
Bit-Serial Computing Technique based

Efficient Deep Neural Network Accelerator

MS (Research) Thesis

By

HARSH CHHAJED

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

JUNE 2021

Bit-Serial Computing Technique based

Efficient Deep Neural Network Accelerator

A THESIS

Submitted in fulfillment of the

requirements for the award of the degree

of

Master of Science (Research)

by

HARSH CHHAJED

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE
JUNE 2021

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled Bit-Serial

Computing Technique based Efficient Deep Neural Network Accelerator in the fulfillment of

the requirements for the award of the degree of MASTER OF SCIENCE (RESEARCH) and

submitted in the DEPARTMENT of ELECTRICAL ENGINEERING, Indian Institute of

Technology Indore, is an authentic record of my own work carried out during the time period

from July 2019 to June 2021 under the supervision of Dr. Santosh Kumar Vishvakarma,

Associate Professor, Indian Institute of Technology Indore

The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other institute.

15/06/2021
 Signature of the student with date Harsh Chhajed

--

This is to certify that the above statement made by the candidate is correct to the best of

my/our knowledge.

 15.06.2021

 Signature of the Supervisor of

MS (Research) thesis (with date)
 Dr. Santosh Kumar Vishvakarma

--
- Harsh Chhajed has successfully given his MS (Research) Oral Examination held on 27/08/2021

Signature of Chairperson (OEB) with date Signature(s) of Thesis Supervisor(s) with date

 27/08/2021

 (HOD-EE, Officiating)

Signature of Convener, DPGC with date Signature of Head of Department with date ---

--

27/08/2021

IIT CSE AS
Typewriter
27/08/2021

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to people who, in one or

the other way, contributed by making this time learnable, enjoyable, and bearable. At

first, I would like to thank my supervisor Dr. Santosh Kumar Vishvakarma, who

was a constant source of inspiration during my work. With his constant guidance and

research directions, this research work has been completed. His continuous support

and encouragement has motivated me to remain streamlined in my research work.

I am thankful to Dr. Srivathsan Vasudevan and Dr. Mrigendra Dubey, my

research progress committee members, for taking out their valuable time to evaluate

my progress all these years. Their valuable comments and suggestions helped me to

improve my work at various stages.

My sincere acknowledgment to Indian Institute of Technology Indore for providing

me the opportunity to explore my research capabilities.

I would also like to thank all the members of Nanoscale Devices, VLSI Circuit

System Design Lab (NSDCS) research group, especially to Mr. Gopal Raut, Mrs.

Neha Gupta and Mr. Narendra Singh Dhakad for discussions and help during

my thesis work.

I would like to express my heartfelt respect to my parents for their love, care and

support they have provided to me throughout my life.

Harsh Chhajed

Dedicated

to

My Parents

ABSTRACT

Contemporary hardware implementations of deep neural networks face the burden

of excess area requirement due to resource-intensive elements such as a multiplier.

A semi-custom ASIC approach-based VLSI circuit design of the multiply-accumulate

unit in a deep neural network faces the chip area limitation. Therefore an area and

power-efficient architecture for the multiply-accumulate unit is imperative to down the

burden of excess area requirement for digital design exploration. The present work

addresses this challenge by proposing an efficient processing and bit-serial computation

based multiply-accumulate unit implementation. The proposed architecture is verified

using simulation output and synthesized using Synopsys design vision at 180nm and

45nm technology and extracted all physical parameters using Cadence Virtuoso. At

45nm, design shows 34.35% less area-delay-product (ADP). It shows improvement by

25.94% in area, 35.65% in power dissipation, and 14.30% in latency with respect to the

state-of-the-art multiply-accumulate unit design. Furthermore, at lower technology

node gets higher leakage power dissipation. In order to save leakage power, we exploit

the power-gated design for the proposed architecture. The used coarse-grain power-

gating technique saves 52.79% leakage/static power with minimal area overhead. The

system-level performance of MAC has evaluated using LeNet architecture which is

implemented on the FPGA board to validate the performance parameters impact of

the proposed multiply-accumulate unit. The architecture with the proposed multiply-

accumulate unit saved 49.39% look-up table utilization for multiply-accumulate unit

and 20% overall look-up table utilization compared to MAC with Xilinx multiplier and

adder IP. The proposed architecture over performed for critical time delay compared

to the state-of-the-art.

i

Contents

Abstract i

List of Figures vi

List of Tables xi

List of Abbreviations xiii

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Thesis Contribution . 4

1.4 Organization of Thesis . 5

2 Background and Related Work 7

2.1 Deep Neural Network . 7

2.2 Multiply-accumulate unit . 9

2.2.1 Bit-Parallel Computing . 12

2.2.2 Bit-Serial Computing . 13

2.3 State-of-the-art Multiplier architectures 15

2.3.1 Array Multiplier . 15

2.3.2 Wallace Tree Multiplier . 16

2.3.3 Shift and Add Multiplier . 17

2.3.4 Vedic Multiplier . 18

iii

2.3.5 Conventional IEEE Multiplier 19

2.4 Approximate Technique . 20

2.5 Summary . 21

3 Compute-efficient multiply-accumulate unit 23

3.1 Bitcell Architecture . 24

3.2 Bitcell Optimization using Power Gating 25

3.3 Bitcell Performance Parameters Analysis 28

3.4 N-bit Precision MAC using Bitcell . 29

3.4.1 8-bit Precision MAC architecture 30

3.4.2 Working of the 8-bit precision MAC 30

4 Convolutional Neural Network Implementation 35

4.1 LeNet Architecture . 36

4.1.1 Convolution Layer . 37

4.1.2 Pooling Layer . 40

4.1.3 Fully Connected Layers . 43

4.1.4 Activation Layer . 45

4.2 Hardware Implementation of the LeNet architecture 48

5 Experiment Evaluation 53

5.1 Semi-Custom ASIC approach for MAC unit 53

5.1.1 Design Flow . 53

5.1.2 Tools . 55

5.2 FPGA based approach for LeNet architecture 58

5.2.1 Design Flow . 58

5.2.2 Tools . 60

6 Results and Discussion 65

6.1 Bit-precision Computation and accuracy impact using benchmark

LeNet and CaffeNet . 65

6.2 Bit-serial computation based 8-bit precision MAC unit performance . . 66

iv

6.3 Higher bit precision-based multiply-accumulate unit performance and

comparison . 69

6.3.1 Logic area utilization . 69

6.3.2 Logic critical path delay . 70

6.3.3 Dynamic power consumption 71

6.3.4 Static power consumption . 72

6.4 Performance of the Lenet architecture with proposed MAC unit 73

7 Conclusion 77

7.1 Future scope of work . 78

References 79

Publications 87

v

List of Figures

1.1 Number of MAC operation required in different CNN architecture [1] . 3

2.1 Fully Connected Artificial Neural Network 8

2.2 Conventional Convolutional Neural Network 9

2.3 Block level single artificial neuron architecture mimicking the biological

neuron . 10

2.4 Multiply-accumulate unit with parallel multiplier and activation func-

tion for N neurons in a layer . 10

2.5 Multiply-accumulate operation using bit-parallel computing architecture 12

2.6 Multiply-accumulate operation using bit-serial computing architecture . 13

2.7 Block diagram of Array multiplier for 4ˆ4 bit multiplication 16

2.8 Block diagram of Wallace tree multiplier for 4ˆ4 bit multiplication . . 17

2.9 Block diagram of Shift and Add multiplier 18

2.10 Block diagram of Vedic multiplier for 2ˆ2 bit multiplication 19

2.11 Block diagram of Vedic multiplier for 4ˆ4 bit multiplication 20

3.1 Efficient design architecture of bitcell used for each single bit calculation 24

3.2 Effect of technology node on current and delay 25

3.3 Power-efficient bitcell logic architecture with coarse-grain PG technique 28

3.4 Design architecture of 8-bit precision multiply-accumulate unit using

bitcell architecture . 30

3.5 Shift operation computation in 8-bit bitcell based MAC architecture . . 31

vii

3.6 Simulation waveform for data computation with each iteration ap-

proaching the desired output. Simplified calculation is elaborated for

decimal values with input=+147d and weight=+4d 33

3.7 Consolidated simulation waveform for data computation with each it-

eration approaching the desired output. 33

4.1 Block Diagram of CNN Accelerator Architecture 36

4.2 Block Diagram of LeNet Architecture 37

4.3 Visualization of the filter sliding over the image 38

4.4 Convolution operation of 3ˆ3 input matrix with the filter of size 2ˆ2 . 39

4.5 Specification of first convolution layer in the LeNet architecture 40

4.6 Specification of second convolution layer in the LeNet architecture . . . 41

4.7 Example of Average Pooling Operation 41

4.8 Example of Max Pooling Operation . 42

4.9 Specification of first pooling layer in the LeNet architecture 42

4.10 Specification of second pooling layer in the LeNet architecture 43

4.11 Fully Connected Neural Network . 43

4.12 Parameters of Fully Connected Layers 44

4.13 Hyperbolic Tangent Activation Function 45

4.14 Sigmoid Activation Function . 46

4.15 Rectified Linear Unit Activation Function 46

4.16 RTL Schematic of LeNet architecture 49

4.17 Flowchart for Hardware Implementation of LeNet Architecture 50

5.1 Design Flow for semi-custom circuit design approach 54

5.2 Design Flow of Synopsys design compiler 56

5.3 Design Flow of verilog to LVS . 57

5.4 Design Flow for FPGA based approach 59

5.5 Multiplier IP Schematic Symbol . 62

5.6 Adder/Subtracter IP Schematic Symbol 63

viii

6.1 Combinational logic area utilization for different bit-precision compu-

tation at 180nm and 45nm technology node 70

6.2 Logic circuit critical path delay for different bit-precision computation

at 180nm and 45nm technology node 71

6.3 Total dynamic power consumption for different bit-precision computa-

tion at 180nm and 45nm technology node 72

6.4 Total static power consumption for different bit-precision computation

at 180nm and 45nm technology node 73

ix

List of Tables

1.1 CNN Benchmarks . 4

2.1 Comparison of the state-of-the-art multiplier architectures 21

3.1 Performance parameter metrics for power gated and non-power gated

bitcell at both 180nm & 45nm technology node. 29

5.1 Specification for the Zedboard - XC7Z020clg484-1 FPGA 60

6.1 Comparison of training accuracy for different bit-precision used in dif-

ferent DNN architecture . 66

6.2 Performance parameter metrics for 8-bit precision proposed Bit-cell

based MAC architecture and state-of-the-art at 180nm technology node. 67

6.3 Performance parameter metrics for 8-bit precision proposed Bit-cell

based MAC architecture and state-of-the-art at 45nm technology node. 68

6.4 Comparison of resource utilization in LeNet architecture with conven-

tional MAC and BitMAC . 74

6.5 Comparison of look-up-table utilization by MAC unit for fully con-

nected layers in LeNet architecture . 75

6.6 Timing Analysis for LeNet architecture with conventional MAC and

BitMAC . 75

xi

List of Abbrevations

DNN : Deep neural network

MAC : Multiply-accumulate

AF : Activation function

CPU : Central processing unit

GPU : Graphics processing unit

FPGA : Field programmable gate arrays

ASIC : Application specific integrated circuit

DSP : digital signal processing

IOT : Internet of things

CNN : Convolutional neural network

PG : Power gating

MOS : Metal-oxide-semiconductor field-effect transistor

TPU : Tensor processing unit

LSB : Least significant bit

MSB : Most significant bit

EDA : Electronic design automation

IP : Intellectual property

ReLU : Rectified linear unit

SoC : System on chip

HDL : Hardware description language

RTL : Register transfer level

RAM : Random access memory

ROM : Read only memory

xiii

VLSI : Very large scale integration

CMOS : Complimentry metal oxide semiconductor

TT : Typical typical

IDE : Integrated development environment

BRAM : Block random access memory

LUT : Look up table

ADP : Area delay product

AI : Artificial intelligent

xiv

Chapter 1

Introduction

1.1 Overview

A deep neural network (DNN) has significantly improved computing paradigms

within the last decade. The main advantage of a DNN is that it can learn the hid-

den relationships in data with irregularity [2]. Efficient DNN architectures has been

proposed for different applications like image classification, speech recognition [3],

computer vision [4] and natural language processing [5]. The neural network benefits

every field, whether it is a defense sector, health sector, or automation sector. However,

with the increasing demand for DNN, the computational intensity and complexity in-

creased significantly, resulting in high power and more logical resource utilization [6,7].

Further, in the DNN, each neuron performs two primary functions: accumulating the

weighted features using multiply-accumulate operation (MAC) and evaluate the acti-

vation function (AF) from the accumulated sum.

There are different hardware platforms like central processing unit (CPU), graph-

ics processing unit (GPU), application-specific integrated circuit (ASIC) or field-

programmable gate arrays (FPGA) on which DNN can be implemented. The dis-

advantage of a general-purpose platform such as a CPU is that it fails to exploit the

parallelism of a neural network. Also, the resource utilization is low, which results in

low performance and high power dissipation [8]. GPU uses parallelism in the network,

but it also has very high power consumption. On the other end of the spectrum, the

1

hardware-based neural network has the advantage of faster execution time than the

software-based neural network. Moreover, ASICs have specialized hardware structures

for MAC and AF computation, and thus they achieve high resource utilization and

lower power consumption than other mentioned platforms [9–11].

An ASIC has a fixed computation design architecture. Moreover, a configurable

design architecture is preferred that scales well with deep neural network size. Fur-

ther, resources efficient approximate logic design for neural network computation also

investigated where can compromise with performance accuracy [12]. In comparison,

some techniques have a nice balance between area and functionality without compro-

mising accuracy. Different variants of deep neural network implementation are based

on network topology, logic implementation, and neuron computational architecture.

In all of these variants, the common and the most repetitive unit in the network is the

MAC unit, also known as the processing element. The MAC unit is responsible for

more than 90% of the overall computational power of the neural network [13]. There-

fore, the MAC computational unit architecture needs to be optimized to increase the

physical performance parameter of the deep neural network in terms of the area, power

and delay of the overall circuit.

The rest of this chapter is organized as follows. The motivation behind our work

is elaborated in Section 1.2. In Section 1.3, we present the summary of thesis contri-

butions and outline of the rest of thesis is described in Section 1.4.

1.2 Motivation

When it comes to full-scale hardware implementation of the DNN on FPGA/ASIC,

the designer has to make some choices like bit precision after studying all the trade-

offs in the architecture. Further, if the design is implemented in FPGA, digital signal

processing (DSP) blocks are not preferred due to very high power utilization [14] as

the DSP in Xilinx 700 series FPGAs are 48-bit precision computation unit and using a

48-bit unit for 12 or 16-bit operation is very inefficient. Further MAC unit is the sole

computational element in the DNN and consumes most of the hardware resources.

2

After several trade-offs studied in the MAC computation, the designer can use the

bit-serial computation technique in the processing element. Artificial neural networks

(ANN) and CNN are resource-hungry, and hence it requires resource-efficient and

power-efficient design architecture for low power IoT applications.

A l e x N
e t

G o o g
l e N

e t
V G G - M

V G G - S

M o b i l
e N e t

D e n s
e N e t - 1

2 1

R e s N
e t - 5

0
D n C N N

V D S R
0

1 × 1 0 3

2 × 1 0 3

3 × 1 0 3

4 × 1 0 3

1 × 1 0 6

1 × 1 0 6
M A C

MA
C O

pe
rat

ion
 (m

illio
ns

)

Figure 1.1: Number of MAC operation required in different CNN architecture [1]

.

In the last decade, the number of layers of DNN for different applications has in-

creased significantly as deeper networks are better at learning more complex relations.

Different techniques and architectures are proposed in the state-of-the-art [15, 16] for

making a more accurate network.The number of MAC operations required in the differ-

ent well-known CNN architectures are shown in the Figure 1.1. The CNN architectures

are used for different computer vision and computational imaging applications like im-

age classification, image de-noising and super resolution. The Table 1.1 shows the

numerical figures, dataset and application for different CNN networks. However, they

need more hardware architecture and not feasible for low power and area applications.

