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Abstract 

 

The classification of focal and non-focal EEG signals is very useful for diagnosis of 

epilepsy. In this work, we propose a new approach for classifying focal and non-focal 

EEG signals using cross recurrence plot (CRP) and joint recurrence plot (JRP) methods. 

In our approach, EEG signals are decomposed into intrinsic mode functions (IMFs) 

using empirical mode decomposition (EMD) then CRP and JRP methods are applied 

on each IMF to form a feature vector. Finally, a binary classifier, least squares support 

vector machine (LS-SVM), is employed to discriminate focal and non-focal EEG 

signals. The proposed technique achieves 86% classification accuracy using CRP with 

linear and radial basis function (RBF) as kernels in LS-SVM classifier.  
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Chapter 1 

Introduction 

Epilepsy [1, 2, 3] is one of the most widely recognized neurological disorders that causes seizures. 

Epilepsy may occur because of sickness, cerebrum damage, or unusual advancement of brain [1]. 

At present, the estimated extent of the overall population with active epilepsy is somewhere around 

4 to 10 people for every 1,000 individuals [4]. However, according to some studies of developing 

nations indicates that the extent to which people are affected by epilepsy is somewhere around 7 

to 14 for every 1000 people [4]. Nearly 80% of epilepsy cases are found in developing nations [4]. 

Approximately 20% patients have generalized epilepsy and 60% patients have focal or partial 

epilepsy [1]. In order to surgical treatment of the epilepsy, identification of the brain area which 

have epileptic seizure becomes a very important step and there are various non-linear methods that 

can be used for the identification of the epileptic brain area. 

1.1 Types of epilepsy 

The epilepsy can be broadly classified as in two categories [5] 

1. Generalized epilepsy 

2. Partial epilepsy 

1.1.1 Generalized epilepsy 

In this class of epilepsy, seizures have their effect over entire brain [5].  

1.1.2 Partial epilepsy 

This kind of epilepsy, seizures start in limited part of the brain [5]. It can be treated by surgical 

resection of responsible brain area.             
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1.2 Electroencephalogram signals 

An electroencephalogram (EEG) [6, 7, 8] is a signal that depicts the electrical activities of the 

brain. Various frequency components are present in EEG signals that make the EEG signals 

complex in nature. These signals represent how human brain works and contain information 

related to the neurological disorder. Therefore EEG signals can be used for assessment of these 

disorders. There are some disorders that may occur due to repetitive discharge from the cerebral 

cortex and lead to malfunctioning of the brain. Such type of disorders are grouped as the epileptic 

seizure. Detection of epilepsy is very important because it affects the normal life condition of a 

patient. The focal (Sfocal) and non-focal (Snonfocal) EEG signals [9, 10, 11, 12] can be useful for 

identification of brain area affected by epilepsy. Brief overview of these signals is as follows. 

 

1.2.1 Focal and non-focal EEG signals 

The Sfocal and Snonfocal EEG signals are obtained from the patients influenced by partial or focal 

epilepsy [9]. Partial epilepsy influences just a limited part of the brain. The Sfocal EEG signals are 

those EEG signals which are obtained from the channels where epileptic seizures are observed.  

The Snonfocal EEG signals are obtained from the remaining channels where the epileptic seizure is 

not observed. Figure 1.1 shows the Sfocal and Snonfocal EEG signals respectively which are taken 

from Bern Barcelona database [9]. 

 

                                         Figure 1.1: (a) Focal and (b) Non-focal EEG signal 
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1.3 Related work 

The characteristics of part of brain which is responsible for epilepsy (epileptogenic focus) can be 

studied using different nonlinear parameters. Recently, various nonlinear parameters are used to 

analysed EEG signals in order to characterise the epileptogenic focus. In the existing literature, 

approximate entropy [13], correlation dimension [14], phase synchronization along with surrogate 

analysis [15], coherence patterns [16], the time-variant connectivity measure and modified 

effective connectivity measure [17], moving window correlation dimension [18], etc. are 

analysed to learn about epilepsy related dynamics of brain. The concluding remarks obtained 

from above studies depict that non-linear parameters can be helpful for the localization of 

epileptogenic focus as well as these are useful in the representation of non-linear brain dynamics.  

The Sfocal EEG signals are intracranial recordings obtained from patients with partial epilepsy and 

can be useful to characterise the epileptogenic focus [12]. Therefore, the classification of Sfocal and 

Snonfocal EEG signals can be useful for identification of epileptogenic focus. Recently, a technique 

based on empirical mode decomposition (EMD) [19] has been proposed for the classification of 

Sfocal and Snonfocal EEG signals [10, 12]. EMD is used to decompose a signal into various modes 

termed as intrinsic mode functions (IMFs) [19, 20, 21]. These IMFs are used to derive different 

features used to study epileptic seizures. Discrete wavelet transform (DWT) [11] based features 

also used to classify EEG signals into focal and non-focal categories. In DWT based approach, 

entropies (from the energies of detail coefficient) such as Shannon wavelet entropy (𝑆𝑒), Tsallis 

wavelet entropy (𝑇𝑒) and Renyi wavelet entropy (𝑅𝑒)  are computed and further averaged to be 

used as a feature [11]. These entropies are employed as the input features for different classifiers. 

