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Abstract 

Molybdenum (Mo), a body-centered cubic (BCC) metal, has been found to be a potential candidate 

for various applications including semiconductor, defense, and medical industries, owing to their 

high yield (~324 MPa) and compressive strength (~400 MPa), superior fracture strength (), very 

high melting point (~2890 K), good thermal conductivity (~138 W/(mK) at 300 K) and 

exceptional corrosion resistance. Tension and compression experiments have shown that the 

mechanical response of Mo crystal depends on the applied strain rate, ambient temperature, and 

crystallographic orientations. Further, experimental and numerical studies performed on other 

BCC single crystals show that the hardness and pile-up patterns depend on their crystallographic 

orientation. It must be mentioned that most of the studies are performed on Ta, W, BCC Fe and Ti 

alloys, and little attention has been given to the Mo crystals. Consequently, deformation response 

of Mo crystals is not well understood.    

      Therefore, nano- and micro-indentation experiments on Mo single crystals oriented 

along (100), (110) and (111) are performed to understand their indentation response, in this thesis. 

Atomic force microscopy is used to analyze the impression of the indents. Results show that nano- 

as well as micro-hardness depends of the orientation, and (110) orientation offers the highest 

resistance to plastic deformation. Most importantly, nano-hardness decrease with increase in load. 

The micro-hardness is found to be lower than the nano-hardness which is attributed to the larger 

strain gradients during nanoindentation in contrast to the micro-indentation. Further, the micro-

hardness also decreases with increasing indentation load up to 1000 mN. The nanoscale and 

microscale intrinsic material lengths marginally depend on crystal orientation and are found to be 

around 0.55-0,65 and 10.89-12.45, respectively. The pile-ups patterns produced through micro-

indentation on the surfaces of (100), (110), and (111) oriented Mo single crystals have shown four-

, two-, and three-fold symmetry, respectively. The crystal plasticity model proposed by 

Daphalapurkar et al. (2018) is implemented in commercially available software package Abaqus 

(6.17) by writing user element (UEL) subroutine 
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Chapter 1 

Introduction and Literature Review 

 

1.1 Introduction 

Molybdenum (Mo), a refractory BCC metal, is a potential material for several industrial 

applications due to its fascinating material properties like high yield and compressive strength 

(~324 and ~400 MPa), good elasticity modulus (~325 GPa), superior fracture strength, very high 

melting point (~2890 K), good thermal conductivity (~138 W/(mK) at 300 K, excellent density (~ 

10200 kg/m3) and exceptional corrosion resistance (MaTecK Germany; Lunk and Hartl, 2017). 

Therefore, Mo is considered to be a good candidate for various applications such as semiconductor 

and solid-state devices, aerospace and defense components, automobile parts and medical 

equipment (Shields, 2013; Lunk and Hartl, 2017). Tension and compression experiments have 

shown that the mechanical response of Mo crystal depends on the applied strain rate, ambient 

temperature, and crystallographic orientations (Guiu and Pratt, 1966; Sherwood et al., 1967; Irwin 

et al., 1983).   

The hardness experiments performed on various BCC metals such as Tantalum, Titanium 

alloys, Tungsten single crystals have shown that the hardness of these material depends on the 

crystallographic orientation. Further, the hardness is found to drop with increase in indentation 

load which is referred to as indentation size effect (ISE). Moreover, the pile-up patterns on the 

indented surfaces are affected by crystal as well as azimuthal orientation of the indenter. Despite 

the abundance of published literature on BCC single crystals, little work has been devoted in 

understanding the indentation response of Mo single crystals. Therefore, the deformation behavior, 

in particular the indentation response of Mo single crystals is not well understood. The following 

questions pertaining to the indentation response of Mo single crystals arise which need to be 

addressed before deployment of these materials: what is the effect of crystallographic orientations 

on the hardness of Mo crystals? Do Mo crystals show indentation size effect irrespective of their 

orientation, or is it noticeable only on few selected plane/orientations? In order to address these 

questions, nano- and micro-indentation hardness experiments on Mo single crystals are performed 
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in this thesis. Atomic force microscopy (AFM) is used to examine the shape and extent of the 

material pile-up. An effort has also been made to implement a crystal plasticity constitutive model 

in commercially available software package Abaqus (6.17) so that the complementary finite 

element (FE) simulations of indentation could be performed in the future. 

 

1.2  Crystallography 

The solid materials can be classified as crystalline and non-crystalline, based on the arrangement 

of their atoms. The atoms are arranged in a periodic manner over large atomic distances in a 

crystalline material, while the arrangement of atoms in a non-crystalline solid is random or non-

periodic in nature. Almost all metals, some polymers and many ceramics are crystalline in nature 

under normal solidification conditions. Most of the metals solidify into one of the following three 

cubic crystal structures: 

• Face Centered Cubic (FCC)  

• Body Centered Cubic (BCC)  

• Hexagonal Close Packed (HCP)  

The arrangements of atoms in unit cells of these cubic structures are illustrated in Figure l.1. 

The planes and directions in FCC and BCC crystals are specified with respect to an orthogonal 

coordinate system with origin at a corner of unit cell in terms of miller indices. A crystallographic 

plane is specified as the reciprocal of the length of its intercept on three axes which are reduced to 

a lowest denominator and represented as (hkl). For example, the miller indices for plane PQRS in 

Figure 1.1(a) and (b) are (010). The group of crystallographically equivalent planes are referred to 

as family of planes and are represented by {hkl}. The family of planes {100} represent six 

crystallographic planes (100), (010), (001), (1̅00), (01̅0) and (001̅). A direction is represented as 

[uvw], where u, v and w are the projection of a direction along three axes reduced to a lowest 

denominator. For example, the direction, OQ in unit cell in Figure. 1.1(a) and (b) is represented 

by [111]. The family of directions are represented by <uvw>.  By contrast, the planes and directions 

in an HCP crystal are represented using Miller-Bravais system with four indices h, k, i and 𝑙 based 

on the four axes, a1, a2 a3 and a4 as shown in Figure 1.1(c). Here, the third index 𝑖 = −(ℎ + 𝑘).  

Further, HCP and FCC structures are closed packed structures because atomic packing density 

is 74% in these two cases. On the other hand, atomic packing density for BCC is only 68% and 
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hence it is not a closed packed structure. The plastic deformation generally takes place in a plane 

with highest atomic densities which are also referred to as close-packed planes.  The closed packed 

planes for FCC and HCP are octahedral planes {111} and basal planes {0001}, respectively. 

However, there is no one plane with predominant atomic density in the case of BCC crystals. The 

directions <110>, <111> and <1120 > are the direction with maximum atomic density and hence 

referred to as close-packed direction in FCC, BCC and HCP crystals, respectively.  

  

1.3  Defects in a single crystal. 

The arrangement of atoms in a lattice is not perfectly periodic and there is deviation in this 

periodicity which results in defect in the crystal. If the deviation is localized to few atoms, the 

defect is known as point defect, whereas if it spreads over a long range then it is called as lattice 

imperfection. Vacancy, interstitial and impurity atom are the point defects commonly observed in 

a crystal. A vacancy is created when an atom at a lattice point is missing, while interstitial defect 

is generated when an atom is trapped inside a crystal lattice (refer Figure 1.2). An impurity atom 

sits at a lattice position leading to the local deviation in the periodicity as shown in Figure 1.2. The 

defects such as line defects and surface defects are the lattice imperfection in crystals. The 

dislocations are known as line defects while stacking faults and twined regions are known as 

 

Figure 1.1: Schematic displaying unit cells for (a) face centered cubic (FCC), (b) body centered 

cubic (BCC) and (c) Hexagonal close packed (HCP) crystals. 
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surface defects in single crystals. Grain boundary in polycrystals also falls under the category of 

surface defects.              

1.3.1  Dislocations 

As mentioned previously that crystal lattices are not perfect, and they exhibit various types of 

defects such as point, line and surface defects. In 1934, Taylor and Orowan (Taylor, 1934; Orowan, 

1934), independently proposed the idea of the “dislocation” to explain the difference between the 

theoretical and actual yield strength of metals. The dislocation can be understood as the boundary 

separating the already slipped and un-slipped region in a material. There are two types of 

dislocations namely edge and screw dislocations.  

An edge dislocation can be visualized as an extra half-plane of atoms inserted in a crystal 

structure as depicted in Figure 1.3(a). The presence of this extra plane of atom causes distortion in 

neighboring atoms which reduces rapidly with increasing distance from this extra half plane. The 

plane on which the dislocation lies is known as slip plane and the line extending over the length 

of dislocation is called dislocation line (see Figure 1.3 (a)). An edge dislocation moves 

perpendicular to dislocation line on a slip plane under the action of shear stress acting 

perpendicular to its line. This type of motion is known as slip. When an edge dislocation reached 

to the free surface, it creates a step with length of 𝒃 which is known as burgers vector (see Figure 

1.3 (d)). Further, an edge dislocation can also move perpendicular to the slip plane due to addition 

 

Figure 1.2: Schematic showing point defects in crystal lattice. 
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or subtraction of atoms along the dislocation line. This motion of edge dislocation is known as 

dislocation climb. Note that the dislocation climb is controlled by a diffusion of vacancies and 

generally found to be operative at elevated temperature. 

A screw dislocation can be imagined by cutting a crystal along a lattice plane and then 

sliding one half of the crystal over the other by a lattice vector as shown in Figure 1.4. Note that 

the slip direction of screw dislocation is parallel to the dislocation line. Also, the screw dislocation 

can cross-slip onto another plane and continue to glide under favorable stress conditions. Screw 

dislocations, on the other hand, cannot move by process of climb, whereas edge dislocations cannot 

cross-slip. After the dislocations has completely passed through the crystal, both types of 

dislocations produce the same final deformation.  

In general, pure screw and pure edge dislocations are rarely observed in crystalline 

materials and the dislocations have been observed experimentally as dislocation loops containing 

edge and the screw component which is known as mixed dislocation as shown in Figure 1.5. The 

curved dislocation has both edge and screw character, which vary from point to point along the 

dislocation line. The region enclosed by the loop can be considered as the “slipped region”. 

 

Figure 1.3: Schematic showing (a) an Edge dislocation, (b), (c) and (d) subsequent positions of 

dislocation as it moves towards the free surfaces (reproduced from Smallman and Ngan, 2014). 
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The Burgers vector b is an important parameter for a dislocation. It is defined by 

constructing a Burger circuit MNOPQ using a lattice vectors in a crystal containing a dislocation 

as shown in Figure 1.6 (a). The same sequence of vectors is then created in a defect free crystal as 

shown in Figure 1.6 (b) and it is observed that circuit does not close. Then the vector QM from 

finish to start defines the Burger vector for the dislocation. Burgers vector can be used to specify 

 

Figure 1.4: Schematic showing a screw dislocation and its motion on a slip plane (taken from 

Smallman and Ngan, 2014). 

 

Figure 1.5: Mixed dislocations containing both the edge and the screw component (Hull and 

Bacon, 2011). 



7 
 

the displacement of atoms that occurs during the motion of dislocation. For a perfect dislocation it 

is equal to the shortest lattice translation vector. 

 

1.4  Fundamental aspects of Body Centered Cubic metals  

1.4.1 Slip systems 

Slip system are characterized by slip plane normal and slip directions. In BCC metals, there is no 

plane with predominant atomic density, hence the slip plane is not well defined as opposed to FCC 

and HCP (Dieter, 1998; Hull and Bacon, 2011). However, the <111> is the close-packed direction 

and hence slip always occurs along this direction only (Hull and Bacon, 2011). Further, slip in 

BCC is found to occur in the {110}, {112} and {123} family of planes (Hull and Bacon, 2011) 

along <111> direction. These slip systems are displayed in Figure 1.7. Furthermore, there are six 

slip planes of {110} type, each having two < 111 > slip directions resulting in 12 systems of 

{110}<111> type. In addition, there are twelve {112} and twenty four {123} types of planes and 

each having one < 111 > direction leading to 36 slip system. Thus, in total, BCC metals exhibit 

48 slip systems (Hull and Bacon, 2011). It is important to notice that three {110}, three {112} and 

six {123} planes intersect along identical <111> direction, therefore dislocations move in 

 

Figure 1.6: (a) Burger circuit created around an edge dislocation in a crystal with dislocation. (b) 

Failure of Burger circuit in a defect free crystal (reproduced from Hull and Bacon, 2011). 
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haphazard manner due to enhanced cross slip which leads to the formation of wavy slip lines in 

BCC metals (Hull and Bacon, 2011). Seeger and Wasserbach (2002) and Seeger (2001; 2004) have 

reported that it is highly unlikely for slip to occur in {123} plane in pure BCC metal, therefore, the 

{110}<111> and {112}<111> are accepted to be most predominant in pure BCC metals. They 

have also demonstrated that the slip planes vary with the temperature. For instance, slip occurs 

readily on the {110} plane at temperature below 75K which may not be true for higher temperature. 

It is important to note that deformation twining occurs in {112}<111> system in BCC, hence slip 

on {112} plane may occur either in twining sense or anti-twining sense which is explained in the 

next section. In fact, slip is relatively easier when the external stresses are applied in such a way 

that dislocation moves in twining sense (Hull and Bacon, 2011). The slip plane and normal for slip 

systems {110}<111> and {112}<111> are listed in the Table. 1.1 and 1.2, respectively.   

1.4.2 Plastic deformation by twinning 

Twinning is a mode of deformation in which a region of a crystal undergoes a homogeneous shear 

that produces the mirror image of an undeformed or un-twinned crystal about the shear plane. In 

BCC crystals, this type of shear can be produced by a displacement of 1/6<111> on each successive 

{112} plane. Twinning and anti-twining sense of slip on {112} plane can be understood by 

analysing the stacking sequence of this plane in BCC crystal, shown in Figure 1.8(a). In this figure, 

atoms lying in a particular {112} are denoted by identical name. For example, atoms represented 

 

Figure 1.7: Schematic illustrations of different slip systems in BCC metals. The slip direction and 

slip planes are labelled as violet vectors and green planes, respectively. 
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by letter C lie on the same {112} plane. Schematic in Figure 1.8 (b) displays the traces of the (112̅) 

planes on a (110) plane. Note, atom sites shown by circles lie on (110) plane (i.e., plane of the 

diagram), while those shown by squares lie a/√2 unit above and below. It can be seen from Figure 

1.8 (b) that {112} planes follow the stacking sequence ABCDEFA.     

Figure 1.9(a) shows a [1̅10] oriented BCC single crystal under compressive axial loading. 

Under [1̅10] compression, the resolved shear stress on the (11̅2) plane (as marked on a green 

square stress element) will displace all the atoms in atomic layers E, F and A (lying above layer 

D) relative to the atomic layer D in the [1̅11] direction by 1/6[1̅11] (marked by the black arrow). 

Consequently, atom ‘E’ will move to the new site indicated by a red color filled circle, resulting 

new site being the mirror reflection of the atom C. Similarly, new position of atom F and A will 

become a mirror image of atom D and E, respectively. The new position of atoms E, F and A are 

denoted by letters C, D and E, respectively, in Figure 1.9(b). Thus, the new stacking sequence 

would become as ABCDCDE....(refer Figure 1.9(b)). A second translation on the adjacent plane 

displaces D to B, E to C, etc., resulting in stacking sequence ABCDCBC..., as shown in Figure 

1.9(c). Repeating this translation on successive planes yields stacking sequence ABCDCBA... 

(refer Figure 1.9(d)), which is the stacking of a twinned crystal about layer D when compared to 

the initial stacking of ABCDEFA in Figure 1.8(b).  

 

 

Figure 1.8: (a)The positions of atoms in (112̅) planes in BCC unit cell. (b) Traces of the (112̅) slip 

planes on a (110) plane. 

 

Figure 1.8: (a)The positions of atoms in (112̅) planes in BCC unit cell. (b) Traces of the (112̅) slip 

planes on a (110) plane. 



