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ABSTRACT

The Audio-Visual Speech Recognition (AVSR) model is a favourable solution to

predict text corresponding to the spoken words utilising both audio and face videos,

specifically when the audio is corrupted by noise. These models have been widely used

in applications like biometric verification, assisting hearing-impaired person, speaker

verification in the multi-speaker scenario and event recognition in surveillance videos.

However, these models are vulnerable to adversarial examples that can have profound

implications such as distress to differently-abled and security breaches in surveillance

systems. Adversarial examples are generated by adding imperceptible perturbations

to clean samples with an intention to fool machine learning models. It is difficult

to attack an AVSR model since audio and visual modalities complement each other.

Furthermore, while generating an adversarial example, the correlation between audio

and video features decreases, which can be used to detect the adversarial example for

the AVSR model.

In this thesis, we introduce an end-to-end targeted attack, the Fooling Audio-

visuaL Speech rEcognition, FALSE, that effectively performs an imperceptible ad-

versarial attack while avoiding the detection by the existing synchronisation-based

detection network (SyncNet). To the best of our knowledge, we are the first to per-

form an adversarial attack that simultaneously fools the AVSR model and SyncNet

by introducing less distortion in audio and face videos. The experimental results show

that the proposed attack successfully fool the state-of-the-art AVSR model on the

publicly available dataset while avoiding the detection. Moreover, some well-known

defences are easily circumvented by maintaining a 100% targeted attack success rate

using our FALSE attack.

Keywords— Audio-Visual Speech Recognition; Cross-modality; Detection Network;

Adversarial Attacks and Defenses.
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Chapter 1

Introduction

Speech is an effective communication interface between humans and machine learning

models. With the recent advancement of deep learning in several domains, Automatic Speech

Recognition (ASR) models are proposed, which converts speech to the corresponding text,

as shown in Fig. 1.1. These models are used in personal assistants like Google Assistant,

Apple’s Siri, Amazon’s Alexa, Microsoft’s Cortana and home electronic devices. However,

the efficiency of these models decreases in the presence of noise. This can be overcome by

Figure 1.1: Illustration of Automatic Speech Recognition (ASR), ASR takes audio

waveform as input and predicts the text corresponding to the given waveform.

either using speech enhancement techniques to remove noise [1] or adding visual features to

speech [2]. Research has been done to show that there is a better sense of understanding

when facial expression and lip movements derived from face videos are added to speech [3].
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Figure 1.2: Overview of an Audio-Visual Speech Recognition (AVSR), AVSR takes

audio waveform and face videos as input and predicts the word corresponding to the

given input.

These characteristics increases the research in the area of Audio-Visual Speech Recognition

(AVSR) [4]. The AVSR model extracts features from both audio and face videos to predict

the text corresponding to the spoken word as shown in Fig. 1.2. The AVSR models are

used in numerous real world applications such as: i) audio-visual speech separation [5]; ii)

performing speech recognition even if one of the modalities (that is, either visual or audio)

is noisy [6]; iii) biometrics verification [7]; iv) aiding hearing-impaired persons by providing

transcriptions [8]; v) event recognition in surveillance videos [9]; vi) speaker verification in

multi-speaker scenarios [10]; and vii) talking face synthesis [11].

The rest of this chapter is organized as follows. The motivation behind our work is elab-

orated in Section 1.1. In Section 1.2, we present the challenges of performing an adversarial

attack on the AVSR model. The summary of thesis contributions is described in Section

1.3.

1.1 Motivation

With the advent of adversarial learning, adversarial attacks on image, audio and text

have been extensively studied [12]. Results show that even the state-of-the-art deep learn-

ing models can be attacked by adding small perturbations (noise) to the original sample,

producing erroneous classification results. However, the impact of adversarial attacks on the

multimodal domain, specifically on AVSR models, are less explored. The AVSR models vul-
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nerability to adversarial examples affects the efficacy of the applications outlined above. In

this thesis, we investigated the AVSR model and analysed adversarial attacks against them.

Hence, the research in this paper is motivated by the following questions: (i) Is it possible

to perform an adversarial attack on the AVSR model whilst remaining undetected by the

detection network? (ii) Is it feasible to generate the targeted adversarial samples that are

difficult to be noticed by ordinary users? This thesis will cover in detail how our proposed

attack is designed to address the above questions.

1.2 Challenges

In comparison with the existing image classification network, the AVSR models are more

resistant to adversarial attacks. As compared to images, the temporal information is present

in AVSR that acts as a defence method to mitigate the adversarial attacks [13]. Similarly, for

fooling the AVSR model, we cannot use the existing adversarial attacks on video recognition

models. This is because the region-of-interest is smaller in AVSR models, which leads to

perceivable distortions. Moreover, generating an adversarial example for the AVSR model

is more difficult than the existing ASR models as the AVSR works on two modalities that

complement each other. That is to say, when we perform an attack on a single modality,

the other modality attempts to reverse the prediction to the correct label. Therefore, it

is challenging to perform the adversarial attack on the AVSR model compared to image

classification, video classification and ASR model, which works on a single modality.

Generation of adversarial examples is usually done by backpropagating the gradients

[14]. Due to some non-differentiable layers in the AVSR model, gradient backpropagation is

not possible, thus preventing adversarial attacks. Even though if the adversarial examples

are generated to fool the AVSR model, they can be easily detected [15] by the existing

detection network SyncNet [10]. The detection network is devised on the idea that when

perturbations are added to the original audio and face videos, the correlation between them

decreases. That is, the correlation between adversarial audio and face videos is lower than

the correlation between original audio and face videos.
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1.3 Thesis Contribution

In this thesis, a novel adversarial attack on the AVSR model Fooling Audio-visuaL Speech

rEcognition, FALSE is proposed, which manages all the previously mentioned challenges.

The main contributions of the thesis are as follows:

1. We demonstrate that a targeted adversarial example exists in the multimodal domain

by fooling the AVSR model. To the best of our knowledge, we are the first to simul-

taneously fool the AVSR model and detection network. The AVSR model is fooled

to generate targeted adversarial examples, which may lead to a decrease in the corre-

lation between the two modalities. To prevent the detection network, SyncNet, from

detecting the adversarial samples, we fool this network by maintaining the correlation

between audio and face videos.

2. We conduct comprehensive experiments using state-of-the-art AVSR model on pub-

licly available Lip Reading in the Wild (LRW) dataset and analyses that attacking

either audio or video modality results in perceivable distortions. However, the pro-

posed attack, FALSE achieves the desired results by adding small and imperceptible

distortions to both modalities.

3. We demonstrate the robustness of our proposed attack by successfully circumventing

popular defences while maintaining the imperceptibility of added perturbations with

an attack success rate of 100%.

1.4 Organisation of Thesis

The rest of the thesis is organised as follows::

Chapter 2: In this chapter, we provide an outline of the existing works in the field of

adversarial attacks and defences for image, audio and audio-visual domain. This section

briefly describes well-known AVSR models, adversarial attacks, and the detection networks

for AVSR adversarial attacks.