The various features are prioritize using different feature ranking methods [11]. 

 

In the present work, we analysed the EEG signals using recurrence plot (RP) analysis and presented 

a new method based on features extracted using RP for the classification of Sfocal and Snonfocal EEG 

signals. First, we obtained the recurrence plot from the given data and then some parameters 

namely recurrence rate, entropy, maxline, trapping time, laminarity are evaluated from that plot. 

The above mentioned RP based features are computed in two cases, first directly from the EEG 

signals, and in the second case from the IMFs obtained by applying EMD method on EEG signals.  

These evaluated parameters are employed as the input features for classifiers. Before classification 
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some feature ranking methods are used to prioritize and reducing complexity of the classification 

system. We have compared the results obtained in terms of classification accuracy for both the 

mentioned cases. 

 

1.4 Organization 

The rest of the thesis is organised as: A detailed description of the proposed methodology is 

presented in chapter 2, which includes brief review of EMD, recurrence plot (RP), cross recurrence 

plot (CRP), joint recurrence plot (JRP), parameters used for recurrence quantification analysis, and 

least squares support vector machine (LS-SVM). Chapter 3 presents experimental results, and 

concluding remarks are given in chapter 4. 
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Chapter 2 

Methodology  

 

The classification of Sfocal and Snonfocal EEG signals is carried out in four steps. Firstly, EMD 

method [19] is used for finding the various IMFs of EEG signals. Then, recurrence quantification 

analysis based on CRP and JRP [22] is performed for extracting features from the Sfocal and Snonfocal 

EEG signals and their IMFs. This is followed by ranking of these features. Finally, based on the 

features obtained, the LS-SVM [23] classifies the signals into Sfocal and Snonfocal EEG signals. The 

block diagram of the proposed methodology is shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Block diagram of proposed approach for classifying focal and non-focal EEG signals. 
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2.1 Dataset  

The dataset for Sfocal and Snonfocal EEG signals are downloaded from Bern Barcelona database 

(www.dtic.upf.edu/~ralph/sc/) [9]. The dataset contains the bivariate recordings of Sfocal and 

Snonfocal EEG signals. The recordings acquired form the five patients affected by temporal lobe 

partial epilepsy [9]. The signals have been measured in seizure-free intervals. The two time series 

of the bivariate EEG signals are represented by symbols “x” and “y”. The duration of each EEG 

signal is 20 seconds and sampling frequency is 512 Hz. There are 3750 pairs of EEG signals for 

both categories of EEG signals. In this work, a small subset has been formed by taking the 50 pairs 

of Sfocal and 50 pairs of Snonfocal EEG signals. This small subset has been used for further 

experiments. Figure 2.2 depicts plot of “x” time series of a Sfocal and a Snonfocal EEG signals. 

Similarly, Figure 2.3 depicts plot of “y” time series of a Sfocal and a Snonfocal EEG signals.  

           

           Figure 2.2: Plot of “x” time series of EEG signal pairs: (a) Focal EEG signal, (b) Non-

focal EEG signal. 

http://www.dtic.upf.edu/~ralph/sc/
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               Figure 2.3: Plot of “y” time series of EEG signal pairs: (a) Focal EEG signal, (b) Non-

focal EEG signal. 

 

 

 

2.2 Empirical mode decomposition  

The EMD method [19] decomposes a signal into different modes known as intrinsic mode 

functions (IMFs). The IMFs are oscillatory signals which can be considered frequency as well as 

amplitude modulated [24]. In this decomposition, no condition is required on the signals like 

linearity and stationarity.  

An IMF, obtained as a result of decomposition of EEG signals using EMD, must satisfy the below 

mentioned basic conditions [19, 25, 26]: 

1. The total number of minima and maxima and the total number of zero-crossings should either 

be equal or at most differ by one. 

2. The average value of the envelopes, which are obtained using local minima and maxima, should 

be zero at all the sample instants. 
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For a signal 𝑥(𝑡) sifting process can be summarized as follows [19]: 

 

1. Let ℎ(𝑡) = 𝑥(𝑡). 

 

2. Extrema are obtained from ℎ(𝑡). 

 

3. Evaluate lower envelope 𝑒𝑙(t) and upper envelope 𝑒𝑢(t) by connecting minima and maxima 

respectively. 