10 
 

By contrast, if a tensile load is applied along [1̅10] direction, all the atoms in layers E, F 

and A will be displaced in the opposite direction, (i.e., along [11̅1̅]) by 1/6[11̅1̅] (marked by the 

black arrow). Thus, the atom E will move to the new site indicated by a blue color filled circle so 

that it becomes a mirror reflection of the atom D, as shown in Figure 1.10(b). As a result, atoms in 

layer E will not become the mirror of atoms in layer C, resulting in a stacking of high energy and 

it is different from the twinned stacking. This type of slip is referred to as slip in anti-twinned 

sense. Therefore, on {112} planes, there is an asymmetry with respect to 1/6<111> translations in 

the twinning and anti-twinning sense. Note that in case of anti-twinning, atom in layer E has to 

displace by 1/3[11̅1̅] so as to become the mirror image of atom in fixed layer C as illustrated in 

Figure 1.10(c). It can be observed that different amount of shear displacement is required in anti-

twinning and twinning to generate mirror symmetry between the displaced atom E and fixed atom 

C with respect to the mirror twin plane. As a result, shear stress required to move a dislocation in 

one direction in a slip plane is not the same as the shear stress required to move it in the opposite 

direction in the same plane. 

 

 

 

 

Figure 1.9: Schematic showing crystallographic origin slip in twinning sense in a [1̅10] oriented BCC 

crystal under axial compressive loading. 
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1.4.3 Plastic deformation by slip  

The plastic deformation in a metallic crystal occurs primarily due to the motion of dislocation on 

a slip plane along slip direction except at low temperature and high strain rate. The slip plane and 

slip direction together defines a slip system. The resolved shear stress 𝜏𝛼 in the slip plane along 

slip direction is defined as: 

𝜏 𝛼 = 𝝉: (𝒔(𝜶) ⊗ 𝒎(𝜶)) = 𝝉: 𝝁𝜶, 
(1.1) 

where, 𝒔𝜶 and 𝒎𝜶 are slip direction and slip plane normal, respectively, and 𝝁𝜶 is Schmid tensor 

for 𝛼𝑡ℎ slip system. Further, 𝝉 in Eq. (1.1) is the applied stress. For instance, in the case of 

cylindrical specimen of single crystal with one slip system subjected to an applied tensile force F 

along the axial direction (refer Figure 1.11), the resolved shear stress is given by: 

𝜏 = 
𝐹

𝐴
 cos 𝜙 . cos 𝜆. (1.2) 

Where, 𝜙 and 𝜆  are the angles between the slip plane normal and loading axis, and slip direction 

and loading axis, respectively. In this case, the Schmid tensor degenerates to single component 

which is commonly referred to as Schmid factor, and it is given by: 

Figure 1.10: Schematic showing crystallographic origin of antitwinning sense in a [1̅10] oriented 

BCC crystal under axial tensile loading. 
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𝜇 =  cos 𝜙 . cos 𝜆. (1.3) 

It must be noted that for plastic deformation to occur in FCC and HCP metals, the resolved shear 

stress should increase beyond a threshold value which is known as critical resolved shear stress 

(Hosford, 2010). This statement is known as Schmid law. FCC and HCP metals follow the Schmid 

law, whereas yielding in BCC metals deviates due to twinning-anti-twinning asymmetry and non-

planer core of screw dislocation (Vitek, 1976; Woodward and Rao, 2001; Hull and Bacon, 2011). 

In fact, the dislocation slip in a particular slip system of a BCC crystal is also influenced by stresses 

other than the resolved shear stresses which is referred to as the non-Schmid behavior. Plastic 

deformation of pure BCC metals is primarily controlled by the motion of screw dislocations which 

have high lattice friction stress because of their non-planar cores structure as shown in Figure 1.12. 

The screw dislocation spread into three {110} planes of the zone having identical slip direction 

(refer plane 𝑚𝛼, 𝑛1
𝛼 and 𝑛2

𝛼 in Figure 1.12). The screw dislocations move by the forming double 

kinks, therefore their motion is dependent on the shear stresses parallel and perpendicular to slip 

direction. Note that the kinks formed on screw dislocation have edge character. The generalized 

resolved shear stress used for BCC metals involves a linear combination of six stresses. The first 

 

 Figure 1.11: Calculation of resolved shear stress parallel to slip direction, from tensile force F. 
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term (Schmid stress 𝜏𝛼) is complemented by two more shear stresses parallel to the slip direction 

(𝑠𝛼) but acting in a different planes (called as auxiliary plane) in the zone of the slip direction. If 

the normal of the auxiliary planes is denoted as 𝑛1
𝛼 and 𝑛2

𝛼 ,  then second and third stress term can 

be written as 𝜏1
𝛼 = 𝝉: (𝒔𝜶 ⊗ 𝒏𝟏

𝜶) and 𝜏2
𝛼 = 𝝉: (𝒔𝜶 ⊗ 𝒏𝟐

𝜶). The three remaining stresses 

correspond to shear stresses perpendicular to the slip direction. These are 𝜏3
𝛼, 𝜏3

𝛼and 𝜏5
𝛼  which 

acts on the screw component of dislocation and leads to the movement of screw dislocation. 

The generalized resolved shear stress which accounts for the non-Schmid stresses in a BCC 

metal can be written as (Bassani et al., 2001; Vitek et al., 2004; Gröger et al., 2008): 

𝜏𝑒(𝛼) = 𝜏𝛼 + 𝑎1𝜏1
𝛼 + 𝑎2𝜏2

𝛼 + 𝑎3𝜏3
𝛼 + 𝑎4𝜏4

𝛼 + 𝑎5𝜏5
𝛼 . (1.4) 

Here, 𝑎1−5 are material constants and 𝜏1−5
𝛼   represent the non-Schmid stresses affecting the slip on 

𝛼𝑡ℎ slip system. The non-Schmid stresses, 𝜏1−5
𝛼 are defined as follows: 

𝜏1
𝛼 = 𝝉: (𝒔𝜶 ⊗ 𝒏𝟏

𝜶) = 𝝉: 𝝁𝟏
𝜶, 

𝜏2
𝛼 = 𝝉: (𝒔𝜶 ⊗ 𝒏𝟐

𝜶) = 𝝉: 𝝁𝟐
𝜶, 

𝜏3
𝛼 = 𝝉: ((𝒔𝜶 × 𝒎𝜶) ⊗ 𝒎𝜶) = 𝝉: 𝝁𝟑

𝜶, 

𝜏4
𝛼 = 𝝉: ((𝒏𝟏

𝜶 × 𝒔𝜶) ⊗ 𝒏𝟏
𝜶) = 𝝉: 𝝁𝟒

𝜶, 

𝜏5
𝛼 = 𝝉: (𝒏𝟐

𝜶 × 𝒔𝜶) ⊗ 𝒏𝟐
𝜶) = 𝝉: 𝝁𝟓

𝜶. 

(1.5) 

Here, 𝒏𝟏
𝜶 and 𝒏𝟐

𝜶 are normal vectors to the non-glide planes for 𝛼𝑡ℎ slip system. The normal 

vectors, 𝒏𝟏
(𝜶) and 𝒏𝟐

(𝜶) are listed in Table 1.1 for systems involving slip on {110} planes. In a 

BCC metal, the plastic yielding is assumed to occur when the generalized resolved shear stress, 

τ∗(α) increases beyond a threshold value. The slip on {112}<111> system can be understood as a 

result of dislocations motion by elementary steps on the two highly stressed {110} planes of the 

same < 111 > zone. These pairs of {110} < 111 > slip systems are denoted by α1 and α2 for each 

{112}<111> system and listed in Table 1.2. The above-mentioned mechanism can be understood 

from the schematic Figure 1.13. In this figure, planes (211), (110) and (101) are displayed. Note 

that a same amount of displacement in plane (211) can be achieved through vector sum of two 

elementary displacement in (110) and (101) planes. In this manner, the motion of screw 

dislocations (211) plane can be understood as the result of its elementary motion on (110) and 

(101) plane. When the slip trace reaches to the surface of the sample, it gives the impression that 
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it was produced by the motion of dislocation on (211) plane, but it was produced by the elementary 

steps (110) and (101) which are not observable experimentally. Thus, a {112} slip trace on the 

surface of a crystal is a result of slip on two {110} planes. 

 

 

Table 1.1: The vectors 𝒎𝜶, 𝒔𝜶, 𝒏𝟏 and 𝒏𝟐 for {110}<111> slip systems in a BCC crystals 

(reproduced from Daphalapurkar et al. (2018)). 

𝛼 𝒔𝜶  𝒎𝜶 𝒏𝟏 𝒏𝟐 

1 111 011̅ 1̅10 101̅ 

2 111 1̅01 01̅1 1̅10 

3 111 11̅0 101̅ 01̅1 

4 1̅11 1̅01̅ 1̅1̅0 011̅ 

5 1̅11 01̅1 101 1̅1̅0 

6 1̅11 110 011̅ 101 

7 1̅1̅1 01̅1̅ 11̅0 1̅01̅ 

8 1̅1̅1 101 011 11̅0 

9 1̅1̅1 1̅10 1̅01̅ 011 

10 11̅1 101̅ 110 01̅1̅ 

11 11̅1 011 1̅01 110 

12 11̅1 1̅1̅0 01̅1̅ 1̅01 
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Figure 1.12: Schematic showing core of screw dislocation spread into three {110} planes having 

common slip direction <111>. 

 

Figure 1.13: Schematic presentation of elementary slip steps on (110) and (101) in equal portions 

(taken from Marichal et al., 2013). 
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1.4.4 Crystal plasticity models for BCC metals 

Several constitutive theories have been proposed to characterize the deformation behavior of BCC 

crystals, which are summarized in the following. Liao et al. (1998) developed a crystal plasticity 

model for BCC metals by adopting the general framework given by Asaro and Rice (1977) and 

Asaro and Needleman (1985), and using the power law relation between shear strain rate and 

resolved shear stress proposed by Pan and Rice (1983). They incorporated 24 slip system by 

considering the slip in {110}<111> and {112}<111> slip systems. By using this constitutive 

model, they studied the cold-rolling process of low-carbon steel sheets. Lee et al. (1999) also 

employed the power-law form of expression of shear strain rate given by Hutchinson, (1976) and 

Table 1.2: The vectors 𝒎𝜶 and 𝒔𝜶 for {112}<111> slip systems and the conjugate pair 𝛼1 and 𝛼2 

of {110}<111> systems (reproduced from Daphalapurkar et al. (2018)). 

𝛼 𝑠(𝛼) 𝑚(𝛼) 𝛼1 𝛼2 

13 111 112̅ 1 2 

14 111 2̅11 2 3 

15 111 12̅1 3 1 

16 1̅11 1̅12̅ 4 5 

17 1̅11 1̅2̅1 5 6 

18 1̅11 211 6 4 

19 1̅1̅1 1̅1̅2̅ 7 8 

20 1̅1̅1 21̅1 8 9 

21 1̅1̅1 1̅21 9 7 

22 11̅1 11̅2̅ 10 11 

23 11̅1 121 11 12 

24 11̅1 2̅1̅1 12 10 



17 
 

Peirce et al. (1983). The power law forms of the expression for shear strain used in models of Liao 

et al (1998) and Lee et al. (1999) can capture the viscoplastic response of BCC crystals only in a 

very narrow range of temperature and strain rate. Therefore, these models cannot capture the 

dependence of critical resolved shear stress on the strain rate and temperature under dynamic 

loading conditions at low homologues temperatures. Kothari and Anand (1998) used a flow rule 

based on thermally activated theory for plastic flow given by Kocks et al. (1975) and Frost and 

Ashby (1982), and successfully predicted the deformation response of Tantalum crystals at 

temperature -200 to 525oC and for strain rates of  1 × 10−4 to 3 × 104 𝑠−1. Xie et al. (2004) and 

Ganapathysubramanian and Zabaras (2005) also use similar flow rule and modelled the cyclic 

deformation behaviour of high strength low alloy steel. It must be mentioned that the models of 

Kothari and Anand (1998), Xie et al. (2004) and Ganapathysubramanian and Zabaras (2005) do 

not consider tension-compression asymmetry and the orientation dependence of critical resolved 

shear stress caused by non-Schmid behaviors of BCC. Daphalapurkar et al. (2018) proposed a 

crystal plasticity model by adopting the flow rule of Kothari and Anand (1998) and considering 

the effect of non-Schmid stresses as well. They successfully predicted the effect of strain rate, 

ambient temperature and crystal orientation on the stress-strain response of Mo single crystals. 

 

1.5 Instrumented Indentation Experiments 

Instrumented indentation test (IIT) is an advance indentation technique in which in-situ 

characterization of the mechanical properties of a small volume of material can be performed. 

Also, the indentation load, P and indentation depth, h, are continuously recorded throughout the 

experiments. Oliver and Pharr (1992) proposed a methodology to determine the elastic modulus, 

𝐸 and hardness, 𝐻 of material using the 𝑃 − ℎ curve which is commonly referred to as Oliver-

Pharr (O-P) method. To this end, the contact stiffness, 𝑆, projected area of indenter, 𝐴𝑐 and the 

reduced modulus 𝐸𝑟 need to be determined. The key equations required for these calculations are 

taken from the work of Oliver and Pharr (1992) and are summaries below. The contact stiffness, 

𝑆, defined as the initial slope of the unloading portion of 𝑃 − ℎ curve, is determined by fitting the 

following power law to the unloading part of 𝑃 − ℎ curve, refer Figure 1.14 (Oliver and Pharr, 

1992): 
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𝑃 =  𝐶(ℎ −  ℎ𝑓)𝑚 (1.6) 

In above equation, ℎ𝑓 is residual depth after unloading, while 𝐶 and 𝑚 are the fitting constants. 

The value of 𝑚 = 1 for flat punch/indenter, while 𝑚 = 1.2 − 02 for Berkovich indenter (Oliver 

and Pharr, 1992). The contact stiffness is determined as (Oliver and Pharr, 1992): 

𝑆 =  
𝑑𝑃

𝑑ℎ
= 𝐶𝑚(ℎ −  ℎ𝑓)

𝑚−1
|

ℎ=ℎ𝑚𝑎𝑥

 
(1.7) 

For Berkovich indenter with half tip angle θ ~ 65.3°, 𝐴𝑐 is given by (Oliver and Pharr, 1992): 

𝐴𝑐 = 𝑓(ℎ𝑐) =  3√3 ℎ𝑐
2 𝑡𝑎𝑛2 𝜃  ≈  24.5ℎ𝑐

2, (1.8) 

Where, ℎ𝑐 is the contact depth as shown in Figure 1.15. Also note that most of the strain-hardening 

materials exhibit pile-up of plastically deforming material around the indenter, while strain 

softening materials show sink-in effect during the indentation. The limitation of the O-P method 

is that it does not account the pile-up effects, but the depth, ℎ𝑐 can be estimated after eliminating 

the sink-in effect using the following equations (Oliver and Pharr, 1992): 

ℎ𝑐 = ℎ𝑚𝑎𝑥 −
 𝜀𝑃𝑚𝑎𝑥

𝑆
 (1.9) 

Here, ℎ𝑚𝑎𝑥  is maximum indentation depth, 𝜀 is a constant that depends on the indenter geometry 

which is taken to be 0.75 for the pyramidal Berkovich indenter. Once 𝐴𝑐 is determined, the 

hardness can be determined as (Oliver and Pharr, 1992): 

𝐻 =
𝑃𝑚𝑎𝑥

𝐴𝑐
, (1.10) 

where, 𝑃𝑚𝑎𝑥 is the maximum applied load. The reduced modulus can be determined by (Oliver 

and Pharr, 1992): 

𝐸𝑟 =
√𝜋𝑆

2𝛽√𝐴𝑐

. 
(1.11) 

Here, the constant 𝛽 depends upon the indenter geometry and for Berkovich indenter it is usually 

taken as 1.034. Having 𝐸𝑟 known, the elastic modulus can be determined using the following 

expression (Oliver and Pharr, 1992): 
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1

𝐸𝑟 
=  

(1 −  𝑣2)

𝐸
+

(1 −  𝑣𝑖
2)

𝐸𝑖
. 

