
0.1 Enhanced Opposition Di↵erential Evolution

Algorithm for Multimodal Optimization

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION
I hereby certify that the work which is being presented in the thesis entitled Enhanced
Opposition Differential Evolution Algorithm for Multimodal Optimization in the
fulfillment of the requirements for the award of the degree of Master of Science
(Research) and submitted in the Department of Computer Science and
Engineering, Indian Institute of Technology Indore, is an authentic record of my
own work carried out during the time period from July 2019 to August 2021 under the
supervision of Dr. Aruna Tiwari, Associate Professor, Indian Institute of Technology
Indore, Indore, India.
The matter presented in this thesis has not been submitted by me for the award of any
other degree of this or any other institute.

Signature of the Student with date
(Shatendra Singh)

This is to certify that the above statement made by the candidate is correct to the best

of my knowledge.

Signature of the Thesis Supervisor with date

(Dr. Aruna Tiwari)

Shatendra Singh has successfully given her MS (Research) Oral Examination held

on __________

Signature of Chairperson (OEB)
Date:

Signature of Thesis Supervisor
Date:

Signature of Convener DPGC
Date:

Signature of Head of Department
Date:5/11/2021

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to people who in

one or the other way contributed by making this time as learnable, enjoyable, and

bearable. At first, I would like to thank my supervisor Dr. Aruna Tiwari, who was

a constant source of inspiration during my work. With her constant guidance and

research directions, this research work has been completed. Her continuous support

and encouragement has motivated me to remain streamlined in my research work.

I am thankful to Mrs. Suchitra Agrawal, PhD student for all her help and

support. I am also grateful to Dr. Somnath Dey, HOD of Computer Science for all

his help and support.

I am thankful to Dr. Amod Umarikar and Dr. Kapil Ahuja, my research

progress committee members for taking out some valuable time to evaluate my progress

all these years. Their valuable comments and suggestions helped me to improve my

work at various stages.

My sincere acknowledgement and respect to Prof. Neelesh Kumar Jain, Direc-

tor, Indian Institute of Technology Indore for providing me the opportunity to explore

my research capabilities at Indian Institute of Technology Indore.

Lastly, I would like to thank my family and friends for all their love and support.

Shatendra Singh

To you as a reader

ABSTRACT

Most of the real-world problems are multimodal in nature that consists of multiple

optimum values. Multimodal optimization amounts to finding multiple global and

local optima (as opposed to a single solution) of a function so that the user can have

a better knowledge about di↵erent optimal solutions in the search space and as and

when needed, the current solution may be switched to another suitable one while still

maintaining the optimal system performance. Classical gradient-based methods fail

for optimization problems in which the objective functions are either discontinuous

or non-di↵erentiable. Evolutionary Algorithms (EAs), due to their population-based

approaches, can detect multiple solutions within a population in a single simulation

run and have a clear advantage over the classical optimization techniques, which need

multiple restarts and multiple runs in the hope that a di↵erent solution may be dis-

covered every run, with no guarantee. Hence, several EAs have been proposed to

solve such kinds of problems. However, Di↵erential Evolution (DE) algorithm is a

population-based heuristic method that can solve such optimization problems, and it

is simple to implement. The potential challenge in Multi-Modal Optimization Prob-

lems (MMOPs) is to search the function space e�ciently to locate most of the peaks

accurately. The optimization problem could be to minimize or maximize a given objec-

tive function and we aim to solve the maximization problems on multimodal functions

in this study. Hence, we have proposed two algorithms known as Enhanced Opposition

Di↵erential Evolution (EODE) algorithm and Estimation of Distribution Algorithms

based Di↵erential Evolution (EDADE) algorithm to solve the MMOPs. The proposed

algorithms have been tested on IEEE Congress on Evolutionary Computation (CEC)

2013 benchmark functions, and they achieve competitive results compared to the ex-

isting state-of-the-art approaches.

