
Malware Detection and Classification using
Transformer-based Learning

MS (Research) Thesis

By

Fyse Nassar

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE

JULY 2021

Malware Detection and Classification using
Transformer-based Learning

A THESIS

Submitted in fulfilment of the
requirements for the award of the degree

of

Master of Science (Research)

by
Fyse Nassar

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE

JULY 2021

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled Malware
Detection and Classification using Transformer-based Learning in the fulfilment of the
requirements for the award of the degree of MASTER OF SCIENCE (RESEARCH) and
submitted in the DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,
Indian Institute of Technology Indore, is an authentic record of my own work carried out
during the time period from July 2019 to July 2021 under the supervision of Dr. Neminath
Hubballi, Associate Professor, Indian Institute of Technology Indore, India.

The matter presented in this thesis has not been submitted by me for the award of any
other degree of this or any other institute.

Signature of the Student with date
Fyse Nassar

This is to certify that the above statement made by the candidate is correct to the best

of my knowledge.

Signature of the Thesis Supervisor with date

Dr. Neminath Hubballi

Fyse Nassar has successfully given his MS (Research) Oral Examination held on

Signature of Chairperson (OEB)
Date:

Signature of Thesis Supervisor
Date:

Signature of Convener DPGC
Date:

Signature of Head of Department
Date:

05-07-2021

 22-Oct-2021

 22-Oct-2021 22/10/2021

22/10/2021

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Almighty God, who has sustained me

through these best and toughest years of my life. Without His immense blessings, life

would not have been the same.

I would like to thank my supervisor Dr. Neminath Hubballi, who was a con-

stant source of inspiration during my work. With his continuous guidance and research

directions, this research work has been completed. His constant support and encour-

agement have motivated me to remain streamlined in my research work. I am also

grateful to Dr. Somnath Dey, HOD of Computer Science and Engineering Depart-

ment, for all his help and support.

I am thankful to Dr. Bodhisatwa Mazumdar and Dr. Amogh C Umarikar,

my research progress committee members for taking out some valuable time to evaluate

my progress all these years. Their valuable comments and suggestions helped me to

improve my work at various stages.

My sincere acknowledgement and respect to Prof. Neelesh Kumar Jain, Di-

rector, Indian Institute of Technology Indore, for providing me with the opportunity

to explore my research capabilities at the Indian Institute of Technology Indore.

A significant part of my gratitude goes to two incredible people I met here, Anup

and Saumya, who have always been there for me through all my ups and downs.

Saumya and Anup - Thank you for everything.

Finally, my deep and sincere gratitude to my family for their continuous and un-

paralleled love, help and support. I am forever indebted to my parents for giving me

the opportunities and experiences that have made me who I am.

Fyse Nassar

In Loving Memory Of
My Grandfather

&
All Others

Lost Along The Way

ABSTRACT

Malware detection and classification assumes significance owing to the rapid prop-

agation and proliferation of new variants. Grouping these variants into families with

similar traits allows us to develop mitigation techniques that work for an entire family.

Machine learning algorithms are used extensively for malware detection and classifica-

tion tasks with selected features taken from executable files. Although these methods

have shown good performance, the choice of features chosen constrain their ability

to detect novel malware samples. To alleviate this limitation, recently, deep learning

methods are used, which propose to automate the feature engineering task by extract-

ing hidden semantic relationships between elements (raw bytes, opcodes, API calls,

etc.) of the file.

In this thesis, we describe Transformer-based malware detection and family iden-

tification methods. Our first proposed method uses static analysis to extract opcode

sequences from executable files, which are used to train a Transformer-based model for

Windows malware detection and classification. We show that our proposed method

can perform malware detection using only a short sequence of opcodes taken from the

portable executable files.

A more sophisticated malware uses code obfuscation techniques or memory-based

attacks to avoid detection. Such memory-based malware reside in the RAM to carry

out their attacks. To detect the obfuscated malware, we use memory dumps obtained

using dynamic analysis. We represent these memory dumps as images to be directly

used as an input to a Transformer-based model. We also compare the detection and

classification performance of Transformer-based model with a few conventional ma-

chine learning models. Our extensive experiments with different datasets demonstrate

that our proposed techniques achieve better classification performance compared to

recent methods. Malware is a threat not restricted to a single operating system.

Android-based malware attacks have gained tremendous pace owing to the widespread

use of mobile devices. Hence, we extend the previously mentioned technique that uses

short sequences of opcodes to detect benign and malicious Android applications.

i

Contents

Abstract i

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Contribution . 3

1.3 Organization of Thesis . 5

2 Literature Survey 7

2.1 Static Analysis . 9

2.2 Dynamic Analysis . 16

2.3 Using Hybrid Approach . 21

2.4 Android Malware Detection . 22

2.5 Conclusion . 23

3 Windows Malware Detection and Classification using Opcode Se-

quences 25

3.1 Introduction . 25

3.2 Related Work . 26

3.3 Proposed Malware Classification . 26

iii

3.3.1 Problem Definition . 27

3.3.2 System Architecture . 27

3.3.3 Opcode Extraction . 28

3.3.4 Deep Learning based Classifier 29

3.4 Experiments . 33

3.4.1 Dataset Details . 34

3.4.2 Evaluation Metrics . 35

3.4.3 Experimental Setup . 36

3.4.4 Ablation Study . 36

3.4.5 Evaluation Results . 39

3.4.6 Performance Comparison . 42

3.5 Conclusion . 43

4 Windows Malware Detection and Classification using Memory Dumps 45

4.1 Introduction . 45

4.2 Related Work . 46

4.3 Proposed Work . 46

4.3.1 Memory Dumps . 47

4.3.2 Visual Feature Extraction and Classification 48

4.3.3 Vision Transformer based Malware Detection 52

4.4 Experiments . 55

4.4.1 Dataset . 55

4.4.2 Evaluation Metrics . 55

4.4.3 Experimental Setup . 55

4.4.4 Analysing Extracted Features 57

4.4.5 Evaluation Results . 58

4.4.6 Performance Comparison . 62

4.5 Conclusion . 63

5 Android Malware Detection 65

5.1 Introduction . 65

iv

5.2 Related Work . 66

5.3 Proposed Work . 66

5.4 Experiments . 68

5.4.1 Dataset . 68

5.4.2 Experimental Setup . 69

5.5 Results and Discussion . 69

5.6 Conclusion . 71

6 Conclusion and Future Work 73

6.1 Thesis Contributions . 73

6.1.1 Windows Malware Detection and Classification Using Opcode

Sequences . 74

6.1.2 Windows Malware Detection and Classification Using Memory

Dumps . 74

6.1.3 Android Malware Detection . 75

6.2 Future Work . 76

v

List of Figures

2.1 An Overview of Different Windows Malware Analysis Techniques . . . 9

3.1 Proposed System Architecture . 28

3.2 A C function and its Corresponding Assembly Code 28

3.3 An Overview of the Proposed Approach 30

3.4 Illustration of the Pre-Training Task using Masked Language Modelling 32

3.5 Fine-Tuning Task for Classification . 33

3.6 ROC Curves of Every Malware Family in Comparison to the Rest of

the Families . 41

4.1 An Overview of the Proposed Approach 47

4.2 An Example of Converting Dump File to Image 48

4.3 Overview of Classification of Memory Dump Images using Descriptors . 51

4.4 ViT Architecture . 53

4.5 Visualisation of Features using t-SNE 57

4.6 ROC Curves of Different Techniques in One vs Rest Setting (continued

next page) . 60

4.6 ROC Curves of Different Techniques in One vs Rest Setting 61

5.1 A Snippet of Smali Code . 67

5.2 An Overview of Proposed Model for Android Malware Detection 67

5.3 ROC Curve for the Android Malware Detection 70

vii

List of Tables

2.1 Summary of Opcode and Byte Information based Works 12

3.1 Characteristics of Dataset-I . 34

3.2 Characteristics of Dataset-II . 35

3.3 Malware Detection Performance with Varying Sequence Length 37

3.4 Number of Parameters in the Model on Varying the Number of Encoder

Blocks . 38

3.5 Confusion Matrix for Malware Detection Experiment with Dataset-I . . 39

3.6 Confusion Matrix for Malware Classification with Dataset-II 40

3.7 Performance Comparison for Malware Detection task on Dataset-I . . . 43

3.8 Performance Comparison for Malware Classification task on Dataset-II 43

4.1 Characteristics of the Dumpware10 Dataset 56

4.2 Comparison of Different Classifiers on Dumpware10 Dataset 58

4.3 Confusion Matrix Obtained for KAZE-SVM on Dumpware10 Dataset . 59

4.4 Confusion Matrix Obtained for ViT on Dumpware10 Dataset 59

4.5 Performance Comparison for Malware Detection and Classification on

Dumpware10 Dataset . 62

5.1 Statistics of Dataset for Android Malware Detection 68

5.2 Confusion Matrix for Android Malware Detection Experiment 69

5.3 Performance of the Proposed Model for Android Malware Detection . . 70

ix

List of Abbreviations

ANN Artificial Neural Networks

API Application Programming Interface

APK Android Application Package

APT Advanced Persistent Threat

AUC Area Under the Curve

BERT Bidirectional Encoder Representations from Transformers

BiLSTM Bidirectional Long Short Term Memory

BOVW Bag of Visual Words

BRIEF Binary Robust Independent Elementary Features

CNN Convolutional Neural Network

CSV Comma Separated Values

DBN Deep Belief Network

DoS Denial of Service

DDoS Distributed Denial-of-service attack

DLL Dynamic Link Libraries

DNS Domain Name System

DoG Difference of Gaussians

DPI Deep Packet Inspection

DT Decision Trees

FAST Features from Accelerated Segment Test

FCG Function Call Graph

FCN Fully Convolutional Network

xi

GELU Gaussian Error Linear Units

GPU Graphics Processing Unit

HOG Histogram of Gradient

HTTP Hypertext Transfer Protocol

kNN k Nearest Neighbour

LSTM Long Short Term Memory

MD5 Message-Digest Algorithm 5

ML Machine Learning

MLP Multilayer Perceptron

NB Naive Bayes

ORB Oriented Fast and Rotated BRIEF

OOA Objective Oriented Association

PCA Principal Component Analysis

PE Portable Executable

RF Random Forest

ReLU Rectified Linear Units

Res-Net Residual Networks

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SHA-1 Secure Hash Algorithm 1

SIFT Scale-Invariant Feature Transform

SMO Sequential Minimal Optimization

SSL Secure Socket Layer

SVM Support Vector Machine

t-SNE t-Distributed Stochastic Neighbour

xii

UA User Agent

URL Uniform Resource Locator

ViT Vision Transformer

xiii

Chapter 1

Introduction

Malware is a piece of code written with malicious intention. It can cause disrup-

tions in the operations of a computing and networked environment. These software are

used for a variety of tasks like gaining complete control of a target system, harvesting

sensitive information, click fraud, spamming, Denial of Service (DoS) and other such

activities. Monetary benefits have overtaken the fun factor to become the impelling

cause for an increase in diversity and sophistication of malware [1]. Given the im-

plications of such infections, it is imperative that such software are detected before

damage is done. Traditionally antivirus solutions are tasked to detect such software by

having signatures for every type of malware. Signature generation is a manual effort

and limited by expert knowledge. Moreover, these methods can not detect mutated or

new variants of the malware. Of-late (particularly in the last decade), researchers have

proposed different techniques adopting Machine learning algorithms [2] for detecting

malware. These models use a feature set generated from executable files of known

normal and/or malware samples using which machine learning algorithms are trained.

The malware detection methods broadly fall into three categories as below:

(i) Static Analysis: In this method of malware detection, the executable binary is

analyzed without running it. Typically the executable is processed using a disassem-

bler which reverse engineers the logic and generates an approximate code. Using this

code, abnormal patterns or control flows are identified, which correspond to malware.

1

Such features can be used independently or in combination to detect the malware.

Although these methods are simple, accuracy depends on the performance of the dis-

assembler.

(ii) Dynamic Analysis: Here, the executable is run in a controlled (sandbox) envi-

ronment to gain behavioural insights of executable. The behavioural observations can

be payload installation, network traffic, CPU and memory usage patterns, API calls

made, etc. Although dynamic analysis is more accurate compared to static analysis,

it is notoriously time consuming and involves laborious manual effort.

(iii) Hybrid Methods: In these methods, a combination of both static and dynamic

analysis is used to incorporate the best of both techniques. For a given malware, static

parsing techniques are used to analyze it, whereas a dynamic analysis is performed

on the same malware to observe the program’s activity during execution. Such an

approach intends to take advantage of the aforementioned techniques, which are speed

and accuracy.

Rest of this chapter is organized as follows. We elaborate the motivation behind

our work in Section 1.1. In Section 1.2, we present the summary of thesis contributions,

and an outline of the rest of the thesis is described in Section 1.3.

1.1 Motivation

To stop malicious attacks on systems, malware needs to be detected at the earliest

possible and be prevented from executing its code. Malware authors create different

variants of existing malware to bypass detection. Such malware can be grouped into

families as many of them share common traits such as codebase. Hence, identifying

the family of a malware is an equally important problem as it helps to understand

the previously used techniques by the attacker. Some of the existing static analysis

techniques have used opcode sequence present in a program as an indicator of its

maliciousness as opcodes are closely related to a program’s logic. However, the number

of opcodes present varies from file to file. Hence, it is necessary to rely on the opcode

sequence of shorter lengths to reduce the computational complexity incurred in dealing

2

with sequences of larger lengths. Also a need arises to detect the more sophisticated

malware that uses code obfuscation techniques to avoid detection. Different machine

learning algorithms have been used in the literature, having varying performance [3].

Feature engineering is an important task, and it is laborious. It is not guaranteed

that feature engineering done with a few sample sets of malware will work on future

variants, requiring a new set of features. Deep learning is helpful in such cases to

automate the task of feature engineering, hence we use it for malware detection and

classification.

In this thesis, we aim to achieve the following objectives:

1. To develop a technique that uses short sequences of opcodes to detect and classify

Windows-based malware.

2. To develop a technique that can detect and classify obfuscated Windows-based

malware.

3. To develop a technique to detect Android-based malware using short sequence

of opcodes.

1.2 Thesis Contribution

In this thesis, we propose techniques for malware detection and classification. The

contributions of our thesis are as follows:

I. Windows Malware Detection and Classification Using Opcode Sequences:

Existing methods in the literature that rely on static analysis use a file’s entire opcode

sequence or use n-grams of opcodes extracted from the executables. However, such

an approach is computationally expensive. Thus as our first contribution, we show

that Windows-based malware can be detected and classified (malware family identi-

fication) with high accuracy using only a few opcodes taken from an executable file.

Our proposed method uses static analysis in which a disassembler is used to extract

opcode sequences from executable files. These opcode sequences are used to train a

3

Transformer-based model. The proposed model can perform malware detection and

identify its family using only a short opcode sequence extracted from a portable ex-

ecutable file. Further, by conducting ablation studies, we show the effects of opcode

sequence length, tokenizers and number of encoder blocks on the performance of the

proposed model. Our extensive experiments on two datasets show that our method

outperforms other similar techniques found in the literature.

II. Windows Malware Detection and Classification Using Memory Dumps:

For the detection of sophisticated malware that are obfuscated and carry out memory-

based attacks, a dynamic analysis approach is needed. Hence, we propose a dynamic

analysis based technique that relies on the memory dump corresponding to a program

extracted from the RAM. These memory dumps corresponding to each file are con-

verted into images. Doing so avoids the need to rely on expert’s knowledge to extract

features from the memory dumps to be used for detection. To detect and classify

the generated images of the malware, we follow two different approaches. In the first

approach, we use different hand-crafted features that are extracted from the images.

These features are used to train different machine learning classifiers that can then

detect the images that belong to malware samples and identify their families. Instead

of relying on hand-crafted features, in an alternative approach, we use the images di-

rectly as an input to a Transformer-based model, ViT, for detection and classification.

We evaluate the models on a publicly available dataset and show that the proposed

approaches perform better than other similar techniques found in the literature.

III. Android Malware Detection: Malware is a threat not just to Windows-based

systems but also to other operating systems such as Android. Hence, we propose

a technique to detect Android-based malware. We extend the previously mentioned

technique that used opcode sequences for Windows malware detection and classifi-

cation to detect Android-based malware. We disassemble the Android applications

having .apk (Android Application Package) format and extract the opcode sequences

from it. These opcode sequences are used to train a Transformer-based model. This

4

model is used to detect the android malware using only a few opcodes extracted from

it. We evaluate the performance of the model on a dataset containing benign and

malicious Android applications.

1.3 Organization of Thesis

The rest of the thesis is organised as follows:

Chapter 2: In this chapter, we describe a static analysis based technique that used

opcode sequences from executables for detection and classification of Windows-based

malware.

Chapter 4: In this chapter, we describe a memory dump based based technique for

detection and classification of Windows-based malware.

Chapter 5: In this chapter, we deal with Android Malware detection technique based

on opcode sequences.

Chapter 6: In this last chapter, we present a summary of the work done in this thesis

followed by possible future scope of our work.

