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Abstract 

 
 
 

 

This work introduces the application of wavelet entropy for detection of episodes of 

atrial fibrillation (AF), from electrocardiogram (ECG) recording. AF is a common cardiac 

arrhythmia which is often asymptomatic and shows very brief episodes. Early detection of 

AF will improve the treatment of it and will reduce the risk of death and strokes in patients. 

In the present work after getting the RR segment we apply tunable Q wavelet transform 

(TQWT) and then calculate the wavelet entropy of that RR segment. We repeat this process 

for different values of Q. In the presence of AF the complexity of signal increases which 

results in higher value of wavelet entropy. Thus on the basis of value of wavelet entropy we 

decide the presence or absence of AF in a beat. This method provides a good discriminant 

ability of 93.44% which have been compared with previous work. This method is capable of 

detecting very brief episodes of AF, which are hardly of few beats in length. This method can 

be implemented in ECG monitoring system, it can help clinicians in early detection of AF 

and to gain sufficient knowledge of causes that results in arrhythmia. 
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CHAPTER 1 

 

Introduction 

Human heart is a very delicate organ supplying nutrients and oxygen to every organ 

through blood. Any damage to the heart may cause a serious disease, which may prove to be 

fatal in some cases. Our heart beats 72 times in a minute and any major alteration in the pulse 

rate is termed as arrhythmia [1]. During arrhythmia, the heart can pulsate too quick, too 

moderate, or with a sporadic mood. Atrial Fibrillation (AF) is one of the common kinds of 

arrhythmia. AF is the condition which causes upper two chambers of the heart called atria to 

fibrillate (contract quickly and unpredictably). Normally, when blood pools in the atria it is 

further pumped into ventricles, but in AF it is not pumped totally into ventricles. Hence, heart’s 

upper and lower chambers do not co-operate as they ought to [1, 2]. The AF can enhance the 

threat of stroke. In some individuals, AF can result in heart attack, particularly if the heart rate is 

exceptionally fast. AF may occur seldom or from time to time, or it might turn into a progressing 

or long haul heart issue that goes on for a considerable length of time [2]. 

AF is the commonest cardiovascular arrhythmia in clinical routine, with an expected 

pervasiveness of 1.5%–2% of all the inclusive community in the developed world [3]. More than 

6 million individuals in Europe and 3 million individuals in the United States of America (USA) 

suffer at present from this arrhythmia [3]. It is expected that number will become two times in 

the following 50 years [4]. 

AF itself is not a life-threatening condition, but it influences the blood flow and hence 

may lead to development of thrombus inside the atrium [3]. This may increase the risk of heart 

strokes and heart failure by five times and three times respectively as compared to a normal and 

healthy person [3]. People who are already infected by any heart disease are more susceptible to 

AF. An early identification of AF may help with reducing this risk by re-establishing ordinary 

heart rate or by enhancing the blood flow with the help of antithrombotic treatment [5, 6]. The 

treatment of AF can be done using rate control and rhythm control mechanism [5]. In rate control 

mechanism electro-cardioversion is applied. This is the process in which an electric shock is sent 
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across the chest so as to disrupt the atrial irregular activity and resume normal functioning of 

atria [7]. 

The main characteristic of AF is the absence of P-wave before QRS complex in an 

electrocardiogram (ECG) signal or replacement of P-wave with a random wave which is of saw-

tooth shape [8]. In order to detect AF episodes we need to extract atrial activity from ECG signal 

which may include extracting RR segment, delta RR segment ( difference between successive 

RR segment ) or P-wave [9, 10]. 

The early identification may likewise include outstanding advantages for health care 

administrations around the world [11]. However detection of AF in early stages is not an easy 

task, as its initial episodes are very brief (few beats in length) [5]. Moreover, current AF 

identification is carried out by looking out for ordinary side effects for example, dyspnea 

(shortness of breath), chest pain, dizziness and palpitations [12], however not each and every 

patient displays these signs. Indeed 90% of AF episodes are asymptomatic [13]. Similarly 

previous works also describes the poor correlation of symptoms and AF [14, 15], thus the 

computer aided AF diagnosis system ready to be implanted into continuous monitoring system 

poses a challenge [16]. 

1.1 Types of AF 

Depending on the duration of the AF episodes and the time taken to develop it, AF can be 

broadly classified into three main types described below [5]: 

1.1.1 Paroxysmal AF 

Paroxysmal AF is the condition in which AF terminates abruptly on its own and 

retain hardly for a week, usually it lasts for 24 hours. Its occurrence and duration of 

episodes increases with time [5]. 