Contents

0.1 Enhanced Opposition Di↵erential Evolution Algorithm for

Multimodal Optimization . 1

Abstract iv

List of Figures iv

List of Tables vi

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 3

1.3 Thesis Contribution . 4

1.4 Organization of Thesis . 6

2 Literature Survey 7

2.1 Niching Methods . 8

2.1.1 Clearing . 8

2.1.2 Crowding . 8

2.1.3 Sharing . 9

2.1.4 Speciation . 9

2.2 Non-DE methods for multimodal optimization 10

2.2.1 Genetic Algorithms(GAs) for multimodal op-timization 10

2.2.2 Swarm intelligence algorithms for multimodal optimization . . . 11

2.2.3 Evolution strategies for multimodal optimization 12

i

2.2.4 Clustering-based multimodal evolutionary approaches 13

2.2.5 Ensemble method for solving multimodal optimization problems 14

2.3 Di↵erential evolution for multimodal optimization 15

2.4 Performance Measures . 24

3 Enhanced Opposition Di↵erential Evolution Algorithm for Multi-

modal Optimization 25

3.1 Introduction . 25

3.2 Preliminaries . 26

3.3 Enhanced Opposition Di↵erential Evolution Algorithm(EODE) for

Multimodal Optimization . 29

3.3.1 Multi-Species Framework . 29

3.3.2 Illustrative Example . 42

3.4 Experiments and Results . 44

3.4.1 Comparison with other algorithms 47

3.4.2 Di↵erent Components of EODE 48

3.4.3 Di↵erent values of Jumping Rate (JR) 49

3.5 Summary . 60

4 Estimation of Distribution Algorithm based Di↵erential Evolution

Algorithm for Multimodal Optimization 61

4.1 Introduction . 61

4.2 Preliminaries . 62

4.3 EDADE for solving MMOPs . 63

4.3.1 Multi-Species Framework . 63

4.3.2 Illustrative Example . 72

4.4 Experiments and Results . 75

4.4.1 Comparison with other algorithms 76

4.4.2 Di↵erent Parameters of EDADE 78

4.4.3 Di↵erent values of '1,'2 . 85

4.4.4 Convergence of population . 86

ii

4.5 Summary . 89

5 Conclusion and Future Work 90

5.1 Thesis Contributions . 90

5.1.1 Enhanced Opposition Di↵erential Evolution Algorithm for solv-

ing MMOPs . 91

5.1.2 Estimation of Distribution Algorithm (EDA) based Di↵erential

Evolution Algorithm for solving MMOPs 92

5.2 Future Work . 93

Appendix A Test Functions 109

iii

List of Figures

3.1 Block Diagram of EODE Algorithm . 30

3.2 Initialization . 43

3.3 Niching and Balancing . 43

3.4 ODE and Local Search . 43

3.5 F1 . 58

3.6 F2 . 58

3.7 F3 . 58

3.8 F4 . 58

3.9 F5 . 59

3.10 F6 . 59

3.11 F7 . 59

3.12 F10 . 59

3.13 F11 . 59

3.14 F12 . 59

3.15 F13 . 60

4.1 Demonstrations of 2D Gaussian distributions with di↵erent correlation

coe�cients. 63

4.2 Block Diagram of EDADE Algorithm 64

4.3 Initialization . 74

4.4 Niching and Balancing . 74

4.5 Evolutionary process and Local Search 74

4.6 Gen-1 (F2) . 86

iv

4.7 Gen-2 (F2) . 86

4.8 Gen-3 (F2) . 86

4.9 Gen-1 (F4) . 86

4.10 Gen-5 (F4) . 86

4.11 Gen-9 (F4) . 86

4.12 Gen-1 (F6) . 87

4.13 Gen-2 (F6) . 87

4.14 Gen-3 (F6) . 87

4.15 Gen-1 (F7) . 87

4.16 Gen-8 (F7) . 87

4.17 Gen-15 (F7) . 87

4.18 Gen-1 (F10) . 87

4.19 Gen-5 (F10) . 87

4.20 Gen-11 (F10) . 87

4.21 Gen-1 (F11) . 87

4.22 Gen-8 (F11) . 87

4.23 Gen-14 (F11) . 87

4.24 Gen-1 (F12) . 88

4.25 Gen-5 (F12) . 88

4.26 Gen-11 (F12) . 88

4.27 Gen-1 (F13) . 88

4.28 Gen-5 (F13) . 88

4.29 Gen-11 (F13) . 88

v

List of Tables

3.1 Information of the benchmark problems and the population size 45