5

Chapter 2

Literature Survey

Malware, short for malicious software is a general term used for software that

is designed to interfere with the normal functioning of a computer. As mentioned

in the previous chapter, it can perform a range of malicious activities, from theft of

sensitive data to damaging entire systems or devices. Differentiating and studying

different types of malware helps us in understanding how they can infect the systems,

the level of harm they pose and how to safeguard against them. Depending on the

purpose, researchers classify the malware into various categories that are not mutually

exclusive. Some of the most common and significant malware types are:

• Adware: These are the programs that are developed to display ads on comput-

ers and other devices. They are also used to redirect search requests to other

advertising websites and further collect user’s data for marketing. It generates

revenue for the attacker when a user clicks on such ads. A commonly seen exam-

ple of adware while browsing is the pop-up box with the message “your computer

has been infected” along with a listed number that the user is asked to call to

purchase the software in order to remove the infection.

• Bot: These are automated programs that are designed to surreptitiously gain

access to a computer and then carry out the instructions received from a remote

command and control (C&C) server. Usually, many such infected systems to-

gether form a botnet which are collectively used to carry out attacks. One of the

7

most common forms of attacks using botnet is a DDoS attack which attempts

to make a system or entire domain unavailable. They are also used to distribute

other kinds of malware.

• Ransomware: These kind of malware when run, disables the functionality of

the system in some way. The most common techniques are to encrypt the users’

files or revoke user’s access by locking the system. In order to regain the access,

a ransom payment needs to be paid. This ransom payment is often demanded in

the form of virtual currency so that the attacker’s identity remains anonymous.

• Rootkit: A rootkit allows an attacker to establish command and control over

a victim’s computer without the victim’s knowledge. Once the rootkit gets in-

stalled, the attacker gets the ability to remotely execute files and even modify the

system configuration of the host machine by gaining administrator-level access.

• Spyware: These software are used to spy and collect sensitive information like

passwords, credit card information through unauthorized access to a victim’s

computer. Such harvested information is sent to the attacker by the spyware

program. A popular spyware is a keylogger which secretly maps and stores all

the keystrokes entered by a user.

• Trojan: It is a type of malicious software that misrepresents itself as a benign

software to persuade users to install it on their systems. Most of the ransomware

attacks are carried out using them by carefully placing the malicious code inside

an apparently benign data. Since they are disguised as legitimate software, they

are considered to be one of the most dangerous malware.

• Virus: It is one of the oldest types of malware that operate by inserting or

attaching itself to a legitimate program. They cannot run independently as they

depend on the underlying host program to get activated and carry out their

malicious activity.

• Worm: These programs are similar to viruses and exploit the vulnerabilities

that exist in the operating system to steal or delete data. But unlike viruses,

8

worms do not require host activity or other files to self-replicate or get activated.

They typically rely on a computer network for their propagation.

In order to detect the malware, different analysis approaches are used in the lit-

erature. A summary of these approaches is shown in Figure 2.1. We elaborate these

approaches in the following sections.

Malware Analysis

Static

Similarity Estimation using Strings

Entropy Analysis

Byte and Opcode Information

API and Function Calls

Dynamic

Instruction Traces

Memory Dumps

Network Traffic

API Call Traces

Hybrid Combination of Static & Dynamic

Figure 2.1: An Overview of Different Windows Malware Analysis Techniques

2.1 Static Analysis

In this method of analysis, the executable binary is examined without actually

running it. Such an analysis attempts to understand the logic of the program by

looking at its object code or structure. Further, it is also useful in generating a set of

signatures which are used to uniquely identify the malware. One of the most common

methods of signature generation is using hashing. The malware is run through a

hashing program that generates a unique hash value used as its signature [4]. Some

of the common hashing techniques are Message-Digest Algorithm 5 (MD5), Secure

Hash Algorithm 1 (SHA-1). Depending upon the features, some of the common static

analysis techniques used in the literature are explained below:

9

1. Similarity Estimation using Strings

Strings extracted from files using tools are used for finding the similarity between

files [5, 6]. These strings can contain information like URLs, domain names, IP

addresses which the program intends to access. It can also contain information

like the different Windows Dynamic Link Libraries (DLLs) that the program

loads, registry keys etc. The basic idea is that if the strings obtained from a file

under consideration is similar to those of a previously seen malware, then it is

highly likely to be a mutation of that malware file [5, 6]. A similar idea was used

by Konopiskỳ [7] who showed that computer generated string names for function

names, method names and variables are more common in malicious files. They

extract text strings such as function names, method names or variable names

from a file. In such strings, if the ratio of the consonants to vowels is greater than

a predetermined threshold value, the string is likely to be computer generated.

Similarly, if the number of consonants in a sequence without a vowel is greater

than a predetermined threshold value, then the string considered is likely a

computer generated string. Similarity estimation using strings has also been

used in conjunction with other features derived from static or dynamic analysis

for an improved performance [8].

2. Entropy Analysis

In order to hide the malicious content of a file, various obfuscation techniques

are used by the malware authors. One of the popular techniques is packing in

which encryption and compression of malicious code segments are done. Such

code segments have higher entropy than the regular unobfuscated code. In order

to detect such segments, entropy analysis is used. A high entropy value indicates

that the considered piece of code segment consists of distinct values. This was

shown in work done by Lyda and Hamrock [9] who observed that the average

entropy for encrypted and compressed executables is 7.17, 6.80 respectively,

whereas average entropy is only 5.09 for native executables.

Building upon this idea, Sorokin [10] implemented a technique under the assump-

10

tion that the order of code and data areas is similar for variants of a malicious

program. Files were split into different segments based on the different entropy

levels calculated using wavelet analysis. A similarity score (edit distance) was

computed between the respective segments of unknown files with known ones.

Baysa et al. [11] studied the effect of structural entropy in metamorphic viruses

and worms using the same method described in [10]. However, it was noted that

the similarity score was sensitive to the file length as longer files tend to produce

more segments.

3. Byte and Opcode information

N-grams are one of the most commonly used features for malware detection

and classification. An n-gram is a set of co-occurring elements. These can be

either bytes or opcodes. Byte n-grams are extracted from the binary file whereas

opcode n-grams are extracted from assembly level instructions. Such instructions

are obtained by reverse engineering the program by disassembly process, i.e. the

machine code is translated into assembly level language. Table 2.1 shows a

summary of previous works that used byte and opcode information for malware

detection and classification.

Abou-Assaleh et al. [12] introduced a technique using n-grams of code and used

K Nearest Neighbour(kNN) classifier for the detection of malicious opcodes. A

representative profile was created for each benign and malicious class. A target

file was compared to these profiles and matched to the closest one, then assigned

its class label. Viruses and worms were the only two malware types present in

their dataset.

Moskovitch et al. [13] carried out a study on opcodes using text categorisation

concepts for the malware detection and classification task. N-grams of sizes 3 to

6 were extracted, and top features were chosen using Fisher score and classifiers

like Artificial Neural Networks (ANN), Support Vector Machine (SVM), Naive

Bayes (NB) and Decision Trees (DT) were trained. Moreover, an evaluation on

an imbalanced dataset was performed where the percentage of malicious files

11

Table 2.1: Summary of Opcode and Byte Information based Works

Research Work Features Techniques

Abou-Assaleh et al. [12] Opcode n-grams kNN

Moskovitch et al. [13] Opcode n-grams ANN, SVM, NB, DT

Santos et al. [14] Opcode n-grams SVM

Ding and Zhu [15] Opcode n-grams DBN

Hu et al. [16] Opcode n-grams Clustering

Cakir and Dogdu [17] Opcode Sequences Gradient Boosted Trees

Sung et al. [18] Opcode + API Call sequences BiLSTM

Jain and Meena [19] Byte n-grams NB, IL, DT, AdaBoost, RF

Jang et al. [20] Byte n-grams Clustering

Raff et al. [21] PE Header bytes LSTM

Raff et al. [22] Byte sequences CNN

Nataraj et al. [23] Grey-scale Images kNN

Gibert et al. [24] Grey-scale Images CNN

Rezende et al. [25] Grey-scale Images ResNet-50

were varied in the training and test set. They observed that the performance of

a classifier was best when the percentage of malicious files in the training and

test set is the same. Similar to the previous work, Jain and Meena [19] used

bytes n-gram features for detection of malware. In order to reduce the feature

space, classwise document frequency was used, which selects the top k n-grams

which are present in the maximum number of files belonging to a particular

class. These features are then used to train different classifiers available in the

WEKA tool [26].

Santos et al. [14] used a method that was based on the frequency of opcode

sequences present in a file. Several machine learning classifiers were trained,

and they arrived at the conclusion that a higher number of labelled samples

were needed for improved performance. In order to overcome this limitation,

12

in their follow-up work, they proposed several other techniques like collective

classification [27], single class learning [28] and semi-supervised learning [29].

Cakir and Dogdu [17] represented opcodes using Word2Vec embeddings [30] and

a gradient boosting algorithm was used for classification.

Growing number of malware variants pose a challenge for manual feature engi-

neering. This is not only time consuming but also tedious to perform. Hence,

scalable models which can automate this task were developed [16, 20]. Jang

et al. [20] proposed BitShred, which focused on malware comparison using byte

sequences. Feature hashing was used to reduce the high dimensional feature

space, and further clustering was used to group similar malware. However, this

was susceptible to binary level obfuscation. Hu et al. [16] developed MutantX-

S, which extracted n-gram features from opcode sequences. Further, to reduce

the dimensionality of the extracted feature vectors, they used a hashing tech-

nique that lowered the computation and memory requirements. For cluster-

ing, the samples, instead of using the classical k means clustering algorithm, a

prototype-based clustering that uses a small set of representative samples for

faster computation was implemented. They show that their model is able to

process more than 130,000 malware samples within a few hours.

Ding and Zhu [15] developed a model Deep Belief Network (DBN) whose building

block is an autoencoder. Unlike the previous techniques, they used this deep

learning model for reducing the dimensions of the input features. Further, n-

gram vectors from unlabeled files can be used for unsupervised pretraining for

effective encoding of the input vectors. They showed improved performance, in

terms of accuracy, over baseline classifiers such as KNN, SVM and DT.

Since the computational complexity of generating n-grams is high, other alter-

natives were explored [21–23]. Raff et al. [21] showed that a fully connected

and recurrent networks were useful in malware detection when trained on the

first 300 bytes from the PE header of each file. They further extended the work

by training networks on the entire byte sequence (several million bytes long) of

13

an executable [22]. Sung et al. [18] in their approach used opcode sequences

combined with API function names which are then embedded using fastText

algorithm.

An interesting approach to detect malware was proposed by Nataraj et al. [23],

who represented malware as images. The binary files were represented as grey-

scale images. They observed that samples belonging to the same family are vi-

sually similar and, at the same time, distinct from the samples of other families.

This was primarily due to the usage of existing codes for creating variants. They

extracted GIST features from the image, which are low dimensional and discrim-

inative image vectors used for identification of image [31]. These features are

used to train kNN with euclidean distance for the classification task. However,

adversaries can obfuscate their malicious code to bypass this texture analysis

technique which used global image-based features. Instead of using hand-crafted

features and to automate feature extraction, Gibert et al. [24] trained a convo-

lutional neural network using such grey-scale images for classification, whereas

pre-trained weights of ResNet-50 architecture was used for the same [25].

4. API and Function Calls

Application Programming Interface (API) calls are used by programs to access

the services of the operating system. API calls provide an abstraction to the

task that needs to be performed, i.e. the caller need not know about how the

underlying operation gets executed. Almost all the programs that run on Win-

dows OS use Windows API calls to communicate with the OS. For example, to

create a new file or to open an existing file, OpenFileW Windows API is used.

Another example is, the set of API calls WriteProcessMemory, LoadLibrary and

CreateRemoteThread are most likely used by malware for carrying out DLL in-

jection into a process. Hence, API calls can reveal the behaviour of a program

[32] and can be used for detecting the malware.

Zabidi et al. [33] performed a study on a few malware samples and found some

API calls like GetTickCount, GetModuleHandleW etc. are exclusive to malware

14

samples. Sami et al. [34] implemented a framework to classify the Portable

Executable file based on the usage of the API calls with the underlying idea

that they can be used to know the behaviour of the executables. Initially, the

files are processed using a tool called PE analyzer, and the list of imported

API calls are extracted. Further, to extract only the discriminative features,

the Fisher score was used. These features are then used for training a Random

Forest model. Ye et al. [32] implemented a rule-based system. The API calls

were extracted using a PE parser tool. Using these API calls, a static signature

is generated, which is stored in a database. Class association rules are generated

using Objective Oriented Association (OOA) algorithm. These rules, along with

the API calls extracted from a target file, is used for detecting its maliciousness.

Shankarapani et al. [35] studied the statistical properties of API calls in the

files. They used the frequency of occurrence of API calls as an input feature

for SVM, which was used for malware classification. Similar to the byte and

opcode n-grams approach, Faruki et al. [36] showed that API calls n-grams are

also good indicators for maliciousness of a file.

Kinable and Kostakis [37] approached the problem of malware classification using

the function call graph (FCG) clustering technique. In such a graph, the vertices

represent the functions in the program, whereas the function calls are represented

by the edges. To construct such a graph, external tools like IDA Pro [38] or

Radare2 [39] can be used. Graph matching technique was used to compute the

pairwise graph similarity score, and further performance was evaluated using

DBScan and K-medoids algorithms.

Due to the significant performance overhead incurred for graph comparisons

in the previous work, Hassen and Chan [40] used a locality sensitive hashing

(MinHash) to improve the speed of function similarity comparison. In addition

to this, the graph was represented using vector representation with the help of

MinHash signatures of the function. Saxe and Berlin [41] used different static

features like PE import information, histogram of byte entropy features and

15

ASCII strings lengths and other meta-data from the static analysis. They use a

deep learning model along with the Bayesian calibration approach, which instead

of detecting malware in a binary sense, provided probabilities of the file being

malicious.

The above proposed techniques are based on static analysis. Basically, in the static

analysis, a file is examined without actually executing it. Reverse engineering the file

by disassembly is a commonly used technique for analyzing the file. Although this

method is simple, the accuracy depends on the performance of the disassembler used.

Also, with the increasing sophistication of malware, many obfuscation techniques like

code encryption, reordering the program instructions or packing of the executables are

used to hide the real content of the malware and to thwart the analysis process. In

order to overcome such hindrances, dynamic analysis methods are used by researchers,

which is explained in the next subsection.

2.2 Dynamic Analysis

In this type of analysis, the program is allowed to run in a sandbox (controlled)

environment to monitor its behaviour. This behaviour can be monitored at different

levels starting from the lowest level possible (i.e. binary code) to the system as a whole

(e.g. changes made to the file system or registry). Other behavioural observations

include payload installation, network traffic, CPU and memory usage patterns, API

calls made, etc. Unlike the static analysis, it shows the true flow of the actions taken

by the program. Similar to the features obtained from static analysis, some of the

features obtained from dynamic analysis used for malware detection in the literature

are explained below:

1. Instruction Traces

Unlike the sequence of instructions found in the assembly code of a file, the

sequence of instructions executed when the file actually runs is different. This is

due to the presence of function calls, jump statements and also other conditional

16

statements. Dynamic traces (sequence of processor instructions), hence, can

overcome the hindrances due to obfuscation of code by encrypters and packers.

Carlin et al. [42] with the help of dynamic analysis, extracted instruction traces

from both malicious and benign files. They performed two sets of experiments:

i) Opcode count based detection using Random Forest, ii) a Hidden Markov

Model to classify data using Opcode sequences. In their later work [43], they

used opcode n-grams (1 to 3) for improved performance. O’Kane et al. [44]

carried out work in determining the optimal set of opcodes necessary to detect

the maliciousness of a file. They used opcode density histograms created using

runtime traces and concluded that a decent detection rate is achievable using

only a few opcodes. These opcodes were identified using Principal Component

Analysis (PCA) [45]. Instead of using the computationally expensive n-grams,

Anderson et al. [46] modelled the instructions traces as a Markov chain, where

the vertices represented instructions and the transition probabilities are shown

as the edge weights. Further, a similarity (kernel) matrix between the Markov

chain graphs is constructed, which is then used to perform classification. A

similar approach was used by Storlie et al. [47] who used a flexible spline logistic

regression model for the detection of malware.

2. Network Traffic

Malware generates network traffic for two reasons: to identify potential systems

for infection/spreading; ii) to maintain connectivity with command and control

servers by periodically exchanging data, to send/receive updates and commands

etc. For such communications, the malware tries to use known network protocols

to pass through firewalls. Hence, analysing the network activity of a program

can give insights about the nature of the program.

Kheir [48] carried out a study that explored User Agent (UA) anomalies within

malicious HTTP traffic and extracts signatures for malware detection. Beker-

man et al. [49] performed a study to detect suspicious data exchange with the

Command and Control (C&C) servers. Their solution was based on cross-layers

17

(Transport, Internet and Application layers) and cross-protocol (DNS, HTTP,

and SSL protocols) from which behavioural features were extracted. The ob-

tained features were used to train different classification algorithms, out of which

random forest worked the best.

In order to detect the Advanced Persistent Threat (APT) malware, Zhao et al.

[50] carried out an analysis on the internet traffic and malicious DNS. They iden-

tified 14 features that can detect the APT malware C&C domains. Signature-

based detection was also used along with anomaly detection that enabled a bet-

ter defence to the system. However, malware infections that use the IP address

directly instead of domains couldn’t be detected using this approach.

