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ABSTRACT

Secure Socket Shell (SSH) exposes an interface for remote login. This provides
convenience to system administrators for managing systems remotely and for other
users it facilitates remote access to servers and applications over an unsecured network.
SSH requires users to authenticate before they are allowed to access system and this
can be done either through a key or by using passwords depending on the configuration.
Using key based authentication is secure but it requires maintaining public key for
every user and poses serious scalability issues. Thus, password based authentication
methods are predominantly used in practice.

SSH servers which use password based authentication method are vulnerable to
password guessing attacks known as bruteforcing where an adversary tries many pass-
words to gain access. These login attempts are recorded in a log file by the operating
systems. We perform a log analysis case study with logs collected from a production
level SSH server in our university campus network. With analysis, we find different
types of failed logins, origin of attacks, common usernames used, etc. Our analysis
showed that many sources persistently try to login showing recurrent attempts across
weeks.

Owing to the scalability issues of log analysis for attack detection, we propose
network based bruteforce attack detection methods. In the first place, our proposed
methods separate network flows corresponding to failed and successful login cases.
This is done using few statistical features derived from network flows. We propose
two bruteforce attack detection methods using network flows. First one models the
failed login cases generated due to users forgetting their passwords or misspelling as a
probability distribution and detects unusually low probability events as bruteforcing
attacks. In the second method, we build a Petri-Net based model to detect and classify
the bruteforcing attacks. The classification marks the attack as either single source,
single domain, and/or distributed attack. We evaluate our proposed model with data

generated from a testbed setup and also form production level servers.
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Chapter 1

Introduction

Secure Socket Shell (SSH) is a cryptography based network protocol allowing re-
mote users (usually system administrators) to access the system over an unsecured
network. It is considered as a secured alternative to the Telnet as the communication
session between the clients and server is encrypted using a session key. SSH exposes
a shell to remote user, thus the user can execute any commands on the server and
perform operations such as the secure transmission of files between the machines,
all types of file operations, running applications, creation of backups at the server,
management activities, and maintenance of remote machines, etc.

SSH provides two ways of remote login authentication. One is using a username
and password and the other is using public-private key pair.

1. Password based Authentication: In password based authentication, a user
authenticates herself by providing a username and password!. User supplied password
is verified with the stored password in the machine.

2. Key based Authentication: In public-key based authentication, client and
server machines possess public-private key pair. The public key is deployed in the
server and private key is held by the client machine. For authentication, the server
encrypts a challenge using the stored public key corresponding to the username and
sends it to the client. The client machine then decrypts this challenge using its own

private key and sends it back to the server. If the challenge received by the server

Pagsword is transmitted over a secure channel



matches with the original challenge, authentication is successful. Many SSH clients

like Putty [1], have inbuilt facilities to generate such key pairs.

In general key based authentication is considered as secure, as only clients possess-
ing the private key can decrypt the challenge. However, it has the operational issues of
key generation and deployment. Moreover this exercise has to be repeated every time
the user looses her private key or it is compromised. Thus password based authen-
tication is practiced. Password-based authentication is prone to password guessing
attacks as an adversary can guess the login credentials and gain access to the system,
particularly if the password is not strong enough. Such password guessing attacks are

common in web applications|2].

Exposing the interfaces of critical systems to the Internet [3] via SSH makes them
vulnerable to possible attacks. Attackers can scan the network space looking for ma-
chines running SSH daemons (port number 22). After locating these machines, an
attacker can try to gain unauthorized access by guessing the login credentials. Il
managed systems having user accounts with weak passwords, systems having default
usernames and passwords become easier preys. This will compromise the system’s
security which can be catastrophic for an organization. Even if the user account
passwords are changed, they may try guessing passwords or use stolen passwords for
gaining illegal access [4]. Worst case scenario is to systematically try different guessed
passwords on the target in the hope that one of them will work. This is generally
known as bruteforcing. A bruteforcing attack is very hard to defend as there is little
one can do in this case. A report published by Ponemon Institute [5] suggest that
more than 50% of the organizations experienced such attacks against their servers. In
general there are two ways bruteforce attacks can be detected.

1. Using Authentication Logs: Many Operating Systems like Linux, Unix main-
tain authentication logs. These logs will have details corresponding to all logins in
the system. Details like username, time, date, the remote IP address from which user
login was attempted, status of login (whether the login was successful or failed) are
maintained as part of these authentication logs. As bruteforcing requires adversary

to try many passwords, it results in many failed attempts being logged. Such system



logs can be consulted to find if there are excessive number of failed logins from any
particular source. There are tools like Fail2ban [6] which process such logs and block
those IP addresses involved in bruteforcing.
2. Using Network Traffic/Flow Details: Every connection/login attempt to the
server results in exchanging of several packets between the client and server. These
stream of packets are considered as network flows. Another way of detecting the brute-
force attacks is using these network flows and some characteristics of such flows. For
e.g. a repeated login attempt results in flows between SSH server and client.

Rest of this chapter is organized as follows. The motivation behind our work is
presented in Section 1.1. In Section 1.2, we discuss the summary of thesis contributions

and outline of the rest of thesis is described in Section 1.3.

1.1 Motivation

Protecting SSH servers, against bruteforce attacks is required for safe computing.
These protections come in the form of filtering the connections originating from known
offenders. This is typically done by adding a rule in firewall to filter/deny connections
originating from such sources. This method will be effective if the source of attacks
can be reliably identified. Authenticating logs maintained by systems are one of reli-
able sources of such information. Tools like SSHGaurd [7], Fail2ban [6] analyze such
logs and put filters to deny connections from attack sources. However, this requires
these tools to be installed in every machine running a SSH daemon. In a large network
with hundreds of systems, installing and maintaining these tools may quickly become
unmanageable. For e.g. the National Center for Super-computing Applications at
University of Illinois has a network with a very large number of such SSH servers [§]
which is used by many users for high performance computing. It is not uncommon to
have such large pool of servers in a similar setup. In these environments, the authen-
tication log based detection methods pose significant challenge of scalability. Further
in a dynamic environment where such systems are added and removed frequently,

keeping track of these changes is another major challenge.

3



As mentioned above, an alternative method for detecting bruteforce attacks is
to use network traffic or flow level information. These network flows and traffic is
collected either at a router/switch or at a perimeter security device itself. As these
devices can see the traffic of every device inside the network, attacks against all SSH
servers can be detected by deploying detection tools at this level. As these methods are
scalable, recent works [9] [10] [11] have proposed to use network flow level information
for detecting SSH bruteforce attacks.

Although network based detection methods are recent and scalable, they are lim-
ited to identifying whether bruteforcing is attempted or not against a server. How-
ever, an attacker can intelligently distribute the password guessing task across many
sources? so that no single source generates password guesses aggressively. If the at-
tack sources are distributed, the IP address and port parameters will change. These
evasive techniques further harden the task of attack detection. The work found in the
literature is limited to detecting only SSH bruteforce attacks. We aim at not only
detecting attacks but also identifying any correlation between them. In specific we set

the following two as objectives for our work.

1. Developing a method to detect the SSH bruteforce attacks using network

packet/flow level information accurately.

2. As a second level activity, classify these attacks into categories based on possible

correlation among sources of attacks.

1.2 Thesis Contribution

In this thesis we describe new SSH bruteforce attack detection methods and
attack categorization to understand the possible correlation between the contributing
sources. Before we present our attack detection methods, we conducted a study of
SSH authentications logs to understand the attack patterns. Following are our thesis

contributions:

2A compromised machine can be used to generate attacks against other machines.
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I. SSH Authentication Log Analysis Case Study: Bruteforce attacks are
common against SSH servers. As a first contribution, we report on a case study using
logs of an SSH server deployed in a production environment. This study helped us to
gain insights into the attack patterns, common sources of attacks, their frequency and
distribution, etc. Our analysis on a large scale authentication log dataset reveals that
attackers attempt various methods to break into the system, there are few common
usernames which were tried persistently, origin of attacks are well spread and more
than a handful number of sources make repeated attempts to break into the system

spanning weeks.

II. SSH Bruteforce Attack Detection: As mentioned earlier, network traf-
fic/flow based bruteforce attack detection methods are scalable and can be deployed
at the perimeter of the network. In our second contribution, we propose a method
for SSH bruteforce attack detection using network flows. This detection method is
a two phase activity where in the first phase, flows belonging to SSH connections
are identified. Subsequently the flows corresponding to failed login connections are
detected. For the first task of identifying SSH flows, we use content similarity between
flows using Deep Packet Inspection (DPI)[12]. SSH client and servers exchange a set
of supported protocol suit as part of their handshaking to negotiate and agree on a
particular protocol suit. This exchange is typically done in plain text form which
allows to us to use DPI. For the second task of attributing a SSH flow to a failed login
connection, we use few flow parameters which help in separating the connections of

failed login attempts from successful login cases.

We subsequently proposed a method for detecting SSH bruteforce attacks. This is
done by modeling the failed login connections as a probability distribution and we
identify rare probability events corresponding to unusual number of failed logins in a
chosen interval time period as bruteforce attacks. We experiment with network traffic
collected from a production level SSH server and from testbed setup to evaluate the

proposed method.



III. SSH Bruteforce Attack Detection and Classification: As discussed
in previous section, one of the objectives of our work is to classify the SSH bruteforce
attacks. We identify that these attacks can be of three possible categories as
originating from single source, a domain or purely distributed. In this work, we
extend our previous model of detecting attacks into both detection and classification
method. In particular, we propose a Petri-Net based state transition model to keep
track of various events and use it to not only detect the attacks but also to identify
its category. As in the previous case, we use SSH network traffic collected from the

production level SSH server and from testbed setup to evaluate the proposed method.

1.3 Organisation of Thesis

We organize the rest of this thesis as follows:
Chapter 2: In this chapter, we discuss the related work on SSH bruteforce attack
detection, the mitigation tools available and also the case studies done using the SSH
authentication logs.
Chapter 3: In this chapter, we present a case study on SSH Authentication logs from
the production-level server, which is deployed in our university network. Through this
study, we aim to get insights into the attack patterns.
Chapter 4: In this chapter, we describe a method for detecting SSH bruteforce
attacks. We model the failed login attempts as a Poisson probability distribution and
identify rare events as bruteforce attacks.
Chapter 5: In this chapter, we present a Petri-Net based model for the detection and
classification of SSH bruteforce attacks. Our proposed model classifies the bruteforce
attacks into one of the categories as originating from a single source, single domain,
or distributed attacks.
Chapter 6: In this chapter, we conclude the work presented in the thesis with pointers

to the future directions for followup work in this area.



Chapter 2

Literature Survey

Secure Socket Shell (SSH) is vulnerable to bruteforcing attack where an adver-
sary attempts multiple passwords. These passwords come either from a dictionary
or systematically generated. As compromised SSH servers allow users to access data
in the target machine and may also allow users to navigate to other parts of the in-
ternal network, it is imperative that these are detected. The attack detection and
prevention methods are of two types as host based and network based. In the host
based approaches system logs are used for detecting attacks and in the network based
detection methods network traffic or flows are used. We cover the different SSH brute-
force attack prevention and detection methods and related case studies in the next

five subsections.

2.1 Bruteforcing Attack Detection Tools

There are few host based SSH bruteforce prevention tools. These tools block the TP
addresses after a threshold number of failed logins in a time period. We elaborate on

the working methodology and few features of these tools in the next few paragraphs.

1. Fail2Ban [6]: Fail2ban is an open-source software available for free. It parses
the authentication log file and finds patterns of malicious behavior. It bans the
IP address, which shows malicious behavior. Malicious behavior can be events

such as too many authentication failures or exploit querying. It works with a
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computer firewall by updating its rules and block a particular IP address for
a certain period of time. If a pattern is observed for a particular IP address
more than x number of times, it then bans that IP address. The value of x
can be configured accordingly. Fail2ban is available for various distributions like
Ubuntu, Fedora, Mac OS X, FreeBSD. It can be configured according to the
user’s needs. For example, permanently banning an IP address using ‘Admin’

as a username to login to the server.

. SSHGuard [7]: SSHGuard is another open-source tool that protects the system
from bruteforce attacks. It does so by parsing the authentication log files at the
host and blocking the IPs with the help of a firewall such as iptables, pf, and
ipfw. The IP address is unblocked after a certain amount of time. It also has an
option of semi-permanently banning the IP address using blacklist. Multiple log
files can be monitored at once using SSHGuard. It scans the logs and searches for
attack patterns. This pattern is similar to the previous case where a x number
of failed login attempts in a few seconds. It can be run on distributions such
as Ubuntu, Debian, Mac OS X, OpenBSD, Fedora. SSHGuard can help prevent

attack against various services such as OpenSSH, Exim, UWimap, Sendmail.

. BruteForceBlocker|[13]|: BruteForeBlocker is a script written in perl language,
which blocks traffic suspected to be of SSH bruteforce attack. It works with pf
and iptables based firewall. BruteForeBlocker reads sshd log file via syslog and
scans for possible failed logins. It then counts the number of such tries from the
given IP address. If the count reaches a certain limit (which can be configured),
it blocks all the traffic from that particular IP address, by adding an entry to
the pf table corresponding to that IP address. New version of BruteForeBlocker

1.2 also allows sharing the list of such IP addresses with other users.

. DenyHosts[14]: DenyHosts is a script that helps prevent SSH bruteforce attacks,
exclusively for Linux servers. It scans the ssh logs line by line and filters out
the login attempts which are failed and successful. It then stores the users with

unsuccessful logins based on whether they are a root, valid(with an existing
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system account), or invalid(with a non-existing system account). DenyHosts set
a different threshold on the maximum number of times a valid user, a root user,
and an invalid user can have failed login attempts. Whenever these thresholds
are crossed, the user is blocked by adding the user to the /etc/hosts.deny file.
It also keeps a record of the host from which a user has logged-in successfully

after many failed attempts, denoting them as suspicious logins.

. pam_abl [15]: PAM Auto Blacklist Module or in short pam_abl, is a command-
line tool configured to blacklist the users who perform repeated failed login
attempts. Hosts are blacklisted when the number of failed authentication at-
tempts in a particular interval exceeds a threshold. When this happens, even if
the host now provides correct credentials, the authentication will fail. This is a
precautionary measure to prevent an adversary gaining access after trying some
guessed passwords. After a certain period of time, if the host stops authenticat-
ing itself, it is removed from the blacklist. The time period for cooling off period

is configurable.

. BlockHosts [16]: BlockHosts is a script that keeps track of the number of times
a service is probed. It parses the logs from the sshd and checks if there are
failed authentication attempts. BlockHosts keep track of the number of times a
connection source (an IP address) made a failed login attempt. Whenever this
value exceeds a predefined threshold value(can be configured), it adds the IP
address to /etc/hosts.allow and adds a deny flag with it. Subsequently, if that
source (IP address in question) to connect, a refused connection message will
be sent. Alternatively, all kinds of communication can be blocked from that IP

address by using packet filtering.

All the tools mentioned above run at host level and need access to the host level

log files. Although these have better visibility into the activities of the server, in a

large network setup with hundereds of SSH servers they quickly become unmanageable

requiring system administrator to individually manage systems.
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2.2 Coordinated Password Guessing Detection

Techniques

An attacker can intelligently coordinate while executing a SSH bruteforce attack
so as to keep a low profile. Coordinated attacks are those attacks that are carefully
orchestrated such that they do not originate from a single source. Multiple machines
are involved, each contributing to the attack. These sources are often geographically
distributed and are specially designed to evade detection.

Author Javed and Paxon in [17] gave an approach to detect such stealthy SSH dis-
tributed attacks where individual attackers work in a low-profile manner. They used
statistical change point detection method to detect attacks. They built a model for
legitimate users’ failed authentication attempts which are either due to users failing
to recollect passwords or misspelling. The model was used as a detector for bruteforc-
ing. The detector was tuned with a trade-off between the detected number of false
positives and detection time. The authors used an 8-year SSH login dataset (authen-
tication logs) from Lawrence Berkeley National Laboratory, comprising thousands of
SSH servers with nearly 4000 users. The detection approach is divided into two steps;
the first is to monitor when an attack occurs. The second is to determine the partici-
pant involved in the attack. In the first phase of detection, Aggregate Analyzer checks
the probability distribution of the parameter for the extreme change. It then flags
such changes as the attack case. In the second phase, Attack Participants Classifier
aims to identify the attacker for which attack was flagged in the first phase. For each
host which appears to be an attacker, a decision is made whether it is a legitimate
user, a singleton attacker(working individually), or an attacker working collectively
with other attackers so as to generate coordinated attack. To perform this classifi-
cation, authors presented two steps. First one was to classify on the basis of past
histroy. For e.g. if the host had successfully authenticated itself in the past, it is
considered as a genuine misspelling. Next step for the remaining users was to find
commonality between them in the set of systems or username they try to authenti-

cate. Authors assume this would be effective because distributed attackers aim to
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collectively accomplish a particular goal. Also, all of them are expected to run from
the same automated software; therefore would have similar number of authentication
trials. Work of javed and Paxon [17] is based on authentication log analysis and hence
it also shares the same scalability issue as in other host based methods. Unlike this,
we propose methods for detecting SSH bruteforce attacks and classification techniques
using network flow level data. Network level detection techniques have the advantage

of making real-time detections.

