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Abstract 

In the last decade, the use of computer-aided diagnosis (CAD) is greatly promoted and 

has improved the diagnosis of diseases to great extent. It has potential to assist doctors 

in taking final decisions with CAD result as a “second opinion”.  

Continuous monitoring of Electroencephalogram (EEG) is very cumbersome 

and may not be possible in some situations, in those places CAD can be a better 

alternative. This thesis present a new methodology for CAD by finding repetitive local 

patterns in the biomedical signals. Accuracy of diagnosis depends on how precise 

abstraction of diseases is captured in these features, and how significant these features 

are from diagnosis point of view. Recently authors in [1] and [2] experimentally show 

that diagnosis of certain diseases like epilepsy and diabetes can be achieved by 

analysing local neighbourhood patterns. A very common example of local pattern is 

local binary pattern (LBP) which describes local textures, pattern recognition also 

includes analysis of high level features like Eigen values of hessian matrix like in Frangi 

vesselness filter. In this work two methodologies are proposed, the first methodology 

is intended to analyse local pattern in the neighbourhood of retinal image to find 

correlated structure (i.e. retinal vessels) which in turn segments the retinal blood vessels 

and is evaluated on two well-studied and different databases DRIVE and STARE. It 

must me noted that Detection or segmentation of retinal blood vessels greatly helps in 

identifying vessel abnormalities, which is characteristic of retinal vascular disorders 

including diabetic retinopathy (DR). The second methodology is developed for 

detection of local pattern corresponding to seizure that effectively perform 

classification of epileptic seizure and also is evaluated on two databases. There is a dire 

need of CAD for detection and classification of epileptic seizure as diagnosis of 

epilepsy based on the visual inspection of EEG signals can be cumbersome and may 

take a long time, especially for long-duration EEG signals .The first database is of 

epilepsy obtained from university of Bonn, it has recordings from patients during 

epileptic attack and in absence of it. It also has recording from normal persons. The 

second database is obtained from Sir Ganga Ram Hospital, New Delhi it has recording 

from patients suffering from epilepsy. The advantage of the both methodologies other



than the very high accuracy, are very low timing complexity that makes these methods 

well suitable for near real time applications and for devices with limited resources. 

These advantages makes the proposed methodology well suitable for computer-aided 

diagnosis of epileptic seizures and segmentation of retinal blood vessels. 
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Chapter 1  

Introduction and literature review 

 

The objective of this study is twofold, the first one is detection and measurement of 

vessel like structures which are helpful for medical image analysis and diagnosis and 

the second one is electroencephalogram (EEG) based automated diagnosis of epilepsy. 

This section briefly presents the importance of vessel segmentation and its application 

to medical images. It must be noted that as the imaging technology progresses quality 

of acquired images increases, which eventually increases examination time required in 

case of computer aided diagnosis (CAD). To process the medical images in timely 

fashion timing complexity should be as low as possible. Extraction of vessels is the 

primary step in the CAD analysis the final objective remains extraction of important 

attributes from fundus images like diameter, length, branching angles or tortuosity of 

vessel segments. It addition, although in this study vessel extraction is proposed 

exploiting local neighbourhood properties, but due to generality of proposed 

methodology it can be applied to other areas of medical imaging. The following section 

presents the importance of EEG signals for diagnosis of epilepsy. 

The EEG signals are commonly used for diagnosis of epilepsy. The proposed method 

involves detection of key-points at multiple scales in EEG signals using a pyramid of 

difference of Gaussian (DoG) filtered signals. Local binary patterns (LBP) are 

computed at these key-points and the histogram of these patterns are considered as the 

feature set, which is fed to the support vector machine (SVM) for classification of EEG 

signals. The proposed methodology has been investigated for the four well-known 

classification problems namely, (i) normal and epileptic seizure, (ii) epileptic seizure 

and seizure-free, and (iii) normal, epileptic seizure, and seizure-free, (iv) epileptic 

seizure and non-seizure EEG signals using publically available university of Bonn EEG 

database. Our experimental results in terms of classification accuracies have been 

compared with existing methods for classification of the above mentioned problems. 

Further, performance evaluation on another EEG dataset collected at Sir Ganga Ram
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Hospital, New Delhi shows that our approach is effective for classification of seizure 

and seizure-free EEG signals. The proposed methodology based on LBP computed at 

key-points is simple and easy to implement for real-time epileptic seizure detection. 

The following section briefly presents the existing state-of-the-art methods in the area 

of vessel segmentation using retinal images and a methodologies for seizure 

classification using EEG signals.  

 

1.1. Review of vessel segmentation methodologies 

In this section an abstract review of the existing vessel segmentation methodologies is 

presented. Automated segmentation of blood vessels in retinal images is among the 

most researched topics in the medical image analysis. Detection or segmentation of 

retinal blood vessels greatly helps in identifying vessel abnormalities, which is 

characteristic of retinal vascular disorders including diabetic retinopathy (DR). 

Diabetes is a global health issue and long-term diabetic condition leads to health 

complications including DR, which has emerged as one of the major causes of vision 

loss in developed as well as developing countries [3]. According to the study reported 

in [4], the increase in the number of diabetic patients is alarmingly high and is estimated 

to be 366 million by the year 2030. Diagnosis and treatment is the key to prevention of 

vision loss from DR. Therefore, retinal vessel segmentation for detection of vascular 

abnormalities is an important component in computer aided diagnosis (CAD) using 

fundus images. Detection of veins and subsequent extraction of their attributes can also 

be utilized to assess the severity of retinal vascular disorders [5]. Apart from the 

biomedical applications, features extracted from retinal vessel pattern have also been 

explored for biometric recognition [6], [7]. 

Detection of slender veins, which may represent proliferation of new abnormal 

blood vessels, is one of the major challenges in retinal blood vessel segmentation. Some 

of these new vessels have been found to be of width as low as one pixel in the acquired 

fundus images [8].  These slender veins are often lost in the detection process, leading 

to low true positive rate (TPR). In addition, accurate detection of vessels around the 

macula is also a major challenge due to low contrast in the region. On the other hand, 

edges of different structures and patches in fundus images are often incorrectly 

classified as vessel pixels, leading to high false positive rate (FPR). These structures 
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are caused by retinal disorders such as macular degeneration and diabetic retinopathy 

[8]. 

Retinal vessel segmentation is essentially a binary classification problem, in 

which each pixel is classified into one of the two classes: blood vessel and non-blood 

vessel pixels. Over the years, several approaches have been developed to address this 

problem [9]-[27]. Broadly, retinal vessel segmentation techniques in the literature can 

be classified into two categories, namely, supervised methods [9]-[15] that require 

labelled training data and unsupervised methods [16]-[26] that do not require any prior 

information on the category of pixels. A major drawback of the supervised pixel 

classification techniques is the requirement of training images with expert annotations.  

In addition, insufficient number of training images leads to poor classification 

performance on the test dataset. More importantly, the performance of a supervised 

method trained on one dataset often deteriorates when evaluated on another dataset [9].  

Recently, Zhao et al. [17] developed an infinite active contour model based retinal 

vessel segmentation approach. The approach utilizes local phase based enhancement 

filter to obtain more reliable estimate of vesselness and potential outliers are excluded 

using intensity information of the image.  

Roychowdhury et al. [25] proposed an iterative algorithm for vessel 

segmentation. In each iteration, new vessel pixels are extracted from residual image 

using an adaptive threshold. The iteration stops when number of false pixels exceeds 

true vessels pixels in the newly added vessel pixels. However the algorithm requires 

one time training on the dataset to derive adaptive thresholding function. Imani et al. 

[26] developed an algorithm for vessel extraction using morphological component 

analysis (MCA). MCA relies on sparse representation of signals. Lesions are separated 

from blood vessels using MCA algorithm with the appropriate transforms. 

Subsequently, final vessel structure is obtained by performing adaptive thresholding on 

vessel enhanced image generated using Morlet wavelet transform. In general, 

performance of retinal vessel detection often deteriorates in regions of low contrast and 

has poor sensitivity for thin vessels [9, 28]. For example, it has been observed that the 

detection rate of the algorithm based on “Ribbon of Twins” active contour model [28] 

drops for vessels having width less than three pixels. In addition, central reflex 

introduces a gap at the center of vessels in the segmented vessel image, as in Staal et 

al. [10] and Soares et al. [12]. These issues are also discussed by Nguyen et al. [24]. 

Computational performance of the vessel detection algorithms is another concern, 



4 
 

especially for applications that are expected to run on portable devices [29] with limited 

computational resources. The above issues motivated us to develop a computationally 

simpler technique without compromising on the detection accuracy. The following 

section discusses the existing methodologies for seizure classification using EEG 

signals. 

 

1.2.  Review of seizure classification methodologies 

The EEG signals are generally used for diagnosis of epilepsy which affects 

nearly 50 million persons around the world [30]. Diagnosis of epilepsy based on the 

visual inspection of EEG signals can be cumbersome and may take a long time, 

especially for long-duration EEG signals. The advanced signal processing technique 

based methods may be more suitable for fast, reliable and automatic diagnosis of 

epilepsy from EEG signals. In the literature, a lot of work has been done using various 

signal processing techniques in order to determine features for analysis, classification, 

and detection of epileptic seizures from EEG signals [30], [31].   

 The signal processing based methods for automated diagnosis of epilepsy which 

work in time and frequency-domains have been proposed in the literature. For example, 

the linear prediction model based energy of EEG signals has been explored for the 

classification of epileptic seizures in [32]. This method exploits the time-domain 

features like spikes and amplitude of the signal for epileptic seizure detection using 

EEG. The fractional calculus based more robust linear prediction method has been 

proposed for classification of epileptic seizure EEG signals in [33]. In this method, the 

fractional linear prediction model based error energy and energy computations of EEG 

signals together with support vector machine (SVM) has been suggested for automated 

classification of epileptic seizure EEG signals. Artificial neural network (ANN) 

classifier utilizes these features for classification of normal and epileptic seizure EEG 

signals. The ANN classifier is also used with principal component analysis (PCA) based 

approach for classification of epileptic seizure EEG signals for diagnosis of epilepsy 

[34].The local binary pattern (LBP) has been suggested for classification of epileptic 

seizure EEG signals [1]. In another work, the LBP of the signals decomposed using 

Gabor filter bank along with the nearest neighbor classifier have been suggested for 

classification of seizure-free and seizure EEG signals [35]. 
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Another category of approaches for automated diagnosis of epilepsy using EEG signals 

is based on time-frequency domain and non-stationary signal decomposition 

techniques. Features based on the time-frequency distributions such as Cohen's class 

and short-time Fourier transform (STFT) have been proposed in [36]. The ANN 

classifier utilizes these features for classification of epileptic seizure from EEG signals. 