Boukhtouta et al. [51] used Deep Packet Inspection (DPI) and flow packet head-

ers for malware detection and classification. The malware was executed in a

sandbox for three minutes to create a representative profile of malicious traffic.

Further, bidirectional flow features like the number of forward and backward

packets, packet size, minimum and maximum inter-arrival times for forward

packets and other such features were used for different classification algorithms.

A similar technique was adopted by Prasse et al. [52], who used LSTM based

classifier, which is trained on the sequence of flows and detects whether the flow

has its origins from a malware.

3. API Call Traces

Similar to instruction traces, the sequence of API calls that are used by a pro-

gram depends on the execution environment. Such API calls are collected by

executing the program, usually on a virtual machine. Analysing such a sequence

of API calls can give an idea about what a program intends to do.

Rieck et al. [53] proposed a technique that used machine learning for automatic

analysis of malware behaviour using information like API calls and its param-

eters. The files are executed in a sandbox environment, and such behavioural

features were monitored. These observed behaviours were embedded into a vec-

tor space and further used by the machine learning algorithms. In order to

18

identify the novel classes of malware having similar behaviour, clustering was

used. An unknown new malware is assigned to one of these classes using clas-

sification. This dual approach was used to handle an increasing number of files

encountered on a day-to-day basis.

Uppal et al. [54] used n-grams of API calls as features for detection purpose.

In order to select distinct and useful n-grams, an odds ratio of each n-gram

is calculated, and further, the top-ranked features are chosen. An evaluation

of 4 grams using SVM on a dataset of 270 binaries reportedly gave the best

performance.

Dahl et al. [55] was the first to propose a deep learning model for malware

classification using features obtained from dynamic analysis. They employ sparse

binary features, including API trigrams, API calls with parameters, and file

strings. Their architecture projected the high dimensional feature vector to a

lower-dimensional dense vector. The authors found that increasing the number

of hidden layers to 2 or 3 did not lead to an improvement in the accuracy when

compared to a shallow architecture.

Huang and Stokes [56] performed manual feature engineering of API calls into

114 higher-level concepts. For example: Different ways to create a file include:

i) fopen() call in C Language, ii) In user mode, CreateFile(), and iii) ZwCreate-

File() method in kernel mode. All these different methods can be mapped to an

abstract higher-level concept, CreateFile event. Along with this, API trigrams

and null-terminated tokens are also used. The detection performance using a

deep learning architecture was evaluated on a private dataset consisting of 6.5

million files, the largest in the literature.

The previous work [56] did not consider the order of invocation of the API

calls. An alternative approach is to use the sequence of the API calls in their

invocation order as features for the classifier. Galal et al. [57] in their work

captured traces of API calls invoked by the files during its execution. Using

a heuristic function, a representative semantic feature was created using the

19

extracted sequence of API calls. These semantic features provide high-level

insight to a malware analyst. Athiwaratkun and Stokes [58] explored other deep

learning architecture like LSTM to capture long term dependencies in API call

sequences. Kolosnjaji et al. [59] combined both the recurrent and convolutional

approaches on the API traces for optimising malware classification.

4. Memory Dumps

Memory dumps refer to the volatile data that is extracted from a computer’s

physical memory. Since every program at some point during its execution ends

up on the RAM, analysis of such memory dumps allows us to discover system

inconsistencies that might indicate the presence of rootkit and also identify the

overall state of the system [60]. Memory analysis is also useful in detecting

fileless malware or in-memory malware, which leaves no trace on the disk.

Mosli et al. [61] investigated three types of features extracted from memory im-

ages - API function calls, imported libraries and registry activities. Their results

showed that registry activities gave the best performance for detection when used

as input features to SVM. Case and Richard III [62] analysed memory dumps to

detect Object-C malware. Javaheri and Hosseinzadeh [63] used multiple dumps

taken at different times in order to detect obfuscated malware at the user and

kernel level of OS. However, these methods using memory dumps are based on

heuristic analysis and need deep knowledge of OS internals.

Dai et al. [64] converted the memory dumps into grey-scale images using a sim-

ilar approach in the earlier work [23], and image features such as Histogram of

Gradient (HOG) is used to train multi-layer perceptron. Recently, Bozkir et al.

[65] used RGB based encoding of the dump files and used global image features

such as Gist [31] and HOG for classification.

While the main objective of dynamic analysis remains to detect the malicious

activity of a program under execution, it is necessary to take additional precautions

to avoid unnecessary risks to the underlying system. Two popular techniques for

creating a risk-free environment are using a virtual machine or physical machines that

20

are set up with air-gapped networks, where the system is isolated from the internet

or any other network. A drawback with the latter approach is that malware that

runs on such machines have no network access. Hence, they may not be at their

fullest capabilities due to no updates via the internet, command and control and other

triggers. Using a virtual machine is seen as an alternative in such cases. With the

increasing sophistication of some malware, they can detect the presence of a virtual

environment and hence, show a benign behaviour to hinder the analysis process. Also,

such techniques are not suitable for detecting malware that are dependent on some

external event or waits for a specific time to trigger their malicious activities. Although

dynamic analysis is more accurate compared to static analysis, it is notoriously time

consuming and involves laborious manual effort.

2.3 Using Hybrid Approach

Hybrid analysis tries to overcome the limitations of the previous two techniques

by combining both the techniques. A number of previous works used a combination

of both static and dynamic features [66–68]. Pektaş and Acarman [66] used API call

n-grams and other networking features for detection. Similar work was carried out by

Islam et al. [67] where the features included API calls with their parameters and other

string information.

Han et al. [68] built MalInsight that used a profiling approach where the features

were built using: i) Basic structure profile that includes the size of PE sections ii) low-

level profile, i.e. API and DLL information and iii) high-level profile, i.e. representative

operations on files, registry and network. In their subsequent work [69], they studied

the relationship between the static API calls and the dynamic API calls and built a

semantic mapping between them. Their framework also gave insights for researchers

regarding the malicious behaviour of a file.

Kolosnjaji et al. [70] built an ensemble of neural networks that has two sub-

networks: i) a convolutional network that learns features from disassembled binaries

ii) a feed-forward network that takes a set of features like PE Header metadata, list

21

of imported functions and DLL files. The outputs from each network are fed into a

neural network that generates the final output.

In order to reduce the additional overhead incurred due to time for dynamic anal-

ysis, Kumar et al. [71] allowed a sample to be run only for four seconds. Behavioural

information like network data, system calls, process and registry, were collected during

this time period. Other static features from the PE header too were used for classifi-

cation using different algorithms. A similar approach was followed by Rhode et al. [72]

where the set of features that were considered is API calls and other system metrics.

The system metrics included CPU usage, maximum process ID, bytes received and

transmitted, memory use, swap use and the total number of processes.

Malware has its widespread attack not only on Windows-based systems but also

on other operating systems like Android. Some of the recent works to detect Android-

based malware are mentioned in the next section.

2.4 Android Malware Detection

Like Windows executables, features like opcodes, strings, etc., can be extracted

from Android applications for malware detection. However, there are some features

that are specific to Android applications that are indicators of its maliciousness. One

such commonly used feature is the set of permissions that an app requires to execute

specific code or functionality. Some of the android malware detection techniques are

briefly explained below.

Vinayakumar et al. [73] proposed a permission based method to classify Android

applications as benign or malicious. They used sequences of permissions as features for

training LSTM, which is used to identify a malicious application. Nix and Zhang [74]

used sequences of API calls extracted from the apps as features. With their extensive

experiments, they show that their CNN model performed better than LSTM model

for API call sequences.

Feizollah et al. [75] evaluated the effectiveness of using Android’s intents for de-

tecting malicious apps. An intent is a communication mechanism that allows the

22

usage of various functions provided by components of the same or other applications.

They show that using intent based features can help in identifying malware better

than using permission based features. However, they argued that using intent based

features solely is not enough. Taheri et al. [76] took a hybrid analysis approach using

a combination of features like permissions, intents, API calls, and network flows for

android malware detection and family identification. These features were embedded

and concatenated, further used to train a Random Forest classifier.

Similar to the earlier image based techniques used for detecting Windows-based

malware, Al-Fawa’reh et al. [77] represented APK files as grey-scale images. Deep

learning models like CNN with transfer-learning were used to detect the malware.

Recently, Almahmoud et al. [78] compared conventional machine learning classifiers

with deep learning model RNN for malware detection. The features used were a

combination of permissions, permission rate, API calls and system events. They show

that RNN outperformed the machine learning classifiers using these features. Jer [79]

used n-grams of opcodes as features to detect and classify malware. They created a

feature vector based on the presence or absence of an opcode n-gram. This was used

to train an SVM classifier. McLaughlin et al. [80] used CNN on opcode sequences to

avoid relying on manually designed malware features. Mateless et al. [81] proposed a

technique to detect and classify malicious APK files based on their decompiled source

code. They used NLP based methods on the decompiled code for malware detection.

2.5 Conclusion

With the growing amount of malware, manual analysis is no longer seen as a viable

option. Hence, machine learning techniques are used in the literature to avoid manual

analysis of the malware. Such techniques relied on features like opcodes, API calls,

network traffic etc. Recent approaches have used deep learning models for malware

detection, mainly due to their ability to handle large volumes of malware without

relying on domain expert’s knowledge to define discriminative features. It is not only

important to detect malware but also to identify its family, as this helps in mitigating

23

the attacks by allowing one to quickly break down the techniques that the attacker

had previously employed. Taking motivation from this, we describe Transformer-based

models for the task of malware detection and classification.

24

Chapter 3

Windows Malware Detection and

Classification using Opcode

Sequences

3.1 Introduction

The increasing popularity of Microsoft Windows-based devices has led to a major-

ity of the malware being created to target such devices. Many of the new malware are

a variant of the existing malware. Hence, there arises a need to not only detect such

malware but also in classifying them based on their family to mitigate their attacks.

Although many of the existing works in the literature have tried to address this prob-

lem, we attempt to solve this problem by using Transformers, which offers superior

classification accuracy in many other domains such as natural language processing

[82] and computer vision [83]. Unlike the signature-based approach, this technique is

successful against the unseen malware of the real world. In this chapter, we propose

a Transformer-based model that uses opcode sequences for malware detection and its

family identification.

In specific our contributions in this chapter are the following.

• We show that malware identification and classification can be done with high

25

accuracy using only a few opcodes taken from the beginning of an executable

binary.

• We propose a Transformer-based model that can classify portable executable

based malware samples using opcode sequences.

• We experiment with two different datasets and show that our method outper-

forms the other similar techniques found in the literature.

The remaining part of this chapter is divided into four sections. In Section 3.2 we

summarise the closely related work in malware detection and classification using static

analysis. In Section 3.3, we describe our proposed technique for malware detection

and classification using opcode sequences. Experimental evaluation of the proposed

technique is shown in Section 3.4. Finally we conclude this chapter in Section 3.5.

3.2 Related Work

As described in Chapter 2, several works [14, 16, 23, 41] have proposed techniques

for malware detection using features obtained from static analysis. These prior works

for malware detection use a significant amount of manual feature engineering, which

requires domain level expertise. In order to reduce the amount of manual feature

engineering, deep learning based techniques were explored in [17, 18, 21, 22]. The

entire sequence of bytes in a file was used for detection in [22] whereas few other

works [17, 18] use entire sequence of opcodes present in a file for detection. Instead

of relying on a file’s entire content, we propose a technique that uses only a few

initial opcodes in a file for malware detection and classification, with minimal feature

engineering.

3.3 Proposed Malware Classification

This section describes our proposed malware detection and family identification

technique using a Transformer.

26

3.3.1 Problem Definition

Opcodes present in a program are closely related to a program’s logic. Consider

a file fi P F where F is a collection of Windows OS binary executables and it is rep-

resented as xOPfi , Classfiy where OPfi represents the sequence of opcodes present in

fi. For malware detection, the term Classfi P pbenign,maliciousq, while for malware

classification, Classfi P pMF1,MF2, ¨ ¨ ¨ ,MFkq where MFk denotes malware family

k.

We define the problem of malware detection and malware family classification

respectively as below:

• Given a set of Windows binary executable test files FT , we need to label them

with a class identifier i.e. malicious or benign to each file fi P FT based on the

opcode features OPfi.

• Given a test file collection FT containing malicious files, we need to assign a

malware family i.e. MFk to each file fi based on the opcode features OPfi.

3.3.2 System Architecture

For malware detection and family identification, we use a deep learning framework

that relies on the analysis of the opcodes extracted from the binary executables of

Windows OS. It comprises of two main sub-components; a Feature Preprocessor and

a Deep Learning based classifier. The framework is illustrated in Figure 3.1.

Feature Preprocessor: It consists of two components: (i) Disassembler, which gen-

erates the assembly level instructions of an executable input file; and (ii) Opcode

parser, which takes the assembly-level code as input and gives the extracted opcodes

as output.

Deep Learning based Classifier: From the extracted opcodes, a Transformer-based

deep neural network is trained to perform the task of malware detection. In a similar

fashion, a network is also trained for identifying the family of the given malware.

In the following subsections, we discuss the phases of opcode extraction and the

use of deep learning based classifier in detail.

27

Disassembler

Opcode Parser

Executable
Files

Deep Learning
Classifer

Detection and
Classification report

Opcodes

Figure 3.1: Proposed System Architecture

3.3.3 Opcode Extraction

In order to generate features for our classification model, we do a static analysis of

the executable files. Specifically, we focus on the opcode sequences present in a file. To

extract such opcodes, we use a disassembler. Given a file fi, we initially disassemble

the file using a disassembler which gives us an assembly file. This assembly file contains

a series of addresses, instructions, API calls and other data. Figure 3.2 (a) shows a

C function that calculates the square of a given number and Figure 3.2 (b) shows its

corresponding assembly level code. The mapping between the two languages is shown

by the different colour blocks.

1 int square (int num) {
2 return num * num
3 }

square(int):
1 push rbp
2 mov rbp, rsp
3 mov DWORD PTR [rbp-4], edi
4 mov eax, DWORD PTR [rbp-4]
5 imul eax, eax
6 pop rbp
7 ret

(a) A function to calculate square
of a number in C language

(b) Corresponding assembly level code

Figure 3.2: A C function and its Corresponding Assembly Code

The instructions are generally represented in the form of opcode mnemonics fol-

28

lowed by its operands. For instance, in the instruction in line 2 of Figure 3.2 (b)

mov rbp, rsp; mov is the mnemonic, rbp is the source operand and rsp is the destina-

tion operand. We will refer to the opcode mnemonics as just opcodes for the sake of

convenience. We consider only the opcodes and ignore the operands as this represen-

tation is more robust against changes in the operands, as observed in a study carried

out by Shabtai et al. [84]. Further, these extracted opcodes are represented by an

opcode feature vector OPfi . Along with this, we also assign a class label Classfi to

the file where Classfi is benign or malicious in case of malware detection and whereas

for malware classification, it is the family name. Thus each file is represented by an

opcode sequence, as shown below in Equation (3.1),

OPfi “ xopi1, opi2, opi3, ¨ ¨ ¨ , opij, ¨ ¨ ¨ opiny (3.1)

where opij represents jth opcode present in the file fi having n opcodes. For the

sample assembly code shown in Figure 3.2 (b), the opcode sequence would be of the

form as shown in Equation (3.2). These sequences of opcodes extracted from all files

of training set will be used to learn the relationships that exist between the opcodes

using a Transformer-based model as elaborated in the next subsection.

OPfsample
“ x¨ ¨ ¨ , push,mov,mov,mov, imul, pop, ret, ¨ ¨ ¨ y (3.2)

3.3.4 Deep Learning based Classifier

Since the input to the classifier is an opcode sequence, we use a Transformer

[85] based architecture, which is effective in handling sequence based input. Unlike

the conventional sequence-to-sequence architecture, which can only take short-term

context into account, a Transformer-based architecture can encapsulate and preserve

long-term dependencies. Moreover, the sequence-to-sequence architectures process

sequence elements recursively, which hinders parallelisation while training. In contrast,

the Transformer models refrain from recurrence, leading to a significantly reduced

training time [86, 87].

29

!
"#
$
#
#
%
&
'
()

*
+
,
-.
"(%

.
"(%
-!!

/
0
1
2
3
%

4
5
67$
1
6"2
8

"#
$
%
&

!
"
!"

!
"
!#

!
"
!#
$"

#'(

#
!#
$"

#
!"

#
!%
&
'

$
!%
&
'

$
!"

$
!#
$"

$
!#

92:%8";%7

.<=->-?4@A->-+2B6&$5

,
$
(C
$
7%
--

!
%
6%
1
6"2
8

,
$
(C
$
7%
-.
$
&
"()
--

<
($
#
#
"D
1
$
6"2
8

!
!"
!
"
#
$%
#
&' "

(
)
*$+
$,
-
.
/ "

!
!"
0
1
2
&' "

0
1
3
/&444&' "

0
1
5
' "

!
"
#
$%
&"
'(
&"
)
&*
+
"
,
,
*
&

-
"
"
)
'."
#
&/
0/
1
'2
#
,
"
3
'4
.#
,
,
05
"
&

4&'%33"8E-@$)%7

%&
!%
&
'

%&
!"

