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Abstract 

 

 In this thesis, molecular dynamics (MD) simulations were carried out with a Tersoff 

potential and Lennard-Jones (L-J) potential force field to predict the electromechanical 

response of single layer (SL) and multi-layer boron nitride nanosheets (BNSs). The 

electromechanical response of pristine and C-doped BNSs were studied using the charge-

dipole (C-D) potential model. The effects of various factors such as chirality, size of BNS, 

C doping concentration and different shape of pores were critically examined. The elastic 

and piezoelectric coefficients of BNS under tension and shear loading conditions were 

determined. The piezoelectric, flexoelectric and elastic coefficients of BNSs with graphene 

stripes were also examined. Comparisons of the (i) axial piezoelectric and flexoelectric 

coefficients of pristine BNS, and (ii) elastic coefficients of pristine and hybrid BNS with 

the existing results are found to be in good agreement. The flexoelectric coefficients of 

monolayer boron nitride-graphene heterostructures (BGHs) were also determined by 

imposing the bending deformation on the pristine BNS and BGHs. Three shapes of 

graphene domains were considered: triangular, trapezoidal, and circular. Overall 

polarization of BGHs was enhanced when the graphene domain surrounded by more N 

atoms than B atoms. The present thesis also deals with the electromechanical response of 

multi-layer BNSs under uniaxial tension test at ambient temperature (300 K), taking into 

account the effects of number of BN layers, chirality, fracture behaviour, and strain rate 

(SR) on the stress-strain response and deformation behaviour. Multi-layer BNSs with an 

even number of atomic layers (symmetry D6h) do not show piezoelectricity, whereas multi-

layer BNSs with an odd number of atomic layers (symmetry D3h) show piezoelectricity. 

As a result, the number of atomic layers show an inverse relationship with the piezo- and 

flexo-electric coefficients. This study highlights the possibility of developing light-weight 

and high-performance piezoelectric BN-based NEMS such as sensors, actuators and 

nanogenerators as the existing piezoelectric materials are heavy, brittle, and toxic.  

Keywords: Atomistic modeling; Boron nitride nanosheet; Boron-graphene 

heterostructures; Carbon-doping; Elastic properties; Multi-layer; Flexoelectric properties; 

Molecular dynamics simulation; Piezoelectric properties; Stone-Wales defects.   
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1. Chapter                                                          

Introduction and Literature Review 

In this chapter, a brief introduction to the single layer and multilayer boron nitride 

nanosheets (BNSs) and review of literature on the mechanical, piezoelectric and 

flexoelectric properties of pristine and defected BNSs are covered. Based on the review of 

literature, the scope of work for this thesis is identified, and the objectives of dissertation 

are presented. Organization of the chapters is delineated at the end of this chapter. 

 

1.1 Nanoscience and nanotechnology 

Nanoscience refers to the study, manipulation and engineering of matter, particles 

and structures at the nanometer scale level (one billionth of a meter, 1/109). The important 

properties of nanomaterials such as mechanical, electrical, optical and thermal are largely 

depend on the way molecules and atoms arranged at the nanoscale level into the larger 

structures. Moreover, in case of nanomaterials, atomic-level properties often change 

compared to the macroscale because of quantum mechanical effects (Cohen et al., 2001). 

Nanomaterials possess larger surface area compared to their parent materials at the 

microscale level for a given volume (Roco and Williams, 1999). The larger surface area 

increases the reactivity of nanomaterials, and they can be used efficiently in numerous 

applications.   

Nanotechnology is the application of nanoscience and utilization and creation of 

devices and materials by manipulation of the matter at the scale of nanometers or 

atomic/molecular scale. The generalized description of nanotechnology is given by the 

National Nanotechnology Initiative, and according to that, nanotechnology is the 

manipulation of matter with at least one dimension sized between 1 to 100 nm. Figure 1.1 

depicts some sense of how this size scale relates to more familiar, everyday scales. 

Controlling the features of matter on the scale of nanometer has already made a significant 

contributions in several disciplines: engineering, physics, material science, chemistry, 

medicine and biology (Roco and Williams, 1999). The term “nanotechnology” was coined 
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by Richard Feynman in 1959. The research at the nanoscale level accelerated after the 

discovery of scanning tunneling microscopy (STM) (Binning et al., 1982) and atomic force 

microscopy (AFM) (Binnig et al., 1986). The discovery of STM and AFM allowed 

researchers to study and observe individual atoms and manipulate them. A modification at 

the nanoscale level eventually allows us to design custom-made materials and products 

with enhanced properties, including nanoelectronics, smart medicines and sensors, and 

even interfaces between electronics and biological systems can be tailored (Roco and 

Williams, 1999).  

 

Fig. 1.1 The comparison of size of nanoscale objects. 

The proliferation of nanoscale technology and science has led to the discovery of 

several interesting nanomaterials. For instance, the ground-breaking discovery of two-

dimensional (2D) atomic-thick graphene layer was carried out by Novoselov and Geim in 

2004 and its extraordinary mechanical (Huang et al., 2006; Ni et al., 2010; Dewapriya et 

al., 2014; Javvaji et al., 2018), thermal (Ng et al., 2012; Zhang et al., 2017), and electrical 

(Kundalwal et al., 2017) properties encouraged to study another types of 2D nanomaterials. 

Boron nitride (BN) possesses similar lattice structures as that of carbon-based 

nanostructures (Ooi et al., 2006). The BN-based nanostructures, including BN nanosheets 

(BNSs), BN nanotubes (BNNTs), BN nanoribbons (BNNRs) are based on the hexagonal 

phase of BN, with B–N bonds. The B–N bonds are the isoelectronic with C–C bonds that 

exist in carbon-based nanostructures. Therefore, the structures of BNS, BNNT, and BNNR 

are similar to graphene, CNTs, and graphene nanoribbons, respectively, as shown in Fig. 

1.2.  
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Fig. 1.2 Different BN- and carbon-based nanostructures; (a) BNS, (b) graphene, (c) BNNT, and (d) CNT. 

1.2 Boron nitride nanosheets (BNSs) 

 Boron nitride nanosheets (BNSs) are 2D nanomaterials consisting typically of 

single-, bi- or multilayer (ML) of hexagonal boron nitride (h-BN) on the order of nanometer 

scale. BNS is a traditional nanomaterial which is attracting intense attention in academia 

and industry due to its multifunctional properties among all other BN-based nanostructures. 

Close analogues of graphene sheet, ML-BNSs were first synthesized by Pacil et al. (2008), 

and single- and ML-BNSs were synthesized by Han et al. (2008). A BNS is made of boron 

(B) and nitrogen (N) atoms, alternatively arranged in a honeycomb pattern like carbon 

atoms in a graphene sheet (Lehtinen et al., 2011) (see Fig. 1.2). BNSs have been a material 

of intense interest over the past few years as they possess highly stable structures (Topsakal 

et al., 2009), superior mechanical properties (Kudin et al., 2001; Bosak et al., 2006; Le et 

al., 2014; Kundalwal et al., 2020) and functionalization capabilities that assist in 

engineering their properties for nanoelectromechanical system (NEMS) applications 

(Boldrin et al., 2011; Karel Alexander N. Duerloo and Reed, 2013; Alam et al., 2014; 

Chaurasia and Parashar, 2021). A BNS possesses a large band-gap around ∼5 to 6 eV, 

making it an insulator (Watanabe et al., 2004; Topsakal et al., 2009) with excellent physical 

properties, high chemical and  thermal stabilities, and strong resistance to oxidation at 

higher temperatures (up to >900 °C) (Golberg et al., 2010). Moreover, BNS possesses a 

non-centrosymmetric structure and partly demonstrates ionic characteristic of B–N bonds 

due to the electronegativity differences of B and N atoms, demonstrating piezoelectricity 

(a) BNS (b) Graphene 

(c) BNNT (d) CNT 
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(Mele and Král, 2002), which attracted an intense attention in the field of actuators and 

sensors (Eichler and Lesniak, 2008), composite materials (Zhi et al., 2009), hydrogen 

storage (Zhao and Ding, 2009), gas sensors, optoelectronic, optical devices, transistors and 

biological probes (Song et al., 2013). Although most of the applications are similar to 

graphene sheet, the BNSs possess additional multifunctional features like piezoelectricity 

and white color. Moreover, the BNSs display comparable mechanical properties to 

graphene sheet, while former’s failure resistance may surpass the latter’s. The 

electromechanical coupling in BNSs is also better than the polymer-based piezoelectric 

materials (Sai and Mele, 2003). These versatile features of BNSs attract prodigious 

attention for their use as reinforcing fillers in conventional matrices for fabricating BN-

based high-strength and light-weight piezoelectric nanocomposites with a variety of colors 

or even transparent (Kim et al., 2018).  

Several unique techniques are being employed to synthesis BNSs: chemically 

derived route technique (Han et al., 2008), micromechanical cleavage technique (Paciĺ et 

al., 2008), electron beam irradiation (EBR) (Jin et al., 2009; Cho et al., 2011), chemical 

vapor deposition (CVD) (Shi et al., 2010), and thermal decomposition of borazine on the 

surface of a transition metal (Lin and Connell, 2012). After the discovery of BNSs, 

numerous efforts were made to enhance the synthesizing process to obtain pristine BNSs 

(Ci et al., 2010). By controlling the parameter of synthesis, an individual BN layer is called 

a “single-layer BNS”; a thin BN crystal with several atomic layers is called a “multilayered 

BNS” (see Fig. 1.3). Within each ML-BNS, B and N atoms are bound by strong covalent 

bonds, whereas the layers are held together by weak van der Waals forces at a distance of 

0.335 nm (Song et al., 2010). Therefore, BNS films could be peeled off from bulk BN 

crystal by micromechanical cleavage and used as a dielectric layer. ML-BNS has also been 

made by ultrasonication and high-energy electron beam irradiation of BN particles. In 

general, BN nanostructures are recognized as advanced nanomaterials with outstanding 

electromechanical response. 
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Fig. 1.3 Structural basics of 2D BN nanostructures. 

 

1.3 Structure of BNSs 

 A BNS monolayer molecule is composed of a hexagonal array of alternatively 

arranged B and N atoms. The constructional feature of BNS structure corresponds to a 

hexagon pattern that repeats itself periodically in a space. As a result of the periodicity, 

each B and N atoms are bonded to three neighboring atoms. The resulting structure is 

mainly due to the process of sp2 hybridization forming three in-plane (σ) bonds with an 

out-of-plane (π) bond. The σ bond is a strong covalent bond having 1.446 Å length that 

plays a vital role in the impressive mechanical and piezoelectric properties of BNSs. On 

the other hand, π bond is relatively weak and contributes to the interactions between the 

ML-BNSs (Han et al., 2008; Paciĺ et al., 2008; Falin et al., 2017).  

BNS is made up of a regular arrangement of hexagonal array of B and N atoms. A 

widely used approach to identify the types of BNSs such as armchair, zigzag, and chiral. 

The key geometric parameter associated with the chiral vector 𝐶ℎ, which can be expressed 

as the linear combination of lattice bases (𝑎1 and 𝑎2). Mathematically, the sheet chirality 

can be defined in terms of roll-up vector as follows:  

Ch = na1 + ma2                                                          (1.1) 

where the integers (n, m) are miller indices of the hexagonal lattice (number of steps along 

the zigzag bonds of hexagonal lattice), and 𝑎1 and 𝑎2 are unit basis vectors as shown in 

Fig. 1.4.  
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 The angle ∅ between the chiral vector and lattice base vector (𝑎1) is called as the 

chiral angle and is given by: 

∅ = arctan (
√3m

2n + m
 )                                                    (1.2) 

The zigzag axis of BNS corresponds to ∅ = 0o and if the rolling chiral vector is along this 

axis, a zigzag (n, 0) BNS is formed. On the other hand, the armchair axis of sheet is 

specified by ∅ = 30o and if this is the direction of rolling chiral vector, an armchair (n, m) 

BNS is formed. The monolayer BNS generated for other values of ∅ (i.e., 0 < ∅ < 30o) is 

referred as chiral BNS. Figure 1.4 illustrates the schematic representations of two types of 

BNSs. The chirality of BNSs has significant implications on their properties. 

 

Fig. 1.4 Schematic representation of 2D armchair and zigzag BNS. 

 

1.4 Size-dependent properties of BNSs 

1.4.1 Piezoelectricity 

 Piezoelectricity was first discovered by French physicists, Pierre and Jacques Curie 

in 1880. Afterward, Gabriel Lippmann deduced mathematical relation for the converse 

piezoelectric effect from the fundamental principles of thermodynamics in 1881, which 

was not predicted by Curie brothers. Piezoelectricity–electrical polarization induced by a 

uniform strain (or vice-versa)–is the most widely known and exploited forms of 
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electromechanical coupling that exists in non-centrosymmetric crystals. In non-

centrosymmetric crystals, the absence of center of inversion results in the presence of 

polarization. Specifically, in contrast to the piezoelectricity, the flexoelectricity 

phenomenon presents in nanomaterial having inversion symmetry, and even the 

centrosymmetric crystal can also be polarized by breaking its inversion symmetry and 

applying non-uniform strain gradient. Unlike, piezoelectricity phenomenon which can be 

found only in 20 non-centrosymmetric point groups, the flexoelectricity exists in all 

dielectric and insulating materials with 32 crystallographic point groups and the 

electromechanical coupling can be generated in non-piezoelectric materials (Maranganti et 

al., 2006; Sharma et al., 2007). There is both direct and converse piezoelectric effects. In a 

direct piezoelectric effect, an applied stress creates a polarization within the crystal. In case 

of converse piezoelectric effect, an applied E-field creates a stress and strain in the crystal. 

The relationships between mechanical and electrical properties are summarized in Table 

1.1. Among the equations used in the table, 𝑃, 𝐸, 𝜀, 𝜎, 𝜇, and 𝑥 represent the polarization, 

E-field, strain, stress, flexoelectric coefficient and spatial direction, respectively. The 

subscripts 𝑖, 𝑗, 𝑘, 𝑙 all represent the different cartesian directions as 1, 2, and 3, or x, y, and 

𝑧. 

 The origin of the piezoelectric effect is a fundamental asymmetry in a crystal’s 

lattice structure. Because of this, not all crystal structures possess piezoelectric properties. 

Only crystals which fall under the class of non-centrosymmetric crystals exhibit 

piezoelectricity, while crystals structures of higher symmetry do not. Centrosymmetry 

exists if a crystal can be transferred from every point (𝑥, 𝑦, 𝑧) to (−𝑥, −𝑦, −𝑧) and retain 

the same geometric structure. Piezoelectric materials must be non-centrosymmetric so that 

a strain within the crystal will separate the centers-of-mass of the positively and negatively 

charged ions. This limitation on the crystal’s structure limits the materials which can be 

used to create the piezoelectric effect. 
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Table 1.1 Summary of basic equations used to describe piezoelectricity and flexoelectricity. 

Electromechanical effect Strain / Stress Direct effect Converse effect 

 

Piezoelectricity 

Strain Pi =  eijkεjk εjk =  dijkEi 

Stress Pi =  dijkσjk 𝜎jk =  𝑒ijkEi 

 

 

Flexoelectricity 

Strain 
Pi =  μijkl

∂εjk

∂xl
 

- 

Stress - 
𝜎ij =  μijkl

∂Ek

∂xl
 

 

1.4.2 Flexoelectricity 

 The flexoelectric effect is an electromechanical coupling in which the dielectric 

polarization exhibits a linear response to a mechanical strain gradient. The name originates 

from the Latin word flexus meaning “bend” and is related to the fact that a strain gradient 

naturally arises in bent structures (Yudin and Tagantsev, 2013). Flexoelectricity is similar 

to piezoelectricity, except spatial gradients are involved, making the analysis and 

understanding slightly more challenging. Flexoelectricity also has direct and converse 

effects: in the direct effect an applied strain gradient generates a polarization, and in the 

converse effect an applied E-field gradient generates a strain. There have also been reports 

where an applied uniform E-field has induced a curvature in the material (Yudin and 

Tagantsev, 2013). The equations used to describe the flexoelectric effects are also shown 

in Table 1.1 alongside the piezoelectric equations for comparison. 

 Unlike piezoelectricity, flexoelectricity is present in every crystal structure and 

does not rely on asymmetry in the crystal structure. Due to the spatial gradient terms in the 

constitutive equations, different amounts of strain at different physical locations within the 

crystal create the asymmetry needed to separate the centers-of-mass of positive and 

negative charge to give rise to a polarization. This means that a wider variety of materials 

are available for use as nanoelectromechanical devices. Additionally, since many of the 

best performing piezoelectric materials contain lead, flexoelectricity opens the door for the 

use of more biocompatible materials or enhancing the piezoelectric effect within devices 

used for sensors, actuators, and energy harvesters. 

 Similar to the piezoelectricity, flexoelectricity also shows two discrete strain and 

electric field gradient-dependent electromechanical couplings: direct as well as converse 
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flexoelectric effects. Flexoelectricity is a size-dependent phenomenon. Thus, the 

flexoelectric effect is a preferred electromechanical coupling in MEMS/NEMS 

applications. The constitutive relation (1.4) for the total polarization vector accounting the 

piezoelectric and flexoelectric effect may be re-written as: (Yudin and Tagantsev, 2013; 

Kundalwal et al. 2017) 

Pi~eijkεjk + fijkl

dεjk

dxl
                                                           (1.3) 

where, 𝜀𝑗𝑘  and  
𝜕𝜀𝑗𝑘

𝜕𝑥𝑙
 are the respective strain and strain gradient terms; 𝑒𝑖𝑗𝑘 and 𝑓𝑖𝑗𝑘𝑙 are the 

piezoelectric and flexoelectric coefficients, respectively.  

1.5 Electromechanical response of pristine BNSs 

The BNS has captivated massive response from researchers due to its exceptional 

mechanical, electrical, and thermal properties. Several experimental, numerical, and 

analytical investigations were carried out to explore the effect of crucial geometrical 

parameters such as chirality, aspect ratio (w/l) and size of BNSs on their electromechanical 

response (K. N. Kudin et al., 2001; Boldrin et al., 2011; Zhao and Xue, 2013; Eshkalak et 

al., 2018). These studies confirmed that BNS’s exceptional high Young’s modulus and 

stiffness. For instance, an effort was made by Ohba et al. (2001) reported the structural, 

dielectric, and dynamical properties based on first-principles calculations for three 

polytypes (c–BN, w-BN and h–BN) of BN. Bosak et al. (2006) measured Young’s modulus 

of BN based via inelastic x-ray scattering measurements. Using atomic force microscopy, 

Li et al. (2009) found that the bending modulus of BNSs increases with decreasing 

thickness and approaches an asymptotic value of monolayer BNS when the thickness is 

below 50 nm. Boldrin et al. (2011) studied the in-plane mechanical properties (tensile and 

shear rigidity, and Poisson’s ratio) of BNS using single BN bond mechanical model. Using 

molecular micromechanical model, Natsuki et al. (2017) studied the elastic properties of 

BNS. Their result showed that the mechanical properties such as Young’s modulus and 

Poisson’s ratio depend on the chirality of BNS. There were numerous studies conducted to 

determine the electromechanical response of BNSs. For instance, tight-binding (Bettinger 

et al., 2002), MD simulations (Mortazavi and Rémond, 2012; Thomas et al., 2015; 

Eshkalak et al., 2018; Liang et al., 2019), ab-initio (Kudin et al., 2001), a first principle 
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study (Sai and Mele, 2003; Hosseini et al., 2018), continuum modeling (Sharma and 

Parashar, 2021) and molecular mechanics (Le et al., 2015; Natsuki and Natsuki, 2017) 

approaches were used to evaluate the electromechanical response of pristine armchair and 

zigzag BNSs under uniaxial loading. Most of these studies were performed on either 

armchair or zigzag BNSs. Numerous investigations were carried out to determine the 

mechanical properties of pristine BNS using different techniques and approximations. For 

example, Peng et al. (2012) developed a non-linear continuum model based on density 

functional theory (DFT) to investigate the mechanical behavior of BNS. They reported that 

BNS experiences a non-linear elastoplastic deformation up to ultimate failure point, 

followed by a strain-softening behavior. Mortazavi and Remond (2012) investigated the 

thermomechanical response of BNS using MD simulations and reported that its Young’s 

modulus depends on the chirality and the converse is true for thermal conductivity. Thomas 

et al. (2016) performed MD simulations to determine the mechanical properties of BNS 

using a Tersoff interatomic empirical potential. They reported that the elastic properties of 

BNS are size dependent and increases with its size. Using MD simulations, Vijayaraghavan 

et al. (2018) studied the effective mechanical properties of BNS. They found that a BNS 

with smaller w/l ratio exhibits better tensile loading characteristics. They also reported that 

effective Young’s modulus of the BNS depends on its wall thickness. 

 Only few studies investigated the mechanical behavior of BNSs under shear and 

bending loading/deformation. For instance, Tian et al. (2014) studied the mechanical 

properties, including wrinkling patterns and fracture behavior, of BNSs using classical MD 

simulations and continuum model. They observed that the compressive stress controls the 

wrinkling phenomenon and tensile stress dominates the fracture behavior of BNS. The 

fracture tensile stress is inversely proportional to the width of BNS. Zhang et al. (2017) 

studied the remarkable piezo-potential property of BN honeycomb (BNHC) structures 

using finite element and MD simulations. They reported that due to their unique 

polarization distribution BNHCs possess a tensile piezoelectricity in the armchair direction 

and a shear piezoelectricity in the zigzag direction. Mukhopadhyay et al. (2018) studied 

the shear modulus of nanomaterials with mono-planar (such as graphene sheet and BNS) 

and multiplanar (such as molybdenum disulfide (MoS2)) configurations based on a 

physically insightful analytical approach. They found that the shear modulus plays an 



Introduction and Literature Review 

 

11 

 

important role in characterizing the applicability of different 2D nanomaterials and 

heterostructures in various NEMS such as determining the resonance frequency of 

vibration modes involving torsion, wrinkling, and rippling behavior of 2D nanomaterials. 

All BNSs are insulator and show a large band-gap (~5.9 eV) due to the difference 

in the electronegativities of B and N atoms of BNS. A BNS shows a partially ionic 

characteristic (Alam et al., 2014) and makes it piezoelectric nanomaterial. A piezoelectric 

phenomenon in BNS was intensely studied experimentally and theoretically in the 

literature (Bernardini et al., 1997; Sai and Mele, 2003; Michel et al., 2011; Zhang et al., 

2014; Ahmadpoor and Sharma, 2015; Hinchet et al., 2018). A BNS shows extraordinary 

dielectric properties with a stunning and homogeneous performance for its nanodevice 

applications. Piezoelectricity is an important property of non-centrosymmetric crystals 

which is the basis for actuators, sensors, and transducers in multifarious NEMS 

applications (Sai and Mele, 2003; Michel et al., 2011; Tolladay et al., 2017). Several 

theoretical studies were performed to investigate the intrinsic piezoelectricity effect in BN-

based nanostructures. For instance, Mele and Karl (2002) studied the electric polarization 

in BN-based nanostructures using the Berry phase quantum method. They revealed the 

existence of piezoelectric effect in BN-based nanostructures. Afterwards, Sai and Mele 

(2003) performed DFT calculations and reported that the BN based nanomaterials possess 

piezoelectric properties. Duerloo et al. (2012) performed DFT calculations to study the 

piezoelectric properties of different 2D single layers (SLs). They reported that the 2D SLs 

show excellent piezoelectric properties and provide the new platforms for electronic 

devices, enabling previously inaccessible avenues for sensing and control at the nanoscale 

level. Zhang et al. (2013) studied the buckling response and piezoelectric properties of BN-

based nanostructures subjected to the external E-field using the micro-mechanical 

approach. They reported that the axial and shear deformations occurred in the structure and 

the direction of induced stresses depends on the direction of applied external E-field. 

López-Suárez et al. (2014) examined the dynamics of BN monolayers using ab-initio 

calculations of the deformation potential energy and numerically resolved an equation of 

Langevine-type, which offers new possibilities for developing piezoelectric devices. An 

analytical study by Dorth et al. (2016) also proved the existence of piezoelectricity in 

monolayer BNS via the use of quantum geometric phase approach. Zhang et al. (2017) 
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studied the electromechanical response of BNS and BN-based nanostructures. They found 

that the elastic, piezoelectric and dielectric constants of BN-based nanostructures decrease 

with their size. Recently, Zhang et al. (2019) studied the piezoelectric effect in MoS2 and 

BNS under the influence of E-field and compared their piezo-potentials using MD 

simulations. They suggested that the MD simulations provide reliable piezoelectric 

coefficients compared to the classical models. Using MD simulations, Zhuang et al. (2019) 

developed a charge-dipole potential model to determine the flexoelectric response of 2D 

nanomaterials such as BNS, MoS2 and graphene sheet subjected to bending deformation. 

Their prescribed bending deformation method describes the calculation of the flexoelectric 

constants while eliminating the piezoelectric contribution from the universal relation of 

induced polarization during deformation. They also revealed that the electromechanical 

coupling increases in out-of-plane bending as compared to in-plane stretching. 

 Similar to the piezoelectricity, flexoelectricity is also shows the electromechanical 

coupling, except strain gradient is involved instead of homogenous strain (Mohammadi et 

al., 2014). For the first time, the flexoelectricity in carbon nanotube was observed by White 

et al. (1993) in 1993. In their study, the bond symmetry breaking due to curvature was 

visible in the electronic properties of CNTs. Using first-principle calculations, Dumitirica 

et al. (2002) determined the normal polarization induced by bending of graphene shells, 

which microscopically occurred due to a shift in sp2 hybridization at each atomic site. 

During bending deformation, the center of electronic charge is displaced outwards from 

the nuclear charge, and at the corresponding curvature, induced dipole moments were 

observed. Kalinin and Meunier (2008) performed density functional theory (DFT) to study 

the flexoelectric effect in 2D nanomaterials. They observed that induced dipole moment 

and bending curvature of graphene sheet shows a linear relationship. Using first-principle 

calculations, Naumov et al. (2009) studied the single-atom-thick sp2-bonded non-

centrosymmetric crystals like BNS which exhibits an unusual nonlinear electromechanical 

effect. Giant flexoelectric effect was also predicted for monolayer h-BN, suggesting its 

potential for ambient agitation energy harvesting. A theoretical study by Kvashnin et al. 

(2015) reported the flexoelectricity in carbon nanostructures and confirmed the dependence 

of flexoelectric coefficient on the local curvature of structures. Michel et al. (2016) studied 

the flexoelectricity in BNS using the first-principles calculations. They revealed that the 
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piezo-response of BNS could be improved using the flexoelectricity concept. Ghasemi et 

al. (2018) presented a computational design methodology for topology optimization of 

multi-material-based flexoelectric composites and demonstrated the flexibility of the 

model as well as the significant enhancement in electromechanical coupling coefficient. A 

new approach was proposed by Do et al., (2019) to identify all material parameters of 

flexoelectric materials based on electrical impedance curves which combined an iso-

geometric analysis formulation with a gradient-based optimization algorithm using the 

method of moving asymptotes

1.6 Electromechanical response of defected BNSs  

The BNS structures contain various types of defects due to the inherent issues of 

their fabrication techniques. Such defects are often considered while developing BN-based 

nanostructures as they affect the properties of BNSs. The most common defects include 

mono- and multi-vacancies (Zobelli et al., 2006; Gou et al., 2007; Nejad et al., 2013; Cheng 

et al., 2016) in which atom/s is/are missing from regular atomic site/s, Thrower-Stone-

Wales (SW) defects (Song et al., 2007) is the rearrangement of the hexagonal ring into 

pentagons and heptagons, and anti-sites doping (Bhattacharya et al., 2015; Weng et al., 

2016) where atoms of different types change places with each other. Sometimes these 

pores/defects improve local changes in the atomic polarization and chemical bond orders 

of BNS, leading to a change in its electromechanical behavior (Lehtinen et al., 2011). For 

example, Jin et al. (2009) effectively synthesized monolayer BNS using an energetic EBR 

method and revealed that the existence of B and N monoatomic and triangular pore in it. 

They also found that the B atom vacancies are energetically more stable than N atom 

vacancies. Suenaga et al. (2012) analyzed monolayer BNSs with and without point defects 

using electron energy-loss spectroscopy. They revealed that monovacancy at N site is more 

prominent for electronic properties compared to B site vacancies. Park et al. (2015) used 

EBR method to control the shape, size, and stability of 2D nanomaterials such as BNS, 

graphene and MoS2. They obtained the desired shape and size of pores in BNS 

experimentally, as shown in Fig. 1.5. On the other hand, to control the performance of 

nanomaterials, ‘defect engineering’ technique is being widely employed for many 

materials to alter their properties: cubic BN (Tian et al., 2013), diamonds (Huang et al., 

2014), graphene sheets (Kundalwal et al., 2017; Javvaji et al., 2018) , CNTs (Kundalwal 

https://www.sciencedirect.com/topics/computer-science/topology-optimization
https://www.sciencedirect.com/topics/engineering/coupling-coefficient
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and Choyal, 2018) and metals (Lu et al., 2009). Defects also provide routes to alter the 

properties of BNSs for their applications in diversified areas such as hydrogen storage 

(Leite et al., 2017; Elmahdy et al., 2019), ion separation and water desalination (Chava et 

al., 2020).  

 

Fig. 1.5 Existence of pores in BNS with different pore geometries: (a) triangular pore and (b) hexagonal 

pore [Reproduced with permission from (Park et al., 2015)]. 

For instance, Yin et al. (2010) performed DFT calculations to study the atomic and 

electronic structures of a BN atomic layer with triangular defects. Slotman et al. (2013) 

studied the structural properties of single layer (SL) BNS using MD simulations. They 

found that the non-monotonic behaviour of the lattice parameter, the expansion of the 

interatomic distance and the growth of the bending rigidity with temperature are 

qualitatively similar to those of graphene sheet. Le and Nguyen (2014) studied the 

mechanical properties of pristine and defective BN and silicon carbide (SiC) sheets using 

MD-simulations and finite element method. They found that uniaxial tensile stress-strain 

curves of defective and pristine sheets are almost identical up to fracture points. They also 

reported that a single defect reduces significantly fracture-stress and -strain from those of 

the corresponding pristine sheet, whereas Young’s modulus is nearly unchanged by a single 

defect. Lin et al. (2014) studied the fracture behavior of monolayer BNS containing various 

defects using MD simulations. They found that the fracture strength and strain of BNS are 

higher in its armchair direction than the zigzag direction. Abadi et al. (2017) studied the 

effect of temperature and grain size on the mechanical properties of polycrystalline BNS 

using MD simulations. They reported that central crack reduces the tensile strength and 

failure strain of BNS and such reduction in properties is independent of the initial crack 

length. Li et al. (2017) studied the mechanical performance and failure behavior of BNSs 

(a) (b) 
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with nanocracks using MD simulations. Their results also showed that when the crack size 

is larger than the threshold value, Young’s modulus of BNSs decreases with the increase 

of the crack size linearly. Hosseini et al. (2018) performed DFT calculations to study the 

effect of functionalization on the electromechanical response of BNS. They reported that 

the functionalization of hydroxyl in BNS leads to the reduction in its mechanical properties 

and the converse is true for electrical properties. Eshkalak et al. (2018) studied the 

mechanical properties of pristine and defected hybrid graphene/BN sheet using MD 

simulations. They found that the presence of defects in hybrid sheet reduces its mechanical 

properties. Liang et al. (2019) studied the mechancial properties of pristine BNS and 

randomly distributed defects in BNS using MD simulations. They found that the 

mechanical properties of defected BNS are reduced as the percentage of vacancy defects 

increases. They also reported that the mechanical properties decrease with increasing the 

temperature.  

Vacancy defect is a type of point defect in nanostructure and in which single or 

multi atoms are missing from one of the lattice sites of pure material. The SW defect is   

another important type of defects exists in BNSs, which correspond to 90° rotation of a B-

N bond (Song et al., 2007). This is called the Stone-Wales transformation, which generates 

two unfavorable homo-elemental (B–B and N–N) bonds; the schematic transformation of 

SW defects in BNS shown in Fig. 1.6. Obviously, these defects affect the properties of 

BNSs. Additionally, defects play a critical role in their fracture behavior that leads to 

change in their mechanical properties. These defects make the local changes in their 

atomic-level polarizations that lead to change in their electronic behavior of BNSs.  
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Fig. 1.6 Various types of defects in BNSs (a) pristine, (b) Mono-vacancy, (c) Di-vacancy, (d) Triangular-

vacancy, and (e) SW-defect.  

 Doping is the most effective method to tailor material properties such as electronic, 

thermal, optical, magnetic and chemical (Wang et al., 2011; Zhang et al., 2018; Zhou et 

al., 2020). In the existing experimental studies, several dopants such as Oxygen (Guo et 

al., 2017), Fluorine (Radhakrishnan et al., 2017), Carbon (C) (Kawaguchi et al., 1996; Zhao 

et al., 2014; Beniwal et al., 2017) and Chromium (Müller et al., 2008) were used to modify 

the properties/behavior of BNSs. For the application of BNS in smart nanodevices and 

nanoelectronics, “doping engineering” technique can be used to control their electronic 

response. Several experimental and theoretical studies showed that an elemental C atom 

can be doped easily into BN-based nanomaterials over a wide range of compositions, which 

is the most preferred route to modify their physicochemical and electronic properties. For 

instance, Terrones et al. (2002) performed the experimental study on C-doped BN-based 

nanotubes, nanosheets and nanofillers. They reported significant improvement in the 

structural and electronic properties of BN-based nanostructures. Du et al. (2007) studied 

the structural and electronic properties of C-doped hexagonal boron nitride nanoribbons 

(BNNRs) via first-principles calculations. They found that single C-substitution at B or N 

atom site in BNNRs induces spontaneous magnetization. Using first-principles 

calculations, Azevedo et al. (2012) studied the energetic stability and structural properties 

of antisites, vacancies and substitutional defects in monolayer BNSs. They found that the 

Mono-vacancy  Di-vacancy  

Triangular vacancy  SW defect 

(a) (b) (c) 

(e) 

Pristine  
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incorporation of a C atom substituting for one B atom, in an N-rich growth condition, and 

a N atom, in a B-rich medium, induces higher formation energy while substituting C atoms 

as compared to antisites and vacancy defects. Beheshtian et al. (2012) studied the electronic 

properties of C-doped BN-nanoribbons using DFT. They found that the position of C-

dopants influences the electronic properties of BN-nanoribbons. Bhattacharya et al. (2012) 

determined the electronic properties of BNSs by functionalizing them with several 

functional groups like H, F, CN, OH, CH3, and NH2 using first-principles calculations. Gao 

et al. (2016) performed DFT calculations to study the adsorption and catalytic activation 

of C-doped BNS. They found that even small C-doping concentration can functionalize the 

large surface area of BNS, making it promising catalytic material for oxygen-activation 

and -reduction reactions. Zhang et al. (2017) studied the thermal conductivity of 2D 

nanomaterials using MD simulations and reported a thorough comparison between the 

thermal conductivities of hexagonal boron-carbon-nitride (h-BCN), h-BN and graphene 

sheets. Beniwal et al. (2017) synthesized graphene, h-BN and h-BCN sheets, and 

performed first-principles calculations to predict direct electronic band gap of nanosheets. 

Most recently, Thomas and Lee (2019) studied the monolayers of h-BCN, h-BN and 

graphene using MD simulations, and reported their mechanical, electrical, optical, and 

thermal properties. 

1.7 Electromechanical response of multilayer BNSs (ML-BNSs) 

 Using different layers of combination in boron nitride-based materials are attracted 

an intense attention in the last two decades due to adding and subtracting layers can alter 

the properties of this materials. The strong interlayer interactions are often characterized 

and dominated by covalent bonding, and the weaker interlayer interactions are determined 

by a delicate balance between London dispersion forces, electrostatic interactions 

(Coulomb), or a resultant between these two called as pair-wise interactions (Kim et al., 

2013). The relationship between these interactions is the relative contribution of interlayer 

binding (bonded and non-bonded). Therefore, it is important to understand its mechanical, 

electrical, and electromechanical response to build new materials with their desired 

functionalities. Many 2D nanomaterials exist in the bulk as layered form. Among them, the 

most prominent ones are graphene (Mortazavi et al., 2012), boron nitride (BN) (Naumov 

et al., 2009), transition-metal dichalcogenides (e.g., TMDC and MoS2) (Wu et al., 2014), 
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and oxides (e.g., titania) (Dan Tan et al., 2019, 2020). Driven by the anticipated huge 

technical potential, ML-BNS have been successfully developed and investigated, which 

have indeed been shown to exhibit abundant appealing properties for technologically 

demanding applications, such as DUV photonic devices (Novoselov et al., 2005), dielectric 

tunneling (Hui et al., 2016), power devices (Constantinescu and Hine, 2016), electronic 

packaging (Bao et al., 2016), fuel cells (Oh et al., 2014), and biomedicines (Chimene et al., 

2015). 

 Among the limited experimental investigations accessible on ML-BNS are the 

micromechanical cleavage (Pacil et al., 2008) and the chemical solution derived method 

(Han et al., 2008). For, instance, using the micromechanical cleavage technique, Pacil et 

al. (2008) successfully synthesized an extremely thin sheet of BNS (between one to ten 

atomic layers). For the varied thickness of BNS, the morphology of the obtaining sample 

was characterized using optical microscopy and AFM. They also reported the Young’s 

modulus of stacked BN layered are 0.5 to 0.8 TPa. Han et al. (2008) prepared a sample of 

SL and ML-BNSs by a chemical solution derived method and characterized the 

microstructure composition using high-resolution TEM and electron-energy-loss 

spectrometry. They also found that the fringe contrast in the edge and the moiré patterns 

are feasible criteria for evaluating the number of atomic layers and stacking orientation in 

the sheets. Song et al. (2010) measured the mechanical properties of SL and ML-BNSs 

with a combination of AFM tip and theoretical models. They found that the Young’s 

modulus and fracture strength of ML-BNSs approached to 0.334 ± 0.024 TPa and 26.3 

GPa, respectively. Pioneering experiments of different 2D nanomaterials by Wu et al., 

(2014) confirmed that the piezoelectric effect is induced by stretching and releasing of SL 

MoS2. They reported that an odd number of staked layers shows piezoelectric effect while 

there is no piezoelectric effect observed in even number of stacked layers. Kim et al. (2015) 

also synthesized large-area of ML-BNSs and measured its mechanical properties by the 

same nanoindentation method. However, the obtained Young’s modulus was 1.16 TPa, 

which was significantly higher than that of Song’s. 