(1.12) 

Here 𝐸 and 𝑣 are elasticity modulus and Poisson ratio of the specimen, respectively, while 𝐸𝑖 and 

𝑣𝑖 are the corresponding elastic constants of indenter.  

 

Figure 1.14: Schematic showing the typical indentation load, 𝑃 versus indentation depth, ℎ curve 

obtained from an instrumented indentation experiment (reproduced from Oliver and Pharr, 1992). 

 

Figure 1.15: Schematic displaying of the surface profiles at maximum indentation load and after 

the complete unloading along with the important geometrical lengths used in the Oliver–Pharr 

analysis (reproduced from Oliver and  Pharr, 1992). 
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By contrast to the conventional indentation experiments, the onset of plastic deformation during 

loading can be identified by noting the displacement burst or pop-in events. The pop-in are noticed 

when the instrumented-indentation test are performed under load-controlled mode as shown in 

Figure 1.16. Experiments have confirmed that the pop-in events are the consequence of nucleation 

of dislocations underneath the indenter (Alcalá et al., 2012; Zhang and Ohmura, 2014). These pop-

in events occur when the resolved shear stress at a point below the indenter approaches to the 

theoretical shear strength of the material (Biener et al., 2007). The maximum resolved shear stress 

𝜏𝑚𝑎𝑥 below the indenter given by the Hertzian contact theory for isotropic elastic solids gives is 

(Morris et al., 2011): 

𝜏𝑚𝑎𝑥 = 0.31(
6

𝜋3

𝑃𝐸𝑟
2

𝑅2 )

1

3
, 

 

𝑃 =
4

3
𝐸𝑟√𝑅 ℎ

3
2 

(1.13) 

 

 

Figure 1.16: Indentation load versus indentation depth curves for (100), (110) and (111) oriented 

Tantalum single crystal obtained from nanoindentation experiments by Remington et al. (2014). The 

elastic Hertzian solution is also plotted. Note that elastic solutions deviate from the experimental data 

when pop-in occurs. 
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where, 𝑅 is the indenter-tip radius. Note that Eq. (1.13) is valid for very small values of indentation 

depth up to which elastic solutions are application. The Eqs. (1.13) are used to predict the first 

pop-in event caused primarily by dislocation nucleation in ductile metals.  

 

1.6 Indentation response of BCC metals: 

Stelmashenko et al. (1993) performed microhardness experiments on Tungsten (W) single crystals 

oriented along (100), (110) and (111) using Vickers indenter. They observed significant 

indentation size effect from indentation along all three orientations (see Figure 1.17). Further, they 

reported maximum hardness along (100) direction and lowest along (111) direction. In addition, 

hardness values of (100) oriented crystal was strongly depend on the azimuthal orientation of 

indenter, while this was not the case for (111) oriented crystal. Yao et al. (2014) have also 

investigated the effect of the orientation on the indentation response of W single crystals through 

spherical micro-indentation and complementary finite element simulations employing Peirce–

Asaro–Needleman crystal plasticity model (Peirce et al., 1983). They reported that the crystal 

orientation has marginal effect on indentation load-displacement curves, whereas it affects 

considerably the pile-up patterns on the indented surfaces. For instance, they reported pileup 

patterns to exhibit four-, two- and three-fold symmetry for indentation on the (100), (110) and 

(111) surfaces, respectively (see Figure 1.18).  

The four-, two- and three-fold symmetry on pile-up patterns has also been reported on (001)-, 

(110)-, (111)-oriented Tantalum (Ta) single crystals from spherical nano-indentation performed 

by Biener et al. (2007). In addition, Biener et al. (2007) noticed a single pop-in event on load-

displacement curve corresponding to (001)-oriented crystal which they correlated with rapid 

nucleation of dislocations. Yao and You (2017) have reported from Vickers indentation that the 

crystal orientation and azimuthal orientation of indenter have significant effect on the pile-up 

patterns on Ta single crystals. Remington et al. (2014) performed Berkovich nanoindentation 

experiments on (100), (110) and (111) oriented Ta single crystals. They noticed pop-in events 

occurring at lower load in the case of indentation on (100) and (110) surfaces than that for (111) 

case. Thus, they reported highest hardness for (111)-oriented crystal and almost equal hardness for 

(100)- and (110)-oriented crystals.  
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Smith et al. (2003) performed nanoindentation experiments as well as complementary 

molecular dynamics simulations on Fe single crystals to understand the effect of the crystal 

orientation on their indentation behaviour. The (110) oriented Fe crystal showed two-fold 

symmetry in pileup pattern when indented with the sphero-conical indenter, while on the 

indentation with pyramidal indenter, the pileup patterns were asymmetric though exhibited three-

fold rotational symmetry with respect to azimuthal orientation of the indenter. Further, pileup 

pattern on the (100)-oriented crystal showed four-fold symmetry, whereas (111)-oriented crystal 

were almost similar irrespective of azimuthal orientation of the indenter. Further, Smith et al. 

(2003) found (100) surface is harder than (110) and reported significant ISE in (100)- and (110)- 

oriented Fe crystals, though it was more pronounced in the case of latter. Čech et al. (2018) 

investigated the indentation response of Fe3Si single crystals by performing the spherical 

nanoindentation experiments along two orientations (110) and (100). Their results showed that the 

hardness and indentation modulus for (110) oriented crystal are higher than that for (100) oriented 

 

Figure 1.17: Variation of hardness with indentation load for Tungsten single crystals (reproduced 

from Stelmashenko et al., 1993). Note: When indentation is performed on (111) surface for two in-

plane orientation, the first with one of the sides parallel to the [121] direction and the second with 

one side parallel to [011] direction. Similarly, when the indentation is performed on the (100) surface 

one of indenter’s diagonal is along [001] direction and during second time diagonal is along [011] 

direction by changing the in-plane orientation of indenter.   
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crystal. Also, they reported four-fold symmetry in the pileup patterns produced on (100) surface, 

but two-fold symmetry on (110) surface. Further, they noticed rounded-square shaped indent in 

the former, and almost circular indent in the case of latter. Furthermore, they showed from FE 

simulations, that the resolved shear stress was maximum for {112}<111> slip system, lowest for 

{110}<111> slip system and intermediate for {123}<111> slip system, irrespective of orientation 

of the crystal. The number of slip systems with maximum resolved shear stress for (100) 

orientation was twice of that for (110) orientation. 

Demiral et al. (2013) investigated the deformation behavior of BCC β-titanium alloy Ti-15-3-3-3 

single crystals for two orientations, (0.641 0.078 0.764) and (0.114 0.107 0.988) by performing 

nanoindentation experimentation and finite element simulation using strain-gradient crystal 

plasticity model. The crystallographic orientation had marginal effect on the indentation load-

depth curve but significant effect on the pile-up patterns on the indented surfaces. The pileup 

Figure 1.18: The pile-up patterns on (a) (100)-oriented, (b) (110)-oriented and (c) (111)-oriented 

Tungsten single crystal (reproduced from Yao et al., 2014). 
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patterns on the (0.641 0.078 0.764) and (0.114 0.107 0.988) surfaces exhibited two- and four-fold 

symmetry respectively. 

Wang et al. (2005) performed Berkovich nanoindentation experiments on nanocrystalline 

Tantalum. They reported that deformation mechanism is governed by deformation twinning and 

not by slip as reported in the single crystals. Zhao et al. (2014) investigated the effects of strain 

rate on the hardness of nanocrystalline Mo thin film through nanoindentation experiments. They 

reported inverse ISE and significant sensitivity of hardness to the depth dependent strain rate. The 

highest value of strain rate sensitivity parameter was 0.22 for lowest indentation depth which drops 

rapidly with increase in indentation depth. Similarly, Hu et al. (2017) also investigated the effect 

of strain rate on deformation behavior of coarse grain as well as nano-crystalline Tantalum through 

nanoindentation experimentation. They reported that nanocrystalline Tantalum is harder than the 

coarse grain Ta. Also, the effect of strain rate was more pronounced on the nanograin Ta in 

comparison to the coarse grain Ta.  

 

1.7 Issues for investigation 

The experimental and numerical studies discussed in the previous section show that the hardness 

of Ta, W, BCC Fe and Ti alloys depends on the crystallographic orientation of these crystals. 

Further, the pile-up patterns are also influenced by the both the crystal orientation as well as the 

azimuthal orientation of the indenter. It must be noticed that most of the indentation studies are 

performed on Ta, W, BCC Fe and Ti alloys, and very little work has been devoted to the Mo 

crystals, hence the understanding of the indentation behaviour of Mo crystals is far from the 

complete. In the view of the indentation behaviours of the Ta, W, BCC Fe and Ti alloys, the 

following questions pertaining to Mo single crystals arises:  

1) Does the hardness and Elastic modulus of Mo single crystals change with the orientation 

of molybdenum single crystal? 

2) Do the Mo single crystal exhibit indentation size effect as observed in the case of W single 

crystal reported by Stelmashenko et al. (1993). Is the indentation size effect in Mo crystal 

orientation dependent?   

3) How does the orientation of Mo single crystal affect the pile-up pattern?  
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4) How does the plastic zone size below the indenter change with change in the crystal 

orientation? 

 

1.8 Objectives:  

The following objectives are defined based on the issues for investigation listed in the previous 

section: 

1) To perform micro- as well as nano-indentation experiments at different loads on 

(100), (110) and (111) oriented Molybdenum single crystals. 

2) To compute the hardness at different loads and investigate if Mo crystal exhibit indentation 

size effect. 

3) To determine the predominant slip system beneath the indenter for indentation along 

different orientation. 

4) To implement a crystal plasticity model for BCC single crystal by writing user-defined 

element subroutine (UEL) in commercially available software ABAQUS (Dassault 

Systèmes, 2017).  

5) To benchmark the developed UEL against the experimental results available in the 

literature.  

 

1.9  Organization of the Thesis 

The remaining chapters of this thesis are organized as follows:  

In Chapter 2, the sample preparation, and the methodologies for micro- and nano-indentation 

experiments on (100)-, (110)- and (111)-oriented Mo single crystals are described. The important 

results from the experiments are also discussed.  

In Chapter 3, the Crystal Plasticity constitutive model (Daphalapurkar et al., 2018) and its 

numerical implementation in commercially available software Abaqus 6.17 (Dassault Systèmes, 

2017) are discussed. In addition, the methodology to optimize the material parameters appearing 

in the model is also discussed.  

In Chapter 4, the important conclusions drawn from the chapters 2 and 3 are summarized and the 

possible further works are also discussed. 
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Chapter 2 

Experimental investigation of the indentation response of 

molybdenum single crystals 

 

2.1 Introduction 

Molybdenum (Mo), a body-centered cubic (BCC) metal, has been found to be a potential 

candidate for various applications including semiconductor, defense, and medical industries, 

owing to their high yield and compressive strength, superior fracture strength, very high melting 

point, good thermal conductivity, and exceptional corrosion resistance (MaTecK Germany; Lunk 

and Hartl, 2017). Experimental and numerical studies performed on other BCC single crystals 

show that the hardness and pile-up patterns depend on their crystallographic orientation. It must 

be mentioned that most of the studies are performed on Ta, W, BCC Fe and Ti alloys, and little 

attention has been given to the Mo crystals. Therefore, nano- and micro-indentation experiments 

on Mo single crystals oriented along (100), (110) and (111) are performed to understand their 

indentation response, in this Chapter. The outline of this chapter is as follows: In Section 2.2, the 

experimental methodology of nano- and micro-indentation are discussed, while the important 

results and discussion are presented in Section 2.3. Finally, work done in this chapter is 

summarized in Section 2.4.  

 

2.2 Experimental methodology of nano- and micro-indentation 

Single crystalline (100), (110), and (111) oriented Mo crystals (having 4N purity) with a diameter 

of 10 mm and thickness of around 1 mm, are procured from MaTecK, Germany. The single crystals 

are manufactured using floating zone melting technique (Wenzl and Schlich, 2006) and their 

orientations are verified using X-ray diffraction method. The sample surfaces are then 

mechanically polished using a series of increasing grit emery papers followed by polishing with a 

diamond paste to a surface finish of ~ 0.25 µm. Enough care was exercised to prevent the 

mechanical damage to the sample surface due to mechanical polishing. The quasi-static 

nanoindentation experiments were performed at room temperature using a (Hystrion Bruker Ti 



28 
 

Premier) nanoindenter fitted with a Berkovich diamond indenter (a three-sided pyramid) to obtain 

the nanomechanical properties. As the nanoindentation results are sensitive to indenter tip 

geometry and the machine compliance, the indenter tip area function is calibrated using standard 

quartz sample. All the nanoindentation experiments are performed in the load-controlled mode in 

the load range of 2 to 9 mN. A trapezoidal shape loading profile is used with a 10 s time for loading 

and unloading and a 5 s dwell time at the peak load. A minimum of 15 indentations are performed 

for each indentation load and the average hardness values are reported. The spacing between the 

successive indents was taken at least 10-15 times the maximum penetration depth to prevent the 

strain field interaction. The Oliver-Pharr method was employed to determine the nanoindentation 

hardness, Hn, and elastic modulus, E of the material (Oliver and Pharr, 1992; Pharr and Bolshakov, 

2002). 

Hardness, 𝐻 =  
𝑃𝑚𝑎𝑥

𝐴𝑐
 

(2.1) 

 

Elastic modulus of the specimen, 𝐸𝑠 = (1 -  𝑣𝑠
2)/ [(

2𝛽√𝐴𝑐

𝑆√𝜋
) − (

(1−𝑣𝑖
2)

𝐸𝑖
)] (2.2) 

Here, Pmax denotes the maximum indentation load, β is a constant (for Berkovich indenter β = 

1.034), Ac is the contact surface area, and S is the slope obtained from the initial portion of the 

unloading curve. Likewise, 𝐸𝑠, 𝑣𝑠, 𝐸𝑖, and 𝑣𝑖 are elastic moduli and Poisson’s ratio with subscript 

s and i indicating the specimen and indenter, respectively. The Poisson’s ratio 𝑣𝑠 for Mo was taken 

as 0.3 while the 𝐸𝑖, and 𝑣𝑖 of the indenter are taken as 1141 GPa and 0.07, respectively (Simmons 

and Wang, 1971). 

To further understand the variation of hardness on the indentation load (or indentation size) 

micro-Vickers indentation experiments are performed in the load range of 50 to 5000 mN. 

Microhardness, Hm, values are determined as the ratio of indentation load to the projected area of 

the impression. As the representative strain values of Berkovich and Vickers indenters are nearly 

the same, the indentation hardness, H obtained from the experiments are plotted together to 

understand the effect of P on the H. The indentation depth, h was calculated from the indentation 

size, d using equation (2.3), 

ℎ = 𝑑 2√2 tan (
𝜓

2
)⁄  (2.3) 

where ψ is the angle between opposite faces of the indenter (for Vickers indenter ψ = 136°).  
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2.3 Results and discussion 

2.3.1 Nanoindentation study 

2.3.1.1 Indentation load, P vs. penetration depth, h curves 

The P vs. h curves (100), (110) and (111) Mo single crystals are shown in Figure 2.1(a)–(c) 

respectively. According to the Oliver-Pharr analysis, the loading and unloading curves are 

approximated by the power-law function of the form: 

𝑃 =  𝛼ℎ𝑚    

(2.4) 
 

𝑃 =  𝛽(ℎ −  ℎ𝑓)𝑛 
(2.5) 

where P is the indentation load for a corresponding penetration depth h and ℎ𝑓 is the final 

penetration depth after complete unloading; α, β, m, and n are empirically determined fitting 

constants. The loading and unloading parts of all P vs. h curves are in good agreement with 

equations (2.4) and (2.5). The unloading power-law exponent, n, is in the range of 1.45-1.75 (with 

a regression coefficient, R ~ 0.999) (Oliver and Pharr, 1992, 2004; Pharr and Bolshakov, 2002; 

Voyiadjis et al., 2010). The variation of maximum penetration depth, hmax, is plotted against the 

maximum indentation load, Pmax in Figure 2.2 and it indicates the following trend: ℎ𝑚𝑎𝑥
(110)

<

 ℎ𝑚𝑎𝑥
(111)

<  ℎ𝑚𝑎𝑥
(100)

 suggesting that (110) orientation offers the highest resistance to plastic 

deformation.  