3.2 Parameters in EODE . 46

3.3 Results on accuracy levels 1e-1,1e-2,1e-3,1e-4,1e-5 51

3.4 Comparison with other algorithms on accuracy level 1e-4 52

3.5 Comparison with other algorithms on accuracy level 1e-4 53

3.6 Comparison with other algorithms on accuracy level 1e-4 54

3.7 Experimental results of di↵erent values of '1,'2 on the benchmark

problems at the accuracy level ✏ “ 1e´4 55

3.8 Experimental results of di↵erent mutation operators on the benchmark

problems at the accuracy level ✏ “ 1e´4 56

3.9 Experimental results of di↵erent values of JR on the benchmark prob-

lems at the accuracy level ✏ “ 1e´4 . 57

4.1 Information of the benchmark problems and the population size 77

4.2 Parameters in EDADE . 78

4.3 Comparison with other algorithms on accuracy level 1e-4 79

4.4 Comparison with other algorithms on accuracy level 1e-4 80

4.5 Comparison with other algorithms on accuracy level 1e-4 81

4.6 Comparison with other algorithms on accuracy level 1e-4 82

4.7 Results on di↵erent values of F1, F2 at accuracy level 1e-4 83

4.8 Results on di↵erent values of '1,'2 at accuracy level 1e-4 84

A.1 IEEE CEC 2013 benchmark functions 110

vi

Chapter 1

Introduction

Evolutionary algorithms (EAs) have been widely used for solving optimization

problems having a single global optimum. It is wise to find as many optimum points

as possible for several reasons. First, an optimal solution currently favorable (say,

due to availability of some critical resources, or others) may not remain to be so in

the future. This would then demand the user to operate at a di↵erent solution when

such a predicament occurs. With the knowledge of another optimal solution for the

problem which is favorable to the changed scenario, the user can simply switch to this

new optimal solution. Second, the sheer knowledge of multiple optimal solutions in

the search space may provide useful insights into the properties of optimal solutions

of the problem. Many real-world problems consist of multiple optima, such as holo-

graphic design [1], electro-magnetic design [2], protein structure prediction [3], and

data mining [4]. Therefore, it is essential to find as many global optimizers as possible

as it gives users the flexibility to choose alternate solutions if one solution cannot be

chosen due to limited resource constraints. However, it is more challenging to find

multiple global optima than to find a single global optimum. If a point-by-point clas-

sical optimization approach is used for multimodal optimization, the approach must

have to be applied several times, every time with the expectation of finding a dif-

ferent optimal solution. Many researchers have used EAs [5] and swarm intelligence

algorithms [6] to solve Multi-Modal Optimization Problems (MMOPs), such as the

Genetic Algorithm (GA) [49], Ant Colony Optimization (ACO) [8], Estimation of

1

Distribution Algorithm (EDA) [9], Particle Swarm Optimization (PSO) [10], and Dif-

ferential Evolution (DE) [11]. However, they tend to lose the e↵ective balance between

exploration and exploitation of the search space. “Exploration” here means increasing

the diversity of the population in the hope to find better individuals while the term

