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Abstract

Cutting and packing problems are progressively encountered in several man-

ufacturing industries. The growing need for automation that may result in

economic saving and better utilization of raw stock, are the major challenges

faced by these industries. This thesis presents a number of methods for gen-

erating high quality solutions for these cutting and packing challenges. The

thesis addresses two problems: (i) one dimensional cutting stock problem that

deals with generating patterns for cutting the available raw stock that result

in minimum trim loss and, (ii) strip packing problem that involves packing of

small items into a large container (called strip) such that the resulting height of

packing layout is minimized.

A constructive framework to solve large complex problems is presented with

methods that lead to high material utilization. The framework is analyzed,

and its effectiveness is illustrated on different datasets. We investigate different

parameters for this framework, like low demand ratio, feasibility for other di-

mensions, etc. Metaheuristic and heuristic strategies are explored for effective

column generation techniques in order to stabilize and accelerate the solution

process, when applied to one dimensional cutting stock problem. Dynamism

feature of a genetic algorithm is used to improve the solution convergence rate

to a great extent, which controls the random behavior to an acceptable level.

A new placement strategy is proposed for the effective layout of small rect-

angles into a container. The obtained solution is improved by applying a meta-

heuristic technique that evolves a better placement sequence for items. Further,

the data structure implementation improves the scalability to large problem in-

stances. The main challenge is to develop systems of higher generality, which

can intelligently select, evolve or combine search methods (heuristics) to oper-

ate upon a wider range of problems and their instances. Hence, we proposed

ix



a new search technique that couples genetic algorithm with constructive hyper-

heuristic approach. It investigates different low level heuristics, which are capa-

ble of producing good solutions for packing problems. Experimental evidence

indicates that the hyper-heuristic can operate on a wide range of problems to

produce some competitive results. We also demonstrate the capability of iden-

tifying the effectiveness of the low-level heuristics. This research follows the

direction and contributes towards achieving the goal of exploring and automat-

ing the design of search systems. These facilitate the design and development

of a similar automation system for the same or other domains.
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2.1.2 Wäscher’s Improved Typology for C&P Problems . . . . 14

2.1.3 Lodi et al. Sub Typology . . . . . . . . . . . . . . . . . . 15

2.2 Cutting Problems Solution Methodology . . . . . . . . . . . . . 15

2.2.1 Exact Approach . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Heuristic Approach . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Metaheuristic Approach . . . . . . . . . . . . . . . . . . 20

2.3 Packing Problems Solution Methodology . . . . . . . . . . . . . 21

2.3.1 Exact Approach . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Heuristic Approach . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Metaheuristic Approach . . . . . . . . . . . . . . . . . . 25

2.3.4 Hyper-heuristic Approach . . . . . . . . . . . . . . . . . 27

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 28

xiii



CONTENTS

3 Column Generation and 1D-Cutting Stock Problem 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Column Generation . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . 31

3.3 The Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Algorithm Formulation . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Minimize Number of Different Patterns . . . . . . . . . . . . . . 34

3.5.1 Encoding Scheme: Chromosome Representation . . . . . 36

3.5.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . . 38

3.5.3 Penalty Function . . . . . . . . . . . . . . . . . . . . . . 39

3.5.4 Selection Mechanism . . . . . . . . . . . . . . . . . . . . 40

3.5.5 Adaptive Crossover Mutation Operator . . . . . . . . . . 40

3.6 Computational Results . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . 43

3.6.2 A Comparison with Integrated Approach . . . . . . . . 45

3.6.3 Comparison with other Metaheuristic Approaches . . . . 46

3.7 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 The Multiple Length 1D-Stock Problem 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Branch-Cut-Price . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Branching Strategy . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Rounding Procedure . . . . . . . . . . . . . . . . . . . . 52

4.3 Problem and Mathematical Formulation . . . . . . . . . . . . . 52

4.4 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Pattern Generation Approach to Accelerate Column Gen-

eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Computational Selection and Updation . . . . . . . . . . 57

4.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Data Instances . . . . . . . . . . . . . . . . . . . . . . . 59

xiv



CONTENTS

4.5.2 Assessing the Performance of Proposed Heuristic Against

Other Existing Heuristics . . . . . . . . . . . . . . . . . 60

4.6 Assessing the Performance of Proposed Heuristic Against Exact

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Metaheuristic Approach to 2D-Strip Packing 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Two Dimensional Strip Packaging . . . . . . . . . . . . . 68

5.2.2 Biased Random Key Based Genetic Algorithm . . . . . . 70

5.3 Two Dimensional Placement Heuristic . . . . . . . . . . . . . . 71

5.3.1 Placement Approach . . . . . . . . . . . . . . . . . . . . 71

5.3.2 Empty Block Creation . . . . . . . . . . . . . . . . . . . 72

5.3.3 The Placement Position Search Strategy . . . . . . . . . 75

5.3.4 Merge Rectangle Routine . . . . . . . . . . . . . . . . . . 76

5.3.5 Metaheuristic Enhancement to Strip Packing . . . . . . . 77

5.3.6 Crossover Function . . . . . . . . . . . . . . . . . . . . . 78

5.3.7 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . 79

5.4 Improvement on Existing Genetic Algorithm Approach . . . . . 80

5.5 Comparative Evaluation of the Packing Strategy . . . . . . . . . 82

5.5.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . 82

5.5.2 Comparison with Other Metaheurisitic Approaches . . . 84

5.5.3 Statistical Analysis for Heuristic Approach . . . . . . . . 87

5.5.4 Comparison with Genetic Based Approaches . . . . . . . 89

5.5.5 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . 90

5.5.6 Algorithm Complexity . . . . . . . . . . . . . . . . . . . 90

5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Hyper-heuristic Approach to 2D-Strip Packing 93

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Hyper-heuristic . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Proposed Technique . . . . . . . . . . . . . . . . . . . . . . . . . 98

xv



CONTENTS

6.4.1 Problem Decomposition . . . . . . . . . . . . . . . . . . 98

6.5 Heuristic Decision . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5.1 Hyper-heuristic Combined with Model . . . . . . . . . . 103

6.5.2 GA Approach to Proposed Model . . . . . . . . . . . . . 106

6.6 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . 108

6.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusion 115

7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 117

xvi



List of Figures

3.1 One dimensional cutting stock problem with standard stock type. 30

3.2 Column generation GA sub-routines. . . . . . . . . . . . . . . . 36

3.3 Chromosome representation. . . . . . . . . . . . . . . . . . . . . 38

3.4 Trim loss produced by different approaches. . . . . . . . . . . . 44

3.5 Statistical analysis of integrated LP-based and proposed approach. 44

3.6 Statistical analysis for adaptive crossover. . . . . . . . . . . . . 45

4.1 Graphical interpretation of execution time with exact approaches. 63

5.1 A view of 2D-strip packing. . . . . . . . . . . . . . . . . . . . . 68

5.2 Biased random key sequencing. . . . . . . . . . . . . . . . . . . 70

5.3 Creation of empty rectangle blocks. . . . . . . . . . . . . . . . . 72

5.4 Summary of proposed strategy. . . . . . . . . . . . . . . . . . . 74

5.5 Strip packing with gap. . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Merging empty rectangular block (x-coordinate). . . . . . . . . . 76

5.7 Merging empty rectangular block (y-coordinate). . . . . . . . . . 77

5.8 General overview of proposed hybrid approach. . . . . . . . . . 77

5.9 Maximal preservative crossover . . . . . . . . . . . . . . . . . . 79

5.10 Solution for dataset instances. . . . . . . . . . . . . . . . . . . . 81

5.11 Study of (a) number of generation (b) frequency of occurrence of

different values of best fitness in 50 runs of the algorithm. . . . . 85

5.12 Means plot and Tukey’s confidence intervals (CI) for the evalu-

ated algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.13 Means plot and Tukey confidence intervals (CI) for the meta-

heuristic algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Relationship between hyper-heuristic and problem instances. . . 95

xvii



LIST OF FIGURES

6.2 Dynamic level creation at the initial stage (a) initial (b) dynamic

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Merging of dynamic level. . . . . . . . . . . . . . . . . . . . . . 100

6.4 Subsequent placement of levels. . . . . . . . . . . . . . . . . . . 101

6.5 Low level heuristic operating on problem instance with 3 cases. . 104

6.6 Best and average solution against solution cutting (a) 300 pieces

(b) 1000 pieces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.7 Violation of constraints for initial population. . . . . . . . . . . 106

6.8 A comparison of the (a) HSA, (b) BBFM and (c) Proposed using

problem C7.1 from Hopper and Turton instances. . . . . . . . . 110

6.9 Trim loss (%-gap) analysis for Burke instances. . . . . . . . . . 110

xviii



List of Tables

2.1 Different typology for C&P problems. . . . . . . . . . . . . . . . 11

2.2 Improved typology by Wäsher et al. [3] for intermediate problem

types for output maximization problem (small items to be packed

to larger items). . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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Chapter 1

Introduction

Cutting and Packing (C&P) problems are common day-to-day problems that

have existed for centuries, whether it is associated with household work like

packing of utensils, animals, metal block or to pharmaceutical packing, shipping

industries, newspaper article arrangement, etc. The tasks at those times were

handled mechanically by some simple calculation or intuition with not much

emphasis on scrap minimization. However, the problem was first reported by

Kantorovich in 1939 [1], but published in 1960, for scrap minimization in One

Dimensional Cutting Stock Problem (1D-CSP). The problem has an objective

of minimizing the amount of raw stock used, in order to meet the customer

demand of variable length stock, at the cost of minimum scrap produced.

The problem finds importance from the industrial perspective, where there

is an ever demanding requirement for efficient material utilization and waste

minimization. The commercial perspective shows that the main cause of the

waste generation is often influenced by the higher production rate. This has a

vital impact on the economy of any country. In the changing scenario with the

improvement in living standard, the demand for textile and clothing is expected

to grow. Use of traditional technology in cutting and packaging are a bottleneck

to productivity. The major concern for these firms is the amount of waste

produced. This necessitates the need for effective and efficient semi-automate

cutting and packing systems in order to keep up with the increasing demand for

the growth of these industries. Some fully automated systems with appropriate

machineries were deployed by some factories. It has been observed that the

performance of the automated procedure can be more efficient than the same
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problem attempted by humans. Thus, it is evident that a small enhancement

or up-gradation in these cutting and packing procedures can result in huge

economical saving from the companies perspective. Moreover, it would result in

change for better environmental conditions, which is undoubtedly a substantial

research direction. Thus, the problem is studied by many researchers, with

diverse approaches being taken for solving cutting and packing problems. The

research work includes developing approaches that are a variant of existing, or

are based on rightly calling of procedures and sometimes only to provide vague

insight into how well each of the approaches may fare on any given problem.

Many automated approaches have been proposed based on different tech-

niques like linear and dynamic programming, heuristic methods, local search

methods and more recently a metaheuristic methods such as genetic and evo-

lutionary algorithms, artificial neural networks, and Simulated Annealing (SA).

However, their performance in terms of computation time depends on the type

and size of the problem, which can be improved further. We add to the state of

knowledge by the development and evaluation of novel metaheuristic hybridized

cutting and packing techniques to obtain optimum results in less computation

time. Our approaches achieve a good trade-off between the solution quality and

the computational effort made to reduce the size of the search space.

The purpose of this chapter is to briefly introduce both the problems, report

the objectives, highlight the contributions, and to present a detailed elabora-

tion of the work reported in thesis to appear in the following chapters. The

motivation behind studying the problems and scope are described in 1.1. The

objectives are listed in 1.2 and the corresponding contributions made are re-

ported in 1.3. The general preview of the organization of material in this thesis

is presented in 1.4.

1.1 Motivation and Scope

These problems are NP-hard in nature, easy to understand, but difficult to find

a solution, the CPU computation time increases as the problem size grows and

may become intractable even on highly configured systems. Thus, processing of

algorithms for these problems are not simple and require a great deal of efforts

from the research community. Many problems from cutting and packing areas

2
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are tackled using different techniques, but still there exists a scope for further

improvement and few of these problems are still an open challenge. In this

thesis, both these problems are studied because of their practical applicability

in commercial and industrial real world. These are combinatorial problems in

operations research common in business and industry domains. In cutting, a

major challenge faced by the manufacturing industry is to cut down the produc-

tion cost with high material utilization. Other industries like textile, leather,

and ship building focus on economic criteria like reducing the pattern genera-

tion time. On the other hand, packing is a key component in transportation

of goods from one place to another. It has an impact on various other factors

like number of vehicles used, protection of goods, etc. It is obvious, therefore,

that the improvements in automated cutting and packing procedures can lead

to big savings for both, the companies and the environment, and are certainly

a worthwhile research direction. All these encourage the need for an automated

system that reduces manual generation requiring men and days.

1.1.1 Objectives

The objective of our research work is first to address 1D-CSP and develop new

integrated heuristics or improve known heuristics in an attempt to find a solution

as quickly as possible with minimal enumeration of cutting patterns. Next, is

to develop heuristic as well as a metaheuristic algorithms to find an efficient

packing mechanism for the given set of small rectangles. In order to realize

these general aims, the following specific objectives are pursued in our research

work:

1. Design a new, robust, and flexible to change system that can be used

to model different cutting and packing problems occurring in major in-

dustries like shipbuilding, textile, wood, plastic, sheet metal, and leather

manufacturing.

2. To analyze the well-known methods from literature competent in solving

1D-CSP and to strive towards improving some of these algorithms and

propose new ones.

3. To analyze, design and implement a suitable
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(a) hybrid integrated approach for the standard 1D-CSP, and

(b) new and improved heuristic algorithm for One Dimension Multiple

Cutting Stock Problem (1D-MCSP).

4. To analyze the proposed algorithms in terms of their solution qualities and

execution time for

a) a general multiple length 1D-CSP stock problem, and

b) the special case with a low demand ratio.

5. To establish a new

a) rectangle placement approach for the Two Dimensional Strip Packing

Problem (2D-SPP), and

b) coupling of placement strategy with modified standard Genetic Algo-

rithm (GA) for better exploitation and exploration of the search space.

6. To design and implement a suitable and efficient new search methodology

using hyper-heuristic that automates the design process.

7. To implement the algorithms in the above stated objectives and to perform

comparative analysis drawing conclusions based on their performance

a) in terms of solution quality and computation time using benchmark

datasets, and

b) in case of a metaheuristic approach to investigate the impact of at-

tributes on the algorithm performance.

1.1.2 Contributions

In this research work, we address a number of issues associated with cutting and

packing problems and improve the state of knowledge in the following ways:

1. A model is designed that exploits the bounded knapsack subproblem for

Column Generation (CG) such that it stabilizes and accelerates the solu-

tion process by reducing the number of iterations.

2. A new fast metaheuristic approach for cutting pattern generation is pro-

posed that takes advantage of problem characteristic along with the ex-

isting constructive Integer Linear Programming (ILP) techniques capa-

ble of solving large problem instances. The major strength of the model
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is integration of ILP with GA techniques to form a single comprehen-

sive procedure. Hybridization of these two techniques is used to combine

the relative strengths like local exploitation of the dual problem structure

with interesting characteristics by Linear Programming (LP), and global

exploitation by GA, which accelerates the column generation.

3. A fast and highly effective heuristic model is proposed for multiple length

cutting stock problems in limited quantities that significantly reduce the

generated patterns.

4. A novel placement approach is proposed for two dimensional strip packing,

which modifies the complex placement strategies by simple ones to improve

the overall efficiency of the designed system. The developed algorithm for

packing is complete and robust, which allows placement with and without

rotation of items.

5. The proposed GA is derived from the standard one with novel fitness

function for design evaluation and to enforce proper selective pressure.

6. A new hyper-heuristic search approach using genetic algorithm with an au-

tomatic selection model is proposed to select the best Low Level Heuristic

(LLH) for 2D-strip packing.

7. A new search methodology is proposed to automate the design process. It

is based on a hyper-heuristic search approach that uses grouping technique

to recursively solve sub minimization problem. Each iteration, fills some

part of the empty region and generates new subsections. Such division of

work improves the total computation time. The proposed system design

techniques were previously neither applied to cutting nor were drawn from

the human analysis and artificial intelligence.

8. We demonstrate the improvement for a number of standard benchmark

instances using our proposed approaches.

1.2 Organization of the Thesis

In this thesis, we explore two well known optimization problems from cutting

and packing research areas. We present two different approaches to solve each
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class of problem. Thus, the thesis is divided into four logical sections and is

organized as follows:

Chapter 2 details the background study of the previous work undertaken

in the field of cutting and packing problems. The chapter starts with the in-

troduction to various classification systems for cutting and packing problems,

where the characterization into groups is governed by the problem features. An

overview of recent and existing methodology to solve both classes of problems

are presented. Initially, background study is presented for cutting problem with

focus on exact, heuristic and metaheuristic methods. Similarly, the work from

the literature is reported for packing problem by using exact, heuristic and meta-

heuristic methods. The chapter also introduces and presents a brief literature

survey on hyper-heuristic methods.

Chapter 3 is devoted to standard one dimensional cutting stock problem.

The chapter describes the proposed mathematical model that is exploited for

column generation. An effective column generation techniques are presented

that stabilize and accelerate the solution process. We explain how the accelera-

tion is achieved by imposing penalty function on the fitness value for evolution

of better population. The GA capability is enhanced by using dynamic behav-

ior in crossover and mutation operators. The chapter details how the approach

dynamism helps to improve the solution convergence rate to a great extend

and also controls the random behavior to an acceptable level. The chapter fi-

nally reports the experimental work, which evaluates the proposed technique as

compared to existing metaheuristic, heuristic and exact approaches.

In chapter 4, we address a classical one dimensional multiple length cutting

stock problem. An integrated two-stage approach is presented for the cutting

pattern generation and customer demand fulfillment. The solution approach

minimizes the total trim loss occurring at all the stages of the technological

process meeting customers demand for the finished rolls. The chapter describes

the case of multiple length stock materials available in limited quantities. In the

first stage, cutting patterns are generated to cut the available stocks and the

second stage determines the selection of pattern, number of ordered items to be

cut and updating of remaining unused stock and demand for ordered items. We

analyze its behavior using various randomly generated and reported instances

in the literature.
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Chapter 5 addresses the scrap minimization problem for 2D-strip packing.

It presents a hybrid approach that combined genetic encoding and evolution

scheme with the proposed placement approach. A newly developed fast packing

strategy is presented, which improves over the existing ones. This is followed

by a brief description of the statistical test that is used to compare the algo-

rithms on mean plot for optimality gap. Computational results are reported on

the benchmark datasets against metaheuristic, exact and heuristic algorithms

reported in the literature.

In chapter 6, presents another solution technique, which is a novel hyper-

heuristic decomposition approach for 2D-strip packing problem. The hyper-

heuristic approach, which automates the design process for packing of two di-

mensional rectangular blocks, is discussed. The chapter adds to the state of

knowledge by introducing a new search technique, in which genetic algorithm

is coupled with the hyper-heuristic for getting the optimal solution at an ac-

ceptable rate. The chapter reports the result for proposed method showing the

effectiveness and efficiency of the automated system for determining the place-

ment patterns.

Finally, in chapter 7, conclusions are drawn regarding the research results

of each of the addressed problems and the overall work in the thesis. The

contributions to the state-of-the-art of the tackled subjects are outlined, and

some future work directions are discussed.
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Chapter 2

Background and Related Work

C&P is one of the oldest fields of research that falls under the sub-discipline

of operations research. The main reason for the continuing efforts in these

fields is due to the growing need in various industries for an efficient automated

system over the manual solutions. Moreover, these problems have implications

on the growing economy of developing as well as developed countries. A cutting

problem may be defined as cutting of larger objects into small pieces of specified

dimensions to meet the required demand and minimize the associated trim loss.

Packing, on the other hand, in the best way can be defined as placing smaller

size objects into a larger container by minimizing the in-between vacant space

or in other words, maximizing the occupancy of the container. The typologies

of C&P problems have similar logical structure, resulting from the geometric

dimensions and conditions like small items are laid on larger.

2.1 Classification of C&P Problem

The proper classification of C&P problem is done by considering three known

typologies from the literature. The basic framework for cutting and the packing

problem involves either to cut a larger object into smaller items as in the cutting

problems or to pack/arrange the small items into a larger object together, to

form geometric alignment or patterns for packing. These typologies are based

on the characterization of objects into different groups based on certain common

similarity criteria. The very first classification, given by Dyckhoff [2] in 1990,

was a comprehensive typology to integrate various kinds of problems based on

the logical structure. The main aim is to unify the different use of notions in
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the literature and to concentrate further research on special types of problems.

An improved typology by Wäscher et al. (2007) [3], where they claimed that

some deficiencies exist in the Dyckhoff typology, which cannot be generalized

with the recent development in C&P problems. A sub typology for the packing

problem is given by Lodi et al. (2002) [4]. These topologies are discussed in the

subsequent sub-sections.

2.1.1 Dyckhoff Typology

This is the very first classification for the C&P problems into distinctly spec-

ified groups. The classification is required as both the problems find a wide

applicability in different domains. On one hand, cutting is a major problem

in manufacturing industries like paper, wood, steel, textile, metals, etc., while

packing finds applications in transportation, dealing with vehicles and goods,

pallet loading, bin packing, etc. Packing also has different implications like

it can be used in the newspaper industries for article arrangement, in VLSI for

chip design layout, scheduling problems in computers, memory allocation during

data storage, and many more.

Dyckhoff characterization is based on four major features, which are di-

mensionality, the kind of assignment, the assortment of large objects and the

assortment of small items as shown in Table 2.1. The first one, points at the

geometrical dimension of the large as well as small objects. The kind of assign-

ment considers the case whether the problem involves selection of small objects

combined to form a pattern assigned to the large object, or whether all small ob-

jects are combined that are then assigned to a proper selection of large objects.

The third feature, the assortment of large objects is classified as whether there

is a single large object, a set of identical large objects, or many large objects of

varying dimensions. The last, consider the assortment of small items whether

there are few or many small objects of different shapes, many small items, but

with relatively few different shapes, or whether all items are congruent. The

dimensionality is characterized by four values: 1 stands for one dimension, 2

for two dimension, 3 for three dimension and N�3 stands for the N dimen-

sion problem. Different notations are used to represent the problem subtype.

The kind of assignment is represented by using two variables B and V, where B
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Table 2.1: Different typology for C&P problems.

Dyckhoff C&P typology Improved Wäscher C&P typology
Dimensions

1 One-dimension 1 One-dimension
2 Two-dimension 2 Two-dimension
3 Three-dimension 3 Three-dimension
N N-dimension N N-dimension

Kind of assignment
B All objects and a se-

lection of items
OM Output value maxi-

mization

V A selection of objects
and all items

IM Input value minimiza-
tion

Assortment of large objects
O One object O One object
I Identical figures Oa All fixed dimensions
D Different figures Oo One variable dimen-

sion
Om More variable dimen-

sion

Sf Several figures
Si Identical figures
Sw Weakly heterogeneous

assortment
Ss Strongly heteroge-

neous assortment
Assortment of small objects

F Few items (of different
figures)

IS Identical small items

M Many items of many
different figures

W Weakly heterogeneous
assortment

R Many items of rel-
atively few different
(incongruent) figures

S Strongly heteroge-
neous assortment

C Congruent figures
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Table 2.2: Improved typology by Wäsher et al. [3] for intermediate problem
types for output maximization problem (small items to be packed to larger
items).