The ratio of penetration depth recovered during unloading to maximum penetration depth 

is the simplest quantitative measure of elastic deformation (Stelmashenko et al., 1993). The hmax 

and ℎ𝑓 are determined from the P vs. h curves and the ratio (ℎ𝑚𝑎𝑥 − ℎ𝑓) ℎ𝑚𝑎𝑥⁄  in percentage is 

presented in Figure 2.2. From these values it can be inferred that the amount of elastic recovery is 

least for (110) and maximum for (100) oriented crystals while intermittent on the (111) oriented 

crystal, indicating that the (100) orientation has the least elastic modulus and (110) has the highest 

modulus. The values of the elastic modulus obtained from nanoindentation experiments for (100), 

(110), and (111) Mo single crystals are 235 ± 12, 275 ± 15 and 210 ± 10 GPa, respectively. 
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Figure 2.1(a-c): Indentation load, P versus penetration depth, h curves for (a) (100), (b) (110), 

and (c) (111) Mo single crystals. 
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2.3.1.2 Effect of indentation load on nanohardness  

The variation of nanohardness, Hn for (100), (110), and (111) oriented Mo single crystals are 

plotted against the Pmax, in Figure 2.3(a). The following observations can be drawn from the Figure 

2.3(a): (i) For all the orientation, the Hn decreases with increasing Pmax showing indentation size 

effect (ii) At any given Pmax, hardness of (110) orientation is the highest while (100)is the lowest 

(iii) The difference in hardness (∆H) between (110) and (100) orientations at 2 mN is significant 

(around 14%) which decreases with increasing Pmax and is found to be only 2.5% at 2 N (for a three 

orders of increase in Pmax) as illustrated in Figure 2.3(b). The observed anisotropy in H at low 

indentation loads, among the different orientations, is a direct consequence of the differences in 

deformation events taking place in the plastic deformation zone under the indentation. The 

anisotropy in H can be explained by considering the Schmid factor for active slip systems 

 

Figure 2.2: Maximum penetration depth, hmax (left y-axis and shown with filled symbol) and the 

ratio of penetration depth recovered during unloading to maximum penetration depth (right y-axis 

and shown with hollow symbol) plotted against indentation load, P for (100), (110), and (111) Mo 

single crystals. 
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underneath the indentation and the resolved shear stress acting on them. Owing to the pyramidal 

geometry of the indenter, calculation of Schmid factor under a Berkovich is not straight forward 

unlike uniaxial compression. In order to compute the Schmid factor under Berkovich indentation, 

it is assumed that the load is being transmitted to the material along the apex of the tip (the apex 

of the tip is almost spherical) (Schuh, 2006) and normal to the slanting faces of the indenter 

following the model proposed by Raineesh et al. (2021). The compressive forces acting normal to 

the slanting faces of the Berkovich indenter are 120° apart (refer Figure A-1 in APPENDIX-A). 

We have considered the deformation on {110}<111> and {112}<111> slip systems as these are 

the most commonly observed deformation systems in BCC metals at room temperature (Seeger, 

2001; Seeger, 2004). At lower penetrations depths, the region directly beneath the indenter 

contributes more to hardness. When the compressive load is transferred to the specimen by the 

spherical tip present directly beneath the indenter, the maximum numbers of {110}<111> and 

{112}<111> slip systems along with the maximum Schmid factor for the (100), (110), and (111) 

orientations are presented in Table 2.1. It should be noted that at least five independent slip systems 

have to be active for plastic deformation to occur. But it can be seen that only four slip systems 

from the {110}<111> family can be activated when indentation is performed on the (110) plane 

(refer Table 2.1). Therefore, {112}<111> slip system must be activated to fulfil the requirement 

of minimum five active slip systems. However, in the case of other two orientations, the number 

of {110}<111> variants with non-zero Schmid factor is greater than five, hence {112}<111> slip 

system need not to get activated. Since the critical resolved shear stress (CRSS) for {110}<111> 

slip is lesser than that for {112}<111>, (110) is the hardest plane at lower depths. Further, as the 

indentation depth increases, the compressive forces along the slant faces of the indenter also start 

contributing to hardness and the procedure for calculation of Schmid factor due to this load is 

given in APPENDIX-A. The variation of Schmid factor for the two possible slip systems, for 

(100), (110) and (111) orientations, is plotted against the in-plane rotation angle, θ as shown in 

Figures 2.4-2.6. From these figures it can be observed that for any θ, both {110}<111> and 

{112}<111> slip systems have a non-zero Schmid factor along the slant face of indenter for at 

least one among the three loading directions perpendicular to the faces of Berkovich indenter for 

all three orientations. Based on this, it can be suggested that the slip occurs on both {110}<111> 

as well as {112}<111> slip systems in all three orientations under Berkovich indentation. Since, 

the in-plane orientation, θ is unknown, the exact Schmid factors corresponding to compressive 
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stresses along the normals to slanting faces cannot be clearly ascertained.  For better clarification, 

an advanced computational technique, such as dislocation dynamics simulation, would be 

necessary. 

 

 

Figure 2.3: (a) Variation of indentation hardness, H, plotted as a function of indentation load, P; b) 

summary of nanohardness plotted at two different loads (2mN and 2N) for (100), (110), and (111) Mo 

single crystals.  
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A size effect in indentation hardness as seen in Figure 2.3(a) could be caused by strong 

plastic strain gradients occurring below the indenter in the micro- or nano-meter scale indentations, 

which can occur when intense plastic deformation is forced to occur over a very small volume of 

an initially defect-free crystalline material (Haghshenas et al., 2017).  

 

  

  

Figure 2.4(a)-(d): Schmid factor variation with in-plane rotation angle, θ when a load is transmitted 

to the material along N1 loading direction (refer Figure A-1) for {110}<111> and {112}<111> slip 

systems having higher Schmid factor when the indentation is performed on (100) oriented crystal. 
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Figure 2.5(a)-(b): Schmid factor variation with in-plane rotation angle, θ when a load is transmitted 

to the material along N1 loading direction (refer Figure -1A) for {110}<111> and {112}<111> slip 

systems having higher Schmid factor when the indentation is performed on (110) oriented crystal. 

 

Figure 2.6(a)-(b): Schmid factor variation with in-plane rotation angle, θ when a load is transmitted 

to the material along N1 loading direction ((refer Figure A-1) for {110}<111> and {112}<111> slip 

systems having higher Schmid factor when the indentation is performed on (111) oriented crystal. 
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2.3.2  Microindentation study 

2.3.2.1 Effect of indentation load on microhardness 

Figure 2.3(a) shows the variation of microhardness (Hm) with indentation load (P). Interestingly, 

the same trend of decrease in hardness with increasing indentation load is observed below 1000 

mN. In the case of microindentation also, the highest hardness is observed on (110) surface. As 

the applied indentation load during microindentation increases, the difference in hardness between 

the three samples decreases and saturation in hardness is observed. 

In addition, from Figure 2.3(a) it was also observed that the Hm is lower than the 

nanohardness (Hn) which is attributed the larger strain gradients during nanoindentation in contrast 

to the microindentation. The large plastic strain gradient (at low penetrations depth) leads to an 

increase in geometrically necessary dislocations (GNDs) and following Nix-Gao model, it infers 

why the Hn is higher than the Hm. With increase in indentation depth (vis-à-vis load) the strain 

gradient decreases and plastic deformation is accommodated by the statistically stored 

dislocations.  

 

 

Table 2.1: The number of slip systems having maximum Schmid factor  directly beneath the indenter 

for the three given orientations. 

Indentation 

Surface  

Maximum possible Schmid factor, 

number of {110} slip systems  

directly beneath the indenter 

Maximum possible Schmid factor, 

number of {112} slip systems 

directly beneath the indenter 

(100) 0.41, 8 0.47, 4 

(110)  0.41, 4 0.47, 2 

(111) 0.27, 6 0.31, 3 
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2.3.3 Atomic force microscopy (AFM) images of nano- and micro-indentation 

Figure 2.7(a)–(c) show AFM images of the surface topography of Mo single crystals after 

nanoindentation upto a load of 8mN. A triangular residual impression of the Berkovich indenter 

can be seen on the indented surface. Pile-up around the indent impression was observed on (100), 

and (110) oriented crystals but for (111) oriented crystal no significant pile-up was observed. The 

impression size for (100) orientation is larger, (110) orientation is smaller while for (111) 

orientation is in intermediate. Therefore, the hardness anisotropy can also be correlated with 

impression size. 

Figure 2.7(d)-(f) show AFM surface topography images of residual Vickers indent impression 

on the (100), (110), and (111) oriented Mo crystals after the completion of microindentation upto 

a load of 1000mN. AFM scan images of the indents clearly revealed that the three materials 

exhibited different plastic deformation phenomena. The patterns of the pile-ups and their 

maximum height are seemed to depend significantly on the relationship of orientation between the 

specimens and the indenter. Pile-ups patterns on the surfaces of (100), (110), and (111) oriented 

Mo single crystals have four-, two-, and three-fold symmetry, respectively. Stelmashenko et al. 

(1993) observed that in the case of Mo single crystals, the position of Vickers impression pile-ups 

correlates with the orientation of {110}<111> dislocation slip systems. The pile-up morphology 

can be attributed to the number of slip systems activated during indentation on a particular surface. 

A pile-up pattern would result if slip occurs in one of these directions without any kinematic 

constraint. For (100) and (110) orientations, deformation spread preferentially in <111> out of 

plane directions. For indentation on (100) plane, slip can occur along the family of <111> slip 

directions, which lie along <110> directions when projected onto the (100) surface (refer Figure 

2.8). Slip in <111> directions combined with the crystallographic symmetry of the (100) plane can 

cause the four-fold symmetry of <110> pile-ups to form. It is interesting to note that in the case of 

the (110) orientation, where both in-plane and out-of-plane slip directions are available, the pileup 

is predominantly found along the out-of-plane <111> slip directions resulting in two fold 

symmetry (see Figure 2.9). Similarly, Biner et al. (2007) and Yao et al. (2014) also noticed the 

crystal symmetry in pile-up patterns by conducting nano- and micro-indentation experiments using 

the spherical indenter on (100), (110), and (111) oriented surfaces of tantalum and tungsten single 
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crystals. Experimentally, it is not easy to specify the explanation of the relation between the slip 

system and the pile-up shape. 

Nanoindentation (Berkovich indenter) Microindentation (Vickers indenter) 

 
 

  

 
 

 

Figure 2.7: AFM surface displacement morphology for (100), (110), and (111) Mo single crystals at 

8mN load for Berkovich indenter (left side a-c) and at 1000mN load for Vickers indenter (right side d-f).  



39 
 

 

 

 

Figure 2.8: Schematic depicting the arrangement of atoms in (a) unit cell along with {110} plane 

intersecting (100) plane  (b) surface layer for crystal orientation (100). 

 

Figure 2.9: Schematic depicting the arrangement of atoms (a) in unit cell along with (110) slip plane 

and slip directions lying within and out of the (110) slip plane  (b) surface layer for crystal orientation 

(110). 
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2.3.4 Analysis of indentation size effect 

The classical continuum plasticity models do not incorporate any intrinsic microstructural length 

scale hence they cannot predict and characterize the scale-dependent phenomena observed in nano- 

or micro-indentation experiments on crystalline materials. The strain gradient plasticity (SGP) 

theory which incorporates the materials length scale can explain the length scale dependent 

phenomenon in materials. Nix and Gao (1998) extended the concepts of SGP to explain the ISE in 

hardness. SGP theory assumed that deformation zone underneath the indenter comprises of both 

SSDs and GNDs and their relative contribution (densities) governs the materials hardness. The 

density of SSDs, 𝜌𝑆 arises due to the homogenous strain while the GNDs 𝜌𝐺  stems from the plastic 

strain gradients. According to the Nix and Gao model, the mathematical relationship between the 

indentation hardness, H and the residual indentation depth, h can be defined as:  

𝐻2

𝐻0
2 = 1 +  

ℎ∗

ℎ
 . (2.6) 

Here 𝐻0 is the macro-hardness or size-independent hardness and ℎ∗ is the characteristic length 

scale which is not a constant for a given material and indenter geometry. The characteristic length 

ℎ∗ depends on dislocation density, 𝜌𝑆 through 𝐻0.  

Equation (2.6) implies that the plot of 𝐻2 versus 1/h yields a linear fit with  𝐻0 and ℎ∗ as 

the fitting constants. From the estimated numerical values of 𝐻0 and ℎ∗, the micro and nano 

characteristic length-scale can be approximated using two different approaches. The characteristic 

length-scale based on the microindentation test is given by (Chicot, 2009) 

ℎ𝑚𝑖𝑐𝑟𝑜
∗  = 

81

2
b𝛼2 𝑡𝑎𝑛2 𝜃′  (

µ

𝐻0(𝑚𝑖𝑐𝑟𝑜) 
)

2

 .                                            (2.7) 

Durst et al. (2005) proposed a corrected model which takes into account the effect of GNDs by 

considering plastically deformed volume instead of volume given by contact radius beneath the 

indenter. The radius of the assumed hemispherical plastic zone was given as 𝑎𝑝𝑧 = f. 𝑎𝑐𝑟 (as shown 

in Figure 2.10(a)-( b)) where 𝑎𝑐𝑟 is the contact radius, f is a correction factor ranging from 0 to 

3.5, estimated from finite element simulations which, attempts to provide a more precise 

approximation of the hemispherical volume containing the GNDs into equation (2.7) as follows: 
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ℎ𝑛𝑎𝑛𝑜
∗  = 

81

2

1

𝑓3b𝛼2 𝑡𝑎𝑛2 𝜃′  (
µ

𝐻0(𝑛𝑎𝑛𝑜) 
)

2

. (2.8) 

Here b is the Burgers vector, α is a constant, µ is the shear modulus of elasticity and 𝜃′ (tan 

𝜃′= 0.358 (Swadener et al., 2002)) is the angle between the surface of the indenter and the plane 

of the surface. In the present work f = 1.9 by following the work of Durst et al., (2005), b = 0.278nm 

(Wang et al., 2011), α = 0.5 (Nix and Gao, 1993), and µ = 126 GPa (Simmons and Wang, 1971). 

The equation (2.8) leads to equation (2.7) for f = 1 in as proposed by Nix and Gao (1993). 