%&
!#
$"

%&
'(

97$8#B27&%7-48123%7

F
igu

re
3.3:

A
n

O
verv

iew
of

th
e

P
rop

osed
A

p
p
roach

30

A Transformer architecture consists of two main components: an encoder and a

decoder. We use a variant of the Transformer model called BERT [82] which uses only

the encoders. Another key difference between BERT and a Transformer is that BERT

can effectively capture information bidirectionally, that is from both the left and right

context of a token (opcode), unlike Transformers which are unidirectional. Figure 3.3

shows an overview of the proposed classification approach. The extracted opcodes

OPfi “ xopi1, opi2, opi3, ¨ ¨ ¨ opiny, are tokenized using a tokenizer algorithm to obtain

tokens Tfi “ xti1, ti2, ti3, ¨ ¨ ¨ tiny where Tfi P N. Tokenization is essentially the process

of splitting a sequence into smaller units, such as words or subwords. These smaller

units are termed as tokens. These tokens are then passed through an embedding

layer to obtain embeddings EMfi “ xemi1, emi2, emi3, ¨ ¨ ¨ eminy, where EMfi P Rnˆe,

in which e denotes embedding dimension. In order to harness the global contextual

information in a sequence, the self-attention technique is used which captures the

relevance amongst every pair of tokens. To this end, each embedding EMfi is projected

to Key K, Query Q and Value V matrices using three corresponding learnable weight

matrices WK P Rnˆek , WQ P Rnˆeq , and W V P Rnˆev . For a given embedding EMfi ,

the self-attention A P Rnˆev is calculated as product of the values to the softmax of

the normalized dot product of keys and queries as shown in Equation (3.3).

ApQ,K, V q “ σ

ˆ

Q ¨KT

?
eq

˙

V (3.3)

where σ denotes the softmax operation.

For capturing multiple complex relationships amongst the tokens, the Transformer

architecture computes multiple attentions for the given sequence. To achieve this, the

architecture utilizes multiple self-attention blocks, each with its own set of learnable

weights tWQb ,WKb ,W Vbu where b P 0 . . . B ´ 1 and B is the total number of attention

blocks. For a given embedding Emfi , the output of B self-attention blocks are then

concatenated into a single matrix rA0, A1 ¨ ¨ ¨AB´1s P RnˆB¨ev which is then projected

using the weight matrix W P RB¨evˆe to get the final output Zfi.

There are two stages in training a BERT model: Pre-training, which is then fol-

lowed by Fine-tuning. Pre-training task is usually performed in a self-supervised man-

31

ner on comparatively larger datasets, hence enabling the model in learning highly gen-

eralised and expressive relationships while circumventing cumbersome and expensive

manual labelling [82, 85]. The model weights are then fine-tuned for the downstream

tasks using a small-scaled dataset explicitly designed for the task at hand [88].

Pre-training: For pre-training stage, the model is fed with a sequence of opcodes,

out of which 15% are masked. It is then trained to predict such opcodes based on the

context. This technique is known as Masked Language Modelling [82]. An illustration

of this concept is shown in Figure 3.4.

MASKED

Transformer Encoder

ziCLS zi1 zin-1 zinPREDICT

[CLS] opi1 opinopij opij-1

Tokenizer + Embdedding Layers

emiCLS emi1 emin-1 eminemij

Figure 3.4: Illustration of the Pre-Training Task using Masked Language Modelling

Fine-tuning: For classification tasks, we make use of a special token named [CLS].

This token is prepended to the start of every sequence. Its corresponding output ziCLS

is given as an input to a fully connected layer as shown in Figure 3.5. Further, a prob-

ability distribution vector is generated using the softmax layer. This vector is of size

2 for the task of malware detection, where the classes are benign and malicious. Sim-

ilarly, for the malware family classification task, this vector is of size K, representing

the total number of distinct malware families. In the training phase, we compare this

vector with the ground truth and loss is computed. This loss is then backpropagated

32

Transformer Encoder

ziCLS zi1 zin-1 zin

[CLS] opi1 opinopij opij-1

Tokenizer + Embdedding Layers

emiCLS emi1 emin-1 eminemij

zij

0.02 0.9 ...

0 1 ...
Ground Truth

Loss

FCN + ReLU + Softmax

Figure 3.5: Fine-Tuning Task for Classification

to update the weights of the layers. Whereas in the testing phase, the predicted class

is the one with the highest probability.

3.4 Experiments

In this section, we discuss the datasets used to evaluate our model. Subsequently,

we explain the evaluation metrics used to calculate the efficacy of the proposed model.

In the next subsection, we discuss the experimental setup and parameter selection.

Finally, we present the results, followed by a performance comparison with previous

works.

33

3.4.1 Dataset Details

The experiments are performed on two different datasets, both of which consists

of Windows OS portable executable files. The first dataset contains benign and mali-

cious files, while the second dataset consists of malware belonging to different families.

Dataset-I: This dataset has Microsoft Windows PE32 executable files marked as

benign and malicious. We collected the benign files from a fresh installation of the

Windows 8 operating system. Other open-source software were also added to this

collection. Malicious files were collected from a repository of VirusTotal [89]. Table

3.1 shows the total the number of samples along with number of samples used for

training and testing.

Table 3.1: Characteristics of Dataset-I

File Type Total Samples Training Testing

Benign 4349 3044 1305

Malicious 5778 4044 1734

Total 10127 7088 3039

Dataset-II: Second dataset used in our experiments has disassembled code and cor-

responding byte codes of Microsoft Windows PE32 files of known malware families.

These files are collected from the Microsoft Malware Classification challenge [90]. This

malware family dataset (further referred to as Dataset-II) is publicly available on Kag-

gle [91] and has been widely used for research purposes. This dataset, when uncom-

pressed, is half a terabyte in size and consists of nearly 10k labelled malware samples

classified into 9 distinct malware families. Every sample is represented using two

files. One is a byte file containing the malware’s binary contents represented using

a hexadecimal format, and the other is a disassembled file obtained using IDA Pro

disassembler [38]. Table 3.2 presents the family distribution of the malware samples.

34

Table 3.2: Characteristics of Dataset-II

Family Name Total Samples Training Samples Testing Samples Type

Gatak 1012 708 304 Backdoor

Kelihos ver1 386 270 116 Backdoor

Kelihos ver3 2935 2054 881 Backdoor

Lollipop 2470 1729 741 Adware

Vundo 446 312 134 Trojan

Ramnit 1513 1059 454 Worm

Simda 33 23 10 Backdoor

Tracur 294 206 88 TrojanDownloader

Obfuscator.ACY 1168 818 350 Other Obfuscated malware

Total 10257 7179 3078 -

3.4.2 Evaluation Metrics

We use accuracy, precision, recall and F-1 score as metrics to evaluate the perfor-

mance, and they are defined as follows:

1. Accuracy: It is calculated as the number of samples predicted correctly divided

by the total number of samples.

Accuracy “
TP ` TN

TP ` TN ` FP ` FN

(3.4)

2. Precision: It is calculated as the number of samples which are actually malware

divided by the total number of samples identified as malware.

Precision “
TP

TP ` FP

(3.5)

3. Recall: It is calculated as the number of samples which are actually malware

divided by the total number of malware samples.

Recall “
TP

TP ` FN

(3.6)

4. F1-score: It is calculated as the harmonic mean of precision and recall.

F1Score “
2 ˚Recall ˚ Precision

Recall ` Precision
(3.7)

35

where the total number of malicious and benign files correctly classified by the model

is represented as True Positive pTP q and True Negative pTNq respectively. The total

number of benign files which are misclassified as malicious by the model is represented

as False Positive pFP q. Similarly, the total number of malicious files misclassified as

benign by the model is represented as False Negative pFNq.

3.4.3 Experimental Setup

We use Dataset-I for the task of malware detection and Dataset-II for malware

classification (family identification). For disassembling the executables, we use Ghidra

disassembler [92], a collection of software reverse engineering tools developed by the

National Security Agency, USA. We use a python script to extract the opcodes from

the disassembled files. The extracted opcodes are then stored in a file with Comma-

separated values (CSV) format, which is later used as an input to the model. In the

case of Dataset-II, the files were already disassembled using IDA Pro [38]. Some of the

files in this dataset contained no opcodes. Hence, we removed such files from both the

training and testing sets. For our experiments, we split the dataset in a ratio of 70:30

for training and testing, respectively, as indicated in Table 3.1 and Table 3.2. We

use the transformer library of Hugging Face [93] for the implementation of the BERT

model. The batch size, which is the number of training samples that are processed in

one iteration, is set to 32. The model weights are updated using AdamW optimiser

[94]. The learning rate (lr) is set to 9ˆ 10´5. Furthermore, we use cross-entropy loss

and the number of epochs as 10 for training the model.

3.4.4 Ablation Study

In this section, we discuss the outcomes of the performed ablation study, which are

done to select the hyper-parameters and techniques providing the optimum results.

We do the ablation study on the following hyper-parameters and techniques:

1. Tokenizer: The BERT model uses the WordPiece [95], a subword segmentation

algorithm for tokenization [82]. In the WordPiece algorithm, the vocabulary is

36

initialized to include every character and symbol present in the training dataset.

Then the most likely combinations of symbols or subwords in the training set

are added iteratively to the vocabulary until a predefined vocabulary limit is

reached. The algorithm results in the words of the training set being split into

one or more subword tokens. This approach has major drawbacks in our case

due to a comparatively smaller vocabulary, such as opcodes present in Intel’s

instruction set. To explain this, consider an example of an opcode sequence

xmov, cmpsby having length 2. Using the WordPiece algorithm, the tokenized

form of this sequence is xmov, cmp,##sby where ## is used as continuation

symbol. This technique of tokenization changes the meaning of the opcode and

also increases the number of tokens. To overcome this issue, we use word-level

tokenization, where the tokens are generated using the space as a delimiter,

thereby preserving the original form of the opcodes. This further reduces the

complexity of the classification as the model no longer needs to learn to associate

a large number of subword tokens to each label [96].

2. Opcode Sequence Length: A simple method is to use the entire opcode

sequence of an executable for training and testing purposes. There exist sev-

eral works in the literature which utilize this technique. However, the opcode

sequence length varies from file to file. Furthermore, it is computationally ex-

pensive to train and test using the entire opcode sequence.

Table 3.3: Malware Detection Performance with Varying Sequence Length

Sequence Length Accuracy

128 0.621

256 0.761

384 0.897

512 0.982

We study the sensitivity of the proposed method with respect to the sequence

length for the classification task. The experiments are performed by changing

37

the length of the opcode sequence in steps from 128 to 512 and then testing it

on Dataset-I. It can be observed from Table 3.3 that there is an improvement in

model accuracy when we increase the length. The accuracy of the classification

is at an acceptable level for a sequence length of 512. We consider this length of

the opcode in our subsequent experiments.

3. Number of Encoder layers: The number of encoder layers in Base and Large

variants of BERT is 12 and 24, respectively [82]. The number of parameters

of the model is directly proportional to the number of encoder layers shown in

Table 3.4. The Base and Large variants of BERT consist of massive 86 million

and 171 million parameters.

Table 3.4: Number of Parameters in the Model on Varying the Number of

Encoder Blocks

Number of Encoder Parameter Count

Blocks (in millions)

1 8.46

3 22.64

6 43.90

12 86.42

24 171.48

Sanh et al. [97] show that one can achieve comparable performance even with

a significantly lower number of encoder layers and model parameters. They

show that even by reducing the size of the BERT model by a margin of 40%,

the model was able to preserve 97% of its understanding while improving the

inference speed by 60%. Moreover, the previous experiments performed by Si

et al. [98] and Li et al. [99] show that when working on a smaller vocabulary,

optimum results are obtained for a lower number of layers. We observe that we

can achieve on par performance by using only one encoder with only 8 million

parameters. This is a significant reduction of 90% and 95% in models parameters,

38

respectively, compared to that of Base and Large variants of BERT. Moreover,

we also note a significant decrease in the training and inference times when we

use only one encoder layer.

3.4.5 Evaluation Results

We perform our experiments with settings mentioned previously to assess the per-

formance of the proposed method for malware detection, using Dataset-I, and for

malware classification, using Dataset-II. Table 3.5 and Table 3.6 show the outcome

of evaluation using confusion matrices for these two cases respectively. It can be ob-

served from Table 3.5 that there are 27 false malicious (identified as malware) out of

1305 benign executable files. Similarly, 27 out of 1734 malware samples are identified

as benign. This further establishes that our model can efficiently detect both malware

and benign files with minimal errors.

Table 3.5: Confusion Matrix for Malware Detection Experiment with Dataset-I

The confusion matrix of Table 3.6 shows the number of correct (entries of principle

diagonal) and wrong predictions for experiments with Dataset-II. We can see that our

model performs well in classifying the family of a given malware with a small number

of misclassifications. It is worth noting that some of the previous studies [17] have used

equal samples from only four families, whereas we consider all the families with an

imbalance in the dataset. Thus our proposed model performs better with imbalanced

sample sizes too. We also show the Receiver Operating Characteristic (ROC) curves

for malware classification experiments in Figure 3.6. In Figure 3.6, for each subplot (a)-

39

Table 3.6: Confusion Matrix for Malware Classification with Dataset-II

40

(a) Ramnit vs the others (b) Kelihos_ver1 vs the others

(c) Vundo vs the others (d) Gatka vs the others

(e) Tracur vs the others (f) Kelihos_ver1 vs the others

(g) Obfuscator.ACY vs the others (h) Simda vs the others

(i) Lollipop vs the others

Figure 3.6: ROC Curves of Every Malware Family in Comparison to the Rest of the

Families

41

(i), we consider one family as the positive class, whereas the rest of them collectively

is considered as a negative class. The lowest AUC value is 0.994557 which is for the

malware family Simda shown in Figure 3.6(h) and highest value of 1.0 for malware

family Kelihos ver3 as in Figure 3.6(f).

3.4.6 Performance Comparison

For a more thorough analysis, we compare the performance of our proposed model

for malware detection and classification tasks with the two recently proposed methods

[17, 18].

Cakir and Dogdu [17] used a shallow deep learning based feature representation

technique known as Word2Vec [30]. Word2Vec was originally used for generating em-

beddings for words in natural language. They trained a Word2Vec model using the

opcodes sequences, which is then used to generate embeddings for individual opcodes.

Opcodes having similar meanings have embeddings that are closer to each other in the

vector space. These embeddings are given as input features to a Gradient Boosting

Method [100], an ensemble technique, which is then used for malware family identifi-

cation.

Sung et al. [18] in their approach augmented the static opcode sequences with API

function names. They use a fastText based model which considers each opcode as

a set of character n-grams which is then used for generating input embeddings that

have a lower dimension than the traditional one-hot encoding approach. These input

embeddings are fed into a Bidirectional LSTM network to analyse the correlation with

sequential opcodes. Using the details mentioned in their paper, we have performed

the experiments using their method and presented the results.

Both techniques have been used only for the classification of the malware family.

We extend those techniques for both malware detection and family classification tasks.

The performance comparison for malware detection on Dataset-I is shown in Table 3.7.

It can be observed from Table 3.7 that our method has better accuracy, precision, recall

and F-1 score.

Similarly, Table 3.8 provides the accuracy, precision, recall and F-1 score for the

42

Table 3.7: Performance Comparison for Malware Detection task on Dataset-I

Method Sequence Length Accuracy Precision Recall F1-score

Cakir and Dogdu [17] Entire sequence 0.952 0.945 0.920 0.932

Sung et al. [18] Entire sequence 0.968 0.985 0.958 0.971

Proposed 512 0.982 0.984 0.984 0.984

experiments performed on Dataset-II for malware family identification. We can notice

that our proposed approach outperforms these two methods in this case too.

Table 3.8: Performance Comparison for Malware Classification task on Dataset-II

Method Sequence Length Accuracy Precision Recall F1-score

Cakir and Dogdu [17] Entire sequence 0.955 0.957 0.955 0.956

Sung et al. [18] Entire sequence 0.942 0.950 0.947 0.946

Proposed 512 0.981 0.981 0.981 0.981

3.5 Conclusion

Detecting malware and family identification is an important problem. In this chap-

ter, we proposed a deep learning based malware detection method that uses opcode

sequence from the Windows executable files. We use a Transformer-based model to

learn semantic relationships between opcodes within a sequence. Our experimental

evaluation with two datasets showed improved performance over the recent techniques.

Further, our proposed model can work with initial few opcodes from executable files

for detection and classification. Our current work has a limitation in the case of ex-

ecutable files which are encrypted or packed. We present techniques to handle such

files in the next chapter.

43

Chapter 4

Windows Malware Detection and

Classification using Memory

Dumps

4.1 Introduction

In the previous chapter, we proposed a Transformer-based model that used opcode

sequences extracted from a file using static analysis. However, such a technique would

fail in two scenarios: i) when the code is obfuscated or encrypted ii) when there is

no executable available for disassembly, i.e. the malware resides in the memory to

carry out the attacks, also known as Fileless malware attacks [101]. Unlike traditional

malware, such malware isn’t written to disk and attacks the system without leaving

any trace (file) due to it being present in RAM. One way to carry out fileless malware

attacks is through phishing links on the internet when clicked, loads the malicious

script into the RAM and accesses user’s data [102].

In this chapter, we use memory based analysis through which memory dumps

are extracted and further used for the detection and classification of malware. Our

contributions in this chapter are:

• We perform a memory dump based malware detection and classification ap-

45

proach that can detect obfuscated and packed malware.