 To determine the mechanical properties of ML-BNSs and sufficiently understand 

its fracture behaviors, a series of theoretical investigations have been carried out in 

consideration of various experimental situations. For instance, using the first-principles 
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calculations, Mirnezhad et al. (2013) performed DFT to determine the mechanical 

properties of ML-BNS with different stacking orders such as AB bi-layer, ABA and ABC 

tri-layer and graphite-like BNS. They found that the elastic properties of ML-BNS are 

lower than those of monolayer BNS. They also reported that the mechanical properties of 

ML-BNS mostly depend on the number of atomic layers and the stacking order of BNS. 

Falin et al. (2017) prepared the atomically thin BN by mechanically exfoliated from high 

quality BN single crystal for the first time and systematically studied the mechanical 

properties of SL and ML-BNSs by indentation experiments. They reported that the SL BNS 

had a Young’s modulus of 0.865 ± 0.073 TPa and fracture strength 70.5 ± 5.5 GPa, and 

found that these physical properties were not substantially fluctuated with the increase of 

the number of atomic layers. Using MD simulations, Yao et al. (2020) studied the 

mechanical properties of vertically stacked BN/BN and BN/graphene nanostructures by 

considering different shapes of nanopores in them. They reported that the failure strength 

and strain of hybrid nanostructure increase with the strain rate. They also revealed that the 

mechanical properties of hybrid nanostructures with nanopores in BN region are more 

sensitive to the temperature than nanopores in other regions. 

 The piezo- and flexo-electricity phenomena for ML-BNSs were intensely studied 

by experimentally and theoretically in the literature (Bernardini et al. 1997; Zhang et al., 

2014; Ahmadpoor and Sharma, 2015). For instance, Naumov et al. (2009) studied an 

electromechanical response of thick sp2 bonded BN sheet. They investigated the effect of 

even and odd layer on polarization in ML-BNS. They found that the flexoelectric effect 

was observed in an ultrathin BN film with an odd number of layers, such as 1, 3, 5,…. .. 

This conclusion is in line with the Partoens and Peeters (2007) finding. Within a tight-

binding approach, Partoens and Peeters (2007) showed that Dirac fermions with a linear 

dispersion are present in graphene stacks only for an odd number of layers; in case of an 

even number of layers only normal fermions with parabolic energy dispersion occur. 

Michel et al. (2011) derived a unified theory of phonon dispersions and piezoelectricity in 

bulk and MLs of BNSs. The study indicates that 3D BNNs multilayers with an even 

number of layers (symmetry D6h) are not piezoelectric and MLs with an uneven number of 

Nu layers (symmetry D3h) are piezoelectric. They also reported that the piezoelectric 

coefficient e111 is inversely proportional to Nu. Balu et al. (2012) performed DFT 
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calculations to study the effect of external E-field on the band gap of heterostructures of 

graphene/BNS and bilayer BNS SLs. Their study reported that the band gap of 

graphene/BNS is higher than the bi-layer BNS SL. Duerloo et al. (2013) performed DFT 

to examine the electromechanical coupling in the ML-BNS. This study reveals that two 

BN monolayers exhibit a strong mechanical coupling between curvature and E-fields. Li 

et al. (2013) measured optical second-harmonic generation (SHG) from atomically thin 

samples of MoS2 and BN with one to five layers. They also found to be centrosymmetric 

when the atomic layer number N is even but non-centrosymmetric when N is odd for ML 

2h-TMDC systems. Zhang and Meguid (2015), examined the influence of the tube layer 

number on the piezoelectric properties of multi-walled (MW) BNNTs using MD 

simulation. Their results reveal that the piezoelectric coefficient is positive for BNNTs with 

odd numbers of layers but negative for those with even numbers of layers. For both, odd 

and even cases, the magnitude of the piezoelectric coefficient was found to decrease with 

increasing layer number of BNNTs. Zhang and Zhou, (2018) studied the piezoelectric 

characteristic of ML-BNS using MD simulations because the resonance frequencies may 

be easily adjusted by introducing an external electric field. This discovery implies that ML-

BNSs might be used as a starting point for developing innovative piezoelectrically 

adjustable 2D nanoresonators with ultrahigh tensile mechanical characteristics and 

lightweight materials. Remarkably, these outcomes are in good agreement with the 

piezoelectric trend found in MoS2 (Tan et al., 2019), and in MWBNNTs (Zhang and 

Meguid, 2015; Yamakov et al., 2017). Experimentally, this piezoelectric trend in BN has 

been confirmed in some piezoelectric planar hexagonal ML materials such as MoS2 (Nan 

et al., 2021) and SnSe (Dai et al., 2019).  

1.8 Scope and objectives of the present research 

The literature review clearly indicates that BNSs are not defect-free due to the 

inherent limitations of fabrication processes and sometimes various types of defects are 

being introduced intentionally in them to alter their properties to suit the specific 

applications. The position of vacancies plays a critical role to in the electromechanical 

response of BNSs. Use of BNSs as reinforcements to fabricate nanocomposites for various 

applications with desirable mechanical and electronic properties necessitates a thorough 

understanding of electromechanical behavior of defective BNSs.  
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In the literature, numerous studies have been performed to study the (i) mechanical 

properties of defective and (ii) piezoelectric properties of pristine BNSs. No single study 

exists that reports the electromechanical response of C-doped BNSs with different pore 

geometries which inherently occur during their fabrication and processing. This indeed 

provided the motivation for this thesis. Therefore, the atomistic modelling of defected 

BNSs is essentially required to understand the role of different shape of pores on their 

electromechanical response as it serves a complement to conventional experiments with 

cheaper and faster simulations. This work aims to study the electromechanical response of 

different-size BNSs with shape of pores using MD simulations coupled with charge-dipole 

(C-D) potential model. The elastic and piezoelectric properties of pristine and C-doped 

BNSs under tension, shear and bending (out-of-plane) loadings were calculated. In the 

present study, both types of armchair and zigzag BNSs were considered. Moreover, the 

interface engineering of electromechanical response of pristine and defective BNS under 

the externally applied E-field for different BNS/zigzag graphene stripe using MD 

simulations were also studied. The conducted research is a significant contribution to the 

scientific community due to the recent shift in advanced BN-reinforced composites from 

the use of conventional and carbon-based nanocomposites. As a strikingly novel research 

goal, it is intended to accomplish the tasks of the following objectives: 

➢ Study the electromechanical response of pristine and C-doped BNS with different-

size and shape of pores using MD simulations coupled with charge-dipole potential 

model.  

➢ Study the interface engineering of electromechanical response of pristine and 

defective BNS under the externally applied E-field accounting the different 

BNS/zigzag graphene stripe using MD simulations.  

➢ Enhance the piezoelectric properties of BNS/zigzag graphene stripes under the 

externally applied E-field through defect engineering using MD simulations. 

➢ Study the out-of-plane polarization and flexoelectric effect in monolayer boron 

nitride-graphene heterostructures (BGHs).  

➢ Study the electromechanical response of ML-BNSs under uniaxial tensile loading 

in the armchair and zigzag directions. 
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1.9 Organization of the thesis 

The remaining part of the thesis is organized as follows: 

➢ Chapter 2 deals with the atomistic modeling of SL and ML-BNSs for predicting their 

electromechanical response.   

➢ Chapter 3 presents the electromechanical response of pristine and C-doped BNS under 

(a) tension and (b) shear loadings with a consideration of different size and shape of 

pores using MD simulations coupled with charge-dipole potential model.  

➢ Chapter 4 presents the interface engineering of electromechanical response of pristine 

and defective BNSs under the externally applied E-field accounting the different 

BNS/zigzag graphene stripe using MD simulations. 

➢ Chapter 5 presents the out-of-plane polarization and flexoelectric effect in monolayer 

boron nitride-graphene heterostructures (BGHs) using MD simulations. 

➢ Chapter 6 presents the electromechanical response of ML-BNSs under uniaxial tensile 

loading in the armchair and zigzag direction.  

➢ Chapter 7 summarizes the major conclusions drawn from the research work presented 

in the thesis and the further scope of research on BNSs. The references are 

alphabetically listed at the end of thesis.  

 

 

 

 

 

 

 

 

 

 



Introduction and Literature Review 

 

23 

 

 

 

 

 

 

 

 

 



 

24 

  

2. Chapter 

Atomistic modelling 

This chapter outlines the general atomistic modeling framework of current research and 

basic theoretical methods used in the thesis. Detailed methodology and simulation 

parameters used for different research problems of the thesis are provided in the concerned 

chapters.  

 

2.1 Atomistic modelling  

A nanomechanics is the new area of mechanics which studies the properties and 

behavior of nanoscale material and structures in response to different types of loading 

conditions. A structure with at least one dimension less than 100 nm (10-7 m) is considered 

to be a nanostructure. A thorough understanding of physics of nanomaterials is required to 

design and development of their structures. This is usually achieved by using 

nanomechanical experiments or theoretical models. For instance, TEM, SEM, AFM, nano 

indenter etc. are widely used to characterize nanomaterials experimentally (Feynman et al., 

1992). Conducting experiments at the nanoscale-level is very expensive, complicated and 

time-consuming due to the involvement of atomistic parameters. Therefore, atomistic 

modelling plays a vital role in nanomechanics.  

Over the past three decades, there has been a rapid advancement in research activity 

on nanostructured materials, with the long-term promise to tailor-design material 

properties at the nanoscale level. In such noble efforts, computations are playing an 

important role in complementing experiments. Atomistic modelling-based techniques use 

modern computing power to include every atom of the system under consideration in its 

modelling as interacting particles are the foundation of materials science. Virtual 

computational experiments can significantly reduce the cost and accelerate the time scales 

of understanding and developing new materials without synthesizing them. A schematic 

illustration of typical atomistic modelling strategies is shown in Fig. 2.1.  
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Fig. 2.1 A schematic description of atomistic modelling strategies with representative length and time 

scales for computational simulations. Some typical nanostructures such as BN nanotube, nanosheet, and 

nanocomposite are shown as illustrative examples for different length and time scales. 

 

2.2 Molecular dynamics (MD) simulations  

Molecular dynamics (MD) technique is one of the most efficient and attractive 

atomistic modelling method (Rapaport, 1996). In MD technique, atom is assumed as an 

interacting classical particle and the interatomic interactions between the atoms are 

described using molecular mechanics force fields.  

2.2.1 Introduction 

MD simulation is one of the most widely used techniques in the study of 

nanostructures. It is a nanomechanics-based computer simulation technique in which the 

time evaluation of a set of interatomic interactions of atoms is followed by integrating their 

equations of motion. The time dependent integration is done by solving the classical 

Newton's equations of motion, numerically. The interatomic interactions between the 

atoms of nanostructure are described by molecular mechanics potential fields. MD 

simulations allow to gain insight into nanostructure under the specific condition that is 

impossible to study experimentally. This serves a complement to conventional experiments 

with cheaper and faster simulations. MD simulations have an advantage over classical 

models as it provides a route to dynamical properties of the molecular system such as time-
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dependent responses to perturbations, transport coefficients, thermo-mechanical 

properties, rheological properties and spectra, and many more characteristics of the system. 

Therefore, the MD simulation were performed in the current study using an open source 

software, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 

(Plimpton, 1995), and molecular interactions in BNSs were modeled in terms of a three-

body Tersoff-type potential force field (Tersoff, 1989, 1988).  

2.2.2 Equations of motion 

MD simulation divided into two basic steps. The first step involves the 

determination of interatomic interacting forces of atoms using molecular mechanics-based 

potential fields. The second step involves the tracing of trajectories of movements of atoms 

by integrating the equations of motion. The interatomic forces between the atoms are 

determined from the gradient of a molecular mechanic's potential field during the 

simulations, and force acting on an atom α is given by (Rapaport, 1996): 

Fα =  − 
∂Eα

∂rα
                                                                    (2.1) 

where 𝐹αis the force exerted, 𝐸α is the potential energy and 𝑟α is the position of an atom α. 

The potential energy of atoms is obtained from the molecular mechanic's potential field 

and suitable potential field to simulate the BNSs is discussed in section 2.2.8. The force 

acting on each atom is known and using Newton's second law, the acceleration of each 

atom can be obtained by: 

   Fα   =  mα
d2rα

dt2 =  
dv

dt
= mαaα                                        (2.2)                        

where 𝑚α and 𝑎α are the mass and acceleration of atom 𝛼, respectively.  

A system of atoms is allowed to move under accelerations for a period called time 

step. The velocity of atom 𝛼 after each time step can be obtained and using it, the position 

of atom 𝛼 can be calculated. Therefore, to calculate the trajectory of atoms, only the initial 

positions of atoms, initial distribution of velocities and accelerations are required, and this 

are obtained by the gradient of potential energy function. The initial distribution of 

velocities of the atoms of the system is usually determined from a random distribution with 

the magnitudes conforming to the required temperature and corrected so there is no overall 

momentum in the atoms of the systems, i.e., 
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P =  ∑ mα

N

α=1

vα = 0                                                       (2.3) 

The velocities 𝑣α are often chosen randomly from a Maxwell-Boltzmann or Gaussian 

distribution at a given temperature, which provides the probability that an atom α has a 

velocity 𝑣𝑥  in the 𝑥 direction at a temperature 𝑇. 

The velocities 𝑣α are often chosen randomly from a Maxwell-Boltzmann or 

Gaussian distribution at a given temperature, which provides the probability that an atom 

𝛼 has a velocity 𝑣𝑥 in the 𝑥 direction at a temperature 𝑇. 

P(vαx) =  (
m

2πKBT
)

1
2⁄

ex p [−
1

2

mαvαx
2

KBT
]                         (2.4) 

T =
1

3N
∑

|Pα|

2mα

N

α=1

                                                            (2.5) 

where 𝑁 is the number of atoms in the system and 𝑘𝐵  is Boltzmann's constant.  

2.2.3 Integration algorithms 

The potential energy of interatomic interactions of atoms is the function of their 

positions in the system. Numerous numerical algorithms such as leap-frog algorithm 

(Hockney et al., 1970), velocity Varlet algorithm (Swope et al., 1982) etc. have been 

developed for integrating the equations of motion. MD is usually applied to a large-scale 

atomistic model and the energy evaluation is time-consuming as well as memory 

requirement is also large. To generate the correct statistical ensembles, energy conservation 

is required.  

Thus, the basic criteria for the right integrator for simulations are as follows: 

• It should be fast, ideally requiring only one energy evaluation per time-step. 

• It should require less computer memory.  

• It should permit the use of a relatively long time-step.  

• It must show functional conservation of energy. 

In all the integration algorithms, the positions, velocities, and accelerations of atoms can 

be approximated by a Taylor series expansion (Rapaport, 2011).  

r(t0 +  δt) = r(t0) + v(t0)δt +  
1

2
a(t0)δt2 + ⋯                (2.6) 
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v(t0 +  δt) = v(t0) + a(t0)δt +  
1

2
b(t0)δt2 + ⋯               (2.7) 

a(t0 +  δt) = a(t0) + b(t0)δt + ⋯                                          (2.8) 

where 𝑟, 𝜈 and 𝑎 are the positions, velocity and acceleration of an atom, respectively, 𝑡𝑜 is 

the initial time, and 𝛿𝑡 is the time step. The change in 𝑟  and 𝑣 with 𝛿𝑡 are graphically 

represented in Fig. 2.2.  

 

Fig. 2.2 Variation in the positions and velocities of atoms with the time. 

The following numerous numerical algorithms have been developed for integrating the 

equations of motion in the literature: 

The Leap-Frog Algorithm (Rapaport, 1996): The velocities are first calculated at the 

time 𝑡 +  
1

2
𝛿𝑡 and using this velocities position 𝑟 obtained at time 𝑡 + 𝛿𝑡. The advantage 

of this algorithm is that the velocities are explicitly calculated; however, the disadvantage 

is that they are not calculated at the same time as the positions. 

r(t0 +  δt) = r(t0) + v (t0 +  
1

2
δt) δt                                     (2.9) 

v (t0 +  
1

2
δt) = v (t0 −  

1

2
δt) + a(t0)δt                                   (2.10) 

The velocities at time t can be approximated by: 

v(t0) =
1

2
[v (t0 −

1

2
δt) + (t0 +  

1

2
δt)]                                  (2.11) 
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Beeman's Algorithm (Rapaport, 1996): This algorithm is closely related to the Verlet 

algorithm. According to that the respective position and velocity of atoms can be described 

by,  

r(t0 + δt) = r(t0) + v(t0)δt +  
2

3
a(t0)δt2 −  

1

6
a(t0 − δt)δt2                    (2.12) 

v(t0 + δt) = v(t0) + v(t0)δt +  
1

3
a(t0)δt +  

5

6
a(t0)δt −  

1

6
a(t0 −  δt)δt2  (2.13)  

The advantage of this algorithm is that it provides a more accurate expression for the 

velocities and better energy conservation and the disadvantage is that the more complex 

expressions make the calculations more expensive. 

The velocity Verlet Algorithm (Swope et al., 1982): During the MD simulations the new 

positions and velocities of atoms in the system are obtained using a numerical integration 

method. According to the velocity Verlet method, position and velocity of atoms can be 

described by,  

v (to +
δt

2
) = v(to ) + a(to )

δt

2
                                                (2.14)     

                               r(to + δt) = r(to ) + v (to +
δt

2
) δt                                      (2.15) 

                              v(to +  δt) = v (to +
δt

2
) + a(to )δt                                       (2.16)     

The velocity Verlet algorithm is required less computer memory as only one set of 

positions, velocities and forces need to calculate at one time.  Due to that fact this algorithm 

mostly used in MD simulation of atomic systems.   

In order to simulate the real system during MD simulation, controlling temperature 

and pressure is necessary. The temperature control is achieved by modifying the velocities 

of atoms, while pressure is controlled by adjusting the size of the simulation box. A review 

of commonly used techniques to control temperature and pressure is given below. 

2.2.4 Temperature control  

  The temperature is a state that defines the thermodynamic state of the system. The 

temperature of a system is the average of kinetic energies of all the atoms, which is 

calculated from the atomic velocities and can be given as (Rapaport, 1996):  

T =  
1

kBNf 
∑ mα(vi

α

i,α

)2                                                    (2.17) 
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where 𝑘𝐵 is Boltzmann's constant, 𝑁𝑓  is the total translational degree of freedom of the 

system, 𝑚𝛼
 is the mass of atom 𝛼, and  𝑣𝑖

𝛼  is the velocity of atom 𝛼 in i direction.  

During the simulation, it is not possible to keep temperature constant due to the 

fluctuations of velocities of atoms of the system. Hence, the average value of temperature 

can be maintained during the MD simulation. According to Eq. (2.17), the system 

temperature depends on the velocities of atoms. Therefore, by scaling the velocities of 

atoms, the temperature can be controlled, which is usually accomplished by a thermostat.  

The most commonly used thermostats are Anderson, Berendson and Nose-Hoover.  

Anderson thermostat (Andersen et al., 1980): This is the most straightforward 

thermostat and, in this method, the velocity of a random particle is replaced by a value 

chosen from the Maxwell-Boltzmann distribution for a given temperature. Anderson 

thermostat is computationally expensive.  

Berendsen thermostat (Berendsen et al., 1984): This is the most commonly used 

thermostat due to its simplicity and easy implementation. To maintain the constant 

temperature during the simulation, the system is coupled to an external heat bath source 

with fixed temperature 𝑇0. The velocities of atoms are scaled at each time state such that 

the change in the rate of temperature is proportional to the difference in temperature: 

dT(t)

dt
=  

1

τ
(T − T(t))                                                       (2.18) 

This method provides an exponential decay of the system towards the target 

temperature using a factor 𝜆: 

λ =  [1 −  
δt

τ
(

T − T0

T
)]

1
2

                                           (2.19)         

where 𝜏 is the characteristic relaxation time, 𝛿𝑡 is the time-step size, 𝑇 the 

instantaneous temperature, and 𝑇0 is the target temperature. This method maintains a 

constant temperature with good approximation and the temperature can be controlled by 

changing 𝜏 and adjusting 𝑇0. 

Nosé-Hoover thermostat (Shuichi Nosé et al., 1984): This is a method for 

performing constant-temperature dynamics that produces true canonical ensembles in both 

momentum and coordinate spaces.  This method was used in this study because it is one of 
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the best-considered thermostats among all the thermostats (Hünenberger et al., 2005). This 

thermostat uses a friction factor (𝜇) to alter the equations of motion, as follows: 

dμ(t)

dt
=  

kBNf

Q
(T(t) − T0)                                              (2.20) 

where 𝑄 is the effective mass of thermostat: 

Q = kBNf T(t)τT
2                                                          (2.21) 

where 𝜏𝑇  is the specified time constant for the fluctuations of temperature. To achieve the 

smooth temperature transition, the value of the time constant is usually considered in the 

order of hundred-time steps. The modified equation of motion is defined by, 

a =  
f(t)

m
− μ(t)v(t)                                                     (2.22) 

2.2.5 Pressure control 

  The pressure is a basic thermodynamic variable that provides the state of system of 

atoms and is defined as: 

Pij
V =  

1

V
∑ [∑(ri

β
−

N

β=1

 ri
α)fj

αβ
+ mαvi

αvj
α]                               (2.23)

α

 

where 𝑉 is the volume of system, 𝛽 is assigned a number to neighboring atoms that passes 

from one to the number of neighbouring atoms (𝑁), and 𝑟𝑖
𝛼 and 𝑟𝑖

𝛽
are the positions of atoms 

𝛼 and 𝛽 along the direction i, respectively. Term 𝑓𝑗
𝛼𝛽

 is the force along the j direction on 

atom α due to atom 𝛽, and 𝜈𝛼  and 𝑚𝛼  are the velocity and mass of atom 𝛼, respectively.  

During the simulation, the pressure of system of atoms can be adjusted by changing 

the dimension of the simulation box. This can be achieved using the barostat during the 

simulations, and the most commonly used barostats are Berendson (Berendsen et al., 1984) 

and  Nose-Hoover barostat (Martyna et al., 1994).   

Berendsen barostat maintains the pressure of a system at a target value. Berendsen 

method couples the system to a pressure bath. At each time step, size of the simulation box 

and the coordinates of atoms are rescaled. At each step, x, y and z coordinates of each atom 

are scaled by the factor, 𝜇:  

𝜇 =  [1 −  
𝛿𝑡

𝜏
𝛾[𝑃 − 𝑃0]]

1
3

                                                 (2.24) 
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where 𝑃 is the instantaneous pressure, 𝑃0 is the target pressure and 𝛿𝑡 is the time step. The 

cartesian components of the unit cell vectors are scaled by the same factor. Berendsen's 

method is less reliable compared to the Nose-Hoover method (Hünenberger, 2005).  

Nose-Hoover barostat (𝜂) is defined as: (Hoover, 1985; Shüichi Nosé, 1984) 

 
dη

dt
=

1

kBNfT0τP
2  V(t)(P(t) − P0)                                  (2.25) 

where 𝜏𝑃  is the specified time constant for pressure fluctuations and its value usually on 

the order of thousands of time steps to achieve a smooth pressure fluctuation. The 

controlled volume of the system is determined by using the following relation:  

dV(t)

dt
= [3η(t)]V(t)                                                      (2.26)  

2.2.6 Statistical ensembles 

The whole universe is governed by the thermodynamics laws through the transfer 

of energy between matter. This is attributed to the change in the total energy of the system. 

This process is very complex to consider directly, therefore, several parts of the universe, 

i.e., the system is considered separately, and it can be described using an ensemble. An 

ensemble is a collection of all possible states of the real systems that have identical 

thermodynamic or macroscopic states but have different microscopic states. The 

commonly used ensembles are (i) constant N, V and E (NVE) or microcanonical ensemble, 

(ii) constant N, V and T (NVT) or canonical ensemble, and (iii) constant N, P and T (NPT) 

or isothermal-isobaric ensemble. The N, V, E, T and P denote the number of atoms, 

volume, energy, temperature, and pressure of the system of atoms, respectively. The 

graphical representations of ensembles are shown in Fig. 2.3. 

Microcanonical ensemble (NVE) is derived from Newton's law of motion without 

any pressure and temperature control (Rapaport, 1996). The energy of the system is 

conserved during the simulations. The NVE ensemble is a statistical ensemble that allows 

to keep constant specified total energy of all the possible states of mechanical systems. The 

system’s energy, volume, composition, and shape are kept the constant in all possible states 

of the system.   
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Canonical ensemble (NVT) can be obtained by maintaining the constant 

thermodynamic temperature and total volume and number of particles in the system. 

(Rapaport, 1996).  The NVT ensemble is a statistical mechanics ensemble that denote the 

possible states of the mechanical system in thermal equilibrium of heat bath at finite 

temperature. The system allows only to exchange the energy from the heat bath and the 

energy is no longer constant.    

Isothermal-Isobaric ensemble (NPT) allows the control of both the pressure and 

temperature of the system (Rapaport, 1996). The NPT ensemble is a statistical mechanical 

ensemble that maintains a constant total number of particles, pressure, and temperature.  

NPT can also be used during equilibration to obtain the desired pressure and temperature 

before changing to the constant-energy and constant-volume ensembles.  

 

Fig. 2.3 Graphical representation of the microcanonical (NVE) ensemble, the canonical (NVT) 

ensemble and the isothermal-isobaric (NPT) ensemble (Gale et al., 2012).  

 

2.2.7 Potential fields 

The potential field is a mathematical description of the potential energy of a system 

of interacting atoms. The empirical relation of parameters of potential energy in potential 

fields are derived from both high-level quantum mechanical calculations and experimental 

studies. To simulate the different molecular systems required a unique potential field. The 

general form of a potential field as a function of energy and can be defined as 

Etotal =  Ecovalent +  Enon covalent                                    (2.27) 

where 𝐸𝑡𝑜𝑡𝑎𝑙, 𝐸𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡, and 𝐸𝑛𝑜𝑛 𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡 are the total energy, covalent energy, and non-

covalent energy, respectively, and interatomic relative motions in molecular mechanics 

depict in Figs. 2.4 and 2.5. The components of covalent and noncovalent energies can be 

expressed as  
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Ecovalent  =  Ebond +  Eangle + Edihedral +  Eout−of−plane            (2.28) 

 Enon covalent =  Eelectrostatic +  Evander Waals                                    (2.29) 

 

Fig. 2.4 Interatomic relative motions in molecular dynamics.  

 

Fig 2.5 Interlayer van der Waal's interactions. 

In case of non-bonded van der Waals interaction between individual B and N atoms 

(see Fig. 2.5), there is a variety of used potentials in the literature. Commonly, the non-

bonded interactions are expressed as Lennard-Jones (L-J) or Morse potentials (Rahman et 

al., 1994). In the current study, the L-J term and a coulombic-term was used which is 

expressed by (Akiner et al., 2016): 

U(𝑟𝑖𝑗) = 4εij [(
𝐷ij

𝑟𝑖𝑗
)

12

− (
Dij

𝑟𝑖𝑗
)

6

] + 𝐾𝐶𝑞𝑖𝑞𝑗𝑟𝑖𝑗
−1                                 (2.30) 

where 𝑈(𝑟) is potential energy (PE) between a pair sheet at the structure of B-N bi-layers,  
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𝑟𝑖𝑗 is the finite distance at which the inter-particle potential is zero between atoms i and j 

in adjacent layers, while 𝜀 is a parameter determining the depth of the potential well, 𝐷𝑖𝑗 is 

the diameter of the atom (a length-scale parameter of the atom determining the position of 

the potential minimum). 𝐾𝐶 is Coulombic constant and 𝑞𝑖 is the partial charge of the ith 

atom. Meanwhile, the partial charge 𝑞 for the L-J potential is taken as 1.1378 eV and the 

cutoff distance of L-J interaction is set to 10 Å. The parameters of L-J potential are 

summarized in Table 2.1. The exact functional form of a potential field depends on the type 

and condition of the simulation. The all-atom potential fields provide the parameters for 

each and every type of atom in a system, while the united-atom potential fields stipulate 

parameters only for specific types of atoms (Sun et al., 1998).  

In the literature, Morse potential, reactive empirical bond order (REBO) potential, 

adaptive intermolecular reactive empirical bond order (AIREBO) potential fields are being 

used to simulate graphene and CNTs, and three-body Tersoff-Brenner potential force field 

is being used to simulate BN nanotubes and nanosheets (Tersoff et al., 1988). Morse 

potential field is two body potential field, which does not represent the systems with many-

body interactions, such as graphene. The MD simulations in this study have been conducted 

using Tersoff potentials field, which are many-body potentials. 

2.2.8 Tersoff potential force field 

 Tersoff potential force field is used for semiconductors and insulators. It is 

parameterized from the empirical data and particularly suited for BN based nanostructures. 

In the MD simulation, the interactions between B, C and N atoms of a sheet were described 

using the Tersoff potential force field (Tersoff, 1989, 1988). The Tersoff potential was 

obtained by empirically fitting the parameters obtained from either experiments or first-

principles calculations. Note that the Tersoff potential has been successfully employed in 

numerous studies to evaluate the electromechanical response of BNSs and tube (Mortazavi 

and Rémond, 2012; Zhao and Xue, 2013; Zhang et al., 2017; Vijayaraghavan and Zhang, 

2018; Zhang and Zhou, 2018). According to the Tersoff potential, an analytical form of the 

total energy 𝐸 between two neighbouring atoms i and j were defined as: 

E =  ∑ Ei

i

=  
1

2
∑ Vij

i≠j

                                                   (2.31) 

Vij = fC(rij)[fR(rij) +  bijfA(rij)]                                     (2.32) 
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Vij
R = fC(rij)fR(rij)                                                          (2.33) 

Vij
A = fC(rij)bijfA(rij)                                                      (2.34) 

where, 𝐸 is the total energy of the system, 𝐸𝑖 is the site energy and 𝑉𝑖𝑗 is the bond energy. 

The indices 𝑖 and 𝑗 run over the atoms of the system. Term 𝑟𝑖𝑗 is the distance between atom 

𝑖 and atom 𝑗, while 𝑏𝑖𝑗 is the bond angle term which depends on the local coordination of 

atoms around atom 𝑖. Terms 𝑓𝑅 and 𝑓𝐴 are the repulsive and attractive pair potentials, 

respectively. Term 𝑓𝐶(𝑟𝑖𝑗) is the cut-off function provided to limit the range of the potential 

and thus saves the computational time. The cutoff function 𝑓𝐶(𝑟𝑖𝑗)is expressed as: 

fC(rij) = {

1
1

2
+  

1

2
0

cos (π
rij −  Rij

Sij − Rij
),    

rij  <  Rij

Rij  < rij  < Sij

rij  >  Rij

                  (2.35)  

where R and D are model specific parameters.  

The two-body repulsion 𝑓𝑅(𝑟𝑖𝑗) and attraction 𝑓𝐴(𝑟𝑖𝑗) terms are as follows: 

fR(rij) =  −Aij exp(−λij
I rij)                                            (2.36) 

fA(rij) = −Bij exp(−λij
IIrij)                                             (2.37) 

In Eq. (2.32), 𝑏𝑖𝑗 is the strength of the attractive term and can be expressed as: 

bij =  (1 +  βnζij
n)

−
1

2n                                                  (2.38) 

where       ζij =  ∑ fc(rijk)g(θijk)k≠i,j exp [λ3
m(rij − rik)

3
]                   (2.39) 

g(θ) =  γijk  (1 +  
c2

d2
−  

c2

d2 +  (h − cos θ)2
)                           (2.40) 

in which n, c, d, and h are the constants, and they can be determined from the data 

describing the interactions between B, C and N atoms. These constants are taken from the 

Ref. (Albe et al., 1997; Matsunaga et al., 2000; KInacI et al., 2012), as listed in Table 2.1.  

The n, 𝛽,  𝜆𝑖𝑗
𝐼 , B, 𝜆𝑖𝑗

𝐼𝐼 , and A parameters are only used for two-body interactions. The m, 𝛾, 

𝜆3
𝑚, c, d, and 𝑐𝑜𝑠𝜃0 parameters are only used for three-body interactions. The R and D 

adjustable parameters are used for both two-body and three-body interactions. The value 

of m = 3, 𝛽 = 0, and 𝛾 = 1 are taken as constant. Term 𝑔(𝜃) is dependent on the angular 

deformation and 𝜃 is the angle between two vectors 𝑟𝑖𝑗 and 𝑟𝑖𝑘. The different parameters 

λij
I , λij

II, Aij , Bij , Rij , and Sij for species i and j can be calculated using the mixing rules: 
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λij
I =  

1

2
(λi

I + λj
I)                                                               (2.41) 

λij
II =  

1

2
(λi

II + λj
II)                                                            (2.42) 

Aij =  (Ai × Aj)
1

2⁄
                                                          (2.43) 

Bij =  (Bi × Bj)
1

2⁄
                                                          (2.44) 

Rij =  (Ri × Rj)
1

2⁄
                                                         (2.45) 

Sij =  (Si × Sj)
1

2⁄
                                                           (2.46) 

Table 2.1: Parameters used in Tersoff potentials for B-B, N-N, B-N, C–C, C–N and C–B interactions. 

(Albe et al., 1997; Matsunaga et al., 2000; KInacI et al., 2012). 

 

Parameter B–B N–N B–N C–C C–N C–B 

m 3 3 3 3 3 3 

𝛾 1 1 1 1 1 1 

𝜆3
𝑚 (Å-1) 0 0 1.992 0 0 0 

𝑐 0.562 17.795 1092.928 38049.450 38049.450 38049.450 

𝑑 0.001 5.948 12.38 4.348 4.348 4.348 

ℎ 0.5 0 -0.541 -0.930 -0.930 -0.930 

𝑛 3.992 0.618 0.364 0.727 0.727 0.727 

𝛽  0.000 0.019 0.000 0.000 0.000 0.000 

𝜆𝑖𝑗
𝐼𝐼  2.077 2.627 2.784 2.211 2.205 2.205 

𝐵 (eV) 1173.196 2563.560 3624 430 339.068 387.575 

𝑅 (Å) 2 2 2.3 1.95 1.952 1.952 

𝐷 (Å) 0.1 0.1 0.5 0.15 0.1 0.1 

𝜆𝑖𝑗
𝐼  2.237 2.829 2.99 3.487 3.527 3.527 

𝐴 (eV) 1404.052 2978.952 4483.250 1393.645 1386.781 1386.781 

ε (kcal/mol) 0.000 0.007 0.249 - - - 

D (Å) 0.000 3.750 3.146 - - - 
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2.2.9 Molecular dynamics parameters 

  Time-step: The length of time between two consecutive iterations in a MD 

simulation is called the time step. A time step should be less than 10% of the vibration 

period of an atom and, time-step of 0.5 fs to 0.8 fs provides excellent results for carbon-

based structure (Arachchige et al., 2012; Kundalwal and Choyal, 2018). However, 

researchers used time steps from 0.1 fs to 1 fs to simulate uniaxial tensile tests of BNSs 

(Kumar et al., 2016; Mortazavi and Cuniberti, 2014). They used three-body Tersoff 

potential force field for simulating the BN-based nanostructure using LAMMPS. The 

selection of time-step depends on the computational efficiency and required accuracy of 

the simulations. The larger value of time steps increases the computational efficiency, 

while it reduces the accuracy of the simulations. The smaller time steps may improve the 

accuracy of the simulations. Therefore, the time step controls the trade-off between 

computational efficiency and accuracy in the MD simulations. If the value of time-step is 

too large, then the system might become unstable. Therefore, first, we investigated the 

effect of time step on the simulation of the mechanical deformation test of BNS. In order 

to investigate this, a set of MD simulations was performed on a 50 Å × 50 Å BNS with 

time steps of 0.1 fs, 0.5 fs, and 1 fs. All other MD parameters were kept constant, and the 

values mentioned in the following sections. The results indicate that the stress-strain curves 

of BNS obtained with different time steps are identical as shown in Fig. 2.6. It can be 

concluded from Fig. 2.6 that a time-step between 0.1 fs and 1 fs could be used to simulate 

the mechanical deformation tests of BNSs. A time step of 0.5 fs, which is the most 

commonly used in literature, will be used in all the MD simulations hereafter. 
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Fig. 2.6 Stress-strain curve of a BNSs obtained from MD simulations with different time steps. 

 Strain rate: During the MD simulations, a deformation test is performed by 

applying strain to the nanostructure at a constant strain rate. The failure point of the BNS 

structure depends on the value of strain rate (Dumitrica and Yakobson, 2004; Zhao and 

Aluru, 2010). The lower the value of strain rates, the system gets more than sufficient time 

to relax and reaches the equilibrium state, and we can obtain accurate results. The actual 

practical strain rate value 10-2 s−1 in experiments cannot be used during the computational 

simulations due to high computational time. Therefore, in order to keep computational 

efficient simulations, usually, the value of strain rate 109 is used in MD simulations for BN 

based structures (Mortazavi and Rémond, 2012; Mortazavi and Cuniberti, 2014; Kumar et 

al., 2016; Zhang et al., 2019). Therefore, we investigated the effect of strain rate on the 

simulation of the mechanical deformation test of BNS. In order to investigate this, a set of 

MD simulations was performed on 50 Å × 50 Å BNS with strain rate of 0.0001 ps−1, 

0.0005 ps−1, and 0.001 ps−1. All other MD parameters were kept constant. The results 

indicate that the stress-strain curves of BNS obtained with different strain rate are almost 

the same before the final facture occurs, indicating that strain rate has minor effect on 

Young’s modulus. It can be concluded from Fig. 2.7 that the strain rate has marked effect 

on the fracture strength and fracture strain. The use of strain rate value of 0.0005 ps−1 is 

the optimal choice to investigate the electromechanical response of BNS and such value 

was also used in the existing work to study the mechanical behavior of BNS (Kumar et al., 

2016).  
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Fig. 2.7 Stress-strain curve of a BNSs obtained from MD simulations with different strain rate. 

 Periodic boundary conditions: The term periodic boundary condition (PBC) 

(Allen, 2004) refers to the simulation of structures consisting of a periodic lattice of 

identical subunits. The effects of edges in the systems such as BNSs should be eliminated 

in MD simulations in order to obtain their bulk properties. Therefore, an extremely large 

system of BNS can be simulated via MD simulation by ensuring that the edges and surfaces 

have only a small effect on its bulk properties, but this approach is computationally 

expensive. To reduce the computational efforts, the use of PBCs in the MD simulation is 

the most efficient method to simulate an infinitely large system. In PBCs, the cubical 

simulation box was replicated throughout space to form an infinite lattice as shown for a 

2D case in Fig. 2.8. During the MD simulation, when an atom moves in the central box, 

then its periodic images in every other box also move exactly in the same way. Thus, when 

an atom leaves the box during the simulation, then it is replaced by an image particle that 

enters from the opposite side so the number of particles/atoms in the central box remains 

same and the system under consideration does not possess any edges. Therefore, the PBC 

was used to eliminate the effects of free edges of BNSs (Dewapriya et al., 2014; Yamakov 

et al., 2017). 
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Fig. 2.8 Graphical representation of the PBCs of the middlebox. The arrows indicate the 

directions of the velocities of atoms. The atoms in the middlebox can interact with atoms in the 

neighbouring boxes without having any boundary effects. 