“Exploitation” here means refining the existing candidate solutions to reach the best

one in a local region(sub-population). While solving the exploration vs exploitation

dilemma, two major problems arise. First, if diversity is increased too much then it

may lead to unnecessary fitness computations as there may be no optima in those

areas of search space where the search is being performed. Second, if exploitation is

performed in the undesired region of the search space, then it may get trapped in local

optima. Therefore, a di↵erent mechanism, based on classical EAs, is required to locate

multiple optima simultaneously. Niching [27] has been widely used in the literature

to help an EA maintain population diversity in multimodal optimization. Some well-

known niching techniques include crowding [12], clearing [13], fitness sharing [14], and

speciation [15]. Niching divides the population into several sub-populations and each

subpopulation is responsible to find the optima within that sub-population. Each sub-

population can be considered as a species. Since the fitness landscape may be uneven

and complex, the niches could be of di↵erent shapes and sizes. Therefore, it becomes a

great challenge to form multiple sub-populations out of the global population in such

a way that a maximum number of peaks are located by the sub-populations. Classical

niching methods are sensitive to the parameters they use; for example, crowding is

sensitive to the crowding size, and speciation is sensitive to the niching radius. Hence,

parameter-free or parameter-insensitive techniques have been developed to improve

niching, such as history-based topological speciation [31], and clustering [32]. Other

adaptive learning strategies have been developed to enhance the diversity for EAs,

such as GA [33], DE [35], and PSO [36].

2

1.1 Motivation

Since the complex multimodal landscapes consist of niches of di↵erent shapes and

sizes, it becomes imperative to locate them. The existing methods are not e�cient

in locating most of the niches due to the improper segregation and balancing of the

species. Therefore, there is a great need to design an e�cient niching method that

can form niches of uneven sizes and shapes. Also, assigning the static values to the

parameters of the algorithm inhibits the search and convergence capabilities of the

functional landscape. Low parameters value can lead to premature convergence and

smaller exploration while high parameters value can lead to excessive perturbation and

divergence from the optima which may lead to wastage of fitness evaluations. Hence,

there is a need for an adaptive parameter control strategy that learns to adapt to the

niche landscape in order to drive the population within the niche towards convergence

(optima). To this aim, we have proposed an Enhanced Opposition Di↵erential Evo-

lution (EODE) algorithm to solve the above problems. ODE [48] helps in speeding

up the convergence towards optima. It also helps in creating o↵springs that enable

e�cient exploration of the sub-population as the current candidate and the opposite

candidate squishes the function space from both ends in all dimensions. Since the op-

posite population does not have a strong enough capability to look up the search space

out of the current species landscape, ODE has limited exploration capability. Hence,

a hybrid DE method is proposed based on the Estimation of Distribution Algorithm

(EDA) that produces diverse o↵springs for better exploration.

1.2 Objectives

In this section we are going to cover the following objectives in our thesis:

1. To study and analyze the Di↵erential Evolution (DE) algorithm for solving

MMOPs.

2. To propose a method that divides the global population into local sub-

populations e�ciently such that each sub-population corresponds to a niche and

3

most of the niches are located.

3. To develop a better balancing technique for the newly created sub-populations

in order to help enhance convergence speed towards optima within the sub-

population.

4. To propose a method that performs an e�cient local search within each sub-

population to refine the candidate solutions.

5. To develop an adaptive technique to learn the parameters mutation factor (F)

and crossover rate (CR) over generations.

6. To propose a hybrid approach based on Estimation Distribution Algorithm

(EDA) and DE for solving MMOPs.

In this thesis, we propose algorithms for locating multiple global peaks for multi-

modal problems using Enhanced Opposition Di↵erential Evolution (EODE) algorithm.

Also, we have proposed a probabilistic version of DE which is based on EDA(EDADE)

to solve MMOPs. Our proposed methods are adaptable to di↵erent functional land-

scapes and hence provide better results for multiple functions.