 

4. Evaluate mean envelope 𝑒𝑚(t) by averaging 𝑒𝑢(t) and 𝑒𝑙(t), as 

 

                                           𝑒𝑚(𝑡) = 
𝑒𝑢(t) + 𝑒𝑙(t)

2
 . 

 

5. Subtracting 𝑒𝑚(t) from signal ℎ(𝑡) as ℎ1(t) = ℎ(𝑡) - 𝑒𝑚(t). 

 

6.  Impose the IMFs conditions on ℎ1(t) and examine whether IMF is a valid IMF or not. 

 

7. Repeat steps 2 to 6, until ℎ1(t) is found to be valid IMF. 

 

On obtaining the valid IMF, assign 𝐷1(𝑡)= ℎ1(t). Further we get 𝑟(𝑡) after applying 𝑟(𝑡) = 𝑥(𝑡) 

- 𝐷1(𝑡). Then, 𝑥(𝑡) is replaced with 𝑟(𝑡) i.e. 𝑥(𝑡) = 𝑟(𝑡). For obtaining the next IMF, again 

steps 2 to 7 are repeated by posing ℎ1(t) = 𝑟(𝑡). Consequently, 𝑥(𝑡) is given as [19] 

                    

                                              𝑥(𝑡)=∑ 𝐷𝑖(𝑡)𝑀
𝑖=1 + 𝑟(𝑡)                                                          (2.1) 

 

Here, M denotes the number of the IMFs in 𝑥(𝑡) and 𝑟(𝑡) represents the residual of 𝑥(𝑡). Figure 

2.4 depicts the extracted IMFs from “x” time series of   Sfocal EEG signal which is shown in Figure 

2.2. In a similar way, Figure 2.5 depicts the extracted IMFs from “x” time series of Snonfocal EEG 

signal which is shown in Figure 2.2. 
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                        Figure 2.4: Decomposition of focal EEG signals through EMD 

 

           

                         Figure 2.5: Decomposition of non-focal EEG signals through EMD 
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2.3 Recurrence plot  

RP [22, 27, 28] is a very basic tool designed for analysing the repetitive nature of dynamic systems. 

It is also suited for non-linear analysis of signals that is of short duration and has non-stationary 

characteristics.  

Recurrence quantification analysis can be describe in the following steps [22, 27]: 

Step 1: Reconstruction of phase space 

Step 2: Recurrence plot formation with threshold distance 

Step 3: Evaluation of measures for recurrence plot  

RP represents all the trajectories of phase space for a non-linear system [22]. A trajectory depicts 

all the states that can exist for a system and every state relates to a particular point in the phase 

space. 

2.3.1 Phase space reconstruction 

The RP is a graphical representation of the phase space trajectories of any non-linear system [22].  

Trajectories in phase space represent all possible states of a system. Each state of the system 

corresponds to a specific point in the phase space. For any system, the phase space trajectory 𝑋(𝑡) 

can be reconstructed from the time series 𝑥(𝑡) using Taken’s embedding theorem [29], as 

described below: 

                                        𝑋𝑖  =  (𝑥𝑖 , 𝑥𝑖+𝛽 , . . . . . . . 𝑥𝑖+(𝑛−1)𝛽)                                                  (2.2) 

where 𝛽 is time delay, 𝑛 is embedding dimension. False nearest neighbour method [30] is used for 

evaluating ‘𝑛’ and mutual information method [30] is used for evaluating the value of ‘𝛽’. An 

optimal set of embedding dimension and time delay is important for reconstruction of phase space 

that fully describes the system dynamics.         

Then the recurrence plot is obtained from the equation given below [22]. 

                                             𝑍𝑖,𝑗(𝜏) =  𝛩(є − ‖𝑥𝑖 − 𝑥𝑗‖)                                                     (2.4) 

Where, є is threshold value, ‖. ‖ is norm and Θ(x) represents Heaviside function. The most 

important parameter of recurrence analysis is the threshold. If the distance between two states on 
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the phase space trajectory is smaller than a given threshold, then the recurrence point in RP arises. 

Value of the point in recurrence matrix is either one or it is zero.    

          

2.3.2 Recurrence plot structures 

A closer examination of the RP represents the small-scale structures, which may be generally 

classified in diagonal lines, dots, and vertical or horizontal lines [22]. 

2.3.2.1 Single dots 

Single dots [22] on the RP indicates a single state, repeating rarely. Such states persist only for a 

short time period in phase space. 