 

2.2.10 MD simulator  

 All the MD simulation were performed in LAMMPS. The Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a classical MD simulation 

software that is widely used in a variety of applications at the atomistic level (Plimpton, 

1995) and it allows parallel particle simulations at the atomic, meso and continuum scales. 

It allows to simulate atomic, chemical, or biological models at a microscopic scale. 

LAMMPS was developed at the Sandia National Laboratories and is written in C++ code. 

It is free and open-source software that continues updated by Sandia National Laboratories 

(Plimpton et al., 1995) and other researchers worldwide.  

The MD simulator LAMMPS requires a different script to perform the MDSs, such 

as input script, atom coordinates of the system and potential field. The formulation of 

LAMMPS input script is shown in Fig. 2.9, and this script can be divided into four sections: 

preprocess/initiation, input script, running, and output/postprocess.  

(i) Preprocess/initiation: build the atomic systems using the following 

software (NanoEngineer-1, VMD and OVITO) and also choose appropriate 

force field (Tersoff, AIERBO, EAM and ReaxFF etc.) that provides the 

interatomic interaction of the atomic systems.  

(ii) Inputs script: defines the atom coordinates of the system and potential 

field. The boundary conditions and units of the MD parameters are set in 
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the initialization part of the input script. Different units and boundary 

conditions are available in LAMMPS package. The use of metal units is 

mandatory for the Tersoff-potential force-field. In the metal units, the units 

of time, distance and energy are picoseconds (ps), Angstroms (Å) and 

electron-volts (eV), respectively. The choice of boundary condition depends 

on the type of simulation and can be chosen as periodic and non-periodic. 

The atoms coordinates (x, y and z) and types are defined under the atom 

definition section. In all performed MD simulations, the atom coordinates 

given in a different file. During the simulation, this file is called when the 

input file is executed.  

(iii) Running: the simulation parameters, potential field coefficients and output 

options are given in the third section of the input script. The basic simulation 

parameters, such as temperature, pressure, time etc., are defined here. The 

temperature and pressure controlling methods are implemented in 

LAMMPS, such as Berendsen and Nose-Hoover methods. The 

thermodynamics ensemble is also implemented in the third section of the 

LAMMPS such as NVE, NVT and NPT ensembles. During simulation, 

LAMMPS allows to compute time and spatial averages of physical 

quantities, such as pressure, temperature, energies, stresses, etc. and 

separate text files can be obtained at specified time intervals. During the 

simulation, LAMMPS allows to deform the simulation box. During the 

simulation, nanostructure is also deformed along with the simulation box. 

(iv) Postprocess/output: the output of the MD simulations from the LAMMPS 

can be obtained as log.Lammps file after the pre-specified number of time 

steps. The output of LAMMPS contains all the position information 

pertaining to atoms at every time-step. However, LAMMPS does not have 

the functional visualization capability to display the various trajectories 

directly. Therefore, additional visualization software is required for 

analyzing the results obtained more easily. In this regard, the VMD (Dalke 

et al., 1996) and OVITO (Stukowski et al., 2010) software can be used 
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which are capable of reading the LAMMPS output data and rendering 

informative figures. 

 

Fig. 2.9 The overview of LAMMPS input script 

 The theory behind the MD simulations in this chapter will be used for investigating 

the electromechanical response of BN-based nanostructures in subsequent chapters. The 

electromechanical behavior of pristine BNS, C-doped BNS, hybrid BNS/CBN, BGHs, 

multilayer BNS and bulk BNSs (atomic layer number up to 12) is studied in the next 

chapters. 
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Chapter 3 

Electromechanical response of BNSs  

In this chapter, the investigation of the electromechanical response of pristine and carbon-

doped BNS is carried out using MD simulations with a charge-dipole potential model. 

Effect of various factors such as chirality, size of BNS, and strain rate of BNS were 

critically examined. Using examples drawn from the atomistic bond mechanics, this 

chapter demonstrates the electromechanical response, and the choice of right size, 

chirality, and type of BNS for specific applications in the diversified area. 

  

3.1 Introduction   

The BNS has captivated massive response from researchers due to its exceptional 

mechanical, electrical, and thermal properties. Many experimental, numerical and 

analytical investigations were carried out to explore the effect of crucial geometrical 

parameters such as chirality, aspect ratio (w/l) and size of BNSs on their electromechanical 

response (Kudin et al., 2001; Boldrin et al., 2011; Zhao and Xue, 2013; Eshkalak et al., 

2018;). These studies confirmed BNS possesses exceptional Young’s modulus, shear 

modulus, Poisson’s ratio, and piezoelectricity.  

The BN-based nanostructures contain various types of defects due to the inherent 

issues of their fabrication techniques. Such defects are often considered while developing 

BN-based nanostructures as they influence the properties of BNSs. On the other hand, to 

control the performance of 1D and 2D nanostructures, the ‘defect engineering’ technique 

is widely employed to alter their properties (Kundalwal et al. 2017 and references therein). 

The defects provide routes to alter properties for BNSs for their applications in diversified 

areas such as hydrogen storage (Chen et al., 2018), gas sensors, optoelectronic (Falin et al. 

2017), optical devices, transistors, biological probes (Song et al., 2013), and nano-

electromechanical system (NEMS) (Kim et al. 2018; Wang et al., 2017). For instance, Jin 

et al. (2009) effectively synthesized monolayer BNS using an energetic EBR method and 

revealed that the existence of B and N monoatomic and triangular pore in it. They also 

found that the B atom vacancies are energetically more stable than N atom vacancies. 
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Suenaga et al. (2012) analyzed monolayer BNSs with and without point defects using 

electron energy-loss spectroscopy. They revealed that monovacancy at the N site is more 

prominent for electronic properties compared to B site vacancies. Park et al. (2015) used 

the EBR method to control the shape, size, and stability of 2D nanomaterials such as BNS, 

graphene and MoS2. Due to the application of defected BNSs in diversified fields, many 

efforts are being made to introduce controlled topological defects via irradiation with 

energetic particles and chemical processes (Paciĺ et al., 2008; Park et al., 2015). The review 

of the literature presented in chapter 1 reveals that the inherent defects in BNSs play a 

critical role in their electromechanical behavior. 

 Use of BNSs as reinforcements to fabricate nanocomposites for electronic 

applications with desirable mechanical and electronic properties necessitates a thorough 

understanding of behavior of defective BNSs under different loading conditions. In the 

literature, numerous studies have been performed to study the (i) mechanical properties of 

defective and (ii) piezoelectric properties of pristine BNSs. No single study exists that 

reports the electromechanical response of C-doped BNSs with different pore geometries 

which inherently occur during their fabrication and processing. In this chapter, the elastic 

and piezoelectric properties of pristine and C-doped BNSs under tension and shear loadings 

were calculated. In the present study, both types of the armchair and zigzag BNSs were 

considered. A particular emphasis was placed on the study of the effect of different pore 

geometries and C-doping on the electromechanical response of BNS. 

3.2 MD modelling of BNSs    

 MD simulation is the most widely used modeling technique for the simulation and 

characterization of nanomaterials. All MD simulations were performed in a large-scale 

atomic/molecular massively parallel simulator (LAMMPS) (Plimton, 1995). The 

schematic representations of the armchair and zigzag edges of BNS are shown in Fig. 3.1. 

The interatomic interactions among B and N atoms were calculated using the Tersoff 

potential force field (Tersoff 1988, 1989) as it is used by several researchers to study the 

electromechanical response of BNSs (Ansari and Ajori, 2015; Zhang and Meguid, 2015; 

Thomas et al., 2016; Choyal et al., 2019; Liang et al., 2019). The piezoelectric and elastic 

properties of BNS under tension and shear loadings were determined using MD simulations 

coupled with the C-D model and Tersoff potential force field. This was achieved by using 
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both MATLAB and LAMMPS codes. We developed MATLAB code to solve the tensorial 

equations and then the obtained parameters were called in the MD simulations using 

LAMMPS code. Systematic steps involved in such hybrid simulation methodology are 

shown in Fig. 3.2.  

First, the initial structures of BNS were created. Then, the simulations were 

performed to minimize the energy of BN structures using the conjugate gradient 

minimization method to obtain their optimized structures. The minimized structure of BNS 

was treated as optimized when the difference in the total potential energy (PE) of its 

structure between the consequent steps was less than 1.0×10-10 kcal/mol (Choyal and 

Kundalwal, 2020; Dewapriya and Rajapakse, 2014). The MD simulations were performed 

in the constant temperature and volume canonical (NVT) ensemble with a time step of 0.5 

fs for 30 ps to equilibrate the BNS structure (Xie et al., 2019). The velocity Verlet algorithm 

was used to integrate the equations of motion in all MD simulations. The simulations were 

performed with a periodic boundary condition in all directions of the sheet and the 

simulation box was kept large enough to avoid the interlayer interactions. After the energy 

minimization, tensile and shear loadings were applied to the sheets. Schematics of these 

loading conditions are shown in Fig. 3.3. In the case of tensile loading, a constant strain 

was applied at the left and right edges in the x-direction of the nanosheet. In the case of 

shear loading, the bottom edge was fixed, and the constant shear strain was applied to the 

top edge of the nanosheet in the xy-plane. During the loading, a constant initial strain was 

applied on the respective strained edges for a period of 1 ps, followed by the relaxation 

time of 30 ps, this constitutes a single load step (Kundalwal and Choyal, 2018). A series of 

load steps were applied on BNS to achieve a strain value of 0.0275, which is within its 

elastic limit. During the loading, the progressing atomic configuration and equivalent 

charges and dipole moments were stored throughout the simulations.  
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Fig. 3.1 Monolayer BNS with armchair and zigzag edges. 

3.2.1 A charge-dipole (C-D) potential model  

 Figure 3.3(a) shows the primitive lattice vectors 𝑎1 and 𝑎2 of undeformed BNS. 

The unit cell of BNS was defined by a rhombus, as shown in Fig. 3.3. In the unit cell, a 

single B–N covalent bond was considered. All atoms in BNS were assigned charge 𝑐 and 

dipole moment 𝑑 (Mayer and Åstrand, 2008). The total atomic interaction energy of a 

system is the sum of short- and long-range interactions. Short-range interatomic 

interactions comprise the PE due to the chemical bonds which was calculated using the 

Tersoff potential force field (Tersoff et al., 1988). The parameters for the bonded 

interactions between B, C and N atoms were taken from Ref. (Zhao and Xue, 2013). The 

long-range interactions comprise the PE due to the non-bonded electro-chemical (𝐸 − 𝑐) 

interactions of charges and dipoles. The non-bonded interactions include the charge-dipole, 

charge-charge, and dipole-dipole interactions. The total energy (𝐸𝑡𝑜𝑡) can be expressed as 

Etot =  ETersoff + EE−c                                                           (3.1) 

       Etot =  ETersoff + Ec−c + Ec−d + Ed−d + Eext                                   (3.2) 

The Tersoff  PE (𝐸𝑇𝑒𝑟𝑠𝑜𝑓𝑓) between two neighboring atoms 𝑖 and 𝑗 can be expressed in the 

following form (Tersoff, 1988, 1989): 

                     ETersoff =   
1

2
∑ ∑ fc(rij)[fA(rij) + bij fR(rij)]j≠1i                                   (3.3) 
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Fig. 3.2 Flow diagram of simulation methodology.  
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where 𝑓𝐴(𝑟) and 𝑓𝑅(𝑟) are the attractive and repulsive pair potentials, respectively. The 

cutoff function 𝑓𝑅(𝑟) was defined to limit the range of potential and thus, to save the 

computational time in the MD simulation.  

The electro-chemical PE (𝐸𝐸−𝑐) with a given combination of charges (𝑐) and 

dipoles (𝑑) placed at the atomic positions (𝑟)  can be written as: 

EE−c =  
1

2
∑ ∑ ciTij

c−ccj 

N

j=1

N

i=1

–
1

2
∑ ∑ diTij

d−ddj 

N

j=1

N

i=1

 ∑ ∑ ciTij
c−ddj +

N

j=1

N

j=1

∑ ci(χi + Vi)

N

j=1

−  ∑ diE 
N

j=1
                                                                                                     (3.4) 

where, the first three terms are the interatomic interaction energies between the charge–

charge, dipole-dipole and charge–dipole (Mayer, 2007), respectively. The fourth term 

accounts for the energy required to bring the charge (𝑐𝑖) in presence of external potential 

(𝑉𝑖). It also accounts for the interaction of charge with electron of atom at position 𝑟𝑖 using 

electron affinity (𝜒𝑖). The factor 1/2 prevents the double accounting of some of these 

interatomic interactions. The respective electron affinities of B, C and N  were considered 

as 0.279 eV (Scheer et al., 1998), 1.262 eV (Bresteau et al., 2016) and -0.07 eV (Bresteau 

et al., 2016). The last term accounts for the interactions of dipoles and external electric 

field (𝐸). In the calculation of interaction energy, the atoms of system were considered as 

a point charge (Kundalwal et al., 2017). The term  𝑇𝑐−𝑐 is for the Coulombic interactions 

between atomic charges 𝑐𝑖 and 𝑐𝑗 separated by a distance 𝑟𝑖,𝑗 which is given as (Mayer et 

al., 2007; Javvaji et al., 2018):     

Tij
c−c =

1

4πε0

1

ri,j
                                                                      (3.5) 

where 𝜀0 is the dielectric permittivity of vacuum and 𝑟𝑖,𝑗 is the distance between atoms 𝑖 

and 𝑗. 

The two other tensors for charge-dipole and dipole-dipole are:  

Ti,j
c−d =  (

1

4πε0
) (

ri,j

ri,j
3 )                                                           (3.6)  

Ti,j
d−d =  (

1

4πε0
) ((3ri,j ⊗  ri,j −  ri,j

2  I ) ri,j
5⁄ )                                  (3.7)  



 Electromechanical response of BNSs 

51 

 

where 𝐼 is the 3 × 3 identity matrix. 

In Eq. (3.5), 𝑇𝑖𝑗
𝑐−𝑐 term contains 

1

𝑟𝑖𝑗
 which diverges when 𝑟𝑖𝑗 → 0 with charge-charge 

interactions. In order to overcome this, 𝑟𝑖𝑗 is normalized with 𝑒𝑟𝑓 (
𝑟𝑖𝑗

√2𝑅
) and then Eq. (3.4) 

can be re-written as: 

   Tij
c−c =

1

4πε0

erf (
rij

√2R
)

rij
                                                           (3.8) 

Thus, the self-interaction energy of atoms reduces to 

Tij
c−c = (

1

4πε0
) √

2

π

1

R
                                                               (3.9) 

The width of Gaussian distribution is determined as 𝑅 =
√𝑅𝐴,𝑖

2 +𝑅𝐵,𝑗
2

2
; where 𝑅𝐴,𝑖 is the width 

of Gaussian distribution for atom index 𝑖 with type A. 𝑅𝐵,𝑗 is the Gaussian distributed 

charge width for atom type B with index 𝑗 (Jensen et al., 2002). The values of R for B, C 

and N were taken as 0.35Å, 0.686Å and 0.76Å, respectively (Javvaji et al., 2018). The Eqs. 

(3.6) and (3.7) for charge-dipole and dipole-dipole, respectively, also diverge when 𝑟𝑖𝑗 →

0 and to avoid divergence, normalized relations were used from Refs. (Mayer et al., 2007). 

 Using the above defined interatomic potentials, the trajectory of each atom after 

each load step was calculated using the following relation: 

mir̈i =  −
∂ETersoff

∂ri
−

∂Ec−c

∂ri
−

∂Ed−d

∂ri
−

∂Ec−d

∂ri
                                    (3.10) 

where, the forces due to the Tersoff potential were incorporated in LAMMPS code and the 

forces due to the C-D interactions were added separately. The governing equations were 

obtained to determine the charge and dipole moment of each atom. The governing 

equations for atomic charge 𝑐𝑖 obtained by solving Eqs. (3.11) and (3.12), as follows: 

∑ Tij
c−c

N

j=1,i≠j

cj −  ∑ Tij
c−d

N

j=1,i≠j

dj +  Tij
c−cci −  Tij

c−ddi +  χi = 0                             (3.11)  

∑ Tij
c−d

N

j=1,i≠j

cj + ∑ Tij
d−d

N

j=1,i≠j

dj +  Tij
c−dci −  Tij

d−ddi = 0                            (3.12)  

These equations were used to determine the unknown values of charge and dipole moment 

by arranging them into matrix-vector form, as follows: 
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[Tc−cTc−d

Tc−dTd−d
] [

c
d

] =  [
−χ
0

]                                                          (3.13) 

The above relation provides the charge and dipole moment for the current atomic 

configuration. The forces due to charges and dipoles were calculated using the charge and 

dipole data obtained during simulations. The velocity-Verlet algorithm was used in the MD 

simulation to integrate forces (see Eq. (3.10)) and update atomic positions after each load 

step. Then, using the updated atomic configuration, charges and dipoles were calculated 

using Eq. (3.13). If the initial atomic position at time t is considered then the charge dipole 

moment data of time step (𝑡 − ∆𝑡) is used, where ∆𝑡 is the time interval between two 

successive load steps (Javvaji et al., 2018).  

 Polarization (𝑃𝑚 ) for each unit cell was calculated using the dipole moment data 𝑑𝑖 

and it is equal to the sum of dipole moments inside the single unit cell divided by its total 

volume, defined as follows:  

Pm =  
1

Vm
(∑ di

n

i=1

)                                                              (3.14) 

where n is the number of atoms present in unit cell (𝑚) and 𝑉𝑚 is the volume of unit cell, 

calculated as 𝑉 = 𝐴𝑡, in which 𝐴 and 𝑡 are the surface area of unit cell and thickness of 

BNS, respectively. The thickness of BNS was considered as 3.4 Å (Boldrin et al., 2011).  

The axial strain (𝜀) of BNS was calculated using relation, 𝜀 =  (
𝐿𝑓−𝐿𝑖

𝐿𝑖
) , in which 𝐿𝑖 and 𝐿𝑓 

are the initial and final lengths of BNS, respectively, in the direction of applied tensile 

loading. The shear strain (𝛾) of BNS was calculated using relation, 𝛾 = (
∆𝑥

𝑤
), in which 

(∆𝑥) is the displacement of BNS in the direction of applied shear loading and w is the 

width of BNS normal to the applied load. 

The total polarization of BNS can be expressed as the sum of polarization of each 

unit cell, as follows:  

P =  ∑ Pm

M

m=1

                                                                     (3.15) 

The polarizations in the x-direction (𝑃𝑥) and y-direction (𝑃𝑦) are due to the stretching of 

BNS and the shearing of BNS in xy-plane, respectively, and are given by (Kundalwal et 

al., 2017):  
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Px =  exxxεxx                                                                      (3.16) 

Py =  eyxyεxy                                                                      (3.17) 

where, 𝜀𝑥𝑥 and  
𝜕𝜀𝑥𝑥

𝜕𝑥
 are the respective strain and strain gradient terms; 𝑒𝑥𝑥𝑥 and 𝑒𝑦𝑥𝑦 are 

the piezoelectric coefficients in tension and shear, respectively.  

 

Fig. 3.3 Schematic representations of BNS under (a) tensile and (b) shear loadings. 

3.3 Electromechanical response of pristine BNSs 

 In order to verify the validity of the current MD simulations, the elastic properties 

of BNSs reported by other researchers using different techniques and approximations are 

considered. Note that several independent MD simulations were performed to obtain the 

reliable elastic and piezoelectric constants of BNSs under the uniaxial tension and shear 

loadings. Table 3.1 summarizes the outcome of this comparison. Our results are in good 

agreement, validating current MD simulations; some of our results marginally differ due 

to the use of different techniques and approximations by other researchers. For instance, 

Kudin et al., (2001) used an-initio and Milowska et al., (2013) used DFT to estimate the 

elastic properties of BNSs.  

 

 

 

 

 

(a) (b) 
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Table 3.1: Comparison of the elastic constant of a pristine armchair and zigzag BNSs.  

 

 MD coupled with C-D potential models were developed to study the 

electromechanical response of armchair and zigzag BNSs under tensile and shear loading 

conditions. The different size of armchair and zigzag BNSs were considered for studying 

the electromechanical response. The following representation for BNSs is used: armchair 

(A)/zigzag (Z)_number of atoms. Total eight cases were considered: A_640, A_1440, 

A_2560, A_4000, Z_640, Z_1440, Z_2560 and Z_4000. First, the elastic properties of the 

armchair and zigzag BNSs were determined followed by the calculation of induced 

polarization and piezoelectric coefficients. 

The variation of PE of BNS subjected to tension loading is shown in Fig. 3.4. As 

expected, it can be observed from Fig. 3.4 that the larger size of BNS shows higher PE than 

smaller ones. This is attributed to the larger volume of BNS which eventually stores more 

PE. It can also be observed that the armchair BNS shows higher PE compared to the zigzag 

one at the same strain value, which is in good agreement with the existing results (Asadpour 

et al., 2015).  

Size of BNS 

(Å) 

Number 

of BN 

atoms 

References 

Armchair BNS Zigzag BNS 

𝐄  

(TPa) 
𝝂 𝐆  

(TPa) 

𝐄  

(TPa) 
𝝂 𝐆 

(TPa) 

40 Å × 40 Å 640 Present 0.720 0.187 0.295 0.500 0.162 0.267 

60 Å × 60 Å 1440 Present 0.754 0.191 0.302 0.531 0.165 0.248 

70 Å × 70 Å 1944 Present 0.785 0.194 0.323 0.567 0.168 0.268 

80 Å × 80 Å 2560 

Present 0.854 0.197 0.346 0.584 0.173 0.274 

(Kudin et al., 2001; 

(Hamdi and 

Meskini, 2010; 

(Milowska et al., 

2013) 

0.814 – 

0.850 

0.187 – 

0.195 

0.321 – 

0.342 

0.560 – 

0.574 

0.161 -

0.172 

0.220 – 

0.267 

100 Å × 100 Å 4000 Present 0.900 0.217 0.360 0.610 0.175 0.286 
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Fig. 3.4 The variation of PE of different BNSs under uniaxial loading. 

 The stress-strain response of armchair and zigzag BNSs under tension and shear 

loadings is shown in Figs. 3.5(a) and (b), respectively. Young’s (𝐸𝑥𝑥) and shear (𝐺𝑥𝑦) 

moduli of BNS under tension and shear loading conditions, respectively, were determined 

from the slope of stress-strain curves within the elastic limit of BNS. From Fig. 3.5(a) we 

can observe that the values of maximum stresses in the armchair and zigzag BNSs are 23 

GPa and 9 GPa at strain value of 0.0275, respectively. In the case of shear loading, the 

values of maximum shear stresses are 9 GPa and 6.5 GPa in the armchair and zigzag BNSs, 

respectively, at a strain value of 0.0275. The elastic properties of different BNSs were 

obtained from the stress-strain curves and the same is shown in Fig. 3.6. It can be observed 

from Fig. 3.6 that Young’s and shear moduli of armchair BNS are higher than zigzag BNS. 

In order to understand the physics behind such differences, the deformation mechanics of 

BNS under the tension and shear loadings are explained in Figs. 3.7 and 3.8, respectively. 

During the tension loading, it can be observed from Fig. 3.7 that the four types of deformed 

B-N bonds exist in the sheet: (i) 𝑎2 and 𝑧1 are slightly inclined to the direction of loading, 

and (ii) bonds 𝑎1 are aligned with the loading direction while bonds 𝑧2 are normal to the 

direction of loading. Under the tension loading, the bonds 𝑎1 and 𝑎2 are under tension 

while bonds 𝑧1 and 𝑧2 are under tension and compression, respectively. Therefore, the 

bonds 𝑎1 and 𝑎2 act as the stress-bearing bonds which carries more axial load than the bond 

𝑧1. However, it can be observed from Figs. 3.7(a) and (b) that all six B–N bonds ( 𝑎1 and 

𝑎2) in case of armchair BNS carry the tensile load while in case of zigzag BNS, only four 

B–N bonds ( 𝑧1) carry the tensile load and rest of the B–N bonds are under compression. 
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Therefore, the stress-bearing bonds in armchair BNS are higher than the zigzag BNS and 

thus, Young’s modulus of the former is slightly higher. During the shear loading, it can be 

observed from Fig. 3.8 that the two B–N bonds are parallel to the loading direction in case 

of armchair BNS and no B–N bond is parallel to the loading direction in case of zigzag 

BNS. By resolution of applied forces, it can be found that the shear stress value in the 

direction of B–N bond of zigzag direction is less than armchair direction due to the applied 

force FR.  

 

Fig. 3.5 The stress-strain curves for BNSs under (a) tension and (b) shear loadings. 

 

Fig. 3.6 Elastic and piezoelectric properties of pristine BNSs. 
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Fig. 3.7 Deformation mechanics of (a) armchair and (b) zigzag BNSs under tension loading. 

    

Fig. 3.8 Deformation mechanics of (a) armchair and (b) zigzag BNSs under shear loading. 

Then, the size-dependent piezoelectric properties of BNSs were studied. The 

induced polarization in BNS was calculated using Eq. (3.14) considering a single unit cell 

and the results are plotted in Figs. 3.9(a) and (b) for tension and shear loadings, 

respectively. An atom shares its valence electron with each neighboring atom. These shared 

valence electrons between B and N atoms form a strong sigma bond. The contribution of 

electrons is higher from B to N atoms due to the higher electronegativity of N atom and 

thus, in-plane dipole moment generates (Beheshtian et al., 2012). This results in the 

permanent polarization in BN-based structures. During the deformation, B-N bond lengths 

increase that lead to a change in the electronic polarization and consequently, the 

piezoelectricity generates. The resultant dipole moments, atomic polarization and 

piezoelectric coefficients were calculated using the procedure discussed in section 3.2.1. 

The slope of polarization-strain curve during the tension and shear loadings defines the 

piezoelectric coefficients (𝑒𝑥𝑥𝑥  and 𝑒𝑦𝑥𝑦) and these are shown in Fig. 3.9. It can be 

observed from Fig. 3.9 that the induced polarization in armchair BNS is higher than zigzag 

(a) (b) 

(a) (b) 
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case. This is attributed to the generation of higher resultant dipole moments in the x-

direction of armchair BNS compared to zigzag sheet (see Fig. 3.10). In case of tensile 

loading, the piezoelectric coefficients of armchair and zigzag BNSs are approximately 0.38 

C/m2 and 0.19 C/m2, respectively, for sheet having total 2560 atoms; in case of shear 

loading, piezoelectric coefficients of the same are approximately 0.27 C/m2 and 0.14 C/m2, 

respectively. Note that the piezoelectric coefficients of BNS are function of its chirality 

and our results are in line with the results reported by other researchers, as summarized in 

Table 3.2. The compared and validated results prove that the C-D potential model can be 

used for investigating the electromechanical response BNS. It can be observed from Fig. 

3.10(b) that the enhancement of piezoelectric coefficient in shear loading is less compared 

to tensile loading. This is due to the fact that the polarization depends on the change in 

bond deformations which are lower in case of application of shearing load (Kundalwal et 

al., 2017). The work was further extended to study the effect of C-doping on the 

piezoelectric and elastic properties of BNS considering only armchair sheets having 2560 

atoms because they show higher piezoelectricity per unit cell.  
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Table 3.2: Comparison of piezoelectric constant of pristine armchair and zigzag BNSs. 

 

 

Fig. 3.9 The polarization-strain curves of BNSs under (a) tension and (b) shear loading conditions. 

Size of BNS 

(Å) 

Number 

of BN 

atoms 

References 

Armchair BNS Zigzag BNS 

𝐞𝐱𝐱𝐱 

(C/m2) 

𝐞𝐲𝐱𝐲 

(C/m2) 

𝐞𝐱𝐱𝐱 

(C/m2) 

𝐞𝐲𝐱𝐲 

(C/m2) 

40 Å × 40 Å 640 Present 0.335 

 

0.167 

 

0.212 

 

0.108 

 60 Å × 60 Å 1440 Present 0.356 

 

0.187 

 

0.225 

 

0.111 

 

70 Å × 70 Å 1944 

Present 0.368 0.184 0.234 0.117 

(Noor-A-Alam et al., 

2014; Zhang, 2017; Zhang 

and Meguid, 2017) 
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Fig. 3.10 Dipolar moment induced mechanism in the armchair and zigzag BNSs (Red arrow shows the 

direction and magnitude of dipole moment.  

3.4 Effect of C-doping on electromechanical response of BNSs 

 Recently, piezoelectric BNSs have attracted a lot of attention in nanotechnology 

applications to develop their NEMS at the nanoscale level. Among all other properties, 

polarization of BNS was found to be sensitive to defects and chemical doping, owing to 

interference and quantum mechanics effects (Zhang and Meguid, 2017). The modification 

of geometry and chemical structure of BNS with doping allows researchers to engineer its 

electronic properties. As a matter of fact that the breaking of symmetry can enhance the 

piezoelectric properties of planer nanomaterials (Beheshtian et al., 2012; Kundalwal et al., 

2017; Javvaji et al., 2018), therefore, further investigations were carried out to study the 

effect of C-doping on the electromechanical response of BNS under tension and shear 

loadings. To enhance the piezoelectricity in BNSs, C atoms were doped in such a way that 

can make them strong non-centrosymmetric materials. To study the effect of C-doping and 

different shapes of pores, further simulations were performed for four different types of 

armchair sheets: pristine BNS, C-doped BNS with triangular, trapezoidal, and circular 

pores; schematics of these structures are shown in Fig. 3.11. Note that a constant C-doping 

concentration of 5.625% was considered. The doping concentration is the ratio of number 

of C atoms to the total number of atoms in the sheet. A certain number of B and N atoms 

were removed to create different pores in BNSs. We fixed the size of pore in BNS in such 

a way that it filled with the same number of C atoms irrespective of the shape of pore to 
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study the effect of C-doping on the electromechanical response of BNS. Therefore, the 

resulting C-doping concentration leads to the value of 5.625%. 

 

Fig. 3.11 Schematics of (a) pristine BNS and different C-doping arrangements in BNSs with (b) triangular 

pore (case 1), (c) trapezoidal pore (case 1), (d) circular pore (case 2), (e) triangular pore (case 2) and (f) 

trapezoidal pore (case 2). 

 
Fig. 3.12 Variation of polarization in BNSs with different C-doping positions. 

First, the effect of position of C-dopants on the piezoelectric properties of BNS was 

studied by keeping the constant doping concentration. Two types of C-dopant 

arrangements in BNS were considered: (i) C atoms surrounded by more B atoms than N 
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atoms [case 1, Figs. 3.12(b) and (c)] and (ii) C atoms surrounded by more N atoms than B 

atoms [case 2, Figs. 312(e) and (f)]. Figure 3.11 shows the variation of polarization with 

the strain for two cases under tension and shear loadings. It may be observed from Fig. 

3.12 that the case 2 provides more polarization than case 1. This is attributed to the 

generation of more dipole moments due to C–N bonds than C–B bonds as the former shows 

higher differences in electronegativity that leads to the higher polarization. It is important 

to note that out-of-plane movement of sheet due to C-dopants was not considered because 

C, B and N atoms have the same planar sp2 hybridization (Beheshtian et al., 2012). The 

work was further extended to study the effect of C-doping on the piezoelectric and elastic 

properties of armchair BNSs with different percentage and types of pores considering case 

2 only.  

Figures 3.13(a) and (b) show the stress-strain curves of C-doped A_2560 BNS with 

different pores under tensile and shear loadings, respectively. We can observe from these 

plots that the C-dopants improve the elastic behavior of BNS slightly compared to pristine 

one. Figure 3.14 shows the variation of Young’s and shear moduli of BNS with C-doping 

concentration of 5.625%. The improvement in the values of Young’s moduli of BNS with 

triangular, trapezoidal and circular pores are found to be 9 %, 7.5% and 5.5%, respectively, 

and the respective improvement in shear moduli are 8.5%, 5% and 5%. It can be observed 

that the elastic moduli of C-doped sheets are higher than pristine one and this is attributed 

to the stronger C–C bond than all other bonds. It may also be observed that doped BNS 

with triangular pore shows higher Young’s modulus compared to all other cases. This is 

due to the existence of higher number of C–C bonds in the triangular case for constant C-

doping concentration. The same is true in case of shear modulus of BNS as shown in Figs. 

3.14(b). As expected, the elastic properties of BNS increase as its size increases and then 

they become stabilized at particular total number of atoms, that is, 2560 atoms (80 Å × 80 

Å). This is due to the fact that the effect of applied forces on the system was found to be 

negligible at some finite distance from the sections where they were applied according to 

Saint Venat’s principle.   
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Fig. 3.13 Stress-strain curves for armchair BNS (A_2560) under (a) tension and (b) shear loading 

conditions. 

   

Fig. 3.14 The variation elastic moduli of armchair BNS with the number of atoms (N). 

 The effect of C-doping on the piezoelectric properties of BNS can be seen in Figs. 

3.15(a) and (b) under tension and shear loadings, respectively. The C-doping results in the 

increase of values of 𝑒𝑥𝑥𝑥 of BNSs with triangular and trapezoidal pores by 18.5% and 

3.5%, respectively, and the reduction of value 𝑒𝑥𝑥𝑥 of BNS with circular pore by 22.5% 

compared to pristine BNS. During the shear loading, the values of 𝑒𝑦𝑥𝑦 of BNS with 

triangular and trapezoidal pores increased by 20.5% and 1.075%, respectively, and the 

value 𝑒𝑦𝑥𝑦 of BNS with circular pore reduced by 7%. The piezoelectric coefficient of C-

doped BNS with circular pore decreases and this is attributed to the fact that the circular 

shape pore does not help in breaking the symmetry of BNS and therefore, the induced 

dipole moments across the circular edge of pore are found to be symmetric and get canceled 

out each other. This phenomenon is also observed for graphene sheet with circular pore 

(Kundalwal et al., 2017). A C-doped BNS with different shape pores shows a significant 
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improvement in its piezoelectric coefficient when the tensile loading was applied due to 

the non-centrosymmetric nature of pores. As a matter of fact, the piezoelectricity 

phenomenon is size-dependent, therefore, we increased the number of B and N atoms 

keeping the constant C-doping concentration. The variation of piezoelectric coefficients of 

BNSs under tension and shear loading conditions are shown in Fig. 3.16. As the number 

of B and N atoms increases, by keeping the constant C-doping, the values of 𝑒𝑥𝑥𝑥  and 𝑒𝑦𝑥𝑦 

increase up to the total number of 2560 atoms and then stabilize as the effect of presence 

of C-dopants becomes negligible (see Table 3.3 and 3.4). The same is true in case of values 

of 𝑒𝑦𝑥𝑦 of BNS under shear loading. The obtained results are in good agreement with the 

existing results obtained by using the different techniques (Sai and Mele, 2003). Further, 

we studied the effect of different C-doping concentrations on the electromechanical 

response of BNS with triangular pore.  

 

Fig. 3.15 The variation of polarization-strain for BNSs under (a) tension and (b) shear loading conditions. 

 

Fig. 3.16 The variation of piezoelectric coefficients with number of atoms (N).  
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Table 3.3: Comparison of elastic and piezoelectric constant of pristine and triangular shape of C-doped 

BNS. 

 

Table 3.4: Comparison of elastic and piezoelectric constant of trapezoidal and circular shape of C-doped 

BNS. 

 

3.5 Effect of C-doping concentration on electromechanical response 

In the previous sets of results, elastic, and piezoelectric properties of different size 

BNSs were determined considering the constant C-doping concentration of 5.6%. 

However, the variation in C-doping concentration may influence the elastic and 

piezoelectric properties of BNS and therefore, the C-doping concentration was varied for 

further analysis of BNS with triangular pore with 2560 number of atoms as it showed 

higher electromechanical response under tension loading. A size of 80 Å × 80 Å BNS was 

Size of BNS 

(Å) 

Number 

of BN 

atoms 

Pristine Triangular 
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(TPa) 
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(TPa) 

𝐞𝐱𝐱𝐱 

(C/m2) 

𝐞𝐲𝐱𝐲 

(C/m2) 
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(TPa) 
𝝂 

𝐆 

(TPa) 

𝐞𝐱𝐱𝐱 

(C/m2) 

𝐞𝐲𝐱𝐲 

(C/m2) 

40 Å × 40 Å 640 0.700 0.152 

 

0.320 

 

0.346 

 

0.172 

 

0.760 

 

0.192 

 

0.342 

 

0.414 

 

0.243 

 
60 Å × 60 Å 1440 0.721 0.179 
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0.379 

 

0.195 
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0.212 

 

0.337 
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0.258 

 80 Å × 80 Å 2560 0.738 0.201 

 

0.310 
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0.804 

 

0.226 
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0.464 

 

0.272 
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modeled and the C-doping concentration was varied from 1.46% to 18.9%. The schematics 

of C-doped BNS with triangular pore are demonstrated in Fig. 3.17 The doping was done 

by attaching N atoms with C atoms. The stress-strain and polarization-strain curves of C-

doped BNS are shown in Fig. 3.18 The obtained values of Young’s modulus and 

piezoelectric coefficient are plotted in Fig. 3.19 It can be observed from Fig. 3.19 that 

Young’s modulus of BNS increases with C-doping concentration and stabilizes at an 

approximate value of 12.6%. It can also be observed from Fig. 3.19 that the piezoelectric 

coefficient increases as C-doping concentration increases and reaches its maximum value 

around 0.41 C/m2 at 12.6% C-doping concentration and starts decreasing. This behavior 

can be attributed to the reduction in the contribution from polarized B and N atoms and 

increment in the non-polarized C atoms to the total polarization. In the case of trapezoidal 

and circular pores, the respective values of maximum piezoelectric coefficients are 0.111 

C/m2 and 0.105 C/m2 at strain range of 0.025-0.0275 with C-doping concentration of 

18.9%, respectively (see Table 3.5). The present study reveals that the C-doped BNSs with 

triangular pore show higher elastic and piezoelectric properties and such improved 

electromechanical response of sheets may provide a new platform for designing and 

developing their next generation NEMS. 

 

Fig. 3.17 The schematics of BNS with different C-doping concentration. 
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Fig. 3.18 The variation of (a) stress-strain (b) polarization-strain curves for BNS containing triangular 

pore with different C-doping concentration.  

Table 3.5: Elastic and piezoelectric constants while increasing triangular C-doping concentration of BNSs. 