Acharya et al. [37] developed an approach for automated diagnosis of epilepsy using 

higher order spectra (HOS) and texture features from continuous time wavelet 

transform plot of the EEG signals. In another work, authors employed wavelet 

transform for obtaining sub-bands of EEG signals and several statistical features of 

these sub-bands are then computed. For dimensionality reduction of the resulting 

feature set, authors explored PCA, independent component analysis (ICA) and linear 

discriminate analysis (LDA). This reduced feature set has been used for the 

classification of epileptic seizures from EEG signals [38].  The improved forms of 

generalized fractal dimensions and discrete wavelet transform based methodology has 

been presented in [39] for epileptic seizure detection. 

 In another category of approaches that exploit non-linear and non-stationary 

behaviour of EEG signals, several features computed from the intrinsic mode functions 

(IMFs) such as the area of phase space representation [40], area of second-order 

difference plot (SODP) [41], bandwidths of amplitude modulation and frequency 

modulation [42], area of analytic signal representation (ASR) and instantaneous area 

[43, 44], combination of area of ASR and area of SODP have been proposed for analysis 

and classification of epileptic seizure EEG signals [45]. 

Recurrence quantification analysis [46], Hurst exponent [47], HOS [48], approximate 

entropy [49] are some of the nonlinear features that have been proposed for automatic 

detection of epileptic seizures in EEG signals.  

 

1.3.  Contribution in this work 

Major contributions of the work presented in this thesis are four-fold. Firstly, we 

propose a new approach for retinal vessel segmentation using eigenvalue maps, which 

are generated by eigenvalue decomposition of a local covariance matrix. The local 

covariance matrix is formed by second order image moments. Secondly, a simple 

approach for detection of centerline vessel pixels is proposed. Detected centerline 

pixels are further utilized to refine vessel structure obtained using eigenvalue maps. 
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Comparative experimental evaluation on two benchmark datasets indicates that the 

performance of the proposed method is quite comparable to recently proposed 

approaches in this area. Second contribution of this work is a methodology for vessel 

width estimation. Experimental evaluations on a benchmark dataset indicate that the 

standard deviation of measurement error in width measurement remains under 1 pixel 

on all four subsets. Another key advantage of our approach is its computational 

efficiency.  

The final contribution presented in this work is a new method for automated 

diagnosis of epilepsy using EEG signals. The key feature of our approach is that it 

involves computation of LBP only at a set of stable key-points, which are detected 

through a multi-scale analysis of the EEG signal. In contrast to this, the conventional 

LBP based methods for EEG signal classification [1], [35] compute LBP at every 

sample value of the EEG signal. As our experimental results indicate, the proposed 

approach results in significant improvement in performance due to increased 

discriminating ability of the LBP based feature set when computed at key-points. 

 

1.4.  Organization of the work 

Rest of the thesis is organized as follows. In chapter 2 a methodology for vessel 

extraction is proposed. Section 2.1 details the detection of centreline pixels. In Section 

2.2.1 and 2.2.2, generation of eigenvalue maps is discussed. Selective growing of 

centerline pixels is explained in Section 2.2.3. Retinal vessel extraction and post-

processing involved are detailed in Section 2.2.4 and 2.3, respectively. An approach for 

measurement of vessel width is presented in Section 2.4. Chapter 3 presents the detail 

of the proposed methodology for seizure classification. Specifically, In Section 3.1, 

details of the approach employed for detection of key-points in EEG signals are 

presented.  Computation of LBP at these key-points and subsequent generation of the 

feature set, and classifier involved are described in Section 3.2. Chapter 4 describes 

databases used for performance evaluation, followed by experimental results and 

discussion. Finally, Chapter 5 presents concluding remarks. 
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Chapter 2  

 Proposed methodology for retinal vessel image 

segmentation 

 
A Framework of the proposed approach for retinal vessel segmentation is shown in Fig. 

2.1. 

 

 
Fig. 2.1. The block diagram of proposed algorithm for blood vessel segmentation. 

 

 
At first, the green channel of the retinal colour is separated for further processing, as it 

is realized that green channel shows essentially higher contrast between veins and the 

background when contrasted with red and blue channels [9], [16], and [20]. The green 

channel thus separated is handled with a goal to recognize potential candidates for 

centerline vessel pixels. In particular, centerline pixels are extricated from Gaussian 

filtered green channel utilizing directional structuring elements. Gaussian filtering is 

utilized to minimize the impact of noise, however low pass filtering causes obscured 

vessel boundaries and loss of most slender vessels [9]. In this manner, Gaussian window 

of size 5×5 is utilized which reduces noise while protecting most slender vessels. At 

the same time, green channel picture is likewise handled to get a principal eigenvalue 

map and a differential eigenvalue map using PCA in the neighborhood of every pixel.
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A selective vessel growing is performed on extracted centerline pixels with the goal to 

link pixels corresponding of same vessel segment. The eigenvalue map is normalized 

and vessel pixels are extracted using simple thresholding. To further improve the 

performance of vessel detection, falsely detected vessel pixels are removed based on a 

decision rule taking linked centerline pixels into consideration. Detailed descriptions of 

the above processing steps are provided in the following sections. A graphical 

representation of the discussion (including intermediate results) presented in this 

section is shown in the Fig. 2.2.  

 
Fig. 2.2 Graphical representation of the proposed methodology: (A) A sample image from DRIVE 

database; (B) Detected centerline image (after combining all four centerline images); (C) Principal 

eigenvalue map (contras enhanced for better visualization); (D) Differential eigenvalue map; (E) 

Thresholded differential eigenvalue map; (F) Segmentation result after performing selective region 

growing on centerline image; (G) Restoring to original width (obtained from thresholded principal 

eigenvalue map); (H) Segmented retinal vessel after post-processing; (I) Ground truth segmentation. 
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2.1 Detection of centreline pixels 

This section presents the details of proposed technique for precisely locating centreline 

pixels. Centerline pixels are characterized as pixels which lies exactly at the center of a 

vessel segment. It can be seen from Fig. 2.3 centerline vessel pixel represent the nearby 

minima points on the surface when the retinal image is viewed as a surface in 3D space. 

Author in [50] showed that profile of a retinal vessels follows Gaussian nature. More 

precisely the vessel profile when viewed in direction perpendicular to it follows 

inverted Gaussian with minimum at center.  In this work, we developed simple yet 

proficient method using a set of structuring elements to identify all possible centerline 

pixels. Specifically, we utilized structuring elements having 7 pixels and oriented along 

horizontal, vertical and the two diagonal directions, namely 45 and -45 degree. The in-

depth details of the proposed centerline detection approach are provided in the 

following algorithm. 

 
Fig.  2.3. Centerline vessel pixels: (a) A zoomed-in version of a small region of a retinal image containing 

blood vessels; (b) image in (a) color coded for better representation depicting the fact that centerline 

pixels represent local minima; (c) image in (a) as a surface in 3D space 

 

Algorithm 1: Centerline vessel detection 

 

Input: Gaussian filtered green channel 

Output: Extracted centerline vessels 

Initialize: Counter (𝑥, 𝑦) = 0. 

For every pixel in the image 

For each directional structuring element 

Find minima within the probing window. Say (x, y) is the location of the minima, then 

Counter (𝑥, 𝑦)= Counter (𝑥, 𝑦)+1; 
End 

End 

 

At first, the counter is set to zero and the green channel is masked using 4 distinctive 

structuring elements (SEs), every detecting vessels arranged along a particular 
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direction. In particular, vessel structures oriented vertically are identified using the 

horizontally aligned SE, and veins oriented along 45 degree are recognized by the 

structuring elements directed along - 45 degree. Each pixel is examined using SEs with 

objective of finding the position of the minima inside probing window and the counter 

is increased by one at the indices corresponding to the minima location. This process 

yields a binary image, which is obtained by setting pixel value to 1 if the counter (x, y) 

value equals to 7. The probing operation is depicted in Fig. 2.4. 

 
Fig. 2.4. Demonstration of centerline pixel extraction process using horizontal probing window (Pixel 

being processed is shown in red). 

 

The proposed centerline extraction methodology guarantees that pixels belonging to the 

same vessel segment are either associated together or are isolated by just a couple of 

pixels (typically, 1 to 3 pixels) and pixels belonging to various segments are well 

isolated (at the most 7 pixels). The extracted skeleton of centerline vessels is utilized in 

removing pathologies to great degree as pathologies don't form any lengthened 

structures. As can be seen in Fig. 2.5, the procedure portrayed above adequately 

distinguishes vessel centerline pixels. However, the proposed approach additionally 

brings about significant number of falsely identified background (non-vessel) pixels. 

Majority of these erroneously detected non-vessel pixels are excluded from the 

 

Fig.  2.5. Effectiveness of centerline vessel detection in segmenting single pixel wide blood vessels as 

well as vessels in poor contrast region: (a) Retinal image; (b) Centerline vessel pixels extracted using -

45 degree probing window; (c) Centerline vessels obtained after performing selective region growing on 

(b) and subsequently removing isolated structures; (d) Final vessel structure obtained by combining 

individual results of structuring elements oriented in four directions. 



11 
 

principle retinal vessel structure as they does not form extended structures. Therefore, 

these isolated small structures are removed by imposing minimum bounding rectangle 

constraint, details of which are provided in Section 2.2.3. However, small fraction of 

the true vessels also exhibit as separate structure in the centerline vessel image and 

might get filtered by the bouncing rectangle constraint. Hence, a selective region 

growing of these centerline pixels is performed to connect small disconnected structures 

before applying bounding box constraint. The selective region growing approach 

developed in this work uses the differential eigenvalue map obtained from local PCA. 

The details of this approach are given in the following section. 