2.3.2.2 Diagonal lines 

A diagonal line (𝐷𝑙) occurs on RP when a point 𝑍𝑖+𝑘,𝑗+𝐾 = 1 for different values of k varying 

from 1 to l-1 (where 𝑙 = diagonal length). In the phase space, whenever segment of trajectory runs 

parallel to another segment form a diagonal line in RP. A diagonal line is defined by [22] 

                                        (1-𝑍𝑖−1,𝑗−1) (1-𝑍𝑖+𝑙,𝑗+𝑙) ∏ 𝑍𝑖+𝑘,𝑗+𝑘
𝑙−1
𝑘=0 =1.                                   (2.5)                                            

2.3.2.3 Vertical or horizontal lines 

A vertical line (𝐷𝑣) occurs on RP when a point 𝑍𝑖,𝑗+𝐾 = 1 for different values of k varying from 

1 to v-1 (where v= length of vertical line). It represents a constant state of the time series. A vertical 

line is then defined by [22] 

                                        (1-𝑍𝑖−1,𝑗−1) (1-𝑍𝑖+𝑣,𝑗+𝑣) ∏ 𝑍𝑖+𝑘,𝑗+𝑘
𝑣−1
𝑘=0 =1                                                (2.6) 

2.3.3 Cross recurrence plot 

The bivariate expansion of RP is known as cross recurrence plot (CRP) [22, 31, 32] which is the 

generalization of linear cross-correlation function. Similar to RP, the structure of CRP have dots, 

diagonal lines and vertical or horizontal lines.  
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Assume that 𝑥𝑖  and 𝑦𝑗  represents the states corresponding to two different dynamical systems. 

Then, similar to the Recurrence Plot, the CRP is defined by [22]  

                                            𝑋𝑖,𝑗(є) = 𝛩(є − ‖𝑥𝑖 − 𝑦𝑗‖)                                                        (2.7)     

where i and j take values as 𝑖 = 1,2,3 … . . 𝑁, and 𝑗 = 1,2,3 … … … 𝑀. 

The CRP shows valuable information about the relationship between two time series where the 

diagonal line which have long length show similar phase space nature of both systems and distorted 

diagonal line shows different nature of both time series [22]. 

In the CRP, it is not necessary to have the main diagonal with all elements equal to one and 

therefore, in Figure 2.6-2.7 main diagonal is not present. Moreover, the structures that are presents 

in RP are as well present in CRP. The lines that have their orientation with diagonal play an 

important role in the analysis. These depict the segments on both the trajectories that are parallel 

for some duration. The length and frequency of the above lines tells the similarity between the 

dynamic behaviour of both systems. The length based measure can be helpful in finding the non-

linear inter-relations between the two systems that is not possible through the common cross-

correlation function. 

Figure 2.6 depicts cross recurrence plot for “x” and “y” time series of a Sfocal EEG signal. Similarly, 

Figure 2.7 depicts cross recurrence plot for “x” and “y” time series of Snonfocal EEG signals. 
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                                  Figure 2.6: Cross recurrence plot for focal EEG signals 
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Figure 2.7: Cross recurrence plot for non-focal EEG signals 

 

2.3.4 Joint recurrence plot  

It is different approach to compare the two systems is through joint recurrence plot [22]. The 

recurrences of trajectories for both the systems are studied separately in individual phase spaces. 

The instants when both the systems recur simultaneously are noted. Using this approach, the phase 

spaces are not affected and it gives rise to the extended phase space denoted as 𝑅(𝑑𝑥 + 𝑑𝑦), where 
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𝑑𝑥 and 𝑑𝑦 are the phase space dimensions of the corresponding systems. The joint recurrence 

matrix for two systems 𝑥(𝑡) and 𝑦(𝑡) is given by [22] 

                                 𝐽𝑅𝑖,𝑗 = 𝛩(є − ‖𝑥𝑖 − 𝑥𝑗‖) 𝛩(є − ‖𝑦𝑖 − 𝑦𝑗‖)                                 (2.8) 

                                                     𝑖, 𝑗 = 1, 2, 3 … . 𝑁              

Figure 2.8 depicts joint recurrence plot for “x” and “y” time series of a Sfocal EEG signal. Similarly, 

Figure 2.9 depicts joint recurrence plot for “x” and “y” time series of Snonfocal EEG signals. 

 

           

          

                             Figure 2.8: Joint recurrence plot for focal EEG signals 
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                                 Figure 2.9: Joint recurrence plot for non-focal EEG signals  

 

2.4 Quantification analysis of recurrence plot   

Recurrence quantification analysis (RQA) [33, 34, 35] is used to find the useful parameters from 

the CRP and JRP. These parameters are used as input features for the classifier.  
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2.4.1 Parameters based on diagonals  

The parameters namely recurrence rate, determinism, average diagonal length, recurrence times 

and entropy are based on diagonal line parameters of RP. These parameters are briefly explained 

as follows [22]: 

 

2.4.1.1 Recurrence rate   

Recurrence rate (RR) is density of recurrence points of RP where point (𝑖, 𝑗) repeats if the 

separation between the vectors 𝑥𝑖 and 𝑦𝑗 is less than the threshold. Equation 2.9 [22] is used to 

evaluate the value of RR. 