3

Table 1.1: CNN Benchmarks

Network
Number of

convolutional layer

Number of

MAC operation (in millions)
Dataset Application

AlexNet 5 665.8 ImageNet (224*224) Image Classification

GoogleNet 57 1233 ImageNet (224*224) Image Classification

VGG-M 5 1141 ImageNet (224*224) Image Classification

VGG-S 5 1901.5 ImageNet (224*224) Image Classification

MobileNet 27 567.7 ImageNet (224*224) Image Classification

DenseNet-121 120 3062 ImageNet (224*224) Image Classification

ResNet-50 53 3855.9 ImageNet (224*224) Image Classification

DnCNN 20 1380000 FHD Images (1920*1080) Image De-noising

VDSR 20 1380000 FHD Images (1920*1080) Super-resolution

Therefore, it motivates us to work on the efficient MAC design, which can be power

and area efficient and helpful when the area and the power are on a tight budget. To

address this issue, we have implemented an elegant bit-serial computing-based MAC

unit for DNN applications. The proposed technique is feasible for both ASIC and

FPGA applications. The proposed design is both area and power-efficient. However,

to make more power efficient, we use the power gating technique in the MAC archi-

tecture, which reduces static power, which is also the key concern at lower technology

node.

1.3 Thesis Contribution

Traditionally MAC architecture is implemented using the Bit-parallel computing

technique, which increases the hardware requirements quadratically as the bit precision

increases [17]. We optimize the overall circuit design using the proposed bit-serial

computing-based MAC architecture to address the trade-off between area, power and

delay. In this thesis, the efficient logic architecture with lowering the static power

dissipation scheme is proposed. We have designed an N-bit precision MAC unit using

a bit-level processing technique to improve the overall physical parameters like area,

power and delay of the circuit, and the power gating scheme is used for further static

power saving. Subsequently, using the proposed MAC, we have implemented the

4

LeNet CNN architecture on the FPGA board. The key points of the proposed work

are as follows:

• A semi-custom digital design approach for the MAC unit is investigated for DNN

applications.

• A bitcell architecture for a 1-bit multiplication calculation is proposed. Further,

the power-gating (PG) approach is employed and evaluate with 180nm and 45nm

technology node to demonstrate power savings.

• An 8-bit MAC unit is designed using the proposed power-gated bitcell and the

impact on the MAC performance is analyzed for parameters like area, power and

delay.

• The performance of the proposed MAC is validated in terms of physical param-

eters for different bit precision like 8-bit, 12-bit and 16-bit. The performance

analysis is evaluated at higher(180nm) as well as lower(45nm) technology node.

• The LeNet architecture is designed using the proposed bitcell-based MAC, and

the network’s performance is analyzed.

1.4 Organization of Thesis

The rest of this thesis is organized as follows:

Chapter 2: In this chapter, we discuss the DNN background and the related archi-

tectures. Furthermore, the critical components of the neural network architecture and

different techniques to implement the critical units are also explained.

Chapter 3: In this chapter, we describe the bitcell-based architecture for the imple-

mentation of the MAC unit. Further, the bitcell architecture using power gating is

discussed. Then the N-bit precision MAC unit has been discussed using the bitcell

architecture.

Chapter 4: In this chapter, we describe the complete LeNet architecture. First, each

layer of the network is explained. Then the complete hardware implementation of the

5

architecture is explained.

Chapter 5: In this chapter, we describe both design approaches. First the semi-

custom ASIC approach for the multiply-accumulate unit. Second the FPGA-based

approach for the deep neural network (LeNet). Finally, both designs approach design

flow and tools are explained in detail.

Chapter 6: In this chapter, we summarize the results and discuss the various param-

eters of the proposed architecture, and compared it with the state-of-the-art.

Chapter 7: In this chapter, we give the conclusion of the work and provide the

direction for future work.

6

Chapter 2

Background and Related Work

This chapter introduces a DNN, its basic architecture, and its applications. Then

we discuss the basic MAC unit function and different computing styles. Subsequently,

the architecture of different state-of-the-art multiplier is discussed.

2.1 Deep Neural Network

Deep learning uses the DNN to perform various machine learning tasks. The

neural networks are the combination of neurons connected with each other. There are

different layers of neurons in the network. Neurons in one layer are not connected.

Each neuron generates an output based on the input from the previous layer neuron.

The output is the weighted sum of the inputs followed by a nonlinear activation

function (AF). The first layer neurons are called input neurons, and the last layer

neurons are called output neurons. If the layers are more between the input and output

neurons, then the network is called a DNN. As such, there is no strict definition of

the number of layers, but in general, if it is more than seven, the network is called

DNN [18].

DNN advantage over other machine learning algorithms is the hierarchical nonlin-

ear processing over the multiple layers. In the initial layers of the network, simple

features of the data are extracted. Then, as we go deep in the network, complex fea-

tures are extracted using the simple features that create the hierarchical representation

7

of the data.

There are different types of DNN which is built for different application purpose.

However, some components are constant in all networks, like neurons, weight, bias,

and MAC computation. The two widely used networks are explained below.

1. Fully Connected Artificial Neural Network (FCANN) - It consists of multiple

layers in which the first layer is the input layer, the last layer is the output

layer, and all the middle layers are called hidden layers as shown in Figure 2.1.

This network is the analogy of the biological neural networks present in the

brain. Each neuron layer, after calculating the weighted input sum, is applied

to a nonlinear AF. ANN is used in various applications like pattern recognition,

clustering, classification, and many prediction areas [19]. It is responsible for

more than 61% Google TPU’s workload [20].

Input
Layer

Hidden
Layers

Output
Layer

Input 1

Input 2

Input 3

Output 2

Output 1

Figure 2.1: Fully Connected Artificial Neural Network

2. Convolutional Neural Network (CNN) - CNN is the most widely used neural

network nowadays, especially in vision-related applications. It is very effective

in applications where input data has a grid-like topology [21]. A typical CNN

network is shown in Figure 2.2. It mainly consists of three layers, convolution

layer, pooling layer, and fully connected layers. The convolution layer extracts

the features from the data using the convolution operation. The pooling layer

8

downsamples the output features from the convolution layer and reduces the

size. Finally, the fully connected network performs the classification task.

Input
Image

Convolution
Layer 1 Pooling

Layer 1 Convolution
Layer 2 Pooling

Layer 2

Flatten

Fully Connected
Layer

Output
Layer

Basic CNN

Figure 2.2: Conventional Convolutional Neural Network

The central computation unit in both the network is the MAC unit. It is explained

in detail in the following section.

2.2 Multiply-accumulate unit

The fundamental artificial neuron mimicking the biological neuron is shown in

Figure 2.3. As shown, the dendrite works as an input to the neuron. A single neuron

in the fully connected network has input equal to the total number of outputs/ neurons

in the previous layer. The synapse consists of the weights, and also it multiplies the

input and weight. The neuron finally accumulates all the weighted inputs, adds the

bias, and applies the AF to give the neuron’s output.

In ANN the synapse multiplication and neuron accumulation operation is known as

the MAC function. The basic MAC unit consists of multiplier, adder, and accumulator

blocks. The MAC computational unit shown in Figure 2.4. The input and output

arithmetic relation in the preceding layer of a fully connected neural network is shown

below:

alj “ fp
ÿ

ωl
jNa

l´1
N ` bljq (2.1)

9

𝑦𝑖 = 𝑓(෍

𝑖=0

𝑛

(𝑊𝑖𝑋𝑖 + 𝑏)

Neuron

Dendrite/Input Synapse/Weight

𝑋0 𝑊0

Axon/Output

𝑋𝑛 𝑊𝑛

Basic Neuron
operation

𝑊1

𝑊2

𝑋1

𝑋2 𝑋2𝑊2

Figure 2.3: Block level single artificial neuron architecture mimicking the biological

neuron

where function f is the activation function (tanh/sigmoid/ReLu) of the computational

unit k, corresponding to overall neurons in the pl ´ 1qth layer. To formulate this

equation in matrix form, we assume a weight matrix ωl corresponding to layer l.

Elements of the weight matrix ωl are weighted to the inputs of neurons from lth layer

with jth row and N th column. blj is the bias here. Each MAC unit consists of a jth

multipliers followed by an adder tree.

Weight Memory (N x j entries)

B[2]

Activation

Function

(ReLU/

Sigmoid/

tanh)

I[1]

I[2]

I[j-1]

I[j]

`

B[N]

B[1]

8/16 bit

8/16 bit

W[1][1] W[1][2] W[1][j-1] W[1][j]

W[2][1]

W[N][1]

W[2][2]

W[N][2]

W[2][j-1] W[2][j]

W[N][j-1] W[N][j]

Bias (N x 1 entries)

8
/1

6
 b

it

J = Number of Inputs

N = Number of Neurons in the Layer

IN
P

U
T

 B
U

FF
E

R
S

O
U

TP
U

T
 B

U
FF

E
R

S

MAC Unit

Figure 2.4: Multiply-accumulate unit with parallel multiplier and activation function

for N neurons in a layer

10

The dimensions of the matrix in equation 2.1 are as follows :

wl - is the weight matrix in lth layer of dimension j ˆN where j is the number of

inputs from pl ´ 1qth layer and N is the number of neurons in the lth layer

al´1 - is the input matrix of dimension 1ˆ j, where j is the number of inputs from

pl ´ 1qth layer

bl - is the bias matrix in lth layer of dimension 1 ˆ N where N is the number of

neurons in the lth layer

al - is the output matrix from lth layer of dimension 1ˆN , where N is the number

of neurons in the lth layer. It will work as a input matrix to the pl ` 1qth layer.

For example there are j input coming from 1st layer and the 2nd layer has 3 neurons.

As per the equation 2.1 the value for j=j, N=3, and l=2. The matrix computation

in this case will be given as

al “
”

Ir1s Ir2s . . . Irjs
ı

»

—

—

—

—

—

—

–

w1r1s w2r1s w3r1s

w1r2s w2r2s w3r2s
...

...
...

w1rjs w2rjs w3rjs

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

”

Br1s Br2s Br3s
ı

al “
”

Or1s Or2s Or3s
ı

The O[1], O[2] and O[3] are the three outputs from the three neuron in the 2nd

layer. Each outputs from the neuron is computed by the MAC unit. The MAC

unit multiplied the inputs with the respective weights and then accumulate all the

multiplied output.

The neuron architecture in Figure 2.4 consists of an array of multipliers. There are

hundreds of neurons in one layer which consists of hundreds of MAC units. With a

large number of multipliers and adder blocks, there is an area overhead. It also leads

to increased power dissipation (static power dissipation) by lowering the technology

node.

The researchers have applied two ways of computing the MAC operation, Bit-

Parallel Computing and Bit-Serial Computing. These two categories of works are

11

elaborated in the following two subsections.

2.2.1 Bit-Parallel Computing

Bit-Parallel architecture is the traditional method used for the multiply and adds

operations. Figure 2.5 shows the MAC operation for two 4-bits input using the bit-

parallel architecture. In this architecture, the input and weight are applied parallelly

to the compute unit, Xi represents the input, and Wi represents the weight.

4 4 4 4

8 8

9

𝑋0 𝑊0 𝑋1 𝑊1 Bit Parallel
Computing

Figure 2.5: Multiply-accumulate operation using bit-parallel computing architecture

The advantage of such architecture is that all the bits apply simultaneously, so

there is no problem on the latency front. However, this type of computing architecture

is resource-hungry. For two 4-bit inputs and two 4-bit weights, it requires two 8-bit

multipliers and one 9-bit adder. The challenge in such architecture is that as the bit

precision increases, the hardware requirement increases quadratically. For example, in

Figure 2.5 if the input and weight bits are doubled, then the hardware requirements for

implementing the MAC operation will be four times the existing one. As the resources

increases, the power consumption also increases proportionally.

12

2.2.2 Bit-Serial Computing

Researchers are exploring the bit-serial computing architectures to overcome the

challenges proposed by the bit-parallel computing architecture. In these architectures,

one of the inputs to the multiplier unit is serialized. It results in the decrements of

the resources required. Figure 2.6 shows the MAC operation using the bit-serial

computing for two 4-bits input and weight. As shown by serializing the weight input,

the multiplier precision required is half required during bit-parallel architecture.

4 1 4 1

4 4

5

𝑋0
𝑊0 𝑋1

𝑊1

9

Bit serial
computing
modified

<<

Figure 2.6: Multiply-accumulate operation using bit-serial computing architecture

In Figure 2.6 the 4-bit input X0 and X1 is multiplied by the 1-bit serialized weight

W0 and W1 respectively. By serializing the weight input, the multiplier required is

of 4-bit precision, which is of 8-bit precision in the case of bit-parallel computing as

shown in Figure 2.5. After multiplication, the multiplier outputs are accumulated. In

the case of bit-parallel computing for two 8-bit multiplied outputs, an 8-bit precision

adder is required. Whereas in bit-serial computing, by serializing the weight input, we

13

will get four 4-bit multiplier outputs. The 4-bit multiplied output is summed using

a 4-bit precision adder. For four 1-bit weights, we get four summed outputs of 5-bits

each. The summed output is then required to be properly left-shifted and finally

accumulate using an 8-bit precision adder. As shown in Figure 2.6, four iterations are

there, so a feedback path is present on the 8-bit precision adder. The feedback has a

register that saves the current output and accumulates it with the following output.

In this case, after four iterations final output is generated.

The hardware resources utilized in an FPGA board is measured by the number of

look up table (LUT) used. On the Zybo FPGA board, a single 8-bit multiplier and

4-bit multiplier requires 16 LUTs and 2 LUT’s respectively. A 4-bit precision adder

and an 8-bit precision adder require 4 LUT’s and 8 LUT’s respectively. The MAC

operation for two 4-bit input and weight using bit parallel computing architecture as

shown in Figure 2.5 requires two 8-bit precision multipliers and one 8-bit precision

adder. For the same condition using bit-serial computing architecture as shown in

Figure 2.6 requires two 4-bit precision multipliers, one 4-bit precision adder and an

8-bit precision adder. Overall the bit-serial computing architecture requires 20 LUTs

and bit-parallel architecture requires 48 LUTs. The architecture designed using bit-

serial computing is extremely resource efficient as compared to bit-parallel computing

architecture. The power dissipation is also less in the bit-serial computing architecture

as the resource utilization is good.

Stripes [22] shows that by using bit-serial computing, the network’s performance

can be increased without any accuracy loss in the computation. Tartan [23] also uses

bit-serial computing units to improve precision flexibility. Both Stripes and Tartan

have an additional area overhead to improve computation flexibility. Bit Fusion [24]

uses the bit-level processing elements for decreasing the computation load and the

communication between the blocks without any loss of accuracy.

The bit-serial computing reduces the resource requirement to some extent. How-

ever, there is still some need to modify the MAC unit on the logic architectural back-

ground for further reduction.

14

2.3 State-of-the-art Multiplier architectures

The most important block of the MAC unit considering the overall performance is

the multiplier unit. To reduce the parameters of the MAC unit, the multiplier resources

should be reduced. By reducing the parameters of the MAC unit, the overall network

efficiency increases. There are various logic architectures of the multiplier proposed by

the researchers. Using these different multiplier architectures, different configurations

of the MAC unit are obtained in state-of-the-art architecture. The following subsection

will tell about some of the vital logic architecture used for the multiplier architecture.

2.3.1 Array Multiplier

Array Multiplier is the most basic form of a multiplier. It is popularly known for its

regular structure. There are two stages in the operation of the array multiplier. First

is the partial product generation, which is carried out by simply performing the AND

logic between the multiplier and the multiplicand bit. For an n-bit multiplication,

n2 AND gates are required. The generation of the partial product is performed in a

parallel manner. The second stage involved the accumulation of partial products. The

accumulation is carried out by half and full-adders. The accumulation is performed

in a matrix-like fashioned arranged adders. For an n-bit multiplier and multiplicand

n ˆ pn ´ 1q full adders are required. The architecture for the 4-bit multiplication is

shown in Figure 2.7. The top row of the accumulation can be performed using half-

adders and the rest with the full-adders as shown in Figure 2.7. Then it requiring

n´ 1 half-adders and pn´ 1q2 full-adders for the accumulation stage.

An efficient multiplication using an array-based multiplier is proposed in [25, 26].

The key feature of the array multiplier architecture is its simple design. The main

disadvantage of such architecture is that its resource utilization is high. Due to the

high resources, the power dissipation is also high. Also, the sum and carry from

the adders process in a ripple fashion. The carry-in for an adder is coming from the

adjacent full adder in the row and the sum from the above row. This makes the critical

15

HAHA HA

FAFA FA

FAFA FA

FAFA FA

𝑃0𝑃1𝑃2𝑃3𝑃4𝑃5𝑃6𝑃7

𝑎0𝑏0

𝑎0𝑏1𝑎1𝑏1𝑎2𝑏1

𝑎0𝑏2𝑎1𝑏2𝑎2𝑏2

𝑎0𝑏3𝑎1𝑏3𝑎2𝑏3

𝑎1𝑏0𝑎2𝑏0𝑎3𝑏0

𝑎3𝑏1

𝑎3𝑏2

𝑎3𝑏3

Array Multiplier

Figure 2.7: Block diagram of Array multiplier for 4ˆ4 bit multiplication

path delay also high. Thus the architecture speed is also not competitive.