S.  

No. 

C-doping 

Concentration 

(%) 
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(C/m2) 

𝐄 

(TPa) 

𝐞𝐱𝐱𝐱 

(C/m2) 

1 1.406% 0.725 0.358 0.718 0.347 0.699 0.324 

2 3.164% 0.727 0.378 0.720 0.358 0.704 0.334 

3 5.625% 0.731 0.385 0.724 0.365 0.710 0.339 

4 8.789% 0.733 0.398 0.726 0.388 0.714 0.346 

5 12.656% 0.735 0.408 0.731 0.394 0.719 0.354 

6 18.906% 0.735 0.405 0.731 0.387 0.719 0.350 
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Fig. 3.19 Variation of Young’s modulus and piezoelectric coefficient of BNS containing triangular pore 

with different C-doping concentration.  

3.6 Effect of strain rate on elastic properties of BNSs  

The stress-strain relations are function of applied strain rate and a system gets 

enough time to relax for reaching the equilibrium state at the lower values of strain rate. 

Therefore, to obtain the reliable and accurate results, the use of lower values of strain rate 

is preferred. However, we varied the values of strain rate as 0.0001, 0.0003, 0.0005, 0.0007 

and 0.001 ps−1 to choose the optimal value to study the electromechanical response of 

BNS. The tensile test was performed on the pristine (A_2560) BNS by varying the strain 

rates and the variation of stress with strain for sheets under tensile loading is shown in Fig. 

3.20. Figure 3.20(b) shows the effect of strain rate on Young’s modulus of BNS and it can 

be observed that the modulus increases with the increase in strain rate. The similar 

observation was found by Han et al. (2014) and Yao et al. (2020).  It can also be observed 

from Fig. 3.20(b) that the change in Young’s modulus drastically increases when the strain 

rate is greater than 0.0005 ps−1 and this is attributed to the dissipation of strain energy of 

BNS at higher strain rates. Therefore, it can be concluded that the use of strain rate value 

of 0.0005 ps−1 is the optimal choice to investigate the electromechanical response of BNS 

and such value was also used in the existing work to study the mechanical behavior of BNS 

(Choyal et al., 2019). Therefore, we used the strain rate of 0.0005 ps−1 in subsequent 

simulations. 
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Fig. 3.20 Effect of strain rates on (a) stress-strain behaviour and (b) Young’s modulus of pristine BNS 

(A_2560) under tension loading. 

3.7 Conclusions 

 This chapter reports the electromechanical response of C-doped BNS containing 

different shapes of pores investigated using MD simulations coupled with the charge-

dipole (C-D) potential model. Both armchair and zigzag BNSs with different sizes were 

considered. The comparison of electromechanical response of both pristine and C-doped 

BNSs under the tension and shear loading conditions was comprehensively studied using 

MD simulations with the three-body Tersoff potential force field. Moreover, the elastic 

properties of pristine BNSs were compared and validated with the existing results and the 

good agreement was found between the predictions. The following main conclusions are 

drawn from the current chapter: 

• The mechanism of polarization in BNSs is explained using the unit cell 

representation. As displacement applied to a unit cell of BNS, it changes its atomic 

configuration that leads to induced atomic polarization.  

• The axial and shear elastic/piezoelectric coefficients of BNS were determined using 

the tension and shear loading conditions, respectively. The elastic and piezoelectric 

coefficients of armchair BNS were found to be higher than zigzag BNS irrespective 

of the shape of pore and C-doping concentration.  

• The induced polarization in the BNSs was found to depend on the local arrangement 

of C atoms around the B and N atoms and the polarization increases if C atoms are 

surrounded by more N atoms than B atoms.  
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• The axial and shear piezoelectric coefficients of C-doped BNS with triangular and 

trapezoidal pores increased while they reduced in case of circular pore compared 

to pristine BNS. A BNS with triangular pore showed higher polarization than BNS 

containing other shapes of pores. The C-doping with N atoms results in the 

generation of higher dipole moments because the C-N bond is more electronegative 

than the C-B bond. 

• The piezoelectric coefficients of doped BNS increased with the C-doping 

concentration up to 12.6% and then they decrease. The elastic properties of doped 

BNS increased with the C-doping concentration up to 12.6% and then they stabilize 

and do not change beyond the total number of 2600 BN atoms. 

• The present work offers a theoretical framework for predicting the elastic and 

piezoelectric properties of pristine, defective, and doped BN-based nanomaterials 

under different types of loading conditions.  

 The unique properties of BNSs accompanied by their defect/pores and chemical 

stabilities make them attractive nanomaterials in the applications of nanotechnology. The 

electromechanical response of fixed size of pristine and hybrid BNS subjected to the 

external applied electric field in both armchair and zigzag directions (indirect approach) is 

studied in the next chapter. 
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4. Chapter 

Piezo- and flexo-electric response of 

BNS superlattices 
 

In this chapter, the investigation of converse piezo- and flexo-electric effects of hybrid and 

SW defected BNS under the application of external electric-field was carried out. Effect of 

various factors such as chirality, defect engineering and variation of temperature on the 

piezo- and flexo-electric response of BNSs was critically examined.  

 

4.1 Introduction 

Two dimensional (2D) nanomaterials such as boron nitride sheets (BNSs) and 

graphene superlattices (SLs) attracted intense attention in the academia and industry due 

to their unique multifunctional properties and potential applications (Song et al., 2013; 

Grixti et al., 2018). The review of the literature presented in chapter 1 reveals that the 

researchers have made significant efforts to study the electromechanical response of BNSs. 

On the other hand, the electromechanical response of hybrid BNSs remains almost 

unexplored. It is challenging to experimentally carry out such investigations due to the 

involvement of atomistic structural parameters of hybrid BNSs. There have been a few 

studies which reported elastic and electronic properties of BNSs. Researchers used 

different methods such as density functional theory (DFT) (Klein et al., 2009; Zhao et al., 

2014; Zhang et al., 2015), ab-initio calculations (Ansari et al., 2015; Ansari et al., 2015; 

El-Kelany et al., 2015), molecular mechanics (MM) (Jafari et al., 2012; Ansari et al., 2015), 

molecular dynamics (MD) simulations (Mortazavi and Rémond, 2012; Zhang and Meguid, 

2015), and tight binding model (Chegel et al., 2016) to study the electromechanical 

response of BN-based nanostructures. These studies show interesting and unique electronic 

and mechanical response of BN nanostructures which provided opportunities to develop 

their NEMS devices.  

In the last decade, thin film heteroepitaxy has received attention by researchers in 

view of the exponential growth of electronics industry due to the development of 
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heteroepitaxial devices for communications, displays, solid state lighting, green energy etc. 

In heteroepitaxy, two different SLs are combined with a well-defined atomic registry across 

a 2D interface which can dramatically influences the overall properties of resulting 

heterostructure due to the increased scattering of electrons and phonons (Nandwana and 

Ertekin, 2015). Graphene/BNS SLs were studied by Jungthawan et al. (2011) using DFT 

approach to engineer band gap of graphene layers. They found that the orientation, stripe 

width, and ordering significantly influence the stability and electronic properties SLs. 

Using MD simulations and continuum analysis, Nandwana and Ertekin (2015) reported 

that the mismatch between BNS and graphene SLs which resulted in competition between 

two strain-relieving mechanisms: nanoscale misfit dislocations and rippling via out-of-

plane relaxation. Using MD simulations, Eshkalak et al. (2018) studied the effect of crack 

defects on the mechanical properties of graphene/BNS SLs. Their results indicated that 

hybrid SLs with longitudinal cracks show more desirable mechanical properties compared 

to transverse cracks.  

The review of literature presented in chapter 1 clearly indicates that several studies 

were performed to study the (i) mechanical and piezoelectric properties of pristine BNS 

and other defective BN nanostructures, and (ii) electronic and mechanical properties of 

heterostructures of graphene/BNS SLs. The use of BNS in NEMS applications with 

desirable electromechanical response requires a thorough understating of their 

piezoelectric, flexoelectric, and elastic response under the external E-field. Moreover, the 

polarization of BNS can be tailored and enhanced via interface and defect engineering 

which may lead to the development of 2D nanostructures with unique properties. There is 

no single study exists on the estimation of piezoelectric/flexoelectric coefficients of BNS 

integrated with graphene stripes and SW defected BNS. This has inspired us to study the 

electromechanical response of pristine and hybrid BNS using MD simulations by applying 

the external E-field. Moreover, the elastic properties of hybrid BNS were also calculated.  

4.2 MD modelling of BNSs    

 All MD simulations were performed using the large-scale atomic/molecular 

massively parallel simulator (LAMMPS). The interatomic interactions among B, C, and N 

atoms were modelled using the three-body Tersoff potential force field (Tersoff et al., 

1988). The Tersoff potential force field was used by several researchers to study the 
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electromechanical response of BN-based nanostructures (Zhang and Meguid, 2015; 

Nandwana and Ertekin, 2015; Einalipour Eshkalak et al., 2018). The analytical form of 

energy expression used in the Tersoff potential is as follows ( Tersoff et al., 1988; Tadmor 

and Miller, 2011):  

E =  ∑ Ea

a

=  
1

2
 ∑ Vab

a≠b

                                                             (4.1) 

Vab =  fC(rab)[fR(rab) + babfA(rab)]                                                 (4.2) 

where 𝐸 is the total energy of the system and 𝑉𝑎𝑏 is the bond energy. The indices 𝑎 and 𝑏 

run over the atoms of the system and 𝑟𝑎𝑏 is the distance between atoms 𝑎 and 𝑏. The 𝑏𝑎𝑏 

is the bond angle term, which depends on the local coordination of atoms around atom 𝑎. 

The 𝑓𝑅 and 𝑓𝐴 are the repulsive and attractive pair potentials, respectively, and 𝑓𝐶  is the cut-

off function provided to limit the range of potential and thus, to save the computational 

resources required for MD simulations.  

To perform MD simulations, first the initial structures of BNS/graphene SLs were 

created with appropriate bond lengths (1.437/1.413 Å)  (Jungthawan et al., 2011; Noor-A-

Alam et al., 2014). Then, using the conjugate gradient algorithm, the initial pristine/hybrid 

structures were optimized by minimizing their energy. The minimized structure was treated 

as optimized once the difference in its total potential energy between the two consequent 

steps was less than 1×10-10 kcal/mol (Dewapriya et al., 2014; Kundalwal and Choyal, 

2018). After the optimization of structure, the loading conditions were imposed to study its 

electromechanical response. The NVT ensemble was used to update the velocities and 

positions of B, N and C atoms after each time step using the Nosé-Hoover temperature 

thermostat. Second, the external electric field (E) was applied along the armchair or zigzag 

direction of BNS, as shown in Fig. 4.1. In the BNS, each B atom loses the three electrons 

and form cations (B3+) and each N atom gains three electrons to form anions (N3−). The 

born effective charges were considered on B and N atoms as +3e and -3e, respectively 

(Zhang and Zhou, 2018). Due to the distribution of charges, the external E-field produces 

the external force on atom i, that is, 𝑓𝑖 =  𝑞𝑚 𝐸, in which 𝑞𝑚  is the charge on atom m. 

Finally, the relaxation time of 30 ps was provided to structure to obtain its equilibrated 

state. The velocity Verlet algorithm was used to calculate the new positions of atoms using 

the equations of motion in all MD simulations. The virial atomistic stress σ𝛼𝛽 induced due 
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to the applied electric field in the system was taken as the arithmetic mean of the local 

stresses on all atoms, as follows (Zhao and Xue, 2013):  

σ𝛼𝛽 = − 
1

V
(∑  

N

α=1

mαvx
αvy

𝛼 +
1

2
∑  

N−1

α=1

∑ rαβ,x
N−1

N

β=i+1

Fαβ,y )                                 (4.3) 

where 𝑚𝛼  is the mass of atom 𝛼, 𝑣𝑥
𝛼 is the velocity component in the axial direction of 

atom 𝛼, 𝐹𝛼𝛽,𝑦 refers to the axial component of interatomic force between atoms 𝛼 and 𝛽, x 

and y denote the indices of the Cartesian coordinate system, 𝑟𝛼𝛽,𝑥
𝑁−1 is the interatomic 

distance in the axial direction between atoms 𝛼 and 𝛽, 𝑉 refers to the volume of simulated 

BNS, and 𝑁 is the number of atoms.  

 In Eq. (4.3), the first term represents the total virial stress (σ𝛼𝛽), second term 

represents the kinetic part of the virial stress (𝜎𝛼𝛽
𝑘𝑖𝑛𝑒𝑡𝑖𝑐), and third term represents the inter-

atomic potential energy due to the virial stresses (𝜎𝛼𝛽
𝑖𝑛𝑡𝑒𝑟−𝑎𝑡𝑜𝑚𝑖𝑐). The stresses in the BNS 

were calculated by averaging the virial stress of each BN atom in the nanosheet excluding 

the atoms in the fixed boundaries. The volume of pristine BNS was obtained by assuming 

its thickness as 3.35 Å (Kurdyumov et al., 1995). Due to the integration of graphene stripe 

in BNS, the thickness of resulting hybrid system was changed, and its effective thickness 

was considered as 3.4 Å to calculate volume (Boldrin et al., 2011). The axial strain ε for 

the hybrid system was calculated using relation, 𝜀 =  (
𝐿𝑓−𝐿𝑜

𝐿𝑖
) , where 𝐿𝑜 and 𝐿𝑓 are the 

original and final lengths of system, respectively. Schematic representation of pristine BNS 

under the application of E-field in the armchair and zigzag directions are shown in Figs. 

4.1(a) and (b), respectively.  
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Fig. 4.1 Schematic representations of pristine BNS subjected to E-field in: (a) armchair and (b) zigzag 

directions. Colored with light salmon and blue are boron and nitrogen atoms, respectively. 

The most well-known electromechanical coupling is the piezoelectricity (Michel et 

al., 2017). The linear piezoelectric properties of 2D nanostructures are the first-order 

couplings between strain (𝜀𝑗𝑘) and stress (𝜎𝑗𝑘) to polarizations (𝑃𝑖) and the macroscopic 

E-field (𝐸𝑖). The subscripts i, j, k ∈ {1,2,3}, and 1, 2 and 3 correspond to the x, y and z 

directions, respectively. The piezoelectricity is usually described by the coefficients d and 

e; namely, represent the converse piezoelectric coefficients, respectively. The piezoelectric 

coefficients can be defined using the third-rank tensors, 𝑑𝑖𝑗𝑘 and 𝑒𝑖𝑗𝑘, and their respective 

Maxwell relations are as follows:  

dijk =  (
∂Pi

∂σjk
)

E,T

=  (
∂εjk

∂Ei
)

σ,T

                                                          (4.4) 

eijk =  (
∂Pi

∂εjk
)

E,T

=  (
∂σjk

∂Ei
)

ε,T

                                                           (4.5) 

 The dipole moment induced due to the applied E-field and the resulting polarization 

can be calculated using the following relation (Tan et al., 2020): 

P =  ∑
qir𝑖

A

N

i
                                                                        (4.6) 

where 𝑞𝑖 is the charge of ith atom, 𝑟𝑖 is the x-coordinate of ith atom, N is the number of 

atoms, and A is the area of planer sheet. The full piezoelectric tensor for the BNS can be 

determined on the basis of hexagonal symmetry 6m2 class using Voigt notation to reduce 

(b) (a) 
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the number of piezoelectric coefficients. The only allowed nonzero piezoelectric 

coefficients e11, e14, d11 and d14 exist in BNS (Alyörük et al., 2016):  

The flexoelectricity also shows the direct and converse effects. An applied strain 

gradient induced polarization is the direct effect, and an applied electric field gradient 

induced stress is the converse effect. The flexoelectric coefficients from the converse 

flexoelectric effect can be obtained as follows (Shu et al., 2014): 

σij =  μijkl

∂Ek

∂xl
                                                                         (4.7) 

where, 𝜎𝑖𝑗, 
𝜕𝐸𝑘

𝜕𝑥1
 and 𝜇𝑖𝑗𝑘𝑙  are the induced-elastic stress, E-field gradient and flexoelectric 

coefficients, respectively.  

Note that the total polarization constitutes the contributions from both 

flexoelectricity and piezoelectricity. The constitutive relation for the polarization vector 

induced due to the flexoelectricity and piezoelectricity effects may be written as 

(Kundalwal et al., 2017; Javvaji et al., 2018): 

P1 = eijkεjk + μijkl

∂εjk

∂x𝑙
                                                                 (4.8) 

where  𝑒𝑖𝑗𝑘 and 𝜇𝑖𝑗𝑘𝑙 are the respective piezoelectric and flexoelectric tensors; 𝜀𝑗𝑘 and 
𝜕𝜀𝑗𝑘

𝜕𝑥𝑙
  

are the strain and strain gradient, respectively. 

4.3 Interface engineering  

 Graphene and BNS SLs are complementary 2D materials, structurally very similar 

with a lattice constant difference of only 1.7% (Dean et al., 2010) but with a vastly different 

electronic properties. The integration of these two SLs via coherent interface engineering 

can provide us the interesting functional properties. The existing studies showed that the 

formation energy of BNS integrated with graphene stripe strongly depends on the nearest-

neighboring bonds and the resulting hybrid system tends to have phase segregation into 

large BN and C domains. For armchair graphene SLs, the energy differences between SLs 

with and without inversion symmetry are much smaller than that of zigzag graphene SLs. 

This is attributed to the fact that each armchair edge does not have a net line charge (relative 

to the other edges) (Jungthawan et al., (2011) and Refs. therein). In case of armchair 

graphene stripe, all edges of interface are composed of an equal number of C-B and C-N 
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bonds in an alternating order and therefore, no line charges are formed, making it 

energetically more favorable (Jungthawan et al., 2011). Therefore, the zigzag graphene 

stripe was considered for interface engineering of BNS SLs, as shown in Fig. 4.2. 

Hexagonal ring of graphene may alter the net polarization of hybrid BNS, therefore, it was 

also considered for interface engineering. Note that stripe patterns frequently exist during 

the synthesis of 2D materials, as well as in nature, as the favored ground states of alloys 

(Dong et al., 2011). In particular, the two types of arrangements for interface engineering 

were considered: (i) one edge of zigzag graphene stripe composed of N-C bonds and 

another with C-B bonds (NCB sheet; Fig. 4.2(b)), and (ii) one edge of hexagonal ring of 

graphene stripe composed of B-C bonds and another with C-N bonds (CHR sheet; Fig. 

4.2(c)). Note that we considered only one or two graphene stripes to enhance the 

polarization of hybrid BNS because the energy difference decreases as the stripe width 

increases which results in the decrease in band gap. It is expected because the wider stripe 

allows more preferred bonds to form which reduces the fraction of atoms on the interfacial 

boundary between graphene and BNS SLs (Jungthawan et al., 2011). Therefore, the net 

polarization of hybrid BNS cannot be enhanced by using wider graphene stripes.  

 
Fig. 4.2 Schematic representations of different arrangements of BNS SLs: (a) pristine BN, (b) NCB, and (c) 

CHR sheets. Colored with light salmon, blue and cyan are boron, nitrogen and carbon atoms, respectively, 

with dashed rectangle highlighting graphene stripes.  

4.4 Results and discussions 

 In order to validate the performed MD simulations, the stress-strain diagrams for 

hybrid BNS were compared with existing DFT results (Ding et al., 2016)). MD results 

indicated a better consistency with the DFT results as shown in Fig. 4.3. This confirms the 

validity of the MD simulations performed in the present work. It can also be observed from 
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Fig. 4.3 that the Tersoff potential is suitable for all different atomic interactions, via. C-C, 

C-BN, BN interactions (Tersoff, 1989, 1988). The existing studies (Eshkalak et al., 2018; 

Eshkalak et al., 2018) also validated their MD results with DFT results for different 

arrangements of graphene and BN sheet.  

 

Fig. 4.3 The stress-strain curves for a hybrid BNS using MD (current) and DFT simulations results (Ding 

et al., 2016). 

 

4.4.1 Variation of strain energy (SE) 

 The MD simulations were performed to study the electromechanical response of 

pristine and hybrid BNS SLs subjected to the external E-field. The external E-field was 

applied in the armchair and zigzag directions as shown in Figs. 4.1(a) and (b), respectively. 

The applied E-field values were varied from -0.5 V/Å to 0.5 V/Å. To perform the MD 

simulations, a fixed size of BNS 60 Å × 70 Å was considered to determine the effect of 

interface engineering of graphene stripe on the electromechanical response of hybrid BNS. 

The schematic of deformations of BNS are shown in Fig. 4.4. It may be observed from Fig. 

4.4 that the deformation of sheets depends on the direction and magnitude of applied E-

field. If the E-field applied in the armchair direction, the axial deformation always occurs 

in the direction of applied E-field while the shear deformation occurs when the E-field 

applied in the zigzag direction in the sheet, as it can be clearly seen from Fig. 4.4 (Zhang 

et al., 2017). This is due to the fact that for every hexagonal ring of BNS, two B–N bonds 

exist along the applied direction of E-field then the resultant dipole moments induced in 

the axial direction lead to axial strain in case of armchair direction. While in case of zigzag 

direction, for every hexagonal ring of BNS, no-single bond exists along the applied E-field 
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and four inclined bonds exist and thus, the resultant dipole moments induced in the inclined 

direction lead to shear strain (Zhang et al., 2017). The variation of strain energy of pristine 

BNS with time is shown in Figs. 4.5(a) and (b) when the external E-field was applied in 

the armchair and zigzag directions, respectively. It can be observed from Fig. 4.5 that the 

strain energy of BNS first increases with time and then stabilizes at particular time. It can 

also be observed that the value of stabilized time for strain energy depends on the direction 

of applied E-field. The axial and shear stresses were induced in the BNS subjected to the 

external E-field in the armchair and zigzag directions, respectively. The higher value of 

strain energy was observed in case of application of E-field in the zigzag direction due to 

the induced shear stresses. Similar trends of variation of strain energy were observed for 

hybrid BNS (NCB and CHR) and for the sake of brevity they are not shown here. The 

average of stabilized strain energy over a few time-steps was considered as stored strain 

energy in structure at particular value of E-field. The variation of stabilized average strain 

energy with the applied E-field in the armchair and zigzag directions is plotted in Figs. 

4.5(a) and (b), respectively. It may be observed from Fig. 4.6 that the NCB sheet shows 

higher stored strain energy compared to other types of SLs. This is due to the occurrence 

of higher deformation in the NCB sheet, and it depends on the number of higher polarized 

bonds in the structure. Note that the NCB sheet does not demonstrate the inversion 

symmetry, that is, the B-N bonds (oriented perpendicular to the graphene stripe-length) are 

aligned in the same direction in both halves of BNS. Therefore, both the edges of graphene 

stripe are different (see Fig. 4.2(b)) which lead to the alternate positive and negative line 

charges, and this creates an electric field across graphene stripe. Therefore, the NCB sheet 

possesses higher polarized bonds compared to other types of SLs. It may also be observed 

from Fig. 4.6 that the marginal differences occur in the strain energy at the same magnitude 

of E-field but opposite direction, and the plots are asymmetric. This can be explained by 

the fact that the equilibrium distance between atomic centers decreases with the application 

of negative E-field than without E-field and converse is true in case of application of 

positive E-field. Therefore, the stored strain energy in the system is higher when the 

positive E-field is applied compared to negative E-field at a particular value of E-field 

magnitude (Zhang and Wang, 2014). For instance, the average strain energies of pristine 
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BNS are around 9 and 5 eV under the application of E-fields of 0.5 V/Å and -0.5 V/Å, 

respectively.   

 

Fig. 4.4 The schematic representations of deformation of BNS subjected to E-field in the (a) positive 

armchair, (b) negative armchair, (c) positive zigzag and (d) negative zigzag. 

 

Fig. 4.5 The variation of strain energy with time in pristine BNS subjected to E-field in the: (a) armchair 

and (b) zigzag directions. 
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Fig. 4.6 The variation of average stabilized strain energy with the E-field applied in the (a) armchair and 

(b) zigzag directions of pristine and hybrid BNS. 

4.4.2 Piezoelectric coefficients of pristine and hybrid BNS 

 The variation of stress in sheets subjected to the E-field in armchair direction is 

plotted in Figs. 4.7(a), (b) and (c) for pristine BN, NCB and CHR sheets, respectively. It 

can be observed from Fig. 4.7 that the axial stresses in sheets first increase with time and 

then stabilize at a particular time. Prior to calculate the piezoelectric coefficients of sheets, 

we first validated the results of pristine BNS with the existing results and such comparison 

is shown in Table 4.1. It can be observed from Table 4.1 that the obtained values of 

piezoelectric coefficients of pristine BNS herein are in line with the previously reported 

results (Duerloo et al., 2012; El-Kelany et al., 2015). The good agreement of current results 

with the existing predictions by DFT and Ab-initio techniques is attributed to the use of 

three-body Tersoff interatomic potential herein which delivers a reliable description of the 

interatomic interactions between the B, C and N atoms of SLs of BNS/graphene stripes. 

Next, to calculate the piezoelectric coefficients of sheets, the average values of stabilized 

stress and strain at a particular value of E-field were considered. The magnitude of average 

stresses induced in BNS, NCB and CHR sheet are 22.65 GPa, 15.34 GPa and 7.89 GPa, 

respectively, for armchair direction case. The respective values are 12.77 GPa, 8.37 GPa 

and 5.09 GPa for zigzag direction. The average values of different stress and strain in the 

sheets against E-field are shown in Fig. 4.8. The averaged values of axial stress (𝜎𝑥𝑥) and 

strain (𝜀𝑥𝑥) were used to determine the piezoelectric coefficients 𝑑11 and 𝑒11 in the 

armchair direction of sheets. To calculate the piezoelectric coefficients 𝑑14 and 𝑒14 in the 

zigzag direction of sheets, the averaged values of shear stress (𝜏𝑥𝑦) and shear strain (𝛾𝑥𝑦) 
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were used. Figure 4.8 shows the variation in stresses and strains with applied E-field for 

all the cases. It can be observed from Fig. 4.8 that the negative slope of stress/strain with 

the E-field is higher for NCB sheet compared to other cases and this leads to its higher 

piezoelectric coefficients. This is due to the reasons described above. In other cases, the 

induced resultant dipole moments are less compared to NCB sheet. The obtained values of 

piezoelectric coefficients of sheets from Fig. 4.8 are summarized in Table 4.1. As expected, 

the value and direction of piezoelectric coefficients of sheets depend on the direction and 

magnitude of applied E-field. The influence of interface engineering of BNS/graphene 

stripes on their piezoelectric coefficients can be seen from the summarized data in Table 

4.1 and this is due to the generation of more dipole moments. For instance, the increase in 

the values of 𝑒11 in case of NCB and CHR sheets are 25% and 16% compared to pristine 

BNS. The corresponding values of  𝑒14 are increased by 18% and 11%. It can be observed 

from Table 4.1 that the enhancement of piezoelectric coefficients is higher when the E-

field is applied in armchair direction of sheet compared to zigzag direction.  

 

Fig. 4.7 The variation of axial stress with time in the (a) BN, (b) NCB and (c) CHR sheets. 
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Fig. 4.8 Variation of averaged values of (a) axial strain (𝜀𝑥𝑥), (b) axial stress (𝜎𝑥𝑥), (c) shear strain (𝛾𝑥𝑦) 

and (d) shear stress (𝜏𝑥𝑦) in the sheets under the applied external E-field.  

 

Table 4.1: Comparison of piezoelectric and elastic coefficients of pristine/hybrid BNS with previous 

studies. 

 

Methods Sheets 
𝐝𝟏𝟏  (pm/V) 𝐞𝟏𝟏 (nC/m) 𝐄 (TPa) 

Present Ref. Present Ref. Present Ref. 

DFT 
Pristine 

BN 

sheet 

 

0.402 

 

0.500 

(El-Kelany et 

al., 2015) 

 

1.471 

1.500 

(El-Kelany et al., 

2015) 

1.38 

(Duerloo and 

Reed, 2013) 

0.634 

0.693 

(Zhao and Xue, 

2013b) 

MD 

- - - - 0.639 

(Liang et al., 2019) 

NCB 

sheet 
- - - - 0.745 

0.769 

(Eshkalak et al., 

2018) 

 

The formation of interfaces in nanostructure can substantially change its 

mechanical properties as well. To understand the effect of interface engineering of 

BNS/graphene stripes on the mechanical properties of resulting hybrid BNS, their stress-

strain response under the application of E-field is shown in Figs. 4.9(a) and (b). Young’s 

(Exx) and shear (Gxy) moduli of sheets were determined from the slopes of stress-strain 
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curve. The elastic properties of pristine and hybrid BNS are in good agreement with the 

existing results (Milowska et al., 2013; Zhao and Xue, 2013; Einalipour Eshkalak et al., 

2018) and such comparison is shown in Table 4.1. The obtained values of elastic 

coefficients of pristine and hybrid BNS are summarized in Table 4.2. It can be observed 

from Table 4.1 that the interface engineering of BNS/graphene stripes improves the elastic 

properties of resulting hybrid sheets than that of pristine BNS. The reason for enhancing 

the elastic properties is due to the formation of N–C and C–B bonds in the axial direction 

of sheet, and the strength of N–C bonds is higher than other bonds in the sheet as it 

possesses shorter bond length and higher interaction energy than C-B bond. The respective 

bonding energies of B–N, C–C, C–N and C–B bonds are 389, 607, 770 and 448 kcal/mol 

(Jungthawan et al., 2011). Therefore, the interaction energy between B and N atoms is 

much lower than that of all other bonds and hence, the pristine BNS shows marginally 

lower elastic properties than NCB and CHR cases. Some of the researchers also reported 

the same for BNS/graphene heterostructures which exhibited higher mechanical properties 

(Beheshtian et al., 2012; Eshkalak et al., 2018; Eshkalak et al., 2018). The enhancement in 

the values of Young’s moduli of NCB and CHR sheets are found to be 17.50% and 13.72% 

respectively, and the respective enhancement in shear moduli are 11.83% and 10.30%.   

 

Fig. 4.9 The stress-strain response by applied E-field under (a) armchair and (b) zigzag directions. 
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Table 4.2: Piezoelectric and elastic coefficients of pristine/hybrid BNS. 

 

C-doped  

BNSs 

𝐝𝟏𝟏 

(pm/V) 

𝐝𝟏𝟒 

(pm/V) 

𝐞𝟏𝟏 

 (nC/m) 

𝐞𝟏𝟒 

 (nC/m) 

𝐄𝐱𝐱 

(TPa) 

𝐆𝐱𝐲 

(TPa) 

𝛝 

BNS 0.402 0.178 1.473 0.890 0.634 0.262 0.21 

NCB 0.512 0.214 1.842 1.045 0.745 0.293 0.27 

CHR 0.486 0.196 1.705 0.987 0.721 0.289 0.24 

 

4.4.3 Electromechanical response of pristine and hybrid BNS 

 Note that the doping of foreign atoms results in the breaking of symmetry of parent 

material and its piezoelectric response may be enhanced (Beheshtian et al., 2012; Noor-A-

Alam et al., 2014; Kundalwal et al., 2017). Among all other properties, the net polarization 

of BNS was found to be very sensitive to the inherent topological defects/doping owing to 

the interference and quantum mechanisms effects (Zhang and Meguid, 2017). According 

to the modern theory of polarization, the value and direction of resultant polarization is the 

vector sum of all elementary dipole moments associated with per unit area of BNS (Dan 

Tan et al., 2019). Note that the direction of net polarization depends on the resultant 

direction of induced dipole moments. A change in the polarization in BNS under the 

application of E-field was calculated using Eq. (4.6). The schematic of directions of 

induced dipole moments in different BNS SLs are shown in Fig. 4.10 The direction of 

dipole moment points from the negative to positive charge and the red arrow shows the 

direction of induced dipole moment generated due to the applied external E-field.  

      

Fig. 4.10 Schematic representations of direction of induced dipole moments in: (a) pristine BN, (b) NCB (c) 

CHR sheets. 

(a) (b) (c) 

BNS NCB CHR 
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The distribution of charges is uniform in the overall pristine BNS except at the 

edges, while charge distribution in hybrid BNS is mostly around the C atoms and the 

neighboring B and N atoms as shown in Fig. 4.10. This difference is clearly shown in Fig. 

4.11 using the distribution of atomic stresses induced in sheets subjected to the E-field. 

While inserting C atoms in a SL stripe around N and B atoms, distribution of the charge is 

not uniform, and such SL of C stripe breaks the uniformity of charges. From this non-

uniformity, mostly charges are distributed around N and C atoms due to their higher 

electronegativity difference and higher electronic charges on N and C atoms as compared 

to B atoms. With the help of “Mulliken population analysis”, due to its large 

electronegativity, N atoms attracts more electrons from B atoms (Pruneda et al., 2010). 

Thus, on the BN sheet, the N sites are electron rich and are easily polarized in the particular 

direction of applied E-field in a way similar to the C atoms (Pruneda et al., 2010). That’s 

the reason NCB and CHR sheet distribute higher stresses on left side as compared to the 

right side of the hybrid BNS. It can be observed from Fig. 4.11 that the stress generated in 

NCB and CHR cases is higher than pristine BNS and such higher stress concentration leads 

to the higher net polarization. Note that the hybrid BNS (NCB and CHR) becomes more 

non-centrosymmetric solid due to the integration of graphene stripe and its piezoelectric 

response is enhanced compared to pristine BNS. The obtained net polarizations of different 

BNS SLs are plotted in Fig. 4.12. Note that the total polarization of BNS constitutes the 

contributions from both flexoelectricity and piezoelectricity (see Eq. 4.6) and the effect of 

interface engineering of BNS/graphene stripes on the separate contributions will be 

discussed in subsequent sections. The permanent polarization can be observed in pristine 

BNS, and this is due to the sharing of valance electrons of B and N atoms with all 

neighboring atoms that form strong sigma bonds. In B–N bond, the involvement of 

electrons is higher from N atoms site due to their higher electronegativity compared to B 

atoms. Hence, the in-plane dipole moment gets induced (Beheshtian et al., 2012) and the 

polarization increases with the applied E-field as it can be observed from Fig. 4.12. This is 

due to the deformation of sheet which is directly proportional to the applied E-field and 

during the deformation of sheet, the length of polarized bond increases which leads to the 

change in net atomic polarization (see Fig. 4.11). It may be observed from Fig. 4.12 that 

the polarization is higher in case of application of E-field in armchair direction than the 
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zigzag direction. This is attributed to the fact that the dipole moments induced in only x-

direction when the external E-field applied in the armchair direction, while dipole moments 

induced in the inclined direction from the y-axis in case of application of E-field in zigzag 

direction; therefore, the net component of polarization in the zigzag direction is less 

compared to armchair case.  

 

Fig. 4.11 Distribution of induced stresses in (a) pristine BN, (b) NCB and (c) CHR sheets subjected to the 

E-field in armchair direction. The color-coding indicates the induced atomic stresses in SLs. 

 
Fig. 4.12 The variation of polarization with the E-field applied in the (a) armchair and (b) zigzag 

directions of different BNS SLs. 

It can also be observed from Fig. 4.11 that the change in polarization is higher in 

case of NCB sheet compared to other cases. Note that in case of NCB, N–C and C–B bonds 

are around the carbon-rich molecular chain (zigzag graphene stripe), therefore, the induced 

dipoles, due to both N–C and C–B bonds, are in the same direction which lead to higher 

atomic polarizations. Moreover, at the interface, zigzag graphene SL has one edge with all 

N-C bonds and another with all C-B bonds. Therefore, at the interface there are net electron 
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formations at the C-N edge because the C-B edge is less electronegative compared to the 

C-N edge (Jungthawan et al., 2011). It can be observed from Fig. 4.10(c) that the direction 

of induced dipole moments in the CHR sheet is opposite to the applied E-field but in the 

same direction. At the interface, the hexagonal ring of graphene stripe shows the inversion 

symmetry and therefore, the dipole moments in it do not get induced. In the CHR sheet, 

the maximum dipole moments get induced in the atoms located at the interface edges due 

to the net electron formations at the C-N edge because the C-B edge is less electronegative 

compared to the C-N edge. It may be observed from Fig. 4.12 that the polarization increases 

due to the interface engineering of BNS/graphene stripes. The increase in polarization 

when the E-field applied in the armchair direction of hybrid BNS is found to be 17% and 

7% for NCB and CHR sheets, respectively, compared to pristine BNS. The corresponding 

increase in polarization is around 21% and 10% in the case of application of E-field in the 

zigzag direction of sheets. The bond length and dipole moments of pristine and hybrid BNS 

are summarized in Table 4.3. The axial stress in the sheets was evaluated from MD 

simulation as a function of time.  

Table 4.3: The bond length (Å) and dipole moments (Cm) for pristine and hybrid BNS. 

 

S. 

No. 

Sheets Size  

(Å  Å) 

B–N N–C C–C C–B Dipole moment ( 10-19 Cm) 

Armchair Zigzag 

1 BNS 60 Å 70 Å 1.45 - - - 2.486 0.384 

2 NCB 60 Å  70 Å 1.45 1.41 1.40 1.55 3.112 0.450 

3 CHR 60 Å  70 Å - 1.41 1.40 1.55 2.881 0.421 

  

4.4.4 Flexoelectric coefficients of pristine and hybrid BNS  

 Furthermore, a converse flexoelectric effect is generated in pristine and hybrid BN 

sheets to determine their flexoelectric coefficients. The converse flexoelectric effect is an 

electromechanical coupling in which an inhomogeneous strain is induced by the 

application of external E-field. To study the effect of interface engineering of 

BNS/graphene stripes on their flexoelectric coefficients, the E-field was applied only in the 

armchair direction of sheet because such case showed higher piezoelectricity in it 

compared to the application of E-field in zigzag direction. To study the flexoelectric 

response, the sheet was partitioned axially into the rectangular bins to apply the gradual 

increment of E-field as shown in Fig. 4.13. The value of applied E-field gradient into the 
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sheet was varied from 0.01 to 0.1 V/Å2. The stresses generated in the pristine and hybrid 

BN sheets due to the applied E-field gradient in their armchair direction were calculated 

during the simulations and the same are shown in Fig. 4.14 The flexoelectric coefficient 

was calculated from Eq. (4.7) and the slope of E-field gradient-stress curve. The obtained 

values of flexoelectric coefficients of pristine and hybrid BN sheets are listed in Table 4.4. 