                                                               RR(є)  =
1

𝑁2
∑ 𝑍𝑖,𝑗

𝑁
𝑖,𝑗=1                                                         (2.9) 

2.4.1.2 Determinism 

Determinism (DET) [22] is the percentage of repetitive points of RP. These points represent the 

line segments parallel to the primary diagonal and shows the deterministic structure. It is defined 

by [22] 

                                                          DET =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑙𝑃(𝑙)𝑁
𝑙=1

                                                           (2.10) 

where 𝑃(𝑙) is the frequency distribution of diagonal lines which is defined by [22]. 

                                            𝑃(𝑙) = ∑ (1 − 𝑍𝑖−1,𝑗−1) (1 − 𝑍𝑖+𝑙,𝑗+𝑙)
𝑙
𝑖,𝑗=1  ∏ 𝑍𝑖+𝑘,𝑗+𝑘

𝑙−1
𝑘=0  

where 𝑙 is the length of diagonal line. 

 

2.4.1.3 Average diagonal length 

The average diagonal length (ADL) is the average value of all diagonals which are parallel to 

primary diagonals of RP [22, 35]. It is calculated by the equation 2.11 [22] 



18 
 

                                                       ADL =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

                                                           (2.11) 

where 𝑃(𝑙) is the frequency distribution of diagonal lines and 𝑙 is the length of diagonal line. 

 

2.4.1.4 Recurrence times 

The time at which the point is recur is known as recurrence times (RT). 1s t and 2nd poincare 

recurrence points are given by [22] 

                                                             RT = 𝑡𝑖+1 − 𝑡𝑖 ,   𝑡 = 1,2, … 𝐾                                     (2.12) 

RT2 = 𝑡𝑗+1 − 𝑡𝑗 ,   𝑡 = 1,2, … 𝐾 

 

2.4.1.5 Entropy  

The entropy (ENTR) is the distribution of the line segments that are parallel to the primary 

diagonal. The entropy indicates, the amount of data are required to reconstruct the system. A low 

entropy shows that lower information is required to recognize the system, and a high entropy 

demonstrates that higher information are required for the system recognition. The entropy is low 

when the length of longest line (parallel to the diagonal) is short and does not differ much. It is 

calculated by the equation given below [22] 

 

                                                       ENTR = − ∑ 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛 𝑙𝑛𝑃(𝑙) .                                       (2.13) 

where 𝑃(𝑙) is the frequency distribution of diagonal lines and 𝑙 is the length of diagonal line 

 

2.4.2 Parameters based on vertical lines  

Laminarity and trapping time (TT) parameters are based on vertical line parameters. These 

parameters are explained as follows [22] 
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2.4.2.1 Laminarity  

Laminarity (LAM) is the amount of recurrence points which form vertical line. It quantifies the 

amount of laminar states. It is evaluated by following equation [22]:        

                                                 LAM = 
∑ 𝑣𝑃(𝑣)𝑁

𝑣=𝑣𝑚𝑖𝑛

∑ 𝑣𝑃(𝑣)𝑁
𝑣=1

                                                 (2.14) 

where 𝑃(𝑣) is the frequency distribution of vertical lines which is defined as 

                                   𝑃(𝑣) = ∑ (1 − 𝑍𝑖−1,𝑗−1) (1 − 𝑍𝑖+𝑣,𝑗+𝑣)𝑣
𝑖,𝑗=1   

where 𝑣 is the length of vertical line. 

 

2.4.2.2 Trapping time  

The normal length of vertical structures is given by the trapping time (TT). Which is calculated by 

the following equation [22]: 

                                                      TT = 
∑ 𝑣𝑃(𝑣)𝑁

𝑣=𝑣𝑚𝑖𝑛

∑ 𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

                                                      (2.15) 

where 𝑃(𝑣) is the frequency distribution of vertical line and 𝑣 is the length of vertical line. 