• We propose machine learning based models that uses features extracted from

the memory dump images for detection and classification of malware.

• We also propose a Transformer-based model that can directly use the memory

dump images for malware detection and its family identification.

• Our extensive experiment with a publicly available dataset shows that our method

outperforms the similar techniques found in the literature.

The remaining part of this chapter is structured into four sections. In Section 4.2

we summarize the closely related work in malware detection and classification using

memory dumps. In Section 4.3, we describe our proposed technique for malware

detection and classification using memory dumps. Experimental evaluation of the

proposed technique is presented in Section 4.4. In the end, we conclude this chapter

in Section 4.5.

4.2 Related Work

As described in Chapter 2, some of the proposed techniques rely on manual feature

extraction from memory dump [61, 63]. An alternative approach is to represent the

memory dumps as visual images and use features such as image descriptors extracted

from images for detection and classification [64, 65]. We perform a comparative analy-

sis on different handcrafted image descriptors, which are used to train different machine

learning algorithms. Also, we use a Transformer-based model for the detection and

classification of the malware using the memory dumps.

4.3 Proposed Work

This section describes our proposed malware detection and classification technique

using memory dumps. Our proposed approach has two main phases, which are elab-

orated in the subsequent subsections.

46

Memory Dump Extraction

Sandbox Dump File

1011
0101
1001

Sample
Dump Image

Extracted Visual
Features ML Classifier Classification

Result

Deep Learning Based Classifier Classification
Result

Visual Feature Extraction

Figure 4.1: An Overview of the Proposed Approach

4.3.1 Memory Dumps

Any obfuscated or encrypted malicious file that executes on a system needs to

decrypt itself in order to run. Such a program under execution will have its data in

the memory. These data may include different information like text segments, data

segments, layout of the thread stacks, heap areas, DLL calls of the process etc., which

are captured using memory dumps. Memory dumps are mainly of two different types:

i) full memory dump, where all the contents of system memory are recorded, ii) process

memory dump, which extracts the contents specific to a process. The process specific

memory dump file is considered for our work. The memory dump extraction and

image representation phase are performed in a similar way as in the previous work

[65]. We briefly explain it here.

Memory Dump Extraction: To obtain the dump files, the program is executed in a

sandbox environment so as to avoid any harm to the underlying system. The program

is allowed to run, and the memory dump is captured using a memory dump tool like

Procdump[103]. A delay is added between the start of the program’s execution and

capturing of the dump in order to ensure that the program is active. Figure 4.1 shows

the memory dump extraction phase.

Memory Dump Image Representation: The extracted dump files are converted

into images so as to be used for different machine learning algorithm. These files are

binary files consisting of 0s and 1s. Every byte has an unsigned value ranging from

0 to 255. For creating individual pixels of the image, we consider three consecutive

bytes whose values correspond to Red, Green and Blue values of a pixel, respectively.

47

Image

10101001 169

Dump file

Unsigned Decimal
Representation

186
36

10101001 10111010 00100100
00111010 10010110 10110111
00101101 00111110 00100100

10111010
00100100

First three
bytes

Pixel

Figure 4.2: An Example of Converting Dump File to Image

Figure 4.2 shows a visualisation of converting a dump file to an image. Since the size of

the dump file is dependent on the program it belongs to, the images will have varying

sizes. Having a non-uniform and large-sized image can affect the efficiency of different

feature extraction and classification algorithms. Hence, the images are transformed

in a square sized shape using Lanczos interpolation available in the OpenCV library

[104].

4.3.2 Visual Feature Extraction and Classification

As we are dealing with images, we need to extract image-based features that can

be used for the detection and classification of the obtained memory dump images.

The image-based features are generally divided into local and global features. The

global features capture information from the whole image, whereas the local features

give information about different patches of a given image. This is done by detecting

multiple distinct keypoints in the image and by generating appropriate descriptors.

Hence, unlike global features, which correspond to a single vector (descriptor), local

features for an image correspond to multiple vectors (descriptors). Aly et al. [105]

showed that the local feature descriptors perform better compared to global feature

descriptors for image family classification. Hence, unlike the previous works that used

global features, we explore the effectiveness of using local features in our work. Some

of the local features that are extracted from the memory dump images are explained

briefly below.

48

• Scale-Invariant Feature Transform (SIFT) [106]: SIFT performs keypoint

detection, using Difference-of-Gaussians (DoG) operator. This operation is per-

formed at various scales of the input image, hence making the detection process

scale-invariant. The detected keypoints are then filtered, and unstable points

are removed. Once the keypoints are detected, histograms of gradient orienta-

tions are computed around these points. The obtained values are normalized to

between one and zero. The normalized values are the descriptors of the input

image. The normalization helps the algorithm to achieve robustness against dis-

tortion, contrast and change in illumination. The size of the description vector

obtained by SIFT is 128.

• Oriented Fast and Rotated BRIEF (ORB) [107]: ORB algorithm is a com-

bination of Features from Accelerated Segment Test (FAST) [108] detection and

rotation normalized Binary Robust Independent Elementary Features (BRIEF)

[109] description methods. This algorithm generates a binary feature based on

the FAST keypoint detector algorithm to detect interesting points from the in-

put image. Further, top n quality points among these keypoints are selected

using the Harris Corner algorithm [110]. Since the original BRIEF descriptor

is susceptible to failure with rotation operation, a modified BRIEF based de-

scription algorithm is used. Due to this modified algorithm, ORB descriptors

are invariant to rotation as well scaling and affine changes. The length of each

description vector is 32.

• KAZE Local Features [111]: This algorithm operates in nonlinear scale-

spaces, as opposed to SIFT, which works in Gaussian scale space. It works at

the image’s original resolution, unlike SIFT, which requires downsampling at

each new octave. For detecting the keypoints, the Hessian matrix determinant

is calculated and normalized at different scale levels. KAZE introduces rota-

tion invariance by selecting a dominant orientation in a circular neighbourhood

around each feature. The descriptors generated by KAZE are also invariant

to limited affine and scale but is slightly more time expensive. Every detected

49

keypoint is described using a descriptor of length 64.

Using the above algorithms, for each image, a varying number of local descriptors

are generated. As many machine learning classifiers require a fixed-sized feature vector

as input, directly using the above generated local descriptors is not possible. Therefore

we use a technique known as Bag of Visual Words (BOVW) representation which is

used to convert these descriptors into a fixed-size feature vector. The BOVW consists

of the following steps:

1. Descriptor Computation: In this step, the image keypoints are detected, and

the corresponding descriptors are constructed using the above mentioned local

descriptor extraction algorithm.

2. Vocabulary Construction: From the extracted descriptors (vectors), k-means

clustering algorithm is used to cluster the feature vectors into k clusters. The

centroids, i.e. cluster centres obtained, is considered as our visual vocabulary.

3. Vector Quantization: In this step, the description vectors of the input image

obtained in step 1 are represented using a single feature vector. In order to

do so, for each description vector, we find its nearest cluster centre from the

vocabulary constructed in step 2. A histogram of length k is built where k is

the number of centroids obtained. The ith value of the histogram denotes the

number of the descriptors whose nearest neighbour is centroid i. This process is

known as vector quantization.

During the training, local descriptors from all the images in the training set are

extracted. Using these descriptors, the vocabulary is constructed, and centroids are

obtained. These centroids are used to quantize the descriptors to a single feature vec-

tor for each image in the training set. The feature vectors are then used for training

different machine learning classifiers. Note that the vocabulary construction is per-

formed only during the training phase and not during the inference or testing phase.

Figure 4.3 shows an overview of the steps performed during testing. During the

time of inference, the image descriptors of test input are obtained. These descriptors

50

Memory Dump Image

Descriptor
Extraction

Nearest Centroid
Computation

[0.54, 0.22, ... , 0.76]

[0.12, 0.35, ... , 0.89]

[0.21, 0.16, ... , 0.42]

Image Descriptors

Histogram

< v1 v2 v3 ... vk >ML ClassifierPrediction

Feature Vector

Figure 4.3: Overview of Classification of Memory Dump Images using Descriptors

are quantized using the centroids obtained during the training. The feature vectors

are then given as input to the machine learning algorithm, which predicts the class

to which the input image belongs. We briefly explain the different machine learning

classifiers that are considered.

1. Decision Tree: Decision Tree takes into consideration different input attributes

to predict the value of the given target attribute. It comprises a set of internal

nodes representing a test on an attribute. The test outcomes are represented

using branches of the tree, whereas the class labels are represented using the leaf

nodes. These are effective as they are fast and provide human-readable rules for

classification.

2. Gaussian Naive Bayes: Naive Bayes algorithms are a family of supervised

learning algorithms that employ the Bayes theorem with an underlying ‘naive’

assumption that the presence of any particular features is independent of the

presence of any other feature for a given class. The Gaussian Naive Bayes

algorithm is a special case of Naive Bayes, where it is assumed that the likelihood

of the features of the dataset is Gaussian.

3. k Nearest Neighbour: k Nearest Neighbour is one of the simplest supervised

machine learning algorithms which assigns a label to the given data point p based

51

on the classes of its k nearest neighbouring data points. k is a positive integer

generally much smaller than the number of inputs. Different distance measures

like Euclidean or Manhattan are used to compute the nearest neighbours. The

advantage of kNN is that there is no training stage. The inference is made on

the fly with the labelled training data, and hence it is comparatively easier to

add new examples to the training set.

4. Random Forest: Random Forest (or Random decision forests) is a type of en-

semble learning method and used for predictive modelling. It can be considered

as a collection of multiple decision trees trained on a set of randomly chosen

samples. The outcome of all decision trees is compiled to bring up the final

decision by majority voting. Random decision forests overcome the drawback of

decision trees being prone to overfitting.

5. Support Vector Machines: Support Vector Machine (SVM) is one of the most

widely used supervised machine learning algorithm. It separates data using a

hyperplane, which acts as a decision boundary between different classes. The

goal of the SVM is to select such a hyperplane that produces the largest margin

between the samples of different classes. SVM works not only for linear data

but also performs well in case of non-linear data. To handle non-linear data,

it uses ‘kernels’ by transforming data into another dimension that can generate

the best possible hyperplane and then performs classification.

We also use a deep learning based classifier, explained in the next subsection, that

directly takes the memory dump images for classification instead of relying on the

computation of above-mentioned descriptors.

4.3.3 Vision Transformer based Malware Detection

The original Transformer model proposed by Vaswani et al. [85] takes a sequence

of words as input and processes it to perform language processing tasks such as trans-

lation and sentiment analysis. Dosovitskiy et al. [83] introduced a Vision Transformer

52

Figure 4.4: ViT Architecture

(ViT), which extends the original Transformer architecture, and obtains state-of-the-

art performance on computer vision applications like image classification. We make

use of the ViT architecture for the detection and classification of malware using mem-

ory dump images as shown in Figure 4.4. The standard Transformer architecture

expects a sequence of embeddings, which is a one-dimensional input. Hence to serve

an image as an input to the Transformer architecture, we need to reshape the two-

dimensional image, i P RHˆWˆC to a sequence of flattened two-dimensional square

patches, ip P RNˆpP 2ˆCq. Here H denotes the height of the image, W denotes the

width of the image, C denotes the number of channels, P denotes the height of each

square image patch, and N “ pH ˆW q{P 2 denotes the number of patches. The square

patches ip are further projected to patch embeddings ep P RNˆD, using a trainable

linear projection layer E P RpP 2ˆC2qˆD, as shown in Equation (4.1). Note that D is

53

the latent vector size, and is constant across all of its layers.

ekp “ ikp ¨ E, for all k “ 1 ¨ ¨ ¨N (4.1)

For the purpose of classification, we make use of a special learnable token embedding

eCLS. This token is prepended to the start of every sequence of embedding patches.

Transformers are agnostic to the structure and positions of the input elements;

hence it requires additional position embeddings to define the position of each patch.

If we do not provide this positional information, the input to the model will behave

just as a bag of patches [83]. Hence, for encompassing the positional and struc-

tural information, learnable position embeddings, Epos P RpN`1qˆD are added to the

patch embeddings ep, to obtain encoded embeddings vectors emp (as shown in Equa-

tion (4.2)).

emCLS “ eCLS ` ECLS
pos and emk

p “ ekp ` Ek
pos, for all k “ 1 ¨ ¨ ¨N (4.2)

These resultant embeddings vectors emp and emCLS, are fed as input to the Trans-

former encoder. In order to harness the contextual information between each patch,

the encoder applies self-attention, which captures the relevance amongst every pair

of patches. To this end, each embedding emp is projected to Key K, Query Q and

Value V matrices using three corresponding learnable weight matrices. For a given

embedding emp, the self-attention A P RNˆD is calculated as product of the values

to the softmax of the normalized dot product of keys and queries as shown in Equa-

tion (3.3). Further, for capturing multiple complex relationships amongst the patches,

the architecture computes multiple attentions for the given patch sequence. These

multiple attentions are concatenated together and then passed through a linear layer

to get the output zp. The corresponding output of the eCLS token, zCLS is given as an

input to a fully connected layer. The output of this layer is further passed to a softmax

layer to obtain a probability distribution vector. The vector denotes the probability

for each class. The output for the given input is the class with the highest probability.

54

4.4 Experiments

In this section, we discuss the dataset used to evaluate our models. Subsequently,

we briefly describe the evaluation metrics used to calculate the efficacy of the proposed

models. In the next subsection, we discuss the experimental setup and parameter

selection, followed by an analysis of extracted features. Finally, we present the results,

followed by a performance comparison with previous works.

4.4.1 Dataset

We use a publicly available dataset known as Dumpware101 that consists of mem-

ory dump images of 4294 portable executables belonging to Windows OS. It has 3686

malware samples belonging to 10 different malware families, whereas the number of

benign samples is 608. The dataset is pre-split in training and testing samples with a

ratio of 80:20, respectively. The details of the dataset are shown in Table 4.1.

4.4.2 Evaluation Metrics

We use the same set of evaluation metrics described in Section 3.4.2 namely accu-

racy, precision, recall and F1-score.

4.4.3 Experimental Setup

For our experiments, we use the training and test files which are predetermined

as shown in Table 4.1. We briefly discuss the implementation details of the classifiers

below:

1. ML based Classifiers: We use OpenCV [104] for computing the descriptors.

For generating BOVW feature vectors for these descriptors, the k-means clus-

tering algorithm is used in the vocabulary construction step. We use a GPU-

enabled Fast Pytorch Kmeans library [112], which performs significantly faster

than non GPU-enabled implementation. We use the scikit-learn library [113] to

1Dataset Link: https://web.cs.hacettepe.edu.tr/~selman/dumpware10/

55

https://web.cs.hacettepe.edu.tr/~selman/dumpware10/

Table 4.1: Characteristics of the Dumpware10 Dataset

Class Category Training Samples Testing Samples Total

Vilsel Trojan 311 78 389

VBA Virus 399 100 499

MultiPlug Adware 390 98 488

InstallCore.C Adware 376 91 467

BrowseFox Adware 152 38 190

Dinwod!rfn Trojan 98 29 127

AutoRun-PU Worm 158 38 196

Amonetize Adware 349 87 436

Allaple.A Worm 349 88 437

Adposhel Adware 364 93 457

Benign Files - 487 121 608

Total 3433 861 4294

implement traditional ML models. The elbow criteria is used to tune the num-

ber of neighbours (k) in the kNN algorithm. We observe that for SIFT, ORB

and KAZE, the optimal values of k are 3, 7 and 1, respectively. For hypertun-

ing parameters of SVM, we use the grid search cross-validation (GridSearchCV)

method. We find that we get optimum results if we choose the kernel as ‘RBF’,

the regularisation parameter (C) as 10 and the kernel coefficient (γ) as 0.001.

2. Vision Transformer based Classifier: We use the transformer library of

Hugging Face [93] for the implementation and the weights of the ViT model.

During the fine-tuning, the model weights are updated using AdamW optimiser

[94]. The learning rate (lr) is set to 4ˆ10´5. Furthermore, we use cross-entropy

loss and the number of epochs as 10 for training the model. The batch size,

which is the number of training samples processed in one iteration, is set to

32. For the classification layer, we perform our experiments on two different

activation functions, Rectified Linear Units (ReLU) [114], and Gaussian Error

56

Linear Units (GELU) [115] and find that GELU gives better performance.

4.4.4 Analysing Extracted Features

We perform a qualitative analysis on the different sets of features that are extracted

from the memory dump images. In order to do so, we use the t-Distributed Stochastic

Neighbour (t-SNE) algorithm [116] to generate a visualisation of the extracted features.

The goal of t-SNE is to reduce the dimensionality of high-dimensional data into low-

dimensional space such that the points that are close in high-dimensional space remain

close in 2-dimensional space.