Such coordinated attacks are found in other security areas as well. For e.g. in port
scanning, the goal is to scan a set of ports to check which ports are open. Like in
the bruteforcing, this can be done from a single source or a bunch of machines can be
employed.

Carry Gates in [18] presented a similar problem of coordinated port scan detection.
Her work was to detect distributed port scanning. In coordinated port scanning, at-
tacker operates with multiple systems, where open ports are scanned by these systems,
each scanning some section of network so as to cover the whole target network. In-
trusion detection systems are capable of identifying port scan activity from a single
source. However, if the activity is collaborated by attacker via multiple sources, it
goes unrecognised. The detection problem was formulated as a set covering problem.
In Set Cover Problem, the goal is to find subsets with minimum total costs such
that all the elements in subsets cover the universal set. The assumption is that the
attacker distributes the task in such a way that maximizes the reach and reducing the
overlap of work. Author generated footprint pattern based on the port scan by an
attacker, for e.g. the IP/Port pair observed by the attacker. The information from the
footprint pattern was used to create the problem approach. Since a coordinated scan
comprises of many single-source scans, the author first detected single-source scans.
The input set comprised of all scans identified throughout a given time period. With
the given attacker information from the footprint pattern and the set of scans, the
problem was reduced to observing a subset of the scans such that a footprint pattern
was identified. For experiments, coordinated scans were implemented in the isolated

network, and the network traffic generated was captured. Total 87 data sets were
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generated for validation, out of which 61 were recognized by the detector(70%). The
proposed method has a limitation; in that, it uses single-source port scans as an input
in the algorithm. Therefore, if an attacker is able to bypass the single-source scan
detection, then coordinated scan detection can also be bypassed. Although her work
is not on SSH attacks, the idea of launching coordinated attacks can be adapted to
SSH login case too. A similar technique can be used for the detection of distributed

SSH Bruteforce attacks.

2.3 Statistical and Machine Learning based Meth-

ods

These methods use some form of statistics/features derived using network packets
or flows to detect SSH bruteforcing attacks. There are two sub-categories of works

which are found in the literature as below.

I. Statistical based Methods: Sperotto et al. [19] proposed a Hidden Markov-
based time-series model of SSH bruteforce attacks. They examined the attack
characteristics from several bruteforce attack tools and determined some set of
behavior to differentiate these attacks. The developed model was used to imitate
characteristics of bruteforce attacks by creating the flow-based time series of the
network traffic. Three attack phases were identified by the authors as

i) Scanning- Initially, the attacker executes a sequential SSH scan encompassing
the whole network address space. This stage was referred to as the scanning phase
(during the first 1000 seconds).The attacker gets information on which hosts are
running a vulnerable SSH service during this phase. Only a few users are affected by
this attack phase.

ii) Bruteforcing- Following this phase, the attacker launches an attack of
user /password guessing, which is referred to as the bruteforce phase. Only a small

portion of the network’s hosts are involved in this phase. They measured that, this

12



phase undergoes a high level of communication between the victim and the attacker
machine. This involves 1000 seconds of the second block. The bruteforce phase
concludes after around 2000 seconds since the attack began.

iii) Compromising- Once the attack is successful, the host machines which are
compromised tend to communicate with the attacker, which generated extra network
traffic.

iv) Die-Off- The final phase is referred to as the die-off phase.

To evaluate the observations made, the authors used two datasets collected from the
University of Twente network. They show that after being trained on the actual data,
the model mimics the network behavior of bruteforce attacks on SSH servers within
10% relative error. Synthetic traces from the model resemble the mean, standard

deviation, and correlation of flow, packet, and byte time series.

In a follow-up work, Sperotto et al. developed a tool named SSHCure [20] us-
ing the observations made above and combining some heuristics on packet frequency
observed in four phases of bruteforce attack. SSHCure [20] is a flow-based open-
source tool to detect real-time SSH bruteforce attacks. SSHCure uses metrics such
as Packets-Per-Flow(PPF) and number of flow records in a time interval to identify
different phases of attack. The observations of flows in four phases are as follows

i) Scanning Phase: SSHCure identifies the scanning phase when a maximum of 2
PPF and 200 flow records per 1 minute time interval are seen.

ii) Bruteforcing: A PPF value of 8-14 with a threshold value of 20 flow records per
minute (for an individual attacker) will detect the bruteforce phase.

iii) Compromise Phase: An idle connection between an attacker and a victim
target is indicated by traffic with a PPF less than 8; whereas a PPF Value greater
than 14 may indicate that an attacker is actively using a victim.

iv) Die-Off Phase: The die-off phase is identified when there is a significant change
in characteristics from the bruteforce phase. For this phase, PPF values greater than
8 less than 14 are considered.

For validation, two data sets were used to test the suggested detection technique.
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The first set comprised of one week of data, also used in [19]. The second data set
was similar to the first one, collected at the University of Twente network; however,
it was collected in February 2012. Out of 29 total attack cases in the first data set,
17 attacks were moved to the bruteforce phase meeting the thresholds and 16 to the
die-off phase. For the second dataset, out of 101 attack cases, 58 were identified as
bruteforce attacks, of which 25 entered the die-off phase. The algorithm reported no

False positives, with the identification of two false negatives.

Authors of [9] used Netflow records to improve their detection technique of
SSH Attacks given in [20]. In this they updated the range of PPF for the bruteforce
attack phase, with the new range as [11,51]. The minimum number of packets
needed for authentication was claimed to be 11, and 51 was the maximum number of
observed PPF in bruteforce traffic. The most frequently used number for PPF was
taken as a baseline from the traffic, and deviations with this baseline were observed
for the particular attack. After defining the baseline, the flow data was observed
between the attacker and victim. Whenever two or more consecutive flows with the
same value of PPF were observed, it was detected as an attack. They identified six
possible attack scenarios. These scenarios were the actions that could be seen after a

compromise. The next phase of compromised detection consists of two steps.

1. Matching traffic against scenarios: When a bruteforce phase between attacker
and target is recognized, this phase seeks to detect one scenario out of the six

scenarios initially generated. A compromise is identified if there is a match.

2. Identification of mitigation mechanisms: Following the discovery of a matching
scenario, the traffic is examined for indicators of mitigating techniques that
have been activated. When this happens, one or more of the following scenarios
may occur: i) Due to retransmissions between the attacker and the target, mid-
connection mitigation can result in a higher number of PPF than the established
baseline, ii) TCP SYN is all that is required for new connections. Typically, a

SYN flag set consists of three packets: a retry count and a commonly used
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metric for establishing TCP connections. It is critical to identify mitigation
methods, as it would generate false-positive compromise detections(those with

instant logout.)

The authors gathered two datasets from the University of Twente’s campus network,
both consisting of data for one month. The dataset consists of the log files from
honeynet (namely dataset D1) and workstation servers(namely Dataset D2), having
publically accessible SSH service. The dataset is also comprised of the SSH flow data
flowing in and out of the campus network. To validate the algorithm, implementation
was done as a part of SSHCure v2.4[21]. Dataset D1 showed an accuracy of 84% with
a 30% False-negative rate. Dataset D2 showed accuracy close to 100%, with 0.3% of

the attacks incorrectly classified.

II. Machine Learning based Methods: Machine learning algorithms are
extensively used in detecting various kinds of cyber attacks like DDoS attacks, SYN
flood attacks, Port Scanning, etc. These machine learning algorithms are used as
anomaly detectors by generating a model(s) of the normal behavior or both normal
and abnormal behaviors. There are two types of algorithms as supervised and

unsupervised. Both types of algorithms are used as anomaly detectors.

i) Supervised Machine Learning methods Supervised machine learning is
a type of machine learning where labeled instances are used to train the model. The
labeled data indicates that the input data instances have already been marked with
the appropriate class. These machine learning algorithms can be used for SSH attack
detection by generating a model with appropriate network flow features. In order
to detect attacks, the supervised machine learning algorithms are trained with data
which is labeled with ground truth (e.g. successful or a failed flow), based on which,

they predict the class label for future network flows.

Najafabadi et al. [10] used netflow record based features to train four machine

learning algorithms to detect bruteforce attacks. K-Nearest Neighbor, two types
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of C4.5 decision trees (C4.5D and C4.5N), and Naive Bayes (NB) algorithms were
used to generate predictive models using 8 features. These models were evaluated
on a dataset collected from a campus network in 24 hour duration. They used Area
Under the Receiver Operating Characteristic Curve (AUC) as a metric to show that
these mdoels catch SSH bruteforce attacks with good accuracy. In a subsequent
followup work, Najafabadi et al. [22] extended their work with 17 flow based features
with same four algorithms. They evaluated these models with a dataset collected
from a campus network for a period of 8 days again using Area Under the Receiver

Operating Characteristic Curve (AUC) as a metric.

Hynek et al.. [23] did feature engineering on IP network flows and identified
11 features to be useful to train machine learning algorithms. They tested their
features with five machine learning algorithms namely Ada-Boosted tree, Naive
Bayes, K-NN, C4.5 Decision tree, and Random forest and showed good detection rate
on SSH bruteforce attacks.

Shmagin [11] also used netflow based features with machine learning algorithms to
detect SSH bruteforce attacks. Hossain et al. [24] proposed a method to detect
brutefroce attacks. They used both conventional supervised machine learning algo-
rithms and also Long Short-Term Memory (LSTM) based deep learning method for
attack detection. Evaluation on a dataset containing bruteforce attacks against SSH
and FTP showed good accuracy. A similar work by sadasivam et al. [25] also eval-

uated four machine learning algorithms using 14 features extracted from network flows.

ii)Unsupervised Machine Learning methods: Unsupervised learning is
another type of machine learning in which models are trained on unlabeled data. The
model then interprets the data based on some patterns. With a suitable algorithm,
the model outputs the data in the form of clusters, with similar data in one cluster.
This approach can be used for the detection of SSH attacks. Because of the difference

in the flow features of normal and malicious traffic, unsupervised machine learning
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algorithms can be used to divide or split the network traffic into attack or malicious

and normal clusters using suitable features.

FLOWHACKER [26] is a network anomaly detector which detects attacks like
DDoS, Botnet command and control and also SSH bruteforce attacks. It uses a
bunch of features extracted from network flows and estimate the similarity among
flows to group them using unsupervised machine learning algorithms. Once the flows
are clustered, they are labelled either as belonging to normal traffic or attacks (which

includes SSH bruteforcing).

He et al. [27] proposed a method to capture attacks at the source rather than
at the target. They used a bunch of statistical features and explored both supervised
and unsupervised methods to detect if any of the virtual machines in a cloud are
contributing to DDoS and bruteforce attacks. SSH bruteforce attack is one of the
attack that they considered in evaluation.

We present a summary of the important works for SSH Attack Detection in Table
2.1. The table shows various methods used for the detection of SSH attacks, their

key findings, and the limitation associated with them.

2.4 Complementary Approaches

In this section, we describe some of the complementarry approaches, which can be
used with other detection methods described earlier.
Identifying Keystroke (password) and Non-Keystroke Authentication: As
mentioned earlier there are two ways in which an user authenticates for SSH login -
Keystroke and Non-Keystroke.
i)Keystroke: Human-input character strings are used in Keystroke based authenti-
cation. This method of authentication is also used when offering a remote login, file
transfer, and TCP/IP forwarding to users. Stored passwords are compared with the

user entered password and if they match user is authenticated. These passwords are
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Table 2.1: Literature for SSH Bruteforce Attack Detection

Method Discussions Limitations

Detection of Stealthy | Authors proposed the statisti- | Authors used authentication
Distributed SSH | cal technique of change-point | logs for analysis and hence is
Bruteforce  Attacks | detection for the detection of | subjected to scalability issue.
[17] distributed malicious attacks.

Hidden Markov | Authors proposed a time- | The model fails in approxi-
Model modeling | series model to imitate the | mating the autocorrelation re-
of SSH brute-force | characteristics of bruteforce | sulting in high randomness in
attacks [19] attacks. the generated attack trace.
Flow-based SSH | Authors created SSHCure, a | The proposed algorithm can-
Intrusion Detection | flow-based open-source tool to | not identify Distributed SSH
System [20] detect real-time SSH brute- | dictionary attacks.

force attacks, using the obser-
vations made from [19].

SSH Bruteforce At-
tack Detection using
NetFlow/IPFIX [9]

Authors used Netflow records
to improve their detection
technique of SSH Attacks
given in [20].

The proposed method cannot
detect stealthy, distributed
SSH attacks.

Brute Force Attack
Detection using Ma-
chine Learning [10]

Authors trained four machine
learning algorithms, namely,
5-Nearest Neighbor (5-NN),
two forms of C4.5 Decision
Trees (C4.5D and C4.5N), and
Naive Bayes (NB) to detect
bruteforce attacks.

The model cannot identify
Distributed SSH Brute Force
attacks.
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not stored in plain-text format but in hashed format.

ii)Non-Keystroke: To avoid prompting a human, non-keystroke based authentica-
tion uses information other than a character string. Administrators can use SSH to
automate operation functions with this authentication. Authentication via host and
Public key-based are some examples of this method.

Satoh et al. [28], presented a new method for detecting user authentication methods
on SSH connections and removing non-keystroke-based authentication connections.
This strategy is based on two observations

i) An SSH dictionary attack is targeted on a host which uses the keystroke authenti-
cation.

ii) Tasks that are automated through SSH works with non-keystroke authentication.
Authors aim was to identify the methods used for authentication then subsequently
remove connections that exercise non-keystroke-based authentication. SSH protocol
provides confidentiality and versatility by using a various MAC, cipher, and compres-
sion methods so as to create secure connections. Therefore, this anonymity of the
SSH protocol makes authentication identification difficult by limiting direct packet
examination. Therefore they used flow behaviors to identify the type of authenti-
cation. This is because: (i) Flow behaviors can be observed without performing a
direct packet examination; (ii) Flow behaviors vary depending on the type of user
authentication technique used. Various combinations of compression algorithms, ci-
pher algorithms, MAC algorithms, and user authentication techniques were used to
create the datasets. Traffic traces for both the successful and failed authentication
were separated and used for validation. The flows corresponding to public-key based
authentication were given accurate labels with a true positive value of 0.995; whereas,
flows using keystroke based authentication were also labeled with a true positive of

0.997. Furthermore, in their experiments, they did not observer any false positives.
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2.5 Log Analysis and Case Studies

Log analysis studies are an important direction of work in SSH related attack
detection and cyber security research in general. These case studies give insights
about the trends, patterns of attacks and behaviors of attackers which can be used
as lessons to secure systems. Future detection/mitigation methods can take clues
from these studies. We find broadly two classes of case studies related to SSH
authentication logs as one taken from honeypot networks and second one collected

from real servers. We elaborate studies of these two types below.

I. Case Studies using Honeynets and Honeypots: A honeypot is an al-
ternative server which is setup mimicking a real server to lure attackers. Here an
attacker gets a feeling that, she is communicating with the real server or system
while she is only communicating with a dummy system. These systems deliberately
expose vulnerable services to lure attackers and capture their footprint. Honeynet is a
network of honeypots containing multiple such servers. There are several case studies
done with logs collected by deploying SSH servers in the honeypots and honeynets.
2008: Owens and Matthews [29] deployed honeypot based SSH servers in three
different types of networks namely i) a small business network ii) residential network
and iii) a university campus network. From these servers they collected logs and
analyzed multiple parameters. These logs correspond to bruteforce attacks against
SSH servers deployed in Linux systems. Their study revealed that there are many
similarities between the attack patterns among the three servers. Their study also
showed that, there are many common usernames and passwords used against all the
three servers indicating that the common tools were used to generate attacks'. Their
study also showed slow rate and distributed attacks too.

2010: Romain and Vivien [30] built a whole network of systems and servers deploying
several applications as part of a honeynet. In order to capture logs and activities of

attackers, they wrote several custom scripts and patches. The logs collected were

1Such tools are often widely publicized and circulated
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exported to a central LogServer and processed. Their study on SSH authentication
log data collected over a period of four months revealed that many attacks recur over
a period of time.

2013: Valli et al. [31] conducted authentication log analysis case study with logs
collected from three Kippo honeypot systems. The logs were collected over a period
of 75 days. The analysis revealed that nearly 50% of the attacks originated from
China. They also found the commonly executed commands by the attackers after
they login.

2018: Joshua Faust [32] also reported log analysis case study by deploying a
honeynet. His study focuses on finding the country of origin of attacks, number
of attempts made, etc. These logs were collected by deploying SSH servers at five
different places namely Bangalore, Frankfurt, London, Singapore and San-Francisco.
All the logs were aggregated at a central server and used for analysis.

2019: The paper [33] reports a 463-day log analysis of CAUDIT honeypot at the
University of Illinois’ National Center for Supercomputing Applications (NCSA).
CAUDIT is a completely automated system that detects and eliminates hosts
vulnerable to SSH bruteforce attacks. SSH attack attempts were blocked using the

honeypot’s recorded IP addresses.

II. Case Studies using Logs of Real SSH Servers: Many studies used
authentication logs collected from real SSH servers and systems deployed in networks.
These systems also generate similar logs as in the previous case. Unlike the previous
case, as these are real servers used by intended users, and they do not have vulnera-
bilities in them.