Chapter 3: In this chapter, we presents our proposed attack FALSE to fool the AVSR

model and detection network. The generation of adversarial examples with the loss function

details for the AVSR model and detection network is covered in detail.
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Chapter 4: In this chapter, we discuss the experimental results to test the effectiveness

of the FALSE attack. The introduction of datasets, experimental settings, experimental

results and the impact of various input transformation defences on FALSE attack.

Chapter 5: In this chapter, we summarise the contributions made in the thesis followed

by the future work to be done in this domain.
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Chapter 2

Background

2.1 Adversarial Attacks

Deep Learning is making significant progress in solving problems in the field of computer

vision [16, 17], speech recognition [18, 19], malware classification [20], natural language pro-

cessing [21], anomaly detection [22], and many more. However, these models are vulnerable

to adversarial attacks based on the imperceptible changes in the input at test time [23, 24].

Adversarial examples are created by adding imperceptible perturbations (or noise) to the

input examples with an objective to fool the machine learning models [25]. The adversarial

attacks can be classified as targeted or untargeted based on the purpose of the adversary

[26]. In untargeted attacks, the aim is to expect any incorrect label on classification. In

contrast, targeted attacks create an adversarial example that predicts a particular target

label chosen by an adversary. Based on the adversary knowledge, the adversarial attacks

can be categorised into the white box, or black box attacks [27]. In a white box setting, the

adversary has complete knowledge about the model architecture and parameters, while in a

black box setting, the adversary has limited or no knowledge about the model architecture

or its parameters.

2.1.1 Adversarial Attacks in the Image Domain

The existing image classification deep learning models recognise the images with near-

human accuracy [13]. The authors in [12] proposed the first paper, which shows that image
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Figure 2.1: Illustration of an adversarial attack on an image classification model.

classification models are vulnerable to adversarial examples. The adversarial image is gen-

erated by adding small perturbations to the original image such that the generated image

changes the original classification. Fig. 2.1 demonstrates that the original image, when

given as input to the image classification model, the prediction is Ice cream, but when a

small perturbation (noise) is added to the original image, the generated adversarial image

prediction changes to Rifle. Here, ε is used to ensure small perturbation is added to the

original image. Several methods are existing in the literature to perform the adversarial

attack in the image domain [28]. The methods like Fast Gradient Sign Method (FGSM)

[14], Iterative Gradient Sign Method (IGSM) [28], Projected Gradient Descent (PGD) [29],

DeepFool [30] and C&W’s attack [31] are used to generate adversarial image. The following

two commonly used methods FGSM and IGSM, are covered in detail.

1. Fast Gradient Sign Method (FGSM): The method finds the perturbations to be

added using the sign of the gradients [14]. The gradients are calculated by computing

the derivative of the loss function with respect to the input image. Mathematically,

xadv “ x´ ε ˚ signp∇xLpfpxq, yqq (2.1)

where, x and xadv are original and adversarial image, y is the target output label, ε is

a step size to make sure that small perturbation is added, fpxq is the original label, L

is loss function and ∇x represents derivative with respect to x.

2. Iterative Gradient Sign Method (IGSM): The authors in [28] introduces an

8



improved version of FGSM where the smaller perturbation is added at each iteration.

Mathematically, at each iteration n,

xadvn`1 “ xadvn ´ ε ˚ signp∇xLpfpx
adv
n q, yqq

such that xadv0 “ x
(2.2)

where, xadvn denotes the adversarial image at nth iteration. The adversarial attack can

be performed using either black-box or white-box settings as suggested in [14, 12, 24,

32].

2.1.2 Adversarial Attacks in the Audio Domain

Several interesting works are proposed in the field of audio to perform speech to text

recognition. The research in performing adversarial attack in the field of the audio domain is

limited compared to images. This behaviour is due to the following challenges (i) It is difficult

to deal with the information change in the time domain compared to the image domain. (ii)

The audio sampling rate is relatively high compared to images having hundred or thousands

of pixels [33]. Hence, it is slightly more challenging to generate adversarial audios than

images. The adversarial audio is generated by adding carefully crafted perturbations to the

original audio such that the generated audio transcribes to any text chosen by the adversary,

as demonstrated in Fig. 2.2. Here, ε is used to ensure quieter perturbation is introduced

while generating adversarial audio.

Figure 2.2: Illustration of adversarial attack on the automatic speech recognition

model.

The authors in [34] proposed an end-to-end white-box attack iterative and optimisation-

based attack, which adds an imperceptible perturbation to the input audio samples. The

9



authors in [34] use the following optimisation problem :

minimise lpfpa` δq, yq such that ||δ|| ă ε (2.3)

where, a is original audio, δ is added perturbation to audio sample, fp.q is ASR model, ε

is used to ensure that the perturbation δ is within a small range, l is loss function and y

is the target label. The aim is to minimise the loss function l, which is possible when the

ASR model gives the target phrase y as the transcription corresponding to the given audio.

The authors in [35] proposed universal adversarial perturbations, which, when added to any

audio, will cause the mistranscription by the corresponding speech recognition model. The

authors in [36] demonstrate the adversarial attack in devices like Google Home, Amazon’s

Alexa, Microsoft’s Cortana with 98% attack success rate.

2.1.3 Adversarial Attacks in the Audio-Visual Domain

The AVSR models find many applications in the security-critical environment but are

vulnerable to adversarial attacks like image and audio modalities. To the best of our knowl-

edge, only one untargeted attack proposed by [15] is available for fooling the AVSR model.

Fooling an AVSR model is difficult due to the number of non-trivial challenges like (i) pres-

ence of temporal dimension, (ii) presence of non-differentiable layers in the existing AVSR

model, (iii) audio and visual modalities complement each other. However, if an adversar-

ial attack is performed on the AVSR model, the detection network can easily detect the

generated adversarial example [15] (refer section 2.3).

2.2 AVSR Models

ASR converts utterances to the corresponding transcriptions by taking audio as input [37]

and is efficient in establishing an effective interface between human and machine interaction.

The efficiency of these model decreases when the audio is distorted by noise [38]. On the other

hand, speech recognition can also be done using visual information. The authors designed a

visual speech recognition model based on Long Short-Term Memory (LSTM) using visual-

only features [39]. Audio-Visual Speech Recognition (AVSR) models seem to be one of the

most favourable solutions for speech recognition by utilising both audio and visual modalities.