2.3.2 Wallace Tree Multiplier

To overcome the disadvantage of the speed in array multiplier, researchers come

up with faster architecture known as Wallace Tree Multiplier [27]. The Wallace tree

implies a three-step structure. First, the partial products are generated using the

AND logic, and each partial product is associated with a weight depending on the

bit position. Second, the reduction of the partial products is performed using a tree

structure of adders. The tree structure has irregular interconnects between the adders

to reduce the partial products into a two-row matrix. Lastly, summation of the two-

row matrix to get the final output. The Wallace tree multiplier uses the log-depth

tree network to reduce the partial products. The block-level architecture for 4-bit

multiplication is shown in Figure 2.8.

The Wallace tree architecture is faster because its height is not linear. It is log-

arithmic in word size [28]. For an n-bit column height, the bits are divided into a

16

HAFAFAFAFA

HA HA HA

FAFAFAFA

𝑃0𝑃1𝑃2𝑃3𝑃4𝑃5𝑃6𝑃7

𝑆00𝑆10 𝑆01𝑆02𝑆11𝑆12 𝑆20𝑆30 𝑆21𝑆13𝑆22𝑆21𝑆23

𝑆03

𝑆32

𝑆33

Wallace tree
Multiplier

Figure 2.8: Block diagram of Wallace tree multiplier for 4ˆ4 bit multiplication

group of three bits each. These groups are then reduced to two-bit, resulting in a

new height of the column that is 2{3n. The remaining bits are again divided into

three-bit groups and reduce until the column height becomes two. The architecture in

the second stage reduces the partial product at the rate of logp3{2qpN{2q. However, the

connections of the tree structure are irregular, which increases the design complexity

of the architecture. As the design complexity increases, the overall area also increases.

The architecture is generally avoided in low-power applications because it does not

show any promising results on power consumption.

2.3.3 Shift and Add Multiplier

Shift and Add multiplier is equivalent to the multiplication performed using paper

and pen [29]. It is a sequential operation. The block diagram of n-bits multiplication

is shown in Figure 2.9. The algorithm is designed to traverse the bits of multiplier

starting from right to left. Depending upon the bit, the control unit instructs the

multiplicand, ALU, and product block. If the multiplier bit is logic '1', then the copy

of the multiplicand bit is shifted and added with the ALU result. Otherwise, if the

multiplier bit is logic '0', then the number of zeros shifted and added with the ALU

result. The shifting operation is controlled depending upon which bit of the multiplier

17

is traversed. The multiplicand bit size is taken 2n bits to accommodate the shift

operation properly. The actual size of the multiplicand is n bits only.

B (Multiplicand)

Q (Multiplier)

Control

A (Product)

ALU

2𝑛 𝑏𝑖𝑡𝑠 𝑛 𝑏𝑖𝑡𝑠

2𝑛 𝑏𝑖𝑡𝑠

2𝑛 𝑏𝑖𝑡𝑠

Shift left

Shift right

Add

Write

Shift and add
multiplier

Figure 2.9: Block diagram of Shift and Add multiplier

The shift and add architecture has shown promising results in low resource utiliza-

tion and low power [30]. Because it shows excellent results on the physical parameters,

researchers have used this architecture in the CNN [31]. The challenge associate with

this architecture is that it is not suitable for fast multiplication. Also, it can only

perform the unsigned multiplication.

2.3.4 Vedic Multiplier

An ancient Indian Vedic mathematics-based Vedic algorithm is designed for mul-

tiplication in [32, 33]. In Vedic mathematics, there are 16 sutras and 13 up-sutras.

With the help of these sutras, any mathematical problem can be solved. Out of the

16 sutras, the Urdhva-tiryagbhyam sutra is mainly used for the multiplication opera-

tion [34]. This sutra is also called vertical and crossbar algorithm architecture. Using

vertical and crossbar algorithm, the 2-bit Vedic multiplier architecture is shown in

Figure 2.10. The two numbers taken into account are A “ a1a0 and B “ b1b0. The

18

multiplication process starts with the vertical multiplication of a0 and b0, which gives

the first bit (least significant bit) of the output. Then the cross multiplication between

a1-b0 and a0-b1 is performed. These cross multiplication outputs are added. The sum

is the second bit of the output, and the carry is added by the vertical multiplication

of a1 b1. The final adder gives the last two bits of the output.

HA

HA

𝑎0𝑏0𝑎1𝑏0𝑎0𝑏1𝑎1𝑏1

𝑃0𝑃1𝑃2𝑃3

2*2 Vedic
Multiplier

2*2 Vedic
Multiplier

2*2 Vedic
Multiplier

2*2 Vedic
Multiplier

4-bit Ripple Carry Adder

4-bit Ripple Carry Adder

4-bit Ripple Carry Adder

𝑎1𝑎0𝑏1𝑏0𝑎1𝑎0𝑏3𝑏2𝑎3𝑎2𝑏1𝑏0𝑏3𝑏2 𝑎3𝑎2

(3-0) (3-0) (3-0)

(3-2)

(1-0)

(3-0)

00

0 C2

C1

C3 (1-0)
(3-2)

(3-0)

𝑃6𝑃7 𝑃0𝑃1𝑃2𝑃3𝑃4𝑃5

Vedic multiplier

Figure 2.10: Block diagram of Vedic multiplier for 2ˆ2 bit multiplication

A Vedic multiplier efficient way of developing the architecture for the higher bit

precision uses the multiple lower bit precision architecture. For example, for 4-bit

multiplication, four 2-bit Vedic multiplier and three 4-bit adders are required as shown

in Figure 2.11. In this case, the 4-bit is divided into 2-bit groups and applied across

the 2-bit Vedic multiplier.

The Vedic multiplier speed is good. Also, its delay increases slowly as the bit

precision increases. However, due to the vertical and crossbar multiplications, the

complexity of the circuit is increased. Further, it increases even more at higher preci-

sion, making it not an excellent choice to use.

2.3.5 Conventional IEEE Multiplier

IEEE specifies the standards and methods for floating and fixed-point arithmetic

in the computer system. IEEE packages provide the optimized arithmetic functions

which we can use by the operator of the operation, which is ‘ˆ’ for multiplication, ‘+’

19

HA

HA

𝑎0𝑏0𝑎1𝑏0𝑎0𝑏1𝑎1𝑏1

𝑃0𝑃1𝑃2𝑃3

2*2 Vedic
Multiplier

2*2 Vedic
Multiplier

2*2 Vedic
Multiplier

2*2 Vedic
Multiplier

4-bit Ripple Carry Adder

4-bit Ripple Carry Adder

4-bit Ripple Carry Adder

𝑎1𝑎0𝑏1𝑏0𝑎1𝑎0𝑏3𝑏2𝑎3𝑎2𝑏1𝑏0𝑏3𝑏2 𝑎3𝑎2

(3-0) (3-0) (3-0)

(3-2)

(1-0)

(3-0)

00

0 C2

C1

C3 (1-0)
(3-2)

(3-0)

𝑃6𝑃7 𝑃0𝑃1𝑃2𝑃3𝑃4𝑃5

Vedic multiplier
Figure 2.11: Block diagram of Vedic multiplier for 4ˆ4 bit multiplication

for addition, and many more given in [35]. The electronic design automation (EDA)

tools provide the intellectual property (IP), which can be directly used for arithmetic

operations based on the IEEE standards. The numeric standard library package of

VHDL/verilog is used. For multiplier in ASIC design it uses DSP based architecture

whereas in FPGA it used the LUT based implementation.The different operations

design is optimized for different physical parameters like resource utilization, area,

power and delay.

2.4 Approximate Technique

To improve the performance by compromising the neural network’s output ac-

curacy, researchers have designed an approximate algorithm for multiplication and

addition used in the MAC computational unit [26, 36–38]. These techniques are the

quantized version of the well-defined multiplication algorithm. In [36] the author pro-

posed an approximation algorithm on the Wallace tree multiplier to reduce the power

consumption. In [26] approximate array-based multiplier is designed to improve cir-

20

cuit delay and power consumption. An approximate architecture that considers an

approximate partial product accumulation tree is proposed in [37]. The authors also

design multipliers using approximate logic compressors in [38]. Moreover, there is an

improvement in the power and energy efficiency using these techniques. However, it

is only limited to error-resilient applications only because of the reduction in accuracy

of the approximate network.

2.5 Summary

Different neural networks such as CNN or ANN have shown propitious results in

image recognition and classification application. With the increase of each layer’s

size, precision, and depth, there is an improvement in the network’s learning capabil-

ity and inference accuracy. This optimization, however, comes at the cost of increased

computational complexity. In a hardware implementation, increasing computational

complexity has an unfavorable impact on area and performance. Computation with

higher bit precision (32-bit or 64-bit) is also expensive in terms of area and power [40].

Thus, the accurate computation with a reduction in hardware complexity (i.e., bit

precision) and faster response without compromising accuracy is highly desirable [41].

Different architectures have been proposed to reduce the parameters like area, power

and delay. The advantage and disadvantage of the various state-of-the-art multiplier

architectures is shown in Table 2.1 However, there is a trade-off present in the pa-

rameters and their impact increases at the lower technology node. To overcome all

these issues at lower technology nodes, we designed an efficient bit processing element

Table 2.1: Comparison of the state-of-the-art multiplier architectures

Multiplier Technique Advantages Disadvantages

Array Multiplier [25,26] Design Complexity is low High power, delay and resource utilization

Wallace Tree Multiplier [27] High speed /throughput High power and area utilization

Shift and Add Multiplier [30,31] Power efficient Low throughput and only unsigned multiplication possible

Vedic Multiplier [33, 39] High speed Design complexity is high and high power

Approximate Multiplier [36–38] Power and resource efficient Reduction in accuracy

21

and designed a high precision architecture of a MAC unit using bitcell. The proposed

architecture has the benefits of efficient power, area and delay of the circuit.

22

Chapter 3

Compute-efficient

multiply-accumulate unit

Computational power is the most critical parameter in today’s application environ-

ment. Due to the extensive use of computational operation the neural network appli-

cations are power-consuming. The computational operation in the neural network is

mainly performed using the MAC unit. The MAC unit is the primary building block

of neural network architecture. It is the most repetitive unit in the computation. It is

shown to consume 90% of the overall computational power of the neural network [13].

In a neural network, the critical physical parameters like area, power and delay are

primarily dependent on the MAC unit’s performance. An optimized MAC in terms of

area, power and delay is required to optimize the physical performance parameters.

The bit-serial computing is efficient in terms of system performance. It reduces

the hardware footprint to a reasonable extent. Therefore we have designed the MAC

using the bit-level processing technique. To make a more efficient architecture, we

bypass the multiplier with a bitcell based multiplier and accumulate architecture.

The architecture is explained in detail in the following sections.

23

3.1 Bitcell Architecture

The bitcell is a unit in which a single-bit operation is performed. The bitcell is

designed considering the constraint that the architecture takes minimum resources.

Bitcell consists of a 1-bit memory cell for storing the weight constants, XNOR logic

gate for bit-wise processing, and a half-adder as shown in Figure 3.1.

Two operations are being performed in the bitcell, one is XNOR, and the other is

the addition. Both of these operational blocks are not active simultaneously. First,

the XNOR operation is performed between input (x) and weight (w), and then the

output of the XNOR gate is added with the carry input (Carry in) using half adder.

The single-bit adder’s output, the sum, and carry are the two outputs of the bitcell

unit. The XNOR is chosen because of its inverting property, which complements the

other input when one input is logic '0'. In this bitcell architecture, the task of XNOR

is to complement the weight bit if the input bit is logic '0'and passes the weight bit if

the input bit is logic '1'.

1-bit Memory

(Weight)

Output

Carry out

Input

Carry in

XNOR

+

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

Figure 3.1: Efficient design architecture of bitcell used for each single bit calculation

The bitcell architecture is optimized in terms of resources. For the complete MAC

implementation, we will use the combination of the bitcells in place of the multiplier

architecture. The combination of the bitcells will perform the necessary multiplication

operation with minimal hardware possible.

24

3.2 Bitcell Optimization using Power Gating

The technology node is scaling at a rapid pace due to several advantages at lower

node technology. Nevertheless, this brings some challenges as well. The biggest prob-

lem for a designer is the increase of the leakage current at the lower technology node.

The increase in the leakage current creates many problems in the circuit. It increases

the static power dissipation to a great extent. The variation in the physical param-

eters is observed with the technology scaling. Figure 3.2 shows the variation of the

two critical physical parameters, delay and ON current of the inverter concerning the

different technology nodes [9]. The technology scaling impacts the technology pa-

rameters like velocity saturation pVsatq, affecting the device current and delay in the

circuit. The parameter delay shows significant improvement on scaling down from

higher technology node to lower technology node. As we scale down the technology

beyond 90nm, the ON current starts increasing drastically, leading to a higher static

power dissipation at the lower technology node. The area, dynamic power and delay

are decreased at the lower technology node, but the static power dissipation increases

at a higher rate.

3 0 6 0 9 0 1 2 0 1 5 0 1 8 0
6 5 0

7 0 0

7 5 0

8 0 0

8 5 0

9 0 0

9 5 0

T e c h n o l o g y n o d e s (n m)

 Ion
 (u

A/
um

)

V D D (V) = 0 . 6 , 1 . 1 , 1 . 2 , 1 . 5 , 1 . 8
L (n m) = 4 5 , 6 5 , 9 0 , 1 3 0 , 1 8 0

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

De
lay

(ps
)

Figure 3.2: Effect of technology node on current and delay

The leakage current is generated from the computational block, which is in the

idle or off state. The bitcell logic block works in a sequential mode. There are two

25

computational blocks, XNOR and adder, in the bitcell. Out of which, the adder block

input is dependent on the output of the XNOR block. The adder block is in an idle

state till the time it gets input from the XNOR block. Also, during one-half of the

cycle, both the computational block are in idle or hold state. This is when the leakage

current is dominant in the circuit, which eventually increases the static power. To

reduce that static power, we have implemented the power-efficient bitcell using the

power gating technique.

Power gating is an effective technique that is used in low-power designs [42]. In

this technique, the current to the blocks is shut off, which is not in use. This tech-

nique is effective where computational blocks are in an off state for a significant time

during operations. The bitcell is designed such that the power gating technique can

be implemented.

In the power gating technique, extra metal-oxide-semiconductor field-effect tran-

sistor (MOS) are inserted in the design. The MOS acts as a switch and bypasses the

supply voltage from the computational block when idle. With bypassing the supply,

there is minimal leakage current which results in low static power dissipation. Based

on simulation results and merit, the power gate size should be around 3× large as

compared to its standard size to maintain similar performance [43]. Based on the po-

sition of the MOS, there are two types of design configuration which are used. These

configurations are as follows:

1. Fine-Grain Power Gating Technique: In this technique, the power gated MOS

is added for each cell that needs to be shut off in an idle state [44]. This config-

uration is not preferred most of the time. The problem with this configuration

is that it increases the complexity of the design. Also, by adding MOS for every

cell, there is an area overhead.

2. Coarse-Grain Power Gating Technique: The MOS is added for a whole

core/block instead of each cell in this technique [45]. So when the MOS is

in an off state, the whole block is turned off. The area overhead is significantly

less compared to the fine-grain technique. Also, bypassing the whole block is

26

much easier than bypassing individual cells. There are two configurations in the

coarse-grain technique as well, which are mentioned below.

(a) Column-based coarse-grain power gating technique - In this technique, the

MOS is inserted for the whole column in a grid-like fashion [46]. This tech-

nique is mostly used when we need to retain the data in the computational

block during the sleep mode. The MOS is closer to the design block in this

design, so the IR drop is less, and the virtual VDD routing length is also

small.

(b) Ring-based coarse-grain power gating technique - In this technique, as the

name suggested, the MOS are inserted in a ring fashion around the design

[43]. This technique is used when there is no constraint to retaining the

data in sleep mode and when we do not want to interrupt the original

design. The IR drop is higher in this configuration, but it is less complex

than the column-based technique.

To reduce that static power, we have implemented the power-efficient bitcell using

the power gating technique as shown in Figure 3.3

We have used the column-based coarse-grain power gating technique because the

area overhead is less compared to the fine-grain technique. Also, the proposed archi-

tecture of MAC consists of a combination of bitcell architecture in column fashion, so

the column-based power gating technique is suitable for the design. We have used a

single set of only 4 MOS and delay elements for a complete MAC unit that contain

multiple bitcells, and hence, there is not much area overhead. As the adder operation

depends upon the XNOR output (yout), a delay element is included in the path from

the clock to the two MOS connected with the adder block. The delay of the path is

adjusted with the delay of obtaining the output (yout) from the XNOR block. The

transistors used for the power-gating technique are of higher gate width so that the

functionality of the circuit is not affected. The column-based coarse grain technique

reduces the circuit complexity, provides better efficiency and moderate switching time.