2010: Sharma et al. [34] presented a SSH log analysis case study from the SSH
servers of National Center for Supercomputing Applications at the University of
[linois. They analyzed logs collected over a period of five years in 5000 machines.
Their study covered mechanisms used by attackers to gain access to the servers.
In particular they observed that, attackers initially try exploiting a vulnerable

application and subsequently escalate the privileges to root and even replace the
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SSH/SSHD applications with a trojaned versions to permanently retain access.
2015: Abdou et al. [35] collected SSH logs by deploying servers in five different
locations. They collected 17 million log records in a span of one year and gathered
the commonly used passwords and usernames. Their study revealed that ‘admin’ and
‘root’ are the most commonly used usernames in the attacks and were seen across
the SSH servers. They also found several attacks distribute usernames and passwords
(dictionary entries) among a set of sources.

2019: CAUDIT proposed by Cao et al. [33] has a second component which replays
the attacks observed in honeypot servers over the real servers to find the vulnerable
systems using which necessary remedial action can be taken. Using the IP addresses
of attack sources as seen in the honeypot servers, they setup filtering at a Black Hole
Router (BHR) which helps in protecting the real SSH servers. CAUDIT also has a
coordination mechanism where it can exchange the observed attack sources to many
peers. This intelligence sharing mechanism helps in protecting these servers from
future attacks and the authors claim that, it is able to detect/mitigate millions of
such attacks on daily basis in their network.

2020: Another study by Wu. et al. [8] reports SSH bruteforce attempts against an
operational system at the National Center for Supercomputing Applications with 11
billion number of such attacks. Their study revealed that several stolen SSH keys are
used for authentication, and these keys were widely circulated. This measurement
also unearthed that very diverse versions of SSH clients are used for login. There
were attacks where activity patterns that showed human participation in the attack

through botnets.

We present a summary of the important works related to SSH log analysis in
Table 2.2. The table lists different log analysis case studies, crisp summary of their

key findings, and the limitation associated with them.
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Table 2.2: Literature for SSH Authentication Log Analysis

Method

Discussions

Limitations

A Study of Passwords
and Methods Used in
Brute-Force SSH At-
tacks [29]

Authors studied logs collected
from honeypot servers in three
different networks indicating
the use of common tools for
generating attacks.

Authors claim that the aggre-
gation and analysis of the col-
lected data is labor intensive
and can be automated by soft-
ware tools.

Study of Dictionary
Attacks on SSH [30]

Authors designed the archi-
tecture with SSH servers on
virtual machines to analyze
attacks from the log data, re-
vealing recurrent use of user-
name password by attacker.

Authors used VPN for the vir-
tual machine, which can cause
scaling issues.

Distributed Analysis
of SSH Brute Force

and Dictionary Based
Attacks [32]

The author deployed total 6
servers (one master, 5 honey-
pots) to collect and analyse
the authentication log data.

Since only 5 locations were
taken into consideration, the
collected data did not rep-
resented the global view, in-
stead a limited geography.

Continuous Auditing
of SSH Servers to
Mitigate Brute-force
Attacks [33]

Authors proposed CAUDIT,
an automated system to iden-
tify the hosts that are wvul-
nerable to SSH attacks, and
based on the data collected
from honeypot, blocks the at-
tempts from the recorded IP
addresses.

The proposed system is not
able to generate coordinated
alerts among the sites, for the
detection of coordinated at-
tacks across different sites.
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2.6 Discussion and Conclusion

SSH bruteforcing is an attack which needs system administrator’s attention. It is
important that these attacks are detected at early stage to prevent damage. While
log analysis is effective and can identify attacks reliably, they have scalability issues.
Several case studies using logs revealed interesting patterns and behavioral trends.
Network based bruteforce detection methods are recent and can scale well. Taking
motivation from this, we design network flow based SSH bruteforce attack detection

methods which we describe in the subsequent chapters.
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Chapter 3

Secure Socket Shell Authentication

Log Analysis

3.1 Introduction

Computing and networked servers often allow users to remotely connect through
Internet by exposing a Secure Socket Shell (SSH) interface [33]. Although remote
access gives the convenience to legitimate users, often these systems are not well
managed and many user accounts may have weak passwords which are guessed easily.
The implications of a system which is compromised can be very severe. It may allow
an attacker to navigate to other internal systems of an organization and may harvest
sensitive data [36]. In general, an attacker can use multiple types of password guessing
attacks and combine her computational resources to generate coordinated and well
organized attacks [18, 34, 17]. Operating systems usually keep logs of such remote
SSH connection requests as authentication logs. These logs have rich information and
are one of the sources of information for detecting the attacks against SSH servers.

In this chapter we present a study conducted using SSH authentication logs col-
lected from a production level system deployed in our university network. In partic-
ular our study focuses on gaining insights about attack patterns. In the second part
we use the network traffic or flow level data corresponding to these logs and show

that the flows corresponding to successful and failed SSH connections exhibit differ-
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ent characteristics. These flow classification methods help to detect SSH attacks like

bruteforcing. Summary of our study and observations are as below.

e We identify common usernames attackers tried to use for gaining access and
observe that few of them are very common (top 10 usernames are used in 12.8%

of break-in attempts).

e We mapped sources of attacks to their country-wise geographical location to find

that malicious login attempts come from vary diverse sources and locations.

e We study the distribution of attacks for common IP addresses and prefixes, and

observe that few of them are recurring and persistent across weeks.

e We propose a flow based detection method to identify successful and failed login

attempts using few parameters taken from network flows.

We organize rest of this chapter as follows. In Section 3.2 we discuss the related
work on SSH attack detection and prevention. In Section 3.3 we provide the generic
architecture of network where SSH server is deployed and log dataset used for analysis.
In Section 3.4 we furnish the details of our log analysis case study. Section 3.5 has
the details of failed login identification method and its evaluation with few machine

learning algorithms. Finally we conclude this chapter in Section 3.6.

3.2 Prior Work

As described in Chapter 2, there are few prior works which have studied the SSH
authentication logs. These studies are of two types.
I. Logs Collected from Honeypots: Honeypots are systems primarily deployed to
attract the attackers. These systems may deliberately expose vulnerable services and
collect evidence and the behavior of attackers which are subsequently used to secure
real systems. Few studies used authentication logs collected from the SSH servers
deployed in honeypot networks to understand the attackers’ behavioral patterns and

sources of such attacks. Authors of [30] collected a dataset of SSH bruteforce attacks
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using honeypots network and observe that many attacks recur over a period of time.
Another measurement study [29] also reported recurrent attack behavior with analysis
on data collected from honeynet system. A recent case study [32] also collected SSH
logs by deploying a honeynet. This analysis involved various parameters like country
of origin, number of attempts made, etc. CAUDIT [33] uses honeypot deployed SSH
servers to attract intruders and using the IP addresses of such sources, filter the packets
originating from these servers from a higher level router.
II. Logs Collected from Real Servers: These studies use authentication logs
collected from production level servers. There are number of such case studies using
real SSH server logs [35, 33, 37, 38, 8]. Wu et al. [8] presented a case study of
logs collected from National Center for Supercomputing Applications at University of
[linois. Their study revealed that, several stolen keys and botnets are used to login
to SSH servers. They also observed that attackers use several variants of SSH clients
for login.

Drawing motivation from the above works, we conduct a log analysis case study
with authentication logs collected from a SSH server deployed in our university net-
work. Our observations and findings complement the above works by observing similar

behavioral patterns.

3.3 Network Architecture and Dataset Collection

In this section we give an overview of network architecture in which SSH server is
deployed and the details of how the log dataset is generated.
Network Architecture: Our university computer network architecture follows a
popularly used network design of separating inside Local Area Network (LAN) with
external Wide Area Network (WAN) through a firewall. There is also a Demilitarized
Zone (DMZ) as shown in the Figure 3.1. Different parts of this network structure are

elaborated below.

1. Demilitarized Zone: This name has its origin from the military background.

In that context, a zone marked as DMZ prevents military installations from
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Figure 3.1: Representative Network Architecture

two neighboring countries. In the network context, this is used to separate the
deployment of various services and servers. DMZ controls the access to services
for users located in different areas. In our network, this DMZ has various servers
like web server, authoritative name server, DNS resolvers, etc. The web server

also exposes an SSH interface for remote access.

. Server Farm: There is also a server farm (a collection of servers), which is
primarily used for High Performance Computing (HPC) purpose by the internal
users and also few external users. Some of these servers have also exposed SSH

interfaces to Internet.

. Desktop and Internal Users: These are end users who are part of the local
network and they use Internet for day-to-day web access, education and enter-

tainment purposes.
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4. Layer 3 Switch and ISP: Our campus network has services of two Internet
Service Providers (ISPs) whose connections terminate on a layer 3 switch as

shown in Figure 3.1.

There is a software firewall pfSence [39] separating different zones of the network.
This firewall screens both incoming and outgoing traffic and does filtering based on
rules. This firewall also has an integrated intrusion detection and prevention system
Suricata. Our university network infrastructure currently serves approximately 1800
users. Going with a conservative estimate of each user has on an average 1.5 devices,
it provides connectivity to 2700 devices. The web server deployed in DMZ hosts our
institute website and also runs SSH server which allows authorized users to remotely
connect to the server. This will help users to access the server and also facilitates
working on updates of the website remotely. This SSH server has many accounts for
different types of users (faculty, students, staff, administrators) who primarily login to
maintain and update their homepages and also the institute website. This SSH server
allows only public key based user authentication and hence all password based login
attempts are rejected. We collected two types of datasets from this network setup
for our study. The first dataset is the authentication log dataset and second one is
the network traffic dataset. We elaborate the details of these two in the next two
paragraphs.

Dataset-I: As mentioned above, the web server located in the DMZ exposes an SSH
interface to the remote users. Hence all the connections from external users are cap-
tured as part of the authentication logs (by default every user login attempt is recorded
in the auth.log file). We collected authentication logs related to SSH connections (fil-
tered from file auth.log) from the web server as our first dataset. This data was
collected for a period of one month starting from 8 September 2019 to 6 October
2019. The log dataset we collected consists of 1,04,821 number of login attempt en-
tries. Few sample log file entries are shown in Figure 3.2. Fach line has a timestamp
indicating when the event took place, details of the event and source IP address which
was involved in the event. The three lines snippet in the Figure 3.2 show that user-

name “admin” was tried from a client having IP address 92.XX.YY.90 and was found
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to be invalid. Subsequently connection request was closed.

Sep 8 09:49:16 Server sshd[17901]: Invalid user admin from 92.XX.YY.90 port
53108

Sep 8 09:49:16 Server sshd[17901]: input_userauth_request: invalid user admin
[preauth)]

Sep 8 09:49:16 Server sshd[17901]: Connection closed by 92.XX.YY.90 port
53108 [preauth]

Figure 3.2: Sample Log Entry

Dataset-11: The second dataset we collected is of network traffic from the SSH server.
We collected this traffic by deploying tcpdump [40] tool and setting a filter for port
number 22 (SSH runs on this port number). This data was collected from 01-01-2020
to 30-01-2020. We use this datset to show that network traffic can be used instead of
log data to identify failed SSH connections. We also make use of authentication log
data for validation and ground truth. This will help in cross verifying the results with

authentication logs for accuracy.

3.4 Authentication Log Analysis

We used the Dataset-I generated (as described above) to study the trends and
patterns of login attempts from different perspectives. We perform two sets of exper-
iments to understand various trends and patterns. First study is on weekly data and

Table 3.1: Weekly Log Data

Week From To
Week-1 | 08-sept-2019 | 15-sept-2019
Week-2 | 16-sept-2019 | 22-sept-2019
Week-3 | 23-sept-2019 | 29-sept-2019
Week-4 | 30-sept-2019 | 06-oct-2019
Week-5 | 07-0ct-2019 | 09-oct-2019

second one is the entire dataset. For the first set of experiments we divided the entire
dataset into five parts as one log file per week as shown in Table 3.1. This table shows
the starting and ending date for each week. Table 3.2 summarizes the number of log

entries and size of log file on per week basis.
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Table 3.2: Summary of Dataset Statistics

Period | Number of Log Entries | Size of Log File (in MB)
Week-1 7271 0.693

Week-2 7758 0.739

Week-3 78668 7.9

Week-4 7105 0.691

Week-5 4019 0.393

For the second part, we used the entire dataset for deriving statistics and trends.

In the next two subsections we elaborate on these two experiments.

3.4.1 Analysis on Weekly Dataset

For this experiment, we used the log files representing the weekly cases for deriv-
ing statistics and understanding trends of login attempts. We performed four types
of analysis as elaborated below.

I. Usage of Invalid Usernames in Login Attempts: Our first analysis was to
understand the usage of invalid usernames used in the login attempts. A user is in-
valid if she does not have a login account in the target machine. Here the attacker is

guessing the usernames along with login credential.

Table 3.3: Summary of Invalid Usernames in SSH Login Attempts

Period | Distinct | Distinct IP Number of Average Most Common |[Number
Remote | Address Invalid User Attempts Per Username |of Trials
Clients |with Failed | Login Attempts Attack IP
Logins Address
Week-1 1126 725 947 1.30 admin 234
Week-2 1186 854 1073 1.25 admin 225
Week-3 1145 821 12160 14.81 admin 450
Week-4 1014 541 633 1.17 admin 99
Week-5 516 64 95 1.48 admin 31

Table 3.3 summarizes the details of this study. In the table we have shown the time
period of the log entries (on weekly basis), the number of distinct clients connecting

to the server, number of clients involved in failed login attempts, distinct number of
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invalid usernames used in the failed login attempts, average number of failed attempts
per unique client, most commonly used username in failed login attempts and number
of times that username has been tried for login. We derive the number of unique SSH
clients by counting the total number of unique IP addresses seen in the dataset dur-
ing that week. This includes both legitimate and successful login cases and also the
failed attempts as well. The entries in the third column depicts the number of clients
which had failed login attempts again identified by the unique IP addresses. Fourth
column indicates the total number of login cases which were recorded as having invalid
usernames in that week. Fifth column indicates the average number of failed login
cases per IP address. Sixth column shows the most commonly used username and the
last column indicates the number times the frequent username has appeared in the
failed login cases. For e.g. the first row represents the log analysis for the Week-1 (be-
tween 08-Sep-2019 to 15-Sep-2019) having received login attempts from 1126 clients
out of which 725 had atleast one failed login attempts. A total of 947 distinct invalid
usernames were attempted during this period with an average number of 1.3 invalid
usernames per distinct client. During this week, the most commonly used username
was “admin” which was tried 234 times in total. We can also notice from this table
that “admin” remains the most commonly used username across all the five weeks.

II. Maximum Authentication Attempts Exceeded by Invalid Users: In our
second analysis we studied the authentication attempts exceeded cases by different
clients. These are the instances where an invalid username has been attempted mul-
tiple times with private key being used to authenticate the user. SSH servers using
key based authentication use a threshold known as MaxAuthTries. This threshold by
default is set to 6 and if any client offers half of this value number of invalid keys over
a connection, the server will log such cases. The SSH server will reset the connection
after MaxAuthTries number of failed login attempts. Table 3.4 shows the summary of
such maximum failed authentication cases in our weekly logs. The first two columns
of this table are identical to the first two columns of Table 3.3, while third column
shows the number of unique IP addresses from which such maximum authentication

failure cases were seen. Fourth, fifth, sixth and seventh columns show the number of
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Table 3.4: Summary of Maximum Authentication Attempts Exceeded by Invalid User

Period | Distinct | Distinct IP Number of Average Most Common |[Number
Remote | Addresses Maximum Attempts Per Username of Trials
Clients | with Au- | Authentication Attack TP
thentication Attempts Address
Attempts Exceeded
Exceeded
Week-1 1126 50 52 1.04 admin 41
Week-2 1186 54 55 1.01 admin 42
Week-3 1145 20 76 3.8 admin 39
Week-4 1014 10 11 1.1 admin 10
Week-5 516 2 2 1 admin, usuario 1,1

times maximum authentication attempts exceeded message was seen in the logs, aver-
age such connection attempts made by clients, most commonly used username against
which maximum authentication failure cases were seen and number of times using that
username authentication failure cases were seen in the entire week data respectively.
For e.g. the first row of Week-1 data, there were 50 unique addresses which generated
failed attempts by presenting invalid keys over a session, with a total of 52 attempts
and an average of 1.04 such attempts per IP address. The most common username
used for login (using wrong key) was “admin” which was used 41 times out of the total
51 such cases in that week. It is worth noting that the last row has two usernames
each appearing single time.