For predicting words, the authors in [40] presented an AVSR model consisting of two streams

10



Figure 2.3: Overview of an end-to-end Audio-Visual Speech Recognition (AVSR)

model.

that extract features from the mouth region and spectrogram. Each stream consists of

an encoder followed by Bidirectional Long Short-Term Memory (BLSTM). The encoder

compresses the high dimensional input to low dimension representation. The BLSTM is

used to model the temporal dynamics of the features in each stream. Subsequently, the

BLSTM outputs of both streams are concatenated and given to another BLSTM to predict

the transcription. In addition, the AVSR model proposed in [4] consists of audio streams

and visual streams to extract features from audio waveforms and raw images as shown in

Fig. 2.2. Each stream consists of ResNet to extract features, followed by a BGRU layer

to model temporal dynamics. Subsequently, to fuse the information from both the streams

and jointly model temporal dynamics, 2 BGRU layers are added on top of the two streams.

Finally, the output of 2 BGRU layers is given to the softmax layer, which assigns a label to

each frame. To the best of our knowledge, this AVSR model 1 is the current state-of-the-art

1Link to the implementation and pre-trained model: https://github.com/mpc001/end-to-end-

lipreading
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trained on the large publicly available LRW dataset for audio-visual word recognition.

2.3 Detection Network

The authors in [10] proposed a network called as SyncNet 2, which provides the confidence

score or correlation between the audio and face videos. This proposed network consists of two

streams that take as input the MFCC features of the audio and the extracted mouth region

from the face video as shown in Fig. 2.3. Subsequently, the confidence score is computed for

a particular offset; the offset is calculated using a sliding window approach. The distance is

calculated between one 5-frame video feature and all audio features in the ± 1 second range

for each sample. The offset is found when the distance is minimised. The difference between

the minimum and median of the Euclidean distances calculated over all the windows is used

to find the confidence score for a certain offset [15].

Figure 2.4: Overview of the detection network (SyncNet).

2Link to the implementation and pre-trained model: https://github.com/joonson/syncnet_

python
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In the original video sample, the audio and face videos are highly correlated. In contrast,

for the adversarial sample, the correlation decreases between the audio and face videos due

to the added perturbations [15]. The key idea of the detection method to detect adversarial

examples proposed by the authors in [15] is that the correlation between the audio and video

streams in an original sample would be higher than the adversarial sample. The detection

method uses SyncNet [10] as the detection network to find the correlation. To the best of

our knowledge, there exists only one detection method to identify the adversarial examples

on the AVSR models [15].

2.4 Adversarial Defences

There has been a significant increase in research in the field of constructing defences to

prevent adversarial attacks [27, 41]. While several defences are proposed in the white-box

setting but the complete solution has not been found yet [42]. In the image domain, some

input transformation defences like bit reduction [43], JPEG-compression [43], box blur [44],

median blur [45] etc. are proposed to mitigate the added noise in the clean sample. The

input transformations are a widely used method due to their low operation cost and easy

integration with the existing architecture [46]. Furthermore, adversarial training a neural

network seems to make a more robust machine learning model [47]. However, these defences

are more expensive to train [42].

In comparison to the image domain, only a few defences have been proposed in the audio

domain [42]. There are some pre-processing defences proposed in the audio domain like local

smoothing, downsampling, and quantisation to mitigate the added adversarial perturbations

[48]. Furthermore, the authors in [49, 50] use audio-preprocessing methods for the detection

of adversarial examples. The authors in [46] proposed a defence method against adversarial

attack on the state-of-the-art ASR models, which detects the adversarial example. To detect

the adversarial example, the method checks whether the first half of the audio waveform

classification is similar to the first half of the complete audio waveform classification [31].

Though, the authors in [31] demonstrated that utilising temporal dependency as suggested

in [46] is not effective in detecting the adversarial perturbations in the audio domain [42].

In this thesis, some audio and image-based defences are applied to prove the effectiveness of

the proposed attack, which will be discussed in detail in the upcoming chapter 4.
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Chapter 3

Proposed Work

3.1 Introduction

This section describes our proposed attack FALSE to perform a targeted adversarial

attack on the AVSR model while keeping the generated adversarial example undetected.

Based on the confidence score, the detection network can identify whether the given video

sample is original or adversarial (as discussed in chapter 2.3). We simultaneously attack

the AVSR model and detection network to prevent this detection and achieve the required

target. The demonstration of the FALSE attack is presented in Fig. 3.1 ,which consists

of state-of-the-art AVSR model [4] and detection network [10]. The first section discusses

how to fool the AVSR model and detection network individually, followed by simultaneously

fooling both the AVSR model and detection networks. Finally, the last section covers the

implementation details of the FALSE attack.

3.2 Fooling AVSR Model

This subsection discusses how to perform an adversarial attack on the AVSR model.

The AVSR model fpV, aq takes face video V and audio a as input and predict the word

y corresponding to the given input (refer Fig. 3.1). The targeted attack is performed by

adding the perturbations to the original inputs a and V . Our aim is to generate adversarial

audio a that sounds similar to a and adversarial face videos V that is visually similar to

V and fpv, aq gives target word as prediction, which is different from the original predicted
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word. The cross-entropy loss function `1 is used to fool the AVSR model. Either logits or

probabilities can be passed as one of the parameters in the loss function. The unnormalised

probability given as input to the softmax function is called logits. The softmax function

gives the probabilities of a particular word out of the set of labels as output. The authors

in [51] observed that the better way to generate an adversarial example while fooling the

deep learning models is to use logits preferably rather than probabilities in the loss function.

The experimental results presented in chapter 4 also support this observation. Therefore,

we implement the CrossEntropy loss function `1 using logits, and it can be represented as :

`1pV, a, yq “ CrossEntropypz, yq “ ´ log

˜

exppzrysq
ř

j exppzrjsq

¸

“ ´zrys ` log

˜

ÿ

j

exppzrjsq

¸ (3.1)

where, V and a are face videos and audio; target label is denoted by y, and the logits

obtained corresponding to the given V , a is represented by z.

The proposed targeted attack on the AVSR model is performed using the IGSM method;

the IGSM method is discussed in detail in Section 2.1.1. Essentially, the adversarial audio

and face videos are created by perturbing the original samples with well-crafted and imper-

ceptible perturbations. The derivatives of the loss function with respect to input audio and

face video samples is used to calculate the added perturbations. Specifically, the attack is

performed using:

Vn`1 “ Vn ´ ε
a
V ˚ signp∇V `1pVn, an, yqq (3.2)

an`1 “ an ´ ε
a
a ˚ signp∇a`1pVn, an, yqq (3.3)

where, an and Vn denotes the adversarial audio samples and face videos at nth iterations,

respectively; the cross-entropy loss is represented using `1; the logits are obtained from the

output of BGRU and is denoted by z; y is target label; εAa and εAV are step sizes for audio

and video modality. Please note that the step sizes are set to small values (for parameter

tuning, refer to Section 3.5) such that while generating an adversarial example, the changes

made are imperceptible. Furthermore, the value of loss function is minimum, when the the

target label y and AVSR model prediction on adversarial examples fpV , aq are same, in

other words fpV , aq = y.
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3.3 Fooling Detection Network