In power gated bitcell, we used four MOS transistors to isolate the current path

27

XNOR

Operation

1-bit

Adder

Delay element

Input (x)

Weight (w) Carry in

Carry

out

Partial

output

Clk

VDDVDD

Gnd Gnd

PMOS

NMOS

PMOS

NMOS

yout

InvInv

Bitcell

Figure 3.3: Power-efficient bitcell logic architecture with coarse-grain PG technique

between supply (VDD) and ground (Gnd). When the clock (Clk) is at a positive level,

all the MOS are in the saturation region and act as a closed switch establishing the

connection path between VDD and Gnd. In the positive half of the clock, both the

operations XNOR and addition are performed. After that, they need to hold the data.

When the clock is at a negative level, at logic '0', all the MOS are in the cutoff region

and act as an open switch, thus isolating the voltage source connection from the logic

circuit. The XNOR logic gate dissipates more static power when it is ON . To decrease

the static power dissipation for the positive half cycle XNOR gate is power gated, i.e.

when the XNOR block is at the idle (hold) state.

3.3 Bitcell Performance Parameters Analysis

The bitcell is designed for single-bit processing using basic logic components, i.e.,

XNOR gate and half-adder. First we design a logic without power gating technique and

performance parameters is observed for both 180nm and 45nm technology node. Then

28

Table 3.1: Performance parameter metrics for power gated and non-power gated bitcell

at both 180nm & 45nm technology node.

Performance for 180nm for 45nm

parameters non-PG with PG non-PG with PG

Area pµm2q 55.18 136.60 11.55 48.40

Dy. Power pµW q 1.36 1.39 0.58 0.63

St. Power pnW q 1.04 0.71 59.68 36.23

Critical Path Delay pnsq 2.50 2.78 2.16 2.33

we design the bitcell with the power gating technique and validate the performance at

both technology nodes. The important physical parameters for power gated bitcell and

non-power gated bitcell shown in the Table 3.1. We observed 31.24% and 39.19% less

static power in power gated bitcell as compared with non-power gated bitcell at 180nm

and 45nm technology node respectively. In power gated bitcell, the critical path delay

is 11.27% and 7.87% higher as compared with the non-power gated bitcell at 180nm

and 45nm technology node, respectively. From the observation to the downturn of

the increasing static power dissipation, we have taken advantage of the power gating

(PG) technique in the bitcell unit and the MAC design implementation.

3.4 N-bit Precision MAC using Bitcell

The architecture for the MAC is designed such that it takes minimum resources

and minimum power. The primary function of MAC is to multiply two inputs and

accumulate the product i.e.pA “ A`B˚Cq. By using the bitcell based MAC technique,

variable precision MAC can be implemented. For designing an N-bit precision MAC,

N number of bitcells are required. The N bitcells are connected in parallel, following

the shifting and accumulation stage. For explanation, 8-bit precision MAC is designed

29

and compared with the state-of-the-art-architectures. The following sections explain

the architecture design and working in detail.

3.4.1 8-bit Precision MAC architecture

The MAC unit is made of an array of bitcell units. The block design of logic

architecture for the proposed 8-bit precision MAC unit is shown in Figure 3.4. The

proposed 8-bit MAC consists of eight bitcells in an array, followed by the left shifting

using shift registers and then sequential accumulation after each operation. The input

features are transmitted to all the eight bitcells. The bit transmission is serially

starting from the least significant bit (LSB) to the most significant bit (MSB).

1
st

 Bitcell

2
nd

 Bitcell

8
th

 Bitcell

LSB

MSB

P0 [0]

P0 [1]

P0 [7]

P7 [0]

P7 [1]

P7 [7]

Partial outputs

<< +
Final output

8
-b

it

In
p

u
t

[14:0]

P[7:0]

1-bit

1-bit

1-bit 1-bit

1-bit

1-bit

1-bit

Figure 3.4: Design architecture of 8-bit precision multiply-accumulate unit using bit-

cell architecture

3.4.2 Working of the 8-bit precision MAC

Each bitcell takes the input bit, processes it with the weight stored in that par-

ticular bitcell, and gives the 1-bit carry output and 1-bit sum output. The output

carry of the bitcell is given as the input carry to the subsequent bitcell. Note that the

input carry for the first bitcell is the complement of the input bit. The eight bitcells

30

produce an 8-bit output called a partial product for a single-bit input. For 8-bit in-

put, there will be eight such partial products. These partial products are left shifted

depending upon in which input bit iteration the partial product is generated.The left

shift computation on partial products block for 8-bit bitcell based MAC is shown

in Figure 3.5 The partial product generated in the N th iteration is left shifted by N-1.

All the shifted partial products are then accumulated to give the final output of the

multiplier. For the proper accumulation of the signed partial product, the MSB of

each partial product is copied to the maximum output bit before adding the shifted

partial products.

<<

<< 23rd Iteration
P2 [7:0] P2 [9:0]

<< 34th Iteration
P3 [7:0] P3 [10:0]

<< 45th Iteration
P4 [7:0] P4 [11:0]

<< 56th Iteration
P5 [7:0] P5 [12:0]

<< 67th Iteration
P6 [7:0] P6 [13:0]

<< 78th Iteration
P7 [7:0] P7 [14:0]

<< 01st Iteration
P0 [7:0] P0 [7:0]

<< 12nd Iteration
P1 [7:0] P1 [8:0]

P3 [7:0]

P0 - 7 [7:0]

Figure 3.5: Shift operation computation in 8-bit bitcell based MAC architecture

The weight stored in the register is in the 2’s complement signed format, and

31

the input bit is encoded based on positive and negative positional values to a binary-

weighted signed number. The generated output by the array of bitcell is also in the 2’s

complement signed format. The binary '0'is encoded as negative of the positional value

of that bit, and binary '1'is encoded as positive of the positional value of that bit. For

example a 8-bit input '0011 0011'represents '´27´26`25`24´23´22`21`20 “ ´153'

The logic architecture and computation are elaborated through an example of the

multiplication of 4-bit input (4'b0101 or -5) with 4-bit weight (4'b0101 or +5). For a

4-bit multiplication, four bitcells will be there in an array. In the first iteration, the

LSB of the input i.e. '1'b1'is given to the four bitcells in which 1-bit weight is stored

in each bitcell. The XNOR operation is performed on the input and the weight bit

that gives a single bit output, which is added with the initial carry. For the first bit

cell, the initial carry is the complement of the input bit (1'b1) i.e. 1'b0, and for the

remaining three bitcells, the initial carry is the output carry of the previous bitcell.

The four bitcells provide a 4-bit partial product (4'b0101) for the first input bit that

is LSB. Similarly, for the remaining three input bits, three 4-bit partial products are

generated that are '4'b1011', '4'b0101', and '4'b1011', respectively. The first partial

product is left-shifted by 0. The second partial product is left-shifted by 1, and so on.

All the shifted partial products MSB is being copied till the 7th bit, and then they all

are added to give the final result that is in this case ''7'b1100111 or -25''.

As we have designed the MAC unit for 8-bit precision, the real-time operation

simulation waveform for the data computation with each iteration is shown in Fig-

ure 3.6. The 8-bit input taken is '8'b11001001 or +147d'and the weight consider is

'8'b00000100 or +4d'. The output of the multiplication is '15'b000001001001100 or

+588d'.

The waveform in the consolidated form is shown in Figure 3.7. There are eight

iterations for the 8-bit input. In each iteration, the input bit goes to the eight bitcells,

and partial products are generated. As we can see in the waveform when the input

bit is logic '1', the bitcell passes the weight, and when the input bit is logic '0', the

negative of the weight bit is passed. The partial product is left-shifted depending on

which iteration it is generated. The left-shifted output is named as ‘Shifted output’

32

Figure 3.6: Simulation waveform for data computation with each iteration approach-

ing the desired output. Simplified calculation is elaborated for decimal values with

input=+147d and weight=+4d

Figure 3.7: Consolidated simulation waveform for data computation with each itera-

tion approaching the desired output.

33

in the waveform. At last, all the shifted outputs are accumulated and stored in ‘Final

output’.

The total time taken to achieve the final output is given as

t “ Tclk ˆ n (3.1)

where´ Tclk ą Tcritical (3.2)

Here,

t = total time requires for n-bit computation

n = bit-precision of input

Tclk = time period of clock

Tcritical = critical path time delay

34

Chapter 4

Convolutional Neural Network

Implementation

In recent years the CNN is a widely used neural network. For image processing

and recognition tasks, CNN is always the first choice. CNN has shown promising

results in terms of accuracy and speed. Due to the increase in CNN’s applications and

computational capability, the need for a low-power system has increased exponentially.

This necessity increases the research on hardware acceleration. Hardware Acceleration

can be interpreted in different ways. In the case of CNN, the critical thing is to

decrease the power consumption and resource utilization by sustaining the real-time

accuracy and speed. The basic block diagram of the hardware accelerator is shown in

Figure 4.1. The processing element is the main computation block. In this block, the

MAC operation is performed. There are on-chip memories used to store the input bit,

weight bit, partial results, and the final output results. The control unit generates the

control signals to operate synchronously.

There are many architectures of CNN which have been developed over these years.

Some of the popular architectures are LeNet-300-100 [47], AlexNet [18], VGGNet [48],

GoggleNet [49] and ResNet [50]. Each architecture differs in the number of layers,

size of the layer, and kernel size used. We have used the LeNet architecture for the

performance evaluation. The explanation of the architecture and the performance

analysis reports are discussed in the following sections.

35

On-chip
Input

Memory

On-chip
Weight

Memory

On-chip
Output

Memory
Processing
Elements

Control Unit

Figure 4.1: Block Diagram of CNN Accelerator Architecture

4.1 LeNet Architecture

The LeNet-5 architecture was the first architecture of CNN that successfully rec-

ognized the handwritten number of MNIST datasets. The limitation of the fully

connected neural network was that it treats every pixel as an input and then pro-

cesses it with the AF, which increases the computational burden. LeNet architecture

has taken advantage of the fact that adjacent pixels are co-related, and features are

distributed in the image. LeNet has changed CNN learning and shows that learning

with shareable parameters is most effective. It reduces the number of parameters and

gives good accuracy as well.

The LeNet-5 architecture has seven layers, excluding the input layer. Two layers

are convolution layers, two are pooling layers, also known as subsampling layers, and

three are fully connected layers. The block diagram of LeNet architecture is shown in

Figure 4.2. The first layer is the convolution layer. It receives the input of image size

32ˆ32 pixels. The filter size used is 5ˆ5, and the depth of the filter is 6. The stride

size is one with zero paddings. The size of output from this layer is 28ˆ28ˆ6 (32-5+1

= 28). The second layer is the pooling layer. The output from the first convolution

layer acts as an input to this layer. In this layer, six filters of size 2ˆ2 are used with

36

a stride of two. As the filter size and stride are the same, there is a non-overlapping

sub-sampling operation, due to which the output size from the second layer is half of

the outsize from the first layer. The output size from the pooling layer is 14ˆ14ˆ6.

Convolution
Layer 1

Pooling
Layer 1

Convolution
Layer 2

Pooling
Layer 2

Fully Connected
Layer

Output
Layer

28*28*6
120

10*10*1614*14*6 5*5*16
1084

32*32*1

F=5*5
S= 1

F=2*2
S= 2

F=5*5
S= 1

F=2*2
S= 2

Lenet Architecture

Figure 4.2: Block Diagram of LeNet Architecture

The third layer is again a convolution layer in which sixteen filters of size 5ˆ5

are used with a stride of one. The output matrix size from this layer is 10ˆ10ˆ16.

The fourth layer is the pooling layer that used the same number of filters with the

same filter size as the second layer. The output from the fourth layer is 5ˆ5ˆ16. The

fifth layer is the fully connected layer. All the 400 input features are connected with

120 output nodes in this layer. The sixth layer is also a fully connected layer that

connects the 120 input nodes to 84 output nodes. The seventh layer is the final layer

of the architecture, called as output layer. Ten output nodes correspond to the ten

different digit values from 0 to 9. The softmax AF is used in this layer which gives

the probability of each node value.

The feature extraction and classification in CNN are done by combining multiple

computation layers. These layers form the basic building block of each CNN. The four

types of layers used in the architecture are explained in the following subsections.

4.1.1 Convolution Layer

The convolution layer is the main computation layer in the CNN architecture.

The convolution operation is the main computational operation in CNN. Before un-

derstanding the operation, we should know some basic definitions of image processing.

The input image can be defined in mathematical values by a matrix of pixel values.

37

When the input is a colored image, the pixel has three channels named Red, Blue, and

Green. In the case of a grayscale image, there is only one channel. There is a matrix

of trainable weights, which is called filter or kernel. The filter is used to extract the

features from the image. In the convolution layer, the input matrix is convolved with

the filters. The filters are slid over the whole input and perform the matrix-matrix

multiplication. It can be visualized as shown in Figure 4.3. The yellow color box is

the filter. It will start shining the light from the top left of the image and slide over

the image horizontally. It will then come vertically downwards and again slide over

the image horizontally. It will do so till the whole image is covered. The convolution

occurs in the same way between the image and the filter. The convolution operation

is done to extract the features of the image. If the feature of the input match with

the filter, the output matrix mathematical value is high. As in Figure 4.3(a) the

feature is matching with the filter. However, in Figure 4.3(b), there will be no feature

extracted, so the output matrix mathematical value will be low, like close to zero.

I
I
T

I
I
T

(a) Input feature match with the

filter

I
I
T

I
I
T

(b) Input feature not match with

the filter

Figure 4.3: Visualization of the filter sliding over the image

In the convolution operation, the filter slid over the image and performed convo-

lution. It occurs for each combination of filter and input part defined by the size of

the filter and the sliding number. A sliding number called stride size defines the space

between two samples of the input image.

Given an image matrix of size nˆ n

38

I “

»

—

—

—

–

I11 I12 . . . I1n
...

... . . .
...

In1 In2 . . . Inn

fi

ffi

ffi

ffi

fl

and a filter of size f ˆ f

F “

»

—

—

—

–

w11 w12 . . . w1f

...
... . . .

...

wf1 wf2 . . . wff

fi

ffi

ffi

ffi

fl

the convolution operation applied on input and filter is given as

I ˚ F “ Oab “

f
ÿ

q“1

f
ÿ

i“1

wqi ˆ Ipa`qqpb`iq (4.1)

Where O, I, w are output matrix, input matrix, and filter weights, respectively.

The equation can be better understood with an example of convolution as shown

in Figure 4.4. In this example, the input image matrix is of size 3ˆ3, and the filter

size is 2ˆ2. With stride one, the output matrix will be of size 2ˆ2.

* =

Input
(3*3)

Kernel
(2*2)

Output
(2*2)

Convolution in
CNN

𝐼11 𝐼12 𝐼13

𝐼21 𝐼22 𝐼23

𝐼31 𝐼32 𝐼33

𝑤11 𝑤12

𝑤21 𝑤22

𝑜11 𝑜12

𝑜21 𝑜22

Figure 4.4: Convolution operation of 3ˆ3 input matrix with the filter of size 2ˆ2

On expanding the equation 4.1 for this example, the output matrix value will be

given as

o11 “ I11 ˆ w11 ` I12 ˆ w12 ` I21 ˆ w21 ` I22 ˆ w22 (4.2)

39

o12 “ I12 ˆ w11 ` I13 ˆ w12 ` I22 ˆ w23 ` I22 ˆ w22 (4.3)

o21 “ I21 ˆ w11 ` I22 ˆ w12 ` I31 ˆ w21 ` I32 ˆ w22 (4.4)

o22 “ I22 ˆ w11 ` I23 ˆ w12 ` I32 ˆ w21 ` I33 ˆ w22 (4.5)

The input and weights are multiplied in the above equation, and all the multiplied

products are accumulated. The MAC unit in the hardware carries out this operation.

There are hundreds of convolution operations depending on the size. Thus by optimiz-

ing the MAC operations, there will be a significant effect on the complete architecture

parameters.