Characteristic of large object Assortment of the small items
Identical Weakly Hetero-

geneous
Strongly Hetero-
geneous

One
large
Object

Identical
Items
Packing
Problem
(IIPP)

Single Large
Object Place-
ment Problem
(SLOPP)

Single Knap-
sack Problem
(SKP)

All fixed
dimensions

Identical ———- Multiple Iden-
tical Large
Object Place-
ment Problem
(MILOPP)

Multiple Iden-
tical Knap-
sack Problem
(MIKP)

Heterogeneous ———— Multiple Hetero-
geneous Large
Object Place-
ment Problem
(MHLOPP)

Multiple Het-
erogeneous
Knapsack Prob-
lem (MHKP)
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Table 2.3: Improved typology by Wäscher et al. [3] for intermediate problem
types for output minimization problem (small items to be packed to larger
items).

Characteristic of Large Object Assortment of the small items
Identical Weakly Het-

erogeneous
Single Stock
Size Cutting
Stock Problem
(SSSCSP)

Strongly Het-
erogeneous
Single Bin
Size Bin Pack-
ing Problem
(SBSBPP)

All fixed
dimensions

Weakly
Hetero-
geneous

Multiple Stock
Size Cutting
Stock Problem
(MSSCSP)

Multiple Bin
Size Bin Pack-
ing Problem
(MBSBPP)

Residual Cut-
ting Stock
Problem
(RCSP)

Residual
Bin Pack-
ing Problem
(RBPP)

One Large Object Variable Dimension(s) Open Dimension Problem (ODP)
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indicates the selection of smaller objects that are used to determine packing pat-

terns on all larger objects, while V indicates the selection of all smaller objects

assigned to a larger object. For the assortment of larger object, three variables

are used, O indicates only one object is packed, I stands for the case when

multiple identical large objects are to be packed, and D indicates multiple large

objects of varying size. Similarly, for assortment of small items, four variables

are used, namely, F denotes few items of different shapes, M stands for many

small items of different shapes, R indicates the case with many items with a few

different shapes and C for small items concurrent in nature. Thus, as per this

typology, there are 4 x 2 x 3 x 4 = 96 different types of C &P problems. The

general way of representation is by four-tuple symbol for respective features λ/

β/ γ/ δ.

2.1.2 Wäscher’s Improved Typology for C&P Problems

Wäscher et al. [3] report deficiencies in the existing typology for C&P prob-

lems. As, the major concern was the notation used to represent 2D-Bin Packing

Problem (BPP). Dyckhoff suggested 2/V/D/M to represent the problem. How-

ever, many researchers considered 2/V/O/M as a most appropriate notation

for this problem class. The inconsistency is due to lack of clear discrimination

between the bin packing problem and the strip packing problem. Gradĭsar et

al. (2002) [5] highlighted the fact that there can exist another possibility for

assortment of large objects, which consists of few groups of identical objects

denoted by variable G, thereby raising the possible combination of typology to

128. Thus, the notation removed the ambiguity between the case when items

being packed are variable size large object and the case where many large objects

can be sorted into different groups containing identical size into which the small

items are packed. The problem representation is 1/V/D/R for the first case and

1/V/G/R for the second, which clearly differentiate the two classes of problems.

All these existing weaknesses are the basis for refined classification proposed by

Wäscher et al. [3] shown in Table 2.2 and Table 2.3. These tables put together

all the intermediate problems that may arise. They represent the abbreviated

form corresponding to the problem for unique problem identification.
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2.1.3 Lodi et al. Sub Typology

Lodi et al. [4] introduced a new sub typology to clearly differentiate between

the strip packing problem and the bin packing problem. They used a notation

with three fields dP|X|Y, where small d stands for the dimension of the problem

with P to represent the type of packing whether bin packing or strip packing.

Some more specific notations as per problem like for Continuous Bin Packing

(CBP) [6], Level Strip Packing (LSP) and Level Bin Packing (LBP) [7]. X

indicates whether the items are oriented (O) or they can be rotated (R) by 90

degrees. Further, a sub-category for this case is proposed by Boschetti et al. [8],

where few items are oriented and rest is allowed to rotate by 90 degrees denoted

by variable M. The last variable Y is used to denote whether it is a guillotine

cut (G) or a non-guillotine cut (F ). Guillotine cut means only orthogonal cuts

are allowed that bisect one component of the sheet, i.e., the cut is parallel to

the edge of the container. Non-guillotine refers to the condition where guillotine

restriction does not follow and the items can be packed other than parallel or

perpendicular to the container surface.

2.2 Cutting Problems Solution Methodology

C&P problems have always been a research area of great interest within the

academic community and also received popularity in manufacturing sectors as

a mode of increasing productivity and profit at the cost of low waste produced.

The areas that are exploited are waste minimization, reducing setup cost, avail-

ability of resources and constraint satisfaction. There are various categories

in packing, which includes cutting stock problem, knapsack, bin packing, strip

packing, nesting problem and loading problem. Cutting stock involves cutting of

available raw stock to meet customer demand such that trim loss is minimized.

Knapsack problem is best described as consisting of a larger object called the

knapsack of limited capacity, and the number of items to be placed. Each item

has some fixed size and is associated with certain benefit. The objective is to

pack the item to maximize the benefit, but limited by the capacity constraint.

The bin packing aim is to pack items into bins, the dimensions are bounded

such that the remaining space in use bin is minimized and overall bin required
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to pack all items is minimized. All these problems range from single to multi-

dimensions. Strip packing is considered in higher dimensions like two (2D) and

three (3D). For 2D irregular object packing onto an irregular rectangular sheet

like a nest usually in metal cutting industry is referred as Nesting problem.

Loading is associated with three and higher dimensions where boxes are placed

into the container.

The BPP is similar to CSP as both these problems have essentially the same

logical structure. As per Wäscher et al. typology, they differ on the fact that

in a CSP assortment of small items is weakly heterogeneous whereas in BPP it

is strongly heterogeneous. In other words, CSP has high demand, i.e., several

copies of similar dimension of small items, whereas BPP has low demand, i.e.,

typically single copy of small item of similar dimension. Due to the similarity in

structure, the solution methodology devised for one problem can be applied to

other. However, the behavior of these methodologies may depend on the nature

of the problem. In this work, we focus on finding the optimal patterns and

determining the number of times a pattern is used. The approach is favorable

for the CSP.

A number of solution methodologies exist to solve this class of problem,

broadly classified into four groups: exact, heuristic, metaheuristic and hybrid

approach. A detail literature study of the approaches is discussed in the next

subsections.

2.2.1 Exact Approach

In 1960s, paper manufacturing industries were the most prominent manufac-

turing industries. A linear programming approach to solve 1D-CSP was first

presented by Gilmore and Gomory [9] in the year 1961. Approximation algo-

rithms presented are mostly used to obtain the linear programming relaxation

but, obtaining the exact solution is time consuming and would result in the

enumeration of cutting patterns. To deal with these difficulties, Gilmore and

Gomory (1963) [10] relaxed the integral constraint and proposed the Simplex

method with a column generation technique to solve the continuous relaxation

of the CSP. Although the technique is suitable for solving medium-size and some

larger instances of the 1D-CSP but does not consider supply limitation on the
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availability of different stock length.

Various LP-based solution presented by researchers are inspired from Gilmore

and Gomory like by Hinxman (1980) [11], Sweeney et al. (1992) [12], and most

of them have proved to be successful for CSP along the years. Minimization

of trim loss is the sole focus of LP-based approach. In some compact model

methods, the cutting patterns and the number of times to be used are deter-

mined simultaneously. However, as observed by Martello and Toth (1987) [13]

and also reported by Valerio de Carvalho (2002) [14], the LP relaxation can be

very weak, and Branch-and-Bound (B&B) algorithms based on such models can

fail to solve the problem to optimality. Holthaus (2002) [15] studied different

stock length CSP, where the proposed approach used column generation based

decomposition for exactly solving the continuous relaxation and specific meth-

ods for separately solving the arising residual problems. Another such method

was proposed by Johnston et al. (2004) [16], it considered the generated cutting

patterns, which are binary in nature. The problem encountered is thousands

of binary variables are needed for most of the practical instances that involve

dozens or hundreds of item types, and thousands of single items. Thus, it is

difficult to solve the compact models. The number of variables is still larger, if

the model is extended to deal with the multiple length stock. Both, the branch-

cut and the branch-and-bound, are based on LP relaxation, where in branch-cut

additional constraints are enforced by introducing cutting planes that tighten

the LP relaxation in B&B nodes. Belov et al. (2006) [17] used a combina-

tion of Branch-and-Price (BP) and branch-and-cut approaches, in which, the

LP relaxation at each branch-and-price node is strengthened by mixed-integer

cuts also known as Branch-Cut-Price (BCP) approach. Alves et al. (2009) [18]

proposed a new lower bound for column generation with different strategies to

strengthen, which are constraint programming and new families of valid inequal-

ities. In BCP algorithms by Jűnger and Thienel (2000) [19], and Feilleta et al.

(2010) [20], new variables may be added (priced) to the model in any B&B node.

The major concern with the exact approaches is their inability to handle large

data instance effectively.

For non-linear real world problems, the LP approach fails to find the opti-

mum solution. It usually formulates the problem as an integer linear program-

ming, and solves the related linear programming relaxation to obtain approx-
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imate solutions as by Scheithauer et al. (2001) [21], Liang et al. (2002) [22],

because solving it exactly is time consuming. The approach often generates

more items than required because of rounding problems. This may lead to poor

material utilization when the average demand for an item type is small and the

surplus items are taken as waste.

A non-linear model used for multiple stocks, in which combination of differ-

ent stocks may lead to better stock utilization. However, establishing optimal

solutions is more complicated than when dealing with only one standard stock

length. Belov and Scheithauer (2002) [23] proposed a case for multiple lengths

stock using an exact approach, which combined cutting plane and column gen-

eration approach but failed to find solution for larger instances. Alves et al.

(2008) [24] proposed new dual-optimal inequalities for multiple length cutting

stock problem. The authors explored BCP algorithm to get better solutions

without using complex rounding techniques. A few exact approach based pa-

pers are reported in literature because of their limitation to solve problem with

increasing demand.

2.2.2 Heuristic Approach

The 0-1 knapsack problem was solved by Eilon and Christofides (1971) [25]

using heuristic approach and applied the same to similar kind of problems. It

was observed that heuristic approach may result in optimal solutions in fairly

less computation time. In the same year, Haessler (1971) [26] pointed out the

fact that while determining the cutting patterns, the other factors like setup cost

can also be considered apart from trim loss for generating the new patterns. This

helps in reducing the overall cost associated with cutting of raw materials. The

approach used heuristic procedure to solve the developed mathematical model.

A recursive search approach for multistage guillotine cutting problem a given

by Herz (1972) [27] was although an improvement over existing but, was not

efficient to handle the medium size problem. Haessler (1975) [28] formulated the

problem and gave a concept of setting up of aspiration level at each iteration.

At each iteration, the level was checked, if not reached, the level was lowered

for next iteration until solution falls within the level.

Chambers and Dyson (1976) [29] looked at the cutting stock problem from
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a different angle. In some ways it was similar to Wolfson (1965) [30], in that

they considered the best stock size to hold rather than trying to simply reduce

the trim loss using the available stock size. However, Wolfson considered the

one dimensional problem, and Chambers and Dyson applied the problem to a

two dimensional situation (glass cutting). Both the work used two techniques,

namely integer programming and a heuristic method. The use of these methods

made real savings when applied to real-life problems.

Heuristics are characterized as complete and sequential based on the pro-

cess of handling the demand, where the complete considers all demand at once

whereas sequential handles them one by one. Due to limitations of the exact

approach, in these approaches basically the problem is formulated as an integer

linear programming and solves the corresponding related linear programming

problem to get the approximate solution. However, rounding off solution often

results in poor material utilization with surplus items produced considered as

waste.

Another solution category is the heuristic approaches like the Sequential

Heuristic Procedure (SHP) is also known as the repeated pattern exhaustion

procedure presented Yanasse et al. (2006) [31]. It has the flexibility to consider

various practical restrictions or objectives and can eliminate rounding problems

by working only with integer values. The SHP is greedy and often leads to high

trim loss towards the end of the pattern generation process. The hybrid ap-

proach usually combines complete and sequential approaches. As, it may solve

the linear programming relaxation to obtain the fractional solution (complete),

round the solution down, and use a sequential approach to solve the residual

problem so that the demands are fulfilled exactly. Trkman et al. (2007) [32]

presented another variant for CSP with solution to cutting stock in the consec-

utive time period. The number of published algorithms dealing with pattern

reduction is relatively small and briefly discussed by Cui (2012) [33]. The bot-

tleneck to heuristic approaches is that the solutions take infinite time or very

long time to compute.
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2.2.3 Metaheuristic Approach

The other class of problem is the metaheuristic search that observes the growing

influence of the Evolutionary Algorithms (EAs) as by Bac̋k (1996) [34] and Zhao

et al. (2012) [35] in solving combinatorial optimization problems. The capability

of evolutionary approaches to deal with complex and non-linear problems has

increased as they are able to find optimal or near-optimal solution within a

reasonable amount of time. Cutting and packing problem has been solved by

many researchers using GA techniques. Holland (1975) [36] first proposed the

basic principles of GA. Thereafter, a series of literature and reports are made

available.

Wang et al. (2005) [37] gave a multi-stage genetic algorithm for approxi-

mately solving the 1D-CSP with only one stock length. Khalifa et al. (2006) [38]

presented a GA based model for the 1D-CSP to optimize construction steel bars

waste. Jahromi et al. (2012) [39] concluded that simulation annealing has better

performance over Tabu Search (TS) in finding solutions for 1D-CSP. Ant Colony

Optimization (ACO) is also applied to cutting stock problem as by Jap et al.

(2008) [40] and Yang et al. (2009) [41] proposed improvement in techniques for

better solutions. However, both the approach were carried for limited instances

and compared with evolutionary programming. The major concern with the

metaheuristic approaches is that they do not guarantee to find the optimum

solution for some class of instances. We have considered adaptive mutation rate

for column generation. Here, we briefly discuss literature review for it.

The adaptive mutation rate was introduced by Fogarty (1989) [42]. Ba̋ck [43]

applied these concepts and proposed a need for selective pressure. Fogarty

and Smith (1996) [44] used cloning mechanism to achieve the selective pressure

and the mutation rate, where before applying, it was modified with certain

probability. Based on this observation, it is reported that the GA performance

over generation grows with an exponential decrease in the mutation rate. The

idea is very similar to the simulation annealing concept, setting an analogue

between the mutation rate and temperature particularly when both are constant.

The optimal rate of mutation performance differs from problem to problem, it

varies with evolution time and also depends on the search space being explored.

Rather than discrete values for these rates
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Stone and Smith (2002) [45] used a continuous variable for the mutation

rate under the log-normal adaptation, and showed it to be better over stan-

dard scheme. This idea was exploited to devise a deterministic automation

approach for mutation rate with optimal value by many researches like Srinivas

et al. (1994) [46], Hoehn et al. (1999) [47], and San (2007) [48]. Srinivas et al.

described an adaptive GA, where each chromosome has an individual crossover

probability Pc and mutation probability Pm, where these rates are adapted with

respect to the maximum population and mean fitness. Hoehn et al. proposed a

modified GA, where the mutation was not limited only for the selection of off-

spring, but also in the evaluation and selection of individual in the population.

This method was adopted by Bingul (2007) [49] for multi-objective problems

and reported it to be better than simple GA in dynamic environment suitable

for problems like robot navigation, model identification and controller design,

etc. Ghosh et al. (2003) [50] changed only the mutation probability keeping

the crossover rate as constant. The rate was varied between equal intervals.

The growing practice of metaheuristic approach to solve complex combinatorial

problems getting promise results motivate their use. However, the behavior of

these approaches varies from problem to problem.

2.3 Packing Problems Solution Methodology

The solution methodology used to solve the packing problems is basically di-

vided into three groups: exact, heuristic and metaheuristic. Exact approaches

are deterministic in nature that guarantees to give an optimal solution in practi-

cal time, but fails on a larger problem instances. Heuristics, on the other hand,

are a clear and systematic pathway of problem solving, flexible to changes with

the ability to give approximate solutions in reasonable computing time. Meta-

heuristic is a higher level procedure over heuristic for better exploration of the

search space to find the best solution (optimal or sub optimal) with less compu-

tation effort. This section presents a brief introduction to these methodologies

used for solving the strip packing problem.
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2.3.1 Exact Approach

The approach uses linear or integer programming along with the column gener-

ation stage. In column generation, a number of feasible columns are generated

denoting the possible placement into the container formed by the items to be

placed. Integer or linear programming is used to select the best pattern that can

optimally fulfill the demand. The first approach was given by Gilmore & Go-

mory (1965) [51], which was an extension of their prior work on one dimensional

packing. However, the approach was enumerative in nature in terms of the num-

ber of patterns generated, and even becomes intractable for larger instances. To

keep a check on the number of patterns, Gilmore & Gomory introduced guillo-

tine constraint. A further reduction was made by two-stage cutting patterns, in

which at each level, it was checked to determine whether the placed items are of

equal height, if so, then the trimming was not allowed, else third stage cut was

allowed with trimming. Lodi et al. (2004) [7] proposed a computational bound

with a new mathematical model having polynomial constraints and variables

showing their LP relaxation dominate the standard area relaxations. Martello

et al. (2003) [52] developed a new relaxation for B&B method to solve 2D-strip

packing and bin packing problems. Heuristic approaches are used either at the

root or the descendent node to improve the search. Belov et al. (2006) [53]

reduced the number of branching states in B&B by the use of equivalence and

dominance patterns. Pisinger and Sigurd (2002) [54] proposed branch-and-price

approach to solve strip packing and bin packing that uses DantzigWolfe de-

composition to obtain lower bounds of very good quality. The LP relaxation

of the decomposed problem is solved through delayed column generation. Hifi

and Zissimopoulos (2003) [55] improved the solution for the constrained two

dimensional cutting problems by Christofides and Whitlock (1977) [56]. Cui

(2008) [57] proposed to generate homogenous three-staged cutting patterns for

the constrained two dimensional guillotine-cutting problems of rectangles. The

approach combined B&B with dynamic programming and used tree search pro-

cedure. A recursive approach is given by Cui (2008) [58] combined with B&B, in

which, lower and upper bounds are used to prune unpromising branches. Exact

approaches like a B&B were used by Martello et al. (2003) [52] and Lesh et al.

(2004) [59]. They modified the approach by adding pruning method with B&B

22



CHAPTER 2. BACKGROUND AND RELATED WORK

to solve a small subset of this problem. Kenmochi et al. (2009) [60] proposed

perfect packing based on the B&B approach having a number of branching and

bounding conditions for both classes of with and without rotation strip packing.

Boschetti et al. (2010) [61] gave a new exact B&B approach with new lower

bound and upper bound, where the constructive heuristics are used to set the

new upper bound whereas a mathematical model and relaxation are used for

setting the lower bound. Arahori et al. (2012) [62] presented branch-and-bound

method for strip packing with and without rotation is based on the partition

into subset represented by g-staircase placements and determines a new lower

bound. There are plenty of methods in the literature, which are based on the

exact approach in order to solve two dimensional packing. We did not review

all the methods as our focus is on metaheuristic approach. Although, all these

approaches guarantee to give an optimal solution in practical time, but fails on

larger instances.

2.3.2 Heuristic Approach

These algorithms were able to produce an approximation solution at a reasonable

computational time. Baker et al. (1980) [63] approach Bottom Left heuristic

(BL) considered sequential placement of rectangular blocks. Each rectangle was

placed at the top right corner of stock sheet, which was later moved down to

the possible lowest position and then shifted left most without the overlapping

placed rectangles. Lodi et al. (1999) [64] gave four heuristic techniques for all

four possible cases of two dimensional strip packing, i.e., with and without ro-

tation of 90 degrees, and with and without guillotine cut. They also presented

a general framework of tabu search to handle this class of problems. The BL

heuristic was improved by Hopper and Turton (2001) [65] as Bottom Left Fill

(BLF) heuristics, in which, the in-between gap for the placed rectangles was

given preference during the placement of the rectangle. Burke et al. [66] used

best-fit heuristic that did not require any prior pre-processing of blocks. To

place any block into the container, the lowest available space was searched and

an appropriate rectangle was selected from the unplaced in order to maximum fit

the vacant space. The approach was effective in comparison to existing. Work

by Lesh et al. (2005) [67] presented an interactive user interface that allows
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users to change the solution. Ntene and Vuuren (2009) [68] gave Size Alter-

nating Stack (SAS) algorithm on observation that FFDH algorithm performs

poorly when the large difference exist in heights of rectangles to be packed in

same level. They performed placement by division of rectangles into two subset

narrow and wide based on height to width relation. Ortmann et al. (2010) [69]

discuss a series of heuristic approaches like SASm algorithm, the stacking pro-

cedure for narrow items for floor-packed items, stack ceiling (SC) and Stack

Ceiling with Re-sorting (SCR) algorithms, and made use of the idea of packing

onto ceilings as in the Floor Ceiling (FC) algorithms, and the stacking of items

as in the SAS algorithms. Imahori and Yagiura (2010) [70] considered both

horizontal and vertical gaps for the best placement location. They used efficient

data structures to maintain the current skyline, store remaining rectangles to be

packed and efficiently search for the best-fit rectangle at each step. Stephen and

Zhang (2011) [71] proposed Fast layer-based Heuristic (FH) with the strategy

of stacking rectangles. The selection of rectangle to be packed was determined

by the fitness value rule. It first places one reference rectangle and stacks some

rectangles to obtain the reference line. It then finds one lowest available rectan-

gle space under the reference line, computes the fitness value of each unplaced

rectangle, and selects one rectangle with the maximum fitness value to place.

At last, greedy search is used to improve the placing result. Moreover, when

the problem becomes complex in terms of number of rectangles to be packed,

it increases the execution time for several algorithms and generally rises to find

an appropriate solution. Wei et al. (2011) [72] proposed Iterative Doubling Bi-

nary Search (IDBS), which, when combined with tabu search (TS) outperformed

many of the approaches from the literature. The tabu search basic technique is

to apply a best improvement local search by using short term memory to escape

from local minima and repetitive cycles [73]. The data structure tabu list is used

to keep track of most recently visited solutions and forbids moves toward them.

Thus, neighbourhood search is restricted to solution not present in tabu list. At

each iteration best solution from the feasible set becomes the new current solu-

tion. The tabu list is updated to include the new solution. Due to this dynamic

restriction on the allowed solution it is also termed as dynamic neighborhood

search technique. The algorithm stops when a termination condition is met [74].