This subsection covers how to perform an adversarial attack on the detection network

s. The input audio a and face videos V is given as input to the network s, which calculates

the confidence score between the face videos and audio (refer Fig. 3.1). The correlation

between the audio and face videos is obtained using the confidence score, which is higher for

the original sample than the adversarial sample. The detection network makes use of the

confidence score for distinguishing between the original and adversarial examples. To avoid

this detection, the detection network is fooled with the goal that the adversarial samples

confidence score is always higher than the given original samples confidence score. The

custom loss for the detection network is defined for this purpose. The difference between

the confidence score of original and adversarial samples is characterised as the custom loss,

which is represented by `2. The loss `2 is expressed mathematically as:

`2pτ0, τaq “ maxp0, τ0 ´ τaq (3.4)

where, τa and τ0 are the confidence scores of the adversarial and original samples, respec-

tively. When the confidence score of adversarial samples is greater than or equal to the

original confidence score, the loss `2 achieves minimum value. The generation of adversar-

ial face videos and audio by keeping the high confidence score is done using the following

equations:

V adv
n`1 “ Vn ´ ε

s
V ˚ signp∇V `2pτn, τ oqq (3.5)

aadvn`1 “ an ´ ε
s
a ˚ signp∇a`2pτn, τ oqq (3.6)

where, the adversarial audio samples and face videos at nth iterations is represented using

an and Vn respectively; the custom loss function denoted by `2; the step sizes for audio and

face video are εSa and εSV respectively; τn represents the confidence score at nth iteration.

The step sizes εSV and εAv are set to a small value to generate an undetectable adversarial

example (For parameter tuning, refer Section 3.5 ).
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Figure 3.2: Illustration of the generation of adversarial face video and audio using

FALSE attack.

3.4 FALSE attack: Fooling AVSR and Detection

Network

This subsection describes our proposed attack, FALSE to generate the adversarial ex-

amples. We simultaneously fool the AVSR model and the detection network to achieve the

required target while maintaining the correlation between the two modalities. The proposed

architecture is shown in Fig. 3.1, which demonstrates the attacking of both the AVSR model

and the detection network. To generate adversarial audio and face videos, we alternatively

perform the attack on the AVSR model and detection network. Explicitly, we first give

original audio and face videos as input to perform the targeted attack on the AVSR model.

The adversarial examples are generated using equations (3.2) and (3.3). A detection network
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can detect these generated adversarial examples. Therefore, the detection network is fooled

for these adversarial examples by increasing their confidence score to prevent such detec-

tion. For this, the equations (3.5) and (3.6) are used to perform an adversarial attack on

the generated examples with the aim to increase the confidence score. But these generated

adversarial examples, when given to the AVSR model, may not predict the required target

label. Therefore, we fool both the AVSR model and the detection network simultaneously

until the target label is achieved with a high confidence score. The proposed algorithm to

perform FALSE attack are provided in Algorithm 1.

For visualisation of generated adversarial example, consider Fig. 3.2, which shows the

generated adversarial face video and audio example crafted using our FALSE attack. The

lip-region and complete facial area are given as inputs to the AVSR model and the detection

network, respectively. Therefore, the perturbations are added in the entire facial region in the

FALSE attack. For better visualisation, the scaling is done to show the added imperceptible

perturbations in the case of face videos. To visualise the added perturbations in audio, audio

perturbations are plotted for a shorter duration (0.035 secs). The original and adversarial

samples predict the word as ABOUT and CLEAR, respectively when given as input to

the AVSR model.

3.5 Implementation Details

Both the AVSR model and the detection network take different ranges of input face

videos and audio waveform. For example, the pixel intensities range from 0 to 255 for the

detection network, while the range is 0 to 1 for the AVSR model. To this end, a scaling layer

is added in the preprocessing step to ensure proper inputs to the models. Furthermore, to

introduce minimal changes in audio and face videos while generating adversarial audio and

face videos, the step sizes (εAa and εAv ) are selected. For the AVSR model, the step size εAv

is set to 0.00392 (1/255), which is the minimum possible pixel change when the range is 0

to 1. Likewise, εSv for the detection network whose input face videos ranges from 0 to 255 is

set to 1.0. Although, experiments are performed to find the suitable step size for audio to

generate the imperceptible adversarial audio. For the AVSR model, the step size εAa is 0.00015

(5/32767), while for the synchronisation-based detection network, εSa is 5.0. Moreover, some

non-differentiable layers are present during preprocessing, preventing backpropagation till
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Algorithm 1 FALSE Attack

Require: face videos V ; audio a; AVSR model fp.q; detection network sp.q; step sizes

εAV and εAa for AVSR; and step sizes εSV and εSa for detection network ; target label y

Ensure: Adversarial face video (V ) and audio (a)

τo “ spV, aq

Ź Attacking both AVSR and detection network

while fpV, aq ‰ y or spV, aq ď τo do

while fpV, aq ‰ y do Ź Attacking AVSR

V “ V ´ εAV ˚ sign p∇V `1pV, a, yqq Ź refer eq. (3.2)

a “ a´ εAa ˚ sign p∇a`1pV, a, yqq Ź refer eq. (3.3)

end while

τa “ spV, aq

while τa ď τo do Ź Attacking detection network

V “ V ´ εSV ˚ sign p∇V `2pτ 0, τaqq Ź refer eq. (3.5)

a “ a´ εSa ˚ sign p∇a`2pτ 0, τaqq Ź refer eq. (3.6)

τa “ spV, aq

end while

end while

V “ V

a “ a

return (V , a)

the original audio and face videos. These non-differentiable layers result in gradient masking,

which makes it harder for the adversary to perform an adversarial attack [52]. In the

case of face videos, this problem is resolved by replacing the non-differentiable layers with

their alternative differentiable functions. An open-source computer vision library Kornia

provides the differentiable functions [44, 53]. For the AVSR model, the image normalisation

and grayscale conversion functions are replaced by their respective differentiable functions.

Likewise, the detection network extracts MFCC features of the audio using the feature

extraction phase, and this phase consists of some non-differentiable functions. Therefore, the

code to extract the MFCC features is written by maintaining the differentiability property
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at each layer. It is important to emphasise that the efficacy of the modified model and the

original model remains the same.
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Chapter 4

Experimental Results

4.1 Dataset

For conducting the experiments, we use the publicly available Lip Reading in the Wild

(LRW)1 dataset [54]. The statistics of the LRW dataset is shown in table 4.1. The test set

comprises 25000 video clips, which consists of 29 frames and is 1.16 seconds long. The dataset

has been created from broadcast content of BBC News and comprises 1000 utterances of

500 words where the target word is present in the middle of the video. For our experiments,

only those samples are used which are correctly classified by the AVSR model. The list of

500 words is shown in Appendix A.