There are two convolutions layers used in the LeNet architecture. Both layers spec-

ification, trainable parameters and connections are shown in the Figure 4.5 and Fig-

ure 4.6

28*28*6
32*32*1

Convolution
Layer 1

No. of filters, 𝑛𝑐=6
Filter Size, F=5

Padding, P=0
Stride, S=1

Trainable Parameters
= Weight + Bias
= (5 ∗ 5 ∗ 1 ∗ 6) + 6 = 156

Connections = 28 ∗ 28 ∗ 156
= 122304

28*28*6 14*14*6

No. of filters, 𝑛𝑐=6
Filter Size, F=2

Padding, P=0
Stride, S=2

Trainable Parameters
= (coefficient + bias) ∗ filters
= 1 + 1 ∗ 6 = 12

Connections = 14 ∗ 14 ∗ 30
= 5880

Pooling
Layer 1

Figure 4.5: Specification of first convolution layer in the LeNet architecture

4.1.2 Pooling Layer

The pooling layer is mainly used between two convolution layers. The pooling

layer is also called the sub-sampling layer. It reduces the feature map size by using

filters. In pooling layers, the filter size is smaller as compared with the convolution

40

Convolution
Layer 2

No. of filters, 𝑛𝑐=16
Filter Size, F=5

Padding, P=0
Stride, S=1

Trainable Parameters
= Weight + Bias
= (5 ∗ 5 ∗ 6 ∗ 10) + 16 = 1516

Connections = 10 ∗ 10 ∗ 1516
= 151600

No. of filters, 𝑛𝑐=16
Filter Size, F=2

Padding, P=0
Stride, S=2

Trainable Parameters
= (coefficient + bias) ∗ filters
= 1 + 1 ∗ 16 = 32

Connections = 5 ∗ 5 ∗ 80
= 2000

Pooling
Layer 2

10*10*16
14*14*6

10*10*16 5*5*16

Figure 4.6: Specification of second convolution layer in the LeNet architecture

layer. The convolution layer detects the feature, and then the pooling layers decrease

the size of the feature map by adding some non-linearity.

The pooling filter works in the same fashion as the filters do in the convolution

layer. The filter slide over the image depending on the stride value. Pooling operation

is performed on each part of the image selected by the filter by sliding. Generally, two

types of pooling operations are used.

1. Average Pooling: Average pooling calculates the average for each portion of the

image. An example of average pooling operation is shown in Figure 4.7. In this

example, the average pooling operation is applied on 4ˆ4 image part with the

filter size of 2ˆ2 and stride two. The different color indicates the image part

selected by the filter size and stride. For each part, the average of the values is

calculated.

Input
(4*4) Output

(2*2)

Convolution in
CNN

1 4 10

1 2 3
4 10

2 5

5

2

0 1 5

1 2 2

1

4

Filter Size 2*2 with
Stride of 2

Input
(4*4) Output

(2*2)
1 4 10

1 2 3
2 5

1 3

5

2

0 1 5

1 2 2

1

4

Filter Size 2*2 with
Stride of 2

Figure 4.7: Example of Average Pooling Operation

41

2. Max Pooling: In max pooling operation for each part, the maximum value is

selected. An example of max-pooling operation is shown in Figure 4.8. It is

the most preferred pooling operation used nowadays. The advantage of this

operation is that it keeps the most relevant information from an image part.

The filter size is smaller because with a large filter size, probability of losing the

important information is high.

Input
(4*4) Output

(2*2)

Convolution in
CNN

1 4 10

1 2 3
4 10

2 5

5

2

0 1 5

1 2 2

1

4

Filter Size 2*2 with
Stride of 2

Input
(4*4) Output

(2*2)
1 4 10

1 2 3
2 5

1 3

5

2

0 1 5

1 2 2

1

4

Filter Size 2*2 with
Stride of 2

Figure 4.8: Example of Max Pooling Operation

There are two pooling layers used in the LeNet architecture. Both layers specifica-

tion, trainable parameters and connections are shown in the Figure 4.9 and Figure 4.10
28*28*6

32*32*1

Convolution
Layer 1

No. of filters, 𝑛𝑐=6
Filter Size, F=5

Padding, P=0
Stride, S=1

Trainable Parameters
= Weight + Bias
= (5 ∗ 5 ∗ 1 ∗ 6) + 6 = 156

Connections = 28 ∗ 28 ∗ 156
= 122304

28*28*6 14*14*6

No. of filters, 𝑛𝑐=6
Filter Size, F=2

Padding, P=0
Stride, S=2

Trainable Parameters
= (coefficient + bias) ∗ filters
= 1 + 1 ∗ 6 = 12

Connections = 14 ∗ 14 ∗ 30
= 5880

Pooling
Layer 1

Figure 4.9: Specification of first pooling layer in the LeNet architecture

The stride value in the pooling operation is primarily selected as same as filter

size. With the same size, there is no overlapping between the image parts. There

are several advantages of using the pooling layer. As we go deeper into the layers, it

decreases the feature map size without losing important information. The reduction

42

Convolution
Layer 2

No. of filters, 𝑛𝑐=16
Filter Size, F=5

Padding, P=0
Stride, S=1

Trainable Parameters
= Weight + Bias
= (5 ∗ 5 ∗ 6 ∗ 10) + 16 = 1516

Connections = 10 ∗ 10 ∗ 1516
= 151600

No. of filters, 𝑛𝑐=16
Filter Size, F=2

Padding, P=0
Stride, S=2

Trainable Parameters
= (coefficient + bias) ∗ filters
= 1 + 1 ∗ 16 = 32

Connections = 5 ∗ 5 ∗ 80
= 2000

Pooling
Layer 2

10*10*16
14*14*6

10*10*16 5*5*16

Figure 4.10: Specification of second pooling layer in the LeNet architecture

of size reduces the trainable parameters and also the memory to hold it. It shows an

effect on the training time as well.

4.1.3 Fully Connected Layers

There are two main tasks in the CNN network, feature detection, and classification.

The convolution layer detects the features, and the fully connected network takes the

feature extracted and classifies them into different classes. The fully connected layers

are used in the last layers of the CNN architecture. In fully connected layers, all

the neurons are connected to the other neurons from the previous layer as shown in

Figure 4.11.

Figure 4.11: Fully Connected Neural Network

Each neuron is doing the basic operation which is MAC followed by the activation

43

function. Mathematically the each layer operation is defined as

yi “ fp
ÿ

pWiXi ` bqq (4.6)

where,

Xi - is the input vector with dimension [n,1] where n is the number of neurons in

the previous layer

Wi - is the weight matrix with size [n,m], where m is the number of neurons in the

current layer

b - is the bias vector with size [n,1]

f - is the activation function

The details on the activation function are in the following subsection. There are two

fully connected layers used in the LeNet architecture. Both layers trainable parameters

are shown in the Figure 4.12

120

5*5*16

Trainable Parameters = Weight + Bias
= (400 ∗ 120) + 120 = 48120

Fully Connected
Layer 1

120
84

Trainable Parameters = Weight + Bias
= (120 ∗ 84) + 84 = 10164

Fully Connected
Layer 2(a) First Layer120

5*5*16

Trainable Parameters = Weight + Bias
= (400 ∗ 120) + 120 = 48120

Fully Connected
Layer 1

120
84

Trainable Parameters = Weight + Bias
= (120 ∗ 84) + 84 = 10164

Fully Connected
Layer 2

(b) Second Layer

Figure 4.12: Parameters of Fully Connected Layers

44

4.1.4 Activation Layer

In the human brain network, the neuron fires based on the input spike to that

neuron. Similarly, an AF is used in an ANN, acting as a decision function. The

AF brings non-linearity to the network. There are different types of AF used in the

network. The majorly used activation function is given below

1. Hyperbolic Tangent (Tanh): Tanh function has an S-shaped curve shown in

Figure 4.13. The output of the function lies between -1 and +1.

Figure 4.13: Hyperbolic Tangent Activation Function

The mathematical equation is given as

fpxq “ tanhpxq “
ex ´ e´x

ex ` e´x
(4.7)

The advantage of the hyperbolic tangent function is that its output contains

positive, negative, and zero values. The mapping becomes easy and makes the

function suitable for the classification between two classes. However, it suffers

from the vanishing gradient problem. The gradient becomes very small after a

particular value of x in which there is a slight change in the y value for x.

2. Sigmoid or Logistic: It has a similar S-shaped curve output shown in Figure 4.14.

The output of the sigmoid function lies between 0 and 1.

45

Figure 4.14: Sigmoid Activation Function

The mathematical equation is given as

fpxq “
1

1` e´x
(4.8)

It is widely used when we need to give the output as the probability function.

Also, the function is differentiable at all points. However, the sigmoid function

also suffers from the vanishing gradient problem.

3. Rectified Linear Unit (ReLU): Currently, this is the most commonly used activa-

tion function. The ReLU function is biologically more relevant than the sigmoid

and hyperbolic tangent function. The mathematical equation is given as

fpxq “ maxp0, xq (4.9)

Figure 4.15: Rectified Linear Unit Activation Function

46

The function passes the positive value and pulls the negative inputs to zero as

shown in Figure 4.15. The advantage of the ReLU function is that it is pretty

simple to implement, making the network light and increasing the training speed.

Also, it removes the problem of vanishing gradient, which occurs in sigmoid

and hyperbolic tangent. It is not used in the output layer where we want the

probability for each class.

4. Softmax: It is usually used in the output layer of the network. It takes a vector of

real values and converts them to the values between zero and one. It converts all

the values such that it sums to 1. It is used to give the probability of each class in

the output layer. If the input value is small, it converts into a small probability,

and if the input value is high, it gets converted into large probability values.

The mathematical equation is given as

σp~xqi “
exi

řL
j“1 e

xj

(4.10)

where,

~x - is the input vector to the function

xi - All xi values are the elements of the input vector. It can take any real value.

exi - The exponential function is applied to all the elements of the input vector.

The function will give a small value close to zero when the element value is small

and give a large value when the element value is large. It will always give a value

above zero. The range of this function is r0,8s

L - is the number of classes present in the output

řL
j“1 e

xj - is the normalization term. It makes all the output terms in the range

(0,1) such that all the values sum to 1.

The Softmax function is also called the multi-class logistic function because

softmax is a generalization of the logistic function. It is used for multi-class

classification. Softmax can be used for classification only when the classes are

mutually exclusive.

47

4.2 Hardware Implementation of the LeNet archi-

tecture

The LeNet architecture is designed on the field-programmable gate array (FPGA)

board. The board we used is the ZedBoard Xilinx Zynq®-7000, all programmable

system on chip (SoC). The complete details on the tool used and board is given in

Chapter 5. The architecture has been designed using the hardware descriptive lan-

guage (HDL) Verilog. The whole architecture register transfer level (RTL) schematic

generated by the HDL in the tool Vivado is shown in the Figure 4.16.

The structure is designed in a hierarchical pattern. For each layer in the LeNet

architecture, two modules are designed named as control and execution. The control

module generates all the control signals necessary for the operation depending upon

the clock and other module operations. The execution module on getting the control

signal executes the operation defined in that particular layer. The MAC is the primary

unit of the architecture, so a separate module is defined for the MAC operations for

all layers. By designing a separate module, it is easy to replace the conventional

MAC with the proposed MAC and analyze its impact. Block random access memory

(BRAM) is used in the architecture to store the intermediate results of each layer.

Distributive read only memory (ROM) is used to store the weights used by each layer.

The naming convention used is as follows, conv is used to represent the convolution

layer. The pool is used to represent the pooling layer, fc is used to represent the fully

connected layer. The control and execution module of each layer is named ctrl and

exec, respectively. The MAC operations performed in the module defined as shared

MAC. f stands for feature, which is used to store pictures and intermediate results

of each layer; w stands for weight, which is used to store the weights used by each

layer. The number following f/w represents the number of layers where RAM or ROM

is located. The network has a total of 7 layers. For example, f1 ram represents the

storage location of the input picture of the first layer. The weights are only used in

the convolution layers and the fully connected layers, so there are w1 rom, w3 rom,

48

en
a

f1
_w

ad
dr

[3
1:

0]

f1
_w

da
ta

[3
1:

0]

f1
_w

r_
en

[3
:0

]

bd
_c

lk

sy
s_

cl
k

st
ar

t

rs
t_

n

sy
s_

cl
k_

IB
U

F
_i

ns
t

IB
U

F

O
I

co
nv

1_
ct

rl

co
nv

1_
ct

rl

cl
k

co
nv

1_
cl

r

co
nv

1_
do

ne

co
nv

1_
st

ar
t

f2
_w

r_
en

rs
t_

n

f1
_r

ad
dr

[9
:0

]

f2
_w

ad
dr

[9
:0

]

w
1_

ra
dd

r[
4:

0]

po
ol

1_
ct

rl

po
ol

1_
ct

rl

cl
k

f3
_w

r_
en

po
ol

1_
cl

r

po
ol

1_
do

ne

po
ol

1_
st

ar
t

rs
t_

n

f2
_r

ad
dr

[9
:0

]

f3
_w

ad
dr

[7
:0

]

co
nv

2_
ct

rl

co
nv

2_
ct

rl

cl
k

co
nv

2_
cl

r

co
nv

2_
do

ne

co
nv

2_
st

ar
t

f4
_w

r_
en

rs
t_

n

f3
_r

ad
dr

[7
:0

]

f4
_w

ad
dr

[6
:0

]

w
3_

ra
dd

r[
4:

0]

po
ol

2_
ct

rl

po
ol

2_
ct

rl

cl
k

f5
_w

r_
en

po
ol

2_
cl

r

po
ol

2_
do

ne

po
ol

2_
st

ar
t

rs
t_

n

f4
_r

ad
dr

[6
:0

]

f5
_w

ad
dr

[4
:0

]

fc
1_

ct
rl

fc
1_

ct
rl

cl
k

f6
_w

r_
en

fc
1_

cl
r

fc
1_

do
ne

fc
1_

st
ar

t

rs
t_

n

f5
_r

ad
dr

[4
:0

]

f5
_s

el
[3

:0
]

w
5_

ra
dd

r[
8:

0]

co
nv

1_
ex

ec

co
nv

1_
ex

ec

cl
k

rs
t_

n

f2
_w

da
ta

[9
5:

0]
m

ac
_1

[1
37

:0
] co

nv
2_

ex
ec

co
nv

2_
ex

ec

cl
k

rs
t_

n

f4
_w

da
ta

[2
55

:0
]

m
ac

_2
[2

20
7:

0]

f2
_r

am

f2
_r

am

cl
k

f2
_w

r_
en

f2
_r

ad
dr

[9
:0

]

f2
_r

da
ta

[9
5:

0]
f2

_w
ad

dr
[9

:0
]

f2
_w

da
ta

[9
5:

0]

fc
2_

ct
rl

fc
2_

ct
rl

cl
k

f7
_w

r_
en

fc
2_

cl
r

fc
2_

do
ne

fc
2_

st
ar

t

rs
t_

n

f6
_r

ad
dr

[6
:0

]

w
6_

ra
dd

r[
6:

0]

f4
_r

am

f4
_r

am

cl
k

f4
_w

r_
en

f4
_r

ad
dr

[6
:0

]

f4
_r

da
ta

[2
55

:0
]

f4
_w

ad
dr

[6
:0

]

f4
_w

da
ta

[2
55

:0
]

se
l_

r_
i

R
T

L_
M

U
X

I0
S

=
1'

b1

I1
S

=
de

fa
ul

t
O

S

en
a_

IB
U

F
_i

ns
t

IB
U

F

O
I

f1
_w

ad
dr

[8
:0

]_
IB

U
F

_i
ns

t

IB
U

F

O
I

f1
_w

da
ta

[3
1:

0]
_I

B
U

F
_i

ns
t

IB
U

F

O
I

f1
_w

r_
en

[0
]_

IB
U

F
_i

ns
t

IB
U

F

O
I

bd
_c

lk
_I

B
U

F
_i

ns
t

IB
U

F

O
I po

ol
1_

ex
ec

po
ol

1_
ex

ec

cl
k

po
ol

1_
cl

r

rs
t_

n

f2
_r

da
ta

[9
5:

0]
f3

_w
da

ta
[9

5:
0]

fc
3_

ct
rl

fc
3_

ct
rl

cl
k

f8
_w

r_
en

fc
3_

cl
r

fc
3_

do
ne

fc
3_

st
ar

t

rs
t_

n

f7
_r

ad
dr

[6
:0

]

w
7_

ra
dd

r[
6:

0]

po
ol

2_
ex

ec

po
ol

2_
ex

ec

cl
k

po
ol

2_
cl

r

rs
t_

n

f4
_r

da
ta

[2
55

:0
]

f5
_w

da
ta

[2
55

:0
]

se
l_

r_
i_

_0

R
T

L_
M

U
X

I0
S

=
1'

b1

I1
S

=
de

fa
ul

t
O

S

f1
_r

am

f1
_r

am

en
a

rc
lk

w
cl

k

f1
_r

ad
dr

[9
:0

]

f1
_r

da
ta

[7
:0

]

f1
_w

ad
dr

[3
1:

0]

f1
_w

da
ta

[3
1:

0]

f1
_w

r_
en

[3
:0

]

f3
_r

am

f3
_r

am

cl
k

f3
_w

r_
en

f3
_r

ad
dr

[7
:0

]

f3
_r

da
ta

[9
5:

0]
f3

_w
ad

dr
[7

:0
]

f3
_w

da
ta

[9
5:

0]

f5
_r

am

f5
_r

am

cl
k

f5
_w

r_
en

f5
_r

ad
dr

[4
:0

]

f5
_r

da
ta

[1
5:

0]
f5

_s
el

[3
:0

]

f5
_w

ad
dr

[4
:0

]

f5
_w

da
ta

[2
55

:0
]

fc
1_

ex
ec

fc
1_

ex
ec

cl
k

f6
_w

r_
en

rs
t_

n

f6
_r

ad
dr

[6
:0

]

f6
_r

da
ta

[1
5:

0]

m
ac

_3
[2

75
9:

0]

fc
2_

ex
ec

fc
2_

ex
ec

cl
k

f7
_w

r_
en

rs
t_

n

f7
_r

ad
dr

[6
:0

]

f7
_r

da
ta

[1
5:

0]

m
ac

_4
[1

93
1:

0]

w
1_

ro
m

w
1_

ro
m

cl
k

w
1_

ra
dd

r[
4:

0]

w
1_

rd
at

a[
47

:0
]

w
3_

ro
m

w
3_

ro
m

cl
k

w
3_

ra
dd

r[
4:

0]

w
3_

rd
at

a[
76

7:
0]

w
5_

ro
m

w
5_

ro
m

cl
k

w
5_

ra
dd

r[
8:

0]

w
5_

rd
at

a[
95

9:
0]

w
6_

ro
m

w
6_

ro
m

cl
k

w
6_

ra
dd

r[
6:

0]

w
6_

rd
at

a[
67

1:
0]

se
l_

r_
re

g

R
T

L_
R

E
G

_A
S

Y
N

C

C
C

LR

D
Q

w
7_

ro
m

w
7_

ro
m

cl
k

w
7_

ra
dd

r[
6:

0]

w
7_

rd
at

a[
79

:0
]

sh
ar

ed
_m

ac
_b

an
k

sh
ar

ed
_m

ac
_b

an
k

cl
k

co
nv

1_
cl

r

co
nv

2_
cl

r

fc
1_

cl
r

fc
2_

cl
r

fc
3_

cl
r

se
l

f1
_r

da
ta

[7
:0

]

f3
_r

da
ta

[9
5:

0]

f5
_r

da
ta

[1
5:

0]

f6
_r

da
ta

[1
5:

0]

f7
_r

da
ta

[1
5:

0]

m
ac

_1
[1

37
:0

]

m
ac

_2
[2

20
7:

0]

m
ac

_3
[2

75
9:

0]

m
ac

_4
[1

93
1:

0]

m
ac

_5
[2

29
:0

]

w
1_

rd
at

a[
47

:0
]

w
3_

rd
at

a[
76

7:
0]

w
5_

rd
at

a[
95

9:
0]

w
6_

rd
at

a[
67

1:
0]

w
7_

rd
at

a[
79

:0
]

fc
3_

ex
ec

fc
3_

ex
ec

cl
k

f8
_w

r_
en

rs
t_

n

cl
as

s0
[1

5:
0]

cl
as

s1
[1

5:
0]

cl
as

s2
[1

5:
0]

cl
as

s3
[1

5:
0]

cl
as

s4
[1

5:
0]

cl
as

s5
[1

5:
0]

cl
as

s6
[1

5:
0]

cl
as

s7
[1

5:
0]

cl
as

s8
[1

5:
0]

cl
as

s9
[1

5:
0]

m
ac

_5
[2

29
:0

]

ge
t_

cl
as

s

ge
t_

cl
as

s

cl
k

ge
t_

cl
as

s_
do

ne

ge
t_

cl
as

s_
st

ar
t

cl
as

s0
[1

5:
0]

cl
as

s1
[1

5:
0]

cl
as

s2
[1

5:
0]

cl
as

s3
[1

5:
0]

cl
as

s4
[1

5:
0]

cl
as

s5
[1

5:
0]

cl
as

s6
[1

5:
0]

cl
as

s7
[1

5:
0]

cl
as

s8
[1

5:
0]

cl
as

s9
[1

5:
0]

cl
as

s_
in

de
x[

3:
0]

cl
as

s_
va

lu
e[

15
:0

]

cl
as

s_
in

de
x[

3:
0]

cl
as

s_
va

lu
e[

15
:0

]

do
ne

8:
0

8:
0

...

0

3:
1

Figure 4.16: RTL Schematic of LeNet architecture

49

No

Yes

Figure 4.17: Flowchart for Hardware Implementation of LeNet Architecture

50

w5 rom, w6 rom, and w7 rom. The final module is named as get class which will give

the final output of the architecture.

The complete data flow of the designed architecture is explained in the flowchart

shown in Figure 4.17. The first module is conv1 ctrl which represents the first convo-

lution layer control block. The control logic scans line by line according to the time

sequence and gives the corresponding input feature read address and weight read ad-

dress, and the write address of the output buffer. The feature read address is given to

the f1 ram module, where the input data is stored. The weight read address is given

to the w1 rom, containing the weight for the first layer convolution. The input feature

and weight data are given as input to the shared mac module, which performs the

MAC operation. The conv1 exec module represents the execution module for the first

convolution layer. The execution block performs the ReLU operation and writes the

output feature data to the f2 ram. When the execution of the first layer is completed,

the flow moves to the first pooling layer.

The first pooling layer control module (pool1 ctrl) generates the read and write

addresses of the memory to scan the entire input feature map. The input feature is

available in the f2 ram, which obtain after the first convolution layer. The calculation

is done in the execution block of the first pooling layer(pool1 exec). We have used

the max pooling operation in the pooling layer. In the max-pooling operation, the

computing unit is the comparator. When the execution of the first pooling layer is

completed, the output feature is stored in the f3 ram, and the flow moves to the second

convolution layer.

The second convolution layer data flow is the same as the first convolution layer.

The weight for the second convolution is stored in the w3 rom. After completion of the

second convolution layer operation, the flow moves toward the second pooling layer.

The second pooling layer executes similarly as the first pooling layer. The output

feature from the second pooling layer is stored in the f5 ram block. After the second

pooling layer, the flow moves towards the fully connected layers.

The fc1 represents the first fully connected layer which has 120 nodes in the LeNet

architecture. The fully connected layer is very similar to the convolution layer. The

51

difference is that the number of weights is comparatively more in fully connected

layers. In addition, the output result of the fully connected layer needs to be used at

the same time in the next layer, so it is not stored in the RAM and directly stored in

the register. The fc2 represents the second fully connected layer, and fc3 represents

the third fully connected layer which is also the output layer of the architecture. The

fc3 layer has ten output nodes. Since the fc3 layer is the last layer of the network,

the get class module compares the maximum value of the output and gives the final

classification result.

52

Chapter 5

Experiment Evaluation

In this chapter, we have elaborated on the design approaches and tools used to

design, verify and implement the architecture mentioned in the previous chapters.

There were two design approaches we have investigated.

First, for the MAC unit, a semi-custom VLSI circuit design approach is used. In

this approach, the different bit precision MAC unit is designed with and without power

gating. Then the physical parameters of the proposed MAC are compared with the

state-of-the-art MAC for the analysis. The second approach is for the complete LeNet

architecture using the proposed MAC. The LeNet architecture is designed, verified,

and implemented on the FPGA board.

5.1 Semi-Custom ASIC approach for MAC unit

For the MAC design and analysis, we have followed a semi-custom ASIC approach.

The design flow and the tools used are explained in the following subsections.

5.1.1 Design Flow

The design flow of the semi-custom approach is shown in Figure 5.1. The first

step towards design is to define the design specification. Then according to the design

specification, the proposed MAC architecture is presented in Verilog hardware descrip-

53

tion language(HDL). The RTL schematic is generated using the HDL code. Then the

functionality of the design is verified using simulation in Xilinx Vivado tool.

Design of MAC unit using HDL (Verilog)

Functional verification

Design Specification

Synthesize the design at 180nm and
45nm technology node

Conversion of RTL design to CMOS
design

Physical performance parameters
extraction

Figure 5.1: Design Flow for semi-custom circuit design approach

Addressing ASIC design, the RTL for our proposed 8-bit precision MAC archi-

tecture is synthesized, and results obtained by Design Compiler-Synopsys [51]. The

compiler’s netlist file is educed using Encounter-Cadence. The .cdl file generated then

use for the conversion of RTL digital design into CMOS design using the v2lvs-Mentor

Graphics [52]. The CMOS extracted design is simulated in Cadence-Virtuoso [53]

and extracted performance parameters at typical typical (TT) process corners and

mismatch. Addressing to the technology scaling impact, the multiply-accumulate ar-

chitecture is synthesized at technology nodes of 45nm and 180nm. Furthermore, to

see the impact of static power dissipation, two experiments are performed i.e. with

and without PG. The physical performance parameters are extracted for the proposed

54

MAC architecture with and without the power-gating technique and for the related

work.

5.1.2 Tools

The brief about the tools used in the semi-custom approach is in the following

subsections.

5.1.2.1 Xilinx Vivado

The first tool which is used is the Vivado Design Suite by Xilinx [54]. The tool

Vivado has an integrated design environment (IDE). It provides various tools from

the system level to the integrated circuit (IC) level. The key features of the tool are

to simulate, synthesize and implement the HDL design.

We have used the Vivado 2019.1 version for our research. In the semi-custom

approach, we have designed our MAC on the Vivado tool. After designing, we have

generated the RTL of the design. We used the simulation feature of the tool to verify

the functionality of the design.

5.1.2.2 Synopsys Design Compiler

Synopsys provides various tools for the synthesis process. The design compiler is

the core product of the synthesis. It optimizes the design and provides an efficient

representation of the design in terms of physical parameters. It optimizes and synthe-

sizes both combinational and sequential devices. The design flow of the compiler is

illustrated in Figure 5.2.

The design compiler takes the HDL file and converts that into a technology-

dependent optimized gate-level netlist. The task involves in the flow of the design

compiler synthesis is

1. Reading the source file: Two files are given as an input to the compiler. First

is the technology library file, which consists of the complete characterization of

all standard cells for the defined technology node. The second is the HDL file

55

which contains the design. The HDL file is read in two phases named analysis and

elaboration. In analysis, the compiler reads the file and looks for the syntactical

errors. After analysis in elaboration, the design is translated into a technology-

dependent design.

HDL file

ConstraintsTechnology
Library

Area
optimization

Timing
optimization

Datapath
optimization

Power
Optimization

Design
Compiler

Optimized gate level netlist

Reports for timing, area and
power analysis

Figure 5.2: Design Flow of Synopsys design compiler

2. Applying the constraints: In this, the constraints of the design are given. The

constraints mainly apply to the central clock of the design. Also, to simulate a

natural behavior, some uncertainty parameters are given.

3. Optimizing the design: The compiler looks for all the possible optimization of

the physical parameters and finally generates an optimized gate-level netlist.

4. Generating reports: At last, timing, power, and area analysis of the optimized

design reports were generated. These reports consist of vital physical parameters

56

like area utilization, static and dynamic power consumption, and critical path

delay in the design.

For our research, we have used two technology library files, the first one at 180nm

technology node and the second one at 45nm technology node.

5.1.2.3 Mentor graphics- V2LVS

The v2lvs is the acronym for Verilog to LVS (Layout vs. Schematic). Mentor

Graphics provides the v2lvs tool. It is used to translate the Verilog structured file into

a spice-level netlist file. The flow of the tool is illustrated in Figure 5.3.

HDL
Structured

File

Spice
Library

(optional)

HDL
Primitive
Library

V2LVS

LVS Spice Netlist

Figure 5.3: Design Flow of verilog to LVS

The tool can have three inputs, out of which two are mandatory, and one is op-

tional. The first mandatory input is HDL structured file. In our case, it is a Verilog

design file that contains the module information. The second input is the Verilog

primitive library file. It gives the information of pins associated with nets shown in

positional cell instances. The third input is the spice library which is an optional

input. This tool gives an LVS spice netlist which can be used as an input in Calibre

LVS.

57

5.1.2.4 Cadence- Encounter and Virtuoso

The Cadence tools work on the complementary metal-oxide-semiconductor

(CMOS) level schematic, layout, verification, and simulation. We have used the Ca-

dence tools for the implication of the power gating technique in the MAC unit. The

spice level netlist from the v2lvs is imported in the Cadence- Virtuoso to work on the

CMOS level design.

5.2 FPGA based approach for LeNet architecture

The MAC unit we have analyzed through a semi-custom digital design approach.

For the implementation of the LeNet architecture, we have used the FPGA-based

approach. The design flow for the FPGA-based approach and the tools used are

explained in the following subsections.

5.2.1 Design Flow

The design flow for the FPGA-based approach is illustrated in Figure 5.4. First,

the design specification is decided. Based on the design specification, the design is

described using the HDL. We have used the Verilog HDL for designing. The top-down

hierarchy is used for the LeNet architecture. Then RTL for the design is generated

using an HDL file. The RTL schematic of the design using HDL is explained in

Section4.2. Before moving to the RTL synthesis, the design is verified that functionally

it is working or not. The verification carries out using the functional simulation. If

there is an error in the design functionality, then the flow moves back to the design

description, and the design is rewritten to mitigate the errors. Once the design is

functionally correct, the RTL synthesis is performed. In synthesis, the RTL level

designed is converted into gate-level representation. The tool Vivado optimizes the

synthesis process for performance and memory usage. After synthesizing, the design

is again checked for functionality. Also, a timing analysis can be performed. If there is

any timing violation or functionality error, the design is again described, and the same

58

process follows till synthesis till it is functionally correct with no timing violation.

Design
Specification

Design Description
using HDL

Functional
Verification using

Simulation

RTL Synthesis

Post-synthesis
Functional and

Timing Simulation

Map, Place and
Route

(Implementation)

Post-implementation
Timing Analysis

FPGA Configuration File

Figure 5.4: Design Flow for FPGA based approach

The last step is the implementation of the synthesized design. In this, the netlist

is placed and routed on the FPGA device’s resources. During implementation, the

design’s logical, physical, and timing constraints are considered in mapping. After

implementation, post timing analysis can be performed to check if there is any timing

violation present. After successful implementation, the FPGA configuration file is

generated, which is used to transfer the design into the FPGA board.

59

5.2.2 Tools

The Xilinx Vivado tool is used for the complete FPGA-based approach. Vivado

provides an integrated environment where each step of the flow explained in section

5.2.1 can be executed. The Vivado tool is used to design the LeNet architecture,

synthesize it, and implement it on the FPGA board. In the following subsection, the

details on the FPGA board used and the IP used for the design are explained.

5.2.2.1 FPGA board

For our research, we have used Zedboard xc7z020clg484-1 FPGA [55]. ZedBoard

is a low-cost development board for the Xilinx Zynq-7000 SoC. The specification of

the FPGA board is shown in Table 5.1.

Table 5.1: Specification for the Zedboard - XC7Z020clg484-1 FPGA

Specification Count

LUT elements 53200

LUT RAM 17400

Flip Flops 106400

I/O Block 200

I/O pin count 484

Block RAM 140

DSP 220

Reference Operating Voltage 0.95 V

5.2.2.2 IP used in the design

For designing the LeNet architecture, we have used four existing IPs in the Vivado.

The IPs are the features that the Vivado tool provides. We can directly use the existing

IP and get the functionality in the design. IP is designed with the optimized method.

The four IPs which are used in our LeNet architecture design are as follows

60

1. Block Memory Generator: The block RAM(BRAM) is the onboard memory

with variable width and height. The block memory generator is the IP that

generates the memory using the embedded block memories primitives [56]. The

memories which are generated are performance and area optimized memories.

With a block memory generator, five types of memory can be generated.

• Single-port RAM

• Simple dual-port RAM

• True dual-port RAM

• Single-port ROM

• Dual-port ROM

We have used simple port dual RAM to store the input and the intermediate

layer results. Simple dual-port RAM is used to utilize the minimum resource of

FPGA. The modules f1 ram, f2 ram, f3 ram, f4 ram, and f5 ram are BRAM we

have used in the LeNet architecture design.