1.3 Thesis Contribution

In this thesis, we describe new algorithms for finding multiple optima of several

multimodal problems. The contribution of our thesis are as follows:

I. Enhanced Opposition Di↵erential Evolution (EODE) Algorithm

This method aims to create a variant of standard Opposition Di↵erential Evo-

lution(ODE) [48] algorithm which is adaptive as it learns the parameters such as

mutation factor(F) and crossover rate(CR) over the generations based on SHADE [41].

Two-level niching based on mNBC [39] is applied to locate a maximum number of

near-peak regions in the function space. It also saves unnecessary resource (function

evaluation) wastage. Existing methods have not used the concept of opposition-based

learning to solve the multimodal optimization problems and rather they rely on

4

di↵erential perturbation to create the next generation population. However, these

methods lose e↵ectiveness in locating a maximum number of peaks within the given

cost. Thus as our first contribution, we propose a method to improve the e↵ectiveness

in locating a maximum number of peaks using adaptive guided search over the

generations. The di↵erential perturbation takes place dynamically depending upon

the weightage of exploration and exploitation at that specific configuration of the

evolution process. We have also proposed a species balance strategy that uses

probability distribution methods to generate more candidates for the DE operations

to take place e↵ectively. We have proposed a local search method to improve the

fitness value of the already found best member of a sub-population. We have also

proposed a scheme to avoid the insertion of multiple peaks belonging to the same

sub-population in the archive which essentially enables the algorithm capability to

locate multiple di↵erent peaks.

II. Estimation of Distribution Algorithm based Di↵erential Evolu-

tion(EDADE) Algorithm

To be able to locate multiple species in a global population, we have proposed

a modified version of two-level speciation that is based on mNBC [39]. Also, a

modified species balance strategy is proposed that is based on Gaussian distribution

for balancing the oversized and undersized species. As discussed in [48], ODE is

e↵ective in the exploitation of the search space, it lacks better exploration. To be

able to locate as many optima as possible, the method should explore the entire

search space e↵ectively which could be helpful for problems with a large number

of optima. To include randomness and better exploration, a probabilistic approach

has been introduced. The distribution estimation helps generate better o↵springs

by predicting the distribution parameters of the niches. Gaussian and Cauchy

distributions are used to generate potentially better o↵spring. DE has a faster

convergence rate as compared to the probabilistic approaches due to its vector based

mutation operations. Hence, to this end, we introduced a hybrid method that is

5

based on DE and EDA to evolve the population e↵ectively. We also proposed a

probabilistic local search method to improve the already found candidate solutions.

The distribution estimation helps the algorithm guide to produce o↵springs of diverse

nature that enables better exploration of the search space. Also, a simple strategy is

introduced to avoid the population trap at local optima which could prevent wastage

of significant fitness evaluations and help the algorithm locate global optima.

Thus, to assess the e↵ectiveness of the above algorithms, we apply them to

multimodal problems having dimensions upto 20. We compare the results of our

proposed algorithms with that of several state-of-the-art algorithms.

1.4 Organization of Thesis

We organize the rest of this thesis as follows:

Chapter 2: In this chapter we discuss the related work on multimodal optimiza-

tion. Overview of Non-DE approaches for solving MMOPs are discussed. Detailed

survey of DE based approaches are covered in this chapter.

Chapter 3: In this chapter we describe our proposed algorithm EODE for multi-

modal optimization. We apply the proposed algorithm on IEEE CEC 2013 benchmark

suite described in Appendix A. We present the results and comparison with the state-

of-the-art algorithms.

Chapter 4: In this chapter we describe our proposed algorithm EDADE for multi-

modal optimization. We apply the proposed algorithm on IEEE CEC 2013 benchmark

suite described in Appendix A. We present the results and comparison with the state-

of-the-art algorithms.

Chapter 5: In this chapter we discuss the results obtained using EODE and

EDADE. We also conclude the study presented in the thesis and provide directions

for future work in this area.