A number of new and improved level based heuristics are reported in the
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literature. Considering both horizontal and vertical placement Asik et al. (2009)

[75] improved the best fit heuristic by considering the Bi-directional Best Fit

(BBF) placement. This work was modified and improved by Özcan et al. (2013)

[76] by Best Fit based Bidirectional heuristic (BBFM) taking pair of rectangles

to be placed rather than single placement. The heuristic approaches exploit the

feature of the problem to get optimal solution in reasonable time. However, the

approach does not guarantee to get optimal for all cases. Yang et al. (2013) [77]

recently presented a Simple Randomized Algorithm (SRA) based on least waste

strategy with simplified parameter adaptation. It can quickly find a solution,

but the quality of the solution is worth improving.

2.3.3 Metaheuristic Approach

Meta in the Greek translation stands for beyond, operating at a level higher

than heuristics. They may be viewed as upper level general methodologies that

can be used as a guiding strategy in designing underlying heuristics for efficient

exploration of the search space. Metaheuristics are general-purpose algorithms

that can be applied to solve almost any optimization problem. In packing,

most of the widely used metaheuristic algorithms are nature inspired, which

may be genetic algorithm, ant colony optimization, simulated annealing, etc.

The metaheuristic approaches used in packing are briefly described here. These

include genetic algorithms by Jakobs (1996) [78], Ramesh Babu & Ramesh Babu

(1999) [79], Dowsland (2006) [80] and Gonalves (2007) [81], simulated annealing

algorithms by Dagli and Hajakbari (1990) [82], Lai and Chan (1996) [83] and

Martins et. al (2010) [84], neural network algorithms by Dagli and Poshyanonda

(1997) [85], and some hybrid metaheuristic algorithms by Hopper and Turton

(2001) [65], Hifi and M′Hallah (2003) [55] and Bortfeldt (2006) [86]. The neural

network based approach given by Dagli et al. (1990) [82] combines the hybrid

approach, but is not preferred due to high computation time. Martins et al.

(2010) [84] used crystallization heuristic and performed a limited depth binary

search to find a scale factor that when applied to the polygon, would allow it to

fit in the container. Simulation annealing methods are often comparable with

heuristics and use an additional approach like B&B. The main concept of GA

for the strip packing problem is the evolution of rectangle packing sequence as

25



2.3. PACKING PROBLEMS SOLUTION METHODOLOGY

presented in the approaches by Jakobs (1996) [78] and Liu and Teng (1999)

[87]. They combined GA with a heuristic approach like BL. For orthogonal

packing by Ramesh Babu & Ramesh Babu [79] proposed GA in combination

with deterministic heuristic. The BL heuristic was improved by Hopper and

Turton (2001) [65] Bottom Left Fill (BLF) heuristic in which the gap that

existed in between the already placed rectangle was given preference while the

placement of the new rectangle.

Hopper and Turton (2001) investigated an amount of metaheuristics to cre-

ate a placement order, including simulated annealing and GAs and conjunct

them with certain of heuristic strategies such as BL and BLF. Withal, those

non-deterministic algorithms are time consuming and small application for the

problems with an immense enumerate of rectangles. The GA approach con-

sidering strip packing as the permutation problem was solved by Yeung et

al. (2003) [88] named, as Lowest-Fit-Left-Aligned (LFLA) heuristic approach.

Bortfeldt (2006) [86], gave a sequence algorithm titled SPGAL that did not

use any encoding and worked directly on the resolution layouts. Goncalves

(2007) [89] proposed Hybrid Genetic Algorithm(HGA) for rectangle placement

using random keys. Burke, Kendall, and Whitwell (2009) [90] enhanced the

Best Fit (BF) rule (by Burke et al. (2004) [91]) with the crossbred simulated

annealing and BLF rule of Hopper and Turton (2001) [65]. Alvarez-Valdes

et al. (2009) [92] planned an activated Greedy Randomized Adaptive Search

Procedure (GRASP). Influence is presented by learning few information to fix

the suitable parameter settings for the strip packing difficulty. GRASP im-

proved performance for small size instances (Alvarez-Valdes, Parreo & Tamarit

(2008) [93]). Belov, Scheithauer, and Mukhacheva (2008) [94] presented two un-

varied heuristics based on one dimensional heuristics, which are SVC (SubKP)

(stands for Sequential Value Correction (change knapsack job)) and BS (BLR)

(stands for Bubble Search (bottom-left-right)). It is found that SVC is a co-

ercive rule and performs well in most instances. Later, the Least Waste First,

heuristic (LWF) was presented by evaluating positions, and is improved by union

simulated annealing algorithm by (Wei, Zhang & Chen (2009) [95]. LWF per-

forms outmatch for rectangle packing difficulty. SPGAL, Discernment, BF +

SA, SVC and LWF are supported on formulating strategies and can produce

real promising solutions within a sensible instance, but they are more involved,
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especially the execution of these algorithms significantly depends on the settings

of the parameters. Moreover, several algorithms generally order untold quan-

tify to obtain a preferable answer when the problem size grows. Stephen et al.

(2010) [96] proposed Hybrid Simulation Annealing (HSA) algorithm that use

fitness to evaluate and introduce to jump out of the local optimal trap using

greedy strategy. Leung et al. [97] proposed Intelligent Search Algorithm (ISA)

a two stage approach that used scoring mechanism along with local search and

simulated annealing. The performance of the approach was reported better than

GRASP approach. But by the use of metaheuristic approach like simulated an-

nealing the performance is dependent on parameter settings. In general, the

results obtained shows that these improved approaches are competitive with

other approaches reported in the literature.

2.3.4 Hyper-heuristic Approach

The concept of using hyper-heuristic technique is not recent. The approach was

used in many problems since 1960s. A prior mention of the term is found in a

technical report by Denzinger et al. (1996) [98], but used in the context where

range of artificial intelligence algorithm was used for theorem proving. However,

it was first reported in a peer reviewed conference paper in 2001 by Cowling et

al. (2000) [99]. A state of the art survey of hyper-heuristic is presented by

Burke et al. (2013) [100]. Burke in his work, states the crucial work that leads

to hyper-heuristic method comes from the contribution by Fisher and Thompson

(1963) [101] and Crowston et al. (1963) [102]. In production scheduling based

problem, the idea was to combine scheduling rules for better performance in

comparison to applying single rule. In 1990s, the similar work was discussed by

Storer et al. (1992, 1995) [103], [104] work on job shop scheduling problem. The

scheduling was encoded with the objective of finding the best combination of

problem specific heuristic. Another approach to search heuristic sequence using

genetic algorithm for open shop scheduling is discussed by Fang et al. (1993,

1994) [105], [106]. Drecheler (1996) [107] presented a solution to Ordered Binary

Decision Diagram (OBDD) by using evolutionary algorithms and developing

strategies to the problem that learns from good heuristics. The main idea is

to develop a system, which automates the task of exploiting problem structure
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by either evolving or intelligently selecting the low level heuristic. Burke et al.

(2010) [108] employed a genetic programming approach for strip packing. The

approach is inspired by best-fit and use different placement schemes to evolve.

Our work presented differs from the existing genetic programming approach

for strip packing as the latter uses evolving criteria for low level heuristic and

report results on limited data instances. The main motivation behind our work

is same as automation of the process, but we have exploited the features of

genetic algorithm to achieve the same.

2.4 Chapter Summary

The aim of this chapter has been introduced the notion of cutting and packing

problems. It gives a short description of the existing typologies for cutting

and packing problems. The chapter presents a description of almost all classes

of methods like heuristic, exact and metaheuristic developed over the last few

decades for C&P problems. The first discussion is carried out for 1D-CSP and

later followed for 2D-SPP. It also discusses hyper-heuristics, which have emerged

as a new hybrid approach to solve problems with higher generality in C&P and

various other fields.
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Chapter 3

Column Generation and

1D-Cutting Stock Problem

3.1 Introduction

Column generation is an efficient solution technique, which is applied to various

combinatorial optimization problems. These large scale optimization problems

have two major concerns. First is the volume of data to handle, as it has

an impact on the computing capabilities. Second is the available algorithms

as the solution approach for the subproblem is based on enumeration, which

is a computation bottleneck for the model as the number of columns become

exponential. As the number of iterations grow in the column generation process,

the rate of change of the solution to find optimal is low, and the algorithm

converges at a very slow rate. To overcome this unwanted behavior, many

approaches are reported in the literature, which are capable of accelerating the

column generation process. However, most of them were studied exclusive within

modified contexts for the linear relaxations of the models. The convergence rate

is a crucial aspect of column generation it is defined as the speed at which

the master problem converge to optimal solution. We analyze and propose a

different technique based on metaheuristic search, to improve the convergence

rate of a column generation algorithm for the cutting problem. The problem

of cutting stock is a waste minimization problem resulting from the cutting

operations to meet the demand for different order of rolls of specified widths.

The rolls are cut from the available raw stock of fixed or varying width. The
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former is called standard and later class of problem is termed as multiple length

cutting stock for one dimension (1D-MCSP).

Figure 3.1: One dimensional cutting stock problem with standard stock type.

The one dimensional cutting stock problem (1D−CSP, Figure 3.1 ) is defined

by the following data: m, L, w= (w1,w2, . . . ,wm), d=(d1,d2, . . . , dm), where

L stands for the length of the available raw stock in abundance, m denotes

number of order demand to be fulfilled, wi is the stock length for the ith order

demand, and di is the corresponding order demand quantity where i=1, . . . ,

m. The problem is solved by finding the optimal cutting plans that result

in minimum waste per utilized stock. The plan refers to number of cut for

a particular demand from the selected stock length. The selection of cutting

plans also has as impact on various other monitoring parameters from the real

world scenarios like associated setup cost (determined by the number of different

cutting patterns), open stack issue etc. Here, the objective is to minimize the

trim loss or in other words number of used raw stocks.

3.2 Terminology

3.2.1 Column Generation

The original cost minimization problem is split into two subproblems: a Re-

stricted Master Problem (RMP) and a subproblem also known as the pricing

problem. The CG classical process iterates between a RMP and the pricing

problem. The major issue is the RMP size, usually it is less as compared to

master problem by leaving out some columns from the master form of the Lin-

ear Programming (LP). The motivation behind the reduction is the fact that

most of the associated values of the variables turn to zero in the optimal solu-
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tion. In the column generation process, initially, the master problem is solved to

find the values of the dual variables associated with the constraints. In turn the

pricing problem, uses these dual values to update the cost coefficients and gener-

ates new incoming columns. The subproblem is subjected to several constraints

under which the objective function is minimized. These constraints define the

relations among the coefficients of a column. The task is to identify the best

non-basic column whose addition in the RMP would improve the objective func-

tion value. The RMP is resolved with added variable and the associated column.

If no such columns are found, it indicates that the optimal solution of the LP

relaxation of the problem is obtained. The columns that make the RMP are

called the cutting plans. The major concern of CG is to limit the number of

columns explicitly included in the Integer Linear Programming (ILP) problem.

However, the count of cutting plans cannot exceed the number of stock lengths

and is usually equivalent to the number of order demand. The performance of

the computation methods depends on the number of constraints used to repre-

sent the linear problem. The growth is quadratic in terms of constraints with

complexity for simplex method as O (m2n), where m and n are the number of

constraints and decision variables respectively [109].

3.2.2 Genetic Algorithm

Genetic Algorithms (GA) are based on analogies to natural evolution process

like selection, mutation, crossover and reproduction. It is a metaheuristic search

approach to efficiently solve optimization and search problems. The steps in-

volved are briefed as follows:

1. Representation: It presumes that the potential solution of a problem is an

individual and can be represented by a set of parameters. These parame-

ters are regarded as the genes of a chromosome and can be structured by

a string of values in binary form, as alphabet, real, decimal number, etc.

At the initial level, the process of initialization uses these representations

to randomly generate a set of initial population.

2. Selection: GA use inheritance at each iteration, where the best individual

is selected for next population. The selection of individuals to be part of

the next evolution process is determined by the fitness value, higher the
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value better is the chance of selection. In this process, for every generation

the fitness value of each solution is evaluated. These fitness values are

close to the problem objective function, which may be either minimization

or maximization. It reflects the credit of the chromosome to solve the

problem.

3. Recombination and Mutation: This step is carried to generate the in-

dividual of the next generation. The offspring is created by recombina-

tion (crossover) between the parents with certain probability termed as

crossover probability. The operation is followed by mutation, its role is to

that modifies sub-part of the representation. It is applied with a very small

rate called the mutation probability. Both these operators are crucial in

searching the variable space.

Algorithm 1 shows the standard GA process, which is repeated until the termi-

nation condition is reached. The termination condition is problem dependent

where it can be a maximum number of allowed iterations or some other criteria

like number of fitter individuals exceed certain threshold etc.

Algorithm 1 Standard Genetic Algorithm

Initialization
while (not termination condition reached) do

Selection and Reproduction
Crossover
Mutation
Evaluation

end while

3.3 The Mathematical Model

The 1D−CSP model is described by Gilmore & Gomory [110]. Let N be the

upper bound on the number of raw stocks required to meet the demand in the

case of optimal solutions. The objective is to minimize the amount of raw stock

utilized to fulfill all demand. Variable cij is the column value indicating the

number of pieces of demand i in the jth available stock length. A decision vari-

able yi indicates yi=1 when stock is used and 0 otherwise.
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min
N∑
j=1

yj (3.1)

s.t.
m∑
i=1

wicij ≥ d (3.2)

cij ∈ Z+, yi ∈ {0, 1} (3.3)

Gilmore and Gomory solved the above model by splitting it into two phases.

The first phase deals with the LP relaxation of 1D−CSP integer programming

model. The second phase is termed as the column generation phase with the

major task of generating columns that price out some columns from the master

problem at every base step. To generate columns at each iteration, a subproblem

namely maximization (integer knapsack) is solved.

3.4 Algorithm Formulation

Here, the column generation model adopted is mapped arbitrarily to the Bounded

Knapsack Problem (BKP). Given N number of available stocks, cij is the num-

ber of cut for item i in roll j, wj denotes the jth available stock used, and λi is

the dual associated with the ith constraint.

The BKP is formulated as:

max
∑
i

λi cij, j = 1, . . . , K (3.4)

s.t.
N∑
i=1

wicij ≤ L (3.5)

0 ≤ cij ≤ UBj (3.6)

Here, the UB stands for upper bound, which is computed as

UB = b L
wj

c, j = 1, . . . , N (3.7)

Equation 3.5 enforces the knapsack constraint restrict each vector (c1j, . . . ,

cmj), j=1, . . . , N to fall inside the knapsack polytope, which is the set of linear

combination of all feasible cutting patterns. Another simple constraint is:

cij ≤ di, i = 1, . . . ,m (3.8)
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as it reduces the search space of the continuous relaxation for instances where

the demands d are small.

The common approach to get an optimal integer solution is to solve the

LP relaxation, in which column generation is integrated with BCP. The major

concern with this approach is the high computational time. In the proposed ap-

proach, we have used the metaheuristic technique for column generation. The

GA routine is invoked to find the next column to be added to the RMP for

getting optimal solution. GA solution proceeds with generating the initial pop-

ulation based on the order length and order type. A binary representation is

used to represent each chromosome. Each chromosome is evaluated to determine

the fitness value. These values are subject to penalty depending on whether or

not constraints are violated. The recombination and mutation help to generate

better individuals. The process terminates on reaching the termination condi-

tion. The evolutionary process is interrupted when the average fitness in the

current population exceeds the threshold, i.e., near to the optimal. The thresh-

old in this case is set in the range of 1− 5 %, which reflects the permissible scrap

produce from a single stock. Some fraction of the best individuals are selected

and checked, whether they already exist in the RMP if so, the repetitive ones

are removed. The best amongst them, which is the one with maximum reduced

cost is introduced to RMP and the process continues till the integral solution is

obtained.

3.5 Minimize Number of Different Patterns

The master problem is a linear formulation and the subproblem is mapped BKP.

The BKP is a generalization of the 0-1 knapsack problem where a bounded

amount of each item type is available. This is a first attempt to solve the

subproblem using GA for 1D−CSP. The algorithm operational mechanics along

with the sub-routine are discussed in Figure 3.2

The effectiveness of GA to generate optimal solution is governed by various

parameters like representation, fitness function used for evaluation, selection

mechanism and operators used. The proposed approach improves the conver-

gence rate by considering three parameters: firstly, a simple preprocessing of

individuals subjected to the constraint in Equation 3.2, if violated the indi-
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Algorithm 2 Proposed Algorithm

Input: m Customer demand (wi), K Available standard stock length (L)
Output: Cutting plans, optimal solution
Begin

Read input from file
Formulate master problem subjected to constraints
Create the input matrix

while (not integral solution) do
Solve the master problem using ILP solver

if Integral Solution then
Output cutting plans and results
Exit

else
Solve pricing problem for column generation

. Invoke GA sub-routine
Determine the chromosome size

for i=1:m do
numbits=numbits + b L

wj
c

end for
for i do=1:numpopulation

Perform random initialization
end for
while (not Termination) do

Compute fitness of each individual using Equation 3.9
Check for constraint violation
Penalize the weaker individuals using Equation 3.11
Determine the crossover rate using Equation 3.12
Determine the mutation rate
Perform crossover and mutation as per parent selection mechanism
p=p+1

. Next generation
end while

end if
Compute 1 -

∑
m
i=1 λ

j
i cij

if (negative reduced column) then
Add column to the master problem

else
No further column to add

. Pricing terminates
end if

end while
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Figure 3.2: Column generation GA sub-routines.

viduals are marked infeasible and eliminated from further reproduction process.

Secondly, a penalty function is used to monitor the fitness evaluation of chromo-

some. The penalty function ensures that the bad fitness value of the chromosome

is reduced such that it is not selected by the selection mechanism. Thirdly, a

novel problem specific adaptive crossover and mutation rate are designed to im-

prove the convergence rate. These selections, consider a set of better individuals,

whereas the least fit individuals are penalized or simply eliminated. The best

ones, then undergo recombination under the action of the crossover and muta-

tion operators. The crossover and mutation rates may vary from one generation

to another as the population evolved is based on the problem. The observed

feature motivated researcher to introduce dynamism in selecting the crossover

and mutation rates rather than fixed rates over iterations. Each component of

GA is discussed in the following subsections.

3.5.1 Encoding Scheme: Chromosome Representation

GA are attractive as they can handle problem constraints by simply embedding

them into chromosome coding. Since it is a technique independent of the error

surface, it is ready to solve multi-modal, non-differentiable, noncontiguous, or
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even NP-complete problems. The genetic representation may differ consider-

ably from the natural form of parameters of the solutions. In the evolutionary

system, a phenotype in the original problem context refers to the object that

form possible solution. In order to solve this optimization problem using GA,

it is required to code the problem in form of genotype. The genotype for this

problem is represented by n-order demand or gene, where the size of the gene is

determined by the demand values. Often when the problem is coded as genes,

the actual value corresponding to alleles are obtained by converting back to

the respective base number. Binary coding is the most common form of cod-

ing that poses a cardinality of 0 or 1. The other form of coding include real,

array, alphabetic, tree, etc. GA uses many forms of representations. However,

the real-coded and binary-encoded strings for representing the solutions have

dominated the GA research as they provide the maximum number of schemata

and are amenable to simple implementation. Although, real-coded are simple,

but there exist some known problems. Theoretical analysis, presented by Hol-

land [36] and by Goldberg [111] suggests the fact that the binary encoding with

the low cardinality allows quick and effective convergence to a good solution.

Even, Hollands Schema Theorem, which answers how and why binary-encoding

enables GAs convergence to the best solutions, but fails to explain the same

for real-coded. To overcome this limitation, Goldberg [112] presented a schema

theorem, in which the large cardinality is manipulated into virtual small cardi-

nality. However, the theory also states that for certain type of problem, it can

prevent from finding the global optima. Thus, the BKP system is represented

using binary coding with each parameter coded as a 16-bit binary number be-

cause of the simple and traceable nature. Further, during evaluation a noticeable

improvement in the system performance was noticed when binary coding was

compared to real-coded. Although, it was observed that the number of genera-

tions required to converge were more, but the evolve design was much fitter. As

mentioned above, each genotype for an individual design contains n- genes.

The size of the chromosome is determined by the number of bits used for the

representation of order demand length with respect to the available length. The

representation is shown with help of Figure 3.3. In this work, we have designed

an intelligent encoder and decoder. The encoder takes the input from the file to

read the input parameter like customer demand order, number of demand and
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Figure 3.3: Chromosome representation.

available stock length to generate the random initial population.

3.5.2 Fitness Function

The objective function of a problem is the main part providing the mechanism

for evaluating the status of each chromosome. Fitness value is a quality measure

of an individual. It is an important link between the GA and the system as it

determines the selection in the next step. They may be a simple computing

or may be determined by some complex experimentations. In many cases the

objective function and the fitness function are same. However, we evaluate the

individual fitness using Equation 3.9. The population checks for the termina-

tion condition, if met, then the process is discontinued, else it will proceed to

evaluate each individual and assign a fitness value to the chromosome. This is

an optimization problem the associated constraints can be handled in this step

by enforcing the penalty function to penalize the weaker individual. It degrades

the value of the weaker individual, thus, preventing them from greater influence

on the final solution.

The individual obtained after this rigorous searching would have the higher

fitness value.

fitness chromosome =
N∑
i=1

wi c
i
int (3.9)

where ciint =
k∑

j=0

2jgenek (3.10)
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Here, fitness is the summation of the product of a factor (ciint) and corre-

sponding width for ithorder demand, ciint refers to the integer value corresponding

to the k number of bits representing the gene. It indicates the number of pieces

for each order demand being cut. The higher the fitness value, the less is the

waste produced. These better individuals are the new column generation pat-

terns used for solving the master problem. The objective function is to solve the

RMP and obtain the integral solution. If no integer solution is found, then it

determines the dual value (λ) associated with the master problem constraints.

Further, in order to facilitate the selection mechanism to select good chromo-

some, we penalize the fitness value of bad chromosome by applying the penalty

function. Moreover, it is observed that the rate of change in the fitness function

has a vital effect on the GA performance.

3.5.3 Penalty Function

The efficiency of the constraint optimization problem is improved by adding

penalty functions. Penalty functions are quite useful techniques when used

with the GA and constraints are the part of almost all optimization problems.

Thus, applying the penalty function helps in improving the solution convergence

and produces a feasible solution as a result of evolutionary search subjected to

satisfying all constraints. To solve this optimization problem, the penalty to

the fitness function is a violation of constraints by the individual. The value

keeps on varying to avoid getting caught in local optima and try to find a global

optimum with each evolutionary stage.

Similar to work reported by Kazarlis et al. [113] we have used Square function

which is given as:

P (f) =
f

(G)2
(3.11)

where f is the fitness value of chromosome and G is the current generation

number.

It was observed that the search time is cut down by the use of penalty

function. Since, it avoids the large region exploration and prevents it from

stalling outside the feasible region.