 

2.5 Least squares support vector machine 

Support vector machine (SVM) [36, 37] is used for classification of input data by constructing 

optimal hyperplane. Optimal hyperplane maximizes the distance between two data points that are 

nearest and belong to two different classes. It is based on statistical learning theory. To classify 

the data, SVM constructs optimal separating hyperplane which maximizes the separation between 

the two nearest data points which belongs to two different classes. Consider N number of data 

points {𝑥𝑖  𝑦𝑖}𝑖=1
𝑁 =1, where 𝑥𝑖 ∈ R is input and  𝑦𝑖 ∈ {+1, −1} is class label. For classification 

problem having two classes, hyperplane that separates these points is given as [37, 38] 
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                                                     𝐹(𝑥)  =  sign[Ω𝑇𝑔(𝑥)  +  𝛽]                                               (2.16) 

 

where Ω is weight vector of dimension d and 𝑔(𝑥) is a function that maps data point 𝑥 into the 

given d-dimensional space and the bias value is taken as 𝛽. The version of SVM that uses least 

squares algorithm is known as least squares support vector machine (LS-SVM). The problem of 

classification using the above mentioned method can be formulated as [37]: 

 

                                              min
Ω 𝛽 ∈

J(Ω 𝛽 є) =
1

2
Ω𝑇Ω +

𝛾

2
∑ є𝑖

2𝑁
𝑖=1                                         (2.17) 

 

subjected to the following equality constraint  

 

                                        𝑦𝑖[Ω𝑇𝑔(𝑥𝑖)  +  𝛽] = 1 − є𝑖   𝑖 = 1,2,3 … … . 𝑁                                  (2.18) 

where є𝑖 = (є1, є2,є3 … … . . є𝑁)
𝑇

. 

 

The Lagrangian multiplier 𝛼𝑖  for (2.17) can be defined as [37]: 

 

                    𝐿(Ω, 𝛽, ∈, 𝛼) =   𝑗(Ω, 𝛽, ∈)  −  ∑ 𝛼𝑖{𝑦𝑖[Ω𝑇𝑔(𝑥𝑖) +  𝛽] − 1 + є𝑖}𝑁
𝑖=1          (2.19) 

 

On solving (2.19) by considering the optimal conditions, LS-SVM classifier is calculated as [37, 

12] 

  

                                      𝑓(𝑥) = sign(∑ 𝛼𝑖𝑦𝑖𝐻(𝑥, 𝑥𝑖) + 𝛽𝑁
𝑖=1 )                                                   (2.20) 

 

where 𝐻(𝑥, 𝑥𝑖) is a kernel function. In the presented work, different kernel functions have been 

used whose definitions are given as follows: 

 

1. Linear kernel function [39]: 

𝐻(𝑥, 𝑥𝑖) = 𝑥. 𝑥𝑖 
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2. Polynomial kernel function [40]: 

 

                                                               𝐻(𝑥, 𝑥𝑖) = (𝑥. 𝑥𝑖 + 1)𝑑 

where d is the polynomial degree. 

 

3. Radial basis function kernel [40]: 

                                                         𝐻(𝑥, 𝑥𝑖) = 𝑒
−

‖𝑥−𝑥𝑖‖
2

2𝜎2  

where 𝜎 controls the Radial basis function kernel function width. 
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Chapter 3 

Results and Discussion 

 

In this chapter, we present the experimental results and discussion based on the proposed 

methodology which has been explained in previous chapter. 

 

3.1 Results  

We have performed the recurrence quantification analysis for the classification of Sfocal and Snonfocal 

EEG signals, basically this analysis is based on CRP and JRP methods. We apply these methods 

on the signals without decomposition and on the different IMFs obtained using the EMD method. 

Wilcoxon test [41, 11], Bhattacharya test [42, 11] and ROC test [43, 11] are used for the ranking 

the different features. The initial 2500 samples are taken from each signal for the analysis. The 

CRP and JRP parameters have been computed for initial seven IMFs and these parameters are used 

as features for classification of Sfocal and Snonfocal EEG signals. Discrimination performance has 

been evaluated and quantified using Kruskal-Wallis (KW) statistical test [44] and p-value are 

computed. 

Firstly, CRP method has been applied on the extracted IMF from the EEG signals and separately 

on the EEG signals without decomposition. The p-values of the features are depicted in Table 3.1.   
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Table 3.1: p-values of features extracted from EEG signals and from 

different IMFs by CRP method 

Features EEG 

signals 

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 

RR 2.3E − 8 5.2E − 6 5.5E − 6 7.1E − 4 6.2E − 4 4.8E − 4 5.1E − 3 5.5E − 2 

DET 1.2E − 5 7.2E − 4 4.2E − 6 3.3E − 7 8.2E − 8 9.9E − 4 5.3E − 2 8.1E − 4 

ADL 3.8E − 8 6.4E − 6 8.3E − 8 7.7E − 4 6.1E − 3 7.8E − 4 4.3E −2 5.1E − 7 

ENT 1.2E − 7 3.3E − 6 1.9E − 7 1.8E − 2 6.2E − 6 5.5E − 4 5.7E − 2 4.3E − 1 

TT 4.1E − 7 1.8E − 5 7.3E − 4 1.5E − 7 1.8E − 4 1.9E − 4 7.8E − 2 5.1E − 2 

LAM 4.2E − 4 1.5E − 7 1.8E − 4 1.7E − 6 1.5E − 6 7.3E − 4 8.3E − 7 5.4E − 2 

RT 5.8E − 5 4.3E − 4 5.3E − 2 1.4E − 5 1.2E − 4 3.2E − 5 1.8E − 2 6.2E − 6 

RT2 3.8E − 3 5.3E − 5 4.3E − 2 7.3E − 2 5.2E − 1 2.2E − 3 2.8E − 1 6.2E − 2 

 