1.1.2 Persistent AF 

In case of persistent AF abnormality in heart rhythm lasts for more than a week 

[5]. In this case arrhythmia can be reverted with the help of medical treatment [5]. 
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1.1.3 Permanent AF 

Permanent AF is the condition in which arrhythmia lasts for more than one year 

[5]. In this case abnormality in heart rate is permanent and it cannot be reverted and heart 

rate is controlled with the help of medication [5]. The paroxysmal AF and the persistent 

AF may change to the permanent AF with time if not treated. The flow of AF is shown in 

Figure 1.1. 

 

 

                                                          Figure 1.1: Flow of AF [3] 

 

1.2 Signs and symptoms of AF 

AF causes rapid contraction of the atrial chambers of heart than normal and because of this 

rapid contraction ventricles do not contain enough blood to pump through body and lungs, which 

in turn causes different symptoms, such as: palpitation, dyspnea, weakness, chest pain, fainting 

and fatigue [17]. Heart stroke and Heart failure are the two major consequences of AF. In case of 
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AF detection family history plays an important role as it can be genetically transmitted. AF 

generally affects the older ones but effects can also be seen in young individuals [17, 18]. 

 Depending on the population survey carried out by Fuster et al. in [3] different age 

groups were found to have different pervasiveness for AF. According to this population survey 

the individuals below 60 years of age have 10% chances of having AF or only 10% people below 

60 years of age were found to be affected by AF.  20% people between 60 to 70 years were 

suffering from AF and around 40% of individuals above 70 years were suffering from this. Most 

importantly these people had no signs and symptoms denoting the presence of AF and lead a 

very normal life ignorantly. This population survey conveys that AF is mostly present in the 

higher age group and this is the permanent type of AF which had developed through their 

lifetime. 

1.3 Electrocardiogram 

ECG is the recording of the heart’s electrical activity which is properly calibrated to 

record them [19]. ECG signals provide information about the heart rate and any abnormalities, if 

present. ECG signals are recorded with the help of electrodes, which are placed on arms, legs 

and chest. In ECG signals every heart beat is made up of mainly P-wave followed by QRS 

complex, and T-wave. Each of these wave shows a different electrical activity of heart in its 

single beat [19]. Depolarization of right and left atria is shown by P-wave. It always has a 

positive polarity, and its period is less than 120 milliseconds [20]. The spectral characteristic of a 

normal P wave is below 10–15 Hz [19]. P-wave maintains a very low value of amplitude. 

Depolarization of right and left ventricle is represented by QRS complex, which lasts for 70- 110 

milliseconds [20]. R wave has the highest amplitude in ECG recording. Frequency spectrum of 

QRS complex is in the range of 10-40 Hertz. The T-wave represents the ventricular 

repolarization, it lasts for about 300 milliseconds. In case of rapid heartbeats T-wave becomes 

narrow and shifts closer to the QRS complex [20]. 

 In case of AF beats the P-wave is absent or replaced by random waves. The ECG 

recording showing the AF and normal episodes are shown in the Figure 1.2. These signals are 

taken from MIT BIH database.   
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                                                  (a) 

 

           (b) 

Figure 1.2: (a) ECG recording showing AF episodes. (b) ECG recording showing normal            

episodes. 

AF distorts the normal ECG signal as it affects the P-wave of a heartbeat [9]. In presence 

of AF, P-wave is either absent or distorted. Presence of AF in ECG signal increases its 

complexity. Frequent monitoring is required to detect the asymptomatic AF [9]. 
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1.4 Related work 

Ladavich et al [21] proposed a method for detection of AF from ECG signals and the 

method is called as P-wave absence (PWA) method. They extracted features from P-wave of 

ECG signals and fed them as input to expectation maximization algorithm and hence create 

Gaussian Mixture Model (GMM) of feature space of P-wave. This model identifies the absence 

of P-wave in ECG signals and hence detects AF. Laburu et al [22] studied nine different types of 

AF detection algorithms from literature under different conditions. They showed that the method 

using analysis of irregular RR segments gave highest specificity and sensitivity. Zhang et al [23] 

showed that there are two main strategies to control AF: rate control and rhythm control. In rate 

control the target is to control the rate of ventricular contraction in spite of AF and rhythm 

control aims at restoring the sinus rhythm. Tateno et al [24] studied the detection of AF based on 

RR segment, delta RR segments and their density histogram. Delta RR segment refers to the 

difference between two consecutive RR segments. They also showed that Kolmogorov-Smirnov 

test with RR segment gave better specificity and sensitivity. They classified the ECG signal as 

AF affected if the density histogram of RR segment and delta RR segment were not found 

significantly different. 