6

Chapter 2

Literature Survey

Multimodal optimization is defined as a problem of finding multiple global and

local optima (as opposed to a single solution) of a function so that the user can have

a better knowledge about di↵erent optimal solutions in the search space and as and

when needed, the current solution may be switched to another suitable one while still

maintaining the optimal system performance. EAs, due to their population-based

approaches, can detect multiple solutions within a population in a single simulation

run and have a clear advantage over the classical optimization techniques, which need

multiple restarts and multiple runs in the hope that a di↵erent solution may be dis-

covered every run, with no guarantee, however. Numerous evolutionary optimiza-

tion techniques have been developed since the late 1970s for locating multiple optima

(global or local). These techniques are commonly referred to as “niching” methods.

Niching [27] can be incorporated into a standard EA to promote and maintain the for-

mation of multiple stable subpopulations within a single population, to locate multiple

globally optimal or suboptimal solutions simultaneously. Niching is the technique of

finding and preserving multiple stable niches, or favorable parts of the solution space

possibly around multiple solutions, to prevent convergence to a single solution.

7

2.1 Niching Methods

Primarily niching techniques have been developed to reduce the e↵ect of genetic

drift resulting from the selection operator of the classical GAs. Thus they also aim at

maintaining genetic diversity in the population and making GAs able to find multiple

optima in parallel. A niching method must have to form and maintain multiple and

diverse final solutions within the search and it should also be able to maintain these

multiple solutions for a large enough number of iterations. In what follows, we discuss

some of the most prominent niching techniques available in the existing literature:

2.1.1 Clearing

Clearing [13] removes the bad individuals and keeps only the best individual (or

a few top individuals) within each niche. The algorithm first sorts the population in

descending order according to the fitness values. Then it picks one individual at a

time from the top and removes all the individuals with worse fitness than the selected

one and falling within the specified clearing radius. This step will be repeated until all

the individuals in the population are either selected or removed. Clearing eliminates

similar individuals and maintains the diversity among the selected individuals. Similar

to sharing, clearing also needs a user-specified parameter �clear called clearing radius.

This parameter is used as a dissimilarity threshold. The complexity of clearing is

O(cN), where c is the number of niches maintained during the generations.

2.1.2 Crowding

The crowding method introduced by De Jong in 1975 [12] allows competition for

limited resources among similar individuals in the population. Hence, the competition

is within each niche. This approach will maintain the diversity of the whole population.

Generally, the similarity is measured using the distance between individuals. The

algorithm compares an o↵spring with some randomly sampled individuals from the

current population. The most similar individual will be replaced if the o↵spring is a

superior solution. A parameter CF called the crowding factor is used to control the

8

size of the sample. CF is generally set to 2 or 3. The computational complexity of

crowding is equal to O(N), where N is the population size. A major advantage of

crowding is its simplicity. However, replacement error is the main disadvantage of

crowding. Deterministic Crowding [27], Probabilistic Crowding [29] are other variants

of crowding technique.

2.1.3 Sharing

The fitness sharing was introduced by Holland [14] and extended by Goldberg and

Richardson [16]. The concept is to divide the population into di↵erent subgroups

according to the similarity of the individuals. An individual must share information

with other individuals within the same niche. The shared fitness for the ith individual

can be represented as follows:

fshared piq “ foriginal piq
∞N

j“1 sh pdijq
(2.1)

where the sharing function is calculated as

sh pdijq “

$
&

%
1 ´

´
dij

�share

¯↵

, if dij † �share

0, otherwise.
(2.2)

dij is the distance between individuals i and j, �share is the sharing radius, N is the

population size, and ↵ is a constant called sharing level. The complexity of fitness

sharing is O pN2q . The advantage of sharing is its ability to form and maintain stable

subpopulation/niches. Sharing also encourages the search in unexplored regions of the

space by increasing the diversity of the population. One of the drawbacks of sharing

is the usage of the niching parameter �share . Specifying this parameter requires prior

knowledge of how far apart the optima lies.