 

2.2.  Local principal component analysis 

This section present details of the approach developed to segment retinal blood vessels 

by removing background (non-vessel pixels). The approach make use of PCA applied 

on local neighborhood (which we refer to as local PCA) of every pixel in the retinal 

image. This outcomes in higher eigenvalues if the neighborhood pixels are profoundly 

organized as in case of vessel pixels, which follows inverted gaussian nature. Regions 

containing background pixels including pathologies in the retinal picture yield lower 

eigenvalues. In general, for a dataset arranged in a matrix 𝑌 of 𝑚 ×  𝑛  dimension, the 

objective of PCA is to discover orthonormal transformation matrix 𝑃 in equation 𝑌 =

𝑃𝑋 such that covariance matrix 𝐶𝑦 =
1

𝑛
𝑌𝑌𝑇 is a diagonal matrix. The rows of 𝑃 are the 

principal components of covariance matrix of 𝑋 [51]. 

In this work, the PCA is performed on a covariance matrix, which is formulated 

using a set of second order image moments [52]. Image moments are computed as the 

weighted average of pixel intensities in the local neighborhood of a pixel. Kernels 

involved in the implementation of local PCA on 5×5 neighborhood of a pixel are shown 

in Fig. 2.6. 

Let 𝐼𝑥,𝑦 be the green channel of the retinal image, the second order moments involved 

in formulation of the covariance matrix are computed as follows: 

 

𝑋 𝑥,𝑦
 var =  ∑ ∑  (𝐾 𝑢,𝑣

 xcentroid − 𝑋 𝑥,𝑦
 centroid)2. 𝐼𝑥+𝑢−2,𝑦+𝑣−2

𝑣=5
𝑣=1

𝑢=5
𝑢=1                              (1)    

 𝑌 𝑥,𝑦
 var = ∑ ∑  (𝐾 𝑢,𝑣

 ycentroid
− 𝑌 𝑥,𝑦

 centroid)2. 𝐼𝑥+𝑢−2,𝑦+𝑣−2
𝑣=5
𝑣=1

𝑢=5
𝑢=1                         (2)                                                                                                                                       

𝐶𝑜𝑣 𝑥,𝑦= ∑ ∑  (𝐾 𝑢,𝑣
 xcentroid − 𝑋 𝑥,𝑦

 centroid). (𝐾 𝑢,𝑣
 ycentroid

− 𝑌 𝑥,𝑦
 centroid). 𝐼𝑥+𝑢−2,𝑦+𝑣−2

𝑣=5
𝑣=1

𝑢=5
𝑢=1                                                      

(3)                                                                  
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Fig.  2.6. (a) Kernel (𝑲xcentroid) for calculating x component of the centroid; (b) Kernel (𝑲ycentroid) for 

y component of the centroid;  (c) All-one matrix (U); (d) Kernel (𝑲xvar) for calculating x variance (e) 

Kernel (𝑲yvar) for calculating y variance (f) Kernel (𝐊cov) for calculating the covariance   

 

where,  

𝑋 𝑥,𝑦
 centroid=  

∑ ∑  (𝐾 𝑢,𝑣
 xcentroid.𝐼𝑥+𝑢−2,𝑦+𝑣−2)𝑣=5

𝑣=1
𝑢=5
𝑢=1

∑ ∑  (𝐼𝑥+𝑢−2,𝑦+𝑣−2)𝑣=5
𝑣=1

𝑢=5
𝑢=1

                                           (4) 

𝑌 𝑥,𝑦
 centroid  =  

∑ ∑  (𝐾 𝑢,𝑣
 ycentroid

.𝐼𝑥+𝑢−2,𝑦+𝑣−2)𝑣=5
𝑣=1

𝑢=5
𝑢=1

∑ ∑  (𝐼𝑥+𝑢−2,𝑦+𝑣−2)𝑣=5
𝑣=1

𝑢=5
𝑢=1

                                           (5) 

Equations (4) and (5) represent 𝑋 and 𝑌 coordinates of the centroid computed for a 

local neighborhood of a pixel located at (𝑥, 𝑦). The local covariance matrix is then 

computed as follows:  

Cov[𝐼𝑥,𝑦] = [
𝑋 𝑥,𝑦

 var      Cov 𝑥,𝑦

Cov 𝑥,𝑦 𝑌 𝑥,𝑦
 var  

]                                                 (6) 

Eigenvalue decomposition of the above covariance matrix yields two eigenvalues, 

which are used in our approach to extract the retinal vessel structure. Computation of 

the covariance matrix and subsequent eigenvalue decomposition is performed for every 

pixel in the retinal image to obtain eigenvalue maps. However, performing local PCA 

in comprehensive way as depicted above increases computational complexity and 

prompts higher memory requirements. To overcome these issues, a fast version is 

derived by defining calculation of second order moments as matrix algebra, as matrix 

manipulation is faster in calculation. In particular, the above equations (1)-(5) are 

expressed in the image correlation form as presented below: 

𝑋var  = 𝐾  xvar ∗  𝐼  − (𝑋 centroid )2 × (𝑈 5×5 ∗  𝐼)                               (7) 

𝑌var  =  𝐾  yvar ∗ 𝐼  − (𝑌 centroid )2 × (𝑈 5×5 ∗  𝐼)                 (8) 

Cov 𝑥,𝑦= 𝐾cov ∗ 𝐼 − 𝑋 centroid × 𝑌 centroid × (𝑈 5×5 ∗  𝐼)                                      (9) 

where 
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𝑌 centroid  =  
𝐾 ycentroid  ∗ 𝐼  

𝑈 5×5 ∗ 𝐼
                                           (10) 

𝑋 centroid = 
𝐾 xcentroid ∗  𝐼  

𝑈 5×5 ∗ 𝐼
                                                                                (11)  

𝐾  xvar =  (𝐾  xcentroid)2                                                                  (12) 

𝐾  yvar= (𝐾  ycentroid)2                                                                            (13) 

𝐾  cov= 𝐾  xcentroid × 𝐾  ycentroid                                                    (14) 

and 𝑈 5×5  is all-ones matrix of 5×5 elements. In the above equations, 𝐼 is the green 

channel of retinal image, × represents the operation involving multiplication of 

corresponding elements and ∗ is the image correlation operator. Dimensions of matrices 

computed using equations (7)-(11) are same as that of the original retinal image. 

 

2.2.1.  Eigenvalue map 

As described in the previous section, calculation of the covariance matrix and 

consequent eigenvalue decomposition results in two eigenvalues (principal and second 

eigenvalue) for each pixel. Fig. 2.7 demonstrates the steps involved in calculation of 

eigenvalue maps. This procedure produces two eigenvalue maps, in particular principal 

eigenvalue map and differential eigenvalue map. The principal eigenvalue map is 

produced utilizing normalized primary eigenvalues, which are obtained by computing 

the ratio of principal eigenvalue to the pixel value around which the nearby 

neighborhood is considered.  

 
Fig.  2.7. Flow diagram showing generation of principal and differential eigenvalue maps 
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The major advantage of considering normalized eigenvalue is that it helps in restricting 

the adverse impact of uneven background in vessel segmentation process. Fig. 2.8 

shows principal eigenvalue maps obtained for three retinal images with varying 

contrast. It can be observed that the background (non-vessel) pixels in the normalized 

eigenvalue maps have nearly identical pixel values, regardless of the contrast variation 

in original retinal images. This helps in segmentation of blood veins with a simple 

threshold technique.  

 
Fig.  2.8. Neutralizing the adverse effect of uneven background using local PCA: (a) low-contrast image; 

(b) image with varying contrast; (c) high contrast image; (d), (e) and (f) are the corresponding normalized 

principal eigenvalue maps.  

In this work, the local PCA is performed at multiscale scales to enhance sensitivity of 

our methodology towards vessels with larger diameter. This is inspired by the 

multiscale analysis for vessel enhancement detailed in [2]. Specifically, we performed 

local PCA with two sets of kernels of dimentions 5×5 and 9×9. A normalization is then 

performed on the subsequent principal eigenvalue maps with the goal that they yield 

identical eigenvalues for areas of constant intensity. At last, normalized principal 

eigenvalue maps are combined by selecting the greatest eigenvalue (at each pixel area) 

among the maps at two investigation scales considered in this study. 

 

2.2.2.  Differential eigenvalue map 

As depicted in Fig. 2.7, differential eigenvalue map comprises of differences between 

principal eigenvalue and the second eigenvalue as entries. Fig. 2.9 indicates differential 

eigenvalue of an example retinal image from DRIVE database. It may be noted that 

(refer to Fig.2.9 (b)) the differential guide clearly shows boundaries of veins. This is 
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because, the difference between the principal and the second eigenvalue becomes least 

at the vessel boundaries. We likewise have observed that locations of vessel boundary 

pixels got from differential eigenvalue map are consistent with that of edge pixels 

obtained by canny edge detector. In this work, the differential eigenvalue map is used 

to figure out a decision rule for connecting disconnected vessel segments, details of 

which are presented in the following section. For this purpose, a binary image is 

obtained by performing local thresholding of the differential eigenvalue map. Fig. 

2.9(c) shows the resulting binary image. The thresholding operation is performed 

follows:  

𝐵𝑥,𝑦 = {
1,    if  𝐷x,y > 𝑚𝑒𝑎𝑛 

0,              otherwise.
                             (15) 

Where 𝐵𝑥,𝑦 is the binary image obtained after performing thresholding operation on 

differential eigenvalue map 𝐷x,y and 𝑚𝑒𝑎𝑛 is the average of neighborhood pixels 

within the window of dimension 64×64. 

 
Fig.  2.9. Detecting boundaries of blood vessels: (a) Differential eigenvalue map; (b) A zoomed-in 

version of the selected region bounded by red colored rectangle in (a); (c) resulting binary image obtained 

by performing local thresholding on (b) 

 

2.2.3.      Selective growing of centerline pixels using differential 

eigenvalue map  

 
Ideally, centerline pixels corresponding to the retinal vessel structure should be 

connected to each other. However, because of pathologies and extrudate in retinal 

images, some of the detected centerline pixels form small and isolated segments (Refer 

to Figs. 2.5(b) and 2.10(a)-(d)). Since these portions corresponds to true vessels are not 

connected to the main vessel structure, they may get filtered alongside isolated 

segments (relating to non-veins) while bounding rectangle constrained is imposed. 

Therefore, connection of all pixels belonging to vessel segments is crucial before 
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removal of small isolated segments that belongs to non-vessel structures. For this 

reason, a selective region growing is performed. In this methodology, pixels situated at 

the ends (pixels with a single neighbor) of segments are considered as initial seed 

points. 