Dash et al [25] showed a method of AF detection based on complexity, variability and 

randomness of RR segment. They used root mean square of delta RR segment with turning point 

ratio and Shannon entropy to characterize arrhythmia. They also used Receiver Operating 

Characteristics (ROC) plots to achieve better specificity and sensitivity. Huang et al [26] have 

proposed a new method to detect transition between sinus rhythm and AF based on delta RR 

segment’s density histogram and detecting peaks from this histogram curve which represents AF 

events. Further they were used to classify its types.   

Rodenas et al [27] used discrete wavelet transform to extract feature like wavelet entropy 

and relative energies from P-waves, extracted from the ECG signals of affected patients to detect 

the episodes of AF. Christov et al [28, 29] studied the presence of atrial activity and ventricular 

arrhythmia by detecting P-wave in ECG signal using sequential analysis. Stridth and Sornmo 

[30, 31] extracted and studied the variation in waveform shape and fibrillation frequency in case 

of AF patients. On the basis of time frequency distribution analysis of AF subjects they 
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characterized AF. Cerutti et al [32] also studied RR segment of normal sinus rhythm subjects and 

AF subjects. They derived parameters using conditional entropy and autoregressive methods.  

Ozbay et al [33] have done arrhythmia classification using multilayered perceptron 

combined with back propagation algorithm and compared them with fuzzy clustering neural 

network architecture. Sadik et al [7] applied welch and wavelet method for extracting features 

and ECG signals preprocessing. They used logarithmic sigmoid neurons for making Levenberg-

Marquart network using back propagation feature.   

In the present work Tunable-Q Wavelet Transform (TQWT) [34] is applied on RR 

segments, extracted from ECG signals. The coefficients obtained are used to calculate relative 

energy of each level, and corresponding wavelet entropy of every RR segment to detect AF. The 

proposed methodology is also shown in form of flow diagram in Figure 1.3. 

                                                               

       Figure 1.3: Flow of present methodology 
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1.5 Thesis organization 

The rest of the thesis is organized as follows: 

A detailed description of the proposed methodology is presented in chapter 2, which 

includes brief review of wavelet transform, TQWT, wavelet entropy and quasi ROC. Chapter 3 

represents the experimental results and discussion followed by chapter 4 which include the 

conclusion and scope of future work. 
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CHAPTER 2 

 

Methodology  

This chapter will give an overview of the method and the techniques used in the data 

processing of the present work. Data preprocessing (removal of noise), extraction of the useful 

data content and then feature extraction from these data contents are described in detail in this 

chapter. 

2.1 Data acquisition and preprocessing 

For execution of proposed work, the dataset of MIT BIH AF was utilized. Which is 

available from Physionet [35] and this has been used frequently in previous work for the AF 

detection [21, 25, 26, 36, 37, 38, 39]. This data set comprises of 23 fully annotated ECG signal 

of 10 hours length and these recordings were done from patients affected by Permanent AF. 

Sampling frequency of signal is 250 Hz with a resolution of 12 bit over a span of ±10 mV. 

In the data set used each ECG recording consisted of two leads, but the one which 

represented a higher value of P-waves were considered for analysis. In the case when both leads 

are showing same P-wave amplitude, they were manually inspected and the one with less noise 

was considered, because in case of ambulatory recordings noise is a nuisance artifact [40]. 

Generally the recorded ECG data contains noise within it that has some high frequency parts and 

some low frequency parts which results in power line interference and baseline wandering 

respectively. ECG signal is corrupted with the presence of noise which in turn results in less 

accurate feature extraction and classification. Thus for the improvement of later analysis signal is 

first preprocessed and a bidirectional high-pass filter of 0.5 Hz frequency was used to remove 

baseline wandering. An eighth order bidirectional Infinite Impulse Response (IIR) low-pass filter 

of 50 Hz frequency was used to reduce power line interference. 

 

 



10 
 

2.1.1 Baseline wandering: 

In case of baseline wandering heart beat morphology is changed and these changes in 

beat morphology do not have a cardiac origin, it mainly affects the ST segment of a heartbeat 

[41]. Respiration, change in electrode impedances and increased body movement are the main 

causes of baseline wandering in most of the ECG signals [41]. In the presence of baseline 

wandering the analysis of ECG data is not easy, thus it is necessary to remove baseline 

wandering from ECG data for its faithful evaluation. Baseline wandering has a frequency content 

which is below the range of 0.5 Hz. Frequency content of baseline wandering increases with the 

increased body movement. 