Table 4.1: Statistics of the LRW dataset

Set Number of Samples

Train 488766

Validation 25000

Test 25000

1Link to the dataset: https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html(For

non-commercial individual research and private study use only. BBC content included courtesy of

the BBC.)
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4.2 Performance Metrics

We use the attack success rate, average audio distortion, and average video distortion as

evaluation metrics to evaluate our proposed attacks performance. The metric attack success

rate is defined as the rate of an incorrectly classified label when the generated adversarial

example is given as input to the AVSR model. Moreover, for video modality, the metric is

average video distortion, δ8. The video distortion for the individual samples is defined as

the maximum change in pixels between adversarial and original face video. Mathematically

as suggested in [13],

||V ´ V ||8 “ maxp|V1 ´ V 1|, ¨ ¨ ¨ , |Vn ´ V n|q (4.1)

where, V is the original face videos and V is the generated adversarial face videos. Addition-

ally, for audio modality, the metric is average audio distortion, D, which is defined as the

relative loudness of the perturbation δ with respect to an original audio a. Mathematically,

the distortion Da,δ is defined as:

Da,δ “ dBpδq ´ dBpaq (4.2)

where, the decibel value of the audio α is represented by dBpαq, as suggested in [34].

The perturbation introduced is quieter than the original audio; therefore, the difference in

equation (4.2) is always negative [34]. The smaller the average distortion metric, the quieter

the distortion and thus the greater the efficacy.

4.3 Experimental Settings

We perform the attack using Targeted1 and Targeted2 settings to analyse the effective-

ness of FALSE attack. In the Targeted1 setting, the attack is performed on the AVSR

model by setting the target to the second most probable label (the probabilities are given

by the AVSR model), and this target label is easier to achieve by adding small adversarial

perturbations in the input samples. On the contrary, for the Targeted2 setting, the labels

are set to the least probable label given by the AVSR model. In this case, a substantial

adversarial perturbation is added to the input sample to generate an adversarial example,

making the attack difficult to perform.
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4.4 Comparative Analysis

In this section, we will discuss the efficacy of the proposed FALSE attack using the eval-

uation of the experimental results. The proposed FALSE attack is compared to audio-only,

video-only, and combined loss attacks for a more thorough evaluation. Only one modality is

perturbed in video-only and audio-only attacks, with the other modality, remains unchanged.

These attacks are carried out to determine the role of each modality in the execution of the

attack. Likewise, we devise the combined loss attack to search for an alternate approach

to attack the AVSR model and the detection network simultaneously. In the combined loss

attack, the adversarial face video and audio are generated using Equations (3.5) and (3.6),

with the variation that the loss `2pτ0, τaq is substituted with the loss `3. Where, the loss

`3 is a combination of custom loss `2 (Section 3.3 for reference) and cross-entropy loss `1 (

Section 3.2 for reference). Mathematically,

`3 “ c1 ˚ `1pv, a, yq ` c2 ˚ `2pτo, τaq (4.3)

where, c1 and c2 are hyperparameters that signify the contribution of each loss functions

in the combined loss attack. We conduct several experiments to find the best value of

the hyperparameters, which is used to calculate the combined loss. The best values of c1

and c2 are found to be 1 and 9.87, respectively. Moreover, the proposed FALSE attack

is compared with Fooling Audio-VisuaL Speech Recognition using Probabilities (PFALSE )

and Fooling Audio-VisuaL Speech Recognition by Restricting Video Distortions (RFALSE ),

which are devised from FALSE by substituting logits with probability in the loss functions

and performing attack by constraining the video distortion of video samples to 5, respectively.

The performance comparison of FALSE attack using different approaches is presented in

Table 4.2. Kindly note that all these attacks are implemented by keeping the correlation be-

tween the two modalities, such that the generated adversarial examples remain unrecognised

by the detection network. It can be inferred from the table that performing attacks on both

audio and video modalities while generating adversarial examples is better than performing

an attack on a single modality. The reason for this is that large perturbations are required

if adversarial perturbations are added in only one modality (in particular, video-only and

audio-only attack). Furthermore, It can be inferred from the table that the performance of

the FALSE attack is better than the combined loss attack, as FALSE attack fools the AVSR

model by adding fewer distortions in both modalities. Additionally, it can be observed that
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Table 4.2: Comparison of the proposed FALSE attack with different approaches

Targeted˚1 Targeted˚2

Attack

Types

Attack

Success

Rate

(in %)

Average

Video`

Distortion,

δ8

Average

Audio`

Distortion,

D (in dB)

Attack

Success

Rate

(in %)

Average

Video`

Distortion,

δ8

Average

Audio`

Distortion,

D (in dB)

Audio-only 100.0 ´ -46.89 100.0 ´ -27.87

Video-only 100.0 3.84 ´´ 100.0 46.69 ´´

Combined Loss 100.0 2.97 -56.89 100.0 10.52 -45.53

RFALSE1 99.19 2.68 -55.27 20.45 4.82 -38.93

PFALSE2 100.0 2.83 -52.27 35.23 18.16 -33.71

FALSE 100.0 2.74 -57.42 100.0 8.73 -46.18

˚: The target label is set to the second-most probable label in Targeted1 setting and least probable

label in Targeted2 setting, respectively.

`: The smaller the value of δ8 or D, the better the imperceptibility and, as a result, the better

the performance.

´: Audio-only attacks are carried out by adding the perturbations in the audio while leaving the

face videos unaffected.

´´: Video-only attacks are carried out by adding the perturbations in the face videos while leaving

the audio unaffected.

1: RFALSE is devised by constraining δ8 to 5 in FALSE attack.

2: PFALSE is devised by substituting logits with probability in the loss functions and by con-

straining δ8 to 20 and D to -30 dB respectively in the FALSE attack.

Note : The audio-visual samples that the AVSR model classifies correctly are used to perform

the attacks.

FALSE significantly outperforms PFALSE, which indicates that there is performance degra-

dation when probabilities as a parameter in the loss function replace logits. This observation

is in accordance with the conclusion made in [51]. The PFALSE attack restricts the video

distortion δ8 to 20 pixels and audio distortion D to ´30 dB while performing the attack. As

shown in Table 4.2 for Targeted2 setting, this attack introduces higher distortions in audio

and face videos, due to which the attack success rate is very less.
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Figure 4.1: Heatmap representation of FALSE attack success rate in Targeted2

setting with x-axis representing maximum allowable distortion in video (δ8) and y-

axis represents audio (D) distortion.

Our proposed FALSE attack introduces less average audio and video distortions by

achieving a 100% targeted attack success rate. Normally, the video distortion is set to 5

pixels. However, it is not possible to fool the AVSR model for all the target labels by

restricting video distortion to 5 pixels. Therefore, in RFALSE attack, the attack success

rate is less than 100%. This outcome is more noticeable when the attack is performed

in the Targeted2 setting, as it requires large perturbations and is challenging to perform.

Reducing step-sizes like setting the step-size less than 1 in video modality makes it possible

to get a 100% attack success rate. Although, in our thesis, we avoid this reduction of step

sizes because due to quantisation error, it will generate adversarial examples which cannot

be saved and reused back to fool the AVSR models later. The visualisation of the attack

success rate FALSE by restricting the maximum values of δ8 and D is presented in Fig.