 

Fig.  2.10. Selective centerline pixel growing: (a), (b), (c) and (d) show centerline vessel pixels detected 

using -45 degree, horizontal, 45 degree, and vertical structuring elements respectively;  (f), (g), (h), and 

(i) show corresponding images obtained by performing selective vessel  growing and subsequently 

removing isolated segments; (e) and (j) show the original retinal image and the corresponding centerline 

image obtained by performing logical OR operation on images shown in  (f), (g), (h), and (i).  

Neighboring pixels are then added to the centerline vessel image, if pixel value at the 

corresponding location in the binary image (generated from the differential eigenvalue 

guide) is 1. In the proposed approach, the above procedure is iterated twice and is 

performed independently for each of the four centerline images generated utilizing 

different structuring elements. This is followed by filtering of isolated segments in each 

of the four centerline images utilizing bounding rectangle constraint. In particular, an 

8-connected vessel segment is retained if its bouncing rectangle is totally contained in 

a square of dimension 𝑊 × 𝑊 pixels. In this study, we have emperically set the value 

of 𝑊 to 30 and 50 for DRIVE and STARE databases, respectively. The above filtering 

operation is also performed independently for each of the four centerline images and 

the subsequent four images are consolidated using the logical OR operation. 

Intermediate results from the processing steps depicted in this section are shown in Fig. 

2.10. 
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2.2.4. Retinal vessel extraction using principal eigenvalue map with 

refinement using centerline connectivity based decision rule 

 

In this section, we present details of a methodology developed to segment blood vessels 

by removing background (non-vessel pixels), which generally has low principal 

eigenvalue when contrasted with regions containing blood vessels. Fig. 2.11 shows 

vessels extracted by thresholding principal eigenvalue map with a global threshold. The 

algorithm for determining this threshold is detailed in the following subsection. As can 

be seen in Fig. 2.11, a simple threshold based vessel extraction from principal 

eigenvalue map has high sensitivity.  

 
Fig. 2.11. Vessel extraction using principal eigenvalue map. The first column shows sample retinal 

images from DRIVE and STARE databases. The second and the third column show their corresponding 

principal eigenvalue maps and the extracted vessel structures. 

 

However, it experiences poor specificity on account of pathologies and obscure vessel 

boundaries. To expel structures corresponding to pathologies from the segmented 

vessel image, a centerline based decision rule is applied to the segmented vessels. This 

operation is performed in two stages. In the first stage, thresholded principal eigenvalue 

map is ANDed with the centerline pixel image (obtained after performing vessel 

growing presented in Section 2.2.3) to expel structures corresponding to pathologies 

from the segmented vessel image. Other than removing pathological structures, the 

above operation serves another purpose. A portion of the connected structures of non-

vessel pixels brought into the centerline image at the time of vessel growing get 



18 
 

separated forming small and isolated segments. Subsequently, a bounding rectangle 

constraint is forced on the ANDed image. 

All vessel segments fulfilling bounding rectangle constraint are morphologically 

dilated and ANDed with vessel structure obtained from principal eigenvalue map in an 

attempt to restore to their original width. Intermediate results involved in the algorithm 

explained in this section are shown in Fig. 2.12. Section 2.3 describes a post-processing 

performed to refine boundaries of the identified vessels. 

 

 
Fig. 2.12. Utilizing centerline information to remove pathological structures from vessel structure: (a) A 

retinal image with pathology (from the STARE database); (b) Principal eigenvalue map of the image 

shown in (a); (c) Thresholded principal eigenvalue map; (d) Centerline pixels; (e) Centerline pixels 

ANDed with image in (c); (f) Final vessel structure obtained using processing steps described in Section 

2.2.3. 

 

2.2.4.1  Deciding threshold for eigenvalue map 

 
It has been observed that a vessel in low contrast region gets discarded when principal 

eigenvalue map is thresholded with a higher value (refer to Fig. 2.14(c)). On the other 

hand, a lower threshold results in noisy structures alongside true vessels as shown in 

Fig. 2.14(b). The normalized principal eigenvalue, computed using equations (1)-(6), 

for constant background of any intensity is 50. Therefore, the threshold value must be 

greater than 50. However, selecting a high threshold may lead to rejection of vessels in 

the low contrast region. Therefore, an empirically decided threshold of 50.25 is used 

for low contrast images, while a threshold of 50.5 is used for good contrast images. The 

flow diagram for computation of the threshold is shown in Fig. 2.13.  



19 
 

 
Fig.  2.13. Flow diagram to determine threshold for vessel detection from principal eigenvalue map. 

An image is categorized as low contrast if the average of normalized principal 

eigenvalues calculated for centerline pixels is less than 51. Otherwise, the image is 

considered to be of good contrast. 

 
Fig.  2.14. Effect of threshold on the vessel structure obtained from principal eigenvalue map: (a) Noisy 

structures (shown in red circles) connected to the main vessel structure appear when a lower threshold 

(50.25) is selected; (b) True vessels, especially in the low contrast region are lost when a higher threshold 

(51) is selected.  

 

2.3 Post-processing 

 
The key objective of the post-processing stage is to minimize misclassified non-vessel 

pixels, particularly the ones that are appended to vessel boundaries. A closer look at the 

segmented vessel structures in Figs. 2.12(f) and 2.15(a) reveal many falsely detected 

structures. The misclassification emerges mostly because these non-vessel pixels are 

associated with the main vessel structure at boundaries and hence are not discarded by 

the bounding rectangle constraint.  

The above observation motivated us to build up a post-processing method to 

eradicate erroneously recognized vessel pixels and thereby increasing the specificity of 

our approach. For this reason, we utilize vessel boundaries derived from differential 

eigenvalue map. As appeared in Fig. 2.9(b), these boundary pixels are portrayed by the 
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local minima in the differential eigenvalue map. Having identified vessel boundaries, 

pixels in the final segmented image (refer to Fig. 2.15(a)) that lie outside vessel 

boundaries are discarded. In particular this is accomplished by subtracting vessel 

boundary pixels from the final segmented 

 

Fig.  2.15. Post-processing to improve specificity of vessel detection: (a) Blood vessel structure obtained 

using processing steps described in section 2.2.3; (b) Ground-truth; (c) Image in (a) with falsely detected 

vessel pixels in green color; (d) Vessel structure obtained after post-processing, showing significant 

reduction in number of falsely detected vessel pixels.  

vessel image to isolate falsely detected vessels, which are shown by green colored 

pixels in Fig. 2.15(c). These isolated segments are then removed using previously 

discussed bounding rectangle constraint. However, in this process, boundary pixels are 

likewise lost. This effect is reversed by performing an iteration of morphological 

dilation and retaining only those pixels having corresponding principal eigenvalue of 

50.5. This is performed based on our observation on vessel boundaries detected in poor 

contrast region (principal eigenvalue less than 50.5) having higher width than their true 

value. 

 

2.4 Estimation of vessel width 

 
In this section, we present an algorithm for estimation of retinal vessel width. The 

proposed algorithm makes use of principal and differential eigenvalue profiles to find 

two vessel boundary points on either side of a given center pixel. Algorithm 2 details 

the vessel width estimation approach and definition of notation adopted in this 

algorithm is presented in Table 2.1. Given the centerline pixel, the vessel width needs 

to estimated perpendicular to the local centerline direction, which can be estimated 

using two neighboring pixels on either side of the centerline pixel [53]. 

Principal and differential eigenvalue profiles are then extracted in this 

perpendicular direction. The neighborhood of the center pixel (in the principal 

eigenvalue profile) is analyzed to recognize the presence of central reflex and to 
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initialize the search for the boundary points. This is based on the observation that central 

reflex introduces a local minimum at (or close to) the centerline pixel in the principal 

eigenvalue profile, as shown in Fig. 2.16(a). On the other hand, profile of the principal 

eigenvalue map of a typical vessel without central reflex forms a concave region around 

the centerline pixel. Therefore, the nearby neighborhood of the centerline pixel in the 

principal eigenvalue profile are analysed to figure out whether the region is convex 

(indicating the presence of central reflex) or concave. A search for vessel boundary 

points is then performed primarily based on the principal eigenvalue with a threshold, 

which is set to 51 in our experiments. A differential eigenvalue based criterion is then 

used to refine the two identified boundary points, as demonstrated in the Algorithm 2. 

In particular, when the value of principal eigenvalue is between 50.5 and 51, the 

vessel boundary points are incremented as long as they correspond to the falling edge 

of the differential eigenvalue profile. Fig. 2.16 shows principal and differential 

eigenvalue profiles comparing to two cases - a typical vessel and a vessel with central 

reflex. 

 
Fig. 2.16. Determining vessel boundary points using principal and differential eigenvalue profiles: (a) 

Principal eigenvalue profile of a blood vessel with central light reflex; (b) Principal eigenvalue profile of 

a blood vessel without central reflex; (c) and (d) are the corresponding differential eigenvalue profiles. 
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Table 2.1: Definition of notation 

Notation Definition 

P Principal eigenvalue profile at the center pixel and perpendicular to the vessel 

centerline (Refer to Fig. 2.16(a), (b)) 

D Differential eigenvalue profile at the center pixel and perpendicular to the vessel 

centerline (Refer to Fig. 2.16(c), (d)) 

𝐧 Pixel index and 𝐧 ∈ [𝑻𝒍, 𝑻𝒓] 
𝐩𝐝𝐢𝐬𝐭(𝑤𝑙 , 𝑤𝑟) Function returns distance between points 𝑤𝑙  and 𝑤𝑟 

𝒘𝒍 Vessel boundary point on the left side of center pixel. 

𝒘𝒓 Vessel boundary point on the right side of center pixel. 