Note that the value of flexoelectric coefficient 0.219 pC/m for the pristine BNS is found to 

be in good agreement with the value reported by (Zhuang et al., 2019). The flexoelectric 

coefficient of hybrid BNS is higher than pristine one and this due to the fact that the former 

becomes more non-centrosymmetric solid due to the integration of graphene stripes. This 

results in the higher strain gradient induced polarization in the hybrid BNS due to the 

applied E-felid. It is observed that the NCB sheet shows the higher flexoelectric coefficient 

and this is again attributed to the larger energy difference for zigzag graphene stripe due to 

coulomb interactions between the edges as well as reasons described above. The 

enhancement in the flexoelectric coefficients due to the interface engineering of 

BNS/graphene stripes is 37% and 18% for NCB and CHR sheets, respectively. 

 

Fig. 4.13 Schematic representation of the partitioned BNS axially into the rectangular bins. 
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Fig. 4.14 The variation of stress with E-field gradient for different BN sheets. 

Table 4.4: Flexoelectric coefficients of pristine and hybrid BN sheets. 

C-doped BNSs BNS NCB CHR 

μ1111 (pC/m) 

Present 0.219 0.3 0.259 

Ref. 
0.26  

(Zhuang et al., 2019) 
- - 

 

4.4.5 Effect of SW defects on the electromechanical response of BNS  

 The BNSs are being synthesized using several unique techniques: mechanical and 

liquid exfoliations, thermal decomposition, chemical synthesis, chemical vapor deposition 

(Song et al., 2013). Due to the inherent limitations of fabrication processes of BNS, 

topological defects exist in them, that is, Stone-Wales (SW) and substitutional impurities 

(Khan et al., 2016), and atom vacancies (Liang et al., 2019). These defects make the local 

changes in the atomic polarization and chemical bond orders of BNS which lead to a 

change in their electromechanical response [Khan et al. (2016) and references therein]. As 

far as the defects of BN structures are concerned, it is widely accepted that the adjacent 

pentagon–heptagon pairs (SW defects) in them generate less favorable homo-elemental 

bonds such as B–B and N–N bonds, and the high energy of the frustrated B–B and N–N 

bonds make BN systems structurally unstable (Zhi et al., 2010). Therefore, we considered 

only SW defects herein to understand role of topological defects on the piezoelectric 

behavior of BNS. The SW defects in the BNS were formed by rotating one of the B–N 

bonds by 90o from the pristine BNS as shown in Fig 4.15. The density and position of SW 

defects play a critical role on the electromechanical response of 2D materials (Choyal and 

Kundalwal, 2020), therefore, we considered two cases: (i) double SW defects with 26 Å 
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apart (BNS@2SW), and (ii) four SW defects with 36 Å apart (BNS@4SW), as shown in 

Figs. 4.15(a) and (b), respectively. 

 

Fig. 4.15 Schematic representations of BNS with SW defects: (a) BNS@2SW and (b) BNS@4SW. 

 

 The simulation methodology is same. The average values of stress and strain in the 

pristine and SW defected BNS against applied E-field are shown in Fig. 4.16. It can be 

observed from Fig. 4.16 that the slope of stress and strain curves of SW defected BNS is 

slightly higher compared to pristine BNS, and this leads to higher values of piezoelectric 

coefficients of SW defected BNS (see Table 4.5). The enhancement in the 

electromechanical response of defected BNS is attributed to the formation of SW defect 

that leads to the higher charge redistribution around the region of defect and the defected 

BNS becomes more non-centrosymmetric solid compared to pristine BNS.  

 
Fig. 4.16 Variation of averaged values of axial (a) stress (𝜎𝑥𝑥) and (b) strain (𝜀𝑥𝑥) in the pristine and SW 

defected BNS under the applied external E-field. 
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Table 4.5: The elastic and piezoelectric coefficients of BNS with SW defects. 

 

S. No. Sheets 𝐝𝟏𝟏  
(nC/m) 

𝐞𝟏𝟏  
(nC/m) 

Exx  

(TPa) 

1 BNS@2SW 0.44 1.52 0.618 

2 BNS@4SW 0.51 1.61 0.604 

 

4.4.6 Effect of temperature on the electromechanical response of BNS 

We considered four different temperature steps (100, 300, 500, and 700 K) to 

examine the effect of temperature on the elastic and piezoelectric properties of pristine and 

hybrid armchair BNS. The temperature was increased from 0 to 700 K by keeping the 

application of constant strain rate on BNS. The variation of Young’s modulus (𝐸𝑥𝑥) and 

piezoelectric coefficient (𝑒11) of pristine and hybrid BNS are shown in Fig. 4.17 and it can 

be observed that the values of 𝐸𝑥𝑥 and 𝑒11 decrease with increase in temperature. The BNS 

becomes softer and less stiff when the temperature increases. This is attributed to the fact 

that the thermal vibration of BN atoms becomes more vigorous leading to a larger vibration 

amplitude of atoms around their equilibrium positions (Han et al., 2014; Choyal and 

Kundalwal, 2020) with the increase in temperature and thus, the total kinetic energy 

increases. In case of piezoelectric properties, the polarization of material generally 

decreases as the temperature increases and it is completely lost when the temperature 

increases to the so-called Curie temperature (Hong et al., 2010).  

 
Fig. 4.17 Variation of elastic and piezoelectric properties of pristine and hybrid BNS with different 

temperature: (a) Young’s modulus (Exx) and (b) axial piezoelectric coefficient (e11). 
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4.5 Conclusions 

 In this chapter, the investigation of converse piezo- and flexo-electric effects of 

hybrid and SW defected BNS under the application of external electric-field (E-field) was 

carried out. Hybrid BNS was formed by integrating two graphene SLs, namely, zigzag 

stripe and hexagonal ring of graphene via coherent interface engineering. We performed 

systematic and comprehensive MD simulations using the three-body Tersoff potential 

force field. An E-field was applied in the two most relevant orientations of hybrid BNS, 

i.e., armchair and zigzag, to determine their axial and shear piezoelectric coefficients. The 

piezoelectric, flexoelectric and elastic coefficients of pristine/hybrid BNS were compared 

with the existing results and good agreement was found. The following main conclusions 

are drawn from the current chapter: 

• The interface engineering of BNS/zigzag graphene stripe improved the axial piezo- 

and flexo-electric coefficients of hybrid BNS under the application of E-field in its 

armchair direction by 25% and 37%, respectively, compared to pristine BNS. The 

corresponding enhancement in the coefficients was observed as 18% and 16% due 

to the interface engineering of BNS/hexagonal ring of graphene stripe. 

• When the E-field applied in the armchair direction of hybrid BNS, the increase in 

total polarization is around 17% and 7% for NCB and CHR sheets, respectively, 

compared to pristine BNS due to the interface engineering of BNS/zigzag graphene 

stripe. The corresponding increase in total polarization is 21% and 10% in the case 

of E-field applied in the zigzag direction of hybrid BNS. 

• The enhancement in the values of Young’s moduli of NCB and CHR sheets are 

found to be 17.50% and 13.72% respectively, compared to pristine BNS. The 

respective enhancement in shear moduli is 11.83% and 10.30%.   

• The density and position of SW defects play a critical role on the overall 

electromechanical response of BNS. SW defect improves the polarization of BNS, 

and the converse is true for elastic properties. 

• Both elastic and piezoelectric properties are inversely proportional to the 

temperature. 
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 The unique properties of BNSs accompanied by their excellent defect/pores and 

chemical stabilities make them attractive nanomaterials in the applications where atomic 

polarization and chemical bond order come into the picture. This chapter studied the 

electromechanical response of fixed size of pristine and hybrid BNS via an external applied 

electric field in both armchair and zigzag direction (via indirect approach). The out-of-

plane polarization and bending stiffness of BNSs/BGHs under bending deformations were 

calculated using MD simulations in the next chapter. 
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5. Chapter 

Flexoelectric effect in boron nitride–

graphene heterostructures 

In this chapter, the flexoelectric coefficients of monolayer boron nitride-graphene 

heterostructures (BGHs) are determined using MD simulations. This was achieved by 

imposing the bending deformation to the pristine BNS and BGHs. This chapter 

demonstrates the enhancement in the flexoelectric coefficient and bending stiffness of BGH 

when the graphene domain breaks its symmetry. The finding of this work can be utilized 

for engineering the behavior of BNS/BGHs structures.       

                                                                                                         

5.1 Introduction 

The BNS with a honeycomb crystal lattice is graphene's sister material, yet it 

exhibits totally different properties. While the graphene is a semimetal, the BNS is a 

piezoelectric dielectric due to a broken sublattice (inversion) symmetry and corresponding 

degeneracy lifting of the conduction and valence bands at two inequivalent Dirac points 

(Naumov et al. 2009). Moreover, unlike the piezoelectricity, flexoelectric effect is 

universal in all dielectrics since the strain gradient breaks the inversion symmetry. The 

stress induces separation of the centers of gravity of the positive and negative charges 

creating a dipole moment in materials. The resulting dipole moment produces a 

polarization and materials shows the piezoelectric effect. This behavior explains the 

sensing ability of piezoelectric material. Fig. 5.1 shows the BN unit cell to illustrate the 

piezoelectric effect, and the arrows next to the charges shown in Fig. 5.1 indicate the 

direction of motion of the charges and polarization. Curvature-induced polarization can be 

applied to induce the flexoelectric effect in monolayer BNS/BGH. As a result of bending 

of sheet, Coulomb repulsion inside a cavity increases with curvature and it leads to a 

redistribution of the π-orbitals. This results into an electronic charge transfer from the 

concave to the convex region and induces the normal atomic dipole at each atomic site. 

Note that there is no dipole moment across the flat BNS due to the symmetry of π-orbitals 

(see Fig. 5.1(d)). By bending the sheet, we can introduce asymmetry in the π-orbital overlap 
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(see Fig. 5.1(e)). Therefore, Coulomb repulsion inside the cavity increases with curvature 

and leads to a redistribution (rehybridization) of the π-orbitals from the sp2 to something 

intermediate between sp2 and sp3. Figure 5.1(e) demonstrates that the B and N atoms in the 

bent BNS are not in the tangential plane, and the three σi – bonds (i = 1, 2, 3) are tilted 

down with respect to that tangential plane. Redistribution of ions and charges occur upon 

bending of BNS, which results in the formation of a net dipole moment across the BNS. 

The resulting dipole moment produces a polarization, and BNS shows the flexoelectric 

effect. 

 

Fig. 5.1 (a) Stress-free BN lattice, (b) tension stress BN lattice, (c) compression stress BN lattice, (d) BNS 

in which π-orbitals are symmetric, and (e) bent BNS in which π-orbitals are asymmetric. 

 

 Heterostructures are often expected to provide better electronic properties than 

homogeneous structures. The ability to control the formation of interfaces between 

different monolayers has become one of the foundations of modern materials science. With 

the advent of 2D crystals, low-dimensional equivalents of conventional interfaces can be 

envisioned: triangular, trapezoidal and circular boundaries separating different materials 

integrated in a single 2D heterostructure (Sutter et al., 2012).   

 The literature review reveals that few investigations exist on BNSs under in-plane 

and out-of-plane loads to study their electromechanical response. There is no single study 

exists on the out-of-plane polarization and flexoelectric effect in monolayer boron nitride-

(a) (b) (c) 

(d) (e) 
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graphene heterostructures (BGHs). This has inspired us to conduct this study to determine 

the electromechanical response of BGHs with different shapes graphene domains 

triangular, trapezoidal, and circular. The out-of-plane polarization and bending stiffness of 

BGHs under uniaxial and bending deformations were determined using MD simulations.  

5.2 Computational modelling of BGHs    

MD simulations were performed in the current study to study the electromechanical 

response of pristine BNS and BGHs. All MD simulations were performed using open-

source software, LAMMPS (Plimton, 1995), and visualization is performed using OVITO 

visualization software (Stukowski et al., 2010). It is well known that for MD simulations 

of BGH systems, it is crucial to accurately describe the interatomic interactions between 

B, C and N atoms. The interatomic interactions between B, C and N atoms were described 

using the three-body Tersoff potential force field (Tersoff, 1989, 1988). The total energy 

(E) of the atomic structure is a function of the distance between two neighboring atoms i 

and j, as follows: 

E =  ∑ Ei

i

=  
1

2
 ∑ Vij

i≠j

                                                                 (5.1) 

Vij =  fC(rij)[fR(rij) + bijfA(rij)]                                                      (5.2) 

where 𝐸 is the total energy of the system, 𝐸𝑖 is the site energy and 𝑉𝑖𝑗 is the bond energy. 

The indices 𝑖 and 𝑗 run over the atoms of the system. Term 𝑟𝑖𝑗 is the distance between atom 

𝑖 and 𝑗, while 𝑏𝑖𝑗 is the bond angle term which depends on the local coordination of atoms 

around atom 𝑖. Terms 𝑓𝑅 and 𝑓𝐴 are the repulsive and attractive pair potentials, respectively. 

First, preliminary structures of BNSs were created with a bond length of 1.446 Å 

(Amalia et al., 2019). Then, the primary structures of BNSs were optimized by minimizing 

their energy using the conjugate gradient method. The structure was treated as optimized 

when the difference in its total potential energy between two consequent steps was less 

than 1.0×10-10 kcal/mol. The NVT ensemble was used to update velocities and positions of 

B and N atoms after each time step of 0.5 fs using the Nosé-Hoover thermostat (Evans and 

Holian, 1985). NVT is the constant number of atoms, temperature and volume ensemble, 

and during the simulation, it allows to maintain the constant temperature by scaling the 

velocities of atoms in a fixed volume. The simulations were performed with a periodic 
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boundary condition in all directions of the sheet, and the simulation box was kept large 

enough to avoid the interlayer interactions. To perform the bending deformation, a 

BNS/BGH sheet was divided into vertical rectangular bins. For bending deformation, a 

strain gradient was applied on each vertical rectangular bins for a period of 1 ps, following 

a relaxation of 50 ps for the equilibration. At each vertical rectangular bin, deformation 

gradually increases from left to the middle section of the sheet, and maximum deformation 

occurs in the middle portion of the vertical rectangular bins. The bending deformation 

mainly depends on the bending curvature (non-uniform strain gradient on each bin). The 

standard velocity Verlet algorithm was used to integrate Newton's equations of motions. 

The flat BNS was bent along the z-direction while both left and right edges were fixed. The 

schematic representation of the flat and bent configurations of BNS are shown in Fig. 5.2 

respectively.  

 
Fig. 5.2 Schematic representation of (a) flat BNS and (b) bent BNS. 

5.2.1 Curve fitting  

The present study deals with the bending deformation of BNS/BGH from that we 

can directly calculate flexoelectric coefficients by eliminating the piezoelectric terms from 

the overall polarization. The radius of curvature, R, is used to analyze the bending 

deformation of BNS/BGH. Term, k, denotes the strain gradient, which is inverse of the 

bending curvature R. Figure 5.2 depicts the curve fitting of a bending configuration of BNS 

when the curvature radius is 111.11 Å. The strain and strain gradient curves can be 

(a) (b) 
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calculated from the displacement fitting relations described by Tan et al. (2020). 

The curve fitting relation of the bending displacement of a point in BNS/BGH may be 

expressed as follows: 

Sz(x) =  −px2 + q                                                      (5.3) 

where p and q denote the parameters of curve fitting which can be calculated from the 

following relations:  

1

R
= 𝑘 = |

∂2Sz(x)

∂x2
| = −2p                                             (5.4) 

Sz(xmax) =  −pxmax
2 + q = 0                                                 (5.5) 

Using Eqs. (5.3-5.4), we can obtain the value of 𝑝 =  
𝑘

2 
  and 𝑞 =  

𝑘

2 
𝑥𝑚𝑎𝑥

2 , where 𝑥𝑚𝑎𝑥 is 

half of the length 𝐿𝑥 of BNS/BGH along the direction of x. 

The strain components, 𝜀𝑥𝑧, can be calculated as follows: 

εxz =  
1

2

∂Sz (x)

∂x
= −

k

2
x                                                       (5.6) 

 It is important to note that the displacements of atoms during bending deformation 

are along the principal curvature direction and we can get a unique solution of atomic 

displacement along the z-axis 𝑆𝑧(𝑥) = 0, and therefore, 𝜀𝑥𝑧 = 0. As the strain depends on 

both 𝑘 and x, a larger strain is obtained by enlarging the bending curvature or the length of 

2D nanomaterial along the x-axis. 

Strain gradients depend on the curvature of sheets. In the present case, only the 

nonvanishing strain gradient component is constant and can be expressed as: 

∂εxz

∂x
= |−

k

2
|                                                               (5.7) 

 The dipole moment induced due to the redistribution of atomic charges under the 

bending deformation and the resulting polarization can be calculated using the following 

relation (Tan et al., 2020): 

P =  ∑
qiri

A

N

i
                                                                (5.8) 

where 𝑞𝑖 denotes the ion charge of the ith atom, 𝑟𝑖 is the x-coordinate of the ith atom, N is 

the number of atoms, and A is the flat sheet area (Tan et al., 2020).  The Eq. (5.8) was used 

to calculate the induced polarization along x- and z-directions of BNSs/BGHs. From the 
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modern theory of atomic polarization, the value and direction of total polarization represent 

the vector sum of all elementary dipoles moments associated with per unit area of BNS 

(Dan Tan et al., 2019). To determine the normal polarization, the vertical rectangular bins 

are cut into several parts along the x- and y-axes to calculate normal polarization 

distribution.  

 Flexoelectricity can be found in all insulators; therefore, the polarization can be 

induced by applying inhomogeneous deformation. The flexoelectricity is a coupling 

between polarization and strain gradient while piezoelectricity is a coupling between the 

polarization and homogeneous strain. The constitutive relation for the polarization vector 

induced due to the flexo- and piezo-electricity effects may be written as: 

Pi =  eijkεjk + μijkl

∂εjk

∂xl
                                                      (5.9) 

where  𝑒𝑖𝑗𝑘 and 𝜇𝑖𝑗𝑘𝑙 are the respective piezoelectric and flexoelectric tensors; 𝜀𝑗𝑘 and 
𝜕𝜀𝑗𝑘

𝜕𝑥𝑙
  

are the strain and strain gradient, respectively. 

Substituting Eq. (5.7) in Eq. (5.9) and assuming that the imposed mechanical deformation 

in Eq. (5.10) removes the piezoelectric contribution, we can obtain 

Pi =  μijkl

∂εjk

∂xl
                                                            (5.10)  

Pz = μzxzx

k

2
                                                               (5.11) 

where 𝜇𝑧𝑥𝑧𝑥 is the out-of-plane or bending flexoelectric coefficient and 𝑃𝑧 represents the 

out-of-plane polarization. To generate the out-of-plane flexoelectric constants, the 

mechanical bending imposed to sheet deforms the sheet in the z-direction, and due to that, 

polarization is induced in the z-direction that is called out-plane-polarization (𝑃𝑧). The 

mechanical bending imposed only generate a constant strain in the x-direction due to 

applied deformation in the z-direction. The stress in x-direction led to generate a 

polarization (𝑃𝑥) in x-direction called in-plane polarization. The in-plane polarization Py in 

the y-direction is less than the in-plane polarization 𝑃𝑥 at a particular bin because 

significantly less deformation occurred in the y-direction during bending. 
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5.2.2 Bending stiffness of BNS 

Based on the continuum mechanics approach, the bending stiffness (D) of 

BNS/BGH can be determined from the bending potential energy (ΔE) using the following 

relation (Xiong and Cao, 2015):  

∆E =  
1

2
ADR−2 =  

1

2
ADk2                                              (5.12) 

where 𝐴 is surface area of BNS/BGH under bending deformation, 𝑘 is the bending 

curvature and 𝑅 is the bending curvature radius.  

5.3 Results and discussions 

MD simulations were performed to determine the electromechanical response of 

armchair BNS subjected to out-of-plane deformation. A fixed size of 80 Å × 80 Å of BNS 

was considered for simulations. A schematic representation of flat and bent armchair BNSs 

are shown in Fig. 5.2, respectively. A bending curvature range is considered from 0.001 Å-

1 to 0.009 Å-1. First, the MD simulations were performed on the pristine BNS to determine 

the electromechanical response for different bending curvatures. Further calculations were 

performed on different BGHs to determine induced polarizations, flexoelectric coefficients 

(along x and z-direction) and bending stiffness.  

 We first considered bending scheme that eliminates the contribution of 

piezoelectric effect from the total polarization to calculate the intrinsic flexoelectric 

coefficients. We obtained the strain (𝜀𝑥𝑧) and strain gradient  (
𝜕𝜀𝑥𝑧

𝜕𝑥
) in the xz direction by 

solving the curve fitting Eq. (5.3). During bending deformation, the local atomic strain for 

each atom i can be calculated using the local deformation gradient F, and it depends on the 

initial and final coordinates of atoms. The local atomic strain tensor for atom i is as follows: 

εi =  
1

2
 [(Fi)

T Fi − I]                                                     (5.13) 

where the term 𝐹𝑖 represents the strain gradient, which provides the initial and final 

deformed coordinates of atoms, and a term I represents the identity matrix. We performed 

bending deformation of BNS at a bending curvature of 0.001 Å-1 by following the 

simulation procedure described in section 5.2. The value of strain (𝜀𝑥𝑧) and strain gradient 

(𝑘) were obtained using curve fitting (Fig. 5.3(a)). Figures. 5.3(b) and (c) demonstrate the 

variation of strain (𝜀𝑥𝑧) and strain gradient (𝑘) with the position of x-axis of BNS. The 
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variation of strain in x-direction of BNS during deformation is shown in Fig. 5.3(d) which 

is obtained using Eq. (5.13). To solve the curve fitting Eq. (5.3), a parabolic fitting curve 

can be obtained from the bending displacement of atomic system, as shown in Fig. 5.3(a). 

This fitting curve mainly depends on the bending deformation that leads to the induced the 

polarization, which was also described in previous studies for dichalcogenides, Silicene, 

and MoS2 (Javvaji et al., 2019; Zhuang et al., 2019). The strain was obtained by dividing 

the atomic system of BNS into several bins of equal width, and the average strain of each 

bin was recorded. The obtained value of strain was plotted in Fig. 5.3(b), and it can be 

observed that the strain (𝜀𝑥𝑧) varies linearly along the direction of x from -0.2 to 0.2 of the 

BNS. The linear negative variation of (𝜀𝑥𝑧) was observed, which follows the curve fitting 

Eq. (5.6). It can be observed from Fig. 5.3(b) that the induced deformation is symmetric, 

and the resultant polarization due to strain is canceled out. Hence, the total strain (𝜀𝑥𝑧) is 

almost zero (overall summation of the strain of each bin), which removes the contribution 

of piezoelectric effect from the polarization in Eq. (5.9) and it satisfies the assumption 

considered in obtaining Eq. (5.10). Therefore, during bending deformation, the out-of-

plane polarization completely depends only on the strain gradient (
𝜕𝜀𝑥𝑧

𝜕𝑥
). The strain 

gradient (
𝜕𝜀𝑥𝑧

𝜕𝑥
) varies along the direction of x plotted in Fig. 5.3(c). The obtained value of 

strain gradient along the xz-direction is constant at each time step.  
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Fig. 5.3 (a) Curve fitting, (b) strain (𝜀𝑥𝑧), (c) strain-gradient (𝑘) and (d) colored atomic configuration of 

induced atomic strain in the direction of x of BNS at a bending curvature of 0.001 Å-1. 

 

Variation of induced polarizations along x- and z-directions of BNS at bending 

curvatures of 0.006 Å-1 and 0.001 Å-1 are plotted in Fig. 5.4. Due to the difference in the 

electronegativities of B and N atoms, the net dipole moment is induced, and it is the 

summation of each dipole moment. We considered respective charges of B, N and C atoms 

as +3 eV, -3 eV and +2.5 eV with the multiplication of deformed coordinates of atoms 

along x- and z-directions of BNS (at each time step). In Fig. 5.4, green and yellow arrows 

show the direction and amplitude of polarization which mainly depend on the bending 

curvature. It can be observed from Fig. 5.4 that the magnitude of polarization along the z-

direction is much higher than the x-direction. During bending deformation, the magnitude 

of the induced polarization along the y-direction is negligible, therefore, it is not 

considered. The previous studies also reported that the curvature induced charge 

distribution is present in 2D nanomaterials such as graphene sheet, graphene nanoribbons, 

BNS and MoS2 (Naumov et al., 2009; Kundalwal et al., 2017; Tan et al., 2020). The 

(b) (a) 

(c) (d) 
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mechanical bending was imposed to generate both out-of-plane and in-plane polarizations 

along the x- and z-directions of BNS.  During bending, a strain gradient was induced along 

the z-direction of BNS which eventually generates out-of-plane polarization.  

 

Fig. 5.4 Variation of induced polarizations along x- and z-directions of BNS at bending curvatures of (a) 

0.006 Å-1 and (b) 0.001 Å-1. 

 

 The term "flexoelectricity" defines the two-way linear coupling between the 

electric polarization and the strain gradient (Li et al., 2019). In the case of 2D 

nanomaterials, bending is the easiest form of deformation to determine a mechanical strain 

gradient. Upon bending of polar (BNS) materials, the symmetry of the electron distribution 

breaks in the out-of-plane direction, and a resultant dipole moment is generated at N atomic 

site (Ahmadpoor and Sharma, 2015). It can be observed from Fig. 5.5 that the polarization 

(𝑃𝑧) depends on the bending curvature 𝑘 (strain gradient). The flexoelectric coefficient was 

calculated from Eq. (5.10), and the slope of polarization and strain gradient provides the 

flexoelectric coefficients (μzxzx) along the principal curvature direction. It can also be 

observed from Fig. 5.5 that the out-of-plane polarization using MD simulations fitted 

suitably into the polarization using the curve fitting technique. The flexoelectric 

coefficients of pristine BNS reported by numerous researchers using different techniques 

and the present results are summarized in Table 5.1. The value of the flexoelectric 

coefficient of pristine BNS is 0.255 pC/m and shows excellent agreement with the value 

of 0.260 pC/m obtained by Zhuang et al. (2019) using C-D potential model. Snapshots of 

bending deformation at bending curvature 0.001 Å-1 of pristine BNS with side, top and 

ortho views are illustrated in Fig. 5.6. It can be observed from Fig. 5.6 that the density of 

charges gets appeared on each B and N atoms during bending and such distribution of 

(a) (b) 
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charge density is uniform in the overall pristine BNS except at the edges (see Fig. 5.6). The 

number of electrons is condensed more around the N atoms than B atoms due to former’s 

higher electronegativity, which leads to induce the dipole moments in BNS. In the present 

study, the difference in charge density is calculated by subtracting the superposition of 

isolated atomic charge densities from the corresponding BNS's total charge density (after 

deformation at each time step). In the previous studies, DFT calculations provided 

significant in-plane polarization and out-of-plane atomic displacement for a corrugated 

BNS which mainly depends on shifting of 𝜋 and 𝜎 chemical bonds (Zhuang et al., 2019). 

The minimal difference in out-of-plane displacements of B and N atoms (Moon and 

Hwang, 2004; Wirtz and Rubio, 2004) leads to relatively small out-of-plane dipole 

moments and also suggests that out-of-plane 𝜋 –  𝜎 interactions are stronger, which makes 

μzxzx is higher than μxxxx. The present calculations of induced polarization and flexoelectric 

coefficients of pristine BNS are in good agreement with the present results obtained using 

the state-of-the-art ab initio method (Duerloo et al., 2012) and MD simulations (Zhuang et 

al., 2019). 

 

Fig. 5.5 Variation in polarization (Pz) with strain gradient (k) for pristine BNS. 
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Fig. 5.6 Snapshots of distribution of charge densities: side, top and ortho views of pristine BNS under 

bending deformation at bending curvature of 0.001 Å-1. 

 

5.3.1 Electromechanical response of BGHs 

 Interface engineering and dopant engineering allows researchers to modify the 

mechanical and electronic properties of numerous nanomaterials for some specific 

applications. In the present study, graphene domains interfaced with BNS in such a way 

that non-centrosymmetric interface of graphene-BNS can be created in resulting monolayer 

heterostructure (see Fig. 5.7). All C atoms at the interface are partially covalent with N 

atoms.  Integration of graphene domains with BNS was considered because B, C and N 

atoms have the same planar sp2 hybridization (Beheshtian et al., 2012). To examine the 

effect of different graphene domains, four cases of armchair BNSs were considered: 

pristine, circular graphene domain, triangular graphene domain and trapezoidal graphene 

domain. Schematic representations of these structures are shown in Fig. 5.7. Note that a 

constant C-doping concentration of 5.6% was considered. The doping concentration is the 

ratio of number of C atoms to the total number of atoms in the sheet. 
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Fig. 5.7 Schematic representations of (a) pristine BNS, (b) BGH with circular graphene domain, (c) BGH 

with triangular graphene domain and (d) BGH with trapezoidal graphene domain. 

 

 The explicit simulations were performed with 5.6% concentration of graphene 

domain (Kundalwal et al., 2020) irrespective of shape of domain. Note that graphene 

domain concentration is the ratio of C atoms in BGH to the total number of atoms in pristine 

BNS. During the in-plane movement, the low polarization was occurred in BGH due to the 

strain gradient at the graphene-BNS interface. However, once BGH is bent, the  𝜋 − 𝜎 

interactions begin to increase, which induces a net non-zero dipole moments normal to the 

sheet. In the out-of-plane displacement, the inversion symmetry of graphene domain breaks 

due to its bending, leading to 𝜋 − 𝜎 interactions. Therefore, 𝜋 − 𝜎 interactions modify the 

charge density state of C atoms which induces polarization (Dumitricǎ et al., 2002; 

Kundalwal et al., 2017). It is important to note that during the out-of-plane displacement, 

planar hybridization of BNS is in between sp2 to sp3 hybridization (Naumov et al., 2009). 

This results in partial ionic charges transfer from a concave to convex region (Kundalwal 

et al., 2017). This is also in good agreement with the recent study on graphene sheet and 

BNS where the polarization was calculated using DFT (Kundalwal et al., 2017), MD 

(Zhuang et al., 2019) and ab-initio simulations (Kundalwal et al., 2017).  

(a) (b) 

(c) (d) 
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 Furthermore, the flexoelectric effect of BGH was studied by considering out-of-

plane polarization, 𝑃𝑧, plotted as a function of 𝑘 as shown in Fig. 5.8. Snapshots of the 

distribution of charge densities of BGHs (with triangular, trapezoidal and circular graphene 

domains) for the bending curvature of 0.001 Å-1 of BGH are illustrated in Fig. 5.9. As 

expected, with increasing k, the induced polarization also increases due to the asymmetry 

of π orbitals on C and N atoms. The flexoelectric coefficients of BGHs were obtained from 

a linear fitting of polarization as a bending curvature function, listed in Table 5.1. It can be 

observed from Fig. 5.8 that the bending of BGHs with triangular and trapezoidal graphene 

domains provides higher out-of-plane polarization (𝑃𝑧) due to the breaking of symmetry of 

π orbitals of C atoms compared to the in-plane polarization (𝑃𝑥) induced due to the strain-

gradient polarization arised from non-centrosymmetric interface of graphene-BNS 

domains. It can also be observed that more N atoms in BNS that are partially covalently 

bonded with C atoms (see Fig. 5.9) induces more dipole moments due to higher 

electronegativity differences in C–N bonds than C–B bonds. This leads to higher out-of-

plane polarization in BGH (see Fig. 5.9). It can be observed from Figs. 5.9(a) and (b) that 

the distribution of charge density of triangular and trapezoidal cases is divided into two 

parts: (i) uniform in the overall BNS except at the edges and (ii) at C-N covalently bonds. 

The distribution of charge density in BGH is mostly around the C and N atoms due to 

higher deformation of C–N bonds and higher electronegativity of N atoms than B atoms 

(see Figs. 5.9(a) and (b)). It can also be observed from Figs. 5.9(a) and (b) that during out-

of-plane displacement, inversion symmetry of C-C atoms breaks which improves the 

induced dipole moments for the triangular and trapezoidal cases. The enhancement of 

15.28% and 7.83% was observed in the value of flexoelectric coefficient (μzxzx) of BGH 

with triangular and trapezoidal graphene domains along z-direction, respectively, while 

reduction of 25% was observed for the circular graphene domain in BNS. This is attributed 

to the fact that circular graphene domain does not break the symmetry of BGH. Therefore, 

the induced dipole moments across the circular graphene-BNS interface are found to be 

symmetric and get canceled out of each other (see Fig. 5.9(c)). The enhancement of 2.95% 

and 2.83% was observed in the value of flexoelectric coefficients (μxxxx) of BGH with 

triangular and trapezoidal graphene domains along the x-direction, respectively, while 

reduction of 7.62% was observed for the circular case.  
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Fig. 5.8 The variation of (a) polarization in the z-direction (Pz) and (b) polarization in the x-direction (Px) 

with strain gradient k for pristine BNS and BGHs. 

 

Table 5.1: Flexoelectric coefficients of pristine BNS and BGHs. 

Properties Pristine BNS 
BGHs 

Triangular Trapezoidal Circular 

𝛍𝐳𝐱𝐳𝐱 (pC/m) 

Present 0.255 0.309 0.289 0.201 

Ref. 
0.26 (Zhuang et 

al., 2019) 
- - - 
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Fig. 5.9 Snapshots for distribution of charge densities: side, top and ortho views of BGHs with (a) 

triangular, (b) trapezoidal, and (c) circular graphene domains under bending deformation at bending 

curvature of 0.001 Å-1. 

 

(c) 

(a) 

(b) 
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Moreover, we also studied the bond length variation of BGHs at different bending 

curvatures. The schematic representation of bond length (Å) variation for different BGHs 

is demonstrated in Fig. 5.10 at a fixed bending curvature of 0.001 Å-1. It is worth noticing 

that the bending modifies the bond length and accordingly, the inversion symmetry of π 

orbitals of C and N atoms breaks differently (see Fig. 5.10). In case of pristine BNS, B–N 

bond length (Å) variation ranges from 1.446 Å to 1.450 Å. While in the case of BGH, B–

N, C–B, C–C, and C–N bond length (Å) variations are 1.446 Å to 1.450, 1.421 Å to 1.436 

Å, 1.421 Å to 1.434 Å, and 1.446 Å to 1.463 respectively. Such bond length variation 

mainly depends on the distribution of charges on B, C and N atoms.  

 

Fig. 5.10 Schematic representations of variation in bond length (Å) for BGHs with: (a) triangular, (b) 

trapezoidal and (c) circular graphene domains at bending curvature of 0.001 Å-1. 

 

5.3.2 Bending stiffness of BNSs/BGHs 

In the previous sets of outcomes, electromechanical response of 80 Å × 80 Å 

BNS/BGH was studied for a constant 5.6% graphene domain concentration. Further, MD 

simulations were performed to determine the bending stiffness of BGHs. Figure 5.2 

demonstrates the bending response of BNS/BGH along the principal curvature direction. 

The variation of potential energy of pristine BNS and BGHs follows a quadratic bending 

energy relationship between ΔE, and k as given by Eq. (5.12). It can be observed from Fig. 

5.11(a) that during bending displacement, higher potential energy is stored in the middle 

(c) 

(b) 

(a) 
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portion of the rectangular bins of BNS/BGH because of their higher deformation, and it 

reduces with the fixed ends of the BNS/BGH (left and right sides of the rectangular bins). 

It can also be observed from Fig. 5.11(a) that the potential energy of triangular, trapezoidal, 

and circular cases increases because covalent C–C bonds of graphene domains show strong 

π and σ interatomic interactions compared to pristine BNS. Note that B–N bonds of BNS 

possess weak π and σ interatomic interactions due to the difference of electronegativities 

of B and N atoms (Ansari et al., 2015; Xiong and Cao, 2015). Therefore, BGH stores higher 

potential energy compared to pristine BNS at the same value of strain gradient, which is in 

good agreement with the existing outcomes (Thomas et al., 2015).   

 

Fig. 5.11 The variation of (a) potential energy and (b) bending stiffness of BNS and BGHs under different 

bending curvatures.  

 

Table 5.2: Bending stiffness of pristine and C-doped BNS. 

Properties Pristine BNS 
BGHs 

Triangular Trapezoidal Circular 

Bending 

stiffness 

(eV) 

Present 1.25 1.69 1.42 1.33 

Ref. 
1.2-1.4 (Gao and Xu, 2015; 

Thomas et al., 2015) 
- - - 

 

 The bending stiffness is one of the essential mechanical properties of membranes 

and layered structures. From the previous studies, it was identified that the bending 

stiffness of SL BNS depends on the different parameters such as chiral angle, chirality and 

bending curvature (Ma et al., 2011). The bending stiffness of BNS/BGH increases when 

the bending curvature increases as shown in Fig. 5.11(b). BGHs show higher bending 

stiffness due to the integration of graphene domains at approximately 1.35-1.68 eV while 

partially ionic B–N bonds show less bending stiffness around 1.2-1.4 eV (Gao and Xu, 
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2015; Thomas et al., 2015) because of electronegativity difference of B and N atoms. 

Bending stiffness of BNSs reported by numerous researchers using different techniques 

and approximation was compared with present results, listed in Table 5.2. 

  Several theoretical (Naumov et al. 2009; Kang et al. 2018) investigation reported 

that the large corrugations in the out-of-plane direction occur due to the weaker B–N 

atomic bonds (see Fig. 5.12(b)). Due to this, the partial ionic characteristic in the BNS layer 

increases interlayer interactions, leading to an enhancement of magnitude of the hardness 

of 2D bulk BNSs compared to the graphene layers. Therefore, the bending stiffness of SL 

BNS is less as compared to the graphene sheet (Scarpa et al., 2010) and graphene domains 

can be integrated into the BNS to reduce its hardness. The lowest bending stiffness of 1.25 

eV is obtained for pristine BNS due to the partially ionic B–N bonds. The respective 

bending stiffness of BGH with triangular, trapezoidal, and circular graphene domains was 

observed as follows: 1.69 eV, 1.42 eV and 1.33 eV. The values of bending stiffness of 

BGH with triangular, trapezoidal, and circular graphene domains are enhanced by 35.40%, 

13.72% and 6.54%, respectively, along the curvature direction. This observation is also 

interesting that curvature induced anisotropy of BNS must be carefully considered in 

engineering applications.  