100 50 0 50 100

100

50

0

50

100

SIFT Descriptors

100 50 0 50 100

100

50

0

50

100

150
ORB Descriptors

100 75 50 25 0 25 50 75 100

100

50

0

50

100
KAZE Descriptors

100 75 50 25 0 25 50 75 100
100
75
50
25
0

25
50
75

ViT Features

Class Labels
Adposhel
Allaple.A
Amonetize
AutoRun-PU
BrowseFox
Dinwod!rfn
InstallCore.C
MultiPlug
Benign
VBA
Vilsel

Figure 4.5: Visualisation of Features using t-SNE

Figure 4.5 shows the t-SNE plot for different descriptors like SIFT, ORB, KAZE

and also the feature vector corresponding to the rCLSs token of the last layer in

ViT. It is important to note that the t-SNE dimensionality reduction technique is

unsupervised. Hence it does not use the class labels. The class labels are used only

for colouring the points during plotting. We can see that features extracted from

the rCLSs token of the ViT have better separable features compared to the features

obtained using other techniques. Among the local descriptors, KAZE descriptors give

57

the best separable features.

4.4.5 Evaluation Results

We perform our experiments with settings mentioned previously for malware de-

tection and classification using the Dumpware10 dataset. The local features like SIFT,

ORB and KAZE are extracted, and malware classification performance with differ-

ent ML algorithms is done. Furthermore, we also compare the performance of such

techniques to a deep learning model ViT.

Table 4.2: Comparison of Different Classifiers on Dumpware10 Dataset

Descriptor Method Accuracy Precision Recall F1-Score

SIFT

Decision Tree 0.717 0.723 0.717 0.718

Gaussian NB 0.723 0.807 0.723 0.732

kNN 0.823 0.838 0.823 0.807

Random Forest 0.839 0.854 0.839 0.826

SVM 0.937 0.936 0.937 0.935

ORB

Decision Tree 0.472 0.494 0.472 0.477

Gaussian NB 0.708 0.749 0.708 0.709

kNN 0.681 0.701 0.681 0.681

Random Forest 0.658 0.752 0.658 0.653

SVM 0.793 0.801 0.793 0.792

KAZE

Decision Tree 0.817 0.817 0.817 0.816

Gaussian NB 0.845 0.871 0.845 0.851

kNN 0.924 0.925 0.924 0.923

Random Forest 0.932 0.940 0.932 0.932

SVM 0.959 0.963 0.959 0.959

- ViT 0.972 0.973 0.972 0.972

Table 4.2 shows the evaluation based on different metrics. Bold values show the

best value for the corresponding metric, whereas values italicised are the second best.

It can be observed from the table that SVM performs well for all the local feature

58

descriptors, and ViT has the best performance overall.

Table 4.3: Confusion Matrix Obtained for KAZE-SVM on Dumpware10 Dataset

Ac
tu
al

Ad
po
sh
el

Al
la
pl
e.
A

Am
on
et
iz
e

Au
to
Ru
n-
PU

Br
ow
se
Fo
x

Di
nw

od
!r
fn
.C

In
st
al
lC
or
e.
C

M
ul
tiP
lu
g

Be
ni
gn

VB
A

Vi
ls
el

Adposhel 93 0 0 0 0 0 0 0 0 0 0

Allaple.A 0 85 0 2 1 0 0 0 0 0 0

Amonetize 0 0 87 0 0 0 0 0 0 0 0

AutoRun-PU 0 1 0 31 1 0 0 0 5 0 0

BrowseFox 0 0 0 0 38 0 0 0 0 0 0

Dinwod!rfn 0 0 0 0 0 21 0 0 8 0 0

InstallCore.C 0 0 0 1 0 1 89 0 0 0 0

MultiPlug 0 1 0 2 0 0 0 88 7 0 0

Benign 1 0 0 0 0 0 0 0 120 0 0

VBA 0 0 0 0 0 0 0 0 1 99 0

Vilsel 0 0 0 0 0 0 0 0 3 0 75

Predicted

Table 4.4: Confusion Matrix Obtained for ViT on Dumpware10 Dataset

Predicted

Ad
po
sh
el

Al
la
pl
e.
A

Am
on
et
iz
e

Au
to
Ru
n-
PU

Br
ow
se
Fo
x

Di
nw

od
!r
fn
.C

In
st
al
lC
or
e.
C

M
ul
tiP
lu
g

Be
ni
gn

VB
A

Vi
ls
el

Adposhel 92 0 0 1 0 0 0 0 0 0 0

Allaple.A 0 86 0 2 0 0 0 0 0 0 0

Amonetize 0 0 86 0 0 0 1 0 0 0 0

AutoRun-PU 0 0 0 36 2 0 0 0 0 0 0

BrowseFox 0 0 0 0 38 0 0 0 0 0 0

Dinwod!rfn 0 0 3 0 0 24 0 0 0 2 0

InstallCore.C 0 0 0 0 1 1 89 0 0 0 0

MultiPlug 0 0 0 0 0 0 0 96 1 0 1

Benign 2 0 0 2 0 1 1 0 115 0 0

VBA 0 0 0 0 0 0 0 0 1 99 0

Vilsel 1 0 0 0 0 0 0 0 1 0 76

Ac
tu
al

We show the class-wise predictions on the test set using confusion matrices in

Table 4.3 and Table 4.4 for KAZE-SVM and ViT respectively. We can see that the

59

Dinword!rfn malware family is the most difficult to classify as the proportion of

misclassification is high in both techniques. A likely reason for this is that the number

of samples of this family for training is the least in the dataset. Figure 4.6 shows a plot

of Receiver Operating Characteristic (ROC) curves of different classes using different

techniques. The best AUC score across all the classes is for ViT, whereas it is the

worst for ORB-SVM.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a) Adposhel vs the others

SIFT-SVM - (AUC = 0.998796)
ORB-SVM - (AUC = 0.990885)
KAZE-SVM - (AUC = 1.000000)
ViT - (AUC = 0.999692)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(b) Allaple.A vs the others

SIFT-SVM - (AUC = 0.999265)
ORB-SVM - (AUC = 0.978684)
KAZE-SVM - (AUC = 0.998633)
ViT - (AUC = 0.999809)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(c) Amonetize vs the others

SIFT-SVM - (AUC = 0.999451)
ORB-SVM - (AUC = 0.991743)
KAZE-SVM - (AUC = 1.000000)
ViT - (AUC = 0.999777)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(d) AutoRun-PU vs the others

SIFT-SVM - (AUC = 0.964283)
ORB-SVM - (AUC = 0.737386)
KAZE-SVM - (AUC = 0.994117)
ViT - (AUC = 0.998113)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(e) BrowseFox vs the others

SIFT-SVM - (AUC = 0.995396)
ORB-SVM - (AUC = 0.970487)
KAZE-SVM - (AUC = 1.000000)
ViT - (AUC = 1.000000)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(f) Dinwod!rfn vs the others

SIFT-SVM - (AUC = 0.949726)
ORB-SVM - (AUC = 0.859292)
KAZE-SVM - (AUC = 0.934433)
ViT - (AUC = 0.988229)

Figure 4.6: ROC Curves of Different Techniques in One vs Rest Setting (continued

next page)

60

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(g) InstallCore.C vs the others

SIFT-SVM - (AUC = 0.998345)
ORB-SVM - (AUC = 0.973683)
KAZE-SVM - (AUC = 0.998287)
ViT - (AUC = 0.999329)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(h) MultiPlug vs the others

SIFT-SVM - (AUC = 0.992765)
ORB-SVM - (AUC = 0.954797)
KAZE-SVM - (AUC = 0.992738)
ViT - (AUC = 0.999933)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(j) VBA vs the others

SIFT-SVM - (AUC = 0.999750)
ORB-SVM - (AUC = 0.996873)
KAZE-SVM - (AUC = 1.000000)
ViT - (AUC = 1.000000)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

(k) Vilsel vs the others

SIFT-SVM - (AUC = 0.997560)
ORB-SVM - (AUC = 0.986246)
KAZE-SVM - (AUC = 0.994580)
ViT - (AUC = 0.998887)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(i) Benign vs the others

SIFT-SVM - (AUC = 0.956734)
ORB-SVM - (AUC = 0.860040)
KAZE-SVM - (AUC = 0.993857)
ViT - (AUC = 0.997029)

Figure 4.6: ROC Curves of Different Techniques in One vs Rest Setting

61

4.4.6 Performance Comparison

We compare the performance of our proposed techniques for malware detection

and classification using memory dumps with some other recent works. Nataraj et al.

[23] in their work used GIST [31] descriptors that use wavelet decomposition of the

images. Features extracted from the images are then used with a k-nearest neighbour

classifier for classification. Dai et al. [64] proposed a classification method using the

memory dumps. They extract the Histogram of Gradient (HOG) [117] features from

the images and use a multilayer perceptron as a classifier. Bozkir et al. [65] used

a combination of both GIST and HOG features extracted from the memory dump

images. They used the SMO algorithm for training an SVM classifier with an RBF

kernel. Rezende et al. [118] used a pre-trained VGG16 model, a deep convolutional

neural network, that extracts features from the images. These features are then used

with an SVM classifier. The works [23, 118] were originally proposed for detection and

classification of malware from images created from portable executable files and not

memory dumps. We compare our techniques with theirs on the Dumpware10 dataset

as both the previous techniques rely on images to detect and classify the malware.

Table 4.5: Performance Comparison for Malware Detection and Classification on

Dumpware10 Dataset

Study Technique Accuracy Precision Recall F1-Score

Nataraj et al. [23] GIST Descriptor + kNN 0.914 0.915 0.914 0.915

Dai et al. [64] HOG Descriptor + MLP 0.945 0.946 0.945 0.945

Rezende et al. [118] VGG16 0.969 0.970 0.969 0.969

Bozkir et al. [65] GIST + HOG - SVM (RBF SMO) 0.955 0.958 0.951 0.955

Proposed Work
KAZE + SVM 0.959 0.963 0.959 0.959

ViT 0.972 0.973 0.972 0.972

We compare the performance of the proposed models with the recent works on the

Dumpware10 dataset and results are shown in Table 4.5. We can see that the proposed

ViT has the best performance in terms of accuracy, precision, recall and F1-score. We

can also see that among the techniques that use image descriptors for classification,

62

the proposed technique using the KAZE descriptor performs better and is comparable

to the performance of ViT, which is slightly better.

4.5 Conclusion

Malware are becoming increasingly complex, with many of the recent ones being

packed and encrypted. In this chapter, we used a Transformer-based model, ViT,

that can detect and classify the malware using the images of the memory dumps. We

evaluate this model based on a publicly available dataset, Dumpware10 and show that

our technique performs better in comparison to recent other techniques. We also show

that traditional machine learning algorithms such as SVM, when used with KAZE

descriptors, perform fairly well to detect and classify malware using memory dump

images.

63

Chapter 5

Android Malware Detection

5.1 Introduction

Malware detection and classification methods proposed in Chapter 3 and Chapter 4

are specific to Windows OS. Among all the operating systems available in the market,

Windows OS is the most widely used. Closely following it is Android OS, which has

become quite popular due to the increased use of mobile devices. Another factor for

the growth of Android OS is the flexible policy that does not impose restrictions on the

developers on getting their apps published on Google Play Store [119]. The presence of

other third-party app markets exacerbates the situation. Owing to these advantages,

Android-based devices have become a common target for malware attacks like breach

of user privacy, unauthorised banking transactions etc., using malicious applications.

In this chapter, we deal with detecting malware that attack Android-based devices.

Our contributions in this chapter are:

• Using static analysis, we extract the opcode sequences present in an Android

APK file and use it for detection of Android-based malware.

• We extend the Transformer-based architecture proposed in Chapter 3 for An-

droid malware detection.

65

5.2 Related Work

As described in Chapter 2, several works [73–75] have used features obtained using

static analysis for android malware detection. Some works used a combination of

features obtained from both static and dynamic analysis [76, 78]. Deep learning models

like RNN, LSTM and CNN were used to handle opcode sequences taken from the entire

file for malware detection [78, 80, 81]. Taking inspiration from our previous work in

Chapter 3, we use only a few initial opcodes extracted from an android application

for malware detection.

5.3 Proposed Work

Unlike the Windows-based Portable Executable files, Android applications have

a file format .apk i.e. Android Application Package. It is a zip archive that con-

tains all the contents that are necessary to install the app. It contains the following

components: i) AndroidManifest.xml file which has the application package name, list

of permissions that the application requires and other contents; ii) classes.dex files,

which contain all the methods and classes that are used by the program for execution

iii) different .xml files that show the layout of the application; iv) other resources such

as images, icons and other native libraries. Applications in Android are developed

using Java or Kotlin, which are then compiled to an intermediate bytecode format

known as Dex (Dalvik Executable). The previously mentioned classes.dex file con-

tains the dex instructions. Since this is an unreadable file format, we need to convert

the dex file into a human-readable format known as Smali code.

Generally, each instruction in the Smali code contains a single Dalvik opcode fol-

lowed by multiple operands. An example of a Smali code is shown in Figure 5.1. For

the instruction in line 8, the opcode is new-array, and the operands are v4 and v5.

Similar to the feature extraction process followed in Section 3.3.3, we consider only

the opcodes and discard the associated operands to have a more robust representation

against changes made in the operands.

66

8. new-array v3, v5, [Ljava/lang/Class;

9. const/16 v4, 0x143

10. invoke-static {v4}, Lhwmg/vzuskhdfyl/hybzcrkg/a;->a(I)Ljava/lang/String;

11. move-result-object v4

12. invoke-static {v4}, Ljava/lang/Class;->forName(Ljava/lang/String;)Ljava/lang/Class;

13. move-result-object v4

14. aput-object v4, v3, v7

Figure 5.1: A Snippet of Smali Code

Figure 5.2 shows an overall view of the proposed model for android malware detec-

tion. For all the APKs marked as benign or malicious in our training set, we initially

disassemble them. This is followed by an opcode parser which extracts the opcode

mnemonics discarding the operands and outputs the sequence of opcodes correspond-

ing to each application. The extracted opcodes are tokenized and encoded to obtain

embedding vectors. The embedding vectors are then fed to the Transformer encoder,

which applies the self-attention operation to harness the contextual information be-

tween each pair of embedding. In order to capture multiple complex relationships

amongst the tokens, the encoder computes multiple attentions for the given sequence

of embeddings. This method is explained in detail in Section 3.3.4 for opcodes ex-

tracted from Windows executables. Instead of learning the associations between the

Disassembler

Opcode Parser

Android APKs

Deep Learning
Classifer

Opcode Sequences
Benign

Malicious

Figure 5.2: An Overview of Proposed Model for Android Malware Detection

67

opcodes present in Windows-based files, here it learns the association between opcodes

present in Android-based files. For testing whether an application is benign or not,

we disassemble it and extract the opcode sequence from it. This sequence is passed as

an input to our trained Transformer-based classifier, which predicts the probabilities

of the file being benign or malicious.

5.4 Experiments

In this section, we describe the dataset used for our experiments. We use the same

evaluation metrics as in the previous chapters that are explained in Section 3.4.2.

Subsequently, we show the results based on our experiments.

5.4.1 Dataset

For our experiments for android malware detection, we collect benign and malicious

applications from AndroZoo [120] which is a repository containing android applica-

tions collected from various sources, including Google’s Play Store. The collected

malware samples belong to different types like Adware, Ransomware, Scareware and

SMS malware. The statistics of the dataset is given in Table 5.1. For our experiments

we use 2000 samples each of benign and malicious android files.

Table 5.1: Statistics of Dataset for Android Malware Detection

Class Type Samples

Malware

Adware 598

Ransomware 456

Scareware 438

SMS Malware 508

Benign - 2000

Total 4000

68

5.4.2 Experimental Setup

We use the previously mentioned dataset for the task of Android malware detection.

For disassembling the Android applications in the dataset, we use a Python script that

uses an API of Androguard [121] reverse engineering tool. The extracted opcodes

from the disassembled files are stored in a CSV file which is later used for training

and testing purposes. A train-test split of 70:30 is used, and the opcode sequence

length considered is 512. We use the transformer library of Hugging Face [93] for the

implementation of the Transformer model. We initially pretrain the model using the

masked language modelling task as described in Section 3.3.4. Then it is fine-tuned for

the malware detection task. The batch size, which is the number of training samples

that are processed in one iteration, is set to 32. The model weights are updated using

AdamW optimizer [94]. The learning rate (lr) is set to 5ˆ 10´5. Furthermore, we use

cross-entropy loss and the number of epochs as 10 for training the model.

5.5 Results and Discussion

We assess the performance of our proposed technique for android malware detection

using opcode sequences. Table 5.2 shows the number of samples predicted correctly

and incorrectly for benign and malicious applications in our test set. Unlike the

Table 5.2: Confusion Matrix for Android Malware Detection Experiment

M
al
w
ar
e

Be
ni
gn

Malware 574 35

Benign 26 565

Predicted

Ac
tu
al

previous chapters, which included the problem of malware classification, here, we deal

with detection only as family labels of the collected dataset could not be obtained.

69

We also show the Receiver Operating Characteristic (ROC) curves in Figure 5.3

for android malware detection experiment using our proposed model. The AUC value

obtained is 0.986813.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
Receiver Operating Characteristic for Malware Detection

AUC = 0.986813

Figure 5.3: ROC Curve for the Android Malware Detection

Table 5.3 shows the performance evaluation of our model on various metrics like

accuracy, precision, recall and F1-score. We can see that our model performs fairly

well for the detection of android malware.