III. Maximum Authentication Attempts Exceeded by Valid User Cases: In
our third trend analysis, we studied another type of login failure instances where valid
username being used but with the invalid key being attempted. Table 3.5 shows the
summary of such failure cases on a weekly basis. In this case too the first two columns
are identical to the first two columns of Table 3.3. Third column shows the distinct
IP addresses which were the sources of such authentication failure instances. Fourth
column has the total number of such failure instances seen in that week. Fifth, sixth
and seventh column show the average number of authentication exceeded cases per
IP address, most commonly used username and total number of times the popular
username has been used in these failed attempts respectively. We can notice from the
table that username “root” is being used in all the cases and it is a valid username in

our system. Hence, fourth and seventh columns have identical numbers.
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Table 3.5: Summary of Maximum Authentication Attempts Exceeded by Valid User

Period | Distinct | Distinct IP Number of Average Most Common | #Trials
Remote | Addresses Maximum Attempts Per Username
Clients with Au- | Authentication Attack IP
thentication Attempts Address
Attempts Exceeded
Exceeded
Week-1 1126 72 75 1.04 root g}
Week-2 1186 76 81 1.06 root 81
Week-3 1145 34 61 1.79 root 61
Week-4 1014 20 24 1.2 100t 24
Week-5 516 9 11 1.22 root 11

IV. Connection Termination Due to Password Based Authentication: In our
last analysis of weekly logs, we counted the sources of failed logins due to password
based authentication being attempted. As our server does not allow password based
authentication, all such connection requests were refused as “disconnection requests”
from clients. Table 3.6 shows the statistics of such failures. With first two columns
again being same as in Table 3.3, entries in the third column indicate the distinct
source IP addresses from which these attempts were made. Fourth column shows the
number of such requests in that week and last column showing the average number of

requests per IP address.

Table 3.6: Summary of Connections Terminated due to Password Based Authentica-
tion

Period | Distinct | Distinct |Disconnects due Average
Remote | Source IP to Password Attempts Per
Clients | Addresses based Login IP Address
Week-1 1126 132 1404 10.63
Week-2 1186 68 1259 18.51
Week-3 1145 106 4962 46.81
Week-4 1014 93 1721 18.5
Week-5 516 7 1376 17.87
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3.4.2 Analysis on Entire Dataset

For our second set of experiments, we used the entire dataset to understand three
important trends (i) distinct set of usernames (ii) geographical location of IP addresses
from where login failure attempts were made and (iii) recurrence of attack sources in

the dataset.

I. Distinct Usernames in Failed Login Attempts: From the entire dataset of

Table 3.7: Top 10 Usernames used in Failed Login Attempts

Usernames [Failed Attempts|Fraction
admin 1039 0.069
pi 174 0.011
user 146 0.009
test 119 0.007
ubnt 111 0.007
oracle 87 0.005
postgres 62 0.004
support 62 0.004
guest 50 0.003
mysql 49 0.003
Others 13009 0.872

a month, we counted the number of distinct usernames which appeared in the failed
login cases. In all there were 14908 login failure instances (with few being reused)
out of which 9044 were distinct usernames. In Table 3.7 we have listed the top 10
such usernames along with number of login attempts and fraction of the time that
particular username being used in the total cases. We can notice from the table that
“admin” being the most attempted username followed by “pi”. In all, the top 10
usernames contribute 12.8% of the failed login attempts with the remaining 13009
usernames contributing 87.2% of the failed logins.

II. Geographical Location of Failed Login Attempts: In our second trend anal-
ysis, we studied the geographical location of failed login sources of different types.
For the first case of login failure due to invalid usernames being attempted, there

were total of 14908 number of failed instances logged over a period of five weeks. We
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Figure 3.3: Geographic Sources of Failed Login Attempts Due to Invalid Usernames

found geographic location of these source IP addresses using Python-geoip package!
and lookup(IpAddr) method. In this case (failed login attempts due to invalid user-
names) the source TP addresses of failed login sources spanned 76 different countries.
In Figure 3.3 we have shown the number of source IP addresses per country for the
top 10 countries. We can notice that Chili with 600 source IP addresses tops the list
followed by Unite State of America with 528 IP addresses and India being in the tenth
position.

I11. Recurrence of Failed Login Attempts In this study we find sources of attacks
which were repeating over a period of time. We do this in two parts as below.

(i) Recurrence of IP Addresses: In the first case, we analyzed the number of
repeating connections (from same IP address) over the period of 5 weeks. Figure 3.4
shows the distinct number of IP addresses per week from which failed login attempts
were made using guessed usernames. From the figure it can be seen that in first week
there were 725 IP addresses and in the second week there were 854 such IP addresses.
Figure 3.5 shows the recurring set of IP addresses over the weeks. Each column in

this graph denotes the number of repeating IP addresses which were seen in the sub-

!This package in turn uses Goelite2 database created by MaxMind as reference for finding the
exact location
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sequent weeks. The X-axis in this graph represents the week from which data is taken
for intersection and each column indicates the subsequent week(s) data with which
recurrence is calculated. For example there are 57 IP addresses from which failed login
attempts were made using guessed usernames in Week-2 which were sources of such
attacks in Week-1 too (denoted by first column in the Figure). Similarly the second
column (green coloured with cross bars) with X-axis label Week-1 and legend Week-3
show there are 46 such overlapping IP addresses. It is easy to notice that similar
trend is continued for the remaining weeks too except for the Week-5 which has only
3.5 days data. This study reveals that across the weeks few sources made persistent

attempts to connect to the SSH server.
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Figure 3.4: Distinct IP Addresses of Failed Login Attempts with Guessed Usernames

(ii) Recurrence of IP Prefixes: Similar to finding recurrent IP addresses, we also
found the number of common IP prefixes over the weeks. For example if two IP ad-
dresses 10.10.10.7 and 10.10.12.7 are the sources of attacks, they share a common prefix
of 16 bit address which in this case is 10.10. As IP addresses can be geographically
located understanding the common prefixes will help identifying geographic location

of attack sources.
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Figure 3.6 shows the count of such IP prefixes over the period of one month.
Labels on X axis represents week number and labels on Y axis represents number
of common IP prefixes recurring over weeks. FEach column represents the number
of recurring groups between the week on X-axis and label legend. For e.g. the
very first column (white/transparent bar) denotes the number of IP prefixes which
are common between Week-1 (X-axis label) and Week2 (bar legend). Similar
interpretation is done for other weeks too. We can notice that indeed there are
significant number of such IP prefixes which are repeating across the weeks. In the
second week there are 162 distinct 16 bit IP prefixes which were repeating from

first week and it can be seen from the figure that similar trend is seen across the weeks.

From above two analysis, we can conclude that there are sources which indeed
make persistent attempts to compromise the SSH server spanning several weeks. This
trend may be used to secure the SSH server by placing adequate filtering mechanisms
either in firewall or using tools which block hosts/prefixes after a threshold number

of failed attempts.

3.5 Identifying Failed SSH Connections

The log analysis part presented in the last section revealed that attackers use
several techniques to compromise the systems and attacks are prevalent against SSH
server. As discussed in the Chapter 1 that detecting attacks using the logs is not
scalabale as it requires access to log files from every system. The other alternative is
to use network level data of packets and flows to detect such cases. In this section
we describe a method to identify failed and successful login cases using network level
data. Our detection method uses network flows which can be generated using traffic
or can be in the form of records exported by routers. For e.g records can be netflow
records. Few previous works [20, 28, 9, 41] have reported that flow based detection is
not only effective; but it is also lightweight. In addition, as this is a network based

detection, it does not require access to system level logs from individual machines. In
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the next three subsections we elaborate on the details of Dataset-1I, detection method,
and results of experiments with our detection method.

I. Dataset for Experiments For our experiments with SSH flow classifier we use
the Dataset-II which has raw network traffic collected with tcpdump tool [40]. For the
ground truth, we cross verified the log files generated in the same period for timing
and success of the login attempt.

II. Flow Characteristics of Failed Login Connections A flow is a bidirectional
sequence of packets exchanged between the two end points. It can be a TCP flow or
an UDP flow. In order to differentiate the flows corresponding to failed logins and
successful login cases, we use the characteristics of network flows. In particular, we
notice that if the server is using only non keystroke (public key) based authentication,
any attempt to login with credentials are immediately rejected. Further key mismatch
and username mismatch will also result into immediate closure of such connections.
We can make following observations in this case.

(i) If the authentication is unsuccessful and connection is closed immediately, it results
in very few bytes of data exchange between the SSH server and client.

(i) Immediate connection closure also indicate that the flow has a very small duration.
However, flows corresponding to successful connections will have large duration.

(iii) Small duration of connection and small number of bytes exchanged normally also
results in small number of packets being exchanged.

We exploit these observations and identify three parameters listed in Table 3.8 to

differentiate successful and unsuccessful SSH connections.

Table 3.8: Flow Level Features

Feature | Description
fi Number of Packets in the Flow
fa Number of Bytes Transmitted in the Flow
f3 Duration of the Connection

In order to identify failed login cases we generate feature vectors with ground
truth labels and use machine learning algorithms for classifying them. Detecting

failed login attempts is the first step in detecting bruteforce attacks. A simple method
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is to aggregate failure cases in an interval time period and use a threshold to declare
the interval time has experienced any attack or not.

To begin with we show that, the three parameters chosen are useful for detecting
the flows corresponding to failed SSH connections at the network level. For this we
used 50 flows of successful and failed connections as a sample and draw comparison
graphs. Figures 3.7, 3.8 and 3.9 show the different values of these parameters. In
these three figures, the X axis show the flow number (1-50) and Y axis has the re-
spective parameter values in Log scale. We can notice that, these figures confirm the
observations made above.
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Figure 3.8: Number of Bytes Per Flow for Successful and Failed SSH Connections

III. Evaluation Results We processed the Dataset-II of network packets with a
python script to reconstruct flows. What we observed is that the number of failed

login cases in this period of one month was considerably larger than the number of
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successful login attempts. This results in uneven sample distribution when used for
training with machine learning algorithms. This can adversely affect their learning
mechanism. Thus we used all flows corresponding to successful logins (found with
ground truth using authentication logs) for the entire month and approximately 4
times those many number of failed connection flows. Table 3.9 shows the details of

the types of flows.

Table 3.9: Dataset Characteristics

Type of Flows | Number of Flows
Success 481
Failure 1914

In order to identify failed and successful login attempts, we begin with extracting
per-flow based features to generate the feature vector. Each network flow is encoded
into a feature vector containing the number of packets per flow, total bytes per-flow,
and flow duration as mentioned previously. In the next step, these feature vectors are
provided as an input to machine learning algorithms to classify SSH flows as successful
or failed login attempts.

We experimented with a bunch of well known supervised machine learning algorithms
namely K Nearest Neighbor, Naive Bayes, Random Forest and Random Tree. A brief
description of these algorithms follows

(i) K Nearest Neighbor: K-nearest neighbor is a supervised machine learning algo-

rithm used for classification and regression. The training dataset contains feature
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vectors in multidimensional feature space, each assigned with a class label. Feature
vectors, along with class labels, are called training samples. The training phase of
the algorithm only involves storing the training samples. The next step and the algo-
rithm’s outcome depend on the problem the algorithm is applied for, i.e., classification
or regression. The K-NN classification outcome is a class membership resulting in a
discrete value called a class label. A test sample is assigned a class label closest among
its K-neighbors, where K is the value defined by the user. The outcome of a K-NN
regression is real number data representing the property value of the sample object.
In K-NN regression, the result is the average value of its K-nearest neighbors.

(ii) Naive Bayes: Naive Bayes is also a supervised machine learning algorithm used
for classification problems. Naive Bayes classifiers use a collection of classification
algorithms developed using Bayes theorem hence named Naive Bayes. The algorithm
works based on two common assumptions. First, each feature in a given vector is
independent of the other given a class label. Second, each feature makes an equal
contribution to the outcome. Thus, it assures that no feature is irrelevant and any
combination of features less than n cannot predict the outcome correctly. For a prob-
lem instance with a vector of n features, the classifier predicts the class label from
a given finite set of classes. Naive Bayes classifier is designed based on probabilistic
models using conditional probabilities for outcome prediction. Using Bayes theorem,

conditional probability is estimated as

p(Yr).p(X|Yk)
p(X)

p(Yk|X) = (3.1)

Where a problem instance to be classified, is represend as a vector X =(zq,xg, - x,)
representing n independent features.

(iii) Random Forest: Random Forest is also a supervised machine learning algorithm
that combines multiple decision trees for outcome prediction. A decision tree is
the fundamental building block of the random forest classifier. A tree is built by
deciding(based on a feature) at each node that splits the tree further down to a

more accurate prediction eliminating the wrong possibilities at each step hence the
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name decision tree. Each decision tree predicts a class label, and the outcome of the
random forest classifier is estimated collectively based on the majority of the class
label predicted by each decision tree. A problem instance is assigned a class label that
wins by the majority of trees in a forest. Random forest classifiers perform well when
the decision trees have a low correlation between them and the meaningful features
are selected while building decision trees. Low correlation between the trees protects
each other from their individual errors, minimizing the random forest’s overall error,
resulting in a more accurate prediction

(iv) Random Tree: The random tree is a machine learning algorithm that uses a
random tree classifier for classification. The classifier works by splitting the dataset
into a smaller subset with different features in each subgroup. This process creates
different models of a given dataset. Next, decision trees are built using these
sub-sampled data that predicts one class label. Subsequently, the outcome from each
decision tree is aggregated to predict the outcome/class label for a given instance.
Finally, a label to the problem instance is assigned by majority voting of the class
label from all decision trees.

We used the feature vectors generated with three flow parameters and the Weka
tool [42] for the evaluation. In all the experiments we used 10 fold cross validation
method. The experimental result (confusion matrix) for each algorithm listed above
is shown in Table 3.10, Table 3.11, Table 3.12 and Table 3.13 respectively. We can
notice that most of the algorithms showed very minimal number of misclassifications.
These experimental results demonstrate that flow-based features serve as a good

candidates to differentiate successful and failed login instances.

Table 3.10: Classification Performance of KNN Classifier

Success | Failure
Success 480 1
Failure 2 1912
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Table 3.11: Classification Performance of Naive Bayes Classifier

Success | Failure
Success 479 2
Failure 2 1912

Table 3.12: Classification Performance of Random Forest Classifier

Success | Failure
Success 474 7
Failure 0 1914

Table 3.13: Classification Performance of Random Tree Classifier

Success | Failure
Success 477 4
Failure 0 1914

3.6 Conclusion

In this chapter we presented a case study using SSH logs collected from a produc-
tion level server to reveal that attackers use various methods to break into the system,
a handful of usernames are attempted repeatedly and few sources make persistent at-
tempts to break-in. Further the origin of attacks are geographically well spread with
few countries having a significant share. We also presented a method to identify suc-
cessful and failed login cases by analyzing network flow characteristics with machine
learning algorithms. These algorithms showed very high accuracy of classification in

our experiments.
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Chapter 4

SSH Bruteforce Attack Detection
with Probability Distribution of

Failed Logins

4.1 Introduction

Bruteforcing is a common attack against SSH servers where attacker tries multiple
combination of usernames and passwords in an attempt to login to a server. This
was evident from the case study we presented in the previous chapter. These attacks
are usually executed either with a dictionary of words or by systematically generating
username and password combinations. Consequences of a compromised system can
be severe. The detection methods usually appear in the form of z number of failed
connections in y time from a source will signal an attack. These methods usually have
thresholds to detect attacks. An attacker can respond to such detection methods by
distributing the load to multiple systems [9]. If the attack sources are distributed,
the IP address and port parameters will change and hence this poses serious challenge
in detecting such attacks. As mentioned in Chapter 1 and evaluated in Chapter 3
network flow based parameters help in identifying failed connections which can be

used to detect bruteforce attacks. The flow based statistics like packets per flow,
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bytes per flow and connection duration will help minimize the false alarm rate by
reliably estimating the connection status.

In this chapter we propose a method to detect SSH bruteforce attacks using net-
work flow characteristics and representing the failed login attempts as probability
distribution model. Our proposed method first identify a flow as originated from SSH
application and subsequently classify it to be either successful login or failed login

attempt. Our contributions in this chapter are as follows.

e We propose a method to identify SSH flows using flow content similarity. It uses

few initial bytes extracted from the flows for this similarity estimation.

e We adopt the flow parameters described in Chapter 3 for detecting flows corre-
sponding to failed SSH connections. This is done by maintaining simple statistics

of connection parameters.

e We model the failed login connections as a probability distribution and identify

events corresponding to low probability as bruteforce attacks.

e We experiment with an attack dataset and show that the proposed method is

effective in detecting such SSH bruteforce attacks.

Remaining part of this chapter is organized as follows. In Section 4.2 we briefly
revisit the related literature on detecting SSH bruteforce attacks. In Section 4.3, we
describe the proposed flow based bruteforce detection method. In the Section 4.4 we
elaborate on the experiments done to evaluate the proposed method. We conclude

this chapter with a discussion in Section 4.5.

4.2 Prior Work

Existing literature related to SSH attacks detection are of following two types:
(i) Bruteforce Detection and Prevention: Threshold based detection methods
are very commonly used to identify bruteforce attacks. Tools like DenyHosts [14],

BruteForce-Blocker [13], fail2ban [6], and sshguard [7] belong to this category.
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Another work by Tian et al. [43] slowly filters the number of connection attempts
if a source generate more number of failed login attempts. Few recent works have
used flow statistics [9, 41, 44] to detect SSH compromises. Hellemon et al. [20] and
Hofstede et al. [9] use two features packets-per-flow (PPF) and the number of flow
records per minute with thresholds to detect attacks. Hofstede et al. [44] use packet
payload size within the flow as metric to identify successful compromises. Javed and
Paxon [17] used statistical change point detection to identify distributed and stealthy
SSH bruteforce attacks.

(ii) Case Studies on SSH Bruteforcing: Romain and Vivien [30] used honeypots
to collect a SSH bruteforce attack dataset. Their observation with the collected
dataset revealed that many attacks recur over a period of time. Another recent
study [32] on SSH logs collected with honeynet found the country of origin of attack,
number of attempts made, etc. CAUDIT [33] is another case study which used

observations made in honeypot systems to set filter for the real SSH servers.