According to the Taylor relation equivalent flow stress, σ is related to the total dislocation density, 

𝜌𝑇  through equation (2.9): 

σ = √3αµb√𝜌𝑇 . 
(2.9) 

Following Tabor relation, hardness, H and equivalent flow stress, σ are related as H = 3σ. In 

addition, the total dislocation density, 𝜌𝑇 is believed to be the arithmetic sum of the density of 

GNDs and SSDs. i.e., 𝜌𝑇 = 𝜌𝐺  + 𝜌𝑆. Then we may write: 

H = 3σ = 3√3αµb√𝜌𝐺 + 𝜌𝑆 
(2.10) 

To relate load-dependent hardness to the strain gradient, Nix and Gao (1993) also determined 

material intrinsic length scale, 𝑙 from the SGP theory. Using Tabor’s relationship (Tabor, 1951) 

again, equation (2.6) can be rewritten in terms of strain gradient for microindentation: 

(
𝜎

𝜎0(𝑚𝑖𝑐𝑟𝑜)
)

2

= 1 + 𝑏 (
µ

𝜎0(𝑚𝑖𝑐𝑟𝑜)
)

2

𝜒 = 1 + 𝑙micro𝜒 .      (2.11) 

To get the material intrinsic length for nanoindentation by considering the correction factor, f  

given by Durst et al.(2005), equation (2.6) rewritten in terms of strain gradient for nanoindentation 

as follow: 

(
𝜎

𝜎0(𝑛𝑎𝑛𝑜)
)

2

= 1 +
𝑏

𝑓3
(

µ

𝜎0(𝑛𝑎𝑛𝑜)
)

2

𝜒 = 1 + 𝑙nano𝜒                             (2.12) 

In this equation 𝜎0 is the equivalent flow stress in the absence of a strain gradient χ, and μ is the 

shear modulus. Equation (2.11) and (2.12) clearly shows the physical meaning of this material 

intrinsic length scale, 𝑙, i.e., it provides a measure of the contribution of strain gradient to the flow 

stress. 
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To cross-validate, the material intrinsic length scale calculated from equation (2.11), 

another approach proposed in the literature (Nix and Gao, 1998) is based on calculating the yield 

stress, 𝜎0 from: 

𝜎0 = √3αµb√𝜌𝑠 .                                                                
(2.13) 

Here density of SSDs, 𝜌𝑠  can be approximately as given as 

𝜌𝑠 ≈ 
1

𝐿𝑠
2  .                                                                         

(2.14) 

In equation (2.14) 𝐿𝑠 is the average spacing between SSDs. Then intrinsic material length scale 

for microindentation is given as by (Nix and Gao, 1998)  

𝑙micro = 
4

3

𝐿𝑠
2

𝑏
 .                                                                                                                                            (2.15) 

Similarly for nanoindentation by taking into account the correction factor, f equation (2.15) can 

be rewritten as follow: 

𝑙nano = 
4

3

1

𝑓3

𝐿𝑠
2

𝑏
                                                                   (2.16) 

To confirm the material intrinsic length scale obtained from equations (2.11) and (2.12) we can 

use equations (2.15) and (2.16). Equations (2.11) and (2.12) were used to estimate the micro-and 

nano intrinsic material length-scale based on experimental data provided by the nano-and 

microindentation experiments. 

In Figure 2.11 the 𝐻2 is plotted against 1/h from the experimentally obtained data at each 

indentation load. It can be noticed that the Nix-Gao model cannot fit both the nano and 

microindentation data simultaneously. Therefore, it can be observed that the slopes of linear 

function are different in the micro- and nano-indentation regime. The observed bilinear behaviour 

may be due to a difference in the underlying dislocation mechanisms that gives rise to the ISE in 

the two different regimes. The values of 𝐻0 and ℎ∗ for the nano- and micro-scale indentation 

regimes are presented in Table 2.2. The parameter ℎ∗ is not a constant for a given material it varies 

in nano and micron scale. The analytically predicted values of ℎ∗ from equations (2.7) and (2.8) 

agree well with the experimentally observed values. The material intrinsic length scales obtained 

from equations (2.11) and (2.12) for the Mo single crystals are presented in Table 2.3. The 

difference in length scales observed for nano- and micro-indentation can be attributed to the 
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uniformity in dislocation spacing underneath the indenter (Chicot, 2009). In case of 

nanoindentation where the indent size is small and corresponding to the onset of plastic 

deformation, dislocations are formed in a non-uniform deformation zone formed around the 

indenter, resulting in non-uniformity in dislocation spacing. However, as the indentation load 

increases the deformation zone around the indent also increases, and so does the uniformity 

between the dislocations spacing, resulting in homogeneous arrangement of dislocation around the 

indent. This results in a difference in dislocation spacing at nano and micron scales, which aids in 

understanding the difference between length scales resulting from the analysis of nano- and micro-

indentation hardness data. 

 

 

Table 2.2: Comparison of experimentally measured and analytically predicted [Eqs. (2.7) and (2.8)] 

values of the characteristic length, ℎ∗ in nano and micro-indentation. 

Orientation H0 (GPa) 

nano 

ℎ∗ (µm) 

nano 

H0 (GPa) 

micro 

ℎ∗ (µm) 

micro 

h (predicted 

µm) nano 

h (predicted 

µm) micro 

(100)  2.96 0.075 1.88 1.14 0.094 1.59 

(110) 3.21 0.087 1.91 1.44 0.081 1.56 

(111)  3.08 0.082 1.77 1.41 0.088 1.83 

 

Table 2.3: Calculated material intrinsic length scale for (100), (110), and (111) Mo single crystals. 

Orientation Nano material intrinsic length 

scale 𝑙nano (µm) 

Micro material intrinsic 

length scale 𝑙micro (µm) 

(100)  0.65 11.24 

(110)  0.55 10.89 

(111)  0.6 12.45 
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Figure 2.10: (a) Schematic showing the geometrically necessary dislocations formation under the 

indenter in hemispherical volume; (b) traces due to dislocation slip.  

 

 
 

Figure 2.11: Square of nano- and micro-hardness, H2 plotted as a function of inverse penetration 

depth, 1/h for Mo single crystals. 
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2.4 Summary  

In summary, nano- and micro-indentation experiments are performed on (100), (110), (111) 

oriented Mo single crystals using Vickers and Berkovich indenter, respectively. The effect of load 

on the nano- as well as micro-hardness is investigated. In addition, the pile-up patterns on the 

indented surfaces are analyzed by atomic force microscopy (AFM). The active slip systems below 

the nano-indenter are also investigated by using the model proposed by Raineesh et al. (2021). 

Finally, the indentation size effect (ISE) was modelled using strain gradient plasticity theory 

developed by Nix and Gao.    
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Chapter 3  

Crystal plasticity constitutive model and numerical 

implementation 

 

3.1 Introduction 

In chapter 2, it has been shown that that the indentation response as well as the indentation size 

effect in Molybdenum single Crystals is orientation dependent. However, the mechanistic reasons 

for this dependence are not well understood. The finite element simulations employing crystal 

plasticity based constitutive theory would help understanding the indentation response of Mo 

crystals better. Therefore, in this chapter, the crystal plasticity based constitutive theory for Body 

Centered Cubic (BCC) single crystals proposed by Daphalpurkar et al. (2018) is briefly discussed. 

In addition, the finite element procedure to implement this model in commercially available 

software package Abaqus (Dassault Systèmes, 2017) by writing user element (UEL) subroutine is 

discussed in detail. This model is chosen because it has been shown to capture rate-, temperature- 

and orientation-dependent deformation behavior of Mo single crystal.   

The outline of this chapter is as follows: the brief discussion on the constitutive model is 

presented in Section 3.2. The numerical implementation of the model and finite element 

formulation is discussed in Section 3.3 and 3.4, respectively. In Section 3.5, The material 

parameters for Mo single crystals are determined by calibrating the model against experimental 

data from the literature. Finally, the summary of the chapter is presented in Section 3.6.   

 

3.2 Crystal plasticity theory 

3.2.1 Kinematics  

The general framework for crystal plasticity proposed by Asaro and Needleman (1985) is 

employed in the model of Daphalpurkar et al. (2018) too. Thus, in the model of Daphalpurkar et 

al. (2018), the lattice of crystalline material is assumed to first undergoes plastic shearing due to 

dislocation gliding followed by elastic distortion due to stretching and rotation as displayed in 
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Figure 3.1. In this figure, the reference configuration represents the crystal lattice in its undeformed 

state, while the current configuration refers to the crystal lattice in its deformed state. However, 

the intermediate configuration is obtained by relaxing the elastic stretching and rotation of lattice 

in the current configuration. Therefore, the deformation gradient tensor, F, is decomposed 

multiplicatively into elastic and plastic components 𝑭𝒆 and  𝑭𝒑, respectively, as given by: 

𝑭 =
∂𝐱

∂𝐗
=  𝑭𝒆𝑭𝒑. (3.1) 

Here, 𝐗 and 𝐱 represent the position vector of a material particle in reference and current 

configurations, respectively, with respect to a fixed Cartesian frame with base vectors 𝒆𝟏, 𝒆𝟐 and 

𝒆𝟑. A slip system in a lattice is represented by the unit vectors along the slip direction and slip-

plane normal. For instance, 𝛼𝑡ℎ slip system of a lattice in the reference configuration is specified 

by the unit vectors 𝒔𝜶 and  𝒎𝜶, along the slip direction and slip plane normal, respectively. Since 

the lattice does not rotate through deformation 𝑭𝒑, the vectors 𝒔𝜶 and 𝒎𝜶 for intermediate 

configuration are identical to that for reference configuration, while they rotate to 𝒔𝒆(𝜶) and 𝒎𝒆(𝜶) 

in the current configuration through following relations: 

𝒔𝒆(𝜶) = 𝑭𝒆𝒔𝜶, 

           𝒎𝒆(𝜶) = 𝑭𝒆−𝑻𝒎𝜶. 
(3.2) 

 

 

Note that the lattice vectors are orthogonal, and hence satisfy the following relation:   

𝒎𝒆(𝜶). 𝒔𝒆(𝜶) = 𝒎(𝜶). 𝒔(𝜶) = 0. 
(3.3) 

 

 

 

 

 

 



49 
 

 

The spatial velocity gradient, 𝒍 is given by: 

𝒍 =
∂𝐯

∂𝐱
=  

∂𝐯

∂𝐗

∂𝐗

∂𝐱
= 𝑭̇. 𝑭−𝟏

= 𝑭̇𝒆. 𝑭𝒆−𝟏 + 𝑭𝒆. 𝑭̇𝒑. 𝑭 𝒑−𝟏. 𝑭𝒆−𝟏
= 𝒍𝒆 + 𝑭𝒆𝑳𝑷𝑭𝒆−𝟏

= 𝒍𝒆 + 𝒍𝒑. 

(3.4) 

Here, 𝐯 is the material point velocity in the current configuration, while  𝒍𝒆 and 𝒍𝒑 are the elastic 

and plastic components of the spatial velocity gradient, respectively. Further, the evolution 

equations for 𝑭𝒑 (i.e., flow rule) is written in terms of the plastic slip rate, 𝛾̇𝛼 as: 

 

𝑳𝒑 = 𝑭̇𝒑𝑭𝒑−𝟏 =  ∑ 𝛾̇𝛼(𝒔𝜶 ⊗ 𝒎𝜶) 

𝒏

𝜶=𝟏

 
(3.5) 

 

 

Figure 3.1: Schematic showing the reference, intermediate and current configuration, as well as the 

decomposition of deformation gradient 𝑭 into elastic and plastic components 𝑭𝒆 and  𝑭𝒑. 
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where 𝑛 is total number slip systems in the crystal. It can be seen from Eq. (3.4) and (3.5) that: 

𝑡𝑟𝑎𝑐𝑒(𝒍𝒑)        = 𝑡𝑟𝑎𝑐𝑒(𝑭𝒆𝑳𝑷𝑭𝒆−𝟏
)

=  ∑ 𝛾̇𝛼𝑡𝑟𝑎𝑐𝑒(𝑭𝒆. (𝒔(𝜶) ⊗ 𝒎(𝜶)). 𝑭 𝒆−𝟏) =  ∑ 𝛾̇𝛼(𝒔𝒆(𝜶). 𝒎𝒆(𝜶)) = 0

𝒏

𝜶=𝟏

 

𝑛

𝛼=1

 
(3.6) 

This implies that the plastic part of the deformation preserves volume. Further, 𝒍 can also be written 

as additive decomposition of stretching rate tensor, 𝑫 and spin tensor, 𝛀: 

𝒍 = 𝑫 + 𝛀 =
𝟏

𝟐
(𝒍 + 𝒍𝑻) +

𝟏

𝟐
(𝒍 − 𝒍𝑻) (3.7) 

The tensors 𝑫 and 𝛀 can also be expressed as:  

𝑫 = 𝑫𝒆 + 𝑫𝒑 

𝛀 = 𝛀𝒆 + 𝛀𝒑 
(3.8) 

Here, 𝑫𝒆 and 𝑫𝒑 are elastic and plastic parts of stretching tensor, while 𝛀𝒆 and 𝛀𝒑 are the elastic 

and plastic parts of spin tensor. 𝒍𝒑 in Eq. (3.4) can be written as follows: 

𝒍𝒑  =  𝑫𝒑 + 𝛀𝐩 =  𝑭𝐞. 𝑭̇𝒑. 𝑭 𝒑−𝟏 . 𝑭 𝐞−𝟏 = ∑ 𝛾̇𝛼(𝒔𝐞(𝜶) ⊗ 𝒎𝐞(𝜶))

𝑛

𝛼=1

, (3.9) 

where, 

𝑫𝒑 =
𝟏

𝟐
(𝒍𝒑 + 𝒍𝒑𝑻

) = ∑ 𝛾̇𝛼
1

2
(𝒔𝐞(𝜶) ⊗ 𝒎𝐞(𝜶) + 𝒎𝐞(𝜶) ⊗ 𝒔𝐞(𝜶)) =  ∑ 𝛾̇𝛼𝝁𝜶 

𝑛

𝛼=1

𝑛

𝛼=1

, 

𝛀𝒑 =
𝟏

𝟐
(𝒍𝒑 − 𝒍𝒑𝑻

) = ∑ 𝛾̇𝛼
1

2
(𝒔𝐞(𝜶) ⊗ 𝒎𝐞(𝜶) − 𝒎𝐞(𝜶) ⊗ 𝒔𝐞(𝜶)) =  ∑ 𝛾̇𝛼𝝎𝜶.

𝑛

𝛼=1

𝑛

𝛼=1

 

(3.10) 

In Eq. (3.10) the tensors 𝝁𝜶 and 𝝎𝜶 are given by:  

𝝁𝜶 =
1

2
(𝒔𝐞(𝜶) ⊗ 𝒎𝐞(𝜶) + 𝒎𝐞(𝜶) ⊗ 𝒔𝐞(𝜶)), 

𝝎𝜶 =
1

2
(𝒔𝐞(𝜶) ⊗ 𝒎𝐞(𝜶) − 𝒎𝐞(𝜶) ⊗ 𝒔𝐞(𝜶)), 

(3.11) 
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3.2.2 Constitutive law 

The following form of constitutive relation is considered assuming the elastic properties being 

independent of plastic slip in the lattice (Daphalpurkar et al., 2018): 

 𝝉𝜵𝒆 = 𝑳: 𝑫𝒆. (3.12) 

Here, L is elastic moduli and 𝝉𝜵𝒆 is the Jaumann rate of Kirchhoff stress determined using lattice 

spin.  𝝉𝜵𝒆 is given as: 

𝝉𝜵𝒆 = 𝝉̇ − 𝛀𝒆𝝉 + 𝝉𝛀𝒆. 
(3.13) 

In the above equation, 𝝉 and 𝝉̇ are Kirchhoff stress and its material time derivative, respectively. 