39



3.5. MINIMIZE NUMBER OF DIFFERENT PATTERNS

3.5.4 Selection Mechanism

The selection process is an important phase of genetic algorithm, which deals

with the selection of a better individual from the given population. The objec-

tive is based on survival of fittest concept, i.e., the fittest individual should have

a better chance for survival in comparison to others. Thus, the weaker individ-

uals are not considered without a chance. The generation of good offspring is

dependent on an efficient mechanism for selecting a better parent. The selection

mechanism used in the proposed approach is a variant of elitism discussed by

Goncalves et al. [114], to preserve the best individual. In this process, the entire

population is divided into two sets, namely elite and non-elite population, where

the size of the elite is less than the non-elite. Elite population consists of the

individual, which have the highest fitness value. The main objective behind the

creation of this group is that the features of a good chromosome, which stand

a good chance to solve the optimization problem, are copied as it is from one

generation to another during the selection process. The group size is problem

depended, however, here the size is kept reasonable, which is out of the fittest

individual 1/8 of the total population are selected to be the part of the next

generation. Selection of only a small fraction ensures that our model can tackle

the worst case scenario where the individual, selected as elite may not be opti-

mal or sub-optimal. As this fraction of the population are directly involved in

the evolution of next generation, a check is enforced by not transferring more

individuals as the elite population. The remaining individuals form the group

of non-elite population. Elitism selection mechanism improves the performance

in many cases in terms of optimality and convergence of GAs. Controlling the

degree of elitism is a crucial factor, because high selection pressure may lead to

premature convergence.

3.5.5 Adaptive Crossover Mutation Operator

Controlling the selection of GA parameters are very crucial as wrong or sub opti-

mal parameters can lead the search algorithm to local minima. Thus, researchers

are interested in developing the new GA based optimization techniques. The

main idea is to develop a genetic approach that automates itself to adjust the pa-

rameter settings based on the performance to evolve better individual with the
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higher fitness value. The crossover operation is the soul of GA. The operation

produces a random exchange of genetic features from parents to the offspring

during the evolution process. Hence, it proceeds with the possibility that good

individuals, can generate better ones. Crossover between parents takes place

with any probability Pc (crossover probability or crossover rate).The crossover

operator results in exchange of features between the mating parents. The vari-

ous classifications of crossover techniques include the single-point, the two-point,

and the uniform types, which are selected based on the problem type. In our

approach the designed adaptive crossover probability is based on the fitness eval-

uation of the generation. The mutation operation involves some changes in the

values of individual with probability Pm (mutation probability). A mutation in

GAs has an important role as it avoids the premature convergence of the GA to

sub-optimal or local optima and tries to restore lost or unexplored genetic mate-

rial into the population. Here, we have considered two-point crossover between

the two individuals, one from elite group and other from a non - elite group

of population. The flip bit operator is used for mutation. In this technique,

bits are flipped randomly. The crossover and mutation rates are modified to

increase the convergence rate of the solution. The rate, at which the solution

is subjected to crossover, is determined by the crossover probability Pc calcu-

lated using Equation 3.12. Thus, the rate of introduction of the new solution

increases with the Pc rate. But as Pc increases, the solutions may be disrupted

faster than the selection mechanism can exploit them. The best selected values

of Pc are in the range of 0.4-0.8. Nevertheless, the choice of Pc is critical to GA

performance and has been emphasized in DeJongs inceptional work [115]. In the

proposed approach, we have preferred dynamic rate over classical GA approach,

where the value of the Pc and the Pm are kept constant for all the generations

during the evolution. As a result, solutions with high fitness values as well as

solutions with low fitness values are subjected to the same levels of mutation

and crossover. Due to this constant value, when a population converges to a

globally optimal solution (or even a locally optimal solution), then the Pc and

the Pm increase and may cause the disruption of the near-optimal solutions.

Thus, the population may converge to the global optimal at a very low rate.

However, it is observed that the values of these parameters must depend on the

problem type and should be changed to the fitted values for all the solutions of
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the population. Thus, the changes made not only prevent the GA from getting

stuck in a local optimum, but also the performance of the GA (in terms of num-

ber of generations required for the convergence) will certainly improve. Here,

we have varied Pc between 0.4 (K1) to 0.8 (K2), the formulation is given as

Pc = (( fmax − fmin)/ fmax)(K2 −K1) +K1 (3.12)

where fmax and fmin are the maximum and minimum fitness values for the

generation respectively. The values for these constants are determined by carry-

ing out statistical analysis using regression analysis for different values of K1 and

K2 and the corresponding value of Pc using statistics open for all (SOFA) soft-

ware. The result indicates for the chosen probabilities for changing the crossover

operator, there was no significant difference at 95% confidence interval in the

performance of the algorithm. The behavior of the algorithm was robust for

such a selection.

Mutation is a secondary operator to restore genetic material. Study by Smith

et al. [116] on using adaptive mutation rate indicates that different mutation

rate used is not much important in comparison to the mutation values used. A

mutation must be selected such that it considers both high and low values, which

prevent the GA from being struck into local minima. We have considered a set

of discrete mutation rates to solve this optimization problem. The selection of

high or low mutation rate is based on the threshold parameter, where threshold

is based on the fitness value of the individual. If the number of individuals

with high fitness value is less than 35%, the mutation is adapted to high rate.

Similarly, if the number of individuals with high fitness value is higher than the

70 %, we choose low mutation rate. In average cases, we go with the normal

mutation evenly distributed between 0.5/length and 2.0/length, where length

denotes bit string length. The convergence of the GA is improved by having a

higher fitness solution, on the other hand, the local optimum is avoided by the

population with a low fitness solution. The impact of such change is discussed

next, i.e., in the computed result.
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3.6 Computational Results

In order to evaluate the performance of the proposed GA based column gener-

ation technique, the data instances have been collected from the literature and

some are randomly generated using CUTGEN1 software Gau and Wäscher [117].

The number of finished product types determines the size of the problem in-

stance, which has been varied to tackle different kind of problems. The approach

modeled the demand lengths (wi) as the uniformly distributed integer random

variables, which are of particularly smaller length in comparison to available

stock. All experiments were conducted on an Intel Core2Duo 2.20 GHz proces-

sor. The algorithm is coded in Matlab and ILP solver is used for computation.

This section highlights the impact of using, adaptive crossover and mutation.

A comparison of computational result is presented along with the LP-based

approach and other metaheuristic approaches.

Table 3.1: Trim loss and number of columns generated for LP-based and pro-
posed approach.
Sr.
No.

Dataset LP Approach Proposed approach

Number of
columns

Trim loss % Number of
columns

Trim loss%

1. D1 20 9.66 10 2.670
2. D2 91 2.894 34 0.981
3. D3 314 3.787 179 2.320
4. D4 1031 1.562 259 0.621
5. D5 29 1.600 32 1.20
6. D6 115 5.977 52 3.25
7. D7 1083 2.942 386 1.341
8. D8 1099 1.849 412 0.741
9. D9 2013 3.971 519 1.830
10. D10 2349 1.798 533 0.651

3.6.1 Dataset Description

Experimentation is carried out on 10 different datasets. The size of the order

demand varies from minimum 20 to the maximum 600. Most of the instances

used for testing the approach, are taken from the literature, where some are

random and others are real-time data from the manufacturing industries. The

approach is also verified for uneven demand quantity and for the cases where
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Figure 3.4: Trim loss produced by different approaches.

the demand to the length ratio is high or low. The parameters used to carry

out this test are as follows: the population size is kept as 100 with the number

of generations 50. Further, two-point crossover operators are used with the flip

mutation technique. Note that the population size is reported for medium to

large problem instances. The benchmark datasets discussed in the chapter are

as reported by Liang et al. [22].

Figure 3.5: Statistical analysis of integrated LP-based and proposed approach.
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Figure 3.6: Statistical analysis for adaptive crossover.

3.6.2 A Comparison with Integrated Approach

The proposed approach is compared to the LP-based another hybrid approach

that combines LP with GA by Umetani et al. [118] as reported in Table 3.1.

The results are reported for 10 experimental runs. The number of runs depend

on the problem size of the instances. It is observed that due to the simple

calculative nature of our approach, good patterns are generated in a reasonable

time in comparison to LP approach. The table also reports the results in terms

of reduction in trim loss and the number of columns generated by both the

approaches. This effect is significant while dealing with bulk production in the

manufacturing industries. On an average the reduction in number of generated

columns on the random dataset is found to be around 70.33%. The performance

behavior of both these approaches in terms of trim loss reduction is shown in

Figure 3.4. It is observed that the proposed approach is able to minimize trim

loss due to its capability to determine better cutting patterns.

Statistical Analysis

The statistical analysis t-test is performed at 95% confidence interval. It is

observed that the difference between the exact and the proposed approach is

statistically significant. Figure 3.5 shows that there exists a difference between

at least two groups. Hence, we conclude that the hypothesis, we selected at the

beginning of t-test, which states both the approaches have the same effect on

the data sample, is not significant. It is found that the impact of the proposed

approach is significantly greater than the LP integrated approach. Similarly,

Figure 3.6 shows the results of statistical analysis of finding the effect of with

and without adaptive crossover on the randomly generated dataset. As shown
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by the curve, the performance with adaptive crossover outperforms the other

one i.e., without adaptive crossover for this class of the dataset. Such a result

motivates to consider an adaptive crossover during population evolution rather

than keeping it a constant factor for all generations.

Table 3.2: Comparison of trim loss % for different metaheuristic approaches.

Sr.
No.

Dataset
Tabu
search

Simulated
annealing

Ant colony
optimization

Proposed
approach

1. D1 3.781 4.521 2.491 2.670
2. D2 3.271 3.437 1.050 0.981
3. D3 4.971 5.485 3.862 2.320
4. D4 4.328 4.837 2.853 0.621
5. D5 7.561 7.931 3.624 1.20
6. D6 9.651 10.52 5.370 3.25
7. D7 11.692 10.479 3.749 1.341
8. D8 4.873 5.684 2.593 0.741
9. D9 13.671 15.862 8.641 1.830
10. D10 16.592 20.748 2.457 0.651

3.6.3 Comparison with other Metaheuristic Approaches

The approach is also compared with other metaheuristic approaches of a similar

nature like TS and SA by Jahromi et al. [39] and ACO by Jap et al. [40]).

The observed results are summarized in Table 3.2 for 10 experimental runs.

The comparative study is analyzed to draw conclusions on the integrated model

performance over the individual approach. The results reported shows that the

integrated model outperforms all other approaches because of better exploration

of the search space. The worst performance is by simulated annealing with

an average of 8.95% of trim loss. The ant colony optimization and proposed

approach produce the minimum trim loss with an average of 3.67% and 1.56%

respectively. However, the proposed approach has been comprehensively able to

minimize trim loss and satisfies the specified constraints than the ACO on all

the instances.

To illustrate the performance efficiency of the designed model a comparison

is further carried out on a different approaches. Table 3.3 summarizes the results

for trim loss produced by a metaheuristic on randomly generated data sample for

the specified parameter value using CUTGEN1 software.The demand is varied

between 10 and 100 for dataset generation. It is observed that on an average
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the integrated approach produces minimum trim loss for almost all cases. The

maximum trim loss is reported for simulated annealing approach of 12.79%,

where as minimum of 10.4% by proposed integrated. TA and ACO show a

competitive nature with trim loss as 12.05% and 11.4% respectively.

Table 3.3: Computation results of metaheuristics for random instances gener-
ated by CUTGEN1 software.

Class V1 V2 Demand
Tabu
Search

Simulated
Anneal-
ing

Ant
Colony

Optimiza-
tion

Proposed
Ap-
proach

1 0.01 0. 2 10 4.47 5.09 2.79 2.05
2 0.01 0. 2 100 1.47 2.67 1.83 1.56
3 0.01 0. 2 10 2.52 3.42 2.24 1.98
4 0.01 0. 2 100 1.37 1.53 1.30 0.25
5 0.01 0.8 10 16.97 17.30 16.78 15.41
6 0.01 0.8 100 16.01 16.58 15.63 15.0
7 0.01 0.8 10 15.12 16.81 12.15 11.34
8 0.01 0.8 100 13.68 15.61 11.99 10.72
9 0.2 0.8 10 19.11 19.17 19.27 18.72
10 0.2 0.8 100 18.48 18.55 18.66 18.61
11 0.2 0.8 10 17.48 18.29 17.09 14.76
12 0.2 0.8 100 18 18.49 17.08 14.67

Table 3.4: Effect of adaptive crossover mutation on subproblem evaluation.

Sr. No. Dataset Crossover Mutation Convergence Time(in sec.)
With change Without change

1. D1 0.45 33.71
2. D2 2.36 181.23
3. D3 13.15 669.30
4. D4 13.56 723.90
5. D5 13.21 13.05
6. D6 34.56 2074.61
7. D7 35.63 2053.41
8. D8 49.21 4437.40
9. D9 90.50 5892.10
10. D10 120.3 7498

3.7 Result Analysis

This section presents the result analysis in terms of the impact of adaptive

crossover and mutation rates. A complete random search of GA behavior is

observed due to large values of Pc, thus, the mutation is required to prevent the
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premature convergence of the GA to sub-optimal solutions. Here, the values of

Pc, and Pm are varied with respect to the average fitness value and maximum

fitness value for the population. As the chosen selection mechanism is elitist,

thus, such a change causes a higher convergence rate. Table 3.4 summarizes the

effect of change of mutation rate on the convergence. It is observed that the

change in Pm value with respect to fitness acceptably reduces the execution time

for each generation. It is observed that the proposed approach outperforms on

most of the data instances, except for D5 where the convergence rate is nearly

equal or in other words the change in crossover rate had no significant impact.

But, in general proposed approach consistently performed better than the other

heuristic algorithm and also reduces the number of required iterations.

A statistical independent t-test carried to check the behavior of GA with

and without adaptive crossover and mutation rates. The parameters used to

carry out the t-test are confidence interval of 95% and 10 degrees of freedom.

We started with the hypothesis that adaptive crossover and mutation does not

influence the GA behavior. The result obtained after computation shows the

value of p to be very small, less than 0.001. The result indicates that there

exist difference in variance for the two classes, thus, the hypothesis assumed is

incorrect. The results are statistically significant.

3.8 Chapter Summary

This work is a first attempt to solve 1D-CSP bounded knapsack subproblem

by applying the genetic algorithm and automating the crossover and mutation

rate. To improve the convergence rate of the algorithm, a penalty function is

enforced on the fitness value. The approach guarantees to generate optimal

and sub-optimal column for solving the cutting stock problem. The results are

reported on an average 60.53 % reduction in the execution time with the adaptive

crossover mutation rate. The average reduction in trim loss in comparison to

other similar approach (Umetani et al. [118]) is 52.14%. On the other hand,

in comparison to other metaheuristic approach, the average performance of our

approach, is 73.5% better. Such results motivate to use proposed techniques to

solve complex combinatorial optimization problems.
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Chapter 4

The Multiple Length 1D-Stock

Problem

4.1 Introduction

In this chapter, we are concerned with the generalization of thoroughly studied

standard cutting stock problem in the previous chapter. Here, we consider that

multiple length stocks are available instead of single one. The different stock

lengths provide a greater possibility of generating feasible cutting patterns that

may generate a better solution in terms of stock utilization as compared to

standard cutting stock problem. This fact is supported by Gilmore and Gomory

[10] in their research contributions. However, finding the optimal solution to

this class of optimization problem requires to solve a more complex objective

function. We have considered additional constraints of restriction on the raw

stock availability. In this case, the selection of the stock to be used is based on

the priority rather than selection of the best cutting pattern. This class is also

referred as the combined assortment and trim loss minimization problem.

The Multiple Length Cutting Stock Problem (MLCSP) is NP-hard [119].

Unless P=NP, no absolute approximation scheme can be devised that solves

it in fully polynomial time. We focus on waste minimization due to the large

number of improper pattern selections during the evaluation process. The other

factors that are considered reduce the number of generated patterns and elimi-

nate repetition. As, increase in the number of generating patterns implies more

cycles and thus, takes more computation time. Exact algorithms are not prefer-
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able for NP-hard combinatorial optimization problem as the execution time rises

with the problem size and even may be intractable for some class of problems.

On the other hand, heuristic takes comparatively less time, but does not guar-

antee an optimal solution. Thus, it is required to find a trade-off between the

quality and the computation time to select the most appropriate method to de-

termine the best solution. As a consequence, most of the research efforts have

been devoted to the development of heuristics and approximation algorithms.

4.2 Terminology

In this section, we discuss the basic terminology like BCP, branching strategy

and rounding procedure used in the proposed approach.

4.2.1 Branch-Cut-Price

The column generation is done by solving the subproblem or the pricing problem.

The BCP integrates B&B with LP relaxations, pricing subproblem and applies

separation and cutting throughout the B&B tree to solve large optimization

problems. To check optimality, a subproblem, is solved to identify columns to

enter the basis. The separation problem is formed when the optimal solution to

an LP relaxation is infeasible. It identifies the violated inequalities for the class.

If one or more violated inequalities are found, then some are added to the LP

to cut off the infeasible solution, and then the LP is re-optimized. Branching

occurs when no violated inequalities are found to cut off an infeasible solution.

The cuts are introduced in order to reduce the total number of nodes and to

find a tight bound at a node of the B&B tree. At each node of B&B tree, the

columns are generated to tighten the LP relaxation. In the column generation

phase of the BCP, the pricing problem is solved to find the new entering column

with negative reduced cost. This column is added to the RMP and then the

LP is optimized. Thus, the column generation phase results in the addition of

columns, which may be likely to generate optimal solution. In BCP, column with

most negative reduced cost is selected to be a part of RMP whose probability

of being in the final optimal pattern is quite high.
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LP Relaxation

The efficiency of the computation method depends on the number of con-

straints involved in the linear programming. The increase in the number of

constraints for column generation is quadratic. Since, a complete enumeration

of the columns is impractical, the partial enumeration is resorted for the pattern

set and deal with the RMP. A solution to the RMP is an upper bound on the LP

optimum. After the master is optimized, K pricing subproblems are solved to

identify those columns with a negative reduced cost that may enter the basis and

provide a better cost solution. The solution of the RMP is optimal for the LP

relaxation if all variables of the LP relaxation have non-negative reduced cost.

Since only a subset of the columns of the LP relaxation is available explicitly,

this cannot be checked directly to find whether it is negatively reduced column

or not. A pricing algorithm is used to verify the column optimality. If the so-

lution is not optimal, the pricing algorithm identifies at least one column with

negative reduced cost. This column is added to the RMP, and the basic pro-

cedure continues. The column generation scheme terminates when no columns

with negative reduced cost exist anymore. The optimal solution to the RMP

is then also optimal to the LP relaxation. This process of adding columns to

the RMP when required is called an implicit column generation. In an explicit

column generation, all columns are generated in advance and are kept in com-

puter memory. Subsets of columns are then passed to the RMP until a subset

is found that contains the optimal solution.

4.2.2 Branching Strategy

The branching scheme basically defines the search strategy, i.e., the order in

which the node will be evaluated. The task of B&B terminates when both,

the lower and the upper bound becomes equal. The algorithm can follow the

branching strategy based on the trade-off between the improvement of the lower

bound and quickly determines the feasible solution. In the proposed approach,

we have focused on improving the global lower bound. This is achieved by

strengthening the weakest LP relaxation. Thus, the search strategy is to select

the lowest LP bound node at each iteration. This strategy is termed as best

first search. To explore the tree, we used depth-first search strategy. The
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experimentation that we carried out gives satisfactory results for the search

strategy.

4.2.3 Rounding Procedure

The rounding scheme applied in the BCP is a simple one that considers the total

number of available rolls. In this scheme, the positive variable with the fraction

part greater than 0.5 are rounded up else rounded down. This results in the

case where the supply exceeds the demand quantity. To tackle this problem, we

consider the excess as residual and consider it to satisfy other smaller demand

lengths. Amongst the available residual patterns the preference is given to the

one that results in more saving. Computation shows that a simple selection

scheme improves the overall performance.

Table 4.1: Notation and interpretation.

Symbols Definition
N Total number of ordered demand
M Total number of available multiple length stock
Wk

j kth available stock of width Wj

QL Vector of available stock quantity
wi ithorder item piece length
di ithorder demand quantity

cijk Pattern decision value
UBik Maximum possible ith demand that can be satisfied

by the kth stock

4.3 Problem and Mathematical Formulation

Various notations and their interpretation are listed in Table 4.1. The multiple

stock size is an extension of 1D−CSP, where the number of available stocks is

variable in size and limited in quantity. The problem can be defined as: Given

m number of demand lengths (wi, . . . , wm) with order demands as (di, . . . ,

dm) to be met from M number of stock type of varying stock length L1, . . . ,

LM . Given the total available stock WL ( L=1, . . . , M), where each stock is

available in quantity vector QL (L=1, . . . , M), order for each item is length,

wi (i=1, . . . , N) with the required demand as di (i=1, . . . , N). The problem

is to satisfy customers ordered demand with an overall minimum trim loss.

To cut the available stock, the correct cutting patterns are to be determined.
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Thus, the generation of these cutting patterns is considered as the subproblem

to CSP. This RMP is solved by using the BCP approach for integer linear

programming because the linear programming approach is suitable and easy to

restore feasibility. The subproblem of pattern generation is solved by heuristic

techniques. Integrating heuristic approach with LP helps in speeding up the

process as it facilitates to modifying the fathom criteria for the node that helps

in removing a large number of nodes, and thereby, greatly reduces the search

space. Further, it also guarantees that the optimality gap is reduced.

Here, the cijk is the cutting decision column value, which indicates the num-

ber count of order demand i in the jth cutting pattern for the available stock

length k, i=1, . . . , N, j=1, . . . , M, k= 1, . . . , K. A column vector (c1jk, c2jk,

. . . , cNjk) indicates jth cutting pattern for a stock length type k, is feasible if it

satisfies

w1c1jk + w2c2jk + · · ·+ wNcNjk ≤ W
QL(k)

k ,

0 ≤ cijk ≤ di, integer
(4.1)

The classical 1D-CSP model with multiple stock is formulated as follows:

min

QL(1)∑
j=1

W 1
j +

QL(2)∑
j=1

W 2
j + · · ·+

QL(K)∑
j=1

WK
j

s.t.

QL(1)∑
j=1

wicij1 +

QL(1)∑
j=1

wicij2 + · · ·+
QL(1)∑
j=1

wicijK ≥ di,

i = 1, . . . , N

(4.2)

In this model, the cijk refers to column value for the type of item i in the jth

cutting pattern for the selected available stock Wk. Equation 4.1 specifies the

constraint that the summation of product for the cutting pattern generated to

meet the given demand lengths cannot exceed the available stock length. Note,

that the value of cutting pattern (cijk) generated is a positive integer less than or

equal to the ith demand. Equation 4.2 specifies the constraint for multiple stock

where the objective is to minimize the use of different available stock subjected

to constraint that order demands are fulfilled.

The Pat-Gen model for 1D-CSP integer programming problem is formulated

as follows:
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max
N∑
i=1

wicijk, j = 1, . . . , N (4.3)

s.t.
N∑
i=1

wicijk ≤ Wk − wi, i = 1, . . . , N (4.4)

0 ≤ cijk ≤ UBik (4.5)

Here, the UB is stand for upper bound and is computed as follows:

UB = bWk − wi

wj

c, j = 1, . . . , N (4.6)

The objective function in Equation 4.3 is a knapsack problem to maximize

the utilization of remaining space after removing the length of a selected single

item (wi). The first constraint enforces that the cutting pattern decision value

(cijk) must not exceed the upper bound. The computational upper bound,

corresponding to each item is computed using Equation 4.6. Setting up an upper

bound helps in restricting the decision value and always generating feasible

cutting patterns. The second constraint ensures that the total length cut out

can never exceed the remaining stock length.