As mentioned in the Chapter 1 due to scalability problem, network based at-
tack detection methods are usually used [45]. This is also evident from the above
literature that network traffic monitoring techniques are the recent phenomenon.
Taking motivation from these works we propose a method for detecting distributed

SSH attacks in this chapter.

4.3 SSH Bruteforce Attack Detection

In this section we describe the proposed bruteforce attack detection method. Our
detection method works in three phases as
(i) Identifying flows corresponding to SSH connections
(ii) Identifying failed SSH connections through flow parameters
(iii) Detecting attacks using probability distribution of failed login connections.

We describe these three phases in the next three subsections.
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4.3.1 Identifying Flows Corresponding to SSH Connections

First phase of our detection method is to identify flows belonging to SSH applica-
tion. There are two ways in which SSH flows can be identified.
(I) Using Port Number: A simple method to identify flows corresponding to SSH
connections is to rely on port number. As SSH typically runs on port number 22, any
flow communicating to port 22 is identified as of SSH application. Few standard ap-
plications have default port numbers. However it is possible to run these applications
on different port numbers. For. e.g. many web servers do not run on port number 80
which is its default port number.
(IT) Using Flow Content: Second method is to use flow contents in addition to
port number. This is done by measuring the flow content similarity between a known
reference SSH flow and subsequent flows having connection to the port number on
which SSH is running. The rational behind this approach is that, SSH protocol has
an initial handshaking phase where client and server negotiate a set of parameters.
These include cipher suit to be used, message authentication (MAC) and compression
algorithms to be used [28]. The cipher protocols may be AES-CBC, 3DES-CBC and
MAC algorithms may be HMAC-MD5, HMAC-SHAT, etc. These algorithms are listed
in the initial handshake in plain text format. Thus, the content from this portion of
flow can be used to find the similarity between the flows in order to confirm that flow
is indeed a genuine SSH connection negotiation. Figure 4.1. shows the contents of a
packet in SSH negotiation as seen in the wireshark. We can notice that these protocol
names are carried as part of the payload. SSH flow identification using content simi-
larity estimation is based on Deep Packet Inspection technique and it involves three
phases as below.
(i) Flow Reconstruction: First step is to group packets part of a flow. This is done
by flow reconstruction by identifying packets between TCP connection establishment
to termination, sharing common IP address and port number details. SSH uses TCP
as transport layer protocol and a TCP connection begins with a three-way handshake

as below.
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Figure 4.1: Sample Payload of a Packet in a SSH Flow
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The TCP connection closes with a fourway handshake as shown below
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All packets between connection establishment to closure are typically part of one flow

(there are variants exists). Subsequent to flow reconstruction, we process initial few

bytes of flow content and parse it to generate tokens from the flow. Using these bytes

we find the similarity between the flow in question and the reference flow. First few

bytes are relevant to be used as handshaking happens only in the beginning. Subse-

quently when the client and server agree on using a crypto suit, they derive a session

key. Once the session key is derived, all the messages exchanged between client and

server are encrypted with that session key.
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(ii) Token Generation: Once the bytes which are in plain text format and neces-
sary for comparison are extracted, we generate tokens from this payload. We use few
characters (like , /, whitespace, -, etc) as delimiters to generate tokens. From every
flow payload (concatenation of all packet payload within a flow) a set of tokens are
generated as T'= {t,ty, - ,t,}. Few example tokens generated from the example
Figure 4.1 are “sha2”, “sha256”.

(iii) Flow Similarity Estimation: Once the tokens are generated from the payload
under consideration, next step is to estimate the similarity between the reference SSH
flow and the flow in question. For this comparison, we take the reference SSH flow
and use tokens from this flow. The tokens generated from the flow in question are
compared with the tokens of reference flow to find the similarity. Flows which are
found to be similar are labeled as belonging to SSH application. Flow similarity is
estimated by finding the overlap between the tokens. Let Tr={try,try, - ,tr,} be the
set of tokens from reference SSH flow and Tp={tqi,tqs, - - - ,tqm} be the tokens from
flow in question, then similarity between these two flows are estimated as in Equation
4.1. Equation 4.1 is the ratio of number of tokens common between them to the sum
of the token in them minus the size of common token set.

Tr N Tg|

SIM(Tr.TH) = 4.1
TrT0) = Y T = T~ T (4.1)

The flow in question Ty, is declared as SSH flow if the SIM (Tg, Ty) = 6.

4.3.2 Detecting Failed Logins

We consider the flows which are found to be similar to the reference SSH flow
for further verification as belonging to either successful or failure SSH connections.
As shown in the Chapter 3, the characteristics of flows representing unsuccessful and
successful login cases are different. In general, flows belonging to unsuccessful login
attempts have less number of packets exchanged, less number of bytes transmitted
and are short in duration. The three features fi, fo and f3 correspond to these pa-

rameters. Using these parameters, we can determine the flows belonging to successful
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or unsuccessful SSH connections.

(i) Using Machine Learning Algorithms: As shown in the Chapter 3, we can
train the machine learning algorithms with the feature vectors generated with these
parameter values along with labels to classify unknown flows. However, machine learn-
ing algorithms can be often expensive to train and implement. Here we define another
simpler way to identify the flows corresponding to failed SSH connections.

(ii) Using Weighted Average of Parameters: In order to identify failed logins,
we use the weighted average of parameters chosen i.e., average number of packets in a
flow (f1), average number of bytes transmitted in a flow (f2), and connection duration

(f3) as shown in Equation 4.2.

WtAvg = 0.33 x f1 +0.33 x fo +0.34 x f3 (4.2)

Let Fi, F5,... ,F,, be the flows of successful SSH connections. We calculate the weighted
averages WtAvgp, , WtAvgg,, ... WtAvgg, for these flows. Using these n weighted
averages of flows corresponding to successful connections, we calculate the mean and

standard deviations as in Equation 4.3 and Equation 4.4 respectively.

Z?:l WtAngi
n

FlowMean =

1 n
=A/— WtAvgr, — FlowM 2 4.4
71 = [ 2 (WtAvgr, — FlowMean) (4.4

i=1

We set the threshold on these parameters as in Equation 4.5 and any flow which
has a value smaller than this threshold on the weighted average of these parameters

are considered as failure instances.
Threshold(r) = FlowMean + K x oy (4.5)

Here K is a positive constant and o; is the standard deviation on the number of failed
logins across the intervals. Any flow F; whose weighted flow parameter WtAvgp, is

lesser than this Threshold is considered as failed login.
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4.3.3 Detecting Bruteforcing Attacks

Login failures happen under two cases, (a) when a legitimate user forgets the
password or mistypes the password (b) when bruteforcing is attempted. In order
to separate the second class from first set of cases, we model the failure cases as a
probability distribution. In particular, we consider the mean number of failed SSH
connections in a time interval w and model it as a Poisson probability distribution.
Let A denote mean number of login failures in an interval from known non bruteforcing

intervals, then probability distribution function of this is given by Equation 4.6.

A" x e A

n!

f(n,A\) = (4.6)

In this equation, n is a value of failed logins for which probability is being calculated
and e is a constant. This function will have its peak value around the mean and on
either side it decreases. An example graph with mean value A = 5 is shown in Figure

4.2.
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Figure 4.2: Poisson Probability Distribution with A=5

Poisson probability distribution model assumes the independence of events. In
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our context, it implies that there is no relationship/interdependence among the failed
logins. As the model is generated using the mean number of failed login cases of known
non bruteforce intervals, this assumption is valid. The only kind of failures are of first
category where users either forgot their passwords or misspell them. In this case, one
user misspelling or forgetting the password has no bearing on other users. Thus the
independence of events required for Poisson probability distribution holds good.

In brutefrocing attacks this assumption will not hold as an adversary is generating
many failed requests and all of them are coming from a source. This will increase the
number of failed login cases. Thus, to detect bruteforcing attempts we identify low
probability events in the distribution. To identify such low probability events, we use

the one-sided Chebyshev inequality shown in Equation 4.7.

2

g
P(X =\ < —2 4.7
( +¢) o (4.7)

In this equation X is a random variable with mean A\ and standard deviation o5, and
¢ > 0 is a positive constant. For Poisson distribution the value of o5 is estimated as

in Equation 4.8.

oy = VA (4.8)

The Equation 4.7 help us get an upper bound for the sum of probabilities for X
greater than A + ¢. A low sum of probabilities indicates collection of very rare events
(likelihood of those many failed logins). A threshold (1) on the number of failed login
attempts in the tail of distribution will help detect the attacks. In our case we set this
value to 8 x o9, i.e., P(X = A+ ¢) = 8 X 09. For the sample distribution shown in
Figure 4.2 and for the values of c=12, f = 7.602, and o5 = 2.236 the threshold value

is shown in Figure 4.3 with the vertical red line.

4.4 Experiments

In order to evaluate the performance of the proposed approach of detecting SSH

bruteforce attacks we performed an experiment. The details of datasets used and
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Figure 4.3: Poisson Probability Distribution with A=5

detection performance of proposed method are described below.

4.4.1 Datasets

For this experiment we used two datasets, first one is taken from a SSH server
deployed in our university network and second one was collected from testbud setup
in our Lab.

(i) SSH Traffic Data from Production Level Server: Our university network
has an SSH server used by many internal users. This server is primarily utilized
for running high-performance computing applications. This server is located in the
internal server farm of Figure 3.1. The idea is to use the failed login attempts from
this server as a reference to detect bruteforce attacks by modeling it as a Poisson
probability distribution. We collected SSH network traffic from this server for a
period of 45 hours using tcpdump[40] tool. We used this dataset for setting the

threshold for bruteforce detection.

(ii)SSH Traffic Data Generated from Testbed: We set up an SSH server on
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Table 4.1: Dataset Statistics of Normal Intervals

Total Flow Successful Connection Flows Failed Connection Flows
Count Flow

Count
Institute-Part1 48 962 68 576.544 6219.899 106412.132 894 11.543 133.222 1691.709
Institute-Part2 42 546 42 483.904 2265.776 84531.666 504 10.521 75.481 1389.087

Type Interval
Avg Pkt Count | Avg Duration(s) | Avg Bytes | Flow Count | Avg Pkt Count | Avg Duration(s) | Avg Bytes

a Ubuntu Machine in our laboratory with 10 valid users. We generated bruteforce
attacks against this server by generating requests using Python scripts. To generate
bruteforce attack flows, we wrote a script that made successive login attempts using
randomly generated text as passwords for valid usernames. We executed this attack
for 36 hours continuously. Using tcpdump [40] tool, we collected login data at the

server and used it for testing the attacks.

Table 4.2: Dataset Statistics of SSH Bruteforce Attacks

Type of Flows | Intervals | Flow Count | Avg Failed Login Count | Avg Duration(s) | Avg Pkt Count | Avg Bytes
Attack 72 55337 768.569 2.135 14.813 2114.36

4.4.2 Detection Performance

Deriving Parameters: We divided the datasets from known no bruteforce
attack intervals into two parts for our experiments. The first part was used for
setting the threshold for differentiating successful and failed SSH flows using the
flow characteristics. The second portion of this data and the attack dataset are
used for evaluating the detection performance. Table 4.1 shows the characteristics of
flows collected from known no bruteforce attack intervals in terms of the number of
flows of successful and failed login attempts, the average number of packets, bytes
in the flow, and also the average duration of a connection. Though the Table 4.1
shows the statistics of no attack intervals, it can be seen that there are a significant
number of failed login connections for institute server traffic. These failed login
connections are from two sources. The first source of such cases is internal users, and
the second category of requests is from external sources. The failed connections from
internal users are primarily caused by genuine users who have forgotten their login
credentials and attempt incorrect passwords, resulting in failed connection attempts.

We manually examined the external connection source IP addresses, and found that
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many of them had no similarity, with the exception of one IP series with the prefix
222.186.*.*. In the Institute-Partl dataset, there were 34 such connection requests
from this prefix with eight different IP addresses (5 connections in Institute-Part2).
The number of packets and bytes transmitted were lower in these flows, but the
connection duration was unusually large. These are the connections that influence
the average connection length of failed login cases, as seen in Table 4.1 in the 10th
column of the first and second rows. Similarly, the parameters of the bruteforce
attack dataset are shown in Table 4.2. We used the known non attack data from
production level server and calculated the mean number of failed login attempts in an
interval window of 30 minutes and it turned out to be 19 (approximated to nearest
integer) for a week data. The Poisson probability distribution with this failure rate
is shown in Figure 4.4. We use this probability distribution graph as reference to
detect rare probability events as attacks. We also calculated the normalized weighted
average of all the three features (duration of flow, number of packets and number
of bytes transmitted) of login attempts found in this dataset. Using these values
of failed login attempts and threshold value (71), we label a test flow as success or

failure as in Equation 4.5.

Evaluation: We used the data generated from python script with bruteforce at-
tack for testing purpose by dividing it into 30 minutes interval time resulting in total
of 72 such intervals to be labeled. A reference SSH flow was used for classifying subse-
quent testing flows with a similarity score value of 0.8. With this similarity score, all
test SSH flows were identified as SSH. We evaluated the detection performance of our
proposed approach for different values of threshold 71 and 7. We empirically found
the performance variance for these values and chose the best combination yielding a
higher detection rate. Table 4.3 shows the performance results for the best combina-
tion of values (shown in the table) for the experiment where Institute-Partl data was
used for deriving thresholds and the Part2 along with the attack data used for testing.
We can see that all the 72 intervals of test attack data were classified as attack cases,

yielding a 100% detection rate for the given threshold values of 71 and 72. On the
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Table 4.3: Bruteforce Attack Detection Performance of Proposed Approach

Parameters 7 =1514 75 =739
DR FP
Attack 100 0.00

other hand, none of the intervals of server data(Part-2) were identified as attack cases

for the given threshold values.

4.4.3 Sensitivity Analysis

The detection performance of our approach is dependant on the threshold values
71 and 7. In order to understand the variation in the detection performance with
these values, we did another set of experiments. In this experiment, we estimated the
detection performance variation with these two parameters used, namely 7, and 7.
Here, we collected two sets of readings by setting one parameter constant and varying
another parameter in step size of one. In each case we calculated the detection rate.

Figures 4.5 and 4.6 show the detection rate variation with these three parameters.
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From Figure 4.5 we can see that as threshold 7; increases, the bruteforce attack de-
tection rate also increases. This is because, as threshold 77 increases, it implies that
threshold on the weighted average of parameters for a flow to qualify for failed login
also increases as shown in Equation 4.5. So the number of flows having the weighted
average of parameters less than this threshold value also increase!. In other words, the
number of flows classified as failure instances in an interval increases. So an increase
in the number of failed connections crosses the threshold 7 to be detected as an attack

case.

Similarly from Figure 4.6, we can see that as threshold 7 increases, the bruteforce
attack detection rate decreases. This is because, with an increased threshold value 7,
the number of failed logins required for declaring an interval as attack increases. This
also means that at least those many numbers of failed logins are required for classifying
it as an attack. From the given figure, we can conclude that with increase in failure
threshold 71, detection rate increases. Whereas, with increase in attack threshold 7,

the detection rate decreases.
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Figure 4.5: Bruteforce Attack Detection Rate for Different Values of Threshold 7

LA flow is detected as corresponding to a failed login if its average flow parameters are less than
1
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Figure 4.6: Bruteforce Attack Detection Rate for Different Values of Threshold 7

4.5 Conclusion

In this chapter, we proposed a method to detect bruteforce attacks by modeling
failed login attempts as Poisson probability distribution. We use content similarity
between flows to classify flows as generated by SSH application and these are subse-
quently used for evaluation. We use flow characteristics of failed logins and count the
number of such events in a window period to label the corresponding window time as

either normal or having bruteforce attempts.
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Chapter 5

SSH Bruteforce Attack Detection
and Classification with Petri-Net
Modeling

5.1 Introduction

Bruteforce detection method described in the Chapter 4 is capable of detecting at-
tacks against SSH servers. It uses network flows and their characteristics for detecting
the attacks. The probability distribution model developed in Chapter 4 is limited to
identifying whether there was an attack against server. As discussed in previous chap-
ters, an attacker can try evading detection by keeping low profile about the activities
and also launching the attacks from several sources. Individually these sources may
or many not be aggressively generating login attempts. In general, these attacks are
hard to detect and even harder to filter. We find one attempt by Javed and Paxon [17]
in the literature who proposed a method to detect stealthy SSH attacks using change
point detection algorithm. Detecting a stealthy and low profile attacks is a challenging
problem in cyber security research. Such low profile attacks are also common in port

scanning [18], web applications [46].

We argue that the limited SSH bruteforcing detection methods found in the litera-
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ture fall short of meeting the practical requirements. In this chapter, we build on the
idea described in Chapter 4 to detect coordinated SSH bruteforce attacks. We identify
that the coordinated attacks can be of three types and propose methods for differen-
tiating various kinds of attack scenarios. Further, we identify and list the sources of
such attacks to enable easy and quick filtering by automating it. In particular our

contributions in this chapter are

e Similar to the previous chapter, we use flow level information to decide whether

an SSH flow corresponds to successful or unsuccessful login attempt.

e We develop a Colored Petri-Net based formal model to detect and subsequently
classify bruteforce attacks into three categories as originating from single source,

single domain and/or distributed sources.

e We evaluate the proposed model with datasets collected from production level
SSH server and also from simulation setup and show that it is not only effective

in identifying attacks but also type and contributors.

e We show that proposed model can be used to detect stealthy and low profile

attacks as well.