Note that  𝝉𝜵𝒆 is a corotational rate of Kirchoff stress on axes that rotates with the crystal lattice 

from intermediate to current configuration. It is assumed that the elasticity of crystal is unaffected 

by slip, therefore 𝝉𝜵𝒆 can be related to the elastic rate of stretching through the tensor of elastic 

moduli 𝑳. The Jaumann rate of Kirchhoff stress, 𝝉𝜵 based on the material spin 𝛀 is given as 

follows:  

𝝉𝜵 = 𝝉̇ − 𝛀𝝉 + 𝝉𝛀 (3.14) 

Note that 𝝉𝜵 is the corotational stress rate of Kirchoff stress on axes that rotates with the material 

from reference to current configuration. Eq. (3.13)-Eq. (3.14) results in: 

𝝉𝜵𝒆 − 𝝉𝜵 = ∑ 𝛾̇𝛼

𝑛

𝛼=1

𝜷𝜶 (3.15) 

where 𝜷𝜶 is defined by: 

𝜷𝜶 = 𝝎𝜶𝝉 − 𝝉𝝎𝜶 (3.16) 

In the absence of relative motion between material and lattice, the right-hand side of above 

equation would vanish. From Eqs. (3.10a), (3.12) and (3.15), the constitutive law can be written 

as: 

𝝉𝜵 = 𝑳: 𝑫 − ∑ 𝛾̇𝛼

𝑛

𝛼=1

(𝑳: 𝝁𝜶  +  𝜷𝜶) ≜  𝑳: 𝑫 − ∑ 𝛾̇𝛼

𝑛

𝛼=1

𝑹𝜶, (3.17) 
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where, 

𝑹𝜶 = 𝑳: 𝝁𝜶  +  𝜷𝜶 
(3.18) 

  

3.2.3 Plastic slip rate: 

The resolved shear stress or Schmid stress, 𝜏𝛼 is given by:  

𝜏 𝛼 = 𝝉: (𝒔𝒆(𝜶) ⊗ 𝒎𝒆(𝜶)) = 𝝉: 𝝁𝜶 . (3.19) 

The plastic slip in 𝛼𝑡ℎ slip system is assumed to evolve as: 

𝛾̇𝛼 = {
0                             𝑖𝑓 𝜏𝛼

𝑒𝑓𝑓 ≤ 0

𝛾 ̇0
𝑒𝑥𝑝 (−

𝛥𝐺𝑘

𝜅𝑇
)   𝑖𝑓 𝜏𝛼

𝑒𝑓𝑓 > 0
 . (3.20) 

Here, 𝛾 ̇0
 is the reference shear strain rate, κ denote Boltzmann’s constant, and 𝑇 is the temperature. 

Further, 𝛥𝐺𝑘 is the activation energy and it is given by (Kocks et al., 1975): 

𝛥𝐺𝑘 =  𝛥𝐺𝑘0
[1 − (

𝜏𝛼
𝑒𝑓𝑓

𝜏0
)

𝑝

]

𝑞

, (3.21) 

where, 𝛥𝐺𝑘0
 denotes the total activation enthalpy required to overcome the obstacles to slip in the 

absence of applied stresses, while 𝜏0 represents the resolved yield strength at 0 K. Further, the 

parameters 0 < 𝑝 < 1 and 1 < 𝑞 < 2 are fitting constants. Moreover, 𝜏𝑒𝑓𝑓
𝛼  is the “effective 

resolved shear stress” which is defined as: 

𝜏𝛼
𝑒𝑓𝑓 = |𝜏𝑒(𝛼)| − 𝑔𝛼 . (3.22) 

Here, 𝜏𝑒(𝛼)
 is a “generalized resolved shear stress” and 𝑔𝛼 is the athermal component of slip 

resistance. Note that the motion of dislocation in a particular slip system of a BCC crystal is also 

influenced by stresses other than the one resolved on that slip plane along the slip direction. In 

BCC crystals, this behavior is referred to as the non-Schmid behavior. To account the effect of 

non-Schmid stresses, the following yield criterion proposed by Bassani et al. (2001); Vitek et al. 

(2004) as well as Gröger et al. (2008) for BCC metals is incorporated in this study. This criterion 

is given by Eq. 1.4. 



53 
 

The non-Schmid stresses, 𝜏1−5
𝛼 are defined as follows: 

𝜏1
𝛼 = 𝝉: (𝒔𝐞(𝜶) ⊗ 𝒏𝟏

𝐞(𝜶)) = 𝝉: 𝝁𝟏
𝜶, 

𝜏2
𝛼 = 𝝉: (𝒔𝐞(𝜶) ⊗ 𝒏𝟐

𝐞(𝜶)) = 𝝉: 𝝁𝟐
𝜶, 

𝜏3
𝛼 = 𝝉: ((𝒔𝐞(𝜶) × 𝒎𝐞(𝜶)) ⊗ 𝒎𝐞(𝜶)) = 𝝉: 𝝁𝟑

𝜶, 

𝜏4
𝛼 = 𝝉: ((𝒏𝟏

𝐞(𝜶) × 𝒔𝐞(𝜶)) ⊗ 𝒏𝟏
𝐞(𝜶)) = 𝝉: 𝝁𝟒

𝜶, 

𝜏5
𝛼 = 𝝉: (𝒏𝟐

𝐞(𝜶) × 𝒔𝐞(𝜶)) ⊗ 𝒏𝟐
𝐞(𝜶)) = 𝝉: 𝝁𝟓

𝜶 

(3.23) 

Here, 𝒏𝟏
𝒆(𝜶)

 and 𝒏𝟐
𝒆(𝜶)

 are normal vectors to the non-glide planes for 𝛼𝑡ℎ slip system in the current 

configuration, which are defined as  𝒏𝟏
𝐞(𝜶) = 𝑭𝒆−𝑻

𝒏𝟏
(𝜶) and 𝒏𝟐

𝐞(𝜶) =  𝑭𝒆−𝑻
𝒏𝟐

(𝜶) , respectively. 

The vectors, 𝒏𝟏
(𝜶) and 𝒏𝟐

(𝜶) in the reference configuration for systems involving slips on {110} 

planes are listed in Table 1.1. Further, tensors 𝝁𝟏−𝟓
𝜶  in Eq. (3.23) are given by: 

𝝁𝟏
𝜶 =

𝟏

𝟐
[(𝒔𝐞(𝜶) ⊗ 𝒏𝟏

𝐞(𝜶)) + (𝒔𝐞(𝜶) ⊗ 𝒏𝟏
𝐞(𝜶))

𝑻
], 

𝝁𝟐
𝜶 =

𝟏

𝟐
[(𝒔𝐞(𝜶) ⊗ 𝒏𝟐

𝐞(𝜶)) +  (𝒔𝐞(𝜶) ⊗ 𝒏𝟐
𝐞(𝜶))

𝑻
], 

𝝁𝟑
𝜶 =

𝟏

𝟐
[((𝒔𝐞(𝜶) × 𝒎𝐞(𝜶)) ⊗ 𝒎𝐞(𝜶)) + ((𝒔𝐞(𝜶) × 𝒎𝐞(𝜶)) ⊗ 𝒎𝐞(𝜶))

𝑻
], 

𝝁𝟒
𝜶 =

𝟏

𝟐
[((𝒏𝟏

𝐞(𝜶) × 𝒔𝐞(𝜶)) ⊗ 𝒏𝟏
𝐞(𝜶)) + ((𝒏𝟏

𝐞(𝜶) × 𝒔𝐞(𝜶)) ⊗ 𝒏𝟏
𝐞(𝜶))

𝑻

], 

𝝁𝟓
𝜶 =

𝟏

𝟐
[(𝒏𝟐

𝐞(𝜶) × 𝒔𝐞(𝜶)) ⊗ 𝒏𝟐
𝐞(𝜶)) + (𝒏𝟐

𝐞(𝜶) × 𝒔𝐞(𝜶)) ⊗ 𝒏𝟐
𝐞(𝜶))

𝑻
] 

 

(3.24) 

It should be noted that non-glide shear stresses, 𝜏1
𝛼 and 𝜏2

𝛼 are parallel to the Burgers vector, 

while 𝜏3
𝛼, 𝜏4

𝛼 and 𝜏5
𝛼 are normal to the Burgers vector (refer Sec. 1.4.3 and Figure 1.12). The 

non-glide shear stresses (𝜏𝛼
1−5 ) that affect the slip on {112} < 111 > slip systems pertain to 

those non-glide shear stresses which affect the slip on their conjugate pair of {110}<111> slip 

systems. Consider the case where slip on (11̅2̅)[11̅1] (α = 22 in Table 1.2 in chapter 1) 

corresponds to equal slip on systems (101̅)[ 11̅1] and (011)[ 11̅1] (α = 10 and 11 in Table 1.1 in 

chapter 1), and therefore, the set of non-glide shear stresses for this slip system could be derived 

as 𝜏22
1−5  = (𝜏10

1−5
− 𝜏11

1−5)/√3 .  
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3.2.4 Slip resistance and hardening model 

The strain hardening in a crystal is governed by the evolution of slip resistance 𝑔𝛼. Following 

Peirce et al. (1983), 𝑔𝛼 is assumed to evolve as: 

𝑔̇𝛼 =  ∑ ℎ𝛼𝛽|𝛾̇𝛽|,

𝑛

𝛽=1

 (3.25) 

where, 𝛾̇𝛽 is the plastic slip rate on the 𝛽𝑡ℎ slip system. Further in the above equation, ℎ𝛼𝛽  is latent 

hardening moduli which represent the rate of strain hardening on 𝛼𝑡ℎ slip system due to the action 

on the 𝛽𝑡ℎ slip system. The ℎ𝛼𝛽 is given by (Bassani and Wu, 1991): 

 ℎ𝛼𝛽 = ℎ𝛼𝑞𝛼𝛽 , (3.26) 

where, the parameter ℎ𝛼 represents the self-hardening rate of 𝛼𝑡ℎ slip system, while 𝑞𝛼𝛽 is an 

amplification factors in the hardening. Following Bassani and Wu (1991), ℎ𝛼 is determined as:  

 

ℎ𝛼 = ℎ𝑠
𝛼 + (ℎ0

𝛼 − ℎ𝑠
𝛼) sech2 (

ℎ0
𝛼 − ℎ𝑠

𝛼

𝑔𝑠
𝛼 − 𝑔0

𝛼
𝛾𝛼). (3.27) 

Total plastic slip is the summation of the plastic slip in all the slip systems is given by 𝛾𝑡 as follows: 

𝛾𝑡 = ∑ 𝛾𝛼
𝛼 .  

(3.28) 

In Eq. (3.27), ℎ0
𝛼 and ℎ𝑠

𝛼 represent initial and saturation hardening rate for 𝛼𝑡ℎ slip system, 

respectively. Further, 𝑔0
𝛼 is the initial slip resistance value (or initial critical resolved shear stress) 

and is kept constant throughout the deformation, while and 𝑔𝑠
𝛼 is the saturation slip resistance. The 

values of amplitude factors 𝑞𝛼𝛽 in Eq. (3.26) depend on the nature of dislocation junction formed 

between 𝛼𝑡ℎ and 𝛽𝑡ℎ slip systems governing the latent hardening behavior of crystal. Lee et al. 

(1999) discussed the various possible dislocation junctions for the 24 slip systems in a BCC crystal 

and provided the corresponding values of 𝑞𝛼𝛽 in the form of a matrix which is reproduced in Table 

3.1. The letters N, C, G, S and W in this table represent no junction, coplanar junction, glissile, 

strong sessile and weak sessile junctions, respectively, while the diagonal represents self-

hardening. Further, the numerical values of these letters are listed in Table 3.2. 
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3.3  Implementation of constitutive model 

3.3.1  Rate tangent formulation 

In this work, the rate tangent modulus method proposed by Peirce et al. (1983) is employed to 

implement the constitutive model discussed in Sec. 3.2 in a commercially available software 

package Abaqus (Dassault Systèmes, 2017). In this scheme, first an estimation of the change in 

shear strain during the current time increment is made, and then the elastic-plastic forward gradient 

modulus relating the increments of stress to that strain is derived. The increment in plastic slip on 

𝛼𝑡ℎ slip system is defined as: 

Table 3.1: The amplitude factor (latent hardening) matrix 𝑞𝛼𝛽 reproduced from Lee et al. (1999). 

 

 

Table 3.2: The values of letters appearing in Table 3.1 taken from the work of Lee et al. (1999). 

N C G S W 

1.0 1.0 1.0 1.4 1.4 
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Δ𝛾𝛼 = 𝛾𝛼(𝑡 + Δ𝑡) − 𝛾𝛼(𝑡). (3.29) 

By employing linear interpolation within the time increment ∆𝑡, the above equation can be written 

as: 

Δ𝛾𝛼  = [(1 − 𝜃)𝛾̇𝛼(𝑡) + 𝜃𝛾̇𝛼(𝑡 + Δ𝑡)]Δt, (3.30) 

where parameter 𝜃 lies in the range of  0 to 1. Note that 𝜃 =  0 indicates a simple forward-Euler 

time integration method, while 𝜃 =  1 indicates backward-Euler integration method. In the current 

work, 𝜃 = 0.5 is considered. It can be observed from Eq. (3.20) and (3.21) that the rate of plastic 

slip is a function of 𝜏𝑒𝑓𝑓
𝛼  and 𝑇. Therefore, by applying Taylor series expansion (only first order 

term), 𝛾̇𝛼 (𝑡 +  𝛥𝑡) in Eq. (3.30) can be approximated as:  

𝛾̇𝛼(𝑡 + Δ𝑡) = 𝛾̇𝛼(𝑡) +
𝜕𝛾̇𝛼

𝜕𝜏𝛼
𝑒𝑓𝑓

|
𝑡

Δ𝜏𝛼
𝑒𝑓𝑓 +

𝜕𝛾̇𝛼

𝜕𝑇
|

𝑡
Δ𝑇. (3.31) 

The partial differentiation Eq. (3.20) with respect to 𝜏𝑒𝑓𝑓
𝛼  and 𝑇 and invoking of Eq. (3.21) results 

in: 

𝜕𝛾̇𝛼

𝜕𝜏𝛼
𝑒𝑓𝑓

|
𝑡

=  𝒜𝛼 (
𝛾̇𝛼(𝑡)

𝜏0
) (3.32) 

where, 

𝒜𝛼 = (
ΔGk0

𝜅𝑇
) (𝑝𝑞) [1 − (

𝜏𝛼
𝑒𝑓𝑓

𝜏0
)

𝑝

]

𝑞−1

(
𝜏𝛼

𝑒𝑓𝑓

𝜏0
)

𝑝−1

, (3.33) 

and, 

𝜕𝛾̇𝛼

𝜕𝑇
|

𝑡
= (

ΔGk0

𝜅𝑇
) (

𝛾̇𝛼(𝑡)

𝑇
) (3.34) 

Further, Δ𝜏𝛼
𝑒𝑓𝑓 can be determined from Eq. (3.22) and (1.4) as: 

Δ𝜏𝛼
𝑒𝑓𝑓 = |Δ𝜏𝛼 + 𝑎1Δ𝜏1

𝛼 + 𝑎2Δ𝜏2
𝛼 + 𝑎3Δ𝜏3

𝛼 + 𝑎4Δ𝜏4
𝛼 + 𝑎5Δ𝜏5

𝛼| − Δ𝑔𝛼 (3.35) 

The time derivative of 𝜏𝛼  can be determined from Eq. (3.19) and using Eq. (3.2) as: 

𝜏̇𝛼 = 𝒔𝒆(𝜶). (𝝉𝜵𝒆 + 𝑫𝒆𝝉 − 𝝉𝑫𝒆)𝒎𝒆(𝜶). (3.36) 

Thus, the increment in 𝜏𝛼 can be derived by using Eqs.  (3.10 - 3.12) as: 
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𝛥𝜏𝛼  =  (𝑳: 𝝁𝜶 + 𝜷𝜶): 𝑫𝒆Δ𝑡. (3.37) 

Similarly, the increment in non-Schmid stresses can also derived from Eq. (3.23) as: 

𝛥𝜏1
𝛼  =  (𝑳: 𝝁𝟏

𝜶 + 𝜷𝜶): 𝑫𝒆Δ𝑡, 

𝛥𝜏2
𝛼  =  (𝑳: 𝝁𝟐

𝜶 + 𝜷𝜶): 𝑫𝒆Δ𝑡, 

𝛥𝜏3
𝛼  =  (𝑳: 𝝁𝟑

𝜶 + 𝜷𝜶): 𝑫𝒆Δ𝑡, 

𝛥𝜏4
𝛼  =  (𝑳: 𝝁𝟒

𝜶 + 𝜷𝜶): 𝑫𝒆Δ𝑡, 

𝛥𝜏5
𝛼  =  (𝑳: 𝝁𝟓

𝜶 + 𝜷𝜶): 𝑫𝒆Δ𝑡. 