4.1 using a heatmap. The heatmap represents the efficacy of the proposed FALSE attack in

Targeted2 setting.
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4.5 Evaluation of defences on FALSE attack

As described in section 2.4, it is shown that adversarial defences can easily mitigate

several powerful attacks due to which the adversarial attacks are of limited applicability

[55]. For a more thorough understanding, we evaluate our proposed FALSE attack against

the popular input transformation defences on audio and videos modalities. In comparison to

the image and audio domain, adversarial attacks and defences are not widely studied for the

video modality. Hence, we evaluate the attack using the following four popular image-based

defences that can be used for the video modality:

1. Bit Reduction: It removes small (adversarial) variations in pixel values from an

image by performing a simple type of quantisation [56]. As suggested in [43], from 8

to 5 bits, the bit frames are reduced in our experiments.

2. JPEG-Compression: For our experiments, compression at quality level 75 (out of

100) is done in the face videos [43].

3. Box Blur: It uses a box filter to blur an image; by replacing each pixel of an image

with the average of its neighbouring pixels, [44]. In our experiments, the blurring

kernel size is taken as 3ˆ3 [44].

4. Median Blur: It replaces the central pixel with the median of the neighbouring

pixels. [45]. In our experiments, the blurring kernel size is taken as 3ˆ3 [44].

Additionally, we evaluate the attack using the following three popular audio-based defences:

1. MP3 Compression: It is preprocessing defence methods that mitigate the effect of

audio adversarial examples. In our experiments, the input audio is compressed at a

constant bit rate of 48kbps [57, 58].

2. Re-sampling: The sampling rate of the original audio used in our experiments is

16kHz, the input audio is re-sampled to 8kHz, and again re-sample the audio back to

the actual sampling rate, i.e. 16kHz [57].

3. White noise addition: It is a conventional digital distortion, which is added at a

signal to noise ratio (SNR) of 60 dB to the audio [57].
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Table 4.3: Impact of combination of audio and image defence on the proposed FALSE attack.

Targeted˚1 Targeted˚2

Defence

Used

Model#

Accuracy

(in %)

Average

Video`

Distortion,

δ8

Average

Audio`

Distortion,

D (in dB)

Average

Video`

Distortion,

δ8

Average

Audio`

Distortion,

D (in dB)

None (Proposed Attack) 98.38 2.74 -57.42 8.73 -46.18

Bit Reduction (BR) 96.60 3.69 -56.43 11.99 -44.98

JPEG-Compression (JC) 96.60 3.85 -56.13 12.32 -44.73

Box Blur (BB) 96.60 2.97 -56.89 10.52 -45.53

Median Blur (MB) 96.40 3.01 -56.70 11.08 -45.01

MP3-Compression 93.20 2.95 -11.94 17.67 -10.95

Re-sampling 90.40 2.85 -56.85 11.18 -45.16

White Noise 96.60 2.89 -50.00 10.02 -43.08

BR + MP3-Compression 93.00 4.67 -11.25 10.03 -9.65

JC + MP3-Compression 93.20 5.04 -11.06 25.61 -9.39

BB + MP3-Compression 93.20 3.32 -11.62 19.24 -10.48

MB + MP3-Compression 93.40 3.51 -11.81 20.76 -10.51

BR + Re-sampling 90.40 3.39 -57.80 14.06 -43.98

JC + Re-sampling 90.60 3.51 -57.39 14.56 -43.66

BB + Re-sampling 90.20 2.95 -56.61 11.75 -44.72

MB + Re-sampling 90.20 2.94 -56.39 12.60 -44.15

BR + White Noise 96.60 3.72 -50.18 11.91 -42.32

JC + White Noise 96.60 3.85 -50.01 12.31 -42.05

BB + White Noise 96.60 2.98 -50.49 10.49 -42.75

MB + White Noise 96.40 3.03 -50.48 11.09 -42.37

˚: The target label is set to the second-most probable label in Targeted1 setting and least probable

label in Targeted2 setting, respectively.

`: The smaller the value of δ8 or D, the better the imperceptibility and, as a result, the better the

performance.

#: The percentage of original audio-visual samples that the AVSR model classifies correctly.

Note: The audio-visual samples that the AVSR model classifies correctly are used to perform the

attacks.
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Table 4.3 represents the performance of our FALSE attack when different feasible com-

binations of audio and video defences are applied. As suggested by [52] the Backward

Pass Differentiable Approximation (BPDA) is used to approximate derivatives of some non-

differentiable defences. It can be inferred from the table that the FALSE attack can suc-

cessfully circumvent (bypass) the popular input transformation defences. In addition, when

the defences are applied, the AVSR model accuracy decreases slightly. Also, when the input

transformation defences are utilised, there is an increase in average video and audio distor-

tions because the added defences disrupt the adversarial perturbations. Furthermore, as can

be inferred from Table 4.3, the proposed FALSE attack can easily handle the Box Blur and

Re-sampling audio defences for video and audio modality, respectively. Although applying

JPEG-Compression and MP3-Compression in video and audio is the most challenging de-

fence for the AVSR model because these defences introduce the significant value of distortion

in the generated adversarial samples.

4.6 Discussion

The adversarial attack on the AVSR model proposed in [15] uses IGSM to generate

the adversarial examples. In the Targeted1 setting, the video and audio distortion of 1.99

and -30.54dB are achieved, while in the Targeted2 setting, it achieves the video and audio

distortion of 13.43 and -15.38dB, respectively. The Attacking only Audio-Visual Speech

Recognition Model (AAVSR) attack is performed by attacking only the AVSR model, avoid-

ing the attack on the detection network in FALSE, to compare the results of the attack

proposed in the [15]. For the AAVSR attack, the average video and audio distortions are

1.87 and ´60.64 dB in the Targeted1 setting. The average video and audio distortions for

the Targeted2 settings are 8.86 and ´47.16 dB, respectively. As observed from the results,

the AAVSR attack performs better than the attack proposed in [15]. The reason for this

is the AAVSR loss function makes use of logits instead of probabilities. Furthermore, in

AAVSR, the step size for audio is small, resulting in small perturbations to be added at each

iteration. Although, a detection network can easily detect both the attacks proposed in [15]

and AAVSR. However, the distortion introduced in the FALSE attack is more significant

than AAVSR; we still prefer our FALSE attack because the detection network cannot detect

the generated audio-visual adversarial examples using the proposed algorithm.
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It has been observed that it is not possible to perform an untargeted attack using Equa-

tions (3.5) and (3.6) by minimising only `2pτ0, τaq loss because at each iteration the confi-

dence score increases which signifies the increase in the correlation between the two modal-

ities. As the two modalities are more correlated the prediction at each iteration will remain

the same as the initial prediction. The generated adversarial audio and face videos using

the Equations (3.5) and (3.6) are not able to misguide the detection network.