Table 5.3: Performance of the Proposed Model for Android Malware Detection

Method Accuracy Precision Recall F1-score

Proposed 0.949 0.942 0.956 0.949

We believe that the detection performance of the proposed Transformer-based

model can be improved with more training data as Transformer models generally

work well for larger datasets [122]. We intend to use different disassemblers to find

the one that gives the most accurate transformation from the executable source code

to disassembled code. Further, to evaluate the family-wise classification performance

of the proposed model, collecting family labelled samples will be looked into.

70

5.6 Conclusion

Detecting malware in Android-based devices is an important problem due to the

widespread used mobile devices. In this chapter, we proposed a Transformer-based

model that detects Android malware using short sequence of opcodes. Our experi-

mental evaluation on a dataset that contained four different types of malware showed

that the proposed model performs fairly well in detecting Android-based malware.

71

Chapter 6

Conclusion and Future Work

This chapter summarises the malware detection and classification techniques pre-

sented in this thesis and provides future directions for further research in this area.

This thesis addresses the problem of malware detection (benign or malware) and also

identifying the family of the malware to which it belongs.

We first motivated our thesis by stating that the problem of malware family iden-

tification is as important as that of malware detection. We described three different

analysis techniques: static, dynamic and hybrid, that are used to detect malware. We

also covered the related literature that used the previously mentioned types of analy-

sis for detecting Windows-based malware. We also provided a summary of the works

that have been done in the field of Android malware detection. The existing methods

that used opcodes for detection had relied on n-grams or the entire opcode sequence

present in a file, which are computationally expensive. Using the recent state of the

art deep learning model, Transformers, we proposed a method that relied on using

only a few opcodes taken from an executable file for malware detection and family

identification.

6.1 Thesis Contributions

In this section, we summarise the different techniques proposed in the thesis for

malware detection and classification. The first two contributions proposes techniques

for the detection and classification of Windows malware, and the third contribution

73

proposes a technique for Android malware detection. These contributions are sum-

marised in the subsequent three subsections.

6.1.1 Windows Malware Detection and Classification Using

Opcode Sequences

Our first contribution of the thesis is a static analysis based technique for detecting

and classifying malware executables specific to Windows OS. We disassembled every

executable, and the corresponding assembly codes were generated. From the generated

assembly codes, we extracted only the opcodes from the assembly level instructions

discarding the operands. Corresponding to each executable, a sequence of opcodes was

extracted. These extracted opcode sequences are used to train a deep learning model,

Transformers, which learns the semantic relationship between opcodes present in a

sequence. The conventional sequence-to-sequence architecture like LSTMs used in the

literature for opcode sequences takes only short-term context into account. Whereas

the Transformer-based model can encapsulate and preserve long dependencies within

a sequence. Unlike the previous approaches that used n-grams of opcodes or an entire

sequence of opcodes present in a file, the proposed model can detect malware and

identify its family using only a short sequence of opcodes extracted from the beginning

of a file. Different ablation studies were carried out to understand the impact of

tokenizers, opcode sequence length and number of Transformer encoder blocks. We

evaluated our model using two different datasets, one containing executables collected

by us, whereas the second one is a publicly available Microsoft Malware Family dataset.

The comparative results showed that our proposed method outperforms other related

works in the literature.

6.1.2 Windows Malware Detection and Classification Using

Memory Dumps

Our first proposed work for Windows malware detection and classification sum-

marised in the previous subsection would fall short in two cases: i) when the executable

74

has an obfuscated code ii) the malware resides in the memory to carry out the attacks,

also known as Fileless malware attacks. To deal with this problem, we proposed a dy-

namic analysis based technique that relies on memory dumps for the detection and

classification of Windows-based malware. Since every program, at some point during

its execution, ends up on the RAM, analysis of such memory dumps will help us to

detect malware. Memory dumps corresponding to each program is extracted from the

RAM. Some of the earlier works in the literature relied on the extraction of features

like API calls etc., manually from the memory dumps. To avoid the need to rely

on expert’s knowledge to extract features from the memory dumps, these dumps are

converted to images. As the memory dumps are binary files, every three consecutive

bytes in the dump file is converted to their unsigned decimal values, which are then

RGB encoded to generate pixels of the corresponding image. We followed two differ-

ent approaches to detect and classify the memory dump images that correspond to

benign and malicious samples. In the first approach, we used different image descrip-

tors like SIFT, KAZE and ORB extracted from the memory dump images. These

descriptors were used to train different conventional machine learning classifiers for

the task of malware detection and classification. In the second approach, we used a

Transformer-based model, ViT, which directly takes the memory dump images as in-

puts for detecting and classifying the malware. We evaluated our proposed techniques

using a publicly available dataset, Dumpware10, which consists of dump images of

benign samples and malicious samples from 10 different families. We showed that our

proposed techniques perform better than other related techniques in the literature.

6.1.3 Android Malware Detection

The previous works summarised above are limited to detecting the windows based

malware and their classification into families. However, the problem of malware de-

tection is not restricted to a single operating system. There has been a significant

increase in the number of malware attacks on Android-based systems, partly due to

the popularity of mobile phones. Hence, we proposed a technique to detect Android-

based malware. We extended the previously mentioned technique that used opcode

75

sequences for Windows malware detection and classification to detect Android-based

malware. We used a disassembler to extract the opcodes present in Android applica-

tions that have .apk (Android Application Package) format. As done previously, from

the instructions, we extracted the opcodes discarding the operands. Corresponding

to each apk file, a sequence of opcodes was generated, which is used to train a sim-

ilar Transformer-based model that was used earlier. Using only a short sequence of

opcodes, the proposed model was able to detect benign and malicious android appli-

cations.

6.2 Future Work

Our work on malware detection and family identification can be extended in many

ways. Some of the extensions possible are mentioned below.

1. Use of Hybrid Features: We had considered opcode sequences as features for

the detection and classification of malware. It would be interesting to find out

whether using other features such as API calls in combination with the opcodes

can improve the performance of the model in the detection and classification of

malware.

2. Concept Drift: It would be an interesting experiment to find out how frequently

the proposed models should be trained with new data to avoid a degradation

in the performance. One way to do it can be to use a time-stamped dataset

where every sample in the dataset has the time that the sample was created.

The model can be trained using the older samples and tested on newer ones.

3. Security Analysis: A formal security analysis will be carried out by defining

a proper threat model by identifying threat agents that cause harm to an ap-

plication or computer system. Identifying the vulnerabilities on different levels

(application, kernel etc.) of Windows and Android OS that a malware can ex-

ploit can be looked into.

76

4. Blockchain Technology: It would be an interesting direction to explore the use of

Blockchain technology for the detection and mitigation of malware attacks. One

of the main characteristics of Blockchain is decentralisation, which can be used

for sharing information of suspected malware rapidly without the intervention

of a central organisation. Also, it can be used to trace out the origin of an

executable and mitigation the propagation.

77

Bibliography

[1] Y. Ye, T. Li, S. Zhu, W. Zhuang, E. Tas, U. Gupta, and M. Abdulhayoglu, “Com-

bining File Content and File Relations for Cloud based Malware Detection,” in

SIGKDD ’11: Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 2011, pp. 222–230.

[2] D. Gibert, C. Mateu, and J. Planes, “An End-to-End Deep Learning Architec-

ture for Classification of Malware’s Binary Content,” in ICANN ’18: Proceedings

of Artificial Neural Networks and Machine Learning. Springer International

Publishing, 2018, pp. 383–391.

[3] D. Ucci, L. Aniello, and R. Baldoni, “Survey of Machine Learning techniques

for Malware Analysis,” Computers & Security, vol. 81, pp. 123–147, 2019.

[4] V. S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar, “Signature generation and

detection of malware families,” in ACISP ’08: Proceedings of the Australasian

Conference on Information Security and Privacy. Springer, 2008, pp. 336–349.

[5] J. Lee, C. Im, and H. Jeong, “A Study of Malware Detection and Classification

by Comparing Extracted Strings,” in ICUIMC ’11: Proceedings of the Interna-

tional Conference on Ubiquitous Information Management and Communication.

ACM, 2011, p. 75.

[6] C. Varol, A. Varol et al., “Comparison of Pattern Matching Techniques on Identi-

fication of Same Family Malware,” International Journal of Information Security

Science, vol. 4, pp. 104–111, 2015.

79

[7] D. Konopiskỳ, “Malware Detection in Applications based on Presence of Com-

puter Generated Strings,” 2018, US Patent App. 15/942,129.

[8] Y. Ye, L. Chen, D. Wang, T. Li, Q. Jiang, and M. Zhao, “SBMDS: An In-

terpretable String Based Malware Detection System using SVM Ensemble with

Bagging,” Journal in Computer Virology, vol. 5, pp. 283–293, 2009.

[9] R. Lyda and J. Hamrock, “Using Entropy Analysis to Find Encrypted and

Packed Malware,” IEEE Security & Privacy, vol. 5, pp. 40–45, 2007.

[10] I. Sorokin, “Comparing Files using Structural Entropy,” Journal in Computer

Virology, vol. 7, pp. 259–265, 2011.

[11] D. Baysa, R. M. Low, and M. Stamp, “Structural Entropy and Metamorphic

Malware,” Journal of Computer Virology and Hacking Techniques, vol. 9, pp.

179–192, 2013.

[12] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-Gram-Based De-

tection of New Malicious Code,” in COMPSAC ‘04: Proceedings of the Inter-

national Computer Software and Applications Conference. IEEE Computer

Society, 2004, pp. 41–42.

[13] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, and Y. Elovici, “Unknown Mal-

code Detection via Text Categorization and the Imbalance Problem,” in ISI ’08:

Proceedings of the IEEE International Conference on Intelligence and Security

Informatics. IEEE, 2008, pp. 156–161.

[14] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode Sequences

as Representation of Executables for Data-Mining-Based Unknown Malware De-

tection,” Information Science, vol. 231, pp. 64–82, 2013.

[15] Y. Ding and S. Zhu, “Malware Detection Based on Deep Learning Algorithm,”

Neural Computing and Applications, vol. 31, pp. 461–472, 2019.

80

[16] X. Hu, S. Bhatkar, K. Griffin, and K. G. Shin, “MutantX-S: Scalable Malware

Clustering Based on Static Features,” in USENIX ATC ’13: Proceedings of the

USENIX Conference on Annual Technical Conference. USENIX Association,

2013, pp. 187–198.

[17] B. Cakir and E. Dogdu, “Malware Classification Using Deep Learning Methods,”

in ACMSE ’18: Proceedings of the ACM South East Conference. ACM, 2018,

pp. 1–10.

[18] Y. Sung, S. Jang, Y.-S. Jeong, and J. H. J. J. Park, “Malware Classification

Algorithm Using Advanced Word2Vec-based Bi-LSTM for Ground Control Sta-

tions,” Computer Communications, vol. 153, pp. 342–348, 2020.

[19] S. Jain and Y. K. Meena, “Byte Level n-gram Analysis for Malware Detection,”

in ICIP ‘11: Proceedings of the International Conference on Information Pro-

cessing. Springer, 2011, pp. 51–59.

[20] J. Jang, D. Brumley, and S. Venkataraman, “BitShred: Feature Hashing Mal-

ware for Scalable Triage and Semantic Analysis,” in CCS ’11: Proceedings of

the ACM Conference on Computer and Communications Security. ACM, 2011,

pp. 309–320.

[21] E. Raff, J. Sylvester, and C. Nicholas, “Learning the PE Header, Malware Detec-

tion with Minimal Domain Knowledge,” in AISec ‘17: Proceedings of the ACM

Workshop on Artificial Intelligence and Security. ACM, 2017, pp. 121–132.

[22] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K. Nicholas,

“Malware Detection by Eating a Whole EXE,” in AAAI ‘18: Proceedings of the

AAAI Conference on Artificial Intelligence. Association for the Advancement

of Artificial Intelligence, 2018.

[23] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware Images:

Visualization and Automatic Classification,” in VizSec ‘11: Proceedings of the

International Symposium on Visualization for Cyber Security. ACM, 2011, p. 4.

81

[24] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Using Convolutional Neu-

ral Networks for Classification of Malware Represented as Images,” Journal of

Computer Virology and Hacking Techniques, vol. 15, pp. 15–28, 2019.

[25] E. Rezende, G. Ruppert, T. Carvalho, F. Ramos, and P. De Geus, “Malicious

Software Classification using Transfer Learning of ResNet-50 Deep Neural Net-

work,” in ICMLA ‘17: Proceedings of IEEE International Conference on Ma-

chine Learning and Applications (ICMLA). IEEE, 2017, pp. 1011–1014.

[26] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The WEKA Data Mining Software: An Update,” ACM SIGKDD Explorations

Newsletter, vol. 11, pp. 10–18, 2009.

[27] I. Santos, C. Laorden, and P. G. Bringas, “Collective Classification for Unknown

Malware detection,” in SECRYPT ’11: Proceedings of the International Con-

ference on Security and Cryptography. IEEE, 2011, pp. 251–256.

[28] I. Santos, F. Brezo, B. Sanz, C. Laorden, and P. G. Bringas, “Using Opcode

Sequences in Single-Class Learning to Detect Unknown Malware,” IET Infor-

mation Security, vol. 5, pp. 220–227, 2011.

[29] I. Santos, B. Sanz, C. Laorden, F. Brezo, and P. G. Bringas, “Opcode-Sequence-

based Semi-supervised Unknown Malware Detection,” in Computational Intelli-

gence in Security for Information Systems. Springer, 2011, pp. 50–57.

[30] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word

Representations in Vector Space,” in ICLR ‘13: Proceedings of the International

Conference on Learning Representations, 2013.

[31] A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A Holistic Repre-

sentation of the Spatial Envelope,” International Journal of Computer Vision,

vol. 42, pp. 145–175, 2001.

82

[32] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, “An Intelligent PE-malware De-

tection System Based on Association Mining,” Journal in Computer Virology,

vol. 4, pp. 323–334, 2008.

[33] M. N. A. Zabidi, M. A. Maarof, and A. Zainal, “Malware Analysis with Mul-

tiple Features,” in ICCMS ‘12: Proceeesing of the International Conference on

Computer Modelling and Simulation. IEEE, 2012, pp. 231–235.

[34] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamze,

“Malware Detection based on Mining API Calls,” in SAC ’10: Proceedings of

the ACM symposium on applied computing. ACM, 2010, pp. 1020–1025.

[35] M. Shankarapani, K. Kancherla, S. Ramammoorthy, R. Movva, and S. Mukka-

mala, “Kernel Machines for Malware Classification and Similarity Analysis,” in

IJCNN ‘10: Proceedings of the International Joint Conference on Neural Net-

works. IEEE, 2010, pp. 1–6.

[36] P. Faruki, V. Laxmi, M. S. Gaur, and P. Vinod, “Mining Control Flow Graph as

API Call-grams to Detect Portable Executable Malware,” in SIN ’12: Proceed-

ings of the International Conference on Security of Information and Networks.

ACM, 2012, pp. 130–137.

[37] J. Kinable and O. Kostakis, “Malware Classification based on Call Graph Clus-

tering,” Journal in Computer Virology, vol. 7, pp. 233–245, 2011.

[38] “IDA Pro,” https://www.hex-rays.com/products/ida, (last accessed on 20-04-

2021).

[39] “Radare 2,” https://rada.re/n/, (last accessed on 16-01-2021).

[40] M. Hassen and P. K. Chan, “Scalable Function Call Graph-based Malware Clas-

sification,” in CODASPY ‘17: Proceedings of the ACM on Conference on Data

and Application Security and Privacy. ACM, 2017, pp. 239–248.

83

https://www.hex-rays.com/products/ida
https://rada.re/n/

[41] J. Saxe and K. Berlin, “Deep Neural Network Based Malware Detection using

Two Dimensional Binary Program Features,” in MALWARE ’15: Proceedings

of the International Conference on Malicious and Unwanted Software. IEEE,

2015, pp. 11–20.

[42] D. Carlin, A. Cowan, P. O’Kane, and S. Sezer, “The Effects of Traditional Anti-

Virus Labels on Malware Detection Using Dynamic Runtime Opcodes,” IEEE

Access, vol. 5, pp. 17 742–17 752, 2017.

[43] D. Carlin, P. O’Kane, and S. Sezer, “Dynamic Analysis of Malware using

Run-time Opcodes,” in Data Analytics and Decision Support for Cybersecurity.

Springer, 2017, pp. 99–125.

[44] P. O’Kane, S. Sezer, and K. McLaughlin, “Detecting Obfuscated Malware us-

ing Reduced Opcode Set and Optimised Runtime Trace,” Security Informatics,

vol. 5, p. 2, 2016.

[45] K. Pearson, “LIII. On Lines and Planes of Closest Fit to Systems of Points in

Space,” The London, Edinburgh, and Dublin Philosophical Magazine and Jour-

nal of Science, vol. 2, pp. 559–572, 1901.

[46] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-based Malware

Detection using Dynamic Analysis,” Journal in Computer Virology, vol. 7, pp.

247–258, 2011.

[47] C. Storlie, B. Anderson, S. V. Wiel, D. Quist, C. Hash, and N. Brown, “Stochas-

tic Identification of Malware with Dynamic Traces,” The Annals of Applied

Statistics, pp. 1–18, 2014.

[48] N. Kheir, “Behavioral Classification and Detection of Malware through HTTP

User Agent Anomalies,” Journal of Information Security and Applications,

vol. 18, pp. 2–13, 2013.