(3.38) 

Further, from Eq. (3.25) increment in 𝑔𝛼 can be written as: 

Δ𝑔α = ∑ ℎ𝛼𝛽|Δ𝛾𝛽|

𝑛

𝛽=1

 (3.39) 

Substitution of Eqs. (3.37 - 3.39) into Eq. (3.35) leads to: 

Δ𝜏𝛼
𝑒𝑓𝑓 = |𝑹𝒆𝒇𝒇

𝜶: 𝑫𝒆Δ𝑡| − ∑ ℎ𝛼𝛽|Δ𝛾𝛽|

𝑛

𝛽=1

 

= |𝑹𝒆𝒇𝒇
𝜶: (𝑫Δ𝑡 − ∑ Δ𝛾𝛽𝝁𝜷

𝑛

𝛽=1

)| − ∑ ℎ𝛼𝛽|Δ𝛾𝛽|

𝑛

𝛽=1

, 

(3.40) 

where, 

𝑹𝒆𝒇𝒇
𝜶 = [𝑳: (𝝁𝜶 + 𝑎1𝝁𝜶

𝟏
+ 𝑎2𝝁𝜶

𝟐
+𝑎3𝝁𝜶

𝟑
+ 𝑎4𝝁𝜶

𝟒
+ 𝑎5𝝁𝜶

𝟓
)

+ (1 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5)𝜷𝜶]. (3.41) 

From Eqs. (3.30)-(3.34) and Eq. (3.40), the increment in plastic slip can be determined as: 

Δ𝛾𝛼 = 𝑓̇𝛼Δ𝑡 + 𝑲𝜶: 𝚫𝜺 + 𝜁̇𝛼Δ𝑡, (3.42) 

where, 
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𝑓̇𝛼 = ∑ 𝑀𝛼𝛽𝛾̇𝛽(𝑡)

𝑛

𝛽=1

, 

𝑲𝜶 = ∑ 𝑀𝛼𝛽𝑸𝜷,
𝑛

𝛽=1
 

𝚫𝝐 = 𝑫Δ𝑡, 

𝑀𝛼𝛽 = [𝑁𝛼𝛽]
−1

, 

𝑁𝛼𝛽 = 𝛿𝛼𝛽 +
𝜃𝒜𝛼𝛾̇𝛼(𝑡)Δ𝑡

𝜏0
[𝑹𝒆𝒇𝒇

𝜶 : µ𝜷  + ℎ𝛼𝛽], 

𝑸𝜶 =
𝜃𝒜𝛼𝛾̇𝛼(𝑡)Δ𝑡

𝜏0
𝑹𝒆𝒇𝒇

𝜶
 

 

 

 

 

 

(3.43) 

𝜁̇𝛼 =  ∑ 𝑀𝛼𝛽𝜁𝛽̇

𝑛

𝛽=1

 

and,  

𝜁𝛽̇ = 𝜃 (
ΔGk0

𝜅T
) (

Δ𝑇

𝑇
) 𝛾̇𝛼 (𝑡) 

(3.44) 

Finally, with the help of Eq. (3.42), the constitutive law Eq. (3.17) can be derived as follows: 

𝝉𝜵 = 𝑪: 𝑫 − 𝝌̇  (3.45) 

In the above equation, 𝑪 denotes the elasto-plastic rate tangent modulus which is given by: 

𝑪 = 𝑳 − ∑ 𝑹𝜶 ⊗ 𝑲𝜶

𝑛

𝛼=1

  

(3.46) 

and 

𝝌̇ ≜ ∑ 𝑹𝜶(𝑓̇𝛼 + 𝜁̇𝛼)

𝑛

𝛼=1

 
 

(3.47) 
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3.3.2  Stress update algorithm  

In this section, the stress update algorithm is summarized. At an integration point in an element, 

the following variables are known at time 𝑡 = 𝑡𝑛: 𝑭𝒏
𝑒 , 𝑭𝒏

𝒑, 𝚫𝛜 = 𝑫Δ𝑡 , 𝝉𝒏, 𝑔𝑛
𝛼, 𝑭𝒏+𝟏, and time 

increment Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛. The following steps are performed to determine 𝑭𝒏+𝟏
𝒆, 𝑭𝒏+𝟏

𝒑, 

𝑔𝛼
𝑛+1

and 𝝉𝒏+𝟏 at 𝑡 = 𝑡𝑛+1. 

1. Determine lattice vectors 𝒔𝐞(𝜶), 𝒎𝐞(𝜶), 𝒏𝟏
𝐞(𝜶)

, and 𝒏𝟐
𝐞(𝜶)

 by transforming vectors 𝒔(𝜶), 𝒎(𝜶), 

𝒏𝟏
(𝜶)

 and 𝒏𝟐
(𝜶)

 from the reference configuration to the current configuration. 

2. Compute the second order tensors, 𝝁𝜶 and 𝝎𝜶, 𝜷𝜶 and 𝑹𝜶. 

3. Compute Schmid stress 𝜏𝛼 = 𝝉𝒏: 𝝁(𝜶) on each slip system. 

4. Compute non-Schmid stresses for each slip system: 

𝜏1
𝛼 = 𝝉: (𝒔𝐞(𝜶) ⊗ 𝒏𝟏𝐞(𝜶)) 

𝜏2
𝛼 = 𝝉: (𝒔𝐞(𝜶) ⊗ 𝒏𝟐𝐞(𝜶)) 

𝜏3
𝛼 = 𝝉: ((𝒔𝐞(𝜶) × 𝒎𝐞(𝜶)) ⊗ 𝒎𝐞(𝜶)) 

𝜏4
𝛼 = 𝝉: ((𝒏𝟏𝐞(𝜶) × 𝒔𝐞(𝜶)) ⊗ 𝒏𝟏𝐞(𝜶)) 

𝜏5
𝛼 = 𝝉: ((𝒏𝟐

𝐞(𝜶)
× 𝒔𝐞(𝜶)) ⊗ 𝒏𝟐

𝐞(𝜶)) 

5. Compute effective resolved shear stress  

𝜏𝛼
𝑒𝑓𝑓 = |𝜏𝛼 + 𝑎1𝜏1

𝛼 + 𝑎2𝜏2
𝛼 + 𝑎3𝜏3

𝛼 + 𝑎4𝜏4
𝛼 + 𝑎5𝜏5

𝛼| − 𝑔𝛼 

6. Check for the yielding taking place in the slip system: 

If (𝜏𝛼
𝑒𝑓𝑓  ≤  0) then perform the elastic step, exit. 

Else Go to step: 7 

End If 

7. Compute Δ𝐺𝑘
𝛼 from Eq. (3.21) and then 𝛾̇𝛼 from Eq. (3.20). Also, compute 

 𝑓̇𝛼 , 𝑲𝜶, 𝑄𝛼, 𝜁̇𝛼, and 𝑁𝛼𝛽 from Eqs. (3.43). Invert 𝑁𝛼𝛽. Hence compute Δ𝛾𝑛+1
𝛼  from Eq. 

(3.42). 

8. Update  𝑭𝒏+𝟏
𝒆 , 𝑭𝒏+𝟏

𝒑
, 𝝉𝒏+𝟏 and 𝑔𝑛+1 

𝛼  
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9. Calculate the elastic-plastic rate tangent modulus: 

𝑪 = 𝑳 − ∑ (𝑹𝜶 ⊗ 𝑲𝜶)
𝑛

𝛼=1
 

and  

𝝌̇ = ∑ 𝑹𝜶(𝑓̇𝛼 + 𝜁̇𝛼)

𝑛

𝛼=1

 

 

3.4 Finite element formulation for incremental static equilibrium 

In the current work, an updated Lagrangian formulation is employed to implement the constitutive 

model in commercially available software Abaqus (Dassault Systèmes, 2017). To this end, a 

reference state is assumed to coincide instantaneously with the current configuration. Following 

McMeeking and Rice (1975), the variational principle is written in the current configuration in 

terms of the Kirchhoff stress and its Jaumann rate as: 

 

∫ [𝜏𝑖𝑗
𝛻 − ( 𝜏𝑖𝑘𝐷𝑘𝑗 +  𝐷𝑖𝑘𝜏𝑘𝑗)]𝛿𝐷𝑖𝑗𝑑𝑉 + 

𝑽𝒕

∫ 𝜏𝑖𝑗𝑣𝑘,𝑗𝛿𝑣𝑘,𝑖𝑑𝑉
𝑽𝒕

= ∫ 𝑏̇𝑗𝛿𝑣𝑗𝑑𝑉 + ∫ 𝑇̇𝑗𝛿𝑣𝑗𝑑𝐴,
𝑆𝑇𝑉𝑡

   
(3.48) 

where 𝑉𝑡 represents the volume of the body in the current configuration, while 𝑆𝑇 denotes the part 

of the surface where traction is prescribed. Also, note that 𝑉𝑡 and 𝑆𝑇 are associated with the 

equilibrium configuration corresponding to time 𝑡. Further, the components of 𝐷𝑖𝑗 are given by: 

𝐷𝑖𝑗 =
1

2
(

∂𝑣𝑖

∂x𝑗
+  

∂𝑣𝑗

∂xi
),    (3.49) 

where, 𝑣 is material point velocity.  The spatial gradient of particle velocity vector is given as: 

𝑣𝑘,𝑖 = 𝑙𝑘,𝑖 =
𝜕𝑣𝑘

𝜕𝑥𝑖
    (3.50) 

Further, 𝑏̇𝑗 represent the rate of nominal body force based on the current volume and 𝑇̇𝑗 denotes 

rate of surface traction based on the current surface area of the body. Here, it is assumed that 𝑏̇𝑗 as 
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well as 𝑇̇𝑗 are fully prescribed. Now, that the term (𝜏𝑖𝑘𝐷𝑘𝑗 +  𝐷𝑖𝑘𝜏𝑘𝑗) in Eq. (3.48) can be written 

as: 

𝜏𝑖𝑘𝐷𝑘𝑗 +  𝐷𝑖𝑘𝜏𝑘𝑗 =  𝐿̂𝑖𝑗𝑘𝑙𝐷𝑘𝑙 ,  (3.51) 

where, 

𝐿̂𝑖𝑗𝑘𝑙 =  
1

2
(𝜏𝑖𝑘𝛿𝑙𝑗 + 𝜏𝑖𝑙𝛿𝑘𝑗 + 𝜏𝑘𝑗𝛿𝑖𝑙 +  𝜏𝑙𝑗𝛿𝑖𝑘). (3.52) 

It must be noted that 𝐿̂𝑖𝑗𝑘𝑙 satisfies all the major as well as minor symmetries. By using Eqs. 

(3.45) and (3.51), the Eq. (3.48) can be written as: 

∫ 𝛿𝐷𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝐷𝑘𝑙𝑑𝑉 − ∫ 𝛿𝐷𝑖𝑗𝐿̂𝑖𝑗𝑘𝑙𝐷𝑘𝑙𝑑𝑉
𝑽𝒕

+ 
𝑽𝒕

∫ 𝜏𝑖𝑗𝑣𝑘,𝑗𝛿𝑣𝑘,𝑖𝑑𝑉
𝑽𝒕

= ∫ 𝜒̇𝑖𝑗𝛿𝐷𝑖𝑗dV +
𝑉𝑡

∫ 𝑏̇𝑗𝛿𝑣𝑗𝑑𝑉 + ∫ 𝑇̇𝑗𝛿𝑣𝑗𝑑𝐴,
𝑆𝑇𝑉𝑡

   

(3.53) 

The discretization of velocity and spatial gradient of velocity are respectively given as: 

{𝑣𝑒} =  [𝑁]{𝑈̇}, 

 {𝐷𝑒} = [𝐵]{𝑈̇}.  
(3.54) 

Here, {𝑈̇} is the vector of nodal velocity, while [𝑁] and [𝐵] are matrices of shape functions and 

their spatial gradients, respectively. By substituting the Eq. (3.54) into Eq. (3.53), the finite element 

equilibrium equations in rate form could be derived as (Bathe, 1996; Patil, 2009) as: 

[𝐾]𝑒{𝑈̇} =  {𝐹̇𝜒} +  {𝐹̇𝑏} + {𝐹̇𝑡}. (3.55) 

Here, [𝐾]𝑒 is the element stiffness matrix and it is given by: 

[𝐾]𝑒 =  [𝐾(1)]
𝑒

−  [𝐾(2)]
𝑒

+ [𝐾(3)]
𝑒
. (3.56) 

Here, 

[𝐾(1)]
𝑒

  = ∫ [𝐵]𝑇[𝐶][𝐵]𝑑𝑉𝑒

𝑉𝑡
𝑒

 

[𝐾(2)]
𝑒

= ∫ [𝐵]𝑇[𝐿̂][𝐵] 𝑑𝑉𝑒

𝑉𝑡
𝑒

 

[𝐾𝑖𝑎𝑗𝑏
(3)

]
𝑒

= ∫ 𝐵𝑙
𝑎𝜏𝑙𝑘𝐵𝑘

𝑏𝛿𝑖𝑗 𝑑𝑉𝑒 ,
𝑉𝑡

𝑒
 

 

 

(3.57) 
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where (𝑖, 𝑗)  ∈  [1, 3] and (𝑎, 𝑏)  ∈  [1, 𝑛𝑒] where 𝑛𝑒 represents the  number of nodes per element. 

Note that in the above equation, [𝐾(1)]
𝑒
 represents the tangent stiffness matrix resulting due to 

material nonlinearity, while [𝐾(2)]
𝑒
 and [𝐾(3)]

𝑒
comprise the initial stress stiffness. Also, the 

matric [𝐶] in Eq. (3.57a) contains the fourth order tensor 𝐶𝑖𝑗𝑘𝑙 which satisfies the major symmetry 

(see, Eq. (3.46), consequently the matric [𝐶] and hence [𝐾(1)]
𝑒
are symmetric. Further, the matrix 

[𝐿̂] appearing in the definition of [𝐾(2)]
𝑒
 contains the tensor 𝐿̂𝑖𝑗𝑘𝑙. The element force vectors, 

{𝐹̇𝜒}
𝑒
, {𝐹̇𝑏}

𝑒
 and {𝐹̇𝑡}

𝑒
 in Eq. (3.55) are respectively given by: 

{𝐹̇𝜒}
𝑒

=  ∫ [𝐵]𝑇{𝜒̇}𝑑𝑉𝑒

𝑉𝑡
𝑒

, (3.58) 

{𝐹̇𝑏}
𝑒

=  ∫ [𝑁]𝑇{𝑏̇}𝑑𝑉𝑒

𝑉𝑡
𝑒

, (3.59) 

{𝐹̇𝑡}
𝑒

=  ∫ [𝑁]𝑇{𝑇̇}𝑑𝐴
𝑆𝑡

𝑒
, (3.60) 

Here, {𝐹̇𝜒}
𝑒
 indicates the rate of nodal vector force due to the term 𝝌˙ in Eq. (3.53), while {𝐹̇𝑡}

𝑒
, 

{𝐹̇𝑏}
𝑒
 are rate of nodal force vectors due to surface tractions and body force, respectively. 

The finite element formulation presented in this section has been implemented in the 

commercially available software package ABAQUS/Standard (6.17) by writing a user element 

subroutine (UEL) for eight-noded isoparametric hexahedral elements. The 𝐵̅ –formulation (Moran 

et al., 1990) has been used to alleviate mesh locking due to nearly incompressible plastic 

deformation. 