The most crucial consideration in case of designing a high pass filter for removal of 

baseline wandering is to decide the cut off frequency of high pass filter, the cut off frequency 

should be chosen such that it maximize the removal of baseline wandering and minimizes the 

risk of losing useful information in an ECG signal. Generally the slowest heart beat is analyzed 

to find out the lowest possible frequency. Heart rate can be 40 beats/minute in case of 

bradycardia, it clearly indicates that 0.67 Hz is the lowest possible frequency in the ECG signal 

[42]. As the heart rate fluctuates from beat to beat we choose a lower cut off frequency of 0.5 Hz, 

because if we select a high cut off frequency then the output of high pass filter will have some 

unwanted components which will distort the information within the ECG signals. The Figure 2.1 

shows the ECG signal before and after removal of baseline wander. Figure 2.1 (a) signal is also 

taken from MIT BIH database for AF.  

2.1.2 Power line interference: 

Power line interference is one of the most common artifacts that contaminate the ECG 

recordings. Interference voltage in case of power line interference may have a frequency of 50 

Hz which makes it easily recognizable. Such interference in ECG signals makes the analysis and 

interpretation difficult, because in such cases representation of low amplitude waveforms is not 

reliable and specious waveforms can be introduced [43]. A strong disturbing signal due to 

disconnected electrodes is the main reason of 50 Hz interference. Electromagnetic interferences 

due to power lines results in tracing of poor quality. 
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         (a) 

 

                               (b) 

Figure 2.1: ECG recording (a) with baseline wander (b) without baseline wander 
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Electrical equipment draw heavy power line current, this may also result in power line 

interference in recorded ECG signals. An eighth order bidirectional IIR low-pass filter of 50 Hz 

frequency may be used to reduce power line interference. While filtering power line 

interferences the extent of influence of QRS complexes on output of the filter is a major concern. 

The filter should not introduce any distortion in the signal and its performance should be 

estimated by means of simulated signals [44]. 

After removing baseline wandering and power line interference from the signal, RR 

segments were extracted. Extraction of RR segments from ECG signals is shown in Figure 2.2 

and the extracted RR segments are shown in Figure 2.3.  

 

 

                   Figure 2.2: Extracting RR segments from the ECG recording.  
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       (c) 

 

        (d) 

Figure 2.3: (a) RR Segment 1 (b) RR Segment 2 (c) RR Segment 3 (d) RR Segment 4 
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2.2 Wavelet transform 

The wavelet transform characterizes signal in form of combination of dilated and 

translated versions of another signal which is called as mother wavelet [27].  

                                             ϑx,y(t) =  |x|−
1

2ϑ (
t−y

x
)        (2.1) 

Here, t is time and ϑx,y(t) is family of mother wavelet. Hence, continuous wavelet transform of a 

signal d(t) is expressed as:  

                                                   CWT(x, y) =  |x|−1/2 ∫ d(t)ϑ∗ (
t−y

x
)

∞

−∞
dt       (2.2) 

The sampled version of continuous wavelet transform is called discrete wavelet transform. Any 

signal is considered to have maximum amount of information in low frequency, and high 

frequency content is considered to give small details of the signal. In case of wavelet analysis we 

consider signal as combination of low frequency and high frequency components or coefficients. 

Low frequency components are called as approximation and high frequency components are 

called details [45]. Discrete wavelet transform decomposes the signal into approximation and 

detailed coefficients. These coefficients represent different frequency bands. 

Discrete wavelet transform is used to decompose ECG signals and extract features from 

decomposed signal coefficients [46]. Discrete wavelet transform uses low pass and high pass 

filters and the signal thus obtained from low pass filter is further fed to a series of low pass and 

high pass filters depending on the number of decomposition levels [46]. 

 Rodenas et al [27] used discrete wavelet transform to detect episodes of AF by extracting 

P-wave form ECG signals. In the present work we present the analysis of normal and AF signals 

using TQWT which has some advantages over discrete wavelet transform with a variable quality 

factor (Q). The Q factor can be changed and adjusted accordingly [34]. Here we present the 

effect of Q factor in analyzing the AF episodes in ECG signals. The basic understanding of 

TQWT is given in the next section. 
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2.3 Tunable-Q wavelet transform 

The TQWT is a method employed for studying non-stationary oscillatory signals [34]. It 

has three easily adjustable parameters: redundancy factor (r), quality factor (Q) and number of 

sub band decomposition levels denoted by K. It is found that for lower Q values the frequency 

response of a signal is wider and as Q value is increased the frequency response becomes 

narrow. During high Q values underlying wavelets have more oscillations [34, 47]. 