 

Fig. 5.12 Side view of flat and corrugated nanostructures of BGHs. 
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5.4 Conclusions 

In this chapter, a novel flexoelectric effect in monolayer boron nitride-graphene 

heterostructures (BGHs) was comprehensively studied using MD simulations with a 

Tersoff potential force field. Graphene domains with 5.6% of area fraction were interfaced 

with BNS in different shapes: triangular, trapezoidal, and circular. Systematic bending 

deformations were performed on BNS/BHGs to study the bending stiffness and 

electromechanical coupling attributed to the piezo- and flexo-electric effects. First, the 

bending stiffness and flexoelectric coefficients of pristine BNS were compared with the 

previous results and we found good agreement between present and existing results. The 

present results reveal that electromechanical coupling of BGHs is enhanced due to the out-

of-plane bending compared to in-plane stretching. During bending, the induced atomic 

polarization along the z-direction of BNS/BGH is higher compared to the x-direction. As 

bending curvature increased, the induced polarization and bending stiffness of BNS/BGHs 

is also increased. Flexoelectric coefficients of BGHs with triangular and trapezoidal 

graphene domains are increased while the reverse is true in case of circular graphene 

domain compared to pristine BNS. A BGH with a triangular graphene domain showed 

higher polarization than BNS as well as BGH containing other graphene domains. An 

integration of graphene with N atoms of BNS results in higher dipole moments because the 

C-N bond is more electronegative than the C-B bond. BGHs with triangular, trapezoidal, 

and circular graphene domains showed higher bending stiffness than pristine BNS.  

 Multi-layered (ML) BNSs are preferred for reinforcing nanocomposites over SL-

BNSs since the latter is less stable. The elastic properties and fracture behaviour of ML-

BNSs are mostly unknown. In the previous three chapters, the electromechanical response 

of SL-BNSs was illustrated when they were subjected to various loading conditions. As a 

consequence, the electromechanical response of ML-BNSs (atomic layer number up to 12) 

under uniaxial tensile loading condition will be studied in the next chapter. 
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6. Chapter 

   Electromechanical response of 

multilayer BNSs 
 

In this chapter, the electromechanical response of multilayer (ML) BNSs investigated using 

MD simulations. Effects of various factors such as chirality, number of layers, and strain 

rate on the electromechanical response of ML-BNSs were critically examined. Using 

examples drawn from the atomistic bond mechanics, this chapter demonstrates the 

electromechanical response of ML-BNSs. 

 

6.1 Introduction  

 Use of different layers of combination of BN-based materials attracted an intense 

attention in the last two decades. The strong interlayer interactions are often characterized 

and dominated by covalent bonding, and the weaker interlayer interactions are determined 

by a delicate balance between London dispersion forces, electrostatic interactions 

(Coulomb), or a resultant between these two called as pair-wise interactions (Kim et al., 

2013). The relationship between these interactions is the relative contribution of interlayer 

binding (bonded and non-bonded). Therefore, it is important to understand mechanical, 

electrical, and electromechanical response of ML-BNSs. Many 2D nanomaterials exist in 

the bulk as layered form. Among them, the most prominent ones are graphene (Mortazavi 

et al., 2012), BN (Naumov et al., 2009), transition-metal dichalcogenides (e.g., TMDC and 

MoS2) (Wu et al., 2014), and oxides (e.g., titania) (Dan Tan et al. 2019, 2020).  

 Some of the limited experimental investigations are available on multilayer (ML)-

BNS such as micromechanical cleavage technique (Pacil et al., 2008), chemical solution-

derived method (Han et al., 2008), and CVD (Sutter et al., 2013). For, instance, using the 

micromechanical cleavage technique, Pacil et al. (2008) successfully synthesized an 

extremely thin sheet of BNS (between one to ten atomic layers). For the varied thickness 

of BNS, the morphology of the obtained sample was characterized using optical 

microscopy and AFM. It is also found that the elastic modulus of stacked BNS is in the 
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range of 0.5 to 0.8 TPa. Using the first-principles calculations, Naumov et al. (2009) 

studied an electromechanical response of thick sp2 bonded BN sheet. They investigated the 

effect of even and odd layers on polarization of ML BNS. They found that the flexoelectric 

effect exists in an ultrathin BN film with an odd number of layers such as 1, 3, 5,.. This 

conclusion is in line with findings reported in Partoens and Peeters (2007). Within a tight-

binding approach, Partoens and Peeters (2007) showed that Dirac fermions with a linear 

dispersion are present in graphene stacks only for an odd number of layers; in case of an 

even number of layers only normal fermions with parabolic energy dispersion occur. 

Michel et al. (2011) derived a unified theory of phonon dispersions and piezoelectricity for 

MLs of BNSs. The study indicates that 3D MLs of BNSs with an even number of layers 

(Nu) (symmetry D6h) do not show piezoelectricity and MLs with odd number of layers 

(symmetry D3h) show piezoelectricity. They also reported that the piezoelectric coefficient 

e111 is inversely proportional to Nu. Zhang and Meguid (2015) examined the influence of 

tube layer number on the piezoelectric properties of multi-walled BNNTs using MD 

simulations. Their results revealed that the piezoelectric coefficient is positive for BNNTs 

with odd numbers of layers but negative for those with even numbers of layers. For both, 

odd and even cases, the magnitude of the piezoelectric coefficient was found to decrease 

with increasing layer number of BNNTs. Zhang and Zhou, (2018) studied the piezoelectric 

characteristic of ML-BNS using MD simulations via the resonance frequencies which they 

adjusted by introducing an external electric field. This discovery implies that ML-BNSs 

might be used as a starting point for developing innovative piezoelectrically adjustable 2D 

nanoresonators with ultrahigh tensile mechanical and lightweight characteristics. 

 The literature review reveals that few investigations on the electromechanical 

response of single layer (SL) BNSs exist with significant findings. There is no single study 

exists on studying the electromechanical response of ML-BNSs. Therefore, this has 

inspired us to conduct this work to determine the electromechanical response of ML-BNSs. 

Some important factors such as the number of atomic layers, chirality, fracture behaviour, 

effect of strain rate were considered to study the mechanical properties and piezo- and 

flexo-electricity ML-BNSs.  
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6.2 MD modelling of SL and ML-BNSs    

In the current study, MD simulations were carried out to investigate the 

electromechanical response of ML-BNSs. All MD simulations were performed using open-

source software LAMMPS (Plimton et al., 1995). The structural analysis and data 

processing of ML-BNSs were conducted using OVITO visualization software (Stukowski 

et al., 2010). In all the simulations, the bonded interactions between B and N atoms were 

described using Tersoff potential (Tersoff, 1989, 1988) and non-bonded interaction of B 

and N atoms were described using Lennard-Jones (L-J) or Morse potentials (Akiner et al. 

2016). 

6.2.1 potential 

 The atomic bonded intralayer interactions in BNS are described using the optimized 

Tersoff potential which has been successfully used in some previous studies (Mortazavi 

and Rémond, 2012; Zhao and Xue, 2013; Zhang et al., 2017; Vijayaraghavan and Zhang, 

2018; Zhang and Zhou, 2018). The parameters of Tersoff potential are thoroughly 

discussed in chapter 2. Using this potential, the total energy 𝐸𝑡𝑜𝑡𝑎𝑙 is as follows:  

Etotal =  ∑ Ei

i

=  
1

2
 ∑ Vij

i≠j

                                                                 (6.1) 

Vij =  fC(rij)[fR(rij) + bijfA(rij)]                                                      (6.2) 

where 𝐸𝑡𝑜𝑡𝑎𝑙  is the total energy of the system, 𝐸𝑖 is the site energy, and 𝑉𝑖𝑗 is the bond 

energy. The indices 𝑖 and 𝑗 run over the atoms of the system. Term 𝑟𝑖𝑗 is the distance 

between atom 𝑖 and 𝑗, while 𝑏𝑖𝑗 is the bond angle term which depends on the local 

coordination of atoms around atom 𝑖. Terms 𝑓𝑅 and 𝑓𝐴 are the repulsive and attractive pair 

potentials, respectively. Term 𝑓𝐶  is the cut-off function provided to limit the potential range 

and thus, saves the computational resources required for MD simulations.  

 According to the previous experimental and theoretical investigations (Marom et 

al., 2010; Constantinescu et al., 2013; Mirnezhad et al., 2013), a bi-layer BN possesses 

three high-symmetry stacking orders based on the graphite structure (Hao et al., 2010): AA 

(eclipsed with N over N and B over B), AA′ (eclipsed with B over N), and AB (staggered 

with B over N) as shown in Fig. 6.1. Theoretically, there are numerous vertically stacked 

modes in ML-BNS, and they can transform into each other under specific conditions. 



Chapter 6 

 

121 

 

However, the AB stacking mode is the most stable structure based on the theoretical 

calculations (Marom et al., 2010) and experimental observations (Mallick and Elder, 2018). 

Therefore, simulations were performed considering AB stacking mode to investigate the 

influence of number of atomic layers on the electromechanical response of ML-BNS. 

 

Fig. 6.1: Schematic representation of the possible high symmetry stacking of BNSs: (a) AA stacking, (b) 

AA’ stacking, and (c) AB stacking. 
 

In case of non-bonded van der Waals interaction between individual B and N atoms, 

there is a variety of potentials used in the literature. Commonly, the non-bonded 

interactions can be described using popular Lennard-Jones (L-J) or Morse potential. In the 

current study, the L-J term and a coulombic-term were used as follows (Akiner et al., 2016): 

U(𝑟𝑖𝑗) = 4εij [(
𝐷ij

𝑟𝑖𝑗
)

12

− (
Dij

𝑟𝑖𝑗
)

6

] + 𝐾𝐶𝑞𝑖𝑞𝑗𝑟𝑖𝑗
−1                                 (6.3) 

where 𝑈(𝑟) is the potential energy (PE) between a pair sheet at the structure of B-N bi-

layers, 𝑟𝑖𝑗 is the finite distance at which the inter-particle potential is zero between atoms i 

and j in adjacent layers, 𝜀 is a parameter determining the depth of the potential well, and 

𝐷𝑖𝑗 is the diameter of the atom (a length-scale parameter of the atom determining the 

position of the potential minimum). 𝐾𝐶 is the Coulombic constant and 𝑞𝑖 is the partial 

charge of the ith atom. Meanwhile, the partial charge 𝑞 for the L-J potential was taken as 

1.1378 eV and the cutoff distance of L-J interaction was set to 10 Å (Akiner et al., 2016; 

Ghaderzadeh et al., 2021). The parameters of L-J potential are summarized in Table 6.1. 

The L-J fitting parameters for BNS structures such as 𝐷𝑖𝑗 = 3.34 Å and 𝜀𝑖𝑗 = 5.0 meV were 

used for the interlayer spacing, and the binding energy obtained from the DFT calculations 

(a) (b) (c) 
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(Marom et al., 2010) was used. The thickness of BNS was considered as 3.4 Å (Boldrin et 

al., 2011).  

Table. 6.1 L-J interaction parameters for BN atoms. 

 

 To obtain the stress-strain (𝜎 − 𝛿) relations during the tensile loading, the virial 

stress 𝜎𝛼𝛽 is calculated according to the following equation (Zhao and Xue, 2013):  

σαβ =  −
1

V
(∑  

N

α=1

mαvx
αvy

α +
1

2
∑  

N−1

α=1

∑ rαβ,x
N−1

N

β=a+1

Fαβ,y )                       (6.4) 

where 𝑚𝛼  is the mass of atom 𝛼, 𝑣𝑥
𝛼 is the velocity component in the axial direction of 

atom 𝛼, 𝐹𝛼𝛽,𝑦 refers to the axial component of interatomic force between atoms 𝛼 and 𝛽, x 

and y denote the indices of the Cartesian coordinate system, 𝑟𝛼𝛽,𝑥
𝑁−1 is the interatomic 

distance in the axial direction between atoms 𝛼 and 𝛽, 𝑉 refers to the volume of simulated 

BNS, and 𝑁 is the number of atoms. It can also be observed from Eq. (6.4) that at low 

temperature, the stress contribution from kinetic part (𝑚𝛼𝑣𝑥
𝛼𝑣𝑦

𝛼) becomes negligible due to 

the low velocities of atoms. 

 The dipole moment induced due to the applied external force and the resulting 

polarization (𝑃) can be calculated using the following relation (Tan et al., 2020): 

P =  ∑
qir𝑖

V

N

i
=   ∑

qir𝑖

nhA

N

i
                                                       (6.5) 

where 𝑞𝑖 is the charge of ith atom, 𝑟𝑖 is the x-coordinate of ith atom, 𝑁 is the number of 

atoms. In our case, 𝑉 is simply 𝑛ℎ𝐴. Here 𝑛 represents the atomic layer number, ℎ is the 

thickness of SL BNS, and 𝐴 is the area of planer BN sheet (Alyörük et al., 2016):  

Note that the total polarization (𝑃1) constitutes the contributions from both 

flexoelectricity and piezoelectricity. The constitutive relation for the polarization vector 

induced due to the flexoelectricity and piezoelectricity effects may be written as 

(Kundalwal et al., 2017; Javvaji et al., 2018): 

P1 = eijkεjk + μijkl

∂εjk

∂x𝑙
                                                                 (6.6) 

Parameter B–B B–N N–N 

ε (kcal/mol) 0.0 0.007 0.2496 

D (Å) 0.0 3.75 3.1461 
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where  𝑒𝑖𝑗𝑘 and 𝜇𝑖𝑗𝑘𝑙 are the respective piezoelectric and flexoelectric tensors; 𝜀𝑗𝑘 and 
𝜕𝜀𝑗𝑘

𝜕𝑥𝑙
  

are the strain and strain gradient, respectively. 

 First, initial structures of SL- and ML-BNSs were created with a bond length of 

1.446 Å (Amalia et al., 2019) and the spacing distance between BNSs was taken as 3.35 Å 

(Nikiforov et al., 2012; Michel et al., 2016). The structures of BNSs were then modified 

by minimizing their energy using the conjugate gradient approach. The structure was 

considered optimal when the difference in total potential energy (PE) between the two 

consquent stages was less than 1.0×10-10 kcal/mol (Dewapriya and Rajapakse, 2014; 

Choyal and Kundalwal, 2020). In both the x and y directions, a periodic boundary condition 

(PBC) was applied, and the simulation box was kept large enough to allow for nonbonded 

interlayer interactions. A short time increment of 0.5 fs was employed in this technique to 

accurately capture the deformations of ML-BNSs at extremely high strain rates (SR) ~109 

𝑠−1. Prior to applying the loading condition, the ML-BNSs were allowed to anisotropically 

relax to zero pressure in x and y directions at a temperature of 300 K for 50 ps time 

increments using constant pressure-temperature (i.e. NPT ensemble) by means of Nosé–

Hoover barostat method (Evans and Holian, 1985). After the energy minimization, uniaxial 

tensile loading was applied to the sheets. Schematic of such loading condition on ML-BNS 

is shown in Fig. 6.2(a). The loading condition was applied by elongating the periodic 

simulation box in the x-direction under constant SR ~109 𝑠−1. In order to satisfy the 

uniform uniaxial stress condition, the PBC was applied in the loading direction and the 

simulation box in the y-direction was allowed to reach zero stress by using NPT Nosé–

Hoover method (see Fig. 6.2(b)). Virial stresses in the x direction (uniaxial tensile stress) 

were calculated at each strain level (see Eq. 6.4). The axial strain of BNS was calculated 

using relation, 𝛿 =  (
𝐿𝑓−𝐿𝑖

𝐿𝑖
) , in which 𝐿𝑖 and 𝐿𝑓 are the initial and final lengths of BNS, 

respectively, in the direction of application of tensile load. Using the Hooke’s law, the 

slope of the initial linear part of uniaxial tensile 𝜎 − 𝛿 curve can provide the Young’s 

modulus of SL- and ML-BNS along the loading direction.  
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Fig. 6.2 (a) MD model of uniaxial tension test of bi-layer BNSs. (b) The periodic boundary conditions 

applied in the x and y direction. Atoms depicted in ochre are boron and atoms depicted in blue are 

nitrogen. (c) Simulation model of ML-BNSs. 

6.3 Results and discussions 

In order to verify the validity of current MD simulations, the elastic and 

piezoelectric properties of ML-BNSs reported by other researchers using different 

techniques and approximations were considered (see Table 6.2). Note that several MD 

simulations were performed to obtain the reliable elastic and piezoelectric coefficients of 

BNSs under the uniaxial tensile loading. In fact, our results are found to be in good 

agreement with the existing results performed by phonon dispersion (unified theory) and 

MD simulations (Michel and Verberck, 2011; Mirnezhad et al., 2013; Zhang and Zhou, 

2018); some of our results are marginally differ due to the use of different techniques and 

approximations by other researchers. A fixed size of 80 Å × 80 Å of BNS was considered 

for simulations. The procedure for determining the electromechanical response of ML-

BNSs is as follows. First, Young’s modulus of ML-BNS was obtained using the averaged 

(a) (b) 

(c) 
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uniaxial tensile deformation. Here, the maximum tensile strength is identified as the 

maximum stress prior to the failure and Young’s modulus was determined from the slope 

of 𝜎 − 𝜀 curve under the uniaxial tensile test within the elastic limit (ε < 0.03). In addition, 

the effect of strain rate (SR) on the mechanical properties is also discussed in this chapter. 

(ii) Second, the piezoelectric coefficient (𝑒) of ML-BNS was calculated using MD 

simulations. A small in-plane displacement was applied at the left and right edges in the x-

direction of the nanosheet. During this process, we recorded the axial polarization change 

of nanosheets vs applied uniaxial strain. Afterwards, the piezoelectric coefficient of BNSs 

can be extracted from the slope of obtained 𝑃1 − 𝛿 curve within the elastic limit. (iii) Third, 

the flexoelectric coefficient (𝑒) of ML-BNS was calculated using Eq. (6.5) by eliminating 

the piezoelectric contribution. To perform the bending deformation, a sheet was divided 

into vertical rectangular bins. At each vertical rectangular bin, the deformation gradually 

increases from the edge to the middle section of the sheet, and maximum deformation 

occurs in the middle portion of the vertical rectangular bins. The bending deformation 

mainly depends on the bending curvature (non-uniform strain gradient on each bin). During 

this process, we recorded the out-of-plane polarization change of nanosheets along with 

non-uniform strain gradient.  

Table 6.2: Comparison of Young’s modulus and piezoelectric coefficients of SL- and ML-BNSs. 

 

6.3.1 Stress–strain behavior of ML-BNSs under uniaxial tension 

            The variation of normalized PE of ML-BNSs subjected to uniaxial tension loading 

is shown in Fig. 6.3. As expected, it can be observed that the ML-BNSs with higher number 

of atomic layers show higher PE than the lower ones irrespective of their chirality. This is 

Layer 

number 
References 

𝐄  

(TPa) 

Layer 

number 
References 

𝒆𝒙𝒙𝒙 

(C/m2) 

1 to 3 

layers 

Present 
AC/ZZ 

0.879/0.847 
1 to 20 

layers 

Present 
odd layer = 0.387 – 

0.11, Even layer = 

0 

(Mirnezhad et 

al., 2013) 
773 -0.7 

(Michel and Verberck, 

2011) 

odd layer = 1.0 – 

0.1, Even layer = 0 

1 to 5 

layers 

Present AC/ZZ 

0.879/0.847 
1 to 4 

layers 

Present odd layer = 0.387 – 

0.11, Even layer = 

0 
(Mukhopadhyay 

et al., 2017) 
0.805 

(Zhang and Zhou, 

2018) 

odd layer = 0.58 – 

0.19, even layer = 0 
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attributed to the higher volume of sheets, which eventually stores higher PE (see Fig. 6.3). 

It can also be observed that the ML-BNSs in the armchair direction show higher PE 

compared to the ML-BNSs in the zigzag direction.  

             The variation of PE with relaxation time for the equilibration of bilayer BNSs in 

the armchair and zigzag directions is shown in Fig. 6.4(a). It can be observed that the 

structure of 2_layer BNS becomes stable around 10 ps. The total time used for 

thermodynamics stability was 50 ps and it is also identified from the previous literature 

that such time is sufficient to obtain stable structures of ML-BNSs. Further, we examined 

the stability of 2_layer containing 5120 atoms with a Nose–Hoover barostat (NPT) at 300 

K. Figure 6.4(b) shows the fluctuations of temperature (K) as a function of the simulation 

time steps (ps). After 10 ps, no destruction was found in the 2_layer structure (see Fig. 

6.4(b)), which confirmed its thermodynamic stability at finite temperature 300 K. Similar 

trends of variation in potential energy and temperature with time steps for the other types 

BNSs are observed and they are not shown here for the sake of brevity. 

 

Fig. 6.3 The variation of normalized potential energy of ML-BNSs in the armchair and zigzag directions. 

(AC-Stacking of armchair BNSs; ZZ-Stacking of zigzag BNSs; Bulk BNS - thickness more than 20 to 25 Å) 
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Fig. 6.4 The variation of the (a) potential energy (eV) with relaxation time (ps) (b) temperature with 

relaxation time (ps) of a 2_layer BNS in the armchair and zigzag direction at 300 K. 

 

            The mechanical properties of ML-BNSs under uniaxial tensile loading in the 

armchair and zigzag directions were studied at a given finite temperature (300 K). The 𝜎 −

𝛿 curve of ML-BNSs in the armchair and zigzag directions is shown in Figs. 6.5(a) and (b) 

at a strain rate (SR) of 109 s−1. The 𝜎 − 𝜀 response of ML-BNSs with a varied number of 

layers of 2, 3, 5, 8 and bulk BNS (with twelve layers is also presented. For the sake of 

brevity, the additional atomic layers of BNS are not shown here. The Young's modulus, 

failure strain, and maximum tensile strength of different cases are summarized in Table 

6.3. It can be observed from Fig. 6.5 that the ML-BNSs are slightly less stiff in the zigzag 

direction as compared to the armchair ones at a given temperature. As an overall trend, 

Young’s modulus and ultimate tensile strength decrease as the number of atomic layers of 

BNs increases (Figs. 6.5 and 6.6). The failure of armchair ML-BNSs occurs in a single 

stage, whereas failure of zigzag ML-BNSs occurs in two stages. Step-by-step snapshots of 

2_layer BNS in the armchair and zigzag directions are illustrated in Figs. 6.7 and 6.8, 

respectively, to understand the difference in deformation mechanics process and fracture 

behaviour. Single-stage failure occurred in ML-BNSs in the armchair direction at a strain 

value of 0.46 to 0.49. The two-stage failure occurred for the zigzag case in which the initial 

failure occurs between 0.25 and 0.3 and the secondary failure occurs between 0.55 and 

0.62. The zigzag ML-BNS shows a higher failure strain than the armchair case at the same 

ambient temperature but shows lower strength owing to the strain hardening. There are two 

types of B–N bonds exist for two cases: (i) bonds 𝑎1 and 𝑎2 in the armchair sheet (see Fig. 

(a) (b) 
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6.9), and (ii) bonds 𝑧1 and 𝑧2 in the zigzag sheet (see Fig. 6.10). In armchair ML-BNS, 

bonds (𝑎1) exist along the loading direction which bear more stress than that of inclined 

bonds (𝑎2). The initial bond (𝑎1) brakes in the armchair direction, but there is no B–N bond 

braking in the zigzag direction which connects two hexagonal rings. The sheet consists of 

four types of deformed B-N bonds: (i) 𝑎2 and 𝑧1 are slightly inclined to the direction of 

loading, and (ii) 𝑎1 is aligned with the loading direction, and 𝑧2 is normal to the direction 

of loading. Under the uniaxial tensile loading in the armchair direction, the bonds 𝑎1 and 

𝑎2 are under tension, while the bonds 𝑧1 and 𝑧2 are under tension and compression, 

respectively, when the loading is applied in zigzag direction (see Figs. 6.9 and 6.10). 

During the deformation in the armchair direction of BNS, all six B–N bonds (𝑎1and 𝑎2) 

carry the higher load while in the zigzag case, only four B–N bonds ( 𝑧1) carry the tensile 

load and the rest of the other bonds are under compression. It can be clearly identified that 

the bonds 𝑎1 and 𝑎2 are stress-bearing bonds in the armchair direction as compared to the 

bonds 𝑧1 and 𝑧2 in the zigzag direction. Therefore, the higher failure strength was observed 

in the armchair direction due to the existence of more stress bearing bonds 𝑎1
′ . It may be 

observed that the failure of sheets starts from the innermost atomic layer and then reaches 

the outermost layer through the shear stress induced in the opposite direction, as shown in 

Fig. 6.11. These shear stresses are induced due to the van der Waals forces exist between 

the layers of ML-BNSs. The induced stress magnitude is higher in the innermost layer of 

the sheet, and it decreases as the number of layers increases and becomes lower in the 

outermost layer. In the current study, Young’s modulus of bulk BNS was found to be 

around 0.794 to 0.766 TPa, which is in good agreement with the experimental findings of 

0.5 to 0.8 TPa (Pacil et al., 2008). Based on the obtained results, it can be concluded that 

the obtained elastic properties become acceptably independent of number of layers when 

the total number of ML-BNS layers are eight, where the Young’s modulus is close to the 

ranges of experimental bulk properties. This finding is interesting in the modeling of 

polymer nanocomposites reinforced by ML-BNSs. Therefore, we can use the bulk 

properties of BNS in the modeling when the total number of atomic BN layers are ≥ 8. 

 

 

 



Chapter 6 

 

129 

 

Table 6.3: Elastic properties of SL- and ML-BNSs.  

S. 

No. 

No. of 

atomic 

plane 

Young’s modulus 

(TPa) 

Failure strain Maximum tensile 

strength (GPa) 

Armchair Zigzag Armchair Zigzag Armchair Zigzag 

1 1_layer 0.879 0.847 0.492 0.614 243.146 225.470 

2 2_layer 0.864 0.823 0.469 0.605 203.086 207.158 

3 3_layer 0.853 0.812 0.491 0.591 225.102 190.271 

4 4_layer 0.842 0.801 0.469 0.585 190.757 181.486 

5 5_layer 0.833 0.790 0.489 0.580 210.951 174.254 

6 6_layer 0.822 0.785 0.466 0.577 186.031 160.125 

7 7_layer 0.811 0.779 0.485 0.582 190.674 162.458 

8 8_layer 0.794 0.770 0.464 0.568 167.056 153.236 

9 9_layer 0.784 0.764 0.482 0.577 171.240 155.124 

10 10_layer 0.774 0.760 0.461 0.559 156.275 145.189 

11 11_layer 0.768 0.760 0.480 0.565 158.647 142.158 

12 12_layer 0.766 0.760 0.457 0.557 142.423 137.487 

 

 

Fig. 6.5 The 𝜎 − 𝜀 curve of ML-BNSs under uniaxial tensile loading in the armchair and zigzag directions. 
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Fig. 6.6 The variation of Young’s modulus of armchair and zigzag BNSs with the number of atomic layers. 

The inset shows the simulation setup. 

 

Fig. 6.7 Snapshots of the failure process of bi-layer BNSs under uniaxial loading in the armchair direction. 
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Fig. 6.8 Snapshots of failure process of bi-layer BNSs under uniaxial loading in the zigzag direction. 

 

 
 

Fig. 6.9 Deformation mechanics of SL BNS under uniaxial tensile loading in the armchair direction. Color 

configuration represents the atomic stresses induced in the BNS. 
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Fig. 6.10 Deformation mechanics of SL BNS under uniaxial tensile loading along the zigzag direction. 

Color configuration represents the atomic stresses induced in the BNS. 

 

 
Fig. 6.11 Deformation behavior of 5_layer BNS under uniaxial tensile loading in the armchair direction: 

(a) undeformed sheet, (b) deformed sheet after the application of load, and (c) failure of deformed sheet. 

Color coding indicates the atomic stresses induced in the sheet. 

 

6.3.1.1 Effect of SR on mechanical properties of ML-BNSs 

 The 𝜎 − 𝜀 relations are function of applied SR, and a system gets enough time to 

relax for reaching the equilibrium state at the lower values of SR. Therefore, to obtain the 

reliable and accurate results, the use of lower values of SR (109 s−1) is preferred. However, 

we varied the values of SR as 108, 109, and 1010 s−1 to choose the optimal value to study 

the mechanical properties of ML-BNSs. The obtained 𝜎 − 𝜀 curves of 2_layer and 5_layer 

ML-BNSs are shown in Fig. 6.12 for the armchair and zigzag cases at different SR. At low 

strain level (up to ~0.04), a linear relation between stress and strain values is obtained. 
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This linear response is commonly assumed as the linear elasticity part, in which the 

corresponding slope is equivalent to Young’s modulus. It can also be observed from Figs. 

6.12(a) and (b) that Young’s modulus of ML-BNSs in armchair and zigzag directions are 

reasonably independent of the SR values. At higher strain level, the 𝜎 − 𝜀 response shows 

a nonlinear behavior which continues up to the maximum tensile strength, the point at 

which fracture occurs in the first atomic plane. In both the cases, the nonlinear part is also 

found to be independent of SR where the fracture occurs at approximately the same stress 

and strain levels. Note that at high SR material doesn't get enough time to break the 

interatomic bond and thus shows a high tensile strength. On the other side, at lower SR 

atoms get enough time to oscillate from its mean position and thus increases the ability of 

atoms to overcome the energy threshold needed to break bonds. It may be noted that a 

higher strain rate results in a higher fracture strength (Zhang et al., 2019). As the SR 

increases from 108  s−1 to 1010 s−1, the fracture strength also increases by (i) 3.9% and 

6.1% for 2_layer armchair case, (ii) 4.2% and 4.8% for 2_layer zigzag case, (iii) 2.1% and 

3.7% for 5_layer armchair case, and (iv) 1.9% and 2.9% for 5_layer zigzag case. Based on 

the obtained results, the SR of 109 s-1 is selected for the further MD simulations because of 

predicting 𝜎 − 𝜀 trend closer to the lower SR of 108 s-1. 

 

Fig. 6.12 Uniaxial 𝜎 − 𝛿 curve of (a) 2_layer and (b) 5_layers armchair and zigzag BNS at different 

loading SR. 

 

6.3.2 Piezoelectric coefficients of ML-BNSs 

 Piezoelectric BNS is a promising nanomaterial for NEMS, but its piezoelectric 

response diminishes as the number of BNSs (n) layers in staked configuration increases 
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and becomes almost negligible when n > 10. In such layered configuration only the 

piezoelectric response of BNSs largely gets affected among all other remarkable properties. 

NEMS made of layered BNSs for modern technological applications should display strong 

piezoelectric response, combined with high mechanical stability and low environmental 

impact. Surprisingly, very few studies are performed so far to investigate the 

piezoelectricity effect in layered BNSs and their nanocomposites. Therefore, the present 

investigations were carried out to determine the electromechanical response of ML-BNSs 

using MD simulations. In this chapter, the piezoelectric properties of ML-BNS were 

investigated with the consideration of different number of atomic layers. Specifically, the 

ML-BNSs considered herein in which B atoms in one layer are stacked with N atoms in 

the neighbouring layer, and vice versa as shown in Fig. 6.2. Such AB stacking 

configuration of ML-BNS is proven to be energetically preferable and more stable than 

other possible stacking schemes and can be directly isolated from a naturally occurring 

bulk BN crystal (Li et al., 2013; Li et al., 2016).  

 Then, the size-dependent piezoelectric properties of BNS were studied by varying 

the number of atomic layers. The induced polarization in ML-BNS was calculated using 

Eq. (6.5) and the results are plotted in Fig. 6.13 for uniaxial tensile loading in the armchair 

and zigzag directions. The calculated piezoelectric coefficients (e) of ML-BNSs with 

different number of atomic layers are shown in Table 6.4. The slope of 𝑃 − 𝜀 curve during 

the uniaxial tensile loading defines the piezoelectric coefficient as shown in Fig. 6.13. It 

can be observed from Fig. 6.13 that the induced polarization in armchair BNS is higher 

than zigzag case. This is attributed to the generation of higher resultant dipole moments in 

the x-direction of armchair BNS compared to zigzag sheet (see chapter 3, Fig. 3.10). Note 

that the piezoelectric coefficients of BNS are function of its chirality and our results are in 

line with the results reported by other researchers. It is important to note that out-of-plane 

movement of sheet was not considered because B and N atoms have the same planar sp2 

hybridization (Beheshtian et al., 2012). Furthermore, in-plane polarization is significantly 

decreased with the increase in atomic layer number because the direction of induced in-

plane polarization is reversed to the adjacent layers which results in the cancellation of 

polarization (see Fig. 6.14). This cancellation effect is more pronounced in BNSs with even 

number of layers than with odd number of layers and it is a very interesting feature of ML-
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BNSs. It can be observed from Fig. 6.14 that the ML-BNSs with even layers possesses the 

crystal class of D6h (centrosymmetric) and thus do not show piezoelectricity. In contrast, 

ML-BNSs with an odd number of layers possesses the crystal class of D3h (non-

centrosymmetric) which exhibit piezoelectricity (Michel and Verberck, 2009; Zhang and 

Meguid, 2017). Therefore, the SL-BNS structure shows the largest in-plane piezoelectric 

coefficient than ML-BNS, van der Waals layered materials, due to weaker interlayer 

interactions (Michel et al., 2011). A similar relationship between piezoelectric and number 

of atomic layers is also observed in pervious DFT calculations on the ML-BNSs (Michel 

and Verberck, 2009; Zhang and Meguid, 2017; Zhang et al., 2018). 

 

Fig. 6.13 The variation of 𝑃 − 𝜀 of ML-BNSs under uniaxial tension loading in the armchair and zigzag 

directions. 

Table 6.4: Piezoelectric and flexoelectric coefficients ML-BNSs in the armchair and zigzag directions. 

 

S. 

No. 

No. of 

atomic 

plane 

Piezoelectric coefficient 

(C/m2) 

Flexoelectric coefficient  

(C/m) 

Armchair Zigzag Armchair Zigzag 

1 1_layer 0.387 0.348 0.255 0.111 

3 3_layer 0.227 0.198 0.178 0.0597 

5 5_layer 0.135 0.107 0.105 0.00489 

7 7_layer 0.100 0.064 0.0487 1.47E-4 

9 9_layer 0.015 0.010 0.00162 8.9E-5 

11 11_layer 0.011 0.010 0.0 0.0 
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Fig. 6.14 The piezoelectric coefficient of ML-BNSs as a function of their atomic layer number. The 

inset shows the simulation setup. 

 

6.3.3 Flexoelectric coefficients of ML-BNSs 

 Note that the bending is the simplest kind of deformation for determining a 

mechanical strain gradient in 2D nanomaterials or thin structures. Upon bending of polar 

(BNS) materials, the symmetry of the electron distribution breaks in the out-of-plane 

direction, and a resultant dipole moment is generated at each atomic layers (Ahmadpoor 

and Sharma, 2015). The flexoelectric coefficient was calculated using Eq. (5.10). The slope 

of polarization and mechanical strain gradient provides the flexoelectric coefficients 

(μzxzx) along the principal curvature direction. The present results are summarized in Table 

6.4. The value of the flexoelectric coefficient of SL-BNS is 0.255 pC/m and shows 

excellent agreement with the value of 0.260 pC/m obtained by Zhuang et al. (2019) using 

C-D potential model. It can be observed from Fig. 6.15 that the flexoelectric coefficient of 

ML-BNSs decreases as the number of atomic layers increases because the resultant out-of-

plane polarization cancel out with the adjacent layers of BNS.  
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Fig. 6.15 The flexoelectric coefficients of ML-BNSs as a function of their atomic layer numbers. The 

inset shows the simulation setup.  

6.4 Conclusions 

In this chapter, an electromechanical response of ML-BNS was comprehensively 

studied using MD simulations with a Tersoff and L-J potential force fields. Systematic 

uniaxial tensile loadings were applied on the ML-BNSs in the armchair and zigzag 

directions in order to investigate their stress–strain and failure behavior. The simulations 

were also carried out at different SR ranging from 108 to 1010 s-1. It is evident both fracture 

stress and strain of ML-BNSs increase as the SR increases. The simulated results also show 

that the properties are sensitive to the number of layers and loading direction as well. 

Young’s modulus and ultimate tensile strength of ML-BNNSs dropped as the number of 

BN layers increases. However, the obtained Young’s modulus for ML-BNSs containing 

eight atomic layers is close to the value of Young’s modulus of bulk BNSs. Furthermore, 

the piezo- and flexo-electricity of stacked structures with B over N (AB stacked) largely 

depend on the odd and even number of atomic layers. ML-BNSs with an even number of 

atomic layers do not show piezoelectricity due to the symmetry of D6h, whereas ML-BNSs 

with an odd number of atomic layers show piezoelectricity due to the symmetry of D3h. It 

was observed that properties decrease as the number of atomic BN layers increases in ML-

BNS after ten atomic layers and then properties completely vanish. 
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 The next chapter summarizes the significant outcomes and conclusions from this 

thesis, limitations of the study, and the future scope of this research work. The scope for 

further research on the BNSs and their nanocomposite is also suggested.  
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7. Chapter 

Conclusions and future scope 

In this chapter, major conclusions drawn from the current research work are highlighted. 

Moreover, the scope for further research on BNSs and their nanocomposite structures are 

suggested.  

 

7.1 Major conclusions 

This thesis thoroughly investigates the electromechanical response of pristine and 

C-doped BNSs using MD simulations with the three-body Tersoff potential force field. 

Both armchair and zigzag BNSs with different sizes were considered. Using a direct 

approach, we investigated the elastic, piezoelectric and flexoelectric properties of pristine 

BNS, C-doped BNS with pores and BGH under tension, shear, and bending loading 

conditions. Using an indirect approach, we investigated the elastic, piezoelectric and 

flexoelectric properties of pristine and hybrid BNSs (interface engineering of BNS/zigzag 

graphene stripe and BNS/hexagonal ring of graphene stripe). Finally, the 

electromechanical behavior of BNRC nano-beams with different boundary and loading 

conditions was studied.  

The following conclusions are drawn from the work carried out in this thesis: 

• The mechanism of polarization in BNSs is explained using the unit cell 

representation.  

• The axial and shear elastic/piezoelectric coefficients of BNS were determined using 

the tension and shear loading conditions, respectively. The elastic and piezoelectric 

coefficients of armchair BNS were found to be higher than zigzag BNS irrespective 

of the shape of pore and C-doping concentration.  

• The induced polarization in the BNSs was found to depend on the local arrangement 

of C atoms around the B and N atoms and the polarization increases if C atoms are 

surrounded by more N atoms than B atoms.  
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• The axial and shear piezoelectric coefficients of C-doped BNS with triangular and 

trapezoidal pores increased while they reduced in the case of circular pore 

compared to pristine BNS. A BNS with a triangular pore showed higher 

polarization than BNS containing other shapes of pores. The C-doping with N 

atoms results in the generation of higher dipole moments because the C-N bond is 

more electronegative than the C-B bond. 

• The piezoelectric coefficients of doped BNS increased with the C-doping 

concentration up to 12.6% and then they decrease. The elastic properties of doped 

BNS increased with the C-doping concentration up to 12.6% and then they stabilize 

and do not change beyond the total number of 2600 BN atoms. 