 

3.5 Determination of Material parameters for molybdenum single crystal 

In this section, material parameters appearing in the crystal plasticity model discussed in the 

previous section are determined for a Mo single crystal. The elastic constants 𝐶11, 𝐶12 and 𝐶44 are 

assumed to be independent of temperature and taken as 469.0 × 103, 167.6 × 103 and 

106.8 × 103  MPa, respectively, from the work of Bolef and Klerk (1998). Note that 𝑔𝑜
𝛼 and 𝜏𝑜 

can be considered as the material resistance for plastic yielding at high temperature and at 0 K, 

respectively. Therefore, the values of 𝑔𝑜
𝛼 and 𝜏𝑜 are taken as 6 and 665 MPa corresponding to the 
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resolved shear stresses at 450 and 0 K, respectively (Kaufmann et al. (1984)). Note that 𝑔𝑜
𝛼 are 

taken identical for all slip systems. Further, considering ∆𝐺𝑘 𝜅𝑇⁄ ≈ 25 (Hollang et al. (1997)), 

Eqs. (3.21) and (3.22) gives the resolved shear stress as:  

𝜏𝑒(𝛼) = 𝑔𝑜
𝛼 + 𝜏0 [1 −  (

25𝜅𝑇

∆𝐺𝑘0
)

1
𝑞

]

1
𝑝

. (3.61) 

By fitting the above expression to the experimental data reported by Kaufmann et al. (1984), the 

values of parameters Δ𝐺𝑘0, 𝑝 and 𝑞  are determined as 0.16568 × 10−18 J, 0.5 and 1.25, 

respectively.  

The parameters  𝑎1 − 𝑎5, ℎ0
𝛼, ℎ𝑠

𝛼, and 𝑔𝑠
𝛼 are determined by simultaneously fitting stress-strain 

curves obtained from FE simulations of tensile loading along [100], [110] and [111] directions to 

the corresponding experimental data. For this purpose, genetic algorithm (GA) implemented in 

MATLAB (2020) is utilized. The following objective function, 𝜒2 is employed to minimize the 

error between simulated and experimental data: 

Ψ2 =
1

3
(Ψ[100]

2 +  Ψ[110]
2 +  Ψ[111]

2 ) =
1

3
∑ (∑

(𝜎(𝑒𝑥𝑝,   𝜖) − 𝜎(𝑠𝑖𝑚,   𝜖))
2

𝑚

𝑚

1

)

𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 

 . (3.62) 

Here, 𝜎(𝑒𝑥𝑝,   𝜖) and 𝜎(𝑠𝑖𝑚,   𝜖) represent stress values at strain 𝜖 for a given orientation 

obtained from experiments and simulations, respectively. The parameter 𝑚 denote the number of 

data points on the stress-strain curves. The experimental data for orientation [111] are taken from 

the work of Irwin et al. (1974) is used, and for the orientation [100] and [110], the data reported 

by Kopetskii and Pashkovskii (1974) are used. In order to compute simulated data (i.e., 𝜎(𝑠𝑖𝑚,   𝜖)), 

ABAQUS is launched from MATLAB to run FE simulations. It must be mentioned that these 

simulations are performed using single element so that the time required in optimization can be 

reduced. The eight-node brick element along with the prescribed boundary conditions employed 

in these simulations is displayed in Figure 3.2. Simulations for all three orientation are conducted 

at room temperature. Further, following the Irwin et al. (1974), the simulations on (111) oriented 

crystal are performed with strain rate of  6.0 × 10−5 𝑠−1. However, the strain rate of 1.0−4 𝑠−1 is 

used in the simulations of loading along [100], [101] directions, which is identical to that used in 

experiments of Kopetskii and Pashkovskii (1974). The values of parameters optimized by GA are 
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listed in Table 3.3. Figure 3.3 shows the comparison between simulated and experimental stress 

versus strain curves for loading along different orientation. It can be seen from this figures that 

simulated curves matches reasonably well with the experimental data for all three orientations. It 

should be mentioned that the values of some of the parameters (𝑎1 − 𝑎5, 𝑔𝑠
𝛼, ℎ𝑜

𝛼 and ℎ𝑠
𝛼) obtained 

from the optimization in the present study differ from that reported by Daphalapurkar et al. (2018). 

This could be due the fact that 𝑔𝑜
𝛼 = 2 MPa was considered to determine the parameters by 

Daphalapurkar et al. (2018), whereas, 𝑔𝑜
𝛼 = 6 MPa is used in the present optimization.    

3.5.1 Validation of material Parameters for Mo Crystal 

To validate the material parameters obtained in the previous section, finite element simulations of 

tension test at different temperature and compression test at room temperature are performed and 

the simulated curves are compared with the corresponding experimental data. The tension 

simulations are performed on [101] oriented crystal by considering the various values of 𝑇 = 223, 

293, 353 and 423 K. Figure 3.4 shows the comparaison of the simulated stress versus strain curves 

along with the experimental data reported by Kopetskii and Pashkovskii (1974). Note from this 

Table 3.3: The values of non-Schmid coefficients and parameters appearing in the hardening 

model for single crystal Mo. 

𝑎1 0.21 

𝑎2 0.20 

𝑎3 0.44 

𝑎4 0.24 

𝑎5 0.23 

 < 111 > {110} < 111 > {112} 

Antitwinning sense 

< 111 > {112} 

Twinning sense 

𝑔0
𝛼 6.0 6.0 6.0 

𝑔𝑠
𝛼 22.6 22.0 136.5 

ℎ0
𝛼

 1919.4 3299.0 1820.0 

ℎ𝑠
𝛼

 25.0 40.0 31.0 
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figure that the present simulations predict temperature dependent yield strength of [101] oriented 

Mo crystal reasonably well, except for the case of very low temperature of 223K. However, the 

hardening response is well captured from FE simulations for all values of 𝑇. Figure 3.5 contrasts 

the compressive response of a [111] oriented Mo crystal predicted by FE simulations and the 

experimental data of Irwin et al. (1974). This figure also show good agreement between 

simulations and experiments.  

 

 

 

 

 

Figure 3.2: A single 8-node brick element and the applied boundary conditions employed in 

the finite element simulations. 
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Figure 3.3: True stress versus true strain curves for tensile loading along [010], [101], and [111] 

direction in a Mo single crystals obtained from present finite element simulations and the experiments 

of Irwin et al. (1974) and Kopetskii and Pashkovskii (1974). 

 

 

Figure 3.4: True stress versus true strain curves for tensile loading along [101] direction in Mo single 

crystals obtained from present finite element simulations and the experiments performed at different 

temperature by Kopetskii and Pashkovskii (1974). 
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3.6  Summary  

In this chapter, the crystal plasticity model proposed by Daphalapurkar et al. (2018) has been 

presented briefly. In addition, a numerical algorithm employing the rate tangent formulation is 

derived to update the stress and the history variables in the model. Further, the finite element 

procedure to implement the crystal plasticity model into a commercial finite element code 

ABAQUS/Standard (6.17) by writing user-element subroutine (UEL) is described. Finally, the 

values of material parameters are obtained for Mo single crystal. 

  

 

Figure 3.5: True stress versus true strain curves for compressive loading along [111] direction on 

a Mo crystal obtained from the present simulations and experiments of Irwin et al. (1974). 
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Chapter 4 

Conclusion and Future work 

 

4.1  Conclusions  

The important conclusions from the work reported in Chapter 2 and 3 are summarized in this 

Chapter. In Chapter 2, the nano- and micro-indentation experiments are performed on (100)-, 

(110)- and (111)-oriented Mo single crystal. The piling-up patterns are analyzed by using AFM. 

In Chapter 3, crystal plasticity model proposed by Daphalpurkar et al. (2018) and its numerical 

implementation in Abaqus (6.17) is presented. The important conclusions from this thesis are as 

follows: 

 

1) The nano-indentation experiments showed that the indentation depth at peak load, 𝑃𝑚𝑎𝑥 

was maximum for (100), least for (110) while intermittent for (111) orientation suggesting 

(110) orientation offers the highest resistance to plastic deformation. The amount of elastic 

recovery has also shown similar trend with respect to crystallographic orientation. Thus, 

the (100) orientation has the least elastic modulus and (110) has the highest modulus. 

2) The values of the elastic modulus obtained from nanoindentation experiments for (100), 

(110), and (111) Mo single crystals are 235 ± 12, 275 ± 15 and 210 ± 10 GPa, 

respectively. 

3) For all the orientation, the nano-hardness, Hn decreases with increasing Pmax showing 

indentation size effect. Further, at any given Pmax, hardness of (110) orientation is the 

highest while (100) is the lowest. Moreover, the difference in hardness (∆H) between (110) 

and (100) orientations is significant at lower load which decreases with increasing Pmax. 

4) AFM scan of indent impression created through nano-indentation showed significant pile-

up on (100), and (110) surfaces, but for (111) oriented crystal no significant pile-up was 

observed. The impression size for (100) orientation is larger, (110) orientation is smaller 

while for (111) orientation is in intermediate. Therefore, it is concluded that the hardness 

anisotropy can also be correlated with impression size. 
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5) The calculations of Schmid factor using the model of Raineesh et al. (2021) suggest that 

the slip occurs on both {110}<111> and {112}<111> slip systems in all three orientations 

under Berkovich indentation. Further, {112}<111> slip system must be activated for (110) 

orientation, while it need not get activated for other two orientations. Since the critical 

resolved shear stress (CRSS) is more for {112}<111> than that for {110}<111> slip 

systems, therefore  (110) is the hardest plane at lower depths. 

6) The micro-hardness 𝐻𝑚 is found to be lower than 𝐻𝑛 which is attributed to the larger strain 

gradients during nanoindentation in contrast to the micro-indentation. Further, 𝐻𝑚 also 

decreases with increasing indentation load up to 1000 mN. In the case of micro-indentation 

also, the highest hardness is observed on (110) surface. As the applied indentation load 

during micro-indentation increases, the difference in hardness between the three samples 

decreases and saturation in hardness is observed.  

7) Pile-ups patterns produced through micro-indentation on the surfaces of (100), (110), and 

(111) oriented Mo single crystals have shown four-, two-, and three-fold symmetry, 

respectively. 

8) The parameter ℎ∗ appearing in the model of Nix and Gao (1998) is found to vary in nano 

and micron scale. The analytically predicted values of ℎ∗ agree well with the 

experimentally determined values. The nanoscale and microscale intrinsic material length, 

𝑙nano and 𝑙micro marginally depend on crystal orientation and are found to be around 0.55-

0.65 and 10.89-12.45, respectively.  

9) The crystal plasticity model proposed by Daphalpurkar et al. (2018) is implemented in 

commercially available software package Abaqus (6.17) by writing user element (UEL) 

subroutine. The performance of the developed element is benchmarked by comparing the 

simulated stress-strain curves for tensile and compressive loadings with the corresponding 

experimental data reported by Irwin et al. (1974) and Kopetskii and Pashkovskii (1974). 
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4.2  Future Work 

The following studies can be undertaken based on the insights gained from the present work. 

1) The finite element simulations of indentation on Mo single crystals oriented along (100), 

(110) and (111) directions can be performed to understand the various active slip systems 

during indentation and their influence on the plastic deformation below the indenter. 

2) Indentation experiments can be carried out by changing the azimuthal orientations of the 

pyramidal indenter to understand the effect of indenter-orientation on the pile-up patterns. 

3) The crystal plasticity model can be modified by introducing intrinsic material length scale 

parameter to understand the indentation size effect better. 
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APPENDIX-A 

 

Schmid factor calculation procedure 

To compute the Schmid factor under Berkovich indentation, it is assumed the load is being 

transmitted to the material along the apex of the tip (the apex of the tip is almost spherical) (Schuh, 

2006) and normal to the slanting faces of the indenter following the model proposed by Raineesh 

et al. (2021). The compressive forces acting normal to the slanting faces of the Berkovich indenter 

are 120° apart. The schematic of Berkovich indenter is shown in Figure A-1 with the direction of 

indentation ID. Consider N1, N2, N3 to be loading directions perpendicular to the three faces of 

Berkovich indenter, with N1, N2 visible perpendicular to faces OPQ and OPR in Figure A-1. The 

indenter can be oriented in variety of ways with respect to sample as depicted in Figure A-2(a)-

(b). Initially, the indenter is placed such that the edge PQ of indenter lies parallel to y-axis and line 

OS on indenter face OPQ lies on xz-plane as shown in Figure 2(b) which is taken as reference and 

corresponds to zero degree rotation of indenter about the x-axis as shown in Figure A-2(c). For 

calculation of Schmid factor for BCC {110}<111> and {112}<111> families of slip system were 

considered. To begin the calculation of Schmid factor along the slant face of indenter for (100) 

oriented Mo single crystal the orientation of crystal is assumed such that [100]-, [010]-, [001]-

directions are along x-, y-, z-axes as shown in Figure A-3. Thus the unit normal vector, n1 which 

is parallel to the loading direction N1 of the indenter face OPQ (refer Figure 3) is given as follows: 

n1 = [-cos(24.70)  0  cos(65.30)]. 
(1) 

For different orientation of intender the unit normal vector along the loading direction N1 (i.e. 

normal to the indenter face OPQ), is given by:  

𝑛1
′  = Rx(θ) × n1 

(2) 

where the unit normal vector 𝑛1
′  along the loading direction N1 is a function of rotation angle, θ 

and Rx(θ) is the rotation matrix about x-axis which is given as: 

Rx(θ) = [

1 0 0
0 cos (𝜃) −sin (𝜃)
0 sin (𝜃)    cos (𝜃)

] 
(3) 
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Now, the direction cosines of slip plane normal (np) and slip direction (nd) in sample coordinate 

system are given as follows: 

np = [cos(𝛼𝑝)  cos(𝛽𝑝)  cos(𝛾𝑝)], 

nd = [cos(𝛼𝑑) cos(𝛽𝑑)  cos(𝛾𝑑)] 
(4) 

where 𝛼𝑝, 𝛽𝑝, 𝛾𝑝 are the angles between slip plane normal and the x-, y- and z-axes lying along 

[100]-, [010]-, and [001]-directions and 𝛼𝑑, 𝛽𝑑, 𝛾𝑑 are the angles between slip direction and x-, y-

, and z-axes along [100]-, [010]-, and [001]-directions, respectively. Crystallographic calculations 

can be used to calculate the direction cosines. 

Consider the case for (100) oriented crystal; direction cosines for (110)[11̅1] slip system in sample 

coordinate system can be obtained as follows: 

  cos(𝛼𝑝) =  
(1×1 + 1×0 + 0×0)

(|(110)|×|(100)|)
 ;     cos(𝛽𝑝) =  

(1×0 + 1×1 + 0×0)

(|(110)|×|(010)|)
 ;      cos(𝛾𝑝) =  

(1×0 + 1×0 + 0×1)

(|(110)|×|(001)|)
 

 cos(𝛼𝑑) =  
(1×1 + (−1)×0 + 1×0)

(|(11̅1)|×|(100)|)
 ; cos(𝛽𝑝) =  

(1×0 + (−1)×1 + 1×0)

(|(11̅1)|×|(010)|)
 ; cos(𝛾𝑝) =  

(1×0 + (−1)×0 + 1×1)

(|(11̅1)|×|(001)|)
       

 

(5) 

Similarly direction cosines can be calculated for other slip systems and also for (110), and (111) 

oriented crystals.   

The Schmid factor (SF) is computed as follows: 

𝑆𝐹𝑁1

𝜃  = |( 𝑛1
′ .np) × ( 𝑛1

′ .nd)|. 
(6) 

From Eq. (6) it can be noticed that the Schmid factor is a function of in-plane rotation angle, 𝜃. 

Similarly, compressive forces also acts along the normals of other two faces of Berkovich indenter 

which are separated by 1200 and 2400, respectively and Schmid factor corresponding to other two 

faces can be determined as 𝑆𝐹𝑁2

𝜃  = 𝑆𝐹𝑁1

𝜃+2400

 and 𝑆𝐹𝑁3

𝜃  = 𝑆𝐹𝑁1

𝜃+1200
. Schmid factor directly beneath 

the indenter is calculated similarly to the uniaxial compression test. 
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Figure A-1: Schematic showing the pyramidal geometry of the Berkovich indenter, as well 

as the loading directions N1, N2, N3 normal to the three faces of the Berkovich indenter and 

the indentation direction (ID) at the  apex of the indenter. 
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Figure A-2: (a)-(b) Schematic representation of inplane orientation of indenter; c) 2D-

representation of loading direction (ON1) and line (OS) on indenter face OPQ.  
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Figure A-3: Schematic showing assumed in plane orientation for (100) oriented Mo crystal for 

Schmid factor calculation. 
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