For every level in TQWT the signal of sampling frequency f is passed through a high 

pass and low pass filter. The signal is decomposed into a low frequency sub band signal with 

sampling frequency of δf and high frequency sub band signal with sampling frequency of εf. δ 

denotes the low pass scaling parameter and ε denotes the high pass scaling parameter [48, 49, 

50]. Figure 2.4 and Figure 2.5 depicts the diagrammatical representation of  TQWT of signal d(t) 

for single level and K level decomposition respectively. 

The RR segment for the normal and AF beat is shown in Figure 2.6 and the detail 

coefficients of different levels obtained after TQWT decomposition of RR segment are shown in 

Figure 2.7.   

 

 

 

 

 

 

Figure 2.4: Diagrammatically representing TQWT of signal d(t) for K=1 (single level). 

 

The frequency response of high pass and low pass sub band signal after K stages are expressed 

as G0
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G0
K(ω) =  {

∏ G0 (
ω

δn),   |ω| ≤  δKπK−1
n=0

0,   δKπ < |ω| ≤ π
    (2.3) 

 

And, 

G1
K(ω) =  {

G1(ω/δK−1) ∏ G0 (
ω

δn) , for (1 − ε)δK−1π < |ω|  ≤ δK−1πK−2
n=0

0,   for other ω ϵ [−π, π]   
 (2.4) 

Where G0(ω) and G1(ω) are low pass and high pass filters given by [34]: 

    G0(ω) =  φ (
ω+(ε−1)π

δ+ε−1
)     (2.5) 

And, 

    G1(ω) =  ∅ (
δπ−ω

δ+ε−1
)     (2.6) 

Here ∅(ω) signifies Daubechies filters. Its frequency response is given as: 

  ∅(ω) = 0.5 [(1 + cos ω) − √2 −  cos ω ],    for |ω|  ≤  π   (2.7) 

Values of redundancy factor (r) and quality factor (Q) in terms of δ and ε is given by: 

    r =  
ε

1−δ
   and    Q =  

2−ϵ

ϵ
     (2.8) 

If the number of levels up to which the signal is to be decomposed is suppose K then, number of 

sub bands obtained are K+1 arranged in the form of cell array [34]. 

   W =  {w1, w2, w3 … … … wK, wK+1}    (2.9) 

Here, wK+1 is the lowest frequency signal component and (w1, w2, w3 … … … wK) are all high 

frequency signal components. In other words, wK+1 is the approximation coefficient and (w1,

w2, w3 … … … wK) are detail coefficients. 
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The block diagram of TQWT for K number of stages is shown in Figure 2.5. 

 

                                                                                     

 

 

 

 

Figure 2.5: TQWT with K number of stages. 

 

 

Figure 2.6: RR segment of normal and AF ECG signals 
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          (c) 

 

          (d) 

Figure 2.7: Four level TQWT based decomposition of (a) Detail 1 coefficients (b) Detail 2 

coefficients (c) Detail 3 coefficients (d) Detail 4 coefficients of normal and AF RR segments 
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2.4 Wavelet entropy 

Amount of information carried by a random process can be estimated with the help of 

entropy. Since last few years entropy has been playing a very important role in case of 

biomedical signal analysis. In fact various entropy based measurements have given a great 

capability to uncover valuable information of diseases which are still a clinical challenge like 

schizophrenia [51], Alzheimer [52] and AF [53]. Wavelet entropy may be able to reveal more 

useful information which is principally associated with hidden mechanism that cannot be 

evaluated by clinicians in an exploratory examination, in this way it not only increases the 

knowledge of the disease but also improves their diagnosis and treatment [54, 55]. Wavelet 

entropy has been proved as a useful tool in determination of important clinical events from 

Electroencephalogram (EEG) [56, 57] and ECG [58] signals. In the present work we will use 

wavelet entropy for the detection of AF in ECG signals. 

Very useful results are shown by wavelet entropy, because it joins entropy and wavelet 

decomposition to enhance its strength to artifacts, noise and non-stationary nature [56]. Wavelet 

entropy gives an estimation about the complexity of the signal. If d(n) is analyzed signal and 

ϑj,k(n) is the wavelet function then correlation between d(n) and ϑj,k(n) can be interpreted as 

wavelet coefficients c(j, k) [27]. 