Also, similar analysis has been carried out using JRP method. Table 3.2 shows the p-values 

of different features for different IMFs and EEG signals. 
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Table 3.2: p-values of features extracted from EEG signals and from different IMFs by 

JRP method 

 

 

Moreover, the above two methods are studied simultaneously so as to understand the 

difference in the classification performance for both methods. Table 3.3 shows the 

comparison in terms of classification accuracy for the features obtained using CRP and 

JRP methods. We apply these methods on EEG signals and on the different modes obtained 

using the EMD method. The performance of LS-SVM classifier is measured in terms of 

classification accuracy where accuracy of the classifier is defined the ratio of number of 

correctly classified samples to the total number of samples. For finding the performance of 

the classifier, a cross-validation procedure with ten-fold has been used and Wilcoxon test 

[41, 11], Bhattacharya test [42, 11] and receiver operating characteristics (ROC) test [43, 

11] are used for the ranking the different features. 

 

Features EEG 

signals 

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 

RR 5.4E − 6 1.2E − 6 5.5E − 4 1.5E − 6 6.2E − 3 2.2E − 2 1.3E − 3 4.2E − 1 

DET 1.1E − 6 1.8E − 7 3.2E − 5 3.1E − 5 4.1E − 4 8.8E − 4 7.5E − 2 2.2E − 2 

ADL 2.3E − 7 2.3E − 5 4.1E − 4 7.8E −5 4.1E − 4 7.2E − 2 1.2E − 1 1.2E − 2 

ENT 1.8E − 3 3.4E − 4 4.1E − 5 7.1E − 5 5.6E − 4 3.5E − 1 4.5E − 2 5.2E − 1 

TT 3.3E − 4 5.1E − 5 6.4E − 4 7.2E − 5 3.2E − 7 4.8E − 3 2.2E − 4 8.5E − 7 

LAM 1.8E − 5 2.3E − 8 2.3E − 5 8.3E − 5 4.2E − 2 2.2E − 5 2.8E − 1 5.2E − 3 

RT 2.8E − 6 2.1E − 3 1.3E − 5 8.3E − 2 7.2E − 4 3.2E − 5 4.8E − 2 5.4E − 2 

RT2 7.8E − 5 8.3E − 4 4.3E − 4 6.3E − 5 2.2E − 2 4.2E − 4 3.8E − 1 1.2E − 3 
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Table 3.3: Comparison of classification accuracy of CRP and JRP methods 

Input 

Signal 

Ranking 

Method 

Feature 

Index   

(CRP) 

Max Acc 

(%) (CRP) 

Feature 

Index    

(JRP) 

Max Acc (%) 

(JRP) 

EEG signals ROC test 7,5,1 82 5,7,2 75 

Wilcoxon test 2,5,7 86 3,6,5 81 

Bhattacharya 

test 

3,7,2 84 3,2,5 83 

IMF1 ROC test 2,6,1 78 8,2,7,5 75 

Wilcoxon test 5,4,1 73 4,8,7 72 

Bhattacharya 

test 

2,6,4,1 71 6,4,2 71 

IMF2 ROC test 3,4,5 71 4,3,2 70 

Wilcoxon test 2,8,7 70 3,5,1 69 

Bhattacharya 

test 

4,7,8 74 5,2,3 71 

IMF3 ROC test 8,7,2 68 8,7 65 

Wilcoxon test 1,6,2 71 6,4,2 73 

Bhattacharya 

test 

2,3,4 69 5,8,3 68 

IMF4 ROC test 4,5,2 68 6,4 72 

Wilcoxon test 3,8,4 71 4,3,5 73 

Bhattacharya 

test 

5,2,8 72 4,3,1 69 
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IMF5 ROC test 4,1,5 68 1,4,3 63 

Wilcoxon test 7,8,5 70 2,4,7 72 

Bhattacharya 

test 

6,4,3 73 5,2,1 74 

IMF6 ROC test 4,5,7 66 7,3,2 64 

Wilcoxon test 1,2,7 63 4,5,3,2 65 

Bhattacharya 

test 

2,3,8 67 2,3,4,5 68 

IMF7 ROC test 1,5,4 63 5,7,1 58 

Wilcoxon test 7,5,2 66 2,6,3 59 

Bhattacharya 

test 

2,3,5 64 1,3,5,8 57 

 

The features used in the classification are indexed in the order as:  RR, DET, ADL, LAM, 

ENTR, RT, TT, RT2. 