4.4 Proposed Methodology

The basic concept of heuristic approach is to generate an optimal cutting pattern

after each iteration and use it exhaustively to meet the demand without exceed-

ing the availability of associated stock. The proposed heuristic approach uses

two stages of execution. In the first stage, is the pattern generation phase where

the columns are generated using the proposed model. The second stage uses

heuristic where the tasks are the selection of pattern, determining the number

of patterns to be cut, updation of parameters like the availability of the remain-

ing stock and remaining order demand are carried out. Both the stages are

explained in detail in the next subsections.

4.4.1 Pattern Generation Approach to Accelerate Col-

umn Generation

The Pat-Gen is the main model for the pattern generation, which guarantees

the determination of the least cost cutting patterns in terms of optimality. This
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model is similar to a knapsack, in which the objective function is to maximized

the profit by selecting appropriate objects from the available. In this model,

we have also proposed one-at-a-time scheme, which is motivated by the fact

that at least a portion of the selected item order demand is fulfilled from the

available stock. Thus, it generates some pattern for the item order (say i) from

the available greater stock length. It is presumed that at least one part of

the ith item demand will be fulfilled by the selected available stock. Thus, the

remaining portion of the selected available stock is subjected to Pat-Gen model.

The output cutting pattern obtained after applying the Pat-Gen is updated at

ith index by incrementing the value by one.

We start the pattern generation process with available greatest length stock

for each of the order demand stock. This ensures that its ordered demand is

met with the available larger stock. The process starts by taking each ordered

demand at a time. For each order item, a corresponding stock set is created

where each stock set consists of the available stock whose length is greater than

or equal to the selected item, which ensures the solution feasibility. Thus, in the

worst case, for each item the number of possible patterns generated would be N

x M in the initial iteration. However, as the iterations are carried out further,

the number would definitely reduce, since some ordered demand gets fulfill with

the completion of each iteration.

In the Pat-Gen model, we have modified the classical column generation

model by reducing the right hand coefficient of the constraint by the currently

selected item length for which the patterns are generated. This modification of

constraint helps to generate specific optimal pattern possible for the available

stock, which results in the reduction of computation time by some fractional

amount. The integer linear programming is used to solve this problem generated

after selection of best feasible columns amongst the generated ones. The problem

can be solved by using any of the existing integer linear programming solvers.

The proposed approach uses efficient BCP exact method (Feilleta et al. [20]) to

determine whether the selected pattern results in integer solution or not. The

BCP algorithm, which is based on a delayed column generation approach within

a branch-and-bound framework, is proven to work well and finds the optimal

solutions for multiple cutting stock practical scenarios within the reasonable

time.
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Algorithm 3 Integrated Heuristic with Integer Programming

Input: Cutting stock demand and available stock
Output: Optimal CSP solution with minimum trim loss
Begin
Arrange item piece order demand in decreasing order

for each order item piece demand do
for each multiple available stock ( s.t WL ≥ wi) do

Generate cutting pattern (using Pat Gen model )
Compute produced waste

end for
end for
for each order demand do

Select a pattern with minimum waste
Update stock availability and demand order of stock fulfilled by selected

pattern
if no demand order is satisfied then

Move to next order demand to select pattern
else

Update order demand
end if

end for
Output solution and stop

End

The obtained cutting patterns are stored and the respective waste produced

is computed for the current order item demand. Amongst the entire patterns,

the one that produces the minimum waste is selected. Equation 4.7 is then used

to determine the possible number of cuts to meet demand for the item. The

next task is the updation of all parameters as discussed in the next subsection.

The pattern generation can encounter three cases:

Case-1. Available stock and unmet demands In particular, this is a general

case in which, our algorithm considers plenty of multiple length available stocks

as well as the demand requirement for the evaluation. In every iteration, some

part of the demand is met and the process continues till either out of stock or

the required demand are fulfilled.

Case-2. Available stock and few fulfill demand Another case is when, not

all, but a few of the order demand requirements are met. This case may occur

when the selection of patterns with minimum waste may possibly lead to a

state that some order demands are met and few are remaining. In such a case,

the items for which the demand is fulfilled, are not considered further in the

pattern generation process. This helps in speeding up the computation task, as
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the number of items to be considered are reduced. Such change in computation

does not affect the functioning of the model. Thus, the model supports flexibility

as dynamic changes can be easily accommodated to generate a pattern.

Case-3. Demand unmet with available stock This case discusses the possible

scenarios in which the available stocks are fully utilized and still the demands are

unmet. The chance of occurrence is when the greater order demand for stocks are

not fulfilled, whereas the shorter order demands are preferred and cut from the

larger available stock. This case can happen only during the selection of pattern

with minimum waste. To resolve it, if two patterns generated for different order

item from the different available stock results in the same trim loss, then the

preference is given to available stock with lower length. Thus, while designing

the model, this aspect was addressed by giving selection priority to the order

demand with maximum length.

4.4.2 Computational Selection and Updation

The number of patterns to be cut for the ordered item demand wi from the

available stock Wk is determined by the equation below.

NumPatternwi
= min(Avlwi

, b d1
c1jk
c, . . . , b dN

cNjk

c) ∀cijk 6= 0 (4.7)

Here, Avlwi
refers to the quantity of the selected available stock to meet order

demand (wi), NumPatternwi
is the total number of patterns that will be selected

for the given demand. The value is computed as the minimum amongst the

quantity of selected available stock ( Avlwi
) and demand fulfillment for different

order item, i.e., the maximum number of demands that can be fulfilled using

the selected pattern. The symbol b c represents the floor value corresponding

to the obtained number. After the selection, other parameters like availability

of stock and remaining requirement of demand are updated.

Avlwi
= Avlwi

− NumPattern wi
(4.8)

di = di − NumPattern wi
cijk (4.9)

The trim loss associated with each cut pattern selected (based on the cutting

pattern matrix) with respect to available stock used is determined as follows:
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TrimLoss(TLij) = Wk −
N∑
i=1

wicijk (4.10)

Setting up the upper bound on cutting decision value helps to reduce the

number of patterns. If the subproblem of pattern generation is solved to opti-

mality, then the new solution obtained is at least equal and in general, better

than the existing solution. This helps in the selection of optimum pattern with

minimum trim loss.

Table 4.2: Random instances for CSP.

Instance n m L v1 v2 jmin jmax kmin kmax d̃
Rand1 1 40 1000 0.01 0.2 1 15 1 10 43.2
Rand2 1 40 1000 0.01 0.2 1 15 1 15 17.4
Rand3 4 40 1000 0.01 0.2 1 15 1 15 30.5
Rand4 4 60 1000 0.01 0.2 1 15 1 15 16.2
Rand5 6 60 1000 0.01 0.2 1 15 1 10 8.64
Rand6 4 60 1000 0.01 0.2 7 15 1 10 30.21
Rand7 6 100 1000 0.01 0.2 7 15 1 10 23.32
Rand8 1 100 1000 0.01 0.2 7 15 7 15 51.3
Rand9 4 100 1000 0.01 0.2 7 15 7 10 18.3
Rand10 4 100 1000 0.01 0.2 7 15 7 15 49.32
Rand11 6 40 1000 0.1 0.8 1 15 1 15 52.8
Rand12 1 40 1000 0.1 0.8 1 15 7 15 9.34
Rand13 1 40 1000 0.1 0.8 1 15 8 15 32.1
Rand14 4 40 1000 0.1 0.8 7 15 1 15 14.2
Rand15 6 60 1000 0.1 0.8 1 15 1 15 62.7
Rand16 1 60 1000 0.1 0.8 8 15 1 15 43.6
Rand17 1 60 1000 0.1 0.8 1 15 1 10 33.7
Rand18 4 100 1000 0.1 0.8 1 15 1 15 15.28
Rand19 4 100 1000 0.1 0.8 1 15 1 10 19.4
Rand20 6 100 1000 0.1 0.8 8 15 1 15 27.32
Rand21 1 40 1000 0.2 0.7 8 15 7 15 29.6
Rand22 1 40 1000 0.2 0.7 1 15 1 10 36.6
Rand23 4 40 1000 0.2 0.7 1 15 1 10 50.23
Rand24 1 60 1000 0.2 0.7 7 15 8 15 45.2
Rand25 4 60 1000 0.2 0.7 7 15 7 15 35.1
Rand26 1 60 1000 0.2 0.7 7 15 7 15 54.12
Rand27 1 60 1000 0.2 0.7 1 15 1 10 41.5
Rand28 4 100 1000 0.2 0.7 1 15 1 10 18.3
Rand29 6 100 1000 0.2 0.7 1 15 1 10 23.77
Rand30 4 100 1000 0.2 0.7 1 15 1 15 26.4
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Table 4.3: Real world instances from paper tube industry in Japan
Matsumoto et al.(2011) [120].

Instance n m Lmin Lmax jmin jmax d̃ lmin lmax

P1 3 14 1300 1800 5 10 87.1 66 544
P2 1 15 1800 1800 10 10 100.0 88 411
P3 2 16 1700 1900 5 12 67.1 114 550
P4 3 17 1350 1800 5 5 60.3 642 1057
P5 4 15 1350 2100 10 10 52.0 608 1058
P6 4 17 1350 2100 5 5 60.3 642 1057

Table 4.4: Real world instances from fiber industry in Japan
Matsumoto et al.(2011) [120].

Instance n m Lmin Lmax d̃ lmin lmax

F1 1 6 5180 9080 33 520 1250
F2 1 7 5180 9080 27.5 650 1020
F3 1 8 5180 9080 56.87 500 1200
F4 1 9 5180 9080 29.88 500 1500
F5 1 10 5180 9080 34.9 750 1250
F6 1 11 5180 9080 32.18 500 1450
F7 1 13 5180 9080 21.46 920 1250
F8 1 14 5180 9080 15.92 635 1440
F9 1 15 5180 9080 22 500 1250
F10 1 16 5180 9080 26.18 500 1340
F11 1 17 5180 9080 31.06 500 1200
F12 1 18 5180 9080 27.44 500 1440
F13 1 19 5180 9080 35,10 650 1350
F14 1 20 5180 9080 8.85 500 2000
F15 1 23 5180 9080 31.26 530 1520
F16 1 26 5180 9080 43.11 500 2000
F17 1 28 5180 9080 17.85 500 1250
F18 1 29 5180 9080 13.13 500 1360

4.5 Computational Results

This section discusses the data instances used, and the comparison result, amongst

various proposed and existing heuristic approaches.

4.5.1 Data Instances

We carried out computational experiments on random as well as real industrial

data instances. The random instances for 30 classes were generated by setting

up the parameters in the CUTGEN1 software by Gau and Wäscher [117]. The

generated instances use different combinations for the parameters L, m, v1, v2,

d̃, where the demand is computed by two random variables j and k such that
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di = ji · ki. The length of each item li is randomly selected within the [v1L,

v2L] interval. The parameter to compute demands ji and ki are random in the

range [jmin, jmax] and [kmin, kmax] respectively. Table 4.2 summarizes the details

where L is set to 1000, jmin and jmax varies in range (1, 15) and (7, 15), and

kmin and kmax varies in range (1, 7) and (7, 15). Here, d̃ denotes the average

demand. To generate the random instances, we have considered three ranges

for v1 and v2, i.e., for classes 1-10 the value is set (0.01, 0.2), for classes 11-20

the range is (0.1, 0.8) and for classes 21-30 the range is (0.2, 0.8). This random

variation in the input helps in rigorous testing of the proposed approach. On

the other hand, the industrial data instances were collected from Matsumoto et

al.(2011) [120] which is a real data from Japan paper tube reported and fiber

factory.

The real data includes 6 instances that are taken from the real applications

in a paper tube industry in Japan as shown in Table 4.3. The dataset size is a

maximum of 17 instances with the available multiple stock ranging from 1 to 4

with the maximum length of the available stock up to 2100 and the maximum

demand for item is 420. Table 4.4 shows another real world data of a chemical

fiber company in Japan. These are 40 instances with m ranging from 6 to 29,

with L equals to either 5180 or 9080, li ranging from 500 to 2000, and di ranging

from 2 to 264.

4.5.2 Assessing the Performance of Proposed Heuristic

Against Other Existing Heuristics

As the problem size grows, the difficulty to solve combinatorial problems in

polynomial time increases because of the expansion of the solution space. This

feature promotes the use of heuristic algorithm as they produce an acceptable

solution in reasonable time with advances in computing technology. The pro-

posed work is compared against three well known algorithms from the literature:

a standard column generation algorithm for multiple stock CSP (by Gilmore and

Gomory [10]), sequential heuristic (by Cui Y. et al. [121]), and a TS algorithm

(by Matsumoto K. et al. [120]), which are based on shift neighborhood that

solves the auxiliary bin packing problems with the first-fit decreasing heuristic

algorithm.
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Table 4.5: Comparison amongst heuristic algorithm on trim loss and time (in
sec.).

Instance CG Tabu Search CG Sequential Heuristic Proposed
Trim
Loss(%)

CPU
Time(sec.)

Trim
Loss(%)

CPU
Time(sec.)

Trim
Loss(%)

CPU
Time(sec.)

Trim
Loss(%)

CPU
Time(sec.)

Rand1 0.0 0.43 5.43 3.57 0.0 0.0 0.0 0.35
Rand2 5.7 1.37 12.5 5.46 8.3 0.23 4.3 0.58
Rand3 0.0 1.09 6.92 2.3 0.5 0.58 0.00 0.56
Rand4 0.0 1.34 2.37 12.56 0.9 1.07 0.00 0.31
Rand5 0.0 0.57 1.49 2.8 0.0 1.02 0.00 0.49
Rand6 15.4 2.47 27.4 4.12 15.4 1.29 12.4 1.51
Rand7 13.9 1.39 30.9 2.59 - - 10.05 0.56
Rand8 0.0 5.19 4.39 110.4 - - 0.00 3.56
Rand9 0.0 3.48 8.7 14.1 - - 0.0 2.49
Rand10 11.4 6.31 31.4 70.36 - - 9.4 9.48
Rand11 6.2 5.21 18.3 16.4 5.4 3.19 5.7 4.46
Rand12 0.0 9.26 9.2 112 1.3 7.45 0.0 7.34
Rand13 7.4 10.05 19.43 38.1 7.4 8.62 7.4 9.54
Rand14 7.5 1.57 15.3 70 7.5 0.57 6.7 1.37
Rand15 0.0 9.50 6.8 4.8 0.0 9.50 0.0 6.56
Rand16 9.2 7.42 25.3 22.8 11.4 6.21 8.1 6.4
Rand17 5.8 4.59 14.2 12.7 6.2 3.53 5.8 3.3
Rand18 10.4 12.29 37.2 117 - - 8.17 10.37
Rand19 12.6 5.08 14.7 107 - - 9.2 4.9
Rand20 0.0 10.34 12.7 4.6 - - 0.0 9.54
Rand21 7.9 3.05 16.9 9.2 7.9 3.05 6.4 1.01
Rand22 0.0 8.39 13.68 9.31 0.0 8.39 0.0 7.5
Rand23 5.2 4.21 19.4 9.4 5.7 3.39 4.5 3.6
Rand24 4.8 8.32 6..59 9.2 4.95 6.45 4.12 5.3
Rand25 0.0 6.31 17.4 3.6 0.4 4.51 0.0 5.12
Rand26 0.0 4.11 4.9 5.4 0.9 3.15 0.0 2.41
Rand27 6.7 15.3 28.2 5.74 7.5 13.25 5.5 13.4
Rand28 15.4 10.47 28.3 190 - - 12.8 9.45
Rand29 0.0 6.45 12.7 5.4 - - 0.0 5.30
Rand30 5.9 11.57 23.6 147.23 - - 4.15 10.3
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Table 4.6: Exact approach performance using real world data (tube factory)
from Matsumoto et al.(2011) [120].

Instance BP-no cut BCP Proposed Integrated
CPU-Time(sec.) CPU-Time(sec.) CPU-Time(sec.)

P1 5.04 7.92 2.40
P2 2.75 5.75 1.43
P3 16.3 24.7 7.50
P4 3.26 8.26 2.61
P5 4.1 7.95 3.67
P6 0.93 0.94 1.35

Table 4.7: Performance of Exact approach using fiber industry instances
from Matsumoto et al.(2011) [120].

Instance BP-no cut BCP Proposed Integrated
CPU-Time(sec.) CPU-Time(sec.) CPU-Time(sec.)

F1 2.46 3.61 2.41
F2 4.74 43.4 3.76
F3 7.33 4.67 3.61
F4 12.2 8.85 6.94
F5 6.88 6.37 5.92
F6 6.52 11.1 5.64
F7 2.09 2.07 1.63
F8 3.86 5.81 2.85
F9 3.57 3.04 1.57
F10 5.59 13.4 2.72
F11 3.17 5.3 2.86
F12 18.48 147 15.7
F13 6.05 11.2 5.40
F14 - 35.7 29.5
F15 148 232 130
F16 77 31.5 27.8
F17 207 15.4 85.4
F18 19 8.58 13.85

The computational results show that the method performs favorably with

respect to other global optimization procedures. Table 4.5 summarizes the ef-

fectiveness of the approach by comparing it with others heuristics from the

literature. The results obtained are promising, quite close in many cases and

better in many cases as compared to CG approach. Results are far better than

the tabu search in terms of computation time as in this searching approach it is

required to explore the solution depth, which sometimes may not possible due to

the restarting procedure that may compromise the effectiveness of the approach.

We observe that both, the SHP and integrated approach, attain small trim loss,

but the approach failed to find a solution on large instances. Based on the ob-
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servation of our approach behavior, we can conclude that simple initial design

procedures are better to implement, which facilitate in better global iteration.

Table 4.6 reports the experimental results on real world data instances for

all the four approaches. For instance P3, the results obtained by CG, SHP and

proposed heuristic based integrated approach are comparable. The proposed

approach takes very less computation time. However, only for P6, the proposed

approach took slightly higher time. The computation time average reduction

of 41.44 % against CG and 65.8% against SHP is observed for proposed inte-

grated. The observation shows the adaptation of the proposed technique by

manufacturing industries would result in a huge amount of economic saving.

Figure 4.1: Graphical interpretation of execution time with exact approaches.

4.6 Assessing the Performance of Proposed Heuris-

tic Against Exact Approach

The major drawback of exact approaches is their incapability to find the optimal

solution for large instances. As the problem size grows the number of compu-

tation tasks increases and sometimes the process becomes too time consuming.

The enumerative approaches based on B&B try to explore the search space.
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AGAINST EXACT APPROACH
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The space grows for the large scale problems and proves to be computationally

infeasible. We exploit this shortcoming by introducing a heuristic in this search

process, which greatly reduces the search space. Another principal advantage

of greedy approach is that it is cheaper in both the space and the time require-

ment. In this way it guarantees that the value of the best solution provided

by the procedure is no farther than the distance from the optimal value of the

problem. Table 4.7 shows the behavior of the exact approach on the paper tube

data instance. Here, we have considered two exact approaches the cutting plane

algorithm for multiple stock length (Belov G. et al.) [23] and BCP (Feilleta et

al.) [20]. The table summarizes the results for the CPU execution time. It is

reported that on an average reduction in computation time is 19% against BP-

not cut and about 54.5% against BCP. Figure 4.1 shows a clear distinction in

the performance of all the exact approach. It is observed that it is better to

invest the time for searching few starting points rather than exploring the entire

search space.

The statistical t-test carried between exact and integrated approach for fiber

industry data instances reported in Table 4.8. The statistical test is carried to

check the significance of the result obtained by both the approaches. The test is

carried with 10 degrees of freedom at a confidence interval of 95%. The obtained

computation shows that the value of p is very small, which indicates that both

the approaches a difference of variance is observed. The result is statistically

significant and the null hypothesis that both approaches behave in similarly in

this class of data instances is rejected.

The table summarizes the performance comparison on computation time

of exact approaches on real world fiber industry data. The results obtained

highlight the fact that an integration of a small heuristic approach helps in

reducing the computation time to a large extend when proposed in compared

with BCP. In comparison to BP, it is observed that the computation time is

slightly higher. However, the optimal or near optimal solution is guaranteed in

reasonable time.
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4.7 Chapter Summary

This chapter has presented a new integrated heuristic method for the determi-

nation of the optimal pattern in multiple stock 1D-CSP. Its main contribution to

the literature over other existing one is that the approach does not enumerate all

possible patterns as the size of combinatorial problem increases. Another ben-

efit is that the approach is able to produce optimal result, even when the ratio

between the available stock and the order demand is low. The proposed method

is a good tool to solve the real world problems with an acceptable solution in

reasonable computation time.
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Chapter 5

Metaheuristic Approach to

2D-Strip Packing

5.1 Introduction

Manufacturing and production industries very often come across the problem

where a given stock material must be cut into a smaller set of rectangular shapes.

This problem is termed as two dimensional orthogonal rectangular strip pack-

ing problem (SPP), which is NP-hard in nature (Garey et al. (1979) [119]).

This class of combinatorial optimization finds significant relevance in different

domains of operations research. In industries like paper and pulp, wood, tex-

tile etc., the problem is to determine how the arbitrary rectangular block set

would be cut from the available stock. The problem variant like arrangement

of articles, reports and advertisement, is considered in the newspaper field. In

pharmaceutical packing industry, many strip packaging approaches seem ideal

for high speed sealing of coated or uncoated tablets, capsules or lozenges of any

shape or size in aluminum foils, polythene, cell phone, etc. It is an interesting

real world industrial problem, where the objective is to provide the best ar-

rangement with the aim of waste minimization. There are two broad categories

of the solution approach, namely exact and inexact. A major bottleneck with

the exact approaches is that as the problem size grow and become complex, the

computation time also grows exponentially. Thus, the researchers focus more

on the inexact approaches in comparison to exact.

In today’s world of industrialization, where the mass production and high

material utilization are the crucial factors for growing industries. It necessitates,

the need of finding correct cutting patterns, which may result in small improve-

ment. As in long term run, it leads to huge economical saving. These problems

occur at wide scale in many industries, where the complexity is determined by
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the shape of the item to be cut and the number of applicable constraints. Textile

and shipping industries basically deal with irregular shaped items. Automation

in a packing system saves much economic time and is preferred over the man-

ual. Textile industry tackles this problem, but under different head, namely

Nesting and Marker making. It involves finding the best layout for the cutting

of irregular shapes, where the shapes being allowed a rotation from 0 to 180

degrees. Regular and irregular shape packing are being addressed in the ship-

building industry, where it is required to investigate how the irregular size items

can be packed and transported in huge containers. As in todays scenario of

surplus demand an automated system is required for efficient packing, thereby,

reducing the transportation damage risk. The packing problem is not limited

to industries, but can also be seen in other dimensions like in very-large-scale

integration (VLSI) design, memory allocation during storage, and in the field of

optical fiber communication.

5.2 Terminology

This section presents a brief introduction to two dimensional strip packing and

biased random key approach used with genetic algorithm.