                                           c (j, k) = ∑ d(n)ϑj,k(n)M
n=1                         (2.10) 

Here, M represents the length of d(n). There is no redundant information in these wavelet 

coefficients, thus the original signal can be completely reconstructed if the orthogonal function is 

used as the mother wavelet [59].  

At each analyzed scale the signal energy can be directly estimated by using the 

coefficients c(j, k) [27]. Thus the relative energy for scale j can be represented as [27]: 

        Ej =  
∑ c(j,k)2

pj
k=1

∑ ∑ c(j,k)2
pj
k=1

N
j=1

     (2.11) 
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pj and N here are used to represent the length of c(j,k) and the number of decomposition levels 

respectively, therefore by using Shannon entropy the wavelet entropy for this distribution can be 

defined as [27]: 

                                             WE = -∑ Ej
N
j=1 log2(Ej)     (2.12) 

Degree of complexity of the signal is measured by wavelet entropy. Thus for a well-organized 

signal , a very low value of wavelet entropy will be there, on the other hand for a disorganized or 

complex signal wavelet entropy will have a higher value. 

 

2.5 Quasi ROC 

ROC curve analysis is an efficient and simple tool to determine the performance of a 

classifier. For computation of an ROC curve we must have the knowledge of probability 

distribution function (pdf) or a probability score [60], with the help of which an instance would 

be classified in the two classes. A probability score or pdf may not be available all the time for a 

classifier, in such cases thresholding is used because the probability score does not work which is 

important to generate an ROC curve [60]. In the present work due to small size of data set and 

lack of knowledge of probability we have used the concept of quasi ROC or qROC [61]. With 

the help of qROC curve we can determine the efficiency of a classifier without any knowledge of 

pdf or probability score within it. 

For generating a qROC curve, AF detection is classified in two classes, one is positive 

and the other is negative. These two classes are further classified in four sub classes, which are 

True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN). If actual 

AF is detected then this type of detection is true positive but if AF is detected for a normal signal 

then this type of detection is termed as false positive detection. In the same way when a normal 

signal is detected correctly, it is termed as true negative and in the case when a normal signal is 

detected for AF signal, it is called as false negative detection. In qROC True Positive Rate (TPR) 

is taken on the Y-axis and False Positive Rate (FPR) is taken on the x-axis. TPR and FPR can be 

formulated as shown below [61]: 
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                               FPR = 1 – specificity = 1- 
TN

TN+FP
     (2.13) 

                               TPR = sensitivity = 
TP

TP+FN
     (2.14) 

Following steps are followed to generate the qROC [60]: 

Step 1:  Arrange FPR in ascending order. 

Step 2:  Repeated FPR values are arranged according to increasing value of corresponding TPR. 

Step 3:  Denote the lowest value of TPR as  LTPR. 

Step 4:  Denote the highest value of FPR as HFPR. 

Step 5:  (0, 0) is considered as the point of origin. 

Step 6:  (1, 1) is considered as point of termination. 

Step 7: qROC curve is generated by connecting the following points: (0, 0), (0, LTPR), 

(HFPR, LTPR), (HFPR, 1) and (1, 1). 

For better performance of a classifier the area under the qROC curve should be close to 

unity [61]. The classification accuracy is calculated with the help of equation 2.15 [62]. 

 

Classification accuracy = 
TN+TP

TN+TP+FN+FP
    (2.15) 
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CHAPTER 3 

 

Results and Discussion 

This chapter includes the results obtained after applying the above said methodology to 

the AF dataset. This chapter includes the boxplots, graphs and the tables showing results and the 

comparison of the present method to the previous methods. Later, discussion section provides the 

details explanation of the results. 

 

3.1 Results 

We have 9 signals which contain both normal and AF episodes out of which 5 are used as 

learning set and 4 signals are used for test set. The wavelet entropy for learning set is computed 

using TQWT for parameters Q, r, J. The threshold giving maximum area under the curve is 

considered to be an optimum threshold for computing classification accuracies for learning and 

test sets. It should be noted that these thresholds determined for learning set are used for the test 

signal set for computing classification accuracy.  