2. Distributed Memory Generator: The distributed memory generator generates

the memories using LUT RAM resources [57]. The generator offers a variety

of memories. We have used the distributive ROM for storing the weight values

for the convolution and fully connected layers. The modules w1 rom, w3 rom,

w5 rom, w6 rom, and w7 rom used in the design of LeNet architecture are dis-

tributive ROM IP.

3. Multiplier: The multiplier IP is used to implement a resource efficient high

performance multiplier [58]. This IP is used in all applications where fixed-point

or integer multiplication is required. The multiplier IP is used in the shared

MAC module in the LeNet architecture. The schematic symbol of the multiplier

IP is shown in Figure 5.5. The port description is as follows:

A - It is the input bus with dimension [N-1:0],

B - It is the input bus with dimension [M-1:0],

61

CLK - It is the rising edge clock input,

CE - It is active high clock enable input,

P

SCLR

CE

CLK

B

A

Figure 5.5: Multiplier IP Schematic Symbol

SCLR - It is active high synchronous clear input,

P - It is the product output

4. Adder/Subtracter: The adder/subtracter IP is used to perform the addition

or subtraction operations. It implements high-performance and area-efficient

adders and subtracters [59]. The IP can be customized to use either DSP slice or

FPGA logic for implementation. The schematic symbol of the adder/subtracter

IP is shown in Figure 5.6. The port description is as follows:

A - It is the input bus with dimension [N:0],

B - It is the input bus with dimension [M:0],

C IN - It is the input carry,

ADD - It is a control signal which defines which operation will be performed

addition or subtraction,

BYPASS - It loads the B port onto the S port,

CLK - It is the rising edge clock input,

CE - It is an active-high clock enable input,

62

SCLR - It is an active-high synchronous clear input

S - It is the output bus which is the sum in case of addition

C OUT - It is the output carry

P

SCLR

CE

CLK

B

A

S

SCLR

CE

CLK

B

A

C_IN

ADD

BYPASS

C_OUT

Figure 5.6: Adder/Subtracter IP Schematic Symbol

63

Chapter 6

Results and Discussion

The objective of the work is to design an efficient MAC unit. The MAC unit is

the dominant part of the neural network, taking most of the power and chip area.

We designed the MAC unit with efficient performance in terms of physical parameters

without compromising the accuracy. We observed the impact of technology scaling on

circuit delay and saturation current. For proposed logic, results from extraction and

observation are made for both single bitcell processing and an array of bitcell. With the

help of the efficient MAC, the neural network performance can be improved. We have

implemented the LeNet architecture on the FPGA board to analyze the network’s

performance with the efficient MAC unit. The MAC unit and LeNet architecture

analysis and performance results are discussed in the following sections.

6.1 Bit-precision Computation and accuracy im-

pact using benchmark LeNet and CaffeNet

The training of the DNN architecture is performed first on the LeNet benchmark

for MNIST and CIFAR-10 datasets and then on the CaffeNet benchmark for the

ImageNet dataset. The training is executed for different bit precision starting from

32-bit and then reducing by a factor of two till 2-bit. Table 6.1 shows the training

accuracy for three data sets at different fixed point bit precision. ImageNet dataset

65

consists around 14 million images whereas MNIST dataset consist of around 60,000

images. As the CaffeNet architecture is used for the ImageNet dataset the training

accuracy for CaffeNet is lower than the LeNet architecture. There is a shallow (1%) loss

of accuracy between usage of 8-bit and 32-bit fixed points. Sacrificing 1% of accuracy

will allow for 4ˆ overall memory bandwidth reduction. Based on the observation,

8-bit precision architecture is selected and compared with the state-of-the-art.

Table 6.1: Comparison of training accuracy for different bit-precision used in different

DNN architecture

Fixed Point Training Accuracy (%)

Data Precision LeNet CaffeNet

Representation MNIST CIFAR-10 ImageNet

32-bit 99.1 81.7 56.9

16-bit 98.7 81.2 56.8

8-bit 98.2 80.7 56.7

4-bit 97.6 79.6 06.0

2-bit 85.9 48.0 00.1

6.2 Bit-serial computation based 8-bit precision

MAC unit performance

The proposed 8-bit MAC architecture is compared with the various state-of-the-art

architectures on the important performance parameters like area, static and dynamic

power, and critical path delay. The physical parameters for the proposed 8-bit MAC

unit and state-of-the-art at higher technology node i.e 180nm and lower technology

node i.e 45nm are shown in Table 6.2 and Table 6.3 respectively. The area and

delay product comprises a performance metric known as area-delay-product (ADP)

66

Table 6.2: Performance parameter metrics for 8-bit precision proposed Bit-cell based

MAC architecture and state-of-the-art at 180nm technology node.

Performance

Parameters

IEEE Lib.

[35]

Array Mult.

[25]

Wallace Tree

[27]

Shift-Add

[31]

Vedic Math

[39]

Proposed MAC

without PG

Proposed MAC

with PG

Area pµm2q 4948.28 4932.50 5067.31 9150.93 6105.53 3631.26 3813.52

Dy. Power pmW q 1.98 1.89 2.10 0.74 2.14 1.97 2.02

St. Power pnW q 49.36 50.56 51.71 115.09 64.72 38.05 31.4

Critical Delay pnsq 20.76 26.98 21.00 15.60 25.05 16.94 17.06

ADPpfm2sq) 102.70 133.00 106.40 967.90 152.90 61.51 65.05

Integer signed signed signed unsigned signed signed/unsigned signed/unsigned

for comparing the proposed architecture with state-of-the-art.

At 180nm among all of the state-of-the-art architectures, IEEE Library architec-

ture [35] has the lowest ADP. We also observed that our bitcell based architecture

without PG technique ADP is 40.10% less than the IEEE library. With power gating,

there is a 5.75% increase in ADP compared with the without PG architecture, but it

still has 36.67% less ADP than IEEE standard library architecture. The static power

of the IEEE Library architecture is the lowest among the state-of-the-art architec-

tures. We observed that the bitcell based MAC without PG static power is 22.91%

less than the IEEE library architecture. The power gating technique main advantage

is on the static power parameter. We observed that with PG, there is even 17.47%

more decrement in the static power than the without PG architecture. Compared with

the IEEE library architecture, there is a total save of 36.38% in the static power with

PG architecture. The dynamic power of bitcell based MAC architecture is comparable

with the state-of-the-art architecture.

At 45nm, the Wallace tree has the least ADP among all state-of-the-art archi-

tectures as shown in Table 6.3. The proposed circuit without the PG technique has

34.35% less ADP than Wallace tree architecture. In the PG technique, there is an

increment of 21.30% in APD compared to without PG technique architecture. The

PG technique’s proposed circuit has 20.36% less ADP than the Wallace tree 8-bit

MAC architecture. The IEEE library architecture has the least static power among

67

Table 6.3: Performance parameter metrics for 8-bit precision proposed Bit-cell based

MAC architecture and state-of-the-art at 45nm technology node.

Performance

Parameters

IEEE Lib.

[35]

Array Mult.

[25]

Wallace Tree

[27]

Shift-Add

[31]

Vedic Math

[39]

Proposed MAC

without PG

Proposed MAC

with PG

Area pµm2q 832.06 862.57 838.16 890.73 1249.26 616.19 723.58

Dy. Power pµW q 495.52 475.58 497.93 200.6 527.47 529.52 542.31

St. Power pµW q 3.81 3.98 3.88 5.48 5.76 2.49 1.80

Critical Delay pnsq 6.71 7.43 6.44 10.98 7.25 5.75 5.94

ADPpfm2sq) 5.583 6.408 5.397 9.78 9.06 3.54 4.30

Integer signed signed signed unsigned signed signed/unsigned signed/unsigned

state-of-the-art architectures at 45nm. We observed that the bitcell based MAC with-

out PG static power is 34.64% less than the IEEE library architecture. The bitcell

based architecture with PG has 27.71% less static power compared with without PG

architecture. On comparing, the bitcell based architecture with PG has 52.75% less

static power than the IEEE library architecture. The bitcell based architecture with

power gating has shown more improvement with the scaling of the technology node.

We have used the column-based coarse-grain power gating technique. In the coarse-

grain power gating technique, the proposed 8-bit MAC required the number of MOS’s

is the same as used in the single bitcell with a change in MOS channel width due

to the driving load. The advantage of using the coarse-grain PG technique is that

the relative impact of area increase in 8-bit MAC is much smaller when compared

with the single power gated bitcell. For a single bitcell, there is a 147.5% & 319.0%

increase in area with PG technique, while for 8-bit MAC, there is just 5.01% & 17.42%

increase in area at 180nm and 45nm respectively. Overall it shows that the proposed

architecture has better performance than state-of-the-art, and it can be implemented

using a semi-custom approach for chip system design.

68

6.3 Higher bit precision-based multiply-

accumulate unit performance and comparison

The proposed bitcell based MAC has been named as BitMAC. The 8-bit precision

BitMAC shows promising performance compared with the state-of-the-art architec-

tures. Furthermore, we have explored the performance of the BitMAC for higher bit

precision to validate the physical parameter impact compare to the state-of-the-art.

The BitMAC is designed for 8, 12, and 16-bit precision. The BitMAC is compared

with the standard IEEE Library-based MAC unit design architecture [35]. The com-

parison for the physical performance parameters such as area, delay, dynamic power,

and static power for proposed BitMAC and IEEE library-based MAC unit at 180nm,

and 45nm technology node is shown in the following subsections. It is observed that

the proposed BitMAC is the desirable choice at lower as well as higher precision

multiply-accumulate computation in hardware implementation deep neural-network

accelerator.

6.3.1 Logic area utilization

The area utilization comparison of MAC unit using proposed method and IEEE

library architecture [35] for 8-bit and higher bit precision computation at 180nm and

45nm technology nodes is shown in Figure 6.1.

At 180nm on increasing the precision from 8-bit to 12-bit there is an increase of

5961 pµm2q in IEEE architecture while in BitMAC 4816 pµm2q has increased. Also,

changing the precision from 12-bit to 16-bit, there is an increase of 7627 pµm2q in

IEEE architecture while in BitMAC 6536 pµm2q is increased.

At 45nm on increasing the precision from 8-bit to 12-bit there is an increase of

949 pµm2q in IEEE architecture while in BitMAC 755 pµm2q has increased. Also,

changing the precision from 12-bit to 16-bit, there is an increase of 2056 pµm2q in

IEEE architecture while in BitMAC 994 pµm2q is increased.

It is observed from the figure that on increasing the bit precision, the area utilized

69

8 - b i t 1 2 - b i t 1 6 - b i t0
2 k
4 k
6 k
8 k

1 0 k
1 2 k
1 4 k
1 6 k
1 8 k
2 0 k P r o p o s e d (1 8 0 n m) I E E E [1 8] (1 8 0 n m)

 P r o p o s e d (4 5 n m) I E E E [1 8] (4 5 n m)

C o m p u t a t i o n a l B i t P r e c i s i o n

Co
mb

ina
tio

na
l A

rea
 @

18
0n

m
(um

2)

0 . 0
5 0 0 . 0
1 . 0 k
1 . 5 k
2 . 0 k
2 . 5 k
3 . 0 k
3 . 5 k
4 . 0 k

Co
mb

ina
tio

na
l A

rea
 @

45
nm

 (u
m2)

Figure 6.1: Combinational logic area utilization for different bit-precision computation

at 180nm and 45nm technology node

by the BitMAC is always less than the state-of-the-art architecture for both technology

nodes. Thus it is fair enough to say that BitMAC is the most efficient MAC in terms

of area utilization.

6.3.2 Logic critical path delay

The critical path delay comparison of MCA unit using proposed method and IEEE

library architecture [35] for 8-bit and higher bit precision computation at 180nm and

45nm technology nodes is shown in Figure 6.2.

At 180nm on increasing the precision from 8-bit to 12-bit, there is a 32.80% increase

in IEEE architecture delay while in BitMAC there is 28.39% increment in delay.

Also, changing the precision from 12-bit to 16-bit, there is a 34.02% increase in IEEE

architecture delay while in BitMAC the delay increases 14.80%.

At 45nm on increasing the precision from 8-bit to 12-bit, there is a 20.26% increase

in IEEE architecture delay while in BitMAC there is 16.17% increment in delay.

Also, changing the precision from 12-bit to 16-bit, there is a 19.95% increase in IEEE

architecture delay while in BitMAC the delay increases 10.02%.

70

8 - b i t 1 2 - b i t 1 6 - b i t0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0 P r o p o s e d (1 8 0 n m) I E E E [1 8] (1 8 0 n m)
 P r o p o s e d (4 5 n m) I E E E [1 8] (4 5 n m)

C o m p u t a t i o n a l B i t P r e c i s i o n

Cr
itic

al
Pa

th
De

lay
 @

18
0n

m
(ns

)

0

2

4

6

8

1 0

Cr
itic

al
Pa

th
De

lay
 @

45
nm

 (n
s)

Figure 6.2: Logic circuit critical path delay for different bit-precision computation at

180nm and 45nm technology node

It is observed from the figure that on increasing the bit precision, the critical path

delay for the BitMAC is always less than the state-of-the-art architecture for both

technology nodes.

6.3.3 Dynamic power consumption

The dynamic power consumption of MAC unit using proposed method and IEEE

library architecture [35] for 8-bit and higher bit precision computation at 180nm and

45nm technology nodes is shown in Figure 6.3.

It is observed that the dynamic power of BitMAC for 8-bit and 12-bit is compa-

rable to the IEEE library architecture. At 16-bit, the dynamic power is for BitMAC

is slightly lower than IEEE library architecture. Overall in BitMAC dynamic power,

there is neither positive nor negative effect compared with the state-of-the-art archi-

tecture.

71

8 - b i t 1 2 - b i t 1 6 - b i t 0

2 k

4 k

6 k

8 k

1 0 k

1 2 k P r o p o s e d (1 8 0 n m) I E E E [1 8] (1 8 0 n m)
 P r o p o s e d (4 5 n m) I E E E [1 8] (4 5 n m)

C o m p u t a t i o n a l B i t P r e c i s i o n

Dy
na

mi
c P

ow
er

@1
80

nm
 (u

W)

0 . 0

5 0 0 . 0

1 . 0 k

1 . 5 k

2 . 0 k

2 . 5 k

3 . 0 k

Dy
na

mi
c P

ow
er

@4
5n

m
(uW

)

Figure 6.3: Total dynamic power consumption for different bit-precision computation

at 180nm and 45nm technology node

6.3.4 Static power consumption

The static power consumption of MAC unit using proposed method and IEEE

library architecture [35] for 8-bit and higher bit precision computation at 180nm and

45nm technology nodes is shown in Figure 6.4.

It is observed that BitMAC static power for all the bit precision is lower than

the state-of-the-art power dissipation. At 180nm on average BitMAC static power is

18% less than IEEE library architecture. With technology scaling, this improvement

number increases. At 45nm on average BitMAC static power is 35% less than the

state-of-the-art. Thus, the BitMAC architecture is performance efficient on higher as

well as lower technology nodes.

72

8 - b i t 1 2 - b i t 1 6 - b i t 0
2 0 m
4 0 m
6 0 m
8 0 m

1 0 0 m
1 2 0 m
1 4 0 m
1 6 0 m
1 8 0 m

C o m p u t a t i o n a l B i t P r e c i s i o n

Sta
tic

Po
we

r @
18

0n
m

(uW
)

 P r o p o s e d (1 8 0 n m) I E E E [1 8] (1 8 0 n m)
 P r o p o s e d (4 5 n m) I E E E [1 8] (4 5 n m)

0
2
4
6
8
1 0
1 2
1 4
1 6
1 8

Sta
tic

Po
we

r @
45

nm
 (u

W)

Figure 6.4: Total static power consumption for different bit-precision computation at

180nm and 45nm technology node

6.4 Performance of the Lenet architecture with

proposed MAC unit

The LeNet architecture is implemented on the FPGA board using the FPGA-

based design approach. The two architectures are implemented. The first one uses

the conventional IEEE MAC unit, and the second one uses our proposed bitcell based

MAC unit (BitMAC). The comparison of the resource utilized by both the designs is

given in the Table 6.4. Out of all the resources listed in the table, the critical resource

is the look-up table (LUT). In the FPGA board, the computation is performed using

the LUT approach. The LUT is one parameter that needs to be less used, to design

a resource-efficient architecture. It is observed that with BitMAC, we were able to

reduce LUT utilization up to 20% in the Zedboard. The flip-flops usage is increased

by 5.26% with BitMAC. The flip-flops availability on the board is much higher than

the LUT. With the increase of 5% flip-flops usage, there is no significant effect on the

design utilization parameters. The MAC unit does not affect the other resources listed

73

in the table.