The FALSE attack is a generic attack; with a slight modification in the proposed algo-

rithm, the proposed attack can fool any alternative AVSR models and detection networks.

By utilising the gradient-based attack methods, it is easier to fool the AVSR model. As stated

in Section 3.5 for the gradient-based method, If non-differentiable layers prevent gradient

backpropagation, replace those with differentiable layers to perform the attack. Likewise,

It is easier to get the confidence score as output from any of the detection networks. The

proposed custom-based loss function will be exploited directly to fool these detection net-

works while keeping the two modalities correlated. To the best of our knowledge, for the

publically available LRW dataset, there exists no other pre-trained model. Therefore, all

the experiments are performed on the AVSR model (refer section 2.2), which is currently

state-of-art for the LRW dataset.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Research in the Audio-Visual Speech Recognition (AVSR) model has seen significant

progress in recent years. AVSR models find numerous application in different domains.

The vulnerability of AVSR models to adversarial examples leads to several uncertain issues

and security problems, which motivates us to devise a FALSE attack by studying adversarial

attacks and defences on these models. As audio and video modalities complement each other,

it is more challenging to fool the AVSR model. Furthermore, there is a detection network to

identify whether the given video is original or an adversarial one. In this thesis, we are the

first one to propose an end-to-end adversarial attack on the AVSR model by maintaining

the correlation between the audio and face video samples. The added perturbations are

imperceptible while generating an adversarial example. Extensive experiments to fool the

AVSR model demonstrate that attacking using both the modalities, i.e. adding perturbation

in both modalities, leads to fewer distortions in audio and face videos than attacking either

only audio or video modality. Our experiments demonstrate that we can easily surpass the

popular input transformation audio and image defences. While creating an AVSR model,

the motive is to improve the model accuracy rather than the robustness, due to which there

is a possibility to generate adversarial examples that can easily fool the AVSR model. Our

findings in this thesis can help understand the requirement to design a secure, reliable and

robust AVSR model without reducing the efficiency.
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5.2 Future Work

There are various new research directions to work in the field of adversarial attacks on

the Audio-Visual Speech Recognition (AVSR) model. Following are the major direction in

which we can extend this work :

1. Study of Defences to make the existing AVSR model more robust : One

of the severe issues with using AVSR in safety-critical contexts is the vulnerability of

the AVSR model to adversarial examples. A defence method should be proposed to

develop a secure, robust, and trustworthy AVSR model. There exist several defences in

the literature in the audio and image domain but it has been observed that sometimes

by using the defence, the model accuracy on clean samples decreases and these defences

can be circumvented using adaptive attacks [31]. The following defences can be added

on the AVSR model to make it more robust:

(a) Adversarial training in which a network is trained on adversarial examples is one

of the few defences against adversarial attacks that withstands strong attacks.

The adversarial training defence can be used to make the AVSR model robust

against the proposed attack.

(b) The FALSE attack is proposed on the CNN-based models which exploit texture

to make a decision rather than on shape. Recent research in the field of trans-

formers demonstrates that the transformers mainly focus on shapes rather than

texture to outperform CNN-based models and achieve human-level performance

[59]. Hence, we believe that transformers can provide an inherent defence.

2. Black-Box Adversarial attack on AVSR model: A white-box or black-box at-

tack can be used to generate adversarial examples. In the black-box approach, the

adversary relies on the query to retrieve the information required to generate the ad-

versarial example. To this end, gradient estimation using the finite difference method

is commonly used in the image and audio domain to estimate the gradients. Then

use iterative gradient sign method (IGSM) and Projected Gradient Descent (PGD)

method to generate adversarial examples. There are several interesting works on im-

age, audio and text that have been done using the black-box attack, and that work

can be extended for the audio-visual domain.
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Appendix A