𝒕𝒍,  𝒕𝒓 Variables 𝒕𝒍  ∈ [1, 𝑻𝒍] and 𝒕𝒓  ∈ [1, 𝑻𝒓] 
𝑻𝒍, 𝑻𝒓 Variable 𝑻𝒍 + 𝑻𝒓 determines the maximum vessel width that our algorithm can 

estimate 

 

 

 

Algorithm 2: Vessel width estimation (P, D) 

 

Input: P, D 

Output: 𝐩𝐝𝐢𝐬𝐭(𝑤𝑙 , 𝑤𝑟) 

𝑤𝑙 = 0, 𝑤𝑟 = 0;  
if the neighborhood of center pixel is convex (valley) 

 𝑡𝑙 = nearest local maxima on left side 

 𝑡𝑟 = nearest local maxima on right side   
𝐞𝐥𝐬𝐞𝐢𝐟 the neighborhood of center pixel is concave (peak) 

𝑡𝑙 = 1; 𝑡𝑟 = 1; 
end 

end 

𝐟𝐨𝐫 𝑛 = 𝑡𝑙: 0.25: 𝑇𝑙   
𝐢𝐟 P(𝑛) > 51  

𝑤𝑙 = 𝑤𝑙 + 0.25; 
end 

𝐞𝐥𝐬𝐞𝐢𝐟 P(𝑛) >= 50.5 and D(𝑛) > 𝐷(𝑛 + 0.25) 

 𝑤𝑙 = 𝑤𝑙 + 0.25; 
end 

end 

𝐟𝐨𝐫 𝑛 = 𝑡𝑟: 0.25: 𝑇𝑟   
𝐢𝐟 P(𝑛) > 51  

𝑤𝑟 = 𝑤𝑟 + 0.25; 
end 

𝐞𝐥𝐬𝐞𝐢𝐟 P(𝑛) >= 50.5 𝑎𝑛𝑑 𝐷(𝑛) > 𝐷(𝑛 + 0.25) 

 𝑤𝑟 = 𝑤𝑟 + 0.25; 
 end 

end 

Return (𝐩𝐝𝐢𝐬𝐭(𝑤𝑙 , 𝑤𝑟)) 
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Chapter 3 

Proposed methodology for classification of epileptic 

seizure EEG signals 

 
The block diagram of the proposed method for automated diagnosis of epilepsy using 

EEG signals is shown in Fig. 3.1. 
 

 
Fig. 3.1: Block diagram of the proposed methodology for classification of seizure, seizure-free, and 

normal EEG signals. 

 

Details of the first stage in which the EEG signal is processed to identify a set of key-

points are presented in the following section. 

  

3.1. Detection of key-points in EEG signal  

 
In order to detect key-points in EEG signals, we have adopted a technique employed in 

scale invariant feature transformation (SIFT) [54], which has been a very successful 

approach for image matching. Recently, a similar technique has also been investigated 

for gait based biometric recognition using data from accelerometer sensor [55]. The 

key-point detection technique employed in this work involves convolving the EEG 

signal with a set of Gaussian filters to smooth the signal progressively, which is 

achieved by incrementing the scale (standard deviation) of the Gaussian function. This 

process generates a set of Gaussian smoothed signals as illustrated in Fig. 3.2. A 

pyramid of difference of Gaussian (DoG) filtered signals are then generated by 

computing the differences of adjacent signals in the set of Gaussian smoothed signals. 

Maxima and minima (extrema) in each level of this pyramid forms the set of key-points. 

These key-points are identified by comparing a sample value in the DoG filtered signal 

with its two immediate neighbors and 3 neighbors each in the two adjacent (upper and
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 lower) levels in the pyramid. The detection of key-points is performed in each of the 

levels, except for two signals at the top and bottom of the DoG pyramid. The rest of 

this section provides a summary of the above discussed approach for detection of key-

points in EEG signals through a set of mathematical equations.  

The discrete-time Gaussian filter ),( ng used in the key-point detection approach is 

obtained by sampling  

 

Fig. 3.2:  Pyramid scheme for key-point localization with 4M . Gaussian filtered signals are shown on 

the left side; the corresponding DoG filtered signals are shown on the right side and detected key-

points are indicated by red circles. 

 

the following continuous-time Gaussian function: 

22 2/
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1
),( 


 tetg                                                                                                                                             (1) 

Where  is the standard deviation of the Gaussian function. Convolution of the EEG 

signal )(nx  with a set of Gaussian filters can be represented as follows:  

Mkkngnxnyk  ..., 2, ,1                     ),(*)()( 1                                                                             (2)  

where asterisk denotes the discrete convolution operation and 1  is the initial scale of 

the Gaussian filter. The set of signals in (2), along with the original EEG signal )(nx

(i.e., )()(0 nxny  ) are then used to generate the pyramid of DoG filtered signals: 

Minynynz iii  ..., 2, ,1                   )()()( 1                               (3) 

Finally, key-points are detected in signals corresponding to each of the levels in the 

DoG pyramid. Locations of these key-points in terms of their sample indices and the 

level at which they are detected are taken forward for the next stage of processing. The 
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following section details the process of generation of the feature representation in the 

proposed method.  

 

3.2. LBP based key-point descriptor 
 

After detecting key-points in the EEG signal, the objective is to obtain a feature 

representation that carries sufficiently high discriminating ability for reliable 

classification of EEG signals. In this section, we present details of our feature extraction 

technique, which involves computing LBP [1] at every key-point detected in the signal. 

Specifically, LBPs are computed at the key-points detected in the DoG filtered signals 

( )(nzi ) as well as at the corresponding points in the original EEG signal ( )(nx ). In 

general, computation of LBP at a key- point located in a signal )(nf can be 

mathematically expressed as follows: 
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where the function S, with )(if and )( jf as input parameters is given by 
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In equation (4), i  denotes the sample index of the key-point at which the LBP is being 

computed. As can be seen in equation (4), the LBP is generated by considering a sample 

which lies four samples to the right of the key-point as the center sample. Four 

immediate neighbors on either side of this sample are thresholded against the center 

sample to generate an 8-bit binary code (refer to Fig. 3.3). The decimal equivalent of 

this code is the LBP. In this work, histogram of LBP is used as the feature set for 

classification of EEG signals. We have considered only uniform patterns in LBP [56], 

which contain at the most two transitions from 0 to 1 or 1 to 0. While the uniform 

patterns are mapped to their corresponding bins, all non-uniform patterns are mapped 

to a single bin. For our case (with 8-bit binary codes), this process generates a histogram 

feature of length 59. 

 It may be noted that each of the detected key-points has an associated level (or 

scale) in the DoG pyramid. Therefore, LBP histograms (from DoG filtered as well as 
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the original EEG signal) are computed separately for key-points corresponding to 

different levels. 

 

Fig. 3.3: Generation of LBP at two key-points in a segment of EEG signal is shown. The key-points are 

indicated by pink dots, while the corresponding threshold levels for neighborhood comparison are 

shown by blue dashed lines. 

 

Since key-points cannot be detected in the top and bottom level of the DoG pyramid 

(due to the lack of signals at the upper or lower levels for these signals), this process 

generates as set of 2M histograms from the DoG filtered EEG signals. Similarly, 

another set of 2M LBP histograms are generated from the original EEG signal using 

LBPs computed at the points corresponding to the key-points. Finally, the two sets of 

LBP histograms are concatenated to obtain the final representation. For example, in this 

work, we have set value of the parameter M  (number of levels in the pyramid) to 4. 

Therefore, we have LBP histograms computed at two levels. At each level, there is one 

histogram each from the DoG filtered signal as well as the original EEG signal. Since 

the length of each of the uniform LBP histograms is 59, their concatenation results in a 

feature vector of dimension 59 × 4. 

The proposed feature extraction technique for EEG signal classification is motivated 

by an approach [56] developed for image matching using LBP for description of interest 

regions. 

 

3.2.1. Classification 
 

After computing the histogram of LBP as the feature for discrimination, the final task 

is to classify a given EEG signal into one of the three classes namely, seizure, seizure-

free and normal. In this work, we have used the SVM classifier [57] for classification 

of EEG signals. More specifically, we have used the SVM classifier with radial basis 

function (RBF) kernel available in the WEKA machine learning toolbox [58]. In all our 

experiments, we have set the tradeoff parameter of the SVM and the kernel parameter 

sigma of the RBF kernel to 2.395 and 0.1, respectively.  
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Chapter 4  

Performance evaluation and discussion 

 
In this work two different methodologies, specifically a methodology for retinal blood 

vessel image segmentation and a methodology for classification of epileptic seizure 

EEG signals has been proposed for computer-aided diagnosis. The performance of 

these methodologies is evaluated on the benchmark databases and are detailed in the 

following sections.  

 

4.1. Vessel segmentation 

 
Performance of the proposed retinal vessel segmentation methodology is assessed on 

two freely available benchmark databases, namely DRIVE [10] and STARE [59]. In 

the literature, these databases have been widely used by researchers to assess vessel 

segmentation approaches. Aside from being openly available, manually segmented 

ground truth information is available for images in these databases. The DRIVE 

database consists of 40 retinal images and the entire set has been partitioned into a train 

and a test set with each set containing 20 colour retinal images. Two manually 

segmented vessel images are provided for each image in the test set, out of which the 

first one is considered the ground-truth (O1) for the purpose of evaluation and the 

second one (O2) is often reported as the human observer segmentation result for the 

purpose of comparison.  The STARE database, collected by Hoover et al. [59], contains 

20 fundus images (with ground-truths for vessels) captured with the field of view (FOV) 

of 35degree, and afterward digitized to obtain colour (RGB) retinal images. Ten of these 

images contain pathology, which pose major challenge in precise identification of 

vessel pixels. Manual labelling of the vessel structure for retinal images in the STARE 

database was performed by two different observers. Likewise with the DRIVE 

database, the first set of manually labeled vessel network is used as the ground-truth 
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segmentation result for computing the performance measures and the results are shown 

in Table 4.1.  Moreover, we have performed another set of experiments with second 

observer’s segmentation result as the ground-truth and the results are shown in Table 

4.2. Performance of the proposed method was assessed using performance measures 

such as accuracy (ACC), sensitivity (SEN) and specificity (SPF). Performance of the 

proposed approach for vessel detection in terms of the above measures is shown (in 

boldface) in Table 4.1. As can be seen from this table, performance of our approach is 

better than majority of the existing unsupervised methods, with the exception of the 

three recently proposed ones [17, 25, 26]. Vessel detection accuracy of the proposed 

methodology is very much comparable with that of techniques presented in [17, 25, 

26]. Specificity of our approach is likewise similar, and in some cases marginally better 

when contrasted with the above methods.  