5.2.1 Two Dimensional Strip Packaging

The 2D-SPP deals with a set of rectangular blocks that must be arranged in a

given container of fixed width and infinite height with the objective of minimiz-

ing the highest point of any rectangle in the solution. A feasible placement is

one, where no rectangles overlap one another within the container and are ar-

ranged parallel to the container edge, i.e., orthogonally. Additional constraint

like rotation of blocks by 90 degrees is considered in this work.

Figure 5.1: A view of 2D-strip packing.
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Given a huge rectangular container of dimensions say, where W stands for

fixed width, and H denotes the infinite height of the container. Considering

m rectangles of smaller dimension as compared to container are to be packed

where the ith rectangle dimensions is wi x hi.

The placement is subject to non-guillotine cut, i.e., the rectangles are placed

parallel to the edge of the container. We worked on the problems, with integer

and real dimensions easily without any extension or change. The SPP is well

explained in Figure 5.1. The shaded rectangles show different arbitrary size

rectangular blocks that are packed into the given container. Optimum height

denotes the best possible height that can be achieved after placing all the rectan-

gles. In this subproblem for strip packing, i.e., 0-1 knapsack, is indeed NP-hard

in nature and this de-generative case makes the entire problem NP-hard. The

model can be formulated as maximizing the area occupancy that in turn results

in minimizing the overall height of the layout, the representation of which is as

follows:

max
m∑
i=1

wihiλi (5.1)

λi can take the value 0 or 1 indicating whether the ith rectangle is placed or

not. We designate each rectangle bottom left most corner coordinates of the

rectangle as (xi, yi). The governing constraints are defined as

xi + wi ≤ W, i = 1, ...,m (5.2)

yi + hi ≤ H, i = 1, ...,m (5.3)

xi + wi ≤ xj or xj + wj ≤ xi or

yi + hi ≤ yj or yj + hj ≤ yi

∀i, j where i 6= j

(5.4)

λi ∈ 0, 1 (5.5)

xi, yi ≥ 0 (5.6)

The constraints 5.2, 5.3 and 5.6 ensure that the rectangles are placed within

the boundary of the designated container used for packing. Constraint 5.4 checks

the condition that no two rectangles overlap each other. Here, we have consid-

ered the generality that all dimensions are integer. Constraint 5.5 indicates

whether a rectangle is placed or not. The objective is to place all the smaller

dimension rectangles in the given container such that occupancy is maximized

and no constraints are violated. Thus, a design layout is feasible, if it satisfies

the above constraints.
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5.2.2 Biased Random Key Based Genetic Algorithm

To solve sequential problems in combinatorial optimization, Bean (1994) [122]

introduced random key or random key genetic algorithm. Thereafter, the ap-

proach is modified by many researchers to handle a large class of problems.

Goncalves et al. (2011) [114] proposed biased random key genetic algorithm

(BRKGA), which is a variant of random key and has a different approach for

selecting the parents for mating. In biased random key approach, each chromo-

some is represented by randomly generated vectors having real values lying in

between the range [0,1]. The values obtained are sorted to obtain the chromo-

some sequence, which is the rectangular block placement sequence in our case

as shown in Figure 5.2. The initial population consists of p vector of m random

keys, where p is the number of population in each generation G and m are the

number of rectangular blocks to be placed. The population is partitioned into

two sets: elite (e) and non-elite. For each population, the fitness value for each

individual is computed. The elite is a small group containing individual with

maximum fitness values. In order to evolve population for the next generation,

the elite population is copied as it. The remaining p-e population is evolved

from performing crossover between elite and non-elite chromosomes. During

the mating process, one of the parents selected is biased to have higher fitness

value as compared to other. As the number of elites is less, which indicates that

one parent can produce more than one offspring. Mutants are introduced into

the population to allow escape from local optima. The most promising feature of

BRKGA is separation between dependent and independent algorithm modules.

As, in standard GA operators like crossover and mutation vary depending on

the nature of a problem, however, BRKGA is not much dependent on crossover

operator. The approach is competitive and suitable to tackle complex combina-

torial optimization problems with least user affords.

Figure 5.2: Biased random key sequencing.
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5.3 Two Dimensional Placement Heuristic

This section introduces a new placement heuristic algorithm for the 2D-SPP.

The algorithm inspiration is drawn from best fit approach and the general

methodology, but with many significant differences. So far, the existing heuris-

tic and metaheuristic approaches require a pre-processing on the available set

of rectangles to select the best one amongst them that can fill the current gap

exactly. But, in the proposed approach we follow a simple technique, where the

rectangles are placed in the sequential order according to the designed place-

ment policies into an appropriate empty rectangular block. Thus, it avoids the

computational overhead of pre-processing and selection of the best fit rectan-

gle. In many heuristic algorithms the solution is determined by considering the

rectangle in sorted order of their width. This sorting operation adds complex-

ity to these algorithms. At each iteration, a suitable gap needs to be found,

which is obtained by searching the current container status and then, choosing

an appropriate rectangle from the remaining unplaced rectangles input list to

find the best match. The placement approach starts initially with an empty

container considered as coordinate system with the left most corner coordinate

as (0,0), which is also termed as origin. Whenever a new rectangle is placed,

the coordinate points are available for placement changes. A list is maintained

to keep track of possible placement positions. Whenever a rectangle is placed at

any location that particular coordinate position is removed from the list. The

newly created placement position coordinates is inserted onto the list. This al-

lows the subsequent rectangles to be placed on top or around the newly placed

rectangle. For every rectangle placed, a number of empty rectangular block re-

gions are generated. However, many amongst them are merged to form a larger

rectangular block region to accommodate larger rectangle. The complexity of

region update procedure is O (n) where n is the number of rectangles already

placed.

5.3.1 Placement Approach

The idea of the placement approach is to consider the given container to be

divided into x and y coordinates. The limit range of x-coordinate is from 0 to

Width (W ) and y-coordinate is from 0 to Height (H ), where theoretically H is

considered to be infinite height. However, practically we have set an upper limit

for H based on the calculated optimal height values, which depends on the type

of rectangle to be packed and the width of the given container. The placement

of each rectangle results in the creation of new empty rectangular block space.
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The creation of empty space for rectangle placement is illustrated in Figure 5.3.

Each time a new rectangle is to be placed, one of the best suited empty rectangle

is selected from the available ones. The selection of empty rectangle is governed

based on the following constraints:

1. Area of the rectangle to be placed is less than or equal to the empty

rectangle area

2. Amongst the empty rectangle fulfilling the premier first constraint the one

is chosen with lowest y-coordinate

3. The third governing criteria in the selection that the first constraint must

be satisfied and there exist say more than one empty rectangle space with

same minimum y-coordinate. Amongst all, the approach selects the one

with least x-coordinate.

Figure 5.3: Creation of empty rectangle blocks.

5.3.2 Empty Block Creation

As the placement of the rectangle determines the empty block creation, we in

this subsection, discuss all possible cases for placement and their corresponding

possible empty block creations.

Case-1 : For Figure 5.3 (a) the placement of initial rectangle in the container

results in the number of empty block creation. E1 denotes the block space of

height equal to the placed rectangle height, and width equal to W-w
′
, where

w
′

is placed rectangle width. This creation of empty block may seem to be not

essential because of larger block space, i.e., E2 creation, but such blocks are

required when we discuss the general cases. Another empty block E3 is created

for the empty area above the placed rectangle. In the initial case, its width is

W that off the container and height h
′

equal to H-h
′
, where h

′
is the placed

rectangle height.
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Case-2 : In Figure 5.3 (b) it shows how the placement of next rectangle re-

sults in the creation of new or merging/removal of old rectangles. This case

happens when R2 height is more than that of already places R1. The creation

of E1, E2 and E3 are same as discussed in Case-1, and E4 is the left section of

empty block created. Creation of new E1 will remove the earlier block formed

by initial placing of R1. The diagonal coordinates of E4 block will be as follows:

x-coordinate as (x1 coordinate of R1, y2 coordinate of R1) and the y-coordinate

as ( x1 coordinate of R2, y2 coordinate of R2).

Case-3 : For Figure 5.3 (c) the third placement, case where the height of R2

is less than that of already places R1. In this case the new creation will replace

most of the already existing empty rectangle.

Thus, it is required to keep track of the creation of empty block, as each

iteration results in the formation of new as well as removal of some of the existing

empty blocks. The removed rectangles are basically either those, which overlap

with the newly placed rectangle or the one, in which the rectangle will be placed.

We designed a MergeRectangle routine that combines the small rectangle formed

during placement into a larger one. This routine keeps a check on the growing

number and stacking of empty block rectangles. The summary of the proposed

strategy is presented in Figure 5.4.

Algorithm 4 Genetic Placement Approach (GPA) Algorithm

Input: a set of rectangles to be placed (R), Container(C)
Output: placement pattern for the set of rectangles, optimum height
repeat

if not (initial generation) then
Select 1/8 of the fittest offspring for next generation

else
Generate random initial population

end if
repeat

call MPX CROSSOVER (parent1, parent2)
Use of placement approach to obtain sequence for packing of rectangle
call Placement Position Search Strategy
Creation of new empty block
call MergeRectangle routine
Use novel function to compute fitness of population

until number of population
until number of generation
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Figure 5.4: Summary of proposed strategy.
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Figure 5.5: Strip packing with gap.

5.3.3 The Placement Position Search Strategy

The most common placement approach used for packing two dimensional objects

is the Bottom Left (BL) heuristic. It is a very native method that involves

placing the rectangle sequentially from the input list to the bottom-leftmost

position in the given container. A major limitation of this approach is that

gaps may occur at number of places, and the subsequent rectangles may not be

placed. The scenario is shown in Figure 5.5. The best solution to the problem

is to keep track of the gap and assign priority based on increasing distance

from the leftmost coordinate (0,0) with lowest assigned the highest priority.

The placement of each rectangle is checked for previously placed rectangles for

collision. This approach has certainly improved over the BL approach. The

proposed Placement Position Search Strategy (PPSS) is an extension of BL

approach. It determines the best placement position for a given rectangle by

comparing the x-coordinate of all empty rectangle blocks formed. It ensures

that the new rectangle is placed at the bottom left most available corner. The

PPSS method processes, each rectangle as input to be placed, and also has the

list of current available empty blocks. The method is independent of any kind

of intelligent reordering. The pseudocode for the PPSS algorithm is provided

in Algorithm 5. The getAllEmptySpaces method returns all the usable empty

block spaces created by the placement of the rectangle. The method fits makes

a dimension check to ensure whether the rectangle can be placed in the vacant

space or not, i.e., make sure that the rectangle is placed without overlaps. If a

suitable empty space is found, then is marked as invalid for another placement.
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Algorithm 5 Placement Position Search Strategy

Input: Given an unplaced rectangle r, a container C, and empty rectangle
coordinate E
Output: Rectangle r with associated placement position P
P ← ∅, xmin ← ∞

E ← getAllEmptySpaces (C, E)
placed ← false
for i=1:E do

if (placed == false) and fits(ri, E) then
if Emin ≤ xmin then

xmin ← Emin, index ← i
end if

end if
end for
place ri and add placement information to P
placed ← true
return P

5.3.4 Merge Rectangle Routine

Figure 5.6: Merging empty rectangular block (x-coordinate).

The merge routine deals with two major cases. Let us consider the that

case we have two empty rectangular block spaces say E1 and E2 with diagonal

coordinates (x11, y11), (x12, y12) and (x21, y21), (x22, y22). The cases are:

Case-1 : Combine the rectangles along the x-axis as in Figure 5.6, in which

the difference of x2-coordinate of first and the x1-coordinate of the second is

zero, i.e., (x12 x21), or vise versa. The new empty block formed (E1 ) as shown

in Figure 5.4 will have the diagonal coordinate as (x∗1, y∗1) and (x∗2, y∗2), where

x∗1 = min (x11, x21), x∗2=max (x12, x22) and y∗1 = y12 or y21, y∗2 = min (y12, y22).

Here, the merging property of x-coordinate holds for E1 and E3.

Case 2: Combine rectangles along the y axis as in Figure 5.7, having dif-

ference of y2-coordinate of first and the y1-coordinate of the second is zero

(y21-y21) or vise versa. The new block coordinates will be (x∗1, y∗1) and (x∗2, y∗2)

where x∗1=x11 or x21, x∗2=min (x21, x22) and y∗1= min (y11, y21), y∗2= max (y12,

y22)
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Figure 5.7: Merging empty rectangular block (y-coordinate).

The merging module removes the smaller ones by combining smaller empty

spaces into large thus, facilitating the placement of the larger rectangles at lower

Y-coordinate. The module also helps to overcome algorithm space limitations.

Algorithm 6 MPX CROSSOVER ( parent1, parent2 )

Find two crossover point from elite population
Copy the segment from elite to the offspring
Scan the non elite population to fill remaining gene of the offspring

if (gene already present in the offspring) then
Move to the next gene segment Skipping already placed gene

else
Copy the gene to the offspring

end if

Figure 5.8: General overview of proposed hybrid approach.

5.3.5 Metaheuristic Enhancement to Strip Packing

The results obtained from the placement heuristic although represent a good

quality of solution in short computation time, however, it does not guarantee to
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find the optimal solution in most or all cases. Researchers finding suggest that

with a hybrid heuristic/metaheuristic packing strategy, the quality of the solu-

tions may be further improved. The main objective of implementing metaheuris-

tic to the placement strategy is to increase solution quality while maintaining

short computation time. This results in a hybrid system, which generates the

placement sequence using metaheuristic where the computational intelligence is

applied to determine the correct sequence resulting in minimum space lost. It

follows the placement of these generated sequences as per the placement heuris-

tic. The evolution helps to generate better and best solutions. The overview of

the developed system is shown in Figure 5.8.

Chromosome Representation

Each chromosome in the population represents a set of parameters to any prob-

lem that GA is trying to solve. The initial population in the proposed approach

is generated by random strings of real numbers in the interval range of [0,1] hav-

ing the same length, where length represents the chromosome size. The sizeof

chromosome is the number of rectangles to be placed into the given container.

This evolutionary strategy was proposed by Bean (1994) [122] and also used by

Goncalves (2007) [114]. The obtained random sequence is then sorted in the

increasing order to generate the placement sequence for the strip.

5.3.6 Crossover Function

The placement sequence after sorting is further modified by the crossover oper-

ation. The evolution cycle for GA is enhanced by two fundamental operators:

crossover and mutation. Here, we have considered biased random key method,

which integrates mutation operator. The approaches discussed by Gonalves

(2007) [89], Goncalves et al. (2011) [114], highlight that rather than performing

mutation on the entire population, certain mutants with specific mutation rates

should be introduced in the non-elite section of the population. However, in the

proposed scheme rather than introducing mutants to non-elite set, we kept the

mutation rate to be very low, as the approach itself is capable of dealing with

the low convergence rate problem. Thus, we preferred the existing non-elite

population rather than mutants introduced for crossover. As the elite parents

are more feasible to be the solution for the given GA problem, BRKGA pro-

ceeds by selecting one random elite parent and other non-elite. Such a selection

ensures that the new generated offspring would carry some features from elite

parent. As the number of individuals in elite population is less as compared to

non-elite, thus, the repetition of parents is allowed. That is one elite parent can
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generate multiple offsprings.

Figure 5.9: Maximal preservative crossover

In difference from the original approach, we apply Maximal Preservative

Crossover (MPX) over the parameterized uniform crossover used for the mat-

ing process of the chromosome. MPX is preferable as it produces offspring by

directly copying a small segment from the elite parent to the offspring. In this

crossover approach, two random crossover points are generated. These crossover

point decide the range of segment that would be copied in the offspring from

the elite parent. The remaining offspring is generated by copying the gene from

the second parent provided that the gene is not already present in the offspring.

The iteration steps are presented in MPX CROSSOVER Algorithm.

An example of MPX is illustrated in Figure 5.9, while copying gene from

second parent to offspring gene value 7 is already present in the offspring. Thus,

it is skipped and the next gene is evaluated and placed, if not already present

in the offspring. As, random key vector is used to encode the solution, and

resulting offspring from mating is always valid that can be decoded back as a

solution to the combinatorial optimization problem. When the next population

is complete with p individuals, the fitness values are computed for all of the

newly created random-key vectors and then the population are partitioned into

elite and non-elite individuals to start a new generation.

5.3.7 Fitness Evaluation

The quality of any evolved solution is judged by its corresponding fitness value.

These values help in selection process to select the fitter individual to be the

parent, which can share their properties to evolve better offsprings for the future

generations. Since, the goal is to minimize the packing height of the strip in

a given container, thus, the fitness evaluation of any individual is based on

the height parameter. Hence, we calculated individual score for each placed

rectangle, which is determined by the vacant space left in packing between the

placed rectangles. The overall score of the layout would be the summation of

score for each individual placed rectangle. This layout score is considered in the

evaluation of the fitness function. The utilization factor or score is given by
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Score(ri) =
wihi

WH −
∑

i 6=j,j∈B wjhj
(5.7)

Where ri is the rectangle with width wi and height hi to be placed in a

container. W denotes the width of the container and H represents Height.

To determine the score, we set an approximate height of the container to a

value slightly higher than the computed optimal height. This is done to tackle

the worst cases as the ordering is random in nature. The optimal height for

placement is calculated as summation of area for all the rectangles to be placed

divided by the width of the container as given by Equation 5.8. Here, B is the

number of rectangles already placed. The optimal/expected height is calculated

as

Optimum Height =

∑
iArea(rj)

W
(5.8)

The second parameter that we use for fitness evaluation is the best height

(BH ). This parameter indicates the current height achieved by the layout. The

fitness function must consider both the computing aspects, which are the score

and BH. Thus, utilization factor or score is not the only criteria for fitness

value assignment. Hence, the fitness function for the selected rectangle layout

sequence is evaluated as

Fitness(j) = Score(j) · BH(j) � jthrectangle sequence pattern (5.9)

5.4 Improvement on Existing Genetic Algorithm

Approach

The genetic algorithm based approaches like Hopper and Turton [65], Bort-

feldt [86], Gonalves [81] show that the performance of the algorithm basically

depends on the evolution of the rectangle placement sequence. But, in compar-

ison to other approaches, we do not perform any pre-processing like sorting of

rectangles based on maximum area, perimeter, etc. The selected MPX-crossover

operation helps us to find a different ordering sequence to determine a better

solution, and thus, improves the convergence rate of the algorithm towards op-

timum. The Genetic based Placement Approach (GPA) has two main compu-

tation stages, one for a number of generations which involves initial population,

crossover and fitness evaluation and another for the empty block creation, selec-

tion and removal. For each population, the placed rectangle block is governed
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Figure 5.10: Solution for dataset instances.
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by simple placement policy, i.e., PPSS. The crossover operation helps us to

maintain the ordering sequence, thus, improves the height in each generation.

Each population is assigned a fitness value that helps in further population

evolution. Another improvement shown over existing GA algorithm is the re-

duced computation time to obtain the optimal solution and the ability to handle

large instances. In the next section, we compare our results with the latest algo-

rithms on benchmark datasets. Figure 5.10 shows the packing for data instances

of Hopper and Turton.

5.5 Comparative Evaluation of the Packing Strat-

egy

The proposed model is implemented on 2.2 GHz Intel core duo CPU processor

with 2GB DDR3 primary memory. The programming platform used to im-

plement the approach is Java, a multi threaded programming language. The

proposed algorithm performance is evaluated by carrying out exhaustive testing

on strip packing benchmark instances, from the vast available literature. The

dataset instances that are used and our algorithm’s performance is reported in

the subsequent sections.

5.5.1 Dataset Description

The details of datasets with known optimal height used for comparison are as

follows:

1. Jakobs [78]: Two small instances J1 and J2 with number of rectangles to

be placed are 25 and 50 respectively.

2. Babu & Babu [79]: A single instance with 50 rectangles to be placed.

3. Hopper and Turton [65]: Test set C contains 21 instances. These instances

are divided into seven categories, each category contains three instances

with number of rectangles to be packed ranging from 16 to 197. These

groups are categorized on the basis of similarity in achieving optimum

height and container width.

4. Wang and Valenzela [123]: The dataset contains real values of the rectangle

dimensions, which are rounded down to an integer by multiplying by 10.

In some cases like, while comparing with the GA based approach, we have

considered no rounding up for odd dimensions. The dataset discusses two

different types of instances, which are grouped in two categories of Nice
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5.5. COMPARATIVE EVALUATION OF THE PACKING STRATEGY

and Path. Nice contains data with similar dimensions, on the other hand,

Path has a rectangle with varying dimensions. The rectangle range of both

the datasets is from 25 to 1000.

5. Burke et al. [91]: Burke generated test instances to test BF algorithm.

The number of rectangles to be placed are subsequently increased from

small as 10, (i.e., N1) too large as 3152, (i.e., N13).

Table 5.2: Computational result for test instance by Burke.

Class Instance BF BF+SA FH BBF BBFM GPA
Time
(Sec.)

m W Optimum
N1 10 40 40 45 40 40 40 40 40 19
N2 20 30 50 53 50 52 52 50 50 15
N3 30 40 40 52 51 51 52 52 51 29
N4 40 80 80 83 82 83 82 82 80 70
N5 50 100 100 105 103 102 103 102 101 62
N6 60 50 100 103 102 101 102 101 100 90
N7 70 80 100 107 104 102 106 105 103 124
N8 80 100 80 84 82 81 82 81 80 96
N9 100 50 150 152 152 151 152 151 150 340
N10 200 70 150 152 152 151 151 151 151 589
N11 300 70 150 152 153 151 151 150 150 545
N12 500 100 300 306 306 301 302 302 300 842
N13 3152 640 960 964 964 960 964 960 960 1200

5.5.2 Comparison with Other Metaheurisitic Approaches

Table 5.1 reports the computational results for three different data instances

for multiple experimental runs. The number of runs are varied as per the data

instance size for small sets like J1,J2, RB and C1.1 to C6.3 the number of runs

were 3 to 5. On the other hand for C7 instances 7-10 experimental runs were

carried out. It shows a comparison table, where the performance of the proposed

approach is compared to the well known existing algorithms as discussed in the

literature section like BL-DH, BLF-DH, BF, FH, BBF, BBFM. Here, for all

the experiments, m remains variable based on the number of rectangles to be

packed. The best solution of ten runs is given for all the problems from the

literature. It shows, on Jakobs and Babu & Babu data instances, the approach

is at par with BBFM, both giving the optimum results on all instances. In case,

of C dataset instances apart from C2.2 and C7.1 that are having a slight gap

of one unit from optimal value, the results on all other remaining instances are

optimum. The best solution is highlighted in bold font type in the table. For
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CHAPTER 5. METAHEURISTIC APPROACH TO 2D-STRIP PACKING

Figure 5.11: Study of (a) number of generation (b) frequency of occurrence of
different values of best fitness in 50 runs of the algorithm.

most of the instances, it is observed that applying computation intelligence to

generate placement pattern achieves a good solution.