• The interface engineering of BNS/zigzag graphene stripe improved the axial piezo- 

and flexo-electric coefficients of hybrid BNS under the application of E-field in its 

armchair direction by 25% and 37%, respectively, compared to pristine BNS. The 

corresponding enhancement in the coefficients was observed as 18% and 16% due 

to the interface engineering of BNS/hexagonal ring of graphene stripe. 

• When the E-field applied in the armchair direction of hybrid BNS, the increase in 

total polarization is around 17% and 7% for NCB and CHR sheets, respectively, 

compared to pristine BNS due to the interface engineering of BNS/zigzag graphene 

stripe. The corresponding increase in total polarization is 21% and 10% in the case 

of E-field applied in the zigzag direction of hybrid BNS. 

• The enhancement in the values of Young’s moduli of NCB and CHR sheets are 

found to be 17.50% and 13.72% respectively, compared to pristine BNS. The 

respective enhancement in shear moduli is 11.83% and 10.30%.   

• The density and position of SW defects play a critical role on the overall 

electromechanical response of BNS. SW defect improves the polarization of BNS, 

and the converse is true for elastic properties. 

• Graphene domains with 5.6% of area fraction were interfaced with BNS in different 

shapes: triangular, trapezoidal and circular. Systematic bending deformations were 

performed on BNS/BHGs to study the bending stiffness and electromechanical 

coupling attributed to the piezo- and flexo-electric effects.  
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• The electromechanical coupling of BGHs is enhanced due to the out-of-plane 

bending compared to in-plane stretching. During bending, the induced atomic 

polarization along the z-direction of BNS/BGH is higher compared to the x-

direction.  

• Flexoelectric coefficients of BGHs with triangular and trapezoidal graphene 

domains are increased while the reverse is true in case of circular graphene domain 

compared to pristine BNS. A BGH with a triangular graphene domain showed 

higher polarization than BNS as well as BGH containing other graphene domains. 

• Elastic, strength and failure properties of ML-BNSs decrease as the number of 

atomic layers increases. 

• It is obvious that when SR increases, fracture stress and strain increase as well. This 

is due to the fact that at high SR, the material does not have enough time to break 

the interatomic bond, resulting in a high tensile strength. On the other side, slower 

SR provides more time for atoms to oscillate from its mean position and therefore 

increases the ability for atoms to overcome the energy threshold needed to break 

bonds. 

• ML-BNSs with an even number of atomic layers (symmetry D6h) are not 

piezoelectric, whereas ML-BNSs with an odd number of atomic layers (symmetry 

D3h) are piezoelectric.  

• As the number of atomic layers increases, both piezo- and flexo-electric properties 

decrease, and after ten atomic layers, the properties of ML-BNS completely vanish. 

The conducted research is a significant contribution to the scientific community due to the 

recent shift in advanced BN-reinforced composites from the use of conventional and 

carbon-based composites.  

7.2 Limitations of the study 

The following are the limitations of current study: 

• We cannot use MD simulations at the subatomic level (electron and proton), since 

MD approach is only capable of dealing with the atomic/molecular level. In MD 

simulations, atom is assumed as a particle and therefore, we cannot capture 

subatomic level phenomena. For example, DFT calculations is the appropriate 
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technique to study the polarization in BNSs due to generation of atomic dipole 

moments, but such estimations are performed in the current study using indirect 

approach reasonably. Using indirect approach, large BNS was modelled which is 

computationally challenging job in case of DFT simulations in view of involvement 

of sub-atomic parameters and DOFs.    

• The MD simulations can be performed for the system size with less than 1 million 

atoms in view of unavailability of computational facility for a small-time scale 

(shorter than 10 microseconds). If the system size and time scale become larger 

than 1 million atoms and 10 microseconds, respectively, then either supercomputer 

is required, or continuum models need to be developed. 

• Coulombic interactions, which include long-range electrostatic interactions and van 

der Waals interactions, play a dominant role in the structural stability of layered 

nanomaterials. Typically, the most computationally expensive portion of MD 

simulations is the evaluation of Coulombic interactions. As the number of charges 

in a system increases, the number of Coulombic interactions grow as the square of 

that number, potentially resulting in a prohibitively large number of interactions to 

evaluate and this needs a huge computational power. 

• BNS or hybrid BNS system considered in the current study cannot be obtained 

experimentally exactly in view of some inherent fabrication issues such as reaction, 

surface effect with substrate/atmosphere, defects, impurities etc. Advance 

fabrication techniques are becoming matured and there is a possibility of obtaining 

BNS with different shapes of pores and hybrid BNS in future.  

7.3 Scope for future work 

 The current fundamental study highlights the possibility of developing high 

performance, lightweight and multifunctional BNS-based NEMS such as nanogenerators, 

nanosensors and nanoresonators.  The success of this research (i) provided new knowledge 

in the field of BNSs that will enable modeling and characterization of their NEMS, (ii) 

initiate and serve as a solid foundation for developing a vast range of next-generation 

applications that are characterized by adaptability, multifunctionality and autonomy, such 

as energy harvesting, structural health monitoring, shape morphing, and flexible 

electronics. Thus, the present research may be followed for the further experimental 
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investigation to examine the characteristics of BNSs and their nanocomposites. Some of 

the further research works that may be undertaken in line with the present work as follows: 

• The elastic and piezoelectric properties of microscale piezoelectric nanocomposites 

containing BNSs subjected to an externally applied mechanical strain using 

hierarchical multiscale strategies.   

• Development of accurate 3D finite element (FE) and analytical electric enthalpy 

variational principle models to characterize the size-dependent electromechanical 

behaviour of special classes of BNS-based nanostructures such as plate and shell.  

• Design and propose new generation lightweight and high strength BN-based 

NEMS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7 

 

145 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

146 

 

References 

 
Abadi, R., Uma, R.P., Izadifar, M., Rabczuk, T., (2017). Investigation of crack 

propagation and existing notch on the mechanical response of polycrystalline hexagonal 

boron-nitride nanosheets. Comput. Mater. Sci. 131, pp.86–99. (DOI: 

10.1016/j.commatsci.2016.12.046) 

Ahmadpoor, F., and Sharma, P. (2015). Flexoelectricity in two-dimensional crystalline and 

biological membranes. Nanoscale. 7 pp. pp.16555–16570. (DOI: 10.1039/c5nr04722f) 

Ajori, S. and Ansari, R. (2014). Torsional buckling behavior of boron-nitride nanotubes 

using molecular dynamics simulations. Curr. Appl. Phys. 14, pp.1072–7077. 

(DOI:10.1016/j.cap.2014.06.001) 

Albe, K., Möller, W. and Heinig, K.H. (1997). Computer simulation and boron nitride. 

Radiat. Eff. Defects Solids. 141, pp.85–97 (DOI: 10.1080/10420159708211560) 

Allen, M.P., (2004). Introduction to molecular dynamics simulation. Comput. Soft Matter 

From Synth. Polym. to Proteins. Lecture Notes. 23, pp.1–28.  

Alyörük, M.M., (2016). Piezoelectric properties of monolayer II–VI group oxides by first-

principles calculations. Phys. Status Solidi Basic Res. 253, pp.1–6. (DOI: 

10.1002/pssb.201600387) 

Akiner, T., Mason, J.K., Ertürk, H., (2016). A new interlayer potential for hexagonal boron 

nitride. Journal of Physics Condensed Matter 28, 385401. (DOI: 10.1088/0953-

8984/28/38/385401) 

Amalia, W., Nurwantoro, P. and Sholihun (2019). Density-functional-theory calculations 

of structural and electronic properties of vacancies in monolayer hexagonal boron nitride 

(h-BN). Comput. Condens. Matter 16, pp.e00354. (DOI: 10.1016/j.cocom.2018.e00354) 

Ansari, R. and Ajori, S. (2015). A molecular dynamics study on the vibration of carbon 

and boron nitride double-walled hybrid nanotubes. Appl. Phys. A Mater. Sci. Process. 120, 

pp.1399–1406. (DOI: 10.1007/s00339-015-9324-8) 

Ansari, R., Faghihnasiri, M., Malakpour, S., and Sahmani, S. (2015). Effect of electric field 

on the mechanical properties of bilayer boron nitride with AB stacking order: An ab initio 

study. Superlattices Microstruct. 83, pp.498–506. (DOI: 10.1016/j.spmi.2015.03.055) 

Ansari, R., Malakpour, S., and Faghihnasiri, M. (2014). Effects of in-plane electric field 

and temperature change on Young’s modulus of hexagonal boron nitride nanosheets with 

different chiralities. Superlattices Microstruct. 68, pp.16–26. (DOI: 

10.1016/j.spmi.2014.01.008) 



References 

 

 

147 

 

Ansari, R., Malakpour, S., Faghihnasiri, M. and Ajori, S. (2015). Influence of electric field 

on the mechanical properties of hexagonal boron-nitride sheets using ab-initio calculations. 

Nano. 10, pp.1550047. (DOI: 10.1142/S1793292015500472) 

Ansari, R., Mirnezhad, M. and Sahmani, S. (2015). Prediction of chirality- and size-

dependent elastic properties of single-walled boron nitride nanotubes based on an accurate 

molecular mechanics model. Superlattices Microstruct. 80, pp.196–205. (DOI: 

10.1016/j.spmi.2014.12.033) 

Arachchige, N. (2012) Molecular Dynamics Study of Effects of geometric defects on the 

mechanical properties of graphene, pp.82–101. (DOI: 10.14288/1.0072708) 

Asadpour, M., Malakpour, S., Faghihnasiri, M., and Taghipour, B. (2015). Mechanical 

properties of two-dimensional graphyne sheet, analogous system of BN sheet and 

graphyne-like BN sheet. Solid State Commun. 212, pp.46–52. (DOI: 

10.1016/j.ssc.2015.02.005) 

Azevedo, S., Kaschny, J.R., de Castilho, C.M.C. and Mota, F. de B. (2012) Corrigendum: 

Theoretical investigation of native defects in a boron nitride monolayer. Nanotechnology. 

23, pp.489501. (DOI: 10.1088/0957-4484/23/48/489501) 

Balu, R. et al. (2012) Effect of electric field on the band structure of graphene/boron 

nitride and boron nitride/boron nitride bilayers. Applied Physics Letters. 100, pp.052104. 

(DOI: 10.1063/1.3679174) 

Beheshtian, J., Sadeghi, A., Neek-Amal, M., Michel, K.H. and Peeters, F.M. (2012). 

Induced polarization and electronic properties of carbon-doped boron nitride nanoribbons. 

Phys. Rev. B - Condens. Matter Mater. Phys. 86. pp.195433. (DOI: 

1103/PhysRevB.86.195433) 

Beniwal, S., Hooper, J., Miller, D.P., Costa, P.S., Chen, G., Liu, S.Y., Dowben, P.A., 

Sykes, E.C.H., Zurek, E., and Enders, A. (2017). Graphene-like Boron-Carbon-Nitrogen 

Monolayers. ACS Nano 11, pp.2486–2493. (DOI: 10.1063/1.3679174) 

Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., and Haak, J.R. 

(1984). Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, pp.3684–

3690. (DOI: 10.1063/1.448118) 

Bernardi, M., Palummo, M. and Grossman, J.C. (2012). Optoelectronic properties in 

monolayers of hybridized graphene and hexagonal boron nitride. Phys. Rev. Lett. 108, 

pp.226805. (DOI: 10.1103/PhysRevLett.108.226805) 

Bernardini, F., Fiorentini, V., and Vanderbilt, D. (1997). Spontaneous polarization and 

piezoelectric constants of III-V nitrides. Phys. Rev. B - Condens. Matter Mater. Phys. 56, 

pp.R10024–R10027. (DOI: 10.1103/PhysRevB.56.R10024) 

Bettinger, H.F., Dumitrică, T., Scuseria, G.E. and Yakobson, B.I. (2002). Mechanically 

induced defects and strength of BN nanotubes. Phys. Rev. B - Condens. Matter Mater. 

Phys. 65, pp.1–4. (DOI:10.1103/PhysRevB.65.041406) 



References 

 

148 

 

Bhattacharya, A., Bhattacharya, S., and Das, G.P. (2012). Band gap engineering by 

functionalization of BN sheet. Phys. Rev. B - Condens. Matter Mater. Phys. 85, pp.03514. 

(DOI: 10.1103/PhysRevB.85.035415) 

Bhattacharya, B., Singh, N.B., and Sarkar, U. (2015). Pristine and BN doped graphyne 

derivatives for UV light protection. Int. J. Quantum Chem. 115, pp.820–829. (DOI: 

10.1002/qua.24910) 

Binnig, G., Quate, C.F. and Gerber, C. (1986). Atomic force microscope. Phys. Rev. Lett. 

56, pp.930. (DOI:10.1103/PhysRevLett.56.930) 

Binning, G., Rohrer, H., Gerber, C. and Weibel, E. (1982). Surface studies by scanning 

tunneling microscopy. Phys. Rev. Lett. 49, pp.57. (DOI: 10.1103/PhysRevLett.49.57) 

Boldrin, L., Scarpa, F., Chowdhury, R., and Adhikari, S. (2011). Effective mechanical 

properties of hexagonal boron nitride nanosheets. Nanotechnology 22, pp.505702. (DOI: 

10.1088/0957-4484/22/50/505702) 

Bosak, A., Serrano, J., Krisch, M., Watanabe, K., Taniguchi, T. and Kanda, H., (2006). 

Elasticity of hexagonal boron nitride: Inelastic x-ray scattering measurements. Phys. Rev. 

B - Condens. Matter Mater. Phys. 73, pp.041402. (DOI: 10.1103/PhysRevB.73.041402) 

Brennan, C.J., Ghosh, R., Koul, K., Banerjee, S.K., Lu, N., and Yu, E.T. (2017). Out-of-

Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by 

Piezoresponse Force Microscopy. Nano Lett. 9, pp.5464–5471. (DOI: 

10.1021/acs.nanolett.7b02123) 

Bresteau, D., Drag, C., and Blondel, C. (2016). Isotope shift of the electron affinity of 

carbon measured by photodetachment microscopy. Phys. Rev. A 93, pp.013414. (DOI: 

10.1103/PhysRevA.93.013414) 

C.T. White, J.W. Mintmire, R.C. Mowrey, D.W. Brenner, D.H. Robertson, J.A. Harrison, 

B.I. Dunlap, Predicting properties of fullerenes and their derivatives, Chap. 6, in: W.E. 

Billups, M.A. Ciufolini (Eds.), Buckminsterfullerenes, VCH, New York, (1993), p. 125. 

Chatzopoulos, A., Beck, P., Roth, J. and Trebin, H.R. (2016). Atomistic modeling of 

flexoelectricity in periclase. Phys. Rev. B. 93, pp.024105. (DOI: 

10.1103/PhysRevB.93.024105) 

Chaurasia, A. and Parashar, A. (2021). Experimental and atomistic insight on the thermal 

transport properties of h-BN/high density polyethylene nanocomposite. Int. J. Heat Mass 

Transf. 170, pp.121039. (DOI: 10.1016/j.ijheatmasstransfer.2021.121039) 

Chava, B.S., Wang, Y., Sivasankar, V.S. and Das, S. (2020). Water-free Localization of 

Anion at Anode for Small-Concentration Water-in-Salt Electrolytes Confined in Boron-

Nitride Nanotube. Cell Reports Phys. Sci. 1, pp.100246. (DOI: 

10.1016/j.xcrp.2020.100246) 



References 

 

 

149 

 

Chegel, R. (2016). Effects of carbon doping on the electronic properties of boron nitride 

nanotubes: Tight binding calculation. Phys. E Low-Dimensional Syst. Nanostructures. 84, 

pp.223–234. (DOI: 10.1016/j.physe.2016.06.003) 

Chen, D., Zhu, H., and Liu, T. (2010). In situ thermal preparation of polyimide 

nanocomposite films containing functionalized graphene sheets. ACS Appl. Mater. 

Interfaces. 2, pp.3702–3708. (DOI: 10.1021/am1008437) 

Cheng, A., and Klein, M.L., (1991). Molecular dynamics simulations of solid 

buckminsterfullerenes. J. Phys. Chem. 95, pp.6750–6751. (DOI: 10.1021/j100171a002) 

Cheng, G., Yao, S., Sang, X., Hao, B., Zhang, D., Yap, Y.K., and Zhu, Y. (2016). Evolution 

of Irradiation-Induced Vacancy Defects in Boron Nitride Nanotubes. Small. 12, pp.818–

824. (DOI: 10.1002/smll.201502440) 

Cheng, G., Yao, S., Sang, X., Hao, B., Zhang, D., Yap, Y.K. and Zhu, Y. (2016). Evolution 

of Irradiation-Induced Vacancy Defects in Boron Nitride Nanotubes. Small. 12, pp.818–

824.  (DOI: 10.1002/smll.201502440) 

Chen, W. (2011). Surface effect on Bleustein-Gulyaev wave in a piezoelectric half-space. 

Theor. Appl. Mech. Lett. 1, pp.041001. (DOI: 10.1063/2.1104101) 

Cho, H.B., Nakayama, T., Suzuki, T., Tanaka, S., Jiang, W., Suematsu, H. and Niihara, K. 

(2011). Formation and structural characteristic of perpendicularly aligned boron nitride 

nanosheet bridges in polymer/boron nitride composite film and its thermal conductivity, 

in: Japanese Journal of Applied Physics. 50, pp.01BJ05. (DOI: 10.1143/JJAP.50.01BJ05) 

Choyal, V. and Kundalwal, S.I. (2020). Transversely isotropic elastic properties of multi-

walled boron nitride nanotubes under a thermal environment. Nanotechnology. 31, 

pp.395707 (DOI: 10.1088/1361-6528/ab9865) 

Choyal, V., Choyal, V.K., and Kundalwal, S.I. (2018). Transversely Isotropic Elastic 

Properties of Vacancy Defected Boron Nitride Nanotubes Using Molecular Dynamics 

Simulations, IEEE 13th International Nanotechnology Materials & Devices Conference. 

(DOI: 10.1109/NMDC.2018.8605862) 

Choyal, V.K., Choyal, V., Nevhal, S., Bergaley, A., and Kundalwal, S.I. (2019). Effect of 

aspects ratio on Young’s modulus of boron nitride nanotubes: A molecular dynamics study. 

Mater. Today Proc. 26, pp.1–4. (DOI: 10.1016/j.matpr.2019.05.347) 

Choyal, V., Choyal, V.K., and Kundalwal, S.I. (2019). Effect of atom vacancies on elastic 

and electronic properties of transversely isotropic boron nitride nanotubes: A 

comprehensive computational study. Comput. Mater. Sci. 156, pp.332–345. (DOI: 

10.1016/J.COMMATSCI.2018.10.013) 

Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., 

Balicas, L., Liu, F. and Ajayan, P.M. (2010). Atomic layers of hybridized boron nitride and 

graphene domains. Nat. Mater. 9, pp.430–435. (DOI: 10.1038/nmat2711) 

Cohen, M.L. (2001). Nanotubes, Nanoscience, and Nanotechnology. Mater. Scien. and 

Eng.: C. 15, pp.1–11. (DOI: 10.1016/S0928-4931(01)00221-1) 



References 

 

150 

 

Constantinescu, G., Kuc, A., Heine, T., (2013). Stacking in bulk and bilayer hexagonal 

boron nitride. Physical Review Letters 111, 036104. (DOI: 

10.1103/PhysRevLett.111.036104) 

Cui, Y., Kundalwal, S.I. and Kumar, S. (2016). Gas barrier performance of 

graphene/polymer nanocomposites. Carbon N. Y. 98, pp.313–333. (DOI: 

10.1016/j.carbon.2015.11.018) 

Dan Tan, Willatzen, M. and Wang, Z.L. (2019). Prediction of strong piezoelectricity in 

3R-MoS2 multilayer structures. Nano Energy. 56, pp.512–515. (DOI: 

10.1016/j.nanoen.2018.11.073) 

Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., 

Taniguchi, T., Kim, P., Shepard, K.L. and Hone, J. (2010). Boron nitride substrates for 

high-quality graphene electronics. Nat. Nanotechnol. 5, pp.722–726. (DOI: 

10.1038/nnano.2010.172) 

Dewapriya, M.A.N., Rajapakse, R.K.N.D. and Phani, A.S. (2014). Atomistic and 

continuum modelling of temperature-dependent fracture of graphene. Int. J. Fract. 187, 

pp.199–204. (DOI: 10.1007/s10704-014-9931-y) 

Ding, N., Chen, X. and Wu, C.M.L. (2016). Mechanical properties and failure behaviors 

of the interface of hybrid graphene/hexagonal boron nitride sheets. Sci. Rep. 6, pp.31499. 

(DOI: 10.1038/srep31499) 

Dong, A., Chen, J., Oh, S.J., Koh, W.K., Xiu, F., Ye, X., Ko, D.K., Wang, K.L., Kagan, 

C.R. and Murray, C.B., (2011). Multiscale periodic assembly of striped nanocrystal 

superlattice films on a liquid surface. Nano Lett. 11, pp.841–846. (DOI: 

10.1021/nl104208x) 

Du, A.J., Smith, S.C., and Lu, G.Q. (2007). First-principle studies of electronic structure 

and C-doping effect in boron nitride nanoribbon. Chem. Phys. Lett. 447, pp.181–186. 

(DOI: 10.1016/j.cplett.2007.09.038) 

Duerloo, K.A.N. and Reed, E.J. (2013). Flexural electromechanical coupling: A nanoscale 

emergent property of boron nitride bilayers. Nano Lett. 13, pp.1681–1686. (DOI: 

10.1021/nl4001635) 

Dumitrica, T. and Yakobson, B.I. (2004). Strain-rate and temperature dependent plastic 

yield in carbon nanotubes from ab initio calculations. Appl. Phys. Lett. 84, pp.2775. (DOI: 

10.1063/1.1695630) 

Dumitricǎ, T., Landis, C.M., Yakobson, B.I., (2002). Curvature-induced polarization in 

carbon nanoshells. Chem. Phys. Lett. 360, pp.182–188. (DOI: 10.1016/S0009-

2614(02)00820-5) 

Ebrahimi-Nejad, S., Shokuhfar, A., Hosseini-Sadegh, A. and Zare-Shahabadi, A. (2013). 

Effects of structural defects on the compressive buckling of boron nitride nanotubes. Phys. 

E Low-Dimensional Syst. Nanostructures. 48, pp.53–60. (DOI: 

10.1016/j.physe.2012.11.024) 

https://doi.org/10.1016/j.physe.2012.11.024
https://doi.org/10.1016/j.physe.2012.11.024


References 

 

 

151 

 

Eichler, J. and Lesniak, C. (2008). Boron nitride (BN) and BN composites for high-

temperature applications. J. Eur. Ceram. Soc. 28, pp.1105–1109. (DOI: 

10.1016/j.jeurceramsoc.2007.09.005) 

Einalipour Eshkalak, K., Sadeghzadeh, S. and Jalaly, M. (2018). The mechanical design of 

hybrid graphene/boron nitride nanotransistors: Geometry and interface effects. Solid State 

Commun. 270, pp.82–86. (DOI: 10.1016/j.ssc.2017.12.001) 

El-Kelany, K.E., Carbonnière, P., Erba, A. and Rérat, M. (2015). Inducing a finite in-plane 

piezoelectricity in graphene with low concentration of inversion symmetry-breaking 

defects. J. Phys. Chem. C 119, pp.8966–8973. (DOI: 10.1021/acs.jpcc.5b01471) 

Elmahdy, A., Taha, H., Kamel, M., and Tarek, M. (2019). Mechanical bending effects on 

hydrogen storage of Ni decorated (8, 0) boron nitride nanotube: DFT study. J. Adv. Phys. 

16, pp.2347–3487. (DOI: 10.24297/jap.v16i1.8389) 

Eshkalak, K.E., Sadeghzadeh, S. and Jalaly, M. (2018). Mechanical properties of defective 

hybrid graphene-boron nitride nanosheets: A molecular dynamics study. Comput. Mater. 

Sci. 149, pp.170–181. (DOI: 10.1016/j.commatsci.2018.03.023) 

Eshkalak, K.E., Sadeghzadeh, S. and Jalaly, M. (2018). Studying the effects of longitudinal 

and transverse defects on the failure of hybrid graphene-boron nitride sheets: A molecular 

dynamics simulation. Phys. E Low-Dimensional Syst. Nanostructures 104, pp.71–81. 

(DOI: 10.1016/j.physe.2018.07.018) 

Evans, D.J., Holian, and B.L. (1985). The Nose-Hoover thermostat. J. Chem. Phys. 83, 

pp.4069. (DOI: 10.1063/1.449071) 

Falin, A., Cai, Q., Santos, E.J.G., Scullion, D., Qian, D., Zhang, R., Yang, Z., Huang, S., 

Watanabe, K., Taniguchi, T., Barnett, M.R., Chen, Y., Ruoff, R.S. and Li, L.H. (2017). 

Mechanical properties of atomically thin boron nitride and the role of interlayer 

interactions. Nat. Commun. 8, pp.15815. (DOI: 10.1038/ncomms15815) 

Feynman, R.P., (1992). There’s plenty of room at the bottom [data storage]. J. 

Microelectromechanical Syst. 1, pp.60–66. (DOI: 10.1109/84.128057) 

Gale, J.D., Geim, A.K., Novoselov, K.S., Castro Neto, A.H., Peres, N.M.R., Novoselov, 

K.S., Geim, A.K., Tuckerman, M.E., Tomadin, A., Loya, A., Stair, J.L., Ren, G., Geim, 

A.K., Novoselov, K.S., Geim A. K., Novoselov K. S., Dewapriya, M.A.N., Barker, J. a., 

Henderson, D., Anderson, T.L., Ariza, M.P., Ortiz, M., Wang, M.C., Yan, C., Ma, L., Hu, 

N., Chen, M.W., Carpio, A., Bonilla, L.L., De Juan, F., and Vozmediano, M.A.H. (2012). 

The rise of graphene. Rev. Mod. Phys. pp.11–19. (DOI: 10.1016/j.jmps.2010.02.008) 

Gao, E., Xu and Z. (2015). Thin-Shell Thickness of Two-Dimensional Materials. J. Appl. 

Mech. Trans. ASME. 82, pp.121012. (DOI: 10.1115/1.4031568) 

Gao, M., Adachi, M., Lyalin, A., Taketsugu, T. (2016). Long Range Functionalization of 

h-BN Monolayer by Carbon Doping. J. Phys. Chem. C 120, pp.15993–16001. (DOI: 

10.1021/acs.jpcc.5b12706) 



References 

 

152 

 

Ghaderzadeh, S., Kretschmer, S., Ghorbani-Asl, M., Hlawacek, G., Krasheninnikov, A. V., 

(2021). Atomistic simulations of defect production in monolayer and bulk hexagonal boron 

nitride under low-and high-fluence ion irradiation. Nanomaterials 11, 1214. (DOI: 

10.3390/nano11051214) 

Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., and Zhi, C. (2010). 

Boron nitride nanotubes and nanosheets. ACS Nano. 4, pp.2979–2993. (DOI: 

10.1021/nn1006495) 

Gou, G.Y., Pan, B.C., and Shi, L. (2007). Theoretical study of size-dependent properties 

of BN nanotubes with intrinsic defects. Phys. Rev. B - Condens. Matter Mater. Phys. 76, 

pp.155414.  (DOI: 10.1103/PhysRevB.76.155414) 

Grixti, S., Mukherjee, S. and Singh, C.V. (2018). Two‐dimensional boron as an impressive 

lithium‐sulphur battery cathode material. Energy Storage Mater. 13, pp.80–87. (DOI: 

10.1016/j.ensm.2017.12.024) 

Guo, F., Yang, P., Pan, Z., Cao, X.N., Xie, Z., and Wang, X., (2017). Carbon-Doped BN 

Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. Angew. Chemie - Int. Ed. 

129, pp.8343–8347. (DOI: 10.1002/anie.201703789) 

Guo, N., Wei, J., Jia, Y., Sun, H., Wang, Y., Zhao, K., Shi, X., Zhang, L., Li, X., Cao, A., 

Zhu, H., Wang, K., and Wu, D. (2013). Fabrication of large area hexagonal boron nitride 

thin films for bendable capacitors. Nano Res. 6, pp.602–610. (DOI: 10.1007/s12274-013-

0336-4) 

Hamdi, I., and Meskini, N., (2010). Ab initio study of the structural, elastic, vibrational 

and thermodynamic properties of the hexagonal boron nitride: Performance of LDA and 

GGA. Phys. B Condens. Matter 405, pp.2785–2794. (DOI: 10.1016/j.physb.2010.03.070) 

Han, T., Luo, Y., and Wang, C. (2014). Effects of temperature and strain rate on the 

mechanical properties of hexagonal boron nitride nanosheets. J. Phys. D. Appl. Phys. 47, 

pp.025303. (DOI: 10.1088/0022-3727/47/2/025303) 

Han, W.Q., Wu, L., Zhu, Y., Watanabe, K., and Taniguchi, T. (2008). Structure of 

chemically derived mono- and few-atomic-layer boron nitride sheets. Appl. Phys. Lett. 93, 

pp.223103. (DOI: 10.1063/1.3041639) 

Hockney, R.W. (1970). The potential calculation and some applications, in: Methods in 

Computational Physics, 9, pp.136. 

Hong, J., Catalan, G., Fang, D.N., Artacho, E. and Scott, J.F. (2010). Topology of the 

polarization field in ferroelectric nanowires from first principles. Phys. Rev. B - Condens. 

Matter Mater. Phys. 81, pp.172101. (DOI: 10.1103/PhysRevB.81.172101) 

Hoover, W.G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Phys. 

Rev. A. 31, pp.1695. (DOI: 10.1103/PhysRevA.31.1695) 

Hosseini, E., Zakertabrizi, M., Korayem, A.H. and Chang, Z. (2018). Mechanical and 

electromechanical properties of functionalized hexagonal boron nitride nanosheet: A 



References 

 

 

153 

 

density functional theory study. J. Chem. Phys. 149, pp.114701. (DOI: 

10.1063/1.5043252) 

Huang, Q., Yu, D., Xu, B., Hu, W., Ma, Y., Wang, Y., Zhao, Z., Wen, B., He, J., Liu, Z. 

and Tian, Y. (2014). Nanotwinned diamond with unprecedented hardness and stability. 

Nature. 510, pp.250–253. (DOI: 10.1038/nature13381) 

Hünenberger, P.H. (2005). Thermostat algorithms for molecular dynamics simulations. 

Adv. Polym. Sci. 173, pp.105–149. (DOI: 10.1007/b99427) 

Jafari, A., Khatibi, A.A. and Mosavi Mashadi, M. (2012). Evaluation of mechanical and 

piezoelectric properties of boron nitride nanotube: A novel electrostructural analogy 

approach. J. Comput. Theor. Nanosci. 9, pp.461–468. (DOI: 10.1166/jctn.2012.2047) 

Jalili, S. and Vaziri, R., (2010). Curvature effect on the electronic properties of BN 

nanoribbons. Mol. Phys. 108, pp.3365–3371. (DOI: 10.1080/00268976.2010.510806) 

Javvaji, B., He, B. and Zhuang, X. (2018). The generation of piezoelectricity and 

flexoelectricity in graphene by breaking the materials symmetries. Nanotechnology. 29, 

pp.225702. (DOI: 10.1088/1361-6528/aab5ad) 

Javvaji, B., He, B., Zhuang, X., and Park, H.S. (2019). High flexoelectric constants in Janus 

transition-metal dichalcogenides. Phys. Rev. Mater. 3, pp.125402. (DOI: 

10.1103/PhysRevMaterials.3.125402) 

Jensen, L., Åstrand, P.O., Osted, A., Kongsted, J., and Mikkelsen, K. V. (2002). 

Polarizability of molecular clusters as calculated by a dipole interaction model. J. Chem. 

Phys. 116, pp.4001–4010. (DOI: 10.1063/1.1433747) 

Jin, C., Lin, F., Suenaga, K. and Iijima, S. (2009). Fabrication of a freestanding boron 

nitride single layer and Its defect assignments. Phys. Rev. Lett. 102. pp.195505. (DOI: 

10.1103/PhysRevLett.102.195505) 

Jungthawan, S., Limpijumnong, S. and Kuo, J.L. (2011). Electronic structures of 

graphene/boron nitride sheet superlattices. Phys. Rev. B - Condens. Matter Mater. Phys. 

84, pp.1–9. (DOI: 10.1103/PhysRevB.84.235424) 

Kalinin, S. V. and Meunier, V. (2008). Electronic flexoelectricity in low-dimensional 

systems. Phys. Rev. B - Condens. Matter Mater. Phys. 77, pp.033403.  (DOI: 

10.1103/PhysRevB.77.033403) 

Kawaguchi, M., Kawashima, T., and Nakajima, T. (1996). Syntheses and structures of new 

graphite-like materials of composition BCN(H) and BC3N(H). Chem. Mater. 8, pp.1197–

1201. (DOI: 10.1021/cm950471y) 

Khan, M.H., Casillas, G., Mitchell, D.R.G., Liu, H.K., Jiang, L. and Huang, Z. (2016). 

Carbon- and crack-free growth of hexagonal boron nitride nanosheets and their uncommon 

stacking order. Nanoscale. 8, pp.15926. (DOI: 10.1039/c6nr04734c) 



References 

 

154 

 

Kim, J.H., Pham, T.V., Hwang, J.H., Kim, C.S., and Kim, M.J. (2018). Boron nitride 

nanotubes: synthesis and applications. Nano Converg. 5, pp.1–13. (DOI: 10.1186/s40580-

018-0149-y) 

KInacI, A., Haskins, J.B., Sevik, C., and ÇaǧIn, T. (2012). Thermal conductivity of BN-C 

nanostructures. Phys. Rev. B - Condens. Matter Mater. Phys. 86, pp.115410. (DOI: 

10.1103/PhysRevB.86.115410) 

Klein, P.J., Zhang, Q., Baur, J.W., Dai, L., Lagoudas, D.C., Liu, J. and Sager, R.J. (2009). 

Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an 

epoxy matrix. Compos. Sci. Technol. 69, pp.898–904. (DOI: 

10.1016/j.compscitech.2008.12.021) 

Kogan, S.M. (1964). Piezoelectric effect during inhomogeneous deformation and acoustic 

scattering of carriers in crystals. Sov. Physics-Solid State 5, pp.2069–2070. 

Kudin, K., Scuseria, G. and Yakobson, B. (2001) ‘C2F, BN, and C nanoshell elasticity 

from ab initio computations’, Phys. Rev. B, 64, pp.1–10. (DOI: 

10.1103/PhysRevB.64.235406) 

Kumar, R., Rajasekaran, G., and Parashar, A. (2016). Optimised cut-off function for 

Tersoff-like potentials for a BN nanosheet: A molecular dynamics study. Nanotechnology. 

27, pp.085706. (DOI: 10.1088/0957-4484/27/8/085706)  

Kundalwal, S.I., Choyal, V. (2018). Transversely isotropic elastic properties of carbon 

nanotubes containing vacancy defects using MD. Acta Mech. 229, pp.2571–2584. (DOI: 

10.1007/s00707-018-2123-5) 

Kundalwal, S.I., Meguid, S.A., and Weng, G.J. (2017). Strain gradient polarization in 

graphene. Carbon N. Y. 117, pp.462–472. (DOI: 10.1016/j.carbon.2017.03.013) 

Kundalwal, S.I., Shingare, K.B., and Rathi, A. (2018). Effect of flexoelectricity on the 

electromechanical response of graphene nanocomposite beam. Int. J. Mech. Mater. Des. 

15, pp.447–470. (DOI: 10.1007/s10999-018-9417-6) 

Kvashnin, A.G., Sorokin, P.B., and Yakobson, B.I. (2015). Flexoelectricity in carbon 

nanostructures: Nanotubes, fullerenes, and nanocones. J. Phys. Chem. Lett. 6, pp.2740–

2744. (DOI: 10.1021/acs.jpclett.5b01041) 

Le, M.Q. and Nguyen, D.T. (2014). Atomistic simulations of pristine and defective 

hexagonal BN and SiC sheets under uniaxial tension. Mater. Sci. Eng. A 615, pp.481–488. 

(DOI: 10.1016/j.msea.2014.07.109) 

Le, M.Q. (2014). Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, 

InN and SiC sheets. J. Comput. Theor. Nanosci. 11, pp.1458–1464. (DOI: 

10.1166/jctn.2014.3518) 

Le, M.Q. (2015). Prediction of Young’s modulus of hexagonal monolayer sheets based on 

molecular mechanics. Int. J. Mech. Mater. Des. 11, pp.15–24. (DOI: 10.1007/s10999-014-

9271-0) 



References 

 

 

155 

 

Lehtinen, O., Dumur, E., Kotakoski, J., Krasheninnikov, A. V., Nordlund, K., and 

Keinonen, J. (2011). Production of defects in hexagonal boron nitride monolayer under ion 

irradiation. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. 

Atoms 269, pp.1327–1331. (DOI: 10.1016/j.nimb.2010.11.027) 

Leite, L., Azevedo, S., and de Lima Bernardo, B. (2017). Electronic and optical properties 

of BxNyCz monolayers with adsorption of hydrogen atoms. Solid State Commun. 253, 

pp.31–36. (DOI: 10.1016/j.ssc.2017.01.025) 

Li, C., Bando, Y., Zhi, C., Huang, Y., and Golberg, D. (2009). Thickness-dependent 

bending modulus of hexagonal boron nitride nanosheets. Nanotechnology 20. pp.385707. 

(DOI: 10.1088/0957-4484/20/38/385707) 

Li, C., Wang, Z., Li, F., Rao, Z., Huang, W., Shen, Z., Ke, S., and Shu, L. (2019). Large 

flexoelectric response in PMN-PT ceramics through composition design. Appl. Phys. Lett. 

115, pp. 142901. (DOI: 10.1063/1.5115561) 

Li, Y., Rao, Y., Mak, K.F., You, Y., Wang, S., Dean, C.R., Heinz, T.F., (2013). Probing 

symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. 

Nano Letters 13, 3329–3333. (DOI: 10.1021/nl401561r) 

Li, Y., (2016). Measurement of the Second-Order Nonlinear Susceptibility and Probing 

Symmetry Properties of Few-Layer MoS2 and h-BN by Optical Second-Harmonic 

Generation. 45–54. (DOI: 10.1007/978-3-319-25376-3_6) 

Liang, Y., Qin, H., Huang, J., Huan, S. and Hui, D. (2019). Mechanical properties of boron 

nitride sheet with randomly distributed vacancy defects. Nanotechnol. Rev. 8, pp.210–217. 

(DOI: 10.1515/ntrev-2019-0019) 

Lin, Y. and Connell, J.W. (2012). Advances in 2D boron nitride nanostructures: 

nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4, pp.6908. 

