6 which is clear from Table 2.2. In case of signal length of 250 samples, IMF 2 and IMF 

4 have lower p-values (p < 0.05) for FBE-based mean frequency. Therefore, able to significantly 

discriminate the normal and CAD heart rate signals which can be seen in Table 2.3. 
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CHAPTER 3 

 

Empirical Wavelet Transform based Integrated Index for Normal 

and CAD Subjects 

 

The objective of the work is to propose discrimination index for CAD and normal subjects 

using Empirical Wavelet Transform (EWT) [48] based features extracted from HRV signals. We 

have used the same data set as was used in the previous chapter. The same features are extracted 

after decomposing the heart rate signals using EWT.  These features are SODP area, ASR area, 

AM bandwidth, FM bandwidth and FBE based mean frequency. The features are computed from 

the different modes extracted from HRV signals using EWT.  

 

3.1 Motivation for using EWT 

As shown in the previous chapter features namely: AM bandwidth, FM bandwidth and 

FBE based mean frequency are more suitable for the discrimination of normal and CAD signals. 

Recently, in order to have mathematical framework of the expansion process of the components, 

a new technique called empirical wavelet transform has been proposed in [48] which also extracts 

the amplitude modulated and frequency modulated (AM-FM) components of the signal using its 

Fourier spectrum. The Fourier spectrum is then segmented and filtering is applied to each segment 

thus generating different modes [48]. It should be noted that the EWT focuses mainly on the 

oscillatory behavior of the signal and thus the modes obtained from this decomposition are more 

consistent [48].  

In the present work, we have used the EWT technique and obtained minimum of 3 modes 

for each signal as compared to the 7 IMFs obtained in the previous chapter. These 3 modes are 

much easier to interpret. The features namely:  SODP area, ASR area, AM bandwidth, FM 

bandwidth and FBE based mean frequency were calculated from these obtained modes. These  

features were subjected to the Kruskal-Wallis statistical test to check their statistical significance. 

The p-values obtained using Kruskal-Wallis statistical test for the SODP area, ASR area, FM 

bandwidth and FBE based mean frequency features obtained from components using EWT method 

are shown in Table 3.1. The boxplots for the EWT are shown in Figure 3.1 to Figure 3.5.   
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Table 3.1: p-values of features extracted from different modes of normal and CAD 

signals using EWT. 

 

Features Mode 1 Mode 2 Mode 3 

SODP area 2.8 x 10-4 5.4 x 10-2 3.9 x 10-1 

ASR area 1.7 x 10-3 9.3 x 10-2 5.8 x 10-1 

AM bandwidth 8.1 x 10-1 2.5 x 10-1 7.4 x 10-2 

FM bandwidth 5.9 x 10-3 2.6 x 10-3 8.5 x 10-1 

FBE based 

mean frequency 

6.7 x 10-4 1.2 x 10-1 3.0 x 10-1 

 

 

Figure 3.1: Boxplot of SODP area for normal and CAD signals using EWT. 
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Figure 3.2: Boxplot of ASR area for normal and CAD signals using EWT. 

 

Figure 3.3: Boxplot of AM bandwidth for normal and CAD signals using EWT. 
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Figure 3.4: Boxplot of FM bandwidth for normal and CAD signals using EWT. 

 

Figure 3.5: Boxplot of FBE based mean frequency for normal and CAD signals using EWT. 
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3.2 Empirical Wavelet Transform 

The EWT [48] is a signal decomposition technique. It forms adaptive wavelets for 

extracting different modes of a signal. This method works as follows [48]: First, it uses fast Fourier 

transform (FFT) to determine the frequency components of the signal. Then, it segments the 

spectrum for extracting the different modes of the signal. Finally, it uses scaling and wavelet 

functions corresponding to each identified segment. EWT has also been successfully used in [23] 

for the diagnosis of glaucoma and extracting correntropy features from the affected patient’s 

database.    

 

The empirical scaling function 𝜙𝑗(𝜔) and the empirical wavelet 𝜓𝑗(𝜔) are given as follows [48]:  

 

 𝜙𝑗(𝜔𝐾) =  {

1,                        𝑖𝑓 |𝜔𝑘| ≤  (1 − 𝜆)𝜔𝑗

cos (
𝜋𝛼(𝜆,𝜔𝑗)

2
) ,    if (1 − 𝜆)𝜔𝑗 ≤ |𝜔𝐾| ≤ (1 + 𝜆)𝜔𝑗

0,                                          otherwise

   (3.1) 

 

And, 

 

 𝜓𝑗(𝜔𝐾) =  

{
 
 

 
 

1,   if (1 + 𝜆)𝜔𝑗 ≤ |𝜔𝐾| ≤ (1 − 𝜆)𝜔𝑗 

cos (
𝜋𝛼(𝜆,𝜔𝑗+1)

2
) ,   if (1 − 𝜆)𝜔𝑗+1 ≤ |𝜔𝐾| ≤ (1 + 𝜆)𝜔𝑗+1

sin (
𝜋𝛼(𝜆,𝜔𝑗)