We organize the remaining part of this chapter as follows. In Section 5.2 we describe
the SSH related attack detection and prevention methods. We present the proposed
Petri-Net based bruteforce attack detection and its category identification in Section
5.3. We describe the experiments done to evaluate the proposed detection method in
Section 5.4. In Section 5.5 we describe how the proposed model can be used to detect

stealthy attacks. Finally we conclude this chapter in Section 5.6.

5.2 Prior Work

SSH bruteforce attack detection and mitigation methods found in the literature

are mainly using the authentication logs at the host level. There are many tools
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like DenyHosts [14], BlockHosts [16], PAM-ABL [15], SSHGuard [7] developed for de-
tection and mitigation. As discussed in Chapter 2, these tools do not capture the
possible correlations that exists between the attack sources. The closest work to the
method of ours (presented in this chapter) is of Javed and Paxon [17]. They analyzed
the system logs collected over 8 years at the Lawrence Berkeley National Laboratory
super-computing infrastructure. They described a way to separate misspelled pass-
words with that of genuine attacks using the history of connections. For e.g. if there
is a successful connection from the source in question to the SSH server in the past,
they do not consider them as attack sources. They also developed a model to detect
the low profile attacks spanning several days and months. Our method differs from
their study as we use network flow level data to detect in real time and also classify

the attack type.

5.3 Proposed Bruteforce Attack Detection and
Classification Method

In this section, we describe our proposed bruteforce attack detection method. In
the next three subsections we present the problem formulation, bruteforcing detection
and classification using Petri-Net model and how different thresholds used by the

Petri-Net model are set.

5.3.1 Problem Formulation

Bruteforcing attacks systematically generate passwords for gaining access to server.
Bruteforcing can be aggressive and can be done either by a single system or using a
collection of systems. Mounting attack using a collection of systems makes the attack
stealthier as single source is not generating all login attempts. In this context, there
can be three different patterns of attacks as
(i) Single Source based Bruteforcing: Here the attacker uses a single machine and try

all credentials one after the other as shown in Figure 5.1.

63



(ii) Single Domain based Bruteforcing: Attacker has more than one system at her
disposal but all of them are geographically located in the same region (e.g. within a
country). These systems possess common IP prefixes as shown in Figure 5.2.

(iii) Distributed Bruteforcing: Here the attacker has more than one system at her
disposal which are located in different domains. These systems do not share common
IP prefixes as shown in Figure 5.3.

We argue that in addition to identifying SSH bruteforcing, it is also important to
identify which category of attack is being attempted. This can be helpful in setting
appropriate filtering in place to protect SSH servers. For e.g. in case of a single source
or single domain based bruteforcing a firewall rule can be added to filter IP address
or a domain with known prefix. In this context we aim at both detecting the attack
in the first place and subsequently classifying the attack into one or more of the three

categories!.

SSH SERVER

Figure 5.1: Single Source based Bruteforcing

5.3.2 Bruteforcing Detection with Timed Colored Petri-Net
Model

Our detection method has three phases of operations as (i) SSH flow identification
(ii) Identifying failed login attempts and (iii) Bruteforce detection in an interval.

These three phases are elaborated below.

I. SSH Flow Identification: The first phase of detecting attacks is to iden-

!There can be parallel attacks of different categories
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Figure 5.2: Single Domain based Bruteforcing

tify flows related to SSH communication. This can be done either by port number
involved in the communication or by using content of flows as described in Chapter
4. First method is simpler of the two and can be deployed where port number of
server application is known. Second method requires payload analysis but is reliable
compared to the first method. Using content of flows is required when the information
about which machines have exposed SSH interfaces is not known. This method uses
few initial bytes from flows which typically involves communication related to SSH
handshaking. For the current work, for the sake of simplicity, we use the port based de-
tection. This is possible as the details of SSH server is known and moreover we assume

the detection method is deployed at the perimeter of the network (ahead of the server).

II. Identifying Failed Login Attempts: To identify flows which are related

to successful SSH login cases and failed attempts, we use flow characteristics (as

65



10.10.1.1
S ey
10.10.2.1

=

10.10.3.1

20.20.1.1

1

20.20.2.1
! S

20.20.3.1

=

SSH SERVER

30.30.1.1
o FEEETEEmET i

30.30.2.1

40.40.1.1

40.40.3.1

&

Figure 5.3: Distributed Bruteforcing

66



used in previous chapters) namely “Number of Packets per Flow” (f;), “Number of
Bytes per Flow” (f;) and “Flow Duration” (f3;). The selection of these parameters
is motivated by the fact that failed login attempts just open a TCP connection
and do the initial handshaking by exchanging the list of cryptograhic algorithms
supported and make an attempt with one password which does not work. On
the other hand, the successful connections also start with handshaking but as
users spend time in performing some operations after login, these connections are
long lived, having many packets and exchanging several bytes. Similar observa-
tions were made in [44] as well. In Section 5.4, we show the comparison of flows for

these three parameters for successful and failed login instances using different datasets.

II1. Bruteforcing Detection: In order to detect the attacks and subsequent

classification, we propose a Timed Colored Petri-Net model.
A Timed Colored Petri-Net is a nine-tuple [47] CPN = (P,T,A,%X,V,C,G,E,I)

where:
e P denotes a finite set of elements called places.

T denotes a finite set of transitions such that P n'T" = ¢.

e AC PxT uT x P is a finite directed arc set.

Y] is a colour set representing finite set of types. Every element of this set can

be timed or untimed.

V is a typed variable set such that Type[v] € ¥ Vv e V.

C : P — X is a colour function. The function C' assigns a colour set to every

place p € P. A place p is said to be timed if C(p) is timed, otherwise p is

untimed.

G : T — EXPRy is a function which assigns a guard expression to transition

t € T such that: Type|G(t)] = Bool.
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e F: A— EXPRYy is a function called as arc expression function. It assigns an
arc expression to every arc a € A such that
— Type[E(a)] = C(p)us if p is untimed;

— Type[E(a)] = C(p)ras if p is timed.
Here, p is the place connected to the arc a.

o | : P - EXPRy is an initialization function which assigns an expression to a
place p such that
— Type[l(p)] = C(p) s if p is untimed;

— Type[l(p)] = C(p)rus if p is timed.
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Our proposed Timed Coloured Petri-Net model is shown in Figures 5.4 and
5.5(circles with label A, B and C are connectors). It has 31 places, 14 transitions,
and 69 arcs (all elements of this model are listed in Appendix A). For the sake of
easier understanding, we elaborate the operations of this model in four parts as below.
(i) SSH Connection Verification: The place New Connection has timed tokens of
user-defined color set STREAM, which is the product of color sets STRING, STRING,
INT, and INT. These colors represent the incoming connection’s IP address, IP pre-
fix, port number, and weighted average of the flow parameters respectively. The flow
parameters are the average duration of the connection, the average number of bytes
transmitted in a flow, and the average number of packets in a flow as shown in Equa-
tion 5.1. Initially, the model determines whether the incoming connection request’s
IP address is blacklisted based on previous connection requests, and accepts or denies
the connection accordingly. The transition ‘Blacklisted IP Address’ with outgoing arc
has variable ‘OK’ of Boolean type which takes value true or false, and depending on
this value, the transition gets fired. If the connection is accepted, the port number is
used to identify an SSH connection. The connection is then identified as failed if the
weighted average of flow parameters is less than the threshold value provided in the
place named ‘Failed Threshold’.

(ii) Keeping Track of Failed Login Connections IP Prefixes: The set of places,
transitions and arcs in the right part of Figure 5.4 keep track of various prefixes of
failed login attempts. For every failed connection, the model keeps track of the count
of the IP address and IP prefix for the IP address involved in the connection. This
is done by incrementing the count of a particular IP address and IP prefix whenever
a connection is determined as failed. After a failed connection, the transition ‘Check
SSH Connection’ transfers token with the value IP and prefix to the place ‘Failed con-
nection’. The transition ‘Check SR_IP, PF’ with outgoing arcs findPFVariable(PF)
and findIPVariable(SR_IP) finds the variable corresponding to the input prefix and IP,
respectively. A token in the place ‘PF Variable’ begins the prefix updating activity.
The place ‘PF Variable’ contains token of type STRING corresponding to an entry in
the PF_RECORD. PF_RECORD is a RECORD datatype which is a dictionary-like
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data structure with the key-value pair as the PF variable (corresponding to a pre-
fix) and its count, respectively. The transition ‘Get PF Count’ counts the number
of such prefixes observed till now, and transition ‘Increment PF Count’ increments
this count value by one. The transition ‘Update PF Collection’ with the outgoing
arc ‘setPF(PF_VAR,INTERVAL_PF PF_NEW . PF _R)’ updates the PF_RECORD by
setting value of this PF_VAR with the new value PF_NEW, if the interval value IN-
TERVAL_PF is not changed; otherwise, it resets the record value. The place ‘PF
Interval Count’ contains a token of type INT denoting the current interval whose
value gets updated whenever an interval changes. The transition ‘Update PF Collec-
tion” takes the current interval value INTERVAL_PF’ as input arc expression, and
whenever it gets fired, the output arc setInterval(INTERVAL_PF) checks with the
global timer and update the interval value.

Whenever the transition ‘Update PF Collection’ is fired, a token is transferred to
place ‘PF Collection Status’, denoting the status of PF_RECORD Updation. It also
transfers a token PF_R to place ‘Prev PF Collection,” with the previous value of
PF_RECORD, i.e., the value before its updation. This value of PF_RECORD is used
further for attack source classification if an attack is detected. Like this, for each
connection request, PF_RECORD gets updated for a given prefix value.

(iii) Keeping Track of Failed Login Connections IP Addresses: Similar to
prefix, the model also keeps track of failed IP addresses. Here, IP_ RECORD gets
updated corresponding to the IP of each failed connection request. The places, tran-
sitions and arcs in the left part of Figure 5.5 collectively keep track of IP addresses
involved in the failed login connections.

(iv) Detecting Bruteforce Attacks and Classification: After updating the count
of the IP prefix and IP addresses involved in failed connection, the model now deter-
mines the number of failed connections in an interval and labeling it. The set of places,
transitions and arcs in the right part of Figure 5.5 collectively do this detection and
classification. The place ‘#Failed Requests’ contains a token with a value denoting
the number of failed connection requests in an interval. The transition ‘Count #Failed

Connections’ takes ‘F_CN'T” in the form of input arc expression and sets the new value
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with the help of the output arc expression function ‘setRequest(F_CNT,INTERVAL)’.
The function increments the F_CN'T value by one, if the interval is not changed; oth-
erwise, it resets it to 1(to include the current request). Finally, the old count value
F_CNT is transferred to the place ‘Prev #Failed Requests’. This value is used to check
the attack status for the previous interval. As the interval changes, the model now
checks if the previous interval was an attack or normal. The transition ‘Check Attack’
has a guard function that ensures that it fires only when there is a change in the inter-
val (interval is labeled only after time period is over). The attack status is checked by
comparing the number of failed connections in the previous interval ‘F_CNT’ with the
threshold value ‘1’ specified in the place named ‘Bruteforce Threshold.” If the interval
status is a Brute-force, the model further checks the type of attack. Transition ‘Check
Attack Type’ takes count of all the failed IP addresses in the previous interval ‘IP_R’
and the threshold (on number of IP addresses) ‘m3’ as input and checks if it is a Single
Source Attack. Similarly, the ‘Check Attack Domain’ transition takes count of all the
failed IP prefixes in the previous interval ‘PF_R’ and the PF Threshold ‘74’ as input
and checks if it is a Single Domain Attack or Purely Distributed attack case. At last,
the token in the state ‘Intrusion Result’ denotes the type of attack for the particular

interval.

5.3.3 Setting Threshold Values for the Model

We can notice that the proposed CPN model uses few threshold values in its
operation. It uses thresholds for differentiating failed and successful SSH connection
flows (71), declaring an interval as bruteforce attack (73), classifying a bruteforce attack
interval as single source attack (73) and classifying an interval as single domain attack
(T4).

(i) Setting threshold 7: In order to detect failed logins, the model uses the weighted
average of parameters of the flow as used in Chapter 4, i.e., the average number of

packets (f1), the average number of bytes transmitted in a flow (f), and the average
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duration of the connection (f3), in a flow as shown in Equation 5.1.

WeightedAverage = 0.33 x f1 +0.33 x fo + 0.34 x f3 (5.1)

This weighted average is calculated for all flows used for deriving threshold. Using
these values of weighted averages the mean (p;) and standard deviation (o) are
calculated. We set the threshold on these values, as shown in the equation 5.2. Here
01 is a constant multiplier which takes a value less than 1. This is because, the mean

and standard deviation of flows with successful SSH connections are used.

71 = [(p1 + 01 X 01)] (5.2)

A flow having the weighted average of parameters less than this threshold value 7
is detected as corresponding to a failed SSH connection. This is due to the observa-
tion that failed connections transmit less number of packets and bytes, and also have
smaller duration.

(ii) Setting threshold 7»: Once the flows corresponding to failed SSH connections
are detected, subsequently the model aggregates them over an interval and label it
either as interval experiencing bruteforcing or otherwise. This is decided using the
threshold 75. In order to set 75, we modelled the average number of failed login con-
nections in a time interval as Poisson probability distribution as described in Chapter
4. Equation 5.3 shows the probability distribution function where py denotes the av-
erage number of failed login counts in an interval, n is a value of failed logins and e is

a positive constant.

/’LQ” X e_AU‘Z

f(n7//12) = (53)

n!
To set an appropriate value to 7, (to detect bruteforcing), we use the one-sided Cheby-

shev inequality as shown in Equation 5.4. Here X is a random variable with mean ps
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and variance o2, and c is a positive constant.

022

P(X = +c) £ ———
( Ha +©) 092 + 2

(5.4)

The threshold value 75 is set such that it corresponds to a low probability event using
chebyshew inequality (in the tail of a Poisson probability distribution) as used in the
Chapter 4 and shown in Equation 5.5.

=X st P(X = [B x 03]) (55)

(iii) Setting threshold 73: Once an interval is detected as attack by the model it
subsequently verifies whether it has single source attack using 73. Single source attacks
are detected by the model if the number of failed login flows from a source exceeds

the threshold 73 whose value is set as in Equation 5.6.

T3 = [(ps + d3 x 03)] (5.6)

Here p3 denotes the mean, 3 is a positive constant and o3 is the standard deviation
which is calculated using number of connection requests from a particular IP address.
(iv) Setting threshold 74: Single domain attacks are detected by the model if the
number of incoming failed requests from an IP prefix are more than 7;. The threshold

74 is set as shown in Equation 5.7.

74 = [(pta + 64 X 04)] (5.7)

Here p4 denotes the mean, d4 is a positive constant, and o4 is the standard deviation

calculated from number of connection requests originating from an IP prefix.

Those intervals which are marked as bruteforcing and having more than one pre-
fixes (either individually exceeding 73 or otherwise) but exceeding 7, are declared as

distributed bruteforcing attacks.

74



5.4 Experiments and Evaluation

In this section we describe the experiments done to evaluate the proposed
Petri-Net based detection method. In the next four subsections we describe the
datasets used in the experiments, failed and successful SSH connection comparison,
implementation of CPN model and sensitivity analysis of detection performance with

various parameters used in the experiments.

5.4.1 Dataset Description:

We used two datasets for our experiments. First dataset is taken from a SSH
server deployed in our university campus network and second one is collected from

testbed setup? in our Lab.

I. SSH Traffic Data from Production Level Server: This dataset is the
same dataset used in the experiments of the approach described in the previous
chapter. As described in Chapter 4, this dataset is collected from an SSH server
located in the server farm of our university network. Many users use this server for
running high performance commuting applications. We collected SSH network traffic
from this server for a period of 45 hours using tcpdump tool [40]. We used this
dataset both for setting threshold for bruteforce attack detection and also to evaluate

the detection performance of different simulated attack types.

II. SSH Traffic Data Generated from Testbed: We setup an SSH server
on a Ubuntu Machine with 10 valid users. We generated both normal SSH login
connections and bruteforce attacks against this server by generating requests using
Python scripts. All SSH network traffic related to this attack is collected using
tecpdump tool [40] on the server.

Normal SSH Flows: The goal here is to generate a dataset based on successful SSH

2We interchangeably use the name data generated from testbed and simulation setup.

75



connections. Typically a user after login will do some activity in the target machine.
The activities could be navigating to a directory, some file operations and running
some applications, etc. In order to generate such SSH connections, we used two
scripts. First script establishes connection to the server and executes upto 15 Linux
commands after login. These commands reflect a user activity upon login. It executes
successive commands after a random delay. The delay between successive commands
is set by generating a random number which is in between 10 seconds to 90 seconds.
The total number of commands to be executed is decided with another random
number generated at the beginning. The operations of this script are shown in
Algorithm 1. The random number of commands executed and random delay between
successive commands mimic the communication pattern of a normal connection when
a user login. We used a second script which invoked multiple instances of script-1
from five different virtual machines using valid usernames and passwords to generate

connections. Hence many connections (flows) overlap in this case.