Table 5.2 shows the results for the Burke N1-N13 dataset for multiple exper-

imental runs. In case of smaller instances less than 100 like, N1-N8 the results

are reported for 3-5 runs, whereas for N9-N13 the runs were 7-15. The pro-

posed approach is compared to 13 instances with the well known BF approach

and other methods. The BF+SA method is considered as the best algorithm

amongst all the variant of BF+metaheuristic, Fast Heuristic (FH) better on N

large instances, BBF and its modified version (BBFM). The table analyzes the

result in all 13 instances with respect to the solution found and GPA compu-

tation time. The BF and BF+SA give nearly the same performance on many

instances, whereas FH, BBF and BBFM improve the solution, which is further-

more improved by our approach. Not only for small instances, but also the

algorithm performs comparatively better for large instances like N12 and N13.

The algorithm achieves improved results on nearly three-fourth of the instances

and are competitive on the remaining instances. The nature of the dataset is

the major reason for better performance of metaheuristic on these instances

in comparison to others. The dataset contains few large size rectangles and a

more number of small rectangles. Thus, the intermediate vacant space, which is

created due to the placement of large rectangles can be filled with smaller ones

resulting in a good layout. The proposed approach utilizes the property of the

instances to achieve better solutions.

In general, it is observed that the hybrid metaheuristic approach achieves

better results on most of the instances with reasonable computation time. The

main cause of failure for genetic algorithm is that it suffers due to loss of genetic

structure during the evolution process. The two placement sequences may ap-

pear, similar in structure, but differ in solution quality. This happens because
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5.5. COMPARATIVE EVALUATION OF THE PACKING STRATEGY

in other placement strategies, the placement of successive rectangle depends on

the already placed rectangle. Moreover, another concern being during evolution

is that the sequence may change as the recombination operator may result in

distortion of the structure. We have addressed both these issues, as in the first

case, our placement is independent of sorting and searching criteria to deter-

mine the best fit rectangle. To avoid the distortion in the evolution of rectangle

placement sequence, we have used MPX CROSSOVER that preserves the or-

dering (good feature) of rectangles from parent to child, as it occurs at the same

position. It is observed that almost all methods outperform the best-fit place-

ment approach. However, overall GPA produces the best results. The number

of generations involved in processing large instances is shown in Figure 5.11. We

also consider non-zero waste for data instances of Nice and Path by Valenzuela

et al. [123]. The results of comparing the GPA on these non-zero trim loss over

heuristic approach is reported in Table 5.3 for multiple runs.

Table 5.3: Computational results for Nice and Path test instances.

Class Instance BF BBF BBFM GPA
m W Optimum

Nice1 125 1000 1000 1074 1083 1069 1070
Nice2 50 1000 1000 1085 1079 1068 1000
Nice3 100 1000 1000 1070 1067 1063 1040
Nice4 200 1000 1000 1053 1053 1038 1039
Nice5 500 1000 1000 1035 1033 1024 1000
Nice6 1000 1000 1000 1037 1037 1012 1006
Path1 25 1000 1000 1101 1091 1091 1091
Path2 50 1000 1000 1138 1074 1074 1074
Path3 100 1000 1000 1073 1073 1073 1070
Path4 200 1000 1000 1041 1053 1053 1030
Path5 500 1000 1000 1037 1032 1031 1031
Path6 1000 1000 1000 1028 1028 1026 1008

It is observed that amongst 12 instances reported, the GPA finds the optimal

solution for 7 instances. GPA finds the smallest height and outperforms all the

existing heuristic approaches within reasonable time. The GPA performed worse

Table 5.4: Computational results for large test instances.

Class Instance GRASP SVC FH GPA
m W Optimum

NiceL1 1000 100 100.1 102.2 101.5 100.9 100.3
NiceL2 2000 100 100.1 101.5 100.7 100.5 100.2
NiceL3 5000 100 100.1 101 100.4 100.2 100.0
PathL1 1000 100 100.1 101.9 101.2 100.7 100.6
PathL2 2000 100 100.1 101.5 101 100.2 100.0
PathL3 5000 100 99.9 101 100.2 100 100.0
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only for one instance, which is Path 5. The analysis of this worst case behavior

for GPA was observed due to a large number of small scale instances, and

quite less variation in dimensions. The algorithm behavior also depends on the

generated sequence patterns. However, on large instances, the approach is able

to find optimal solutions, considering the large non-zero trim loss dataset with

real dimensions. Table 5.4 shows the computational results on NiceL1 - NiceL3

and PathL1 - PathL3 for FH, GRASP and SVC for 10-15 experimental runs.

As reported, the GPA efficiently solves and obtains an acceptable performance.

Table 5.5 presents a comparison against existing approaches in term of %-gap

where it is defined as the ratio:

%− gap = ((ObtainedSolution−OptimalHeight)/OptimalHeight) ∗ 100

(5.10)

The results are reported for the Hopper and Turton data instances from the

literature, it also reports the total number of optimal solution found by each

approach. Further, these calculations are used for the statistical analysis of

the our approach. The %-gap is computed against different approaches, where

BF is being used in coupling with other techniques. The BF+SA is one of the

most used heuristic approaches that gave comparable results than BS+GA and

BS+TS. The non-systematic search techniques like squeaky wheel optimization

by Burke et al. (2011), SVC (SubKP), (reactive GRASP), stochastic approach

like ISA, and IDBS combined with tabu search are also used for the comparison.

IDBS is state-of-the-art outperforming the all algorithm. Our approach finds

the optimal solution in 19 out of 21 cases, and is far better than existing and at

par with IDBS in most of the cases. In instances like C4, C5, C6 (all instances),

C7.2, and C7.3, the GPA is able to find the optimum height whereas other

heuristic approaches fail to achieve the same. In other cases, the solution is

near to optimal and misses only by the single unit. The GPA stands second

in finding the number of optimal solutions, (i.e., 19) after IDBS, which finds

optimal results for all data instances.

5.5.3 Statistical Analysis for Heuristic Approach

Statistical analysis is one of the powerful tools to evaluate algorithm implemen-

tation and heuristic. In order to validate the results of the proposed algorithm,

the ANOVA is applied to check if the observed differences with the existing

algorithms are statistically significant. The analysis helps to identify which

algorithm scenario performs the best. The ANOVA works by comparing the

variation between groups to the variation within groups. If the ANOVA con-

cludes with the fact that there exists a difference in group mean to identify
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the difference, Tukey multiple comparison test is used. It compares between

each pair of means for the multiple testing. Tukey’s multiple comparison test

is one of several tests that can be used to determine which means, amongst

a set of means differ from the rest. Tukey’s multiple comparison test is also

called Tukey’s honestly significant difference test or Tukey’s HSD. All statistical

analysis presented in this dissertation were carried out at a 5% level of signifi-

cance. The tool used to carry out the statistical analysis is statistics open for all

(SOFA). It is a free open source, user friendly, statistics analysis and reporting

package that can handle complex data.

Figure 5.12: Means plot and Tukey’s confidence intervals (CI) for the evaluated
algorithms.

Figure 5.12 shows the mean plot and Tukey’s CI for the evaluated algorithm

where encircled are the mean values and line is used for showing the respective

confidence interval. The statistical analysis reveals that the proposed approach

significantly differs from almost all the approaches and is competitive with ISA

and IDBS. The computational results and statistical analysis show the accept-

able performance of the proposed GPA algorithm.

5.5.4 Comparison with Genetic Based Approaches

Our metaheuristic approach is also compared to similar genetic based approach

based on the relative difference from the optimal solution and a statistical anal-

ysis is carried to justify the performance of the GPA. Hopper & Turton investi-

gated SA and GAs metaheuristics approach in combination with the placement

strategies BL and BLF like GA+BLF, SA+BLF, and NE+BLF. Table 5.6 re-

ports the comparison against such algorithm along with SPGAL, Iori et al. [124]

and Goncalves approaches. The SPGAL approach is better and clearly dom-

inates the comparison against the other earlier approaches with the %-gap of
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Table 5.6: Comparison of %-gap for genetic based approaches for Hopper &
Turton test instances.

Instance Hopper & Turton
Iori

et
al.

SPGAL HPA GPA

GA+BLF NE+BLF SA+BLF
C1 4.0 5.0 4.0 1.59 1.7 0 0
C2 7.0 7.0 6.0 2.08 0.9 0 0
C3 5.0 4.0 5.0 2.15 2.2 0.53 2.2
C4 3.0 4.0 3.0 4.75 1.4 0.70 0
C5 4.0 4.0 3.0 3.92 0.0 0.33 0
C6 4.0 4.0 3.0 4.0 0.7 0.42 0
C7 5.0 5.0 4.0 - 0.5 0.66 0.14

Average 4.6 4.7 4.0 3.08 1.0 0.38 0.33

just a unit. The HPA gives a better performance, but, the result reported is the

average result on the basis on a number of runs, (i.e., 10) for each instance. The

performance of the GPA is better even without averaging the number of runs.

5.5.5 Statistical Analysis

The statistical analysis is also performed to evaluate against different meta-

heuristic approaches as shown in Figure 5.13. The GPA shows a vast deviation

from the mentioned approaches as it is able to find optimal result in most of the

cases. The plotting also shows that HPA and GPA are statistically not much

different.

Figure 5.13: Means plot and Tukey confidence intervals (CI) for the metaheuris-
tic algorithms.

5.5.6 Algorithm Complexity

The analysis of algorithms is considered for both space and time. Linear storage

space is required for storing the parameters corresponding to the rectangle being
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packed and current status of the designed layout. The algorithm is analyzed for

all the cases. In the best case, the initial generated placement sequence is the

required one, thus, the complexity of the algorithm is O (1). The algorithm

does not use level oriented packing. The average and worst case behavior where

the population is evolved to find the optimal pattern sequence in O (n2).

5.6 Chapter Summary

This chapter presents an efficient two dimensional hybrid placement strategy,

which tackles the 2D-SPP in an effective manner. It has been shown that two

dimensional best fit is a suitably powerful and efficient method of packing rect-

angle within a container. With some metaheuristic enhancements (coupled with

a packing strategy) to this solution, the quality can be improved even further in

a very reasonable amount of execution time. In this chapter, a new hybrid ap-

proaches has been proposed, which combines the relative strengths of both the

placement heuristic and the metaheuristic, for two dimensional orthogonal pack-

ing. The proposed methodology is easily extended to include other constraint

like rotation. The hybrid method can quickly and significantly improve upon

layouts produced by other techniques from the literature and it can achieve good

solutions that are less than 1% over optimum in some cases. The time taken to

reach suitably high solution quality with this strategy is very reasonable on re-

alistically sized instances and could be implemented in many industrial settings

with relative ease.
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Chapter 6

Hyper-heuristic Approach to

2D-Strip Packing

6.1 Introduction

Consumerism brought by industrialization is now an integral part of the econ-

omy. Economic growth depends on the continued supply of new goods with the

best utilization of available resources based on least waste production policy

to reduce waste recycling. Thus, it motivates the need of effective automation

techniques that can be beneficial to different industries. These techniques are

not limited to textile, but can be extended to other industries like pallet loading,

paper and pulp, wood, and textile to improve their economical saving. Textile

and fabrication industries also deal with similar problems, where irregular shape

cloth cutting is done to meet the customer demand. The implication of these

problems is not limited to industries, but also in resource scheduling where avail-

able resources are allocated to the client as per the requirement or allocation of

memory to the running processes.

Packing and transportation is one of the major concerns for developed as

well as developing nations. The changing scenario of growing need compels

to make government policies and mission for the development of science and

technologies to achieve safe, economical, efficient, secure, and meet applicable

regulatory requirements for packing and transportation. A numerous efforts

are being made to resolve packaging and transportation issues safely, economi-

cally, and promptly. First and foremost objective for transport packaging is, it
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must serve to protect goods in transit. This can be achieved by proper packing

and placement of goods during transit as it can only ensure against unintended

shocks, impacts or accidents of any kind. The better utilization has impact on

many factors like reducing the number of vehicles in shipment, reducing the

cost of damage during transit, improving the transportation cost and economy

saving. All these could be achieved, if boxes are packed optimally or near opti-

mally. Packaging decisions have a major impact on logistical productivity and

efficiency. Handling efficiency in all of these situations is significantly influenced

by package design, unitization, and communication characteristics. The pack-

ing problem is a type of NP-hard problem as the number of boxes increases,

the solution cannot be obtained in polynomial time. This motivates the use

of heuristic and metaheuristic approaches. For the packing combinatorial opti-

mization problem with growing complexity and computational constraints, the

solution using the exact approach in reasonable time seems to be infeasible.

This chapter discusses the packing issues related to two dimensional ob-

jects like packing of rectangular strips into a larger container using different ap-

proaches. The problem is addressed using a constructive greedy hyper-heuristic

search technique to find better solutions. A genetic algorithm is used to evaluate

the design, improve the solution and prevent it from being trapped in local min-

ima. The proposed approach efficiently tackled the practical issue of solvability

as the problem size grows, i.e., the complexity with size, accuracy of the devel-

oped model, processing time etc. to find the optimum solution. The motivation

behind the use of hyper-heuristic is to determine the best suited constructive

heuristic that can obtain a quick solution for the new instance. The general be-

havior is observed that the time taken by hyper-heuristic is small as compared

to metaheuristic for many problems to be solved. In some cases, hyper-heuristic

can obtain better results as compared to complex metaheuristic search. The

objective is to automate the design and cut down the cost.

Rest of the chapter is organized into following subsection: Section 6.2 in-

troduces hyper-heuristic terminology. The mathematical model designed to

represent this class of problem is explained in section 6.3. The proposed tech-

nique is discussed in section 6.4, it shows the consecutive subsections creation

via decomposition technique. Section 6.5 presents a heuristic design approach,

constructive hyper-heuristic applied to model, and the evaluation of genetic al-
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gorithm. In section 6.6 experimental results are analyzed for empirical testing

of the algorithm against the state-of-the-art methods from the literature, con-

sistently in terms of computation time and occupancy. Section 6.7 gives the

chapter summary.

6.2 Theoretical Background

This section discusses the hyper-heuristic approach in detail.

6.2.1 Hyper-heuristic

Hyper-heuristic refers to the search methodology or learning mechanism to solve

combinatorial search by either generating or selecting the heuristic. The chal-

lenges to solve computationally hard search problems have motivated the use of

hyper-heuristic approach for automating the heuristic search design helpful in

solving numerous real world problems. The objective of hyper-heuristic is to de-

sign some generic approaches with a distinguish feature of operating in the search

space of heuristic, and generate the solution of an acceptable level using a set of

easy to implement low level heuristic. Hyper-heuristic approaches are proving

to be a general problem solver approach motivating the use to obtain a high

quality solution across distinct problem domains. These are competent search

techniques witnessing the great success to numerous real-world applications. As

these applications are huge in size, exact approaches are not inadequate, thus,

heuristics are commonly preferred.

Figure 6.1: Relationship between hyper-heuristic and problem instances.
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The aim of a guided hyper-GA is to make the dynamic removal and insertion

of heuristics more efficient, and evolve sequences of heuristics in order to produce

promising solutions more effectively. Here, we have considered a hyper-heuristic

as a high level approach that takes into account a number of low level heuristic

and select an appropriate one at each decision point. A general framework of

hyper-heuristic is shown in Figure 6.1. Hyper-heuristics are classified into two

broad categories based on the nature of heuristic search space and the feedback

source during the learning process. The nature of search heuristic depends

on the approach, whether it is a heuristic selection or generation, where they

are further categorized either to be constructive or perturbation. Similarly,

the feedback used during learning is categorized into on-line, off-line and no

learning. The proposed methodology falls under the sub-class of constructive

heuristic selection for hyper-heuristic methods. The constructive heuristic starts

with no solution, but as the solution proceeds, iteratively they select the best

ones and finally build the entire solution. The important challenge is to select

the best one amongst available for the given current problem state.

6.3 Mathematical Model

The model is formulated based on simple observations, yet a compact model

developed helps to find the optimal solution. It makes use of two decision

variables: First, pi stating that each ith rectangular block can be placed only

once in the container and the second xij indicates that ith rectangle is placed at

jth level. Each rectangular block is represented using a quadruple (xi, yi, hi, wi),

where (xi, yi) represents the leftmost coordinate of the placed rectangle and, h

and w stands for height and width respectively.

pi =

1 if ith block is placed in the container,

0 otherwise.

(6.1)

The item packing at the level is modeled by

xij =

1 if ith block is placed at the boundary surface of level j,

0 otherwise.

(6.2)
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This model differs from other level based models, as in other models, each

level is determined by the highest placed rectangle, the filling of the level takes

place by smaller ones and finally the levels are kept in the container. How-

ever, in this case, the focus is on, width parameter rather than height. The top

surface of each placed rectangle is called the level, and the associated width is

termed as level width (Wi), i.e., the length of the ith level as denoted by the bold

lines in Figure 6.2. Each level form acts as a sub-maximization problem, where

the objective is to maximize these levels width occupancy of the top surface by

placement of rectangles. The decomposition of problem into a number of max-

imization subproblem, which helps to achieve the overall objective of container

height minimization by efficient packing. The integer linear programming model

for each level is as follows:

max
m∑
i=1

wipi (6.3)

subjected to :

j−1∑
i=1

xij + pi = 1 (6.4)

i∑
j=1

wjxij ≤ Wi (6.5)

xi + wi ≤ W, i = 1, ...,m (6.6)

yi + hi ≤ H, i = 1, ...,m (6.7)

xi + wi ≤ xj or xj + wj ≤ xior (6.8)

yi + hi ≤ yj or yj + hj ≤ yi (6.9)

∀i, j where i 6= j (6.10)

pi ∈ 0, 1 (6.11)

xij ∈ 0, 1 (6.12)
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The objective function indicates the maximization of the level surface by

placement of selected rectangles such that summation of width is less than or

equal to the level width. Equation 6.4 imposes that each item is packed exactly

once, either to form the level or placed to maximize the top surface for any

other level. Equation 6.5 imposes the width constraint, which is the sum of

places rectangle’s width that cannot exceed the level width to be maximized.

Constraints 6.7, 6.8 and 6.9 ensure that there is no overlapping between any two

placed rectangles.

6.4 Proposed Technique

In this section, we discuss in detail the proposed methodology for packing of

rectangular blocks. It presents a solution design model for packing the problem.

It also demonstrates how the cost associated with the automation of design

system can be reduced by integrating hyper-heuristic approach with the model.

Figure 6.2: Dynamic level creation at the initial stage (a) initial (b) dynamic
levels.

6.4.1 Problem Decomposition

To efficiently solve the strip packing problem, the problem is decomposed into a

number of subproblems that are recursively solved by the sub-routine using low

level heuristic. The best outcome amongst the low level heuristics is selected

by the constructive hyper-heuristic. Each low level heuristic has a specific task

and the collective framework that constitutes the solution model.

In this technique, we have introduced a new term, namely Level Boundary
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Surface (LBS), which refers to the top surface region length for any placed rect-

angle as shown in Figure 6.2. The technique is called decomposition as at each

problem iteration it is divided into a subproblem of maximizing the lowest level

boundary surface. The optimal solution to these subproblems are combined to

get the final optimal solution. The decomposition for strip packing proceeds

in a number of sequential steps. However, it differs from other placement ap-

proaches as they are concerned with rectangle selection and then its placement in

the appropriate position. On the other hand, the proposed sequential procedure

involves the placement of the set of rectangles, where the set may contain one

or more rectangles. The placement of the current rectangle set is governed by

the already placed ones. The placement of set results in the formation of one or

more LBS, this is termed as dynamic level formation. The creation of dynamic

level varies as the solution progress. There are two associated possibilities with

the formed dynamic level: in the first case, the rectangles that constitute the

level surface may either merge with the already existing level or they may result

in forming a new level at a different height. Each dynamic level formed has an

associated boundary surface to be maximized with an exception to top most

boundary level when all rectangles are placed. Thus, at each iteration of the

solution process, the short heighted LBS from origin is maximized. It results in

changing sheet configuration forming new levels.

At the initial stage, the overall height of the sheet is zero and only a single

boundary level surface is available with the width equal to the width of the

sheet (W ). Figure 6.2 shows the initial sheet configuration and formation of

new dynamic levels. As the height of the current level is raised a new level

is formed. As shown in Figure 6.2(a), the level0 is the first level, with height

equal to zero and width equal to sheet width. Figure 6.2(b) is the configuration

state when two rectangle blocks are placed with the objective of maximizing

the current level boundary surface, which results in two different levels as there

exist a height difference between the placed rectangles.

Consider the configuration for each level as (x, y, w, h), where (x, y) is the

left most corner coordinate, w represents the width parameter and h stands for

the height of the current level. Thus, for the initial level, the values are (0, 0, W,

0). The placement of rectangle of same or varying length decides the creation of

a number of dynamic levels. The objective at each iteration is to maximize the
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occupancy of current LBS width from the set of available rectangles R1, R2, . . . ,

Rn. As shown in Figure 6.2, shows the placing of two rectangles with different

configuration at Level0. The following conditions may occur

1. If h2 ≺ h1 or h1 ≺ h2 then level will split into two sub-levels as:

Level1= (x0, y0+h1, w1, h0+h1 ) and Level2= (x0+x1), y0+h2, w2, h0+h2)

2. If h1 == h2, that is, when the placed rectangles are of equal height then

levels are combined as:

Level1=(x0, y0+h1, w1+w2, h0+(h1 || h2))

Another case is one where it is required to merge level to form a new dynamic

level of larger width, which facilitates the placement of large rectangular blocks.

The level can be merged with its neighboring level at the left or right side

having the same height to form an extended wide level, as illustrated in designed

merging level procedure MergeRoutine and Figure 6.3.

In the merge routine, combining of levels occur.

MergeLevels : Given a Leveli = (xi, yi, wi, hi), a set of rectangles are to be

placed at the nearest lowest level either on left or right side of it. The rectangles

are first sorted in the ascending order based on the difference of height from

the current level. The routine considers two cases with respect to left and right

neighbor respectively. For both, the left and right case, the routine terminates

when it finds a rectangle, which is higher than current level Leveli.

Figure 6.3: Merging of dynamic level.

Another point that must be noted is that during the maximizing of current

LBS it may not often result in the formation of new levels, but may also form

a single one by either placement of rectangle blocks with same width or by

combing with the existing level. All these possible cases are shown in Figure
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Figure 6.4: Subsequent placement of levels.

6.3. The dark horizontal line is used to denote the level, which is the highest

horizontal surface in the current strip configuration. The level may be combined

with its neighboring level by the extension of the horizontal line provided both

are at the same height.

Figure 6.4 shows the filling at one level and subsequent filling at higher levels

as in (a) (b) and (c). The filling always begins to take place with the lowest

level surface. These LBS surfaces are selected to be maximized depending on

the left most coordinate point having minimum value of yth coordinate. Thus,

the data structure used to represent level has two measuring parameter the

left most coordinates points and the width. In case of one or more levels are

combined the width of the new LBS formed extends from the leftmost corner

coordinate nearest to the container edge to as far as the vertical edge higher

than the current level also described in MergeRoutine.

The initial level filling Figure 6.4 (a) shows the maximization of the Level0

when the height is equal to zero results in creation of three levels. Figure 6.4(b)

indicates that at next iteration the lowest level is selected and best placement is

performed, raising the height of the current level to form a new one. Figure 6.4(c)

shows that the current lowest level is raised by an appropriate strip resulting in

expansion of existing level.