From Table 3.3, it has been observed that CRP parameters of EEG signals gives better 

classification accuracy. It means that CRP parameters are more significant than JRP 

parameters. Figures 3.1 and Figure 3.2 show the Box plots for CRP parameters and JRP 

parameters respectively for without decomposition and Figures 3.3 and 3.4 show the box 

plots for CRP and JRP parameters for IMF1 respectively. 
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      Figure 3.1: Box plots for CRP parameters for without decomposition      
 

 

 

                 Figure 3.2: Box plots for JRP parameters for without decomposition 
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Figure 3.3: Box plots for CRP parameters of IMF1 

 

 

 

Figure 3.4: Box plots for JRP parameters of IMF1 
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3.2 Discussion  

 

Basically, the entire study has been carried out to explore the CRP and JRP methods for 

classification of focal and non-focal EEG signals with and without EMD methods. Since, 

the nature of EEG signals is nonlinear and non-stationary. Therefore, the nonlinear 

methods can better extract information from EEG signals and consequently, they can give 

more accurate results.  

In addition to this, a comparison is being performed between our proposed method and the 

existing automated methods that work on same database and it is presented in Table 3.4. 

 

 

   Table 3.4: Comparison of classification accuracy obtained from the different   

classification methods 

 

Authors 

 

Data set Features Classification 

accuracy (%) 

Zhu et al. [45] 50 signals 

750 signal 

DPE 84 

75 

Sharma et al.[10] 50 signals AVIF and ASE 85 

Sharma et al.[12] 50 signals Entropies 87 

Present work 50 signals CRP and JRP 

parameters 

86 

 

Authors in [45] have analysed the two subsets of 50 and 750 pairs of EEG signals for both 

focal as well as non-focal EEG classes. Among all the channel recordings, single-channel 

recordings are utilized for classification of Sfocal and Snonfocal EEG signals. The techniques 

used for classification is delay permutation entropy (DPE) [45]. The classification 
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performed has accuracies of about 84% and 75% for both the sets of 50 and 750 EEG 

signals respectively. 

Authors in [10] have done classification only for the first 50 sets of Sfocal and Snonfocal EEG 

signals. The features that are used for classification are average variance of instantaneous 

frequencies (AVIF) and average sample entropy (ASE) of IMFs of Sfocal and Snonfocal EEG 

signals. The accuracy obtained in this case is 85% with the help of LS-SVM classifier. 

Authors in [12] evaluated the entropy features from the IMFs of Sfocal and Snonfocal EEG 

signals. Some entropies that are used for classification are Renyi, average Shannon, 

approximate, and phase entropies. The accuracy obtained is 87% when the above average 

entropies are implemented with LS-SVM classifier.  

Here, CRP and JRP parameters are used for extracting parameters from Sfocal and Snonfocal 

EEG signals. In order to find suitable parameters, classification accuracy has been 

evaluated using LS-SVM classifier. Highest classification accuracy which is 86% obtained 

using determinism, entropy and trapping time features extracted from CRP.  

The Kruskal-Wallis test is used to quantitatively analyse the discrimination ability of each 

feature. This test gives a parameter known as p-value which measures the similarity 

between two different classes. Significant features are shown in Table 3.1 and Table 3.2 

with p≤0.05.  
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Chapter 4 

Conclusions and Future Work 

 

In this chapter, conclusions and future scope related to this research work have been provided. 

 

4.1 Conclusions 
 

In this work, a new method has been proposed that is based on RP to automatically classify the 

EEG signals. The features that are extracted from IMFs are developed and used to classify focal 

and non-focal EEG signals.  

The LS-SVM together with radial basis function kernel has given the maximum classification 

accuracy for EEG signals and its value is 86%. In this method, the trial and error method is applied 

to select the kernel parameters. In future, it would be of great interest to implement a strategy that 

can automatically select the kernel parameters and kernel function. The proposed method for 

classification of non-focal and focal EEG signals has been studied and observed on very limited 

database. Therefore, it is necessary to study the above method on a larger database before applying 

it for medical purposes. 

 

4.2 Scope for future work 
 

This methodology can be studied for multi-variate signals wherein EEG signals of brain affected 

with other disease can be considered as bivariate. Further performance of the proposed 

methodology can be validated on larger databases. In addition, this methodology can be studied 

on signals of other parts of the body, e.g. heart, muscles etc. 

It would be of interest to study the effect of window size on the classification accuracy in the 

classification of focal and non-focal EEG signals. In future other non-stationary signal 

decompositions based methods can be studied for extraction of features for classification of focal 

and non-focal EEG signals. 
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