Algorithm 1 Normal SSH Connection
Input: 7 - Total Number of Commands

Input: ¢; and t5: Minimum and Maximum Time Delay
Input: COMMANDS [1, 7]

1: while not interrupted do

2: K; < RandomNumber(1,n)

3 NewSSHConnection()

4 for i =1 to K; do

5 Execute(COMMANDSJi])

6: K3 <« RandomNumber(t;, t)
7

8

9

Sleep(K)
end for
. end while

Bruteforce Attack Flows: To generate bruteforce attack flows, we wrote another
Python script which made successive login attempts using randomly generated text
as password for valid usernames. As required we generated three variants of brutforce
attack types from multiple virtual machines as detailed below.

(i) Single Source Attack: Here single instance of Python script deployed in a virtual

machine attempted SSH connections. As all these connection attempts use the IP
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address of virtual machine, all flows have same IP address. We executed this attack
for 36 hours continuously and collected traffic corresponding to this attack.

(ii) Single Prefix Attack: We deployed the attack generation Python script in five
virtual machines for generating this attack variant. All the five scripts parallely
generated SSH login attempts to the server. The network traffic corresponding to this
attack was collected. All the five virtual machines were assigned IP addresses with a
common prefix of 24 bits. We mounted this attack in four batches each of duration of
nine hours totalling 36 hours. We changed the IP address range assigned to virtual
machines in each batch thus giving four different IP prefix values.

(iii) Distributed Attack: We used 10 virtual machines for this experiment with
each virtual machine assigned an [P address without having overlapping prefixes.
An instance of attack Python script was running in each virtual machine which
generated failed SSH login connections. The data collected from this setup serves as

a distributed attack for our evaluation.

5.4.2 Characteristics of Failed SSH Connections

As mentioned previously in Chapter 3 and Chapter 4 and in Section 5.3 failed and
successful SSH connection flows are identified using flow parameters. The Petri-Net
model also uses the same parameters to seperate the two. In particular it uses the
weighted average of three parameters namely Number of Packets per Flow, Number
of Bytes per Flow and Flow Duration. In Chpater 3 we showed that these param-
eters are helpful in identifying the flows corresponding to failed logins. As we used
two types of datasets namely the flows collected from institute SSH server and also
Simulated dataset, we repeat this exercise here with these two types of datsets. Here
we show that these parameters are useful in differentiating normal and failed login
attempts by comparing these parameters from flows of successful login instances and
failed login cases. For this comparison we used 50 SSH connection flows each from i)
institute SSH server ii) normal SSH flows from simulation setup and iii) failed SSH
connections in bruteforce attack and plotted the graphs of these three parameters.

Figure 5.6, 5.7 and 5.8 show the graphs of these three parameters for the three
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types of flows. The X-axis in all three graphs is the flow number and Y axis has their
respective parameter values. From Figure 5.6 we can notice that number of packets
in successful SSH connections and failed login cases are quite different with success-
ful login flows having many packets compared to flows corresponding to failed SSH
connections. Figure 5.7 shows the transmitted byte count (within a flow) comparison
for the three types of flows. We can again see that they have a clearly distinct char-
acteristics with successful login cases exchanging large number of bytes compared to
failed cases. Similarly the duration of flow comparison is shown in Figure 5.8. We can
observe that failed login connections are short lived while successful SSH connections
have longer duration. It is worth noticing that in all the three graphs, the Y axis

values are shown in log scale.

5.4.3 Implementation and Evaluation:

First step in the implementation was to create a model which is formally correct
and verifiable. Thus we first created a model using CPN tools [48] (Figure 5.4 and
Figure 5.5 are redrawn versions of model generated using CPN tools) and once its
correctness is verified using simulation, we converted into a workable program.

We implemented the proposed Petri-Net model as a Python script. Our Python
code can read any network trace file in pcap or tcpdump file format and process it to
reconstruct network flows. From those processed flows, it extracts the required pa-
rameters to mark every flow as either successful or failed instance. It also uses source
IP address (other than SSH server IP address) attribute to check if this is already in
the blacklist. If it is not in the blacklist, the flow is processed further to do other
assessments as depicted in Figures 5.4 and 5.5. As flow details are aggregated over
an interval for detecting attacks, the CPN model keeps track of different flows and
their attributes for bruteforce attack detection and their type. The model uses thresh-
old values for detecting failed attempts, bruteforce attack detection and subsequent
classification as described in Section 5.3.3.

For our experiments, we divided the datasets from known no bruteforce attack

intervals (both collected from institute server and generated with simulation) into two
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parts. First part was used for setting the threshold for differentiating successful and
failed SSH flows using the flow characteristics. Second portion of this data and all three
types of attack datasets are used for evaluating the detection performance. Table 5.1
shows the characteristics of flows collected from known no bruteforce attack intervals
in terms of number of flows of successful and failed login attempts, average number of
packets, bytes in the flow and also the average duration of connection. Although the
Table 5.1 shows the statistics of no attack intervals, we can see that there are quite a
good number of failed login connections for institute server traffic. These failed login
connections are from two sources. First source of such cases are from internal users
and the second category of requests are from external sources. Failed connections
from internal users are mainly due to those users who might have forgotten their login
credentials and when they try some wrong passwords they result in failed connection
attempts. We manually screened the external connection source IP addresses and
many of them were not having any correlation except one IP series having prefix of
222.186.*%.*. There were 34 such connection requests from this prefix with 8 distinct IP
addresses in the Institute-Partl dataset (5 connections in Institute-Part2) and these
connections had flow parameters slightly contrary to the ones shown in Figure 5.8.
These flows had less number of packets, less number of bytes being transmitted but
unusually large connection duration. These connections are the ones which influence
the average connection duration of failed login cases as depicted in the 10" column
of first and second rows in Table 5.1. Similarly the parameters of bruteforce attack
dataset for different categories are shown in Table 5.2. We can notice that these
parameter values confirm the observations of Figures 5.6, 5.7 and 5.8 when compared

to the parameter values of Table 5.1.

Table 5.1: Dataset Statistics of Normal Intervals

Total Flow Successful Connection Flows Failed Connection Flows
Count Flow

Type Interval
Avg Pkt Count | Avg Duration(s) | Avg Bytes | Flow Count | Avg Pkt Count | Avg Duration(s) | Avg Bytes

Institute-Part1 48 962 68 576.544 6219.899 106412.132 894 11.543 133.222 1691.709

Institute-Part2 42 546 42 483.904 2265.776 84531.666 504 10.521 75.481 1389.087
Simulation-Part1 96 4727 4727 59.27 401.719 8624.518 NA NA NA NA
Simulation-Part2 48 2416 2416 57.381 392.44 8462.422 NA NA NA NA

We processed the data collected from institute server and also from our testbed

setup using the Python script which implements the proposed model. We evaluated the
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Table 5.2: Dataset Statistics of SSH Bruteforce Attacks

Type of Flows | Intervals | Flow Count | Avg Failed Login Count | Avg Duration(s) | Avg Pkt Count | Avg Bytes
Simulation- 72 55337 768.569 2.135 14.813 2114.36
Single Source

Simulation- 72 275653 3828.5 2.128 14.784 2111.987
Single Domain

Simulation- 72 556326 7726.680 2.140 13.535 2048.730
Distributed

detection performance of the proposed model for interval periods of 30 minutes and for
different values of 75, 73 and 74. There were two sets of experiments, first one using the
institute server data (Part-1 and Part-2) and all the attack dataset. Second one using
the simulated (Part-1 and Part-2) and all attack datasets. We empirically found the
performance variance for these values and chose the best combination yielding higher
detection rate. Table 5.3 shows the performance results for the best combination of
values (shown in the table) for the first experiment where Institute-Part1 data was used
for deriving thresholds and the Part2 along with all attacks are used for testing. We
can notice that single source attack intervals are detected as single source attacks and
none of these intervals are declared as other two types as in the fourth row in the table.
When the dataset corresponding to the 72 intervals of single domain bruteforcing
attack is presented to the model with same threshold values, 98.61 percentage of the
intervals are also detected as single source attack in addition to being detected as
single domain attacks. This is due to the fact that although five sources sharing a
common prefix generated the brutefrocing, the number of failed logins from these
sources individually also crossed the threshold 75. Similar interpretation goes for
the distributed attack flows as well. We believe that these detection results do not
conflict. The interpretation is that it will enhance the understanding of the sources
contributing to the attack and their frequency and coordination. Our Python code
also automatically identifies the IP prefixes for single domain attack cases. The four
IP prefixes identified after processing the 72 interval of single domain attack data are
shown in Table 5.4. We can notice that it generated four 24 bit prefixes with each
prefix is the aggregation of 5 IP addresses corresponding to 5 virtual machines. Similar
results were obtained with the second set of experiments as well and we omit them

showing here for brevity.
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Table 5.3: Bruteforce Attack Detection

Parameters 71 =1514 7,=739, 73=739 and 7,=709
Single Source Single Domain Distributed Cases
DR | Source Count | DR | Source Count | DR | Source Count | FP
Single Source | 100 1 0 NA 0 NA 0.00
Single Domain | 98.61 20 100 20 NA NA 0.00
Distributed | 98.61 10 0 NA 100 10 0.00

Table 5.4: Prefix Generated from the Program

Type of Data | Prefix Source Count
10.242.3.%* 5
. . 10.242.7.% 5
Single Domain 1020117 5
10.242.15.* 5

5.4.4 Sensitivity Analysis

We can notice that our CPN model uses threshold values for detecting attacks and
classifying them. The detection performance is dependant on these values. In order
to understand the performance variance with different thresholds, we performed an
experiment. In this experiment we assess the detection performance variation with
the three parameters used namely 7, 73 and 7,. We collected three sets of readings
and in each reading, we set two parameters constant and vary one parameter in step
size values of one and calculate the detection rate. Figures 5.9, 5.10 and 5.11 show
the detection rate variation with these three parameters. From Figure 5.9, we can see
that as threshold 7, increases, bruteforce attack detection rate and also single source
attack detection rate decrease. This is because, with an increased threshold value
Ty, the number of failed logins required for declaring an interval as attack increases.
This also means that at least those many number of failed logins are required for
classifying it as single source attack and other types. In our dataset the single domain
and distributed attacks have roughly five and ten times more number of connections
related to failed login attempts compared to single source attack. The large number
of failed connections easily pass the increased threshold of 7 too. That is why the
detection rate for these two attack cases did not decrease. However if the the single

domain and distributed attacks happen to have the same number of failed logins as
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single source attack, their detection rate will also decrease. From Figure 5.10 we
can notice that, as the threshold 73 increases, the detection rate for a single source
attack decreases but the overall bruteforce attack detection rate is not impacted. In
addition, the detection rate for other cases also remain unaffected since threshold
T3 is responsible only for single source attack detection and the other two threshold
values, 75 (the threshold for attack detection) and 7, (the threshold for distributed
attack cases) are constant. Similarly from Figure 5.11, we can see that the increase in
threshold value 74 affects the detection rate for distributed attack cases. From these
figures and the discussion we can conclude that in general as thresholds increase, the

detection rate decreases.
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Figure 5.9: Bruteforce Attack Detection Rate for Different Values of Threshold 7

5.5 Detecting Stealth Bruteforce Attacks

Our proposed CPN model can detect bruteforce attacks not only originating from
single source; but also from coordinated sources. In order to evade detection, an
attacker can thin out the activity such that her activities do not cross any thresholds.
This is a longstanding and challenging problem in cyber security research. In this
section we discuss how such low profile attacks can be detected. There are two ways

this can be handled.
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(i) Increasing the Time Interval: By increasing the time interval used for detecting
the attacks, the activities which are falling across the boundaries of multiple smaller
time intervals can be noticed.

(i1) Reducing the Thresholds: Second method is to reduce the threshold values so that
even low profile activities are noticed. However there is a trade-off between the attack

detection rate and false alarm rate.

Table 5.5: Dataset Statistics of SSH Stealthy Bruteforce Attack

Total Flow Normal Connection Flows Attack Connection Flows
Count Flow

Count
Simulation Single Source Stealthy 872 860 56.732 402.287 8429.651 12 14.66 2.065 2104
Simulation Single Domain Stealthy 876 864 57.773 400.535 8511.546 12 14.83 2.284 2115

Type
Avg Pkt Count | Avg Duration | Avg Bytes | Flow Count | Avg Pkt Count | Avg Duration | Avg Bytes

Table 5.6: Stealthy Bruteforce Attack Detection

Attack Type | Duration | Intervals | Detected Detected Failed Logins Threshold 7; | Threshold 7
Bruteforce Normal
Attack
2 2 12 1 1424 5
Single Source 12 Hours 3 3 12 3 1469 3
4 4 12 3 1471 2
2 2 12 2 1424 5
Multiple Sources | 12 Hours 3 3 12 3 1469 3
4 4 12 5 1471 2

In order to detect such stealthy attacks using proposed CPN model, we adopt both
the methods i.e., increasing the time horizon and decreasing the thresholds. To eval-
uate the detection performance of the proposed method, we generate stealthy attacks
and collect another dataset. We generated stealthy attacks both from single source
and distributed sources at low frequency of approximately one attempt for every one
hour along with normal SSH connections. We used the Python script 1 for generat-
ing successful SSH connections (as in Algorithm-1) and parallely the attack generator
script made connection attempts using randomly generated passwords. This combi-
nation of SSH connections serves as stealthy attack case for our experiments. Both
single source and multi-source attacks were launched for 12 hours duration each. Table
5.5 shows the statistics of this dataset in terms of number of connections and their
average flow characteristics.

We evaluated the detection performance of the proposed method for different inter-

vals of time and the results are presented in Table 5.6. The twelve hour data was
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divided into intervals of six, four and three hours each and evaluated the detection
performance. For this experiment we used the Simulation Part-1 dataset for deriving
the thresholds and used Part-2 of this dataset along with the stealthy dataset for
evaluating detection performance. Table 5.6 shows the duration of data collection for
each type of attack (which is 12 hours), number of intervals, intervals detected as
attack along with the total number of failed login connections for the entire twelve
hours (from both normal and bruteforce attack cases). The seventh column shows
the threshold 77 used for detecting failed login connections (this threshold changes
as the interval size changes because all the parameters are estimated over the same
duration using Simulated-Part1l dataset). The last column shows the threshold used
for detecting bruteforcing attack 7». It is worth noting that 7 is set using Equation
5.5 which in turn uses the mean number of failed cases in an interval. However in
Simulation-Part1 dataset there are no failed login cases. Thus we used a low value of
0.1 as the mean number of failed login cases and adjusted the value of 7 according
to chebyshew inequality constraint of Equation 5.4. For e.g. the first row in the table
indicates that twelve hours of data is divided into two intervals of six hours and both
of them are correctly identified as attack intervals. In the two intervals all twelve flows
belonging to bruteforcing attack cases are detected as failed logins while one flow out
of 860 flows of successful SSH connection is declared as failed login for the threshold
value 1424. Similar interpretation goes for the remaining rows as well. We can notice
that proposed CPN model can adopt to different behaviors and attack patterns and

can detect attacks with minimum number of errors.

5.6 Conclusion

Secure Socket Shell exposes an interface for credential based remote login. SSH
applications are susceptible to bruteforcing. In this chapter, we proposed a Petri-Net
model to detect SSH bruteforcing attacks and subsequently classify them into one of
three types as originating from single source, single domain or distributed attacks.

We evaluated the proposed model with network traffic collected from production level
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server and also generated using a testbed setup. The proposed model is not only

effective in detecting such attacks but can also classify them.
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Chapter 6

Conclusion and Future Work

This chapter summarizes the SSH authentication log analysis and SSH attack
detection techniques presented in the thesis and provides few directions for future work
in this area. The objective of our work is to develop a method to detect bruteforce
attacks using network packet/flow level information. As a secondary objective, we aim
to classify these attacks based on the possible similarity among sources of attacks.
The motivation for the thesis stems from the fact that protecting SSH servers against
bruteforce attacks is required for safe computing. Consequences of a compromised
systems can be severe. We first presented a case study on SSH authentication logs
and then proposed methods for SSH attack detection. We covered previous works
and literature related to SSH case studies and auditing. We also discussed work
related to SSH bruteforce attack detection based on various techniques(threshold-
based, statistical, machine learning). Subsequently the research gaps were identified
that many existing tools are host-based and not scalable for large networks. An
alternative method would be to use network traffic or flow-level information. Although
these methods are scalable, they are limited to identifying whether bruteforcing against
the server is attempted or not. Our proposed method not only detects such attacks
but also identifies any correlation between them. With the proposed method, we were
also able to identify stealthy and low-profile attacks as well. We experimented with

datsets collected from real SSH servers and also generated in a testbed.
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6.1 Thesis Contribution

This section summarises the SSH bruteforce attack detection methods and attack
categorization to understand the possible correlation between the contributing sources.
We also studied SSH authentication logs to determine attack trends before presenting
our attack detection methods. These contributions are summarized in the following

subsections.

6.1.1 Secure Socket Shell Authentication Log Analysis

As a first contribution, we presented a case study using SSH logs collected from
a server deployed in our university network. Through this study, we were able to
get insights into the attack patterns. Our analysis reveals that attackers try various

methods to break into the system. The observations made were as follows:

1. We identified the most common usernames used by attackers to obtain access
and found that a few of them are quite common. The top ten usernames were

used in 12.8% of attempted break-in attempts.