The overall system design model is discussed in the PlacementRoutine. The

routine executes until there exists rectangle to be packed. At each iteration,

the lowest LBS are selected to be maximized. The placement of rectangles and

formation of dynamic level is carried out in the next step. Finally, the MergeR-

outine is called for evaluating the scope for expanding the LBS to accommodate

rectangles with larger width.
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Algorithm 7 MergeRoutine

k=1
Case-1 :

if (left placement) then

while ((yk ==yi)&& (xk≺xi)) do
wi=wi+ wk

Leveli = (xk, yi, wi , hi)
k=k+1

end while

end if
Case-2 :

if (right placement) then

while ((yk ==yi)&& (xi≺xk)) do
wi=wi+ wk

Leveli = (xi, yi, wi, hi)
k=k+1

end while
end if

Algorithm 8 PlacementRoutine

j=1

while ( doj ≥ n)
Find lowest levelk, i.e., one with minimum hi

Place the rectangle and modify the current Levelk
Call MergeRoutine()
j=j+1

end while
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6.5 Heuristic Decision

Selection of correct group pattern or a set amongst all possible ones is the most

decisive part of the algorithm. As for each level, one or more combination can

be formed that maximize the LBS width. The selection of the set is determined

by a set of heuristic decisions. The Heuristic is stated as determine the shortest

heighted rectangle in the generated set and consider two aspects related to it.

First, determine whether in the selected set there exists two or more rectangles

with equal height or whether there exists some rectangles that can be combined

with neighboring LBS. In both the cases, the extension of LBS is possible and

the possibility of further solution evaluation. Second, is to check whether cur-

rent LBS can be maximized or not. The First, heuristic ensures the scope of

further evaluation as new LBS can be obtained by placement of the set, and the

second ensures that further evaluation would result in creation of vacant space

as current LBS cannot be maximized. In case the second governing heuristic

is not met by the sequence set, then that sequence is penalized by discarding

from further evaluation. This small check helps to greatly reduce the amount of

solution search space for each generation. The use of heuristic helps to find the

individual with better placement of the rectangle, which becomes much closer

to the global optimum.

6.5.1 Hyper-heuristic Combined with Model

The selection of rectangles to maximize the subproblem is the first phase of

the model. The second phase is to combine the model with hyper-heuristic

technique to select the best set amongst all possible combinations. For all the

possible solutions generated by GA, the placement order is determined by these

LLH. Then, constructive hyper-heuristic decides the best amongst them for

further evaluation. The LLH that we have considered for the placement are:

1. Rightmost Placement : Place at the rightmost position

2. MaxDiff Placement : Place the rectangle so that the difference in the top

level with its neighbor is maximal

3. MinDiff Placement : Place the rectangle so that the difference in the top
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level with its neighbor is minimal

Figure 6.5: Low level heuristic operating on problem instance with 3 cases.

All the three placement policies are applied to the possible solutions. LLH

considers the evaluation of all the above three placement policies as shown in

Figure 6.5. These placement policies determine the appropriate position for the

rectangular block on the top of the layer surface to be maximized. The first

placement policy is that the orientation of placement must be right most, i.e.,

placing the rectangle always towards the right side. The second and third poli-

cies are based on the difference in level height and with maximum and minimum

difference between the top level surfaces respectively. Based on the placement,

a goodness score is assigned to each design layout obtained and the resulting

best solution is selected. The heuristic techniques used for the packing resem-

ble the popular best fit approach. However, in this case we have considered all

possible placement options and best amongst them is selected for processing of

the layout design. The selection amongst the placement options is made by the
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evaluation of the goodness function for any design D which is defined as:

goodness(D) = Score(H1) + Score(H2) + Occupancy-rate (6.13)

where

Score(H1) =


1 if shortest heighted rectangle i can be merge

with existing top level surface j.

0 otherwise.

(6.14)

Score(H2) =


1 if rectangular block exist to maximize the shortest

heighted rectangle top level.

0 otherwise.

(6.15)

Figure 6.6: Best and average solution against solution cutting (a) 300 pieces (b)
1000 pieces.
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Score (H1) value is 1, if the shortest rectangle can be merged with the existing

level j, otherwise 0. Score (H2) value is 1, when there exists a rectangular block to

maximize the shortest highlighted rectangle surface otherwise 0. The occupancy

rate stands for the percentage utilization of the selected set in the current design

layout. It is measured as the ratio between the total occupied area to the total

area, i.e., the maximum height of the design layout multiplied by the width of

the container.

Figure 6.7: Violation of constraints for initial population.

6.5.2 GA Approach to Proposed Model

This section gives a detailed explanation of the process, how GA helps in im-

proving the overall performance efficiency of the decomposition technique. GA

is a well known optimization problem for the better exploration of the search

space. In the proposed decomposition technique, a number of subproblems are

created, which are required to be solved optimally to obtain the overall optimal

solution. For each level created either by placement or by possibly merging of

neighboring level, a rectangle or a set of rectangles is determined that can max-

imize the level surface without overlapping. GA task is to find such sets from

the available search space of rectangles. The best and average case solution for

cutting with different pieces is shown in Figure 6.6. The main benefit of the

decomposition can be observed from the fact that most of the initial population

combination for the search space would be infeasible, as the sum of their width

would exceed the level boundary surface to be maximized. GA penalizes all
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such combinations or individuals by not considering them in the further evalu-

ation of the population. Thus, only those individuals survive whose sum is less

than or equal to the LBS width. The number of average constraints violated

by the initial population is shown in Figure 6.7. It shows that with the number

of iterations carried out, the number of individuals violating the constraints is

reasonable. The result is shown for a small population size, which indicates that

the number will grow as the population size increases. Another benefit of this

approach is as the boundary level surface may vary with each subproblem, so

the computation time to solve each them is reasonably low.

As the solution approach proceeds iteration to iteration, from bottom most

LBS to top most level, the search space is reduced as the marked rectangles

placed in the structure at any lower level are never reconsidered. Thus, at each

level, GA optimizes boundary surface by determining a single set or multiple

set of rectangles that maximizes the occupancy of the each boundary level. As

there can be a number of possible combinations, so it is required to select the

best possible one. In order to evaluate all possible allocations, the value of

individual set is calculated by evaluating the fitness function. The allocation

for which the heuristic returns the best value is deemed to be selected by the

selection process. The fitness function that determines the selection of a set of

rectangles in the design is given as:

fitness(L) = (HmaxL −
∑

iwihi
wL

) +HL (6.16)

Here, the term HmaxL stands for the maximum height in the selected set,

i.e., HmaxL=max(h1, h2, . . . , hm), wi=w1, w2,. . . ,wm where i=1,. . . ,m belongs

to the selected set to maximize the current level boundary surface. Here, wL

stands for the width of the current level surface and HL is the current level

height. The fitness is computed with respect to each level boundary surface

for each set of possible placement. The fitness value helps in the selection of a

set to be considered for the further evaluation of the design layout. The fitness

comparison for average and best fitness for cutting 300 and 1000 pieces is shown

in Figure 6.6. The computation time grows with the increase in problem size.

For all possible allocations, the heuristic is evaluated by computing the value of

fitness. The allocation set for which the fitness function returns the best values

is the selected set for allocation at the current step.

107



6.6. EXPERIMENTAL RESULT

6.6 Experimental Result

The experimental setup and the datasets used are same as discussed in the

previous chapter. We obtained results on a comprehensive datasets from the

literature, the details of which are shown in section 5.5.1. In addition, we have

also considered 10 class instances from Pisinger et al. (2002) [54], which are the

random uniformly generated values in the specific selected range. Each class of

10 problems has five instances of size 20, 40, 60, 80 and 100 items.

Number of results exist in the literature for different instances of each dataset.

In this section, the results obtained by the proposed hyper-heuristic approach

is compared to the best result in the literature for that instance by heuristic,

metaheuristic and hyper-heuristic techniques. The heuristic approach includes

BLF, FH, BBF, BBFM and LWF. The metaheuristic algorithm like an HGA

and HSA metaheuristic approaches are also used for comparison. The approach

is also compared with Burke et al. [100] hyper-heuristic based on the genetic

programming.

Table 6.1 reports the performance of constructive hyper-heuristic compared

to other heuristic and metaheuristic approaches on the dataset Jakobs [78],

Babu & Babu [79] and Hopper & Turton [65]. Thus, the table contains three

groups of datasets with varying number of instances. The results reported in

the table is reported for multiple runs for small sets like J1,J2, RB and C1.1

to C6.3 the number of runs were 3 to 5. On the other hand for C7 instances

5 to 8 experimental runs were carried out. The optimal solution (denoted by

Optimum) is computed beforehand. The 100% filling rates can be achieved only

when the total area of the rectangles to be packed is equal to the container

area computed as W * Optimum. Group-1 is the Jacobs instances with a small

number of rectangles to be packed. The proposed approach obtains an optimum

solution for both the cases. Group-2 is a single instance of the Babu & Babu

dataset. The best-fit approach gives a solution far from optimum, whereas

the recent heuristic BBFM and the proposed hyper-heuristic find the optimum

solution. Group 3, over the 21 instances, we obtain an average space utilization

of 98.67%, which is the best as compared to existing state of art. We achieve

100% space utilisation in 13 instances out of 21.

A computation placement result for HSA, BBFM and proposed approach
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Figure 6.8: A comparison of the (a) HSA, (b) BBFM and (c) Proposed using
problem C7.1 from Hopper and Turton instances.

Figure 6.9: Trim loss (%-gap) analysis for Burke instances.
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Table 6.2: Computational result for Burke test instances.

Class Instance LWF HSA BF FH BBF BBFM Proposed
m W Optimum

N1 10 40 40 40 40 45 40 40 40 40
N2 20 30 50 50 50 53 52 52 50 50
N3 30 40 50 52 50 52 51 52 52 52
N4 40 80 80 80 80 83 83 82 82 81
N5 50 100 100 100 102 105 102 103 102 102
N6 60 50 100 100 101 103 101 102 101 100
N7 70 80 100 106 100 107 102 106 105 103
N8 80 100 80 83 82 84 81 82 81 81
N9 100 50 150 151 152 152 151 152 151 150
N10 200 70 150 151 151 152 151 151 151 151
N11 300 70 150 152 151 152 151 151 150 150
N12 500 100 300 303 302 306 301 302 302 300
N13 3152 640 960 964 964 964 960 964 960 960

Table 6.3: Computational result for Pisinger and Sigurd test instances.

Class m FFDH BFDH SAS SASm BFS FC SC SCR Proposed
I 60 86.3 86.6 79.4 86.3 88.6 87.3 88.4 88.3 87.2
II 60 83.7 83.7 80.1 82.2 85.1 85.2 85.4 85.4 84.9
III 60 81.1 81.7 69.6 75.7 82.2 81.9 81.7 81.7 82.0
IV 60 80.0 80.0 76.0 78.0 82.0 83.0 83.0 81.4 82.7
V 60 80.4 81.1 72.6 78.3 81.4 81.3 81.2 81.0 81.0
VI 60 79.1 79.3 76.1 77.1 79.5 80.7 80.5 80.5 80.6
VII 60 79.9 80.2 74.0 80.4 80.9 80.8 80.8 80.9 80.9
VIII 60 80.7 81.1 76.4 79.5 81.6 81.3 81.2 81.2 81.5
IX 60 72.8 72.6 71.6 72.9 73.0 72.6 73.2 73.2 73
X 60 83.3 83.8 73.2 79.4 85.5 85.4 85.3 85.1 85.3

Table 6.4: Computational results for Nice & Path large test instances.

Class Instance GRASP SVC FH Proposed
m W Optimum

NiceL1 1000 100 100.1 102.2 101.5 100.9 100.3
NiceL2 2000 100 100.1 101.5 100.7 100.5 100.2
NiceL3 5000 100 100.1 101 100.4 100.2 100.0
PathL1 1000 100 100.1 101.9 101.2 100.7 100.6
PathL2 2000 100 100.1 101.5 101 100.2 100.0
PathL3 5000 100 99.9 101 100.2 100 100.0
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on C7.1 instance is shown in Figure 6.8. Table 6.2 summarizes the result for

Burke test instances. In case of smaller instances less than 100 like, N1-N8 the

results are reported for 3-5 runs, whereas for N9-N13 the runs were 5-10. The

results in the table show that the constructive heuristic has roughly the same

performance as compared to LWF and HSA. However, it is able to find the

best solution for larger instances like N12 and N13. In comparison to heuristic

like BF, FH, BBF and BBFM it is much better. Indeed, the average result

for a proposed approach on all instances are better than the best-fit, which

indicates that the approach is quite suitable even for large size problem. It also

shows that the behavior of constructive heuristic varies with the nature of the

problem. The computed result achieves the best outcome for all 7 out of 13

classes. On an average, the proposed approach outperforms all other heuristic

and metaheuristic approaches. The trim loss (%-gap) for all the above instances

is shown in Figure 6.9, where the proposed approach is with minimum %-gap

in most of the cases.

Table 6.3 summarizes the result for Pisinger and Sigurd test instances. It

is observed that SAS approach is an exception, on the other hand, other ap-

proaches show a fair utilization of available space. The proposed approach gives

a better utilization on class VII and IX instance. The approaches like SAS and

SASm are preferred because of their fast execution time. The SC approach

performs dense packing. The computation time for FC and SCR algorithms

are comparatively more. In comparison to other, the proposed constructive

approach is capable of achieving higher efficiency at reasonable times.

The statistical independent t-test is carried with respect to the other ap-

proaches. The test was carried for a confidence interval of 95% and 10 degrees

of freedom. The results reveal that in both cases the value of p is smaller,

thus, it can be assumed that the result is statistically significant, i.e., there is

a difference between at least two groups and even a difference in variance is

observed.

The approach is also evaluated on the larger data instance, as reported in

Table 6.4 for number of runs ranging from 7 to 12. It is observed that for all the

six instances, the proposed approach is comparativel able to perform better by

obtaining minimum packing height. The approach is competitive with FH and

better than GRASP and SVC. It is able to find the optimum solution for three
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Table 6.5: Comparison between GPA and proposed hyper-heuristic large test
instances.

Class Instance GPA
Time
(in sec.)

Proposed
Hyper-
heuristic

Time
(in sec.)

m W Optimum
NiceL1 1000 100 100 100.3 865 100.0 548
NiceL2 2000 100 100 100.2 937 100.1 671
NiceL3 5000 100 100 100.0 563 100.0 695
PathL1 1000 100 100 100.6 1537 100.3 1274
PathL2 2000 100 100 100.0 1758 100.1 1562
PathL3 5000 100 100 100.0 5631 100.0 4761

(NiceL3, PathL2, PathL3) out of the six instances. It is observed that for large

data instance the data usually contain more number of rectangles with similar

dimensions. Most of the approaches fails to effectively handle such dataset and

result in sub optimal placement of rectangles. The performance improvement

of the proposed approach is governed by the efficiency of the low level heuristic

to handle similar and variable size rectangles.

The proposed hyper-heuristic is also compared with the previously proposed

GPA approach. The comparison results are reported in Table 6.5. It is observed

that for small instances both these approaches have the same behavior. As

the problem size increases, although both these approaches are able to find

comparatively good solution, but the computation time required by GPA is

high. The difference is observed as the proposed hyper-heuristic explore well

the low level heuristic, each time selecting the best solution. Another, reason

for this behavior is the decomposition of problem into subproblems reduces the

problem size in each iterations.

6.7 Chapter Summary

A need for an automated system that generates an efficient pattern resulting in

minimum trim loss, which ultimately leads to economical saving. Nowadays, it

has become more critical and important. In this chapter, we have designed a

robust and effective cutting model. The proposed model is based on the problem

decomposition and is flexible to run time changes. Promising results are achieved

in addition to many extra benefits like flexibility to change and support to

parallel implementations over existing approaches from the literature. Judging
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from the results obtained, this model proves to be useful for many industries as

it efficiently explores the search space.
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Chapter 7

Conclusion

7.1 Discussion

The thesis has shown that there exists a scope for further optimization of the

current methods reported in literature, which, if implemented can lead to huge

saving, and therefore, future gains exist with the research. We have seen that

there exist approaches for generating high quality solutions to both one dimen-

sional cutting stock problem and two dimensional strip packing problem. For

1D-CSP, it is observed that use of metaheuristic approach results in effective col-

umn generation technique, which speed up the solution process. Accompanied

by the use of heuristic enhancement of these procedures can drive even further

improvements in solution qualities. A robust framework for 1D-CSP has been

presented, along with a mathematical programming model solver implemented

with relative ease. The use of current and considering the future advancement

of mathematical programming solver will give incredible solution at a rapid rate.

We have presented a new integrated heuristic method for determining the

optimal pattern in multiple length one dimensional cutting stock problem. The

main contribution made to the literature over other existing one is that the

approach does not enumerate all possible patterns as the size of the combinato-

rial problem increases. Another benefit is that the approach is able to produce

optimal result, even when the ratio between the available stock and the order

demand is low. The proposed method is a good tool to solve the real world

problems with an acceptable solution in reasonable computation time.

A novel, simplified placement strategy is used for the 2D-SPP framework
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which, when combined with metaheuristic proves its dominance even for larger

problem instances. We presented a new hybrid approach, which combined ge-

netic encoding and evolution scheme with the proposed placement approach.

Such a combination resulted in better population evolution and faster solution

convergence to optimal. The approach was subjected to a comprehensive test

using benchmark instances. The computation results validate the solution and

the effectiveness of the approach.

Further, a robust and effective cutting model based on hyper-heuristic ap-

proach is designed that automatically selects the best heuristic by means of

exploring the search space of low level heuristics. The proposed approach can

be directly applied to future problems in higher dimensions. The performance

shown by the statistical analysis indicates that the proposed technique is suit-

able for placement of items with and without rotation. Lower computation time

certainly makes the metaheuristic approach more competitive when compared

to other algorithms and therefore, more attractive for industrial applications.

We contribute to the design and implementation for cutting stock and strip

packing, in terms of the different data structure and problem representation with

varying constraints, which provide an insight into the theoretical analysis and

the basis for more constructive algorithm for these problems. The detailed ex-

perimentation carried out and the reported results in previous chapters, show the

selection of appropriate technique(s) for a given problem. The performance eval-

uation reports how well these approaches outperform many recent approaches

from literature.

7.2 Future Work

As any research project comprises of taking some creative work with an infinite

amount of time to it. There are a number of areas that can fall in thesis scope

that are quite possibly an extension for future scope. One of the most obvi-

ous extensions of the problem is for three and higher dimensions considering the

volume utilization, thereby, reducing the transportation cost. Most of the manu-

facturing and other large industries rely on delivery by vehicles. Hence, efficient

measures would result in reducing the number of vehicles used in shipment. A

numerous efforts are being made to resolve packaging and transportation issues
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safely, economically, and promptly. Good and efficient transportation has a vital

role to play in the economy of any nation. Furthermore, the applicability of the

developed framework can be tested for different similar domains like scheduling,

space allocations, VLSI etc.

The research work reported is based on constructive heuristic, where it can

select the best amongst the available solutions. This, can be extended and tested

for automatic generation of heuristic based on the search space for higher dimen-

sions, which could result in similar or better performance, but of course need

confirming with the appropriate empirical testing. As the scope for optimiza-

tion exists, with incremental changes to the current methodology can produce

significantly larger performance benefits. A more enhanced search technique for

generating heuristic can be employed along with the changes in genetic algo-

rithm model to further support parallel implementation and handling problem

at large scale.

The work can be further expanded by carrying out theoretical analysis of the

heuristic search to analyse support for problem scalability and on parameters

like admissibility to determine its ability to accurately predict the performance

of the proposed techniques. Metaheuristic technique can be analysed for better

convergence and efficiency.
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[75] Asik O.B., Özcan E. (2009), Bidirectional best-fit approach for orthogonal

rectangular strip packing, Annals of Operations Research, 172(1), 405–

427.
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(2013), Hyper-heuristics: a survey of the state of the art, Journal of the

Operational Research Society, 64, 1–30.

[101] Fisher H., Thompson G.L. (1963), Probabilistic Learning Combinations

of Local Job-shop Scheduling Rules, Industrial Scheduling, Prentice-Hall,

Englewood Cliffs, pp. 225–251.

[102] Crowston W.B., Glover F., Thompson G.L., Trawick J.D. (1963), Proba-

bilistic and parametric learning combinations of local job shop scheduling

rules, ONR Research Memorandum, GSIA, Carnegie Mellon University,

Pittsburgh, p. 117.

127



BIBLIOGRAPHY

[103] Storer R.H., Wu S.D., Vaccari R. (1992), New search spaces for sequencing

problems with application to job shop scheduling, Management Science,

38(10), 1495–1509.

[104] Storer R.H., Wu S.D., Vaccari R. (1995), Problem and heuristic space

search strategies for job shop scheduling, ORSA Journal of Computing,

7(4), 453–467.

[105] Fang H., Ross P., Corne D. (1993), A promising genetic algorithm ap-

proach to job shop scheduling, rescheduling, and open-shop scheduling

problems, In: Proceeding of the International Conference on Genetic Al-

gorithms, Urbana-Champaign, USA, pp. 375–382.

[106] Fang H., Ross P., Corne D. (1994), A Promising Hybrid GA/ Heuristic

Approach for Openshop Scheduling Problems, John Wiley and Sons, New

York.

[107] Drechsler R., Gckel N., Becker B. (1996), Learning heuristics for OBDD

minimization by evolutionary algorithms, In: Proceeding of the Parallel

Problem Solving from Nature (PPSN), Berlin, Germany, pp. 730–739.

[108] Burke E.K., Hyde M., Kendall G., Woodward J. (2010), A genetic pro-

gramming hyper-heuristic approach for evolving 2-D strip packing heuris-

tics, IEEE Transactions on Evolutionary Computation, 14(6), 942–958.

[109] Bazaraa M.S., Jarvis J.J., Sherali H.D. (1980), Linear Programming and

Network Flows, 2nd edition John Wiley, New York.

[110] Zhao S.Z., Ponnuthurai N.S., Zhang Q. (2012), Decomposition-based mul-

tiobjective evolutionary algorithm with an ensemble of neighborhood sizes,

IEEE Transactions on Evolutionary Computation, 16(3), 442–446.

[111] Goldberg D. (1989), Genetic Algorithms in Search, Optimization, and

Machine Learning, MA: Addison-Wesley.

[112] Goldberg D. (1992), The Design of Innovation, Springer-Science+Business

Media, B.V.

[113] Kazarlis S., Petridis V. (1998), Varying fitness functions in genetic al-

gorithms: Studying the rate of increase of the dynamic penalty terms,

Parallel Problem Solving from Nature PPSN V, 1498(1), 211–220.

[114] Gonalves J.F., Resende M.G. (2011), Biased random-key genetic algo-

rithms for combinatorial optimization, Journal of Heuristics, 17(5), 487–

525.

128



BIBLIOGRAPHY

[115] Dejong K.A. (1980), Adaptive system design: a genetic approach, IEEE

Transactions on Systems, Man and Cybernetics, 10(9), 556–574.

[116] Belov G., Scheithauer G. (2003), The number of setups (different patterns)

in one-dimensional stock cutting, Technical Report MATH-NM-15-2003,

Dresden University.
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