The similar process is repeated for learning and test set signals by changing the Q factor 

each time. The Q factor is varied from 1 to 10 and the optimum threshold is derived from 

learning set. This optimum threshold is applied to the test set for analyzing the effectiveness of 

this method to detect AF episodes from ECG signals. Kruskal-Wallis statistical test [63] is also 

applied to the normal and AF episodes to check statistical significance of wavelet entropy and 

relative energies features. Figure 3.1 shows the box plots obtained from Kruskal-Wallis 

statistical test of wavelet entropy and relative energies for Q=10, r=3 and J=4. The obtained 

probability (p) values for Kruskal-Wallis statistical test measures the statistical significance 

between two classes. The p value provides better statistical significance of two classes for p < 

0.05.  
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        (c) 

 

                   (d) 
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        (e) 

Figure 3.1: Boxplots for (a) Wavelet entropy (p =2.2e-8) (b) Relative energy E4 (p = 5.6e-9) (c) 

Relative energy E3 (p =7.8e-8) (d) Relative energy E2 (p =3.7e-6) and (e) Relative energy E1 

(p= 6.2e-5) for Q=10. 

NOR class shown in the box plots contain normal ECG beats and AF class contains the 

beats affected from AF. Relative energy E4, Relative energy E3, Relative energy E2 and 

Relative energy E1 represents the energies in the fourth level, third level, second level and first 

level of decomposition respectively. Quasi ROC curve of wavelet entropy for learning set with 

Q=10 is shown in the Figure 3.2 with TPR = 0.8025 and FPR = 0.2932, which results in 94.2093 

% accuracy. 
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Figure 3.2: Plot of Quasi ROC for Q=10. 

 

Learning and test set accuracies for different values of Q varying from 1 to 10 are shown 

in Tables 3.1 and 3.2 respectively. Figures 3.3, 3.4, 3.5, 3.6 and 3.7 show the variation of wavelet 

entropy and relative energies respectively, with the varying Q of TQWT (Q varying from 1 to 

10) in graphical form. The graphs shows the variations between the two above said entities for 

learning set (solid line) as well as test set (dotted line) and the deviation of test set accuracy for 

their corresponding learning set.  
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Table 3.1: Learning set accuracies (in %) of the features for different values of Q- factor                       

 

      Table 3.2: Test set accuracies (in %) of the features for different values of Q-factor 

Q-values Wavelet 

entropy 

Relative 

energy E4  

Relative 

energy E3 

Relative 

energy E2 

Relative 

energy E1 

Q=1 91.18 90.19 90.39 90.99 91.04 

Q=2 91.27 90.49 90.25 90.78 87.26 

Q=3 91.31 91.02 91.34 91.56 91.45 

Q=4 91.61 92.47 91.48 91.10 91.03 

Q=5 91.77 92.53 91.87 93.85 91.46 

Q=6 92.31 92.42 92.05 92.47 91.99 

Q=7 93.68 92.97 91.54 93.09 93.24 

Q=8 93.56 93.18 93.65 90.26 89.59 

Q=9 93.77 92.55 94.03 92.69 93.98 

Q=10 94.2093 93.44 94.12 93.58 94.01 

Q-values Wavelet 

entropy 

Relative 

energy E4 

Relative 

energy E3 

Relative 

energy E2 

Relative 

energy E1 

   Q=1 90.82 90.71 90.60 88.53 90.01 

   Q=2 91.05 90.25 90.88 90.02 89.20 

   Q=3 91.33 91.52 91.03 91.14 90.71 

   Q=4 91.35 91.13 91.97 91.43 92.56 

   Q=5 92.08 90.72 90.90 91.12 91.49 

   Q=6 92.71 92.90 92.70 93.09 92.30 

   Q=7 92.98 93.01 92.74 93.12 92.88 

   Q=8 93.11 93.42 92.82 93.11 93.29 

   Q=9 93.39 93.40 92.99 93.21 93.33 

   Q=10 93.44 93.25 92.89 93.32 93.37 
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     Figure 3.3: Graphical plot of accuracy values of wavelet entropy for different Q-values. 

 

Figure 3.4: Graphical plot of accuracy values of relative energy E4 for different Q-values. 
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Figure 3.5: Graphical plot of accuracy values of relative energy E3 for different Q-values. 

 

Figure 3.6: Graphical plot of accuracy values of relative energy E2 for different Q-values. 
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Figure 3.7: Graphical plot of accuracy values of relative energy E1 for different Q-values. 

 

3.2 Discussion  

This method is compared with the previous methods used by various authors along with 

the accuracies, and the method used by then in Table 3.3. Slocum et al. [64] created a remainder 

ECG signal by cancelling the QRST activity and they found a significant difference between the 

ower of normal and AF rhythm in the remainder ECG. Their test has an accuracy of 68.3 %. 