(DOI: 10.1039/c2nr32201c) 

Lin, Y., Williams, T. V., Cao, W., Elsayed-Ali, H.E., and Connell, J.W. (2010). Defect 

functionalization of hexagonal boron nitride nanosheets. J. Phys. Chem. C 114, pp.17434–

17439. (DOI: 10.1021/jp105454w) 

López-Suárez, M., Pruneda, M., Abadal, G., and Rurali, R. (2014). Piezoelectric 

monolayers as nonlinear energy harvesters. Nanotechnology 25. pp.175401. (DOI: 

10.1088/0957-4484/25/17/175401) 

Lu, K., Lu, L., and Suresh, S. (2009). Strengthening materials by engineering coherent 

internal boundaries at the nanoscale. Science 324, pp.349–352. (DOI: 

10.1126/science.1159610) 

Ma, T., Li, B., and Chang, T. (2011). Chirality- and curvature-dependent bending 

stiffness of single layer graphene. Appl. Phys. Lett. 99, pp.201901. (DOI: 

10.1063/1.3660739) 

https://doi.org/10.1515/ntrev-2019-0019


References 

 

156 

 

Mallick, G., Elder, R.M., (2018). Graphene/hexagonal boron nitride heterostructures: 

Mechanical properties and fracture behavior from nanoindentation simulations. Applied 

Physics Letters 113, 121902. (DOI: 10.1063/1.5047782) 

Maranganti, R., Sharma, N.D., and Sharma, P. (2006). Electromechanical coupling in 

nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function 

solutions and embedded inclusions. Phys. Rev. B - Condens. Matter Mater. Phys. 74, 

pp.014110. (DOI: 10.1103/PhysRevB.74.014110) 

Marom, N., Bernstein, J., Garel, J., Tkatchenko, A., Joselevich, E., Kronik, L., Hod, O., 

(2010).  Stacking and registry effects in layered materials: The case of hexagonal boron 

nitride. Physical Review Letters 105, 046801. (DOI: 10.1103/PhysRevLett.105.046801)        

Martyna, G.J., Tobias, D.J., and Klein, M.L. (1994). Constant pressure molecular dynamics 

algorithms. J. Chem. Phys. 101, pp.4177. (DOI: 10.1063/1.467468) 

Matsunaga, K. and Iwamoto, Y. (2004). Molecular Dynamics Study of Atomic Structure 

and Diffusion Behavior in Amorphous Silicon Nitride Containing Boron. J. Am. Ceram. 

Soc. 84, pp.2213–2219. (DOI: 10.1111/j.1151-2916.2001.tb00990.x) 

Matsunaga, K., Fisher, C., and Matsubara, H. (2000). Tersoff potential parameters for 

simulating cubic boron carbonitrides. Japanese J. Appl. Physics, Part 2 Lett. 39, pp.48–51. 

(DOI: 10.1143/JJAP.39.L48) 

Mayer, A. (2007). Formulation in terms of normalized propagators of a charge-dipole 

model enabling the calculation of the polarization properties of fullerenes and carbon 

nanotubes. Phys. Rev. B - Condens. Matter Mater. Phys. 75, pp.045470. (DOI: 

10.1103/PhysRevB.75.045407) 

Mayer, A. and Åstrand, P.O. (2008). A charge-dipole model for the static polarizability of 

nanostructures including aliphatic, olephinic, and aromatic systems. J. Phys. Chem. A 112, 

pp.1277–1285. (DOI: 10.1021/jp075643g) 

Mele, E.J., and Král, P. (2002). Electric polarization of heteropolar nanotubes as a 

geometric phase. Phys. Rev. Lett. 88, pp.568031–568034. (DOI: 

10.1103/PhysRevLett.88.056803) 

Michel, K.H., Çaklr, D., Sevik, C. and Peeters, F.M. (2017). Piezoelectricity in two-

dimensional materials: Comparative study between lattice dynamics and ab initio 

calculations. Phys. Rev. B. 95, pp.125415. (DOI: 10.1103/PhysRevB.95.125415) 

Milowska, K.Z., Woińska, M., Wierzbowska, M. (2013). Contrasting elastic properties of 

heavily B-and N-doped graphene with random impurity distributions including aggregates. 

J. Phys. Chem. C 117, pp.20229–20235. (DOI: 10.1021/jp403552k) 

Michel, K.H., Verberck, B., (2011). Phonon dispersions and piezoelectricity in bulk and 

multilayers of hexagonal boron nitride. Physical Review B - Condensed Matter and 

Materials Physics 83. 115328. (DOI: 10.1103/PhysRevB.83.115328) 

Mirnezhad, M., Ansari, R., Rouhi, H., (2013). Mechanical properties of multilayer boron 

nitride with different stacking orders. Superlattices and Microstructures 53, 223–231. 

(DOU: 10.1016/j.spmi.2012.10.016) 



References 

 

 

157 

 

Mohammadi, P., Liu, L.P., and Sharma, P. (2014). A theory of flexoelectric membranes 

and effective properties of heterogeneous membranes. J. Appl. Mech. Trans. ASME. 81, 

pp.011007. (DOI: 10.1115/1.4023978) 

Moon, W.H., and Hwang, H.J. (2004). Molecular mechanics of structural properties of 

boron nitride nanotubes. Phys. E Low-Dimensional Syst. Nanostructures. 23, pp.26–30. 

(DOI: 10.1016/j.physe.2003.11.273) 

Mortazavi, B. and Rémond, Y. (2012). Investigation of tensile response and thermal 

conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys. E 

Low-Dimensional Syst. Nanostructures. 44, pp.1846–1852. (DOI: 

10.1016/j.physe.2012.05.007) 

Mortazavi, B. and Rémond, Y. (2012). Investigation of tensile response and thermal 

conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys. E 

Low-Dimensional Syst. Nanostructures. 44, pp.1846–1852. (DOI: 

10.1016/j.physe.2012.05.007) 

Mortazavi, B., and Cuniberti, G. (2014). Mechanical properties of polycrystalline boron-

nitride nanosheets. RSC Adv. 4, pp.19137–19143. (DOI: 10.1039/c4ra01103a) 

Müller, F., Hüfner, S., Sachdev, H., (2008). One-dimensional structure of boron nitride on 

chromium (1 1 0) - a study of the growth of boron nitride by chemical vapour deposition 

of borazine. Surf. Sci. 602, pp.3467–3476. (DOI: 10.1016/j.susc.2008.06.037) 

Nandwana, D. and Ertekin, E. (2015). Ripples, strain, and misfit dislocations: Structure 

of graphene-boron nitride superlattice interfaces. Nano Lett. 15, pp.1468–1475. (DOI: 

10.1021/nl505005t) 

Natsuki, T. and Natsuki, J. (2017). Prediction of mechanical properties for hexagonal boron 

nitride nanosheets using molecular mechanics model. Appl. Phys. A Mater. Sci. Process. 

123, pp.283–289. (DOI: 10.1007/s00339-017-0884-7) 

Naumov, I., Bratkovsky, A.M., and Ranjan, V. (2009). Unusual flexoelectric effect in two-

dimensional noncentrosymmetric sp2-bonded crystals. Phys. Rev. Lett. 102. pp.217601. 

(DOI: 10.1103/PhysRevLett.102.217601) 

Ng, T.Y., Yeo, J.J., and Liu, Z.S. (2012). A molecular dynamics study of the thermal 

conductivity of graphene nanoribbons containing dispersed Stone-Thrower-Wales defects. 

Carbon N. Y. 50, pp.4887–4893. (DOI: 10.1016/j.carbon.2012.06.017) 

Nguyen, T.D., Mao, S., Yeh, Y.W., Purohit, P.K., and McAlpine, M.C. (2013). Nanoscale 

flexoelectricity. Adv. Mater. 25, pp.964–974. (DOI: 10.1002/adma.201203852) 

Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K., and Chen, Y. (2010). Anisotropic mechanical 

properties of graphene sheets from molecular dynamics. Phys. B Condens. Matter. 405, 

pp.1301–1306. (DOI: 10.1016/j.physb.2009.11.071) 



References 

 

158 

 

Noor-A-Alam, M., Kim, H.J. and Shin, Y.H. (2014). Dipolar polarization and 

piezoelectricity of a hexagonal boron nitride sheet decorated with hydrogen and fluorine. 

Phys. Chem. Chem. Phys. 16, pp.6575–6582. (DOI: 10.1039/c3cp53971g) 

Nosé, Shüichi. (1984). A molecular dynamics method for simulations in the canonical 

ensemble. Mol. Phys. 52, pp.255–268. (DOI: 10.1080/00268978400101201) 

Nosé, Shuichi. (1984). A unified formulation of the constant temperature molecular 

dynamics methods. J. Chem. Phys. 81, pp.511–519. (DOI: 10.1063/1.447334) 

Odegard, G.M., Clancy, T.C., and Gates, T.S. (2005). Modeling of the mechanical 

properties of nanoparticle/polymer composites. Polymer (Guildf). 46, pp.553–562. (DOI: 

10.1016/J.POLYMER.2004.11.022) 

Ooi, N., Rairkar, A., Lindsley, L., and Adams, J.B. (2006). Electronic structure and 

bonding in hexagonal boron nitride. J. Phys. Condens. Matter 18, pp.97–115. (DOI: 

10.1088/0953-8984/18/1/007) 

Paciĺ, D., Meyer, J.C., Girit, Ç., and Zettl, A. (2008). The two-dimensional phase of boron 

nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 

pp.133107. (DOI: 10.1063/1.2903702) 

Park, H.J., Ryu, G.H., and Lee, Z. (2015). Hole Defects on Two-Dimensional Materials 

Formed by Electron Beam Irradiation: Toward Nanopore Devices. Appl. Microsc. 45, 

pp.107–114. (DOI: 10.9729/am.2015.45.3.107) 

Peng, Q., Ji, W., De, S., (2012). Mechanical properties of the hexagonal boron nitride 

monolayer: Ab initio study. Comput. Mater. Sci. 56, pp.11–17. (DOI: 

10.1016/j.commatsci.2011.12.029) 

Petrov, A.G. (2002). Flexoelectricity of model and living membranes. Biochim. Biophys. 

Acta - Biomembr. (DOI: 10.1016/S0304-4157(01)00007-7) 

Plimpton, S.J. (1995). Computational Limits of Classical Molecular Dynamics Simulations 

1 Introduction 2 Parallel MD. LAMMPS, Sandia Natl. Lab. 4, pp.361–364. (DOI: 

10.1016/0927-0256(95)00037-1) 

Pruneda, J.M. (2010). Origin of half-semimetallicity induced at interfaces of C-BN 

heterostructures. Phys. Rev. B - Condens. Matter Mater. Phys. 81, pp.161409. (DOI: 

10.1103/PhysRevB.81.161409) 

Qi-Lin, X., Zhen-Huan, L. and Xiao-Geng, T. (2015). The defect-induced fracture 

behaviors of hexagonal boron-nitride monolayer nanosheets under uniaxial tension. J. 

Phys. D. Appl. Phys. 48, pp.375502. (DOI: 10.1088/0022-3727/48/37/375502) 

Radhakrishnan, S., Das, D., Samanta, A., De Los Reyes, C.A., Deng, L., Alemany, L.B., 

Weldeghiorghis, T.K., Khabashesku, V.N., Kochat, V., Jin, Z., Sudeep, P.M., Martí, A.A., 

Chu, C.W., Roy, A., Tiwary, C.S., Singh, A.K., and Ajayan, P.M. (2017). Fluorinated h-



References 

 

 

159 

 

BN As a magnetic semiconductor. Sci. Adv. 3, pp.1700842. (DOI: 

10.1126/sciadv.1700842) 

Rapaport, D.C. (2011). Basic molecular dynamics, in: The Art of Molecular Dynamics 

Simulation. pp.11–43. (DOI: 10.1017/cbo9780511816581.005) 

Ray, M.C. and Pradhan, A.K. (2006). The performance of vertically reinforced 1-3 

piezoelectric composites in active damping of smart structures. Smart Mater. Struct. 15, 

pp.631–641. (DOI: 10.1088/0964-1726/15/2/047) 

Roco, M.C., Mirkin, C.A., Hersam, M.C., (2011). Nanotechnology research directions for 

societal needs in 2020: Summary of international study. J. Nanoparticle Res. 13, pp.897–

919. (DOI: 10.1007/s11051-011-0275-5) 

Sai, N. and Mele, E.J. (2003). Microscopic theory for nanotube piezoelectricity. Phys. 

Rev. B - Condens. Matter Mater. Phys. 68, pp.241405. (DOI: 

10.1103/PhysRevB.68.241405) 

Scarpa, F., Adhikari, S., Gil, A.J., and Remillat, C. (2010). The bending of single layer 

graphene sheets: The lattice versus continuum approach. Nanotechnology. 21, pp.125702. 

(DOI: 10.1088/0957-4484/21/12/125702) 

Scheer, M., Bilodeau, R.C., Haugen, H.K., and Haugen, H.K. (1998). Negative ion of 

boron: An experimental study of the 3P ground state. Phys. Rev. Lett. 80, pp.2562–2565. 

(DOI: 10.1103/PhysRevLett.80.2562) 

Sharma, B.B. and Parashar, A. (2021). Inter-granular fracture behaviour in bicrystalline 

boron nitride nanosheets using atomistic and continuum mechanics-based approaches. J. 

Mater. Sci. 56, pp.6235–6250. (DOI: 10.1007/s10853-020-05697-x) 

Sharma, N.D., Maranganti, R., and Sharma, P. (2007). On the possibility of piezoelectric 

nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids 55, pp.2328–

2350. (DOI: 10.1016/j.jmps.2007.03.016) 

Shi, Y., Hamsen, C., Jia, X., Kim, K.K., Reina, A., Hofmann, M., Hsu, A.L., Zhang, K., 

Li, H., Juang, Z.Y., Dresselhaus, M.S., Li, L.J., and Kong, J. (2010). Synthesis of few-layer 

hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, pp.4134–

4139. (DOI: 10.1021/nl1023707) 

Shu, L., Li, F., Huang, W., Wei, X., Yao, X. and Jiang, X. (2014). Relationship between 

direct and converse flexoelectric coefficients. J. Appl. Phys. 116, pp.144105. (DOI: 

10.1063/1.4897647) 

Song, J., Jiang, H., Wu, J., Huang, Y., and Hwang, K.C. (2007). Stone-Wales 

transformation in boron nitride nanotubes. Scr. Mater. 57, pp.571–574. (DOI: 

10.1016/j.scriptamat.2007.06.027) 

Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., 

Lou, J., Yakobson, B.I. and Ajayan, P.M. (2010). Large scale growth and characterization 

https://doi.org/(DOI


References 

 

160 

 

of atomic hexagonal boron nitride layers. Nano Lett. 10, pp.3209–3215. (DOI: 

10.1021/nl1022139) 

Song, Q., Zhu, W., Deng, Y., He, D., and Feng, J. (2018). Enhanced thermal conductivity 

and mechanical property of flexible poly (vinylidene fluoride)/boron nitride/graphite 

nanoplatelets insulation films with high breakdown strength and reliability. Compos. Sci. 

Technol. 168, pp.381–387. (DOI: 10.1016/j.compscitech.2018.10.015) 

Song, X., Hu, J. and Zeng, H. (2013). Two-dimensional semiconductors: Recent progress 

and future perspectives. J. Mater. Chem. C. 1, pp.2952. (DOI: 10.1039/c3tc00710c) 

Steve Plimton (1995). Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. 

Comput. Phys. 117, pp.1–19. (DOI: 10.1006/jcph.1995.1039) 

Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with 

OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, pp.015012. 

(DOI: 10.1088/0965-0393/18/1/015012) 

Suenaga, K., Kobayashi, H., Koshino, M., (2012). Core-level spectroscopy of point defects 

in single layer h-BN. Phys. Rev. Lett. 108. pp.075501. (DOI: 

10.1103/PhysRevLett.108.075501) 

Sun, H. (1998). The COMPASS force field: Parameterization and validation for 

phosphazenes. Comput. Theor. Polym. Sci. 8, pp.229–246. (DOI: 10.1016/S1089-

3156(98)00042-7) 

Sutter, P., Lahiri, J., Zahl, P., Wang, B., Sutter, E., (2013). Scalable synthesis of uniform 

few-layer hexagonal boron nitride dielectric films. Nano Letters 13, 276–281. (DOI: 

10.1021/nl304080y) 

Swope, W.C., Andersen, H.C., Berens, P.H. and Wilson, K.R. (1982). A computer 

simulation method for the calculation of equilibrium constants for the formation of physical 

clusters of molecules: Application to small water clusters. J. Chem. Phys. 76, pp.637–649. 

(DOI: 10.1063/1.442716) 

Tadmor, E.B. and Miller, R.E. (2011). Modeling Materials- Continuum, Atomistic and 

Multiscale Techniques, Modeling Materials.  (DOI: 10.1017/cbo9781139003582) 

Tan, D., Willatzen, M. and Wang, Z.L. (2020). Out-of-Plane Polarization in Bent 

Graphene-Like Zinc Oxide and Nanogenerator Applications. Adv. Funct. Mater. 30, 

pp.1907885. (DOI: 10.1002/adfm.201907885) 

Terrones, M., Grobert, N., Terrones, H., (2002). Synthetic routes to nanoscale BxCyNz 

architectures. Carbon N. Y. 40, pp.1665–1684. (DOI: 10.1016/S0008-6223(02)00008-8) 

Tersoff, J. (1988). New empirical approach for the structure and energy of covalent 

systems. Phys. Rev. B 37, pp.6991–7000. (DOI: 10.1103/PhysRevB.37.6991) 

Tersoff, J. (1989). Modeling solid-state chemistry: Interatomic potentials for 

multicomponent systems. Phys. Rev. B 39, pp.5566–5568. (DOI: 

10.1103/PhysRevB.39.5566) 



References 

 

 

161 

 

Thomas, S. and Lee, S.U. (2019). Atomistic insights into the anisotropic mechanical 

properties and role of ripples on the thermal expansion of h-BCN monolayers. RSC Adv. 

9, pp.1238–1246. (DOI: 10.1039/C8RA08076C) 

Thomas, S., Ajith, K.M., and Valsakumar, M.C. (2016). Directional anisotropy, finite size 

effect and elastic properties of hexagonal boron nitride. J. Phys. Condens. Matter. 28, 

pp.295302. (DOI: 10.1088/0953-8984/28/29/295302) 

Thomas, S., Ajith, K.M., Chandra, S., and Valsakumar, M.C. (2015). Temperature 

dependent structural properties and bending rigidity of pristine and defective hexagonal 

boron nitride. J. Phys. Condens. Matter. 27, pp.315302. (DOI: 10.1088/0953-

8984/27/31/315302) 

Tian, Y., Xu, B., Yu, D., Ma, Y., Wang, Y., Jiang, Y., Hu, W., Tang, C., Gao, Y., Luo, K., 

Zhao, Z., Wang, L.M., Wen, B., He, J., and Liu, Z. (2013). Ultrahard nanotwinned cubic 

boron nitride. Nature. 495, pp.385–388. (DOI: 10.1038/nature11728) 

Topsakal, M., Aktürk, E., and Ciraci, S. (2009). First-principles study of two- and one-

dimensional honeycomb structures of boron nitride. Phys. Rev. B - Condens. Matter Mater. 

Phys. 79, pp.115442. (DOI: 10.1103/PhysRevB.79.115442) 

Vijayaraghavan, V. and Zhang, L. (2018). Effective mechanical properties and thickness 

determination of boron nitride nanosheets using molecular dynamics simulation. 

Nanomaterials 8, pp.564. (DOI: 10.3390/nano8070546) 

Wang, S., Chen, Q., and Wang, J. (2011). Optical properties of boron nitride 

nanoribbons: Excitonic effects. Appl. Phys. Lett. 9, pp.063114. (DOI: 10.1063/1.3625922) 

Watanabe, K., Taniguchi, T., and Kanda, H. (2004). Direct-bandgap properties and 

evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 

pp.404–409. (DOI: 10.1038/nmat1134) 

Weng, Q., Wang, Xuebin, Wang, Xi, Bando, Y., and Golberg, D. (2016). Functionalized 

hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. 

Rev. 45, pp.3989–4012. (DOI: 10.1039/c5cs00869g) 

Wirtz, L. and Rubio, A. (2004). The phonon dispersion of graphite revisited. Solid State 

Commun. 131, pp.141–152. (DOI: 10.1016/j.ssc.2004.04.042) 

Wu, W., Wang, L., Li, Y., Zhang, F., Lin, L., Niu, S., Chenet, D., Zhang, X., Hao, Y., 

Heinz, T.F., Hone, J., and Wang, Z.L. (2014). Piezoelectricity of single-atomic-layer MoS 

2 for energy conversion and piezotronics. Nature 514, pp.470–474. (DOI: 

10.1038/nature13792) 

Xie, L., Wang, T., He, C., Sun, Z., and Peng, Q. (2019). Molecular dynamics simulation 

on mechanical and piezoelectric properties of boron nitride honeycomb structures. 

Nanomaterials. 9, pp.1044. (DOI: 10.3390/nano9071044) 



References 

 

162 

 

Xiong, S., and Cao, G. (2015). Molecular dynamics simulations of mechanical properties 

of monolayer MoS2. Nanotechnology. 26, pp.185707. (DOI: 10.1088/0957-

4484/26/18/185705) 

Yamakov, V., Park, C., Kang, J.H., Chen, X., Ke, C., and Fay, C. (2017). Piezoelectric 

and elastic properties of multiwall boron-nitride nanotubes and their fibers: A molecular 

dynamics study. Comput. Mater. Sci. 135, pp.29–42. (DOI: 

10.1016/j.commatsci.2017.03.050) 

Yudin, P. V. and Tagantsev, A.K. (2013). Fundamentals of flexoelectricity in solids. 

Nanotechnology 24, pp.432001. (DOI: 10.1088/0957-4484/24/43/432001) 

Zhang, C., Hao, X.L., Wang, C.X., Wei, N., and Rabczuk, T. (2017). Thermal 

conductivity of graphene nanoribbons under shear deformation: A molecular dynamics 

simulation. Sci. Rep. 7, pp.41398. (DOI: 10.1038/srep41398) 

Zhang, H., Yu, G., Chen, W., Guan, J. and Huang, X. (2015). A first-principles 

investigation on the effect of the divacancy defect on the band structures of boron nitride 

(BN) nanoribbons. Phys. E Low-Dimensional Syst. Nanostructures. 69, pp.65–74. (DOI: 

10.1016/j.physe.2015.01.024) 

Zhang, J. (2017). Boron nitride honeycombs with superb and tunable piezopotential 

properties. Nano Energy 41, pp.460–468. (DOI: 10.1016/j.nanoen.2017.10.005) 

Zhang, J. (2018). Piezoelectrically tunable resonance properties of boron nitride nanotube 

based resonators. J. Appl. Phys. 124, pp.055103. (DOI: 10.1063/1.5041319) 

Zhang, J. and Meguid, S.A. (2015). Effect of number of layers upon piezoelectric 

behaviour of multi-walled boron nitride nanotubes. J. Phys. D. Appl. Phys. 48, pp.495301. 

(DOI: 10.1088/0022-3727/48/49/495301) 

Zhang, J. and Meguid, S.A. (2017). Piezoelectricity of 2D nanomaterials: Characterization, 

properties, and applications. Semicond. Sci. Technol. 32, pp.043006. (DOI: 10.1088/1361-

6641/aa5cfb) 

Zhang, J. and Zhou, J. (2018). Piezoelectric effects on the resonance frequencies of boron 

nitride nanosheets. Nanotechnology 29, pp.395703. (DOI: 10.1088/1361-6528/aad1b5) 

Zhang, Y.Y., Pei, Q.X., Liu, H.Y., and Wei, N. (2017). Thermal conductivity of a h-BCN 

monolayer. Phys. Chem. Chem. Phys. 19, pp.27326–27331. (DOI: 10.1039/c7cp04982j) 

Zhang, Y.Y., Pei, Q.X., Sha, Z.D. and Zhang, Y.W. (2019). A molecular dynamics study 

of the mechanical properties of h-BCN monolayer using a modified Tersoff interatomic 

potential. Phys. Lett. Sect. A Gen. At. Solid State Phys. 383, pp.2821–2827. (DOI: 

10.1016/j.physleta.2019.05.055) 

Zhang, Z. and Jiang, L. (2014). Size effects on electromechanical coupling fields of a 

bending piezoelectric nanoplate due to surface effects and flexoelectricity. J. Appl. Phys. 

116, pp.134308. (DOI: 10.1063/1.4897367) 



References 

 

 

163 

 

Zhao, C., Xu, Z., Wang, H., Wei, J., Wang, W., Bai, X., and Wang, E. (2014). Carbon-

Doped Boron Nitride Nanosheets with Ferromagnetism above Room Temperature. Adv. 

Funct. Mater. 24, pp.5985–5992. (DOI: 10.1002/adfm.201401149) 

Zhao, H. and Aluru, N.R. (2010). Temperature and strain-rate dependent fracture strength 

of graphene. J. Appl. Phys. 108, pp.064321. (DOI:10.1063/1.3488620) 

Zhao, J.X. and Ding, Y.H. (2009). The effects of O2 and H2O adsorbates on field-emission 

properties of an (8, 0) boron nitride nanotube: A density functional theory study. 

Nanotechnology 20, pp.085704. (DOI: 10.1088/0957-4484/20/8/085704) 

Zhao, S and Xue, J. (2013). Mechanical properties of hybrid graphene and hexagonal boron 

nitride sheets as revealed by molecular dynamic simulations. J. Phys. D. Appl. Phys. 46, 

pp.135303. (DOI: 10.1088/0022-3727/46/13/135303) 

Zhao, T., Shi, J., Huo, M. and Wan, R. (2014). Electronic properties of C-doped boron 

nitride nanotubes studied by first-principles calculations. Phys. E Low-Dimensional Syst. 

Nanostructures. 64, pp.123–128.  (DOI: 10.1016/j.physe.2014.07.016) 

Zhi, C., Bando, Y., Tang, C. and Golberg, D. (2010). Boron nitride nanotubes, in: Materials 

Science and Engineering R: Reports. 70, pp.92–111. (DOI: 10.1016/j.mser.2010.06.004) 

Zhi, C., Bando, Y., Tang, C., Kuwahara, H., and Golberg, D. (2009). Large-scale 

fabrication of boron nitride nanosheets and their utilization in polymeric composites with 

improved thermal and mechanical properties. Adv. Mater. 21, pp.2889–2893. (DOI: 

10.1002/adma.200900323) 

Zhou, M., Liang, T., Wu, B., Liu, J., and Zhang, P. (2020). Phonon transport in antisite-

substituted hexagonal boron nitride nanosheets: A molecular dynamics study. J. Appl. 

Phys. 128, pp.234304. (DOI: 10.1063/5.0025402) 

Zhuang, X., He, B., Javvaji, B. and Park, H.S. (2019). Intrinsic bending flexoelectric 

constants in two-dimensional materials. Phys. Rev. B 99, pp.054105. (DOI: 

10.1103/PhysRevB.99.054105) 

Zobelli, A., Ewels, C.P., Gloter, A., Seifert, G., Stephan, O., Csillag, S., and Colliex, C. 

(2006). Defective structure of BN nanotubes: From single vacancies to dislocation lines. 

Nano Lett. 6, pp.1955–1960.  (DOI: 10.1021/nl061081l) 

 



 

164 

 

List of publications 

The following papers are published/under review form the research work carried out in 

the Ph.D. 

A1. Journal Publications from the thesis 

1. Vijay Choyal, V. K. Choyal and S. I. Kundalwal. Effect of atom vacancies on 

elastic and electronic properties of transversely isotropic boron nitride nanotubes: 

A comprehensive computational study, Computational Materials Science 156, 332-

345, 2018. https://doi.org/10.1016/j.commatsci.2018.10.013 (IF: 2.863, ci: 20) 

2. V. K. Choyal, Vijay Choyal, Subhash Nevhal, Ajeet Bergaley and S. I. Kundalwal. 

Effect of aspects ratio on Young’s modulus of boron nitride nanotubes: A molecular 

dynamics study, Materials Today: Proceedings, ISSN 26, 2214-7853, 2019. 

https://doi.org/10.1016/j.matpr.2019.05.347 (IF: 0.97, ci: 5) 

3. S. I. Kundalwal, V. K. Choyal, Vijay Choyal and Nitin Luhadiya. Effect of carbon 

doping on electromechanical response of boron nitride nanosheets. 

Nanotechnology 31, 405710, 2020. https://doi.org/10.1088/1361-6528/ab9d43 (IF: 

3.874, ci: 5). 

4. S. I. Kundalwal, V. K. Choyal, Vijay Choyal, Subhash Nevhal, and Nitin Luhadiya. 

Enhancement of piezoelectric and flexoelectric response of boron nitride sheet 

superlattices via interface engineering. Physica E: Low-dimensional Systems and 

Nanostructures 127, 114563, 2021. https://doi.org/10.1016/j.physe.2020.114563 

(IF: 3.570, ci: 1) 

5. S. I. Kundalwal, V. K. Choyal and Vijay Choyal. Flexoelectric effect in boron 

nitride-graphene heterostructures, Acta Mechanica, 208, 1–20, 2021. 

https://doi.org/10.1007/s00707-021-03022-4 (IF: 2.102) 

6. V. K. Choyal and S. I. Kundalwal. Electromechanical response of multilayered 

boron nitride nanosheets: A computation study (To be Submitted) 

 



List of publications 

 

 

165 

 

A2. Conference Proceedings from the thesis 

1. V. K. Choyal, Vijay Choyal, Nitin Luhadiya and S. I. Kundalwal. 

Electromechanical response of carbon-doped Boron nitride nanosheets. 

International Conference on Precision, Meso, Micro and Nano Engineering, IIT 

Indore. December 12-14, 2019. 

A3. List of conference proceedings from other than thesis work 

1. Vijay Choyal, V. K. Choyal and S. I. Kundalwal. Transversely Isotropic Elastic 

Properties of Vacancy Defected Boron Nitride Nanotubes Using Molecular 

Dynamics Simulations.” 2018 IEEE 13th Nanotechnology Materials and Devices 

Conference (NMDC), in Portland, Oregon, USA. (ci: 6) 

2. Vijay Choyal, V. K. Choyal, Ekansh Jain and S. I. Kundalwal. Molecular 

dynamics study: effect of length and diameter on elastic properties of Multi-wall 

boron nitride nanotubes. 2nd International conference on Nano Science and 

Engineering Applications ICONSEA-2018, Hyderabad, India, October 4-6, 2018. 

3. Vijay Choyal, V. K. Choyal and S. I. Kundalwal. Effect of Stone-Wales Defects 

on transversely isotropic elastic properties of boron nitride nanotubes: a molecular 

dynamics study. IEEE 14th International Nanotechnology Materials & Devices 

Conference (NMDC 2018) in Portland, Stockholm, Sweden on 27-30 October 

2019. 

4. Vijay Choyal, V. K. Choyal, Ekansh Jain and S. I. Kundalwal. Mechanical 

properties of multi-walled boron nitride nanotubes: Computational study. 

International Conference on Precision, Meso, Micro and Nano Engineering, IIT 

Indore. December 12-14, 2019. 

 

 

 

 

 

 

http://www.vijaychoyal.webs.com/
http://www.vijaychoyal.webs.com/
http://www.vijaychoyal.webs.com/
http://www.vijaychoyal.webs.com/


List of publications 

 

166 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

167 

 

Curriculum Vitae 
 

Vijay Kumar Choyal                                                                                                  

Research Scholar  

Indian Institute of Technology (IIT) Indore, India 453552              

  +91-7697216260                                                                                            

   vijaychoyal161992@gmail.com,                                                                                                                                                                         

https://www.linkedin.com/in/vijay-kumar-choyal-                                                                                                                                                                                                                                                                                       

 

Education 

**Extracted 4 papers form the PhD research work.                                                                                                                                                               

Employment  

Position and organisation Nature of job Period 

Teaching Assistant, Indian 

Institute of Technology, Indore, 

India 

Teaching & 

Research 

Jul 24, 2018 - 

 

Principal areas of interests: Atomistic modelling of nanomaterials, Nanotechnology in 

engineering, Nanomechanics of nanomaterials and nanocomposite, Flexoelectricity, 

piezoelectricity.  

Degree Institute Year CPI / % 

PhD**- (Thesis 
submitted) 

Mechanical Engineering 

Indian Institute of Technology 
Indore, MP, India 

2018-21 7.89/10.00 

M.Tech* 
Design & Thermal 

Engineering 

Institute of Engineering and 
Technology Indore, M.P., 

India 

2016-18 7.63/10.00 

B.E.                                                                        
Mechanical Engineering 

TRUBA College of 
Engineering & Technology, 

Indore, M.P., India 

2010-14 7.31/10.00 

12th (Mathematics)                                      
Higher Secondary 
School Certificate 

Saraswati Shishu Mandir H.S. 
School, Indore, M.P. Board 

2009-10 68.00% 

10th (All subjects) 
Secondary School 

Certificate 

St. George H.S. School, 
Indore, M.P. Board 

2007-08 60.00% 

mailto:vijaychoyal161992@gmail.com
https://www.linkedin.com/in/vijay-kumar-choyal-
http://www.iiti.ac.in/
http://www.iiti.ac.in/


Curriculum Vitae 

 

168 

 

Technical skills: LAMMPS, Material Studio, VMD, OVITO, VESTA, Nano-engineer-1, 

ANSYS, MATLAB, SOLID WORKS, AUTOCAD, MS office, Origin.  

Teaching experience  

Title Level 

(UG/PG) 

Number of 

times 

Machine Design I and II UG 2 

Machine Drawing U.G. 1 

Theory of Machine U.G. 2 

Internal combustion Engines U.G. 2 

Computational Techniques in Materials Engineering U.G. and P.G. 1 

Micromechanics and Nanomechanics U.G. and P.G. 1 

 

Professional Recognition/Award/Prize/Certificate (National) 

• Qualified GATE 2016 with AIR 10060 and 72.65 Percentile.    

• Won II Prize in ELECTROMECHANICAL JUNKYARD-2011 at TRUBA college of 

Engineering and Technology, Indore. 

                                                                                                                          

Publications (List enclosed as Annexure CV-1) 

Publications Published Accepted Under 

Review 

Manuscript 

preparation 

Papers in Refereed 

International Journals 

3 - - 3 

Papers in International 

Conferences 

3 - - - 

Papers in National 

Conferences 

1 - - 1 

Google Scholar: Citations = 30, h-index=3, i10-index = 1 (Link Google Scholar) 

 

Academic Activities 

• Organized: Six Days’ online QIP- STC program on “Micro- & Nano-Mechanics of Solids: 

Fundamentals &Applications” on 14th December 2020. (Avg. feedback 4.4/5, Participant-

61) 

• Organized: TEQIP course titled "Atomistic Modelling of Solids", Dec 21-25, 2020 at IIT 

Indore. (Avg. feedback 4.68/5, Participant-65) 

• Coordinator:  Coordinate "International Conference on Precision, Meso, Micro & Nano 

Engineering" held at IIT Indore from Dec 12-14, 2020. More than 300 national and 

international participants attended this conference.  
• Coordinator: BAJA SAEINDIA 2013-14   

 

 

https://scholar.google.co.in/citations?user=jnczoJsAAAAJ&hl=en&authuser=1


Curriculum Vitae 

 

 

169 

 

Ongoing Research Projects 

Title and Sponsored agency Duration Adviser  

Characterizing the flexoelectric 

phenomena in monolayer boron nitride 

nanosheets. 

(SERB, DST India Sponsored)  

(Extracted Paper: Journal Paper 3 and 

Conference paper 2) 

36 

months 

(2018-

21) 

Dr. Shailesh I. Kundalwal 

(Associate Prof. Mechanical 

Engineering, IIT Indore) 

 

Completed Research Projects 

Title and Sponsored agency Duration Adviser  

Effects of vacancy defects on the elastic 

properties of boron nitride nanotube using 

MD simulation. 

(M.Tech. Project) 

(Extracted Paper: Journal Paper 1 and 

Conference paper 3) 

12 

months 

(2017) 

Dr. Shailesh I. Kundalwal 

(Associate Prof. Mechanical 

Engineering, IIT Indore) 

and  

Ajeet Bergaley (Assistant 

Prof. Mechanical 

Engineering, IET, DAVV, 

Indore) 

Duct design in air conditioning system at 

‘B’ block, IET DAVV, Indore 

(Sponsored by ISHRAE-2016-17) 

6 

months 

(2016) 

Dr. Ashesh Tiwari (Prof. 

Mechanical Engineering, 

(HOD) IET, DAVV, Indore) 

Design and Fabrication of braking systems 

of Automatic transmission vehicle (ATV) 

(Sponsored by BAJA SAEINDIA-2013-14) 

6 

months 

(2013-

14) 

Dr. Rupesh Tiwari (Assistant 

Prof. Mechanical 

Engineering, TRUBA 

College, Indore) 

Design and Fabrication of wind power 

water pump at TRUBA college of 

Engineering and Technology Indore.  

6 

months 

(2014) 

Dr. Abhay Kakride (Assistant 

Prof. Mechanical 

Engineering, TRUBA 

College, Indore) 

 

Industrial and Academic Trainings  

Indo German Tools Room on Industrial training (recognized by MSME) 

Sanwer road Indore. 

4 weeks 

Indo German Tools Room on AUTOCAD (recognized by MSME) Sanwer 

road Indore. 

4 weeks 

Satpura Thermal Power Station Industrial training (Government of 

Madhya Pradesh) Sarni. 

2 weeks 

Workshop on 2D DRAFTING and 3D MODELING (MECHINCA Design 

Solution) at TRUBA college, Indore.  

2 days 

 

 



Curriculum Vitae 

 

170 

 

Invited Talks 

1. Talk on "Electromechanical response of BNS" in IIT Indore. (Case Study) 

2. Talk on "Introduction of Nanoengineer and OVITO software" at IIT Indore. 

3. Talk on "Formulation of MD simulation of Uniaxial tension test in LAMMPS" at IIT 

Indore. 

 

Personal information 

DOB: August 16, 1992                                                                                                                                                           Languages: Hindi, English                                                                                                                                                                

Nationality: Indian                Marital Status: Married                   

Passport No.: T1101639 Gender: Male 

Present Address: Applied and Theoretical Mechanics 

lab (ATOM), 301, POD 1 B, IIT Indore, Simrol, 

453532, Madhya Pradesh, India 

Permanent Address: 217/c, Mayur Nagar, 

Musakhedi, Indore Dist. Indore, 452001, Madhya 

Pradesh, India                          

 

 