2
) ,   if (1 − 𝜆)𝜔𝑗 ≤ |𝜔𝐾| ≤ (1 + 𝜆)𝜔𝑗 

0,                                  otherwise

  (3.2) 

 

 

Where,  

   

    𝛼(𝜆, 𝜔𝑗) =  𝛼 (
|𝜔𝐾|−(1−𝜆)𝜔𝑗

2𝜆𝜔𝑗
)     (3.3) 

 

 

To obtain tight frame of wavelets, the 𝜆 parameter must satisfy the following condition [48]: 
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𝜆 <  𝑚𝑖𝑛𝑚 (
𝜔𝑗+1− 𝜔𝑗

𝜔𝑗+1+ 𝜔𝑗
)     (3.4)  

 

And 𝛼(𝑥) is an arbitrary function defined as [48]: 

 

   𝛼(𝑥) =  {
0,      if 𝑥 ≤ 0

𝛼(𝑥) + 𝛼(1 − 𝑥) = 1,     ∀ 𝑥 ∈ [0,1]
1,        if 𝑥 ≥ 1

   (3.5) 

 

3.3 Formulation of Integrated Index 

To distinguish HRV signals of CAD and normal classes, an expression can be derived 

using significant features. This expression provides a unique range of values for each class [49, 

50]. Therefore, discrimination between two classes can be performed using only a single index. In 

present work, we used significant features to derive the integrated discrimination index, namely 

the CAD and normal index (CAD-N). The expression for CAD-N is derived on the basis of trial 

and error experimentation and given as: 

    

    CAD-N = A x m1- C x m3+ B x m2    (3.6) 

 

Where, m1, m2 and m3 are the values of the three most significant features extracted from 

CAD and normal HRV signals. In the above expression, A, B and C are the variables and optimized 

to achieve a unique range of CAD-N index for both the classes. In present work, genetic algorithm 

[16] is used to find the optimum value of the variables A, B and C. 
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      (a) 

 

(b) 

Figure 3.6: First 3 modes of heart rate signal of (a) CAD subject and (b) Normal subject. 
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3.4 Results and Discussion 

In the present work, CAD and normal HRV signals are decomposed using EWT and each 

mode is used to extract the features. We used scalespace parameter detection method [48] to 

decompose HRV signals into the maximum modes and we have used the available matlab codes 

for EWT from [51]. Three modes were observed in each HRV signal of both classes. Hence, three 

modes are taken to analyze these signals. These modes can be seen in Figure 3.6. Further, five 

features namely; SODP area, ASR area, AM bandwidth, FM bandwidth, and FBE based mean 

frequency are computed from these modes. The mean and standard deviation (SD) of all features 

for the three extracted modes are calculated. In our work, we used Student’s t-test ranking method 

[14] to select the most significant features. In this method, population mean is computed and used 

to find the discrimination between two classes. On performing this test, t-values are obtained. The 

feature which has higher t value that has the most ability to discriminate the two classes [14]. 

Further, CAD-N index are derived using first three most significant features, and this index is 

shown in Figure 3.7 

 

 

     Figure 3.7: The ranges of CAD-N index for heart rate signals of normal and CAD subjects. 
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CHAPTER 4 

 

Conclusion and Future Scope 

 

4.1 Conclusion 

In this work we have proposed features for automated discrimination of normal and CAD 

subjects using heart rate signals. We have used EMD method to decompose the heart rate signals 

into IMFs, and features namely SODP area, ASR area, AM bandwidth, FM bandwidth and FBE-

based mean frequency are extracted from these IMFs. These features are studied for different 

sample lengths of 1000, 500 and 250 respectively. Effectiveness of these features are also 

evaluated using Kruskal-Wallis statistical test. The feature which has p-value less than 0.05 is 

considered to be statistically significant, and can be used to discriminate between the two classes. 

For signal length of 1000, 500 and 250 samples, AM bandwidth feature has least p-value for first 

IMF. Results show that the features namely; AM bandwidth, FM bandwidth, and FBE-based mean 

frequency for signal with 1000 samples are found to be more suitable to discriminate normal and 

CAD heart rate signals compared to ASR area and SODP area features. 

We have also proposed CAD-N index for automated discrimination of normal and CAD 

subjects based on HRV signals. EWT method is used to decompose the HRV signals. Features 

namely SODP area, ASR area, AM bandwidth, FM bandwidth, and FBE based mean frequency 

are computed from the first three modes extracted using EWT. Features are ranked using Student 

t-test ranking method. First three ranked features are used to derive the CAD-N index, which is 

able to clearly separate the two classes. 

 

4.2 Future Scope 

 We have used small dataset in the present work. In future this proposed methodology could 

be used to study large dataset before applying it to the clinical purpose. The real time 

implementation of this work can save the time of doctors and can be made cost effective. 

Moreover, this methodology can be used for the diagnosis of other diseases such as myocardial 

infractions, atrial fibrillation and many more. 
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