Babaeizadeh et al. [65] studied the RR segment patterns of normal and AF beats. The AF beats 

show more random segment than normal beat. They used Markov modelling approach and 

calculated a Markov score corresponding to each RR segment. This score measures the 

likelihood of AF RR segment and normal RR segment. Based on this score they were able to 

detect AF with an accuracy of 94.40 %.  Lake and Moorman [66] used the delta RR segment. 

They computed confident entropy and density histogram by varying the tolerance matching 

parameter. The combination of extracted delta RR segment and the sample entropy was able to 

detect AF with a delay of 12 beats and resulted in an accuracy of 96.20 %.  
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 Zhou et al. [67] devised a method using RR segments and computing Shannon entropy 

by recursive algorithm. They performed it on different datasets including long term AF, MIT 

BIH AF and MIT BIH arrythmia with accuracy of 96.05 %, 97.67 % and 91.46 % respectively. 

Ladavich et al. [21] extracted nine features through statistical analysis of P-wave. These features 

were given to the input of expectation maximization algorithm to form GMM and hence 

identifies the absence of P-wave with an accuracy of  93.22 %. Rodenas et al. [27] used the 

wavelet entropy feature to automatically detect AF. They extracted median TQ segment from 

ECG signals and compute wavelet entropy from these extracted segments. They were able to 

detect AF with a minimum delay of 5 beats with an accuracy of 95.28 %. 

The present work has used TQWT for the very first time to detect the episodes of AF in 

ECG signal by extracting the RR segments. Wavelet entropy and relative energies are calculated 

using TQWT coefficients. Wavelet entropy is used as it has recently shown great ability to 

measure the degree of randomness of signal and hence is proved to be a powerful tool for the 

identification of AF episodes. The variation of accuracy on changing the Q-parameter can be 

seen from Figure 3.3 for learning set and test set depicted by solid line and dotted line 

respectively. In case of wavelet entropy the accuracy increased from 90.82 % for Q=1 to 93.44 

% for Q=10. The accuracy curve against Q-values in Figure 3.3 obtains saturation with a very 

slight increase in accuracy values for the higher values of Q. On increasing Q values beyond 10 

the accuracy starts to decrease. The similar kind of trend is observed for relative energies at 

different levels. The deviation of test set accuracy values from the learning set is found to be 

small within the range of ± 1 %.  
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           Table 3.3: Comparison of proposed method with previous work on same data set 

Algorithm Accuracy Methodology 

Slocum et al. [64] 62.80 % QRST cancellation 

Babaeizadeh et al. [65] 94.40 % Analysis of RR segment signal 

Lake and moorman 

[66] 

96.10 % Analysis of delta RR signal and their density 

histogram 

Zhou et al. [67] 97.67 % Analysis of RR segment signal with extraction of 

shannon entropy 

Ladavich et al. [21] 93.22 % P-wave analysis using gaussian mixture model 

Rodenas et al. [27] 95.28 % Analysing median TQ segment and wavelet entropy 

Present work Maximum 

93.44% at Q=10 

TQWT at different Q-values and extracting wavelet 

entropy and relative energies 
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CHAPTER 4 

 

Conclusion and Future scope 

This chapter includes the conclusion of present work and the future scope. 

4.1 Conclusion 

This method has proved that wavelet entropy is an efficient tool to differentiate between normal 

heart beat and beat affected by AF. TQWT has been used in this work which proves that for 

different values of Q, we get different discriminant ability. Efficiency of this work increases as 

the value of Q increases up to a certain limit and then it saturates. In this method accuracy of 

wavelet entropy varies from 90.82% for Q=1 to 93.44% for Q=10, which is comparable with the 

previous work done for AF detection. This method has the ability to detect very brief episodes of 

AF which are hardly of few beats in length. This method can be integrated in the monitoring 

system, so that the clinicians would be able to detect very brief episodes of AF, which occurs 

mostly at the initial stages of it. 

4.2 Future scope 

This method can be studied for multiclass classification, wherein ECG signals affected by 

other heart issues and arrhythmias would be considered as separate classes. In this way the 

clinicians would be able to able to know the exact type of arrhythmia patient is suffering from, so 

that a better medical treatment can be provided. It should be studied on the larger data sets before 

applying for the clinical purpose. It can also be studied for classification of other biomedical 

signals like EEG, Electromyogram (EMG) signals corresponding to normal and abnormal cases.  
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