Table 6.4: Comparison of resource utilization in LeNet architecture with conventional

MAC and BitMAC

Resource
LeNet with

conventional MAC

LeNet with

BitMAC

Avaliable

Resource

Utilization % with

conventional MAC

Utilization %

with BitMAC

LUT 34,914 24,526 53,200 65.68 46.10

LUTRAM 232 228 17,400 1.34 1.30

Flip Flop 18,499 24,105 1,06,400 17.39 22.65

BRAM 33.50 33.50 140 23.93 23.93

IO 68 68 200 34.00 34.00

BUFG 1 1 32 3.13 3.13

As explained in Section 4.2, the shared MAC module is used for all the MAC

operations in the design. There are separate MAC units for the fully connected layers

in that module, and the convolution layers have shared the MAC unit. The impact of

BitMAC and conventional MAC unit on the LUT utilization is shown in Table 6.5.

Out of the total 34,914 LUT’s utilized by the complete conventional design, the MAC

unit alone has taken 26,640 LUT’s. In a conventional LeNet design, 76.30% LUT

is utilized by the MAC unit only. The total LUT utilized by MAC is divided into

three fully connected layers. It is observed that in each fully connected layer there is

approximate 50% LUT is saved using the BitMAC.

For timing analysis of the design, we have used a clock period of 15ns. The analysis

of the critical timing parameters in both designs is shown in Table 6.6.

We have observed three critical parameters of the design critical path delay, setup

slack and hold slack. The critical path delay gives the information of the worst path

delay in the overall design. The slack is the difference in the required time and the

arrival time of the data. The timing slack gives the information that the design is

working without timing violation or not.

The setup slack and Hold slack is given as

Setup slack “ Required T ime´ Arrival T ime (6.1)

74

Table 6.5: Comparison of look-up-table utilization by MAC unit for fully connected

layers in LeNet architecture

Layers LeNet with conventional MAC LeNet with BitMAC % Save

Fully connected layer 1 15,360 7,560 50.78

Fully connected layer 2 10,080 5,292 47.50

Fully connected layer 3 1,200 630 47.50

Total 26640 13482 49.39

Table 6.6: Timing Analysis for LeNet architecture with conventional MAC and Bit-

MAC

Parameter LeNet with conventional MAC LeNet with BitMAC Improvement %

Critical delay(ns) 13.77 11.31 17.86

Setup Slack(ns) 0.50 3.09 83.81

Hold Slack(ns) 0.019 0.019 0.00

Hold slack “ Arrival T ime´Required T ime (6.2)

The required time is when the data has to be present at a flip flop or node. It can

also be defined as the time taken by the clock to traverse through the clock path. The

arrival time is the actual time at which the data has arrives at that flip fop or node.

It can be defined as the time required by the data to traverse through the data path.

If the setup slack is negative, there is a setup timing violation, and if the hold slack is

negative, then there is a hold timing violation.

The LeNet architecture with BitMAC has shown improvement in the critical path

delay and setup slack. There is no improvement on the hold slack with the use of

BitMAC in the design.

75

Chapter 7

Conclusion

This thesis presents a semi-custom ASIC design approach for VLSI design archi-

tecture that can implement logic using digital design technique and CMOS design

technique that can be better in terms of area, delay, and power. We designed single-

bit multiplier architecture called bitcell and used that bitcell for higher precision MAC

unit implementation. The semi-custom ASIC design-based proposed model is synthe-

sized at both 180nm and 45nm technology node. To analyze the efficiency of the

proposed architecture, various performance parameters were calculated and compared

with the state-of-the-art. The results show that the proposed architecture is the best

choice among all architectures. Further, to address the lower technology node, the

coarse-grain power gating technique is used in the architecture to save the static power

dissipation. This MAC architecture can be used in all DNN applications, especially

where area and power are on a tight budget.

It is noticed that that the accuracy of the DNN increase with increasing the com-

putation elements and number for deep layers. Moreover, using a conventional MAC-

based approach deeper neural network is difficult to implement with minimum area

utilization. The ADP for different MAC designs is calculated, and it is observed that

the proposed approach has a better ADP than the state-of-the-art. Further, the LeNet

architecture is design using FPGA based design approach, and it is observed that by

using the proposed bitcell based MAC, the resource utilization and the timing analy-

sis is improved compared to the state-of-the-art. The proposed bit serial computing

77

technique based MAC design will be best suited in the AI-enable applications where

the area and power are in the tight budget.

7.1 Future scope of work

We have introduced a bit-serial computing technique based MAC unit which miti-

gate various physical parameters of the deep neural network. However there are some

future coarse of actions that can further improve the quality of the proposed work. In

this concern some of the salient point are as follows:

1. In this thesis work we focused on the hardware implementation and semi custom

VLSI design flow for MAC architecture. The proposed BitMAC can be further

investigated based on CMOS custom design approach

2. We have used 180nm and 45nm technology node for the analysis purpose. Recent

technology node like 22nm and 12nm can also be used for the analysis.

3. The CMOS level implementation of the proposed MAC also leads to design the

BitMAC incorporating the in memory compute technique. In the present work

the memory element is used to store the weight value, if in memory computa-

tion technique is implemented in the design using SRAM or other non volatile

memory the throughput of the design can be increased.

Finally we conclude that the intended objective of designing an efficient MAC unit

for DNN is successfully achieved.

78

Bibliography

[1] K. Siu, D. M. Stuart, M. Mahmoud, and A. Moshovos, “Memory requirements for

convolutional neural network hardware accelerators,” in 2018 IEEE International

Symposium on Workload Characterization (IISWC). IEEE, 2018, pp. 111–121.

[2] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neural nets as

a method for quantitative structure–activity relationships,” Journal of chemical

information and modeling, vol. 55, no. 2, pp. 263–274, 2015.

[3] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,

J. Chen, M. Chrzanowski, A. Coates, G. Diamos et al., “End to end speech

recognition in english and mandarin,” 2016.

[4] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-

based neural machine translation,” arXiv preprint arXiv:1508.04025, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[6] K.-L. Du and M. Swamy, “Neural network circuits and parallel implementations,”

in Neural Networks and Statistical Learning. Springer, 2019, pp. 829–851.

[7] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and

K. Vissers, “Finn: A framework for fast, scalable binarized neural network in-

ference,” in Proceedings of the 2017 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, 2017, pp. 65–74.

79

[8] Z. Li, Y.-J. Huang, and W.-C. Lin, “Fpga implementation of neuron block for

artificial neural network,” in 2017 International Conference on Electron Devices

and Solid-State Circuits (EDSSC). IEEE, 2017, pp. 1–2.

[9] G. Raut, S. Rai, S. K. Vishvakarma, and A. Kumar, “Recon: Resource-efficient

cordic-based neuron architecture,” IEEE Open Journal of Circuits and Systems,

vol. 2, pp. 170–181, 2021.

[10] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr, “Accel-

erating recurrent neural networks in analytics servers: Comparison of fpga, cpu,

gpu, and asic,” in 2016 26th International Conference on Field Programmable

Logic and Applications (FPL). IEEE, 2016, pp. 1–4.

[11] G. Raut, S. Rai, S. K. Vishvakarma, and A. Kumar, “A cordic based configurable

activation function for ann applications,” in 2020 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), 2020, pp. 78–83.

[12] D. Esposito, A. G. Strollo, and M. Alioto, “Low-power approximate mac unit,”

in 2017 13th Conference on Ph. D. Research in Microelectronics and Electronics

(PRIME). IEEE, 2017, pp. 81–84.

[13] T. Yang, T. Sato, and T. Ukezono, “An approximate multiply-accumulate unit

with low power and reduced area,” in 2019 IEEE Computer Society Annual Sym-

posium on VLSI (ISVLSI). IEEE, 2019, pp. 385–390.

[14] Xilinx 7 Series DSP48E1 Slice https://www.xilinx.com/support/ documenta-

tion/user guides/ug479 7Series DSP48E1.pdf.

[15] E. Wu, X. Zhang, D. Berman, I. Cho, and J. Thendean, “Compute-efficient

neural-network acceleration,” in Proceedings of the 2019 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays, 2019, pp. 191–200.

[16] G. Baccelli, D. Stathis, A. Hemani, and M. Martina, “Nacu: a non-linear arith-

metic unit for neural networks,” in 2020 57th ACM/IEEE Design Automation

Conference (DAC). IEEE, 2020, pp. 1–6.

80

[17] H. Kim, Q. Chen, T. Yoo, T. T.-H. Kim, and B. Kim, “A 1-16b precision recon-

figurable digital in-memory computing macro featuring column-mac architecture

and bit-serial computation,” in ESSCIRC 2019-IEEE 45th European Solid State

Circuits Conference (ESSCIRC). IEEE, 2019, pp. 345–348.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” Advances in neural information processing

systems, vol. 25, pp. 1097–1105, 2012.

[19] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and

H. Arshad, “State-of-the-art in artificial neural network applications: A survey,”

Heliyon, vol. 4, no. 11, p. e00938, 2018.

[20] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of

a tensor processing unit,” in Proceedings of the 44th annual international sympo-

sium on computer architecture, 2017, pp. 1–12.

[21] J. Heaton, “Ian goodfellow, yoshua bengio, and aaron courville: Deep learning,”

2018.

[22] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes:

Bit-serial deep neural network computing,” in 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1–

12.

[23] A. Delmas, S. Sharify, P. Judd, and A. Moshovos, “Tartan: Accelerating fully-

connected and convolutional layers in deep learning networks by exploiting nu-

merical precision variability,” arXiv preprint arXiv:1707.09068, 2017.

[24] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh,

“Bit fusion: Bit-level dynamically composable architecture for accelerating deep

neural network,” in 2018 ACM/IEEE 45th Annual International Symposium on

Computer Architecture (ISCA). IEEE, 2018, pp. 764–775.

81

[25] K. Yugandhar, V. G. Raja, M. Tejkumar, and D. Siva, “High performance array

multiplier using reversible logic structure,” in 2018 International Conference on

Current Trends towards Converging Technologies (ICCTCT). IEEE, 2018, pp.

1–5.

[26] T. Sato and T. Ukezono, “A dynamically configurable approximate array multi-

plier with exact mode,” in 2020 5th International Conference on Computer and

Communication Systems (ICCCS). IEEE, 2020, pp. 917–921.

[27] R. B. S. Kesava, B. L. Rao, K. B. Sindhuri, and N. U. Kumar, “Low power

and area efficient wallace tree multiplier using carry select adder with binary

to excess-1 converter,” in 2016 Conference on Advances in Signal Processing

(CASP). IEEE, 2016, pp. 248–253.

[28] M. Janveja and V. Niranjan, “High performance wallace tree multiplier using

improved adder,” ICTACT journal on Microelectronics, vol. 3, 2017.

[29] S. Mirzaei, A. Hosangadi, and R. Kastner, “Fpga implementation of high speed

fir filters using add and shift method,” in 2006 International Conference on Com-

puter Design. IEEE, 2006, pp. 308–313.

[30] R. Pinto and K. Shama, “Low-power modified shift-add multiplier design us-

ing parallel prefix adder,” Journal of Circuits, Systems and Computers, vol. 28,

no. 02, p. 1950019, 2019.

[31] D. A. Gudovskiy and L. Rigazio, “Shiftcnn: Generalized low-precision ar-

chitecture for inference of convolutional neural networks,” arXiv preprint

arXiv:1706.02393, 2017.

[32] M. Yuvaraj, B. J. Kailath, and N. Bhaskhar, “Design of optimized mac unit using

integrated vedic multiplier,” in 2017 International conference on Microelectronic

Devices, Circuits and Systems (ICMDCS). IEEE, 2017, pp. 1–6.

[33] V. K. Jha and M. S. Gupta, “Design of 16 bit low power vedic architecture using

csa & uts,” 2019.

82

[34] S. Manikandan and C. Palanisamy, “Design of an efficient binary vedic mul-

tiplier for high speed applications using vedic mathematics with bit reduction

technique,” Circuits and Systems, vol. 7, no. 9, pp. 2593–2602, 2016.

[35] “Iso/iec/ieee international standard - floating-point arithmetic,” ISO/IEC

60559:2020(E) IEEE Std 754-2019, pp. 1–86, 2020.

[36] S. Abed, Y. Khalil, M. Modhaffar, and I. Ahmad, “High-performance low-power

approximate wallace tree multiplier,” International journal of circuit theory and

applications, vol. 46, no. 12, pp. 2334–2348, 2018.

[37] H. Jiang, C. Liu, F. Lombardi, and J. Han, “Low-power approximate unsigned

multipliers with configurable error recovery,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 66, no. 1, pp. 189–202, 2018.

[38] N. Van Toan and J.-G. Lee, “Fpga-based multi-level approximate multipliers for

high-performance error-resilient applications,” IEEE Access, vol. 8, pp. 25 481–

25 497, 2020.

[39] A. S. K. Vamsi and S. Ramesh, “An efficient design of 16 bit mac unit using vedic

mathematics,” in 2019 International Conference on Communication and Signal

Processing (ICCSP). IEEE, 2019, pp. 0319–0322.

[40] M. Alçın, İ. Pehlivan, and İ. Koyuncu, “Hardware design and implementation of a

novel ann-based chaotic generator in fpga,” Optik, vol. 127, no. 13, pp. 5500–5505,

2016.

[41] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep con-

volutional neural networks for object recognition,” in 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015,

pp. 1131–1135.

[42] S.-Y. Chen, R.-B. Lin, H.-H. Tung, and K.-W. Lin, “Power gating design for

standard-cell-like structured asics,” in 2010 Design, Automation & Test in Europe

Conference & Exhibition (DATE 2010). IEEE, 2010, pp. 514–519.

83

[43] A. Abba and K. Amarender, “Improved power gating technique for leakage power

reduction,” International Journal of Engineering and Science, vol. 4, no. 10, pp.

06–10, 2014.

[44] P. S. Nair, S. Koppa, and E. B. John, “A comparative analysis of coarse-grain and

fine-grain power gating for fpga lookup tables,” in 2009 52nd IEEE International

Midwest Symposium on Circuits and Systems. IEEE, 2009, pp. 507–510.

[45] R. Chaintreuil, R. Uno, and H. Amano, “Mcma: A modular processing elements

array based low-power coarse-grained reconfigurable accelerator,” in 2013 In-

ternational Conference on Reconfigurable Computing and FPGAs (ReConFig).

IEEE, 2013, pp. 1–6.

[46] A. Sathanur, L. Benini, A. Macii, E. Macii, and M. Poncino, “Row-based power-

gating: A novel sleep transistor insertion methodology for leakage power opti-

mization in nanometer cmos circuits,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 19, no. 3, pp. 469–482, 2009.

[47] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[49] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[51] “Synopsys design compiler,” https://www.synopsys.com/implementation-and-

signoff/rtl-synthesis-test/design-compiler-graphical.html.

84

[52] “Mentor graphics eda tools,” https://eda.sw.siemens.com/en-US/.

[53] “Cadence virtuoso system design platform,” https://www.cadence.com/ko KR/

home/tools/ic-package-design-and-analysis/ic-package-design-flows/virtuoso-

system-design-platform.html.

[54] “Vivado design suite by xilinx,” https://www.xilinx.com/products/design-tools/

vivado.html.

[55] “Zedboard specification,” https://www.avnet.com/wps/portal/us/products/

avnet-boards/avnet-board-families/zedboard/zedboard-board-family.

[56] “Block memory generator v8.3 ip user guide,” https://www.xilinx.com/support/

documentation/ip documentation/blk mem gen/v8 3/pg058-blk-mem-gen.pdf,

2017.

[57] “Distributed memory generator v8.0 ip product guide,” https://www.xilinx.

com/support/documentation/ip documentation/dist mem gen/v8 0/pg063-dist-

mem-gen.pdf, 2015.

[58] “Multiplier v12.0 ip product guide,” https://www.xilinx.com/support/

documentation/ip documentation/mult gen/v12 0/pg108-mult-gen.pdf, 2015.

[59] “Adder/subtracter v12.0 ip product guide,” https://www.xilinx.com/support/

documentation/ip documentation/mult gen/v12 0/pg108-mult-gen.pdf, 2021.

85

Publications

1. Harsh Chhajed, Gopal Raut, Narendra Singh Dhakad, Sudheer Vishwakarma

and Santosh Kumar Vishvakarma, “BitMAC: Bit-Serial Computation based Ef-

ficient Multiply-Accumulate Unit for DNN Accelerator”, Circuits, System and

Signal Processing (Under Minor Revision)

87