2.1.4 Speciation

The idea of speciation is commonly used in multimodal optimization [30]. This

method also depends on a radius parameter rs, which measures the Euclidean distance

from the center of a species to its boundary. The center of a species is called species

9

seed. Each of the species is built around the dominating species’ seed. All individuals

that fall within the radius from the species seed are identified as the same species.

In this way, the whole population is classified into di↵erent groups according to their

similarity. The complexity of speciation is O(N) in the best case and O(N2) in the

worst case. The main advantage of speciation is its ability to maintain high diversity

and stable niches over generations while the main disadvantage is the selection of the

radius parameter rs.

In addition to the methods listed above, there are other niching methods such as

restricted tournament selection (RTS) [17],multi-population [19], clustering [20], and

localized niching [21].

2.2 Non-DE methods for multimodal optimization

There have been extensive amount of evolutionary algorithms discussed in liter-

ature for multimodal optimization. The multimodal optimization problems can be

solved either by di↵erential evolution based approaches or non-di↵erential evolution

based approaches. The non-di↵erential evolution based approaches consist of genetic

algorithms [49], swarm algorithms [53], evolution strategies [57], clustering based algo-

rithms [74], ensemble methodologies [76] and other adhoc evolutionary algorithms [9].

In this section, we have discussed non-di↵erential evolution based methodologies to

solve MMOPs.

2.2.1 Genetic Algorithms(GAs) for multimodal op-timization

Genetic Algorithms (GAs) [49] are adaptive, randomized search techniques founded

on the simulation of the Darwinian evolution and natural genetics. They are e�cient,

adaptive, and robust search processes, producing near-optimal solutions and o↵er a

large amount of implicit parallelism. In our ecosystem natural evolutionary process

basically maintains a variety of species, each occupying a di↵erent ecological niche,

whereas classical GAs rapidly push the artificial population toward convergence i.e.,

all individual populations soon gather and become more or less identical. Even when

10

multiple optima exist in a problem, classical GAs are used to locate only one optimum.

Niching methods are embedded in a GA [50] to make it capable of detecting multiple

optimal solutions by using a single population. The basic motivation of including nich-

ing methods was to promote diversity in classical GAs. In [27] it has been concluded

that three important factors that reasonably take part in the loss of diversity are selec-

tion pressure, selection noise, and operator disruption. Four niching techniques were

tested in [27] with various di�culty levels on GA. Parallel hillclimbing is the best for

the easiest problem and has some success on the problems with intermediate di�culty

which often fails on complex optimization problems. Sequential niching is the weakest

method to handle most of the di�cult multimodal optimization problems available in

the literature. Ursem proposed a Multinational Evolutionary Algorithm (MEA) [51]

for detecting global and local optima on a function landscape. The method tends

to adapt itself to the problem by catching some topological features of the fitness

landscape under consideration. The main concept is to employ the topological infor-

mation for grouping the whole population into subpopulations each of which will cover

a part of the fitness landscape. Ursem further extended the work in [52] by proposing

Multinational GAs (MGAs) to tackle multimodal optimization problems in dynamic

environments.

2.2.2 Swarm intelligence algorithms for multimodal optimiza-

tion

Swarm Intelligence (SI) has attracted interest from many researchers in various

fields. Bonabeau defined SI as “The emergent collective intelligence of groups of

simple agents” [81]. SI is the collective intelligence behavior of self-organized and

decentralized systems, e.g., artificial groups of simple agents. Examples of SI include

the group foraging of social insects, cooperative transportation, nest-building of social

insects, and collective sorting and clustering. Two fundamental concepts that are

considered as necessary properties of SI are self-organization and division of labor. Self-

organization is defined as the capability of a system to evolve its agents or components

11

into a suitable form without any external help.