2. A handful of sources make repeated attempts to break into the system spanning
several weeks. The analysis showed that a large fraction of source IP addresses

and prefixes were repeating in many weeks data generating failed logins.

3. Further, the origin of attacks was geographically well spread. We mapped sources
of such attacks to their country-wise geographical location to find that malicious
login attempts come from vary diverse sources and locations, with few countries

having a significant share.

After studying the logs and finding trends, we also proposed a flow-based method to
identify successful and failed login attempts. This method used few parameters taken
from the network flows. We used machine learning algorithms to classify the flows
corresponding to failed and successful SSH connections. These algorithms showed

very high accuracy of classification in our experiments.
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6.1.2 SSH Bruteforce Attack Detection with Probability Dis-
tribution Model

Our second contribution proposes a method to detect SSH bruteforce attacks using
network flow level data. This detection method has three phases as
i) Identifying flows belonging to SSH connections
ii) Classifying each flow either as corresponding to successful or failed SSH connection
and

iii) Detecting bruteforce attacks.

For the first phase, our proposed method uses a combination of port number and
content of flows. It uses content similarity between a known reference SSH flow and
the flow in question to decide whether the flow belongs to SSH connection. This is
done with Deep Packet Inspection (DPI) by comparing the keywords within the flow.
SSH clients and servers exchange a set of supported protocol suits as part of their
handshaking to negotiate and agree on a particular protocol suit. This exchange of
protocols is typically done in plain text format, which allowed us to do DPI on this

portion of data.

SSH flows corresponding to failed login attempts were identified with a set of
statistical flow parameters. The premise for using flow parameters comes from the
observation that, flows corresponding to failed connections have a few number of
packets in a flow, less number of bytes transferred between the host and server, and

low duration of the connection.

Subsequently, we proposed a method for detecting SSH bruteforce attacks. Login
failures arise in two situations. First, if a legitimate user forgets her credentials,
second case when a bruteforce attack has been attempted. To distinguish between
these two cases, we model the failed SSH connections in a known non attack interval
as a Poisson probability distribution. Using this distribution, our model identifies
the rare probability events corresponding to unusual number of failed logins in a
chosen interval as bruteforce atacks. We validated our approach by experimenting

with network traffic collected from a production level SSH server and a testbed setup.
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6.1.3 SSH Bruteforce Attack Detection and Classification
with Pertri-Net Modeling

The probability distribution model discussed in the previous subsection is limited
to identifying whether there was an attack against the server. An attacker can try
avoiding detection by keeping a low profile about the activities and launching the
attacks from several sources so that no single source generates password guesses vig-
orously. Therefore individually, these sources may or may not be attempting to login
aggressively. If the attack sources are distributed, this will result in a change in the
IP address and port parameters. This poses difficulty for detecting these types of
attacks. In our next contribution, we build on the idea described previously. In this
work we present a method to detect coordinated SSH bruteforce attacks. We extend
our previous model of detecting attacks into both detection and classification method.
Proposed method classify the bruteforce attacks as one or more of three types based
on the source of the attack. It classifies the attacks as single source, single domain
and/or distributed attack. For detecting and classifying the bruteforce attacks we
proposed a Petri-Net-based state transition model. We implemented this model in
python language. This implementation is able to process the network flow data as
input and assign labels to chosen intervals of test data. As flow details get aggregated
over an interval for detecting attacks, the proposed model keeps track of different flows
and their attributes for the detection of bruteforce attack and their type. As in the
previous contribution, we use SSH network traffic collected from the production level
SSH server and from the testbed setup to evaluate the proposed method. We also
extended this work to identify low profile and stealthy attacks. The proposed model
adopts to detect such attacks with two modifications. First by setting low thresh-
olds for detection and second by increasing the time horizon. We generated stealthy

attacks in a testbed and evaluated the detection performance of the proposed model.

Overall the two proposed models were successful in identifying the bruteforce at-

tacks against SSH servers.
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6.2 Future Work

Our work on SSH authentication log analysis and bruteforce attack detection can

be extended in many ways. Following are some of the possible extensions.

1. Proactive Logging of Events: We recollect that, operating systems log
events pertaining to login attempts. However these logs only indicate whether
there was a successful login from a source and how many times the source at-
tempted before succeeding to login. Once an adversary succeeds to login, she has
complete control over the machine and can perform many activities. One can
extend our work to initiate proactive log generation after a suspicious success-
ful login. This can monitor user activity more closely and may help answering

questions related to what the attacker did after gaining access to the system.

2. Developing User Interface: Our proposed work based on Petri-Net modeling
and also Probability distribution based model can be extended further to create
an interactive user interface. The network administrator can use this as a tool
to get detection results and attack statistics such as time and attack source

information as reports.

3. Integration with IDS: The proposed Petri-Net model for attack detection
can be integrated with Intrusion Detection and Prevention systems like SNORT.
With this, the overall performance can be evaluated for real-time network traffic.
Rules can be added in IPS to block the malicious IP address identified from the

detection method.

4. Attack Detection on Other Applications: There are several other applica-
tions such as Web servers, File Transfer Protocol, which are also the target of
such bruteforce attacks. The proposed Petri-Net model and Probability distri-
bution models for SSH attack detection and classification can be adopted to

detect attacks on these applications as well.

5. Identifying Different Attack Phases: The proposed methods for SSH

bruteforce attack detection use the network flow information. Some of the prior
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works made observation that the number of packets in different phases of brute-
force attacks are different. The given method can be extended to consider various
phases which are observed during a bruteforce attack. The work [20] described a
SSH attack detection method mentioning these attack phases, with every phase
having different flow characteristics based on the packet per-flow and the number
of flow records in a given time interval. These observations can be incorporated

into our model as part of future work.
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Appendix A

In this appendix we list the various elements of the Colored Petri-Net model
presented in Chapter 5.
The Timed Colored Petri-Net is a nine-tuple [47] CPN = (P, T, A, %, V,C,G,E,I).
The elements of the proposed CPN mode are

Places: P={P, P, - ,P3}
Transitions: T= {1}, Ty, - -+ ,T14}
Arcs: A= {A;, Ay, -+ ,Ago}

Type Set: Y= {INT, FLOW, STRING, STREAM, BOOL, STR_INT,
IP_Pf INT_STR, IP.RECORD, PF_RECORD}

Variable Set: V= {PORT, P, V, WA, 7, 1, 13, 74, SRIP, PF VAR,
OK, PF, IPVAR, PF.CNT, PF NEW, PF.CNT, PREV_PF, IP. NEW,
INTERVAL, INTERVAL PF, INTERVALIP, PREV INTERVAL, IP_R,
PREV_IP, PF R, F.CNT, F_PREV, STATUS, ATTACK_TY PE}

Colour Function C: The function C' assigns colors to various places as follow.
C(P)) = STREAM, C(P,) = STREAM, C(Ps) = STR.INT, C(P,) = IP_pf,
C(Ps) = INT, C(P) = INT, C(P;) = STRING, C(P) = PF_RECORD,
C(Py) =INT STR, C(Py) = INT_STR, C(P;;) = INT, C(P;3) = PF_RECORD,
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(Pis) = PF.RECORD, C(Py4) = STRING, C(Pys;) = INT.STR,
(Pg) = IP.RECORD, C(P;) = INT.STR, C(Pg) = IP_RECORD,
C(Py) = INT, C(Py) = IP.RECORD, C(Py) = INT, C(Py) = INT,
(Pa3)
(Pas)

Q

Py3) = INT, C(Py) = INT, C(Py) = INT, C(Py) = INT, C(Py;) = INT,
Py) = STRING, C(Py) = STRING, C(Ps) = INT, C(Ps;) = STRING

Q

Guard Function G: G(Ty2) = [INTERVAL > PREV_INTERVAL],
G(Ti3) = [STATUS =7 Bruteforce”|

Arc Expression E: The function FE assigns expressions to all the arcs as fol-

lows.

E(A)) = 1(SR_IP, PF, P, A)

E(Ay) =if OK then empty else 1(SR_IP, PF, P,W A)

E(A) = 1(SR_IP, PF, P,W A)

E(A)) = PORT

E(As) = PORT

E(Ag) = if (PORT = P)then 1'(SR_IP, PF,W A) else empty
E(A;) = 1(SR_IP, PF, W A)

E(As) =7

E(Ay) =7

E(Ay) =if (WA < 1) thenl’(SR_IP, PF) else empty
E(Ay) = 1(SR_IP, PF), E(Ays) = findPFVariable(PF)
E(A13) = findI PVariable(IP)

E(Ay) = PF.VAR

E(Ass) = if (PF.VAR =" PF1") then 1“(#PF1PF_R, PF_VAR) else if (PF_VAR =

"PF2") then 1'(#PF2 PF_R,PF VAR) --- else empty

E(A) = 1(PF.CNT, PF_V AR)
E(Ay7) = 1(PF_.CNT + 1, PF_VAR)
E(As5) = 1(PF_NEW, PF_V AR)
E(Ay) = setPF(PF_V AR, INTERV AL_PF, PF_NEW, PF_R)
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E(As) = PF_R

E(As) = PF.R

E(As) = PREV_PF

E(As) = PREV_PF

E(Ay) = PF.R

E(Ass) = PFR

E(Ag) = PF_R

E(As;) = INTERVAL_PF

E(Ayg) = setInterval(INTERV AL_PF)
E(As) = IP.VAR, E(Ay) = PREV_PF
E(As)

"IP2") then 1#IP2 IP_R,IP_.VAR)
1'(IP.CNT,IP_.V AR)
E(As3) = 1'(IP-CNT + 1,IP_V AR)

(
E(Aszy) =1'(IP.NEW,IP_.VAR)
E(Ass) =
E(A3;) =IP_R
E(Asg) = Setlnterval(]NTERVAL IP)
E(Az) = INTERVAL_IP
E(Ay)=IP.R
E(Ayn) = PREV_IP
E(Agp)=IP.R
E(Ay)=IP.R
E(Ay) = PREV_IP
E(Ay) = PREV_IP
E(Ay) = F_PREV
E(Ay7) = setInterval(INTERV AL)
E(As) = INTERV AL
E(Ay) = INTERV AL
E(Asy) = INTERV AL
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else empty,

setIP(IP.-VAR,INTERVAL_IP,IP_.NEW,IP_R), E(Ass) = IP_R

—if (IP.VAR = "IP1”) then 1(#IP1IP_R,IP_.VAR) elseif (IP_V AR =
E(As)



= set Previnterval(INTERV AL)
F_PREV, E(As3) = F.CNT

= setRequest(F_.CNT,INTERV AL)
= PREV_INTERV AL

= checkIP(#IP1IP_R,#IP2IP_R,--- ,#IPnIP_R,13)

(A51)
(As2) =
(As4)
(Ass)
(Ase)
(As7)
(Ass)
(Aso)
(Aeo)
E(A¢1) = if (F_.PREV > 1) thenl‘(”Brute — force”) elsel‘(” Normal”),
(Ag2)
(Ae3)
(Aga)
(Ags)
(Ags) = 1'ATTACK TY PE
(Ae7)
(Ags)
(Ago)

= checkpf(#PF1PF_R,#PF2PF R,--- ,#PFnPF_R,7;, ATTACK_TY PE)

Initialization Function I: The function [ assigns initialisation expression
to various places as follows.

I(P) = L(ipl,pfl, plywal)@Qtsl  +  +1(ip2,pf2,p2, wa2)Qts2  +
+1(ip3, pf3, p3, wald)Qts3 + + - - -

I(P3) = 1'(22)@0
I(P5) = 1'(th1)@0
I(Ps) =2 (PF1=0,PF2=0,---, PFn = 0)@0
I(Py) =1 (PF1=0,PF2=0,---, PFn = 0)@0
I(Py5) = 1'(1)@0
I(Pyg) =2(IP1=0,IP2=0,--- ,1Pn = 0)@0
I(Py) = 1(IP1=0,IP2=0,--- ,1Pn = 0)@0
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Table 1 shows the list of arcs in the Coloured Petri-Net model.
sociated with an input state or transition and the output state or a transition. For
example, the first entry in the table shows an arc with the input state P; with the out-

put transition 77, with an arc expression function 1‘(SR_IP, PF, P,/W A) and colour

function of the state P, as STREAM.

Table 1: Arcs in the Petri-Net model

Input | Output| Arc Expression Function Colour

State/| State/

Tran- | Tran-

sition | sition

P1 T1 1“(SR_IP,PF,P,WA) STREAM

T1 P2 if (OK) then empty else | STREAM
1“(SR_IP,PF,P,IWA)

P2 T2 1“(SR_IP,PF,P,IWA) STREAM

T2 P3 PORT INT

P3 T2 PORT INT

T2 P4 if (PORT = P)  then | STRINT
1“(SR_IP,PF,WA) else empty

P4 T3 1“(SR_IP,PF,WA) STRINT

Continued on next page
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Each arc is as-




Table 1 — continued from previous page

Input | Output| Arc Expression Function Colour
State/| State/
Tran- | Tran-
sition | sition
T3 P5 71 INT
P5 T3 71 INT
T3 P6 ifWA < 71) then 1Y(SR_IP,PF) | IP pf
else empty
P6 T4 1“(SR_IP, PF) IP pf
T4 p7 findPFV ariable( PF) STRING
T4 P8 findI PV ariable(SR_IP) STRING
p7 TH PF VAR STRING
Th P9 if (PF.VAR = "PF1”) then INR_STR
1(#PF1 PF_R,PFVAR) else if
(PF.VAR = "PF2") then
1(#PF2 PF_R,PF_VAR) - --else empty
P9 T6 1PF.CNT,PF_VAR) INT_STR
T6 P10 1(PF.CNT + 1, PF_.VAR) INT_STR
P10 T7 1“(PF_NEW,PF_V AR) INT_STR
T7 P11 setPF(PF_VAR,INTERV AL_PF, PF_RECORD
PF_NEW,PF_R)
P11 T7 PF_ R PF_RECORD
P11 ThH PF_R PF_RECORD
T7 P12 PREV_PF PF_RECORD
T7 P13 PF_R PF_RECORD
T7 P14 setInterval(INTERV AL_PF) INT
P13 T7 PREV_PF PF_RECORD

Continued on next page
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Table 1 — continued from previous page

Input | Output| Arc Expression Function Colour
State/| State/
Tran- | Tran-
sition | sition
P14 T7 INTERVAL PF INT
P12 T8 PREV _PF PF_RECORD
P13 T14 PF R PF_RECORD
T14 P13 PF_R PF_RECORD
P8 T8 IP. VAR STRING
T8 P15 if (IP.VAR = "IP17) then INT_STR
1(#1P1 IP R, IPVAR) elseif
(IP.VAR = "IP2")  then
1(#IP2 IP_R,IP_.VAR) --- else empty
P15 T9 1‘(IP.CNT,IP_.VAR) INT_STR
T9 P16 1‘(IP.CNT +1,IP.VAR) INT_STR
P16 T10 1‘(IP_.NEW,IP_VAR) INT_STR
T10 P17 setIP(IP.VAR,INTERVAL_IP, IP_RECORD
IP.NEW,IP_R)
P17 T10 IP_R IP_.RECORD
P17 T8 IP_R IP_.RECORD
T10 P18 setInterval(INTERV AL_IP) INT
P18 T10 INTERVAL_IP INT
T10 P19 IP_R IP_RECORD
P19 T10 PREV_IP [P_RECORD
P19 T13 IP_R IP_RECORD
T13 P19 IPR IP_RECORD
T10 P20 PREV_IP IP_RECORD

Continued on next page
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Table 1 — continued from previous page

Input | Output| Arc Expression Function Colour

State/| State/

Tran- | Tran-

sition | sition

P20 T11 PREV _IP IP_RECORD

T11 P21 F_PREV INT

T11 P22 setInterval(INTERV AL) INT

P22 T11 INTERV AL INT

T11 P23 set PrevInterval(INTERV AL) INT

T11 P24 F_CNT INT

P24 T11 F_PREV INT

T11 P25 setRequest(F_.CNT,INTERV AL) INT

P25 T11 F_CNT INT

P22 T12 INTERV AL INT

T12 P22 INTERV AL INT

P23 T12 PREV _INTERV AL INT

P24 T12 F_CNT INT

T12 P24 F_CNT INT

P26 T12 T2 INT

T12 P26 T2 INT

T12 P27 if(F_.PREV > 72) then 1‘(” Bruteforce”) | STRING
else 1‘(" Normal”)

P27 T13 1(STATUS) STRING

P28 T13 T3 INT

T13 P28 T3 INT

T13 P29 checkIP(#1P1  IP_R,#IP2 STRING

. ,#IPnIP_R,73)

Continued on next page
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Table 1 — continued from previous page

Input | Output| Arc Expression Function Colour
State/| State/
Tran- | Tran-

sition | sition

P29 | T14 1(ATTACK TY PE) STRING
Ti4 | P30 T4 INT
P30 | T14 T4 INT
Ti4 | P31 checkPF(#PF1PF_R,#PF2PF_R,---, | STRING

#PFn PF R, 74, ATTACK TY PFE)
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