[49] D. Bekerman, B. Shapira, L. Rokach, and A. Bar, “Unknown Malware Detection

using Network Traffic Classification,” in CNS ‘15: Proceedings of the IEEE

84

Conference on Communications and Network Security. IEEE, 2015, pp. 134–

142.

[50] G. Zhao, K. Xu, L. Xu, and B. Wu, “Detecting APT Malware Infections Based

on Malicious DNS and Traffic Analysis,” IEEE Access, vol. 3, pp. 1132–1142,

2015.

[51] A. Boukhtouta, S. A. Mokhov, N.-E. Lakhdari, M. Debbabi, and J. Paquet,

“Network Malware Classification Comparison using DPI and Flow Packet Head-

ers,” Journal of Computer Virology and Hacking Techniques, vol. 12, pp. 69–100,

2016.

[52] P. Prasse, L. Machlica, T. Pevný, J. Havelka, and T. Scheffer, “Malware Detec-

tion by Analysing Encrypted Network Traffic with Neural Networks,” in ECML

PKDD ‘17: Proceedings of the European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in Databases. Springer, 2017,

pp. 73–88.

[53] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic Analysis of Malware

Behavior using Machine Learning,” Journal of Computer Security, vol. 19, pp.

639–668, 2011.

[54] D. Uppal, R. Sinha, V. Mehra, and V. Jain, “Malware Detection and Classi-

fication Based on Extraction of API Sequences,” in ICACCI ‘14: Proceedings

of the International conference on advances in computing, communications and

informatics. IEEE, 2014, pp. 2337–2342.

[55] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale Malware Classifi-

cation using Random Projections and Neural Networks,” in ICASSP ‘13: Pro-

ceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing. IEEE, 2013, pp. 3422–3426.

[56] W. Huang and J. W. Stokes, “MtNet: A Multi-task Neural Network for Dy-

namic Malware Classification,” in DIMVA ‘16: Proceedings of the International

85

conference on detection of intrusions and malware, and vulnerability assessment.

Springer, 2016, pp. 399–418.

[57] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behavior-based Features Model

for Malware Detection,” Journal of Computer Virology and Hacking Techniques,

vol. 12, pp. 59–67, 2016.

[58] B. Athiwaratkun and J. W. Stokes, “Malware Classification with LSTM and

GRU Language Models and a Character-level CNN,” in ICASSP ‘17: Proceed-

ings of the IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing. IEEE, 2017, pp. 2482–2486.

[59] B. Kolosnjaji, A. Zarras, G. D. Webster, and C. Eckert, “Deep Learning for

Classification of Malware System Call Sequences,” in AI ‘16: Proceedings of the

Advances in Artificial Intelligence. Springer, 2016, pp. 137–149.

[60] T. Teller and A. Hayon, “Enhancing Automated Malware Analysis Machines

with Memory Analysis,” Black Hat USA, 2014.

[61] R. Mosli, R. Li, B. Yuan, and Y. Pan, “Automated Malware Detection using

Artifacts in Forensic Memory Images,” in HST ‘16: Proceedings of IEEE Sym-

posium on Technologies for Homeland Security. IEEE, 2016, pp. 1–6.

[62] A. Case and G. G. Richard III, “Detecting Objective-C Malware through Mem-

ory Forensics,” Digital Investigation, vol. 18, pp. S3–S10, 2016.

[63] D. Javaheri and M. Hosseinzadeh, “A Framework for Recognition and Con-

fronting of Obfuscated Malwares based on Memory Dumping and Filter Drivers,”

Wireless Personal Communications, vol. 98, pp. 119–137, 2018.

[64] Y. Dai, H. Li, Y. Qian, and X. Lu, “A Malware Classification Method based

on Memory Dump Grayscale Image,” Digital Investigation, vol. 27, pp. 30–37,

2018.

86

[65] A. S. Bozkir, E. Tahillioglu, M. Aydos, and I. Kara, “Catch them Alive: A

Malware Detection Approach through Memory Forensics, Manifold Learning

and Computer Vision,” Computers & Security, vol. 103, p. 102166, 2021.

[66] A. Pektaş and T. Acarman, “Classification of Malware Families Based on Run-

time Behaviors,” Journal of Information Security and Applications, vol. 37, pp.

91–100, 2017.

[67] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification of Malware

Based on Integrated Static and Dynamic Features,” Journal of Network and

Computer Applications, vol. 36, pp. 646–656, 2013.

[68] W. Han, J. Xue, Y. Wang, Z. Liu, and Z. Kong, “MalInsight: A Systematic Pro-

filing Based Malware Detection Framework,” Journal of Network and Computer

Applications, vol. 125, pp. 236–250, 2019.

[69] W. Han, J. Xue, Y. Wang, L. Huang, Z. Kong, and L. Mao, “MalDAE: Detecting

and Explaining Malware Based on Correlation and Fusion of Static and Dynamic

Characteristics,” Computers & Security, vol. 83, pp. 208–233, 2019.

[70] B. Kolosnjaji, G. Eraisha, G. Webster, A. Zarras, and C. Eckert, “Empowering

Convolutional Networks for Malware Classification and Analysis,” in IJCNN ‘17:

Proceedings of the International Joint Conference on Neural Networks. IEEE,

2017, pp. 3838–3845.

[71] N. Kumar, S. Mukhopadhyay, M. Gupta, A. Handa, and S. K. Shukla, “Malware

classification Using Early Stage Behavioral Analysis,” in AsiaJCIS ‘19: Proceed-

ings of the Asia Joint Conference on Information Security. IEEE, 2019, pp.

16–23.

[72] M. Rhode, L. Tuson, P. Burnap, and K. Jones, “LAB to SOC: Robust Features

for Dynamic Malware Detection,” in DSN ‘19: Proceedings of the IEEE/IFIP

International Conference on Dependable Systems and Networks–Industry Track.

IEEE, 2019, pp. 13–16.

87

[73] R. Vinayakumar, K. Soman, and P. Poornachandran, “Deep Android Mal-

ware Detection and Classification,” in ICACCI ’17: Proceedings of the Interna-

tional Conference on Advances in Computing, Communications and Informatics.

IEEE, 2017, pp. 1677–1683.

[74] R. Nix and J. Zhang, “Classification of Android apps and Malware using Deep

Neural Networks,” in IJCNN’17: Proceedings of the International joint confer-

ence on neural networks. IEEE, 2017, pp. 1871–1878.

[75] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell, “An-

drodialysis: Analysis of Android Intent Effectiveness in Malware Detection,”

Computers & Security, vol. 65, pp. 121–134, 2017.

[76] L. Taheri, A. F. A. Kadir, and A. H. Lashkari, “Extensible Android Malware De-

tection and Family Classification using Network-flows and API-calls,” in ICCST

’19: Proceedings of the International Carnahan Conference on Security Tech-

nology. IEEE, 2019, pp. 1–8.

[77] M. Al-Fawa’reh, A. Saif, M. T. Jafar, and A. Elhassan, “Malware Detection

by Eating a Whole APK,” in ICITST ’20: Proceedings of the International

Conference for Internet Technology and Secured Transactions. IEEE, 2020, pp.

1–7.

[78] M. Almahmoud, D. Alzu’bi, and Q. Yaseen, “ReDroidDet: Android Malware

Detection Based on Recurrent Neural Network,” Procedia Computer Science,

vol. 184, pp. 841–846, 2021.

[79] “Using opcode sequences to detect malicious android applications.”

[80] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer,

Y. Safaei, E. Trickel, Z. Zhao, A. Doupé et al., “Deep Android Malware De-

tection,” in CODASPY ’17: Proceedings of the seventh ACM on conference on

data and application security and privacy. ACM, 2017, pp. 301–308.

88

[81] R. Mateless, D. Rejabek, O. Margalit, and R. Moskovitch, “Decompiled APK

based Malicious Code Classification,” Future Generation Computer Systems, vol.

110, pp. 135–147, 2020.

[82] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding,” in NAACL-HLT

’19: Proceedings of the Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies. ACL,

2019, pp. 4171–4186.

[83] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and

N. Houlsby, “An Image is Worth 16x16 words: Transformers for Image Recog-

nition at Scale,” in ICLR ’21: Proceedings of the International Conference on

Learning Representations. OpenReview.net, 2021, pp. 60–90.

[84] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici, “Detecting Un-

known Malicious Code by Applying Classification Techniques on OpCode Pat-

terns,” Security Informatics, vol. 1, pp. 1–22, 2012.

[85] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention is All you Need,” in NIPS ’17: Pro-

ceedings of the Advances in Neural Information Processing Systems. Curran

Associates Inc., 2017, pp. 5998–6008.

[86] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,

“Transformers in Vision: A Survey,” arXiv preprint arXiv:2101.01169, vol.

abs/2101.01169, 2021.

[87] A. M. P. Braşoveanu and R. Andonie, “Visualizing Transformers for NLP: A

Brief Survey,” in IV’20: Proceedings of the International Conference on Infor-

mation Visualisation. IEEE, 2020, pp. 270–279.

89

[88] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-

moyer, and V. Stoyanov, “RoBerta: A Robustly Optimized BERT Pretraining

Approach,” arXiv preprint arXiv:1907.11692, 2019.

[89] “VirusTotal,” 2021. [Online]. Available: https://www.virustotal.com

[90] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Mi-

crosoft Malware Classification Challenge,” arXiv preprint arXiv:1802.10135, vol.

abs/1802.10135, 2018.

[91] “Microsoft Malware Classification Challenge (BIG 2015),” 2015. [Online].

Available: https://www.kaggle.com/c/malware-classification

[92] “Ghidra,” https://ghidra-sre.org, (last accessed on 12-11-2020).

[93] T. Wolf, J. Chaumond, L. Debut, V. Sanh, C. Delangue, A. Moi, P. Cistac,

M. Funtowicz, J. Davison, S. Shleifer et al., “Transformers: State-of-the-art

Natural Language Processing,” in EMNLP ’20: Proceedings of the Conference

on Empirical Methods in Natural Language Processing: System Demonstrations.

ACL, 2020, pp. 38–45.

[94] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,” in ICLR

’19: Proceedings of the International Conference on Learning Representations,

2019.

[95] M. Schuster and K. Nakajima, “Japanese and Korean Voice Search,” in ICASSP

’12: Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing. IEEE, 2012, pp. 5149–5152.

[96] S. Gao, M. Alawad, M. T. Young, J. Gounley, N. Schaefferkoetter, H.-J. Yoon,

X.-C. Wu, E. B. Durbin, J. Doherty, A. Stroup et al., “Limitations of Trans-

formers on Clinical Text Classification,” IEEE Journal of Biomedical and Health

Informatics, 2021.

90

https://www.virustotal.com
https://www.kaggle.com/c/malware-classification
https://ghidra-sre.org

[97] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a Distilled

Version of BERT: Smaller, Faster, Cheaper and Lighter,” arXiv preprint

arXiv:1910.01108, vol. abs/1910.01108, 2019.

[98] S. Si, R. Wang, J. Wosik, H. Zhang, D. Dov, G. Wang, and L. Carin, “Students

Need More Attention: BERT-based Attention Model for Small Data with Ap-

plication to Automatic Patient Message Triage,” in MLHC ’20: Proceedings of

the Machine Learning for Healthcare Conference. PMLR, 2020, pp. 436–456.

[99] Y. Li, S. Rao, J. R. A. Solares, A. Hassaine, R. Ramakrishnan, D. Canoy,

Y. Zhu, K. Rahimi, and G. Salimi-Khorshidi, “BEHRT: Transformer for Elec-

tronic Health Records,” Scientific Reports, vol. 10, pp. 1–12, 2020.

[100] J. H. Friedman, “Greedy Function Approximation: A Gradient Boosting Ma-

chine,” Annals of Statistics, vol. 29, pp. 1189–1232, 2001.

[101] S. Kumar et al., “An Emerging Threat Fileless Malware: A Survey and Research

Challenges,” Cybersecurity, vol. 3, pp. 1–12, 2020.

[102] B. Sanjay, D. Rakshith, R. Akash, and V. V. Hegde, “An Approach to Detect

Fileless Malware and Defend its Evasive Mechanisms,” in CSITSS ’18: Proceed-

ings of the International Conference on Computational Systems and Information

Technology for Sustainable Solutions. IEEE, 2018, pp. 234–239.

[103] “ProcDump,” https://docs.microsoft.com/en-us/sysinternals/downloads/

procdump, (last accessed on 21-04-2021).

[104] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,

vol. 25, pp. 120–125, 2000.

[105] M. Aly, P. Welinder, M. Munich, and P. Perona, “Automatic discovery of im-

age families: Global vs. local features,” in ICIP ’09:Proceedings of the IEEE

International Conference on Image Processing. IEEE, 2009, pp. 777–780.

91

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump

[106] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” In-

ternational Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[107] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An Efficient Al-

ternative to SIFT or SURF,” in ICCV ’11: Proceedings of the International

Conference on Computer Vision. IEEE, 2011, pp. 2564–2571.

[108] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner De-

tection,” in ECCV ’06: Proceedings of the European Conference on Computer

Vision. Springer, 2006, pp. 430–443.

[109] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary Robust In-

dependent Elementary Features,” in ECCV ’10: Proceedings of the European

conference on computer vision. Springer, 2010, pp. 778–792.

[110] L. Yi-bo and L. Jun-Jun, “Harris Corner Detection Algorithm based on Im-

proved Contourlet Transform,” Procedia Engineering, vol. 15, pp. 2239–2243,

2011.

[111] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE Features,” in ECCV

’12: Proceedings of the European conference on computer vision. Springer, 2012,

pp. 214–227.

[112] DeMoriarty, “Fast Pytorch Kmeans,” https://github.com/DeMoriarty/fast

pytorch kmeans, 2020.

[113] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-

chine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp.

2825–2830, 2011.

[114] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltz-

mann Machines,” in ICML ’10: Proceeedings of the International Conference on

Machine Learning. Omnipress, 2010, pp. 807–814.

92

https://github.com/DeMoriarty/fast_pytorch_kmeans
https://github.com/DeMoriarty/fast_pytorch_kmeans

[115] D. Hendrycks and K. Gimpel, “Gaussian Error Linear Units (GELUs),” arXiv

preprint arXiv:1606.08415, 2016.

[116] L. Van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal of

Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[117] C. Shu, X. Ding, and C. Fang, “Histogram of the Oriented Gradient for Face

Recognition,” Tsinghua Science and Technology, vol. 16, pp. 216–224, 2011.

[118] E. Rezende, G. Ruppert, T. Carvalho, A. Theophilo, F. Ramos, and P. de Geus,

“Malicious Software Classification using VGG16 Deep Neural Network’s Bottle-

neck Features,” in ITNG ’18: Proceedings of the Information Technology-New

Generations. Springer, 2018, pp. 51–59.

[119] S. Farooqi, Á. Feal, T. Lauinger, D. McCoy, Z. Shafiq, and N. Vallina-Rodriguez,

“Understanding Incentivized Mobile App Installs On Google Play Store,” in IMC

’20: Proceedings of the ACM Internet Measurement Conference. ACM, 2020,

pp. 696–709.

[120] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo: Collecting

Millions of Android Apps for the Research Community,” in MSR ’16: Proceed-

ings of the International Conference on Mining Software Repositories. IEEE,

2016, pp. 468–471.

[121] A. Desnos and G. Gueguen, “Androguard : Reverse Engineering, Malware

and Goodware Analysis of Android Applications,” 2013, https://github.com/

androguard/androguard, (last accessed at 30-06-2021.

[122] A. Ezen-Can, “A Comparison of LSTM and BERT for Small Corpus,” arXiv

preprint arXiv:2009.05451, vol. abs/2009.05451, 2020.

93

https://github.com/androguard/androguard
https://github.com/androguard/androguard

Publications

1. Fyse Nassar, Neminath Hubballi, “Malware Detection and Family Identifi-

cation with BERT”, Journal of Computer Virology and Hacking Techniques,

Springer (Submitted)

94

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Thesis Contribution
	Organization of Thesis

	Literature Survey
	Static Analysis
	Dynamic Analysis
	Using Hybrid Approach
	Android Malware Detection
	Conclusion

	Windows Malware Detection and Classification using Opcode Sequences
	Introduction
	Related Work
	Proposed Malware Classification
	Problem Definition
	System Architecture
	Opcode Extraction
	Deep Learning based Classifier

	Experiments
	Dataset Details
	Evaluation Metrics
	Experimental Setup
	Ablation Study
	Evaluation Results
	Performance Comparison

	Conclusion

	Windows Malware Detection and Classification using Memory Dumps
	Introduction
	Related Work
	Proposed Work
	Memory Dumps
	Visual Feature Extraction and Classification
	Vision Transformer based Malware Detection

	Experiments
	Dataset
	Evaluation Metrics
	Experimental Setup
	Analysing Extracted Features
	Evaluation Results
	Performance Comparison

	Conclusion

	Android Malware Detection
	Introduction
	Related Work
	Proposed Work
	Experiments
	Dataset
	Experimental Setup

	Results and Discussion
	Conclusion

	Conclusion and Future Work
	Thesis Contributions
	Windows Malware Detection and Classification Using Opcode Sequences
	Windows Malware Detection and Classification Using Memory Dumps
	Android Malware Detection

	Future Work