 

Table 4.1: Comparative performance of different segmentation methods in terms of accuracy, 

sensitivity and specificity on drive and stare datasets 

                        Database 

Method 

STARE DRIVE 

𝐀𝐂𝐂 𝐒𝐏𝐅 𝐒𝐄𝐍 𝐀𝐂𝐂 𝐒𝐏𝐅 𝐒𝐄𝐍 

2nd Human Observer (O2) 0.935  0.9384 0.8951 0.947 0.972 0.776 

Supervised  Methods 

Ricci et. al [9] 0.965  0.939 0.903 0.959  0.972 0.775 

Staal et. al [10] 0.952  0.981 0.697 0.944  0.977 0.719 

Fraz et. al [11] 0.953 0.976 0.755 0.948  0.981 0.74 

 Soares et. al [12] 0.948  0.975 0.72 0.946  0.978 0.733 

Marin et. al [13] 0.952  0.982 0.694 0.945  0.98 0.706 

Niemeijer et. al [14] - - - 0.942  0.969 0.689 

Roychowdhury et. al [15] 0.951 0.973 0.772 0.952 0.983 0.725 

Unsupervised Methods 

 Mendonca et. al [16] 0.944  0.973 0.699 0.945  0.976 0.734 

 Zhao et. al [17] 0.956 0.978 0.780 0.954 0.982 0.742 

 Budai et. al [18] 0.938  0.982 0.58 0.957 0.987 0.644 

Perez et. al [19] 0.926  0.944 0.769 0.925 0.967 0.644 

Jiang et. al [20] 0.901  0.90 0.857 0.891 0.90 0.83 

Lam and Yan [21] 0.947 - - - - - 

Budai et. al [22] 0.938  0.975 0.651 0.949 0.968 0.759 

Miri et.al [23] - - - 0.943  0.976 0.715 

Nguyen et. al[24] 0.932 - - 0.941 - - 

Roychowdhury et. al [25] 0.956  0.984 0.732 0.949  0.978 0.739 

Imani et.al [26] 0.9590 0.9745 0.7502 0.9523 0.975 0.754 

Hoover et. al [59] 0.927 0.81  0.65 - - - 

P.Bankhead et. al [60] - - - 0.9371 0.972 0.703 

Salazar-Gonzalez et. al 

[61] 
0.9441 0.9633 0.7887 0.9412 0.968 0.752 

 Annunziata et. al [62] 0.9562 0.9836 0.7128 - - - 

Proposed Method 0.9552 0.9813 0.7283 0.9443 0.980 0.701 
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However, sensitivity of our approach is lower than these methods on both of the 

databases. This is perhaps due to the post-processing stage involved in our approach.  

 

Table 4.2: Performance measures from interobserver variability test on drive and stare datasets 

Data Ground-truth 𝐀𝐂𝐂 𝐒𝐄𝐍 𝐒𝐏𝐅 

DRIVE O1 0.9443 0.7014 0.9802 

O2 0.9500 0.7327 0.9810 

O1 ∩ O2 0.9584 0.8286 0.9727 

STARE O1 0.9552 0.7283 0.9813 

O2 0.9265 0.5679 0.9900 

O1 ∩ O2 0.9592 0.7748 0.9781 

 
A closer observation of our results (refer to Fig. 2.15) indicates false removal of vessels 

segments present in very low contrast regions and are not connected to main vessel 

structure.  An examination with supervised techniques indicates that some of these 

techniques are plainly superior in performance, particularly the method proposed by 

Ricci et. al. [9] accomplished the highest sensitivity of about 90% and 77.5% on 

STARE and DRIVE databases, respectively. However, as discussed earlier, major 

drawback of supervised techniques (in general) is their reliance on the labeled training 

data. Ricci et. al. [9] showed the dependence of their classification method by training 

the classifier on either one of the DRIVE and STARE databases, and then, testing it on 

the other. They observed that the accuracy of their vessel classification technique 

disintegrated from 0.9595 to 0.9266 on DRIVE database when trained on STARE 

database. Similarly, the classification accuracy diminished from 0.9646 to 0.9452, 

when assessed on STARE database with training done on DRIVE images. Therefore, 

classifier retraining is necessary in some of the supervised algorithms. In addition to 

the classification performance, computational performance of the proposed 

methodology is extremely encouraging. On average, the proposed vessel segmentation 

approach requires 1.272 sec and 0.959 sec for segmenting a retinal image in the STARE 

and DRIVE databases, respectively. Our algorithm was implemented using LabVIEW 

on an Intel Core i5 PC, running at 3.1 GHz with 4-GB memory. Computational 

efficiency of our approach does away with the need for any high performance 

computing resources. In addition, it is a desirable feature for self-diagnostic 

applications in smartphones and other portable devices. 

Additionally, we have evaluated our vessel segmentation method by 

considering second observer’s segmentation (O2) as the ground-truth. Performance 

measures from this set of experiments are shown in Table 4.2. Performance measures 
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with O1 are also included in this table for comparison and to study the impact of 

observer variability on the performance of the proposed method. Fig. 4.1 shows inter-

observer variability in segmentation results obtained by observer 1 and 2. In this figure, 

pixels with gray shade are the ones that are classified as vessel pixels in both O1 and 

O2, while the set of brighter pixels are the ones that are classified as vessel pixels in O2 

and as non-vessel pixels in O1. From Fig. 4.1, it may be observed that the observer 2 

consistently over-estimated vessel widths in STARE dataset as compared to O1.  

 
Fig. 4.1. Inter-observer variability in vessel segmentation results in STARE dataset 

This perhaps clarifies why the sensitivity of our approach (in STARE dataset) decreased 

considerably when O2 is considered as the ground-truth. We have carried out another 

analysis using a third ground-truth created by performing logical AND operation 

between ground-truths O1 and O2. The new ground-truth is expected to provide a better 

vessel width estimate as it contains those vessel pixels on which both observers agreed. 

Performance measures shown in Table 4.2 indicate that the accuracy and sensitivity our 

approach improved considerably with the new ground-truth, while there is marginal 

reduction in the performance in terms of specificity. In spite of the fact that the proposed 

methodology accomplishes relatively good retinal vessel segmentation results, some of 

the limitations of the method must be addressed by future work. As discussed earlier in 

this section, sensitivity of our approach can be improved by reducing false removal of 

vessels present in very low contrast region and are not linked to main vessel structure 

in the post-processing stage that means to enhance specificity. Moreover, false 

detection occurs in some of the images having pathologies, especially the ones which 

form elongated structures in the vessel centerline image. It is expected that the 

performance of a vessel segmentation methodology will degrade in regions of retinal 

images, where pathological structures such as red lesions, cotton-wool spots are 

present. Therefore, it is of interest to assess vessel segmentation methodology 
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separately on pathological images. In the literature, researchers have evaluated 

performance of their approaches on a subset [62] of STARE dataset that contains 

pathological structures. 

Table 4.3: Comparative segmentation performance on the stare abnormal dataset  

Method 𝐀𝐂𝐂 Time 

Soares et. al [12] 0.9425 3 mins 

Marin et. al [13] 0.9510 90 s 

Roychowdhury et. al [15] 0.9453 8.36 s 

Mendonca et. al [16] 0.9426 3 mins 

Jiang et. al [20] 0.9352 8-36 s 

Lam and Yan [21] 0.9474 8 mins 

Roychowdhury et. al [25] 0.9535 3.87 s 

Hoover et. al [59] 0.9211 5 mins 

    Salazar-Gonzalez et. al [61] 0.9369 - 

Annunziata et. al [62] 0.9565 25s 

Lam et. al [63] 0.9556 13 mins 

Vermeer et. al [64] 0.9287 - 

Proposed Method 0.9553 1.227 s 

 

We have also performed experiments on the same subset and the performance measure 

(computed using ground-truth O1) obtained is reported in Table 4.3. It can be observed 

from the table that performance of the proposed approach is quite comparable to the 

ones in [61], [65] and outperforms rest of the techniques reported in the table. Another 

additional feature of our approach is its computational performance. The major 

difference between our approach and a previous study [27] that applied PCA for retinal 

vessel segmentation is that the proposed approach is based on eigenvalue 

decomposition of a matrix formed by second-order image moments. Eigenvalue 

decomposition in our approach yields a vessel enhanced image. On the other hand, the 

work reported in [27] is a supervised technique that employed ANN for classification 

of a pixel. The first component derived from PCA of retinal color image is used as a 

feature for ANN based classification. Another related work [2] is based on the 

eigenvalue decomposition of the Hessian matrix, which is formed by second-order 

derivatives of the image. 

 

4.2. Vessel width measurement 

 
Performance of the proposed vessel width measurement approach is evaluated using 

the REVIEW dataset [65], which comprises of four subsets namely, kick-point image 

set (KPIS), central light reflex (CLRIS), vascular disease (VDIS) and high-resolution 
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image set (HRIS). Details of the images in these subsets can be found in [65]. 

Altogether, the dataset consists of 16 high resolution images, ranging in size from 

1360×1024 pixels to 3584×2438 pixels with 193 vessel segments marked by three 

observers. The mean of vessel widths defined by these observers is considered as the 

standard for evaluating vessel width measurement approach. The REVIEW dataset 

provides a pair of vessel edge points for each vessel profile, from which the center point 

and vessel width can be computed. Profile centre points from REVIEW dataset are used 

to initialize our vessel width measurement algorithm.  Specifically, we have measured 

vessel widths at the nearest vessel centerline pixels corresponding to the profile center 

points in the REVIEW dataset. Performance measures for this set of experiments, 

namely, success rate (%), mean of vessel widths (Mean), and standard deviation of 

measurement error (𝛔𝒙 ) have been adopted from previous works [28], [60].  

 

Table 4.4: Comparative performance of vessel width measurement approaches on review dataset 

    Image-set 

 

Method 

KPIS CLRIS VDIS HRIS 

% Mean 𝛔𝒙 % Mean 𝛔𝒙 % Mean 𝛔𝒙 % Mean 𝛔𝒙 

Standard 100 7.52 0.00 100 13.80 0.00 100 8.85 0.00 100 4.35 0.00 

O1 100 7.00 0.23 100 13.19 0.57 100 8.50 0.54 100 4.12 0.29 

O2 100 7.60 0.21 100 13.68 0.70 100 8.91 0.62 100 4.35 0.26 

O3 100 7.97 0.23 100 14.52 0.57 100 9.15 0.67 100 4.58 0.28 

ESP [28] 100 6.56 0.33 93.0 15.7 1.47 99.6 8.80 0.77 99.7 4.63 0.42 

IUWT [60] 100 6.30 0.29 100 14.27 0.95 99.0 8.07 0.95 99.5 4.66 0.32 

Graph [66] 99.4 6.38 0.67 94.1 14.05 1.78 96.0 8.35 1.43 100 4.56 0.57 

Gregson [67] 100 7.29 0.60 100 12.80 2.84 100 10.07 1.49 100 7.64 1.48 

HHFW [68] 96.3 6.47 0.39 0 - - 78.4 7.94 0.88 88.3 4.97 0.93 

1DG [69] 100 4.95 0.40 98.6 6.30 4.14 99.9 5.78 2.11 99.6 3.81 0.90 

2DG [70] 100 5.87 0.34 26.7 7.00 6.02 77.2 6.59 1.33 98.9 4.18 0.70 

Proposed 100 6.847 0.29 94.7 13.92 0.60 97.8 8.202 0.632 96.2 3.928 0.51 

 
Experimental results are presented in Table 4.4 together with performance measures of 

the existing methods for comparison. It can be observed that the performance of the 

proposed approach compares very favourably with [60] and [28]. 