List of Classes

1. ABOUT

2. ABSOLUTELY

3. ABUSE

4. ACCESS

5. ACCORDING

6. ACCUSED

7. ACROSS

8. ACTION

9. ACTUALLY

10. AFFAIRS

11. AFFECTED

12. AFRICA

13. AFTER

14. AFTERNOON

15. AGAIN

16. AGAINST

17. AGREE

18. AGREEMENT

19. AHEAD

20. ALLEGATIONS

21. ALLOW

22. ALLOWED

23. ALMOST

24. ALREADY

25. ALWAYS

26. AMERICA

27. AMERICAN

28. AMONG

29. AMOUNT

30. ANNOUNCED

31. ANOTHER

32. ANSWER

33. ANYTHING

34. AREAS

35. AROUND

36. ARRESTED

37. ASKED

38. ASKING

39. ATTACK

40. ATTACKS

41. AUTHORITIES

42. BANKS

43. BECAUSE

44. BECOME

45. BEFORE

46. BEHIND

47. BEING

48. BELIEVE

49. BENEFIT

50. BENEFITS

51. BETTER

52. BETWEEN

53. BIGGEST

54. BILLION

55. BLACK

56. BORDER

57. BRING

58. BRITAIN

59. BRITISH

60. BROUGHT
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61. BUDGET

62. BUILD

63. BUILDING

64. BUSINESS

65. BUSINESSES

66. CALLED

67. CAMERON

68. CAMPAIGN

69. CANCER

70. CANNOT

71. CAPITAL

72. CASES

73. CENTRAL

74. CERTAINLY

75. CHALLENGE

76. CHANCE

77. CHANGE

78. CHANGES

79. CHARGE

80. CHARGES

81. CHIEF

82. CHILD

83. CHILDREN

84. CHINA

85. CLAIMS

86. CLEAR

87. CLOSE

88. CLOUD

89. COMES

90. COMING

91. COMMUNITY

92. COMPANIES

93. COMPANY

94. CONCERNS

95. CONFERENCE

96. CONFLICT

97. CONSERVATIVE

98. CONTINUE

99. CONTROL

100. COULD

101. COUNCIL

102. COUNTRIES

103. COUNTRY

104. COUPLE

105. COURSE

106. COURT

107. CRIME

108. CRISIS

109. CURRENT

110. CUSTOMERS

111. DAVID

112. DEATH

113. DEBATE

114. DECIDED

115. DECISION

116. DEFICIT

117. DEGREES

118. DESCRIBED

119. DESPITE

120. DETAILS

121. DIFFERENCE

122. DIFFERENT

123. DIFFICULT

124. DOING

125. DURING

126. EARLY

127. EASTERN

128. ECONOMIC

129. ECONOMY

130. EDITOR

131. EDUCATION

132. ELECTION

133. EMERGENCY

134. ENERGY

135. ENGLAND

136. ENOUGH

137. EUROPE

138. EUROPEAN

139. EVENING

140. EVENTS

141. EVERY

142. EVERYBODY

143. EVERYONE

144. EVERYTHING

145. EVIDENCE

146. EXACTLY

147. EXAMPLE

148. EXPECT

149. EXPECTED

150. EXTRA

151. FACING

152. FAMILIES

153. FAMILY
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154. FIGHT

155. FIGHTING

156. FIGURES

157. FINAL

158. FINANCIAL

159. FIRST

160. FOCUS

161. FOLLOWING

162. FOOTBALL

163. FORCE

164. FORCES

165. FOREIGN

166. FORMER

167. FORWARD

168. FOUND

169. FRANCE

170. FRENCH

171. FRIDAY

172. FRONT

173. FURTHER

174. FUTURE

175. GAMES

176. GENERAL

177. GEORGE

178. GERMANY

179. GETTING

180. GIVEN

181. GIVING

182. GLOBAL

183. GOING

184. GOVERNMENT

185. GREAT

186. GREECE

187. GROUND

188. GROUP

189. GROWING

190. GROWTH

191. GUILTY

192. HAPPEN

193. HAPPENED

194. HAPPENING

195. HAVING

196. HEALTH

197. HEARD

198. HEART

199. HEAVY

200. HIGHER

201. HISTORY

202. HOMES

203. HOSPITAL

204. HOURS

205. HOUSE

206. HOUSING

207. HUMAN

208. HUNDREDS

209. IMMIGRATION

210. IMPACT

211. IMPORTANT

212. INCREASE

213. INDEPENDENT

214. INDUSTRY

215. INFLATION

216. INFORMATION

217. INQUIRY

218. INSIDE

219. INTEREST

220. INVESTMENT

221. INVOLVED

222. IRELAND

223. ISLAMIC

224. ISSUE

225. ISSUES

226. ITSELF

227. JAMES

228. JUDGE

229. JUSTICE

230. KILLED

231. KNOWN

232. LABOUR

233. LARGE

234. LATER

235. LATEST

236. LEADER

237. LEADERS

238. LEADERSHIP

239. LEAST

240. LEAVE

241. LEGAL

242. LEVEL

243. LEVELS

244. LIKELY

245. LITTLE

246. LIVES

45



247. LIVING

248. LOCAL

249. LONDON

250. LONGER

251. LOOKING

252. MAJOR

253. MAJORITY

254. MAKES

255. MAKING

256. MANCHESTER

257. MARKET

258. MASSIVE

259. MATTER

260. MAYBE

261. MEANS

262. MEASURES

263. MEDIA

264. MEDICAL

265. MEETING

266. MEMBER

267. MEMBERS

268. MESSAGE

269. MIDDLE

270. MIGHT

271. MIGRANTS

272. MILITARY

273. MILLION

274. MILLIONS

275. MINISTER

276. MINISTERS

277. MINUTES

278. MISSING

279. MOMENT

280. MONEY

281. MONTH

282. MONTHS

283. MORNING

284. MOVING

285. MURDER

286. NATIONAL

287. NEEDS

288. NEVER

289. NIGHT

290. NORTH

291. NORTHERN

292. NOTHING

293. NUMBER

294. NUMBERS

295. OBAMA

296. OFFICE

297. OFFICERS

298. OFFICIALS

299. OFTEN

300. OPERATION

301. OPPOSITION

302. ORDER

303. OTHER

304. OTHERS

305. OUTSIDE

306. PARENTS

307. PARLIAMENT

308. PARTIES

309. PARTS

310. PARTY

311. PATIENTS

312. PAYING

313. PEOPLE

314. PERHAPS

315. PERIOD

316. PERSON

317. PERSONAL

318. PHONE

319. PLACE

320. PLACES

321. PLANS

322. POINT

323. POLICE

324. POLICY

325. POLITICAL

326. POLITICIANS

327. POLITICS

328. POSITION

329. POSSIBLE

330. POTENTIAL

331. POWER

332. POWERS

333. PRESIDENT

334. PRESS

335. PRESSURE

336. PRETTY

337. PRICE

338. PRICES

339. PRIME
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340. PRISON

341. PRIVATE

342. PROBABLY

343. PROBLEM

344. PROBLEMS

345. PROCESS

346. PROTECT

347. PROVIDE

348. PUBLIC

349. QUESTION

350. QUESTIONS

351. QUITE

352. RATES

353. RATHER

354. REALLY

355. REASON

356. RECENT

357. RECORD

358. REFERENDUM

359. REMEMBER

360. REPORT

361. REPORTS

362. RESPONSE

363. RESULT

364. RETURN

365. RIGHT

366. RIGHTS

367. RULES

368. RUNNING

369. RUSSIA

370. RUSSIAN

371. SAYING

372. SCHOOL

373. SCHOOLS

374. SCOTLAND

375. SCOTTISH

376. SECOND

377. SECRETARY

378. SECTOR

379. SECURITY

380. SEEMS

381. SENIOR

382. SENSE

383. SERIES

384. SERIOUS

385. SERVICE

386. SERVICES

387. SEVEN

388. SEVERAL

389. SHORT

390. SHOULD

391. SIDES

392. SIGNIFICANT

393. SIMPLY

394. SINCE

395. SINGLE

396. SITUATION

397. SMALL

398. SOCIAL

399. SOCIETY

400. SOMEONE

401. SOMETHING

402. SOUTH

403. SOUTHERN

404. SPEAKING

405. SPECIAL

406. SPEECH

407. SPEND

408. SPENDING

409. SPENT

410. STAFF

411. STAGE

412. STAND

413. START

414. STARTED

415. STATE

416. STATEMENT

417. STATES

418. STILL

419. STORY

420. STREET

421. STRONG

422. SUNDAY

423. SUNSHINE

424. SUPPORT

425. SYRIA

426. SYRIAN

427. SYSTEM

428. TAKEN

429. TAKING

430. TALKING

431. TALKS

432. TEMPERATURES
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433. TERMS

434. THEIR

435. THEMSELVES

436. THERE

437. THESE

438. THING

439. THINGS

440. THINK

441. THIRD

442. THOSE

443. THOUGHT

444. THOUSANDS

445. THREAT

446. THREE

447. THROUGH

448. TIMES

449. TODAY

450. TOGETHER

451. TOMORROW

452. TONIGHT

453. TOWARDS

454. TRADE

455. TRIAL

456. TRUST

457. TRYING

458. UNDER

459. UNDERSTAND

460. UNION

461. UNITED

462. UNTIL

463. USING

464. VICTIMS

465. VIOLENCE

466. VOTERS

467. WAITING

468. WALES

469. WANTED

470. WANTS

471. WARNING

472. WATCHING

473. WATER

474. WEAPONS

475. WEATHER

476. WEEKEND

477. WEEKS

478. WELCOME

479. WELFARE

480. WESTERN

481. WESTMINSTER

482. WHERE

483. WHETHER

484. WHICH

485. WHILE

486. WHOLE

487. WINDS

488. WITHIN

489. WITHOUT

490. WOMEN

491. WORDS

492. WORKERS

493. WORKING

494. WORLD

495. WORST

496. WOULD

497. WRONG

498. YEARS

499. YESTERDAY

500. YOUNG
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