 

4.3 Seizure classification 

For evaluation of second methodology, we have used publically available dataset of 

EEG signals provided by University of Bonn, Germany [71]. This dataset contains EEG 

signals acquired from healthy subjects and patients (during and in the absence of seizure 

activity). The EEG recordings from healthy subjects are obtained in two conditions 
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namely, eyes open (EO) and eyes closed (EC), which are denoted by Z and O subsets 

in the dataset respectively. Each of these subsets (Z, O) has 100 surface recorded EEG 

signals. In the dataset, subsets N and F contain 100 EEG signals each recorded 

intracranially from the epileptic patients in the seizure-free intervals. The subsets N and 

F contain recording of EEG signals corresponding to epileptogenic zone and 

hippocampal formation, respectively. The subset S in the dataset contains 100 EEG 

signals acquired from epileptic patients during seizure activity. In this study, in order 

to evaluate the performance of the proposed method, we have considered four 

classification problems namely, normal (N) and epileptic seizure (ES); ES and seizure-

free (SF); ES and non-seizure (NS); N, SF, and ES; we have formed the class N by 

combining subsets Z and O of the dataset. The ES class is obtained from the EEG 

signals of subset S. The subsets N and F grouped in order to obtain the SF class. The 

NS class contains EEG signals from the subsets Z, O, N, and F of the dataset. Therefore, 

we have considered the entire dataset for assessing performance of the proposed 

method. Sample EEG signals from N, SF, and ES are shown in Fig. 4.2. 

 

Fig. 4.2: Sample EEG signals from Bonn EEG dataset corresponding to normal (N), seizure-free (SF), 

and epileptic seizure (ES) are shown in (a), (b), and (c) respectively. 

 

Brief descriptions of each of the classification problems, together with their 

significance are provided in the following part of this section: 

(1) In the first classification problem, we have considered classification of normal EEG 

signals and epileptic seizure EEG signals. The automated method developed for 
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classification of epileptic seizure EEG signals from normal EEG signals can be used 

for identifying epileptic patients out of normal and epileptic patients. 

(2) The second problem considered is classification of seizure-free and epileptic seizure 

EEG signals that can be used for detecting epileptic seizures in the epileptic patients. 

(3) The third one is a more general classification problem which performs 

discrimination of normal, seizure and seizure-free EEG signals and can be used for 

automatic detection of epileptic seizures from non-seizure patients, which include 

normal and epileptic patients. 

(4) The fourth classification problem that we have considered performs discrimination 

of normal, seizure and seizure-free EEG signals. The classification technique developed 

for this problem can be used for automated detection of epileptic patients during seizure 

activity or in the absence of seizure activity from the normal people. Details provided 

in this section are summarized in Table 4.5. 

 

Table 4.5: Composition of classes considered for the four classification problems. 

Classification problem Classes Number of EEG signals 

1 Normal (Z,O) 

Seizure (S) 

200 

100 

2 Seizure-free (N,F) 

Seizure (S) 

200 

100 

3 Non-seizure 

(Z,O,N,F) 

Seizure (S) 

400 

100 

4 Normal (Z,O) 

Seizure-free (N,F) 

Seizure (S) 

200 

200 

100 

 

 In addition to the University of Bonn EEG dataset, we have accessed the EEG 

dataset collected at Sir Ganga Ram Hospital in New Delhi [72]. This dataset consists 

of digitized (with a sampling frequency of 400 Hz) EEG recordings of a number of 

epileptic patients. Acquisition of these EEG signals involved placing 16 electrodes on 

the subject’s scalp according to the international 10–20 system. The dataset is divided 

(with the help of neurologists) into two subsets, with the first subset containing EEG 

signals captured during seizure activity and the second one containing seizure-free EEG 

signals of the same set of patients. Each of these subsets contains 100 EEG signal 

segments, each of 3 seconds duration. This dataset has been used for evaluating 

performance of the proposed method for the second (seizure-free and seizure) 

classification problem.
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 4.3.1 Results 

The proposed method has been evaluated using 10-fold cross-validation and commonly 

used performance measures such as accuracy (ACC), sensitivity (SEN), specificity 

(SPE), positive predictive value (PPV), negative predictive value (NPV) and Matthews 

correlation coefficient (MCC) [73]. It may be noted that larger the MCC value, the better 

will be the classifier performance. In the proposed method, there are two parameters 

namely, number of levels ( M ) in the DoG pyramid and the initial scale (
1 ) of the 

Gaussian filter. In all our experiments, we have set the value of 
1  to 0.5. Since the 

scale parameters of successive Gaussian filters are related to the initial one through (2), 

the 3-dB cutoff frequencies of the four Gaussian filters are 61.9 Hz, 25.5 Hz, 18.5 Hz 

and 13 Hz. To study the influence of the parameter M on the classification performance, 

we have carried out a set of experiments by varying its value. As described in section 

3.1, the detection of key-points is performed through comparison of sample values of 

signals in the immediate upper and lower levels in the DoG pyramid. Therefore, key-

point detection cannot be performed on the signals at the top and bottom of the DoG 

pyramid. This limits the minimum value of the parameter M to 3. Therefore, we have 

varied the value of this parameter, starting with the value of 3. Table 4.6 shows the 

performance measures achieved for four classification problems considered in this 

study. As can be seen in this table, our approach achieves high classification accuracies 

even with the minimum value of the parameter .M Incrementing the value of this 

parameter to 4 further improved the classification accuracies for all problems. 

Therefore, we have fixed the value of this parameter to 4 for further analysis. 

With the above mentioned experimental setting, the classification accuracy of the 

proposed approach, together with performance of the existing techniques for each of 

the four problems is presented in Tables 4.7-4.10. To obtain better estimates of the 

performance, we have repeated 10-fold cross-validations 25 times. Therefore in Tables 

4.7-4.10, we report mean and standard deviation (the number within the parenthesis) of 

the classification accuracy. It may be noted that the proposed method provides high 

classification accuracy consistently for the four classification problems. 

 

 

 

 



36 
 

Table 4.6: Performance measures from our experiments which are carried out by varying the number 

of levels in the DoG pyramid 

 

 

Table 4.7: Performance comparison with the previous works for classification of normal and epileptic 

seizure EEG signals. 

 

Method Classification task Accuracy (%) 

Kaya et al. (2014) [1] Z-S 99.50 

Subasi and Gursoy (2010) [38] Z-S 99.50 

Pachori et al. (2015) [45] Z-S 100.0 

Srinivasan et al. (2007) [49] Z-S 100.0 

Peker et al. 2015[74] Z-S 100.0 

Fu. et al. (2014) [75] Z-S 99.13 

Samiee et al. 2015[76] Z-S 99.80 

Parvez et al. 2015 [77] Z-S 100.0 

Guo et al. (2010) [78] Z-S 99.60 

Chen et al. 2014[79] ZO-S 100.0 

Guo et al. (2010) [79] Z-S 99.85 

Guo et al. (2011) [80] Z-S 99.20 

Iscan et al. (2011) [81] Z-S 100.0 

Lima et al. (2010) [82] Z-S 100.0 

Orhan et al. (2011) [83] Z-S 100.0 

Tzallas et al. (2007) [84] Z-S 100.0 

Übeyli (2010) [85] Z-S 100.0 

Wang et al. (2011) [86] Z-S 100.0 

Proposed method ZO-S 100.0 (0.00) 

 

Table 4.8: Performance comparison with the previous works for classification of non-seizure and 

epileptic seizure EEG signals. 

 

Method Classification task Accuracy (%) 

Bajaj and Pachori (2012) [42]  ZONF-S 99.50-100.0 

Peker et al. (2015)[74] ZONF-S   99.15 

Samiee et al. (2015)[76] ZONF-S   98.10 

Chen et al. (2014)[78] ZONF-S   100.0 

Guo et al. (2010) [79] ZONF-S 98.27 

Orhan et al. (2011) [83] ZONF-S 99.60 

Tzallas et al. (2007) [84] ZONF-S 97.73 

Guo et al. (2010) [92] ZONF-S 97.77 

Ocak  (2009) [93] ZONF-S 96.65 

Proposed method ZONF-S 99.31 (0.17) 

 

 

 

 

 

 

Pyramid level Classification task ACC SEN SPE PPV NPV MCC 

4 ZO-S 100.0 100.0 100.0 100.0 100.0 1.00 

NF-S 99.45 99.68 99.00 99.52 99.42 0.99 

ZONF-S 99.31 99.68 97.85 99.48 98.79 0.98 

ZO-NF-S 98.80 - - - - - 

3 ZO-S 100.0 100.0 100.0 100.0 100.0 1.00 

NF-S 99.27 99.40 99.00 99.52 98.91 0.98 

ZONF-S 99.10 99.30 98.60 99.33 98.76 0.98 

ZO-NF-S 98.20 - - - - - 
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Table 4.9: Performance comparison with the previous works for classification of seizure-free and 

epileptic seizure EEG signals. 

 

Method Classification task Accuracy (%) 

Kaya et al. (2014) [1] NF-S 97.00 

Joshi et al. (2014) [33] NF-S 95.33 

Kumar et al. (2015)[35] NF-S 98.33 

Pachori and Patidar 

(2014) [41] 

NF-S 95.75 

Samiee et al. (2015)[76] F-S 94.90 

Proposed method NF-S 99.45  (0.25) 

 

Table 4.10: Performance comparison with the previous works for classification of normal, seizure-free, 

and epileptic seizure EEG signals. 

 

Method Classification task Accuracy (%) 

Kaya et al. (2014)[1] Z-F-S 95.67 

Ghosh-Dastidar et. al. (2008) 

[34] 

Z-F-S 96.6 

Acharya et al.  (2011) [46] Z-F-S 95.60 

Acharya et al.  (2009)[47] ZO-NF-S 95.00 

Acharya et al.  (2011) [48] Z-F-S 98.50 

Peker et. al. (2015)[74] Z-F-S 99.30 

Peker et. al. (2015) [74] ZO-NF-S 98.28 

Guo et al. (2011) [80] Z-F-S 93.50 

Orhan et al. (2011) [83] ZO-NF-S 95.60 

Orhan et al. (2011) [83] Z-F-S 96.67 

Tzallas et  al. (2007) [84] ZO-NF-S 97.72 

Tzallas et al. (2007) [84] Z-F-S 99.28 

Acharya et al. (2012) [87] Z-F-S 99.70 

Acharya et al.  (2012) [88] ZO-NF-S 98.10 

Acharya et al. (2012) [89] Z-F-S 99.00 

Chua et al.(2011) [90] Z-F-S 93.11 

Faust et al. (2010) [91] Z-F-S 93.30 

Proposed method ZO-NF-S 98.80  (0.11) 

 

 

To further ascertain the effectiveness of the proposed methodology, we have evaluated 

its performance for classification of seizure and seizure-free EEG signals on the second 

dataset. The proposed method yielded classification performance of 99.89 (0.23), 100.0 

(0.00) and 99.78 (0.46) for ACC, SEN and SPE, respectively. These experimental 

results further demonstrate that the proposed key-point based LBP approach is effective 

for discriminating seizure and seizure-free EEG signals with high accuracy.  

We have also performed additional experiments to study the effect of length of EEG 

signal on the classification performance and to compare performance of our method 

with the existing LBP based method. Details of these experiments and results thereof 

are presented in the following sections.  
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4.3.1.1       Effect of length of EEG signal on the classification 

performance 

In this section, we present results from our experiments that have been performed to 

study the effect of length (N) (or duration) of recorded EEG signal on the classification 

performance. This study is important as it helps us identify the minimum length of the 

Table 4.11: Performance measures from our experiments which are carried out to study the effect of 

length of the recorded EEG signal on the classification performance. 

 
EEG signal that can provide satisfactory performance for classification problems 

considered in this study. For this purpose, we have performed a set of experiments by 

successively reducing the length of the EEG segment ( N ). Effectively, we have 

considered only first N  samples of the original EEG signal for each of these 

experiments [40]. Results from our experiments are summarized in Table 4.11, which 

indicate that our approach achieves nearly perfect classification even with a segment 

length of 1000 samples for classification of normal and seizure EEG signals. More 

importantly, it can be observed that significant reduction in the segment length causes 

only marginal deterioration in classification performance. Specifically, a reduction in 

EEG signal length by a factor of 4 deteriorates the classification accuracy for the three-

class (ZO-NF-S) classification problem by only about 2%. Results  

presented here indicate that our approach is well suited for online detection problems 

as well. 

Length 

N 

Classification 

task ACC SEN SPE PPV NPV MCC 

4000 

ZO-S 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 1.00 (0.00) 

NF-S 99.45 (0.25) 99.68 (0.37)          99.00 (0.00) 99.52 (0.00)       99.42 (0.66)       0.99 (0.01) 

ZONF-S 99.31 (0.17) 99.68 (0.12) 97.85 (0.49) 99.48 (0.12) 98.79 (0.44)  0.98 (0.01) 

ZO-NF-S 98.80 (0.11) - - - - - 

 

1000 

ZO-S 99.97 (0.09)         100.0 (0.00)     99.92 (0.28)     99.96 (0.13)          100.0 (0.00)     0.99 (0.00) 

NF-S 97.79 (0.23)     98.66 (0.35)     96.04 (0.20)     98.11 (0.11)     97.52 (0.62)     0.95 (0.01) 

ZONF-S 
98.18 (0.23)     99.35 (0.20)     93.52 (0.77)     98.43 (0.18)     97.53 (0.73)         0.94 (0.01) 

ZO-NF-S 
96.71 (0.23) 

- - - - - 

250 

ZO-S 98.63 (0.29)     99.94 (0.17)     95.34 (0.99)     98.26 (0.36)     99.84 (0.45)         0.97 (0.01) 

NF-S 96.90 (0.38)     99.67 (0.64)     93.84 (0.68)     95.15 (0.60)     99.66 (0.68)      0.94 (0.01) 

ZONF-S 98.86 (0.26)     99.99 (0.07)        94.77 (1.12)     98.62 (0.30)     99.95 (0.22)       0.97 (0.01) 

ZO-NF-S 94.20 (0.17) - - - - - 

50 

ZO-S 92.47 (0.51)     94.50 (0.50)     88.40 (0.89)     94.41 (0.46)      89.67 (0.95)     0.83 (0.01) 

NF-S 94.80 (0.51)     97.50 (0.50)     89.40 (0.89)     95.05 (0.46)     95.07 (1.10)     0.88 (0.01) 

ZONF-S 94.12 (0.18)     96.30 (0.11)     85.40 (0.89)     96.46 (0.19)     86.87 (1.03)     0.82 (0.01) 

ZO-NF-S 87.90 (0.17) - - - - - 
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An additional experiment has been performed, in which we have randomly 

generated the sample number (index) of the initial sample. This initial sample and the 

N -1 succeeding samples are then extracted to obtain an EEG segment of length N , as 

opposed to first N samples considered in the previous experiment. However, as in the 

previous case, we have extracted only one segment from each EEG signal to ensure that 

the number of segments remains the same as in the original dataset. For a segment 

length of 1000 samples, the proposed method yielded classification accuracies of 99.54 

(0.3), 96.23 (0.61), 98.04 (0.40) and 95.68 (0.34) for ZO-S, NF-S, ZONF-S and ZO-

NF-S classification problems, respectively. This indicates a marginal deterioration in 

performance when segments are extracted randomly. From the experimental results 

presented in this section, it may be noted that the way in which EEG segments are 

extracted has very little influence on the performance of the proposed method. 

Therefore, the proposed method is robust to the selection of segments of EEG signals 

for the automated diagnosis of epilepsy. 

 

4.3.1.2        Performance comparison with the existing LBP based 

method 
 

To further ascertain the performance of our approach, we have performed a 

comparative evaluation with the conventional LBP based technique [1]. Specifically, 

we have evaluated performance of our approach on the datasets considered for 

classification in [1]. Results from this set of experiments are presented in Fig. 4.3. As 

can be seen in this figure, the proposed key-point based LBP approach yields 

consistently better classification accuracy for all the dataset combinations considered 

for classification in [1]. Since the method reported in [1] computes LBP at every  sample 

in the EEG signal, it is highly likely that there are more number of noise features (which 

are not useful and may have an adverse effect on the classification accuracy) in the 

feature set as compared to the proposed method, which computes LBP only at the 

detected key-points. This perhaps explains why our method performs significantly 

better. 
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Fig. 4.3: Performance comparison with the existing LBP based method 

Experimental results presented in this section indicate that the proposed method can 

be employed for effective EEG based computer-aided diagnoses of epilepsy. The 

performance of the proposed method is quite encouraging even when only 1000 

samples of the EEG signal is used for classification. Moreover, the LBP descriptor 

employed in our method is known to be computationally simple. The above features of 

our method make it potentially useful for real-time seizure detection in devices with 

low computational and memory resources.   

On the other hand, the size of EEG datasets used in this study for performance 

evaluation is limited. Therefore, our approach should be evaluated on larger databases 

before its clinical deployment. This aspect would be of interest in our future work. 

Another drawback of our method is that its computational complexity is slightly higher 

than that of conventional LBP based approach [1]. This is primarily due to the 

additional processing, which is required for localization of key-points in our approach. 
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Chapter 5 

Conclusion and future work 

 
In this work, two different methodologies has been presented that can be used in 

implementation of effective CAD system, specifically an approach for retinal vessel 

segmentation and an approach for seizure classification is detailed. The proposed 

approach for vessel segmentation utilizes eigenvalues of local covariance matrices, 

which are formed using second order image moments computed in the local 

neighborhood of every pixel. The vessel structure obtained by thresholding the 

principal eigenvalue map is refined using a set of vessel centerline pixels, along with 

vessel boundary information derived from differential eigenvalue map.  In this work, 

vessel centerline pixels are detected using a simple yet efficient algorithm that employs 

a set of directional structuring elements. The proposed approach for centerline vessel 

detection has inherent sensitivity for slender vessels and vessels in the low contrast 

region.  In the final stage, post-processing of the vessel structure is performed with a 

goal to enhance specificity of the vessel detection approach. Besides, we have 

developed an algorithm for measurement of vessel width using principal and 

differential eigenvalue profiles. 

The performances of the proposed vessel segmentation and width measurement 

approaches have been observed to be quite comparable with the state-of-the-art in this 

area. Another advantage of the proposed vessel segmentation approach is its 

computational performance, which makes it suitable for real-time applications in 

portable devices. An intermediate result in the proposed method is the principal 

eigenvalue map, which could possibly be thresholded using a probing technique 

presented in [59] to yield a better estimate of the vessel structure. It would also be 

interesting to integrate our approach with the one presented in [17], by considering 

principal eigenvalue map explored in this work as vessel enhanced image in [17]. We 

also plan to investigate utility of our vessel detection approach for other applications
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including palm-vein detection in near-infrared (NIR) images for biometric recognition 

tasks. 

Moreover, we have also proposed a key-point LBP based novel methodology 

for automated diagnosis of epilepsy from EEG signals. The methodology has been 

studied for four well-studied classification problems namely, normal and epileptic 

seizure; epileptic seizure and seizure-free; epileptic seizure and non-seizure; normal, 

epileptic seizure, and seizure-free classes of EEG signals on two datasets. The 

performance of the proposed method has been compared with the existing methods for 

classification of these four classification problems in terms of classification accuracy 

on the University of Bonn EEG dataset. The proposed method has provided consistent 

improvement in classification accuracy over the conventional LBP based method. The 

clinical significance of the proposed method arises from its key features, which include 

high classification accuracy and computational simplicity of LBP features.  More 

importantly, the proposed methodology has provided sufficiently high classification 

accuracy, even with considerably smaller segment of the EEG signal, thereby making 

it suitable for online epileptic detection with reduced computational burden. In future, 

we plan to investigate applicability of the proposed methodology for classification of 

other biomedical signals such as electrocardiogram (ECG), electromyogram (EMG) 

corresponding to normal and abnormal states. In addition, we also intend to improve 

the computational performance of our method by simplifying the process of detection 

of key-points.
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