The concept of particle swarm, although initially introduced for simulating social

behaviors commonly observed in the animal kingdom has become very popular these

days, as an e�cient means for intelligent search and optimization. Since its advent in

1995, the Particle Swarm Optimization (PSO) [53,54] algorithm has attracted the at-

tention of a lot of researchers all over the world resulting in a huge number of variants

of the basic algorithm as well as many parameter selection/control strategies, compre-

hensive surveys of which can be found in [55,56]. In PSO, the particles are conceptual

mathematical entities, which accelerate simultaneously along with two directions – the

best positions of the search space individually experienced by each of them at some

point of time and the globally best position found by a neighborhood (geographical or

social) of the current particle so far. Thus the particles have a tendency to fly toward

the better and better regions of the search space over time, which results in the fast

convergence of the search. PSO requires no gradient information of the function to be

optimized is very easy to implement in any standard programming language and uses

only primitive mathematical operators throughout.

2.2.3 Evolution strategies for multimodal optimization

Evolution Strategies (ESs) [57,58] are nature-inspired optimization techniques built

around the concept of the evolution of evolution practically biological processes are

optimized by evolution, and on the other hand, evolution is itself a biological process,

thus it may be concluded that evolution optimizes itself. ES emphasizes the phe-

notypic behaviors of individuals or search agents that constitute a population. Each

individual consists of a set of decision (search) variables and strategy parameters. Evo-

lution then amounts to changing both the decision variables and strategy parameters

and the evolution of decision variables is controlled by the strategy parameters. As

far as real-valued search spaces are concerned, the mutation is normally performed by

adding a normally distributed random value to each vector component. The step size

or mutation strength (i.e. the standard deviation of the normal distribution) is often

governed by self-adaptation. Individual step sizes for each coordinate or correlations

12

between coordinates are either governed by self-adaptation or by covariance matrix

adaptation (as done in CMA-ES [59]. The canonical versions of the ES are denoted by

pµ{⇢,�q ´ES and pµ{⇢`�q ´ES respectively. Here µ denotes the number of parents,

⇢ § µ the mixing number (i.e., the number of parents involved in the procreation of an

o↵spring), and � the number of o↵spring. The parents are deterministically selected

(i.e., deterministic survivor selection) from the (multi-)set of either the o↵spring, re-

ferred to as comma-selection (µ † � must hold), or both the parents and o↵spring,

referred to as plus-selection.

2.2.4 Clustering-based multimodal evolutionary approaches

Several research works have been reported for solving multimodal problems by in-

corporating clustering methods in some classical EAs. Di↵erent clustering techniques

have been suitably used to overcome the inability of the traditional EAs to locate

multiple solutions and to enhance their e�ciency, comprehensiveness, and robustness.

Ling et al. [74] proposed Crowding Clustering Genetic Algorithm (CCGA) where they

utilize clustering strategy to eliminate the genetic drift that is introduced by the

crowding strategy. The authors introduced a peak detection concept to combine the

clustering and crowding techniques. Basically to create multiple niches in the given

landscape the standard crowding strategy is employed in CCGA. Clusters formed by

the crowding model can coexist in the same niche and lead to the same optimal so-

lution. As both standard and deterministic crowding tend to converge to numerous

potential solutions and to create genetic drift, clustering operation is used to remove

this genetic drift by introducing an inter-cluster competition and stimulating explo-

ration in the entire search space. Felix et al. proposed a Clustering-Based Niching

(CBN) [75] method for Evolutionary Algorithms (EAs) to identify multiple global and

local optima’s in a multimodal environment. The principle behind the CBN imple-

mentation is to apply the biological concept of species in separate ecological niches to

EA for preserving diversity that results advantageous to find out niches of arbitrary

size, shape, and spacing.

13

2.2.5 Ensemble method for solving multimodal optimization

problems

Recently, ensemble idea was adopted in evolutionary algorithms to solve multi-

modal optimization problems. Yu and Suganthan [76] proposed an ensemble of niching

algorithms (ENA) which use four parallel populations. Each population is associated

with one niching method. All four populations use a genetic algorithm as the search

method. The o↵spring produced by all four populations are combined and subse-

quently added to the four populations separately. Each population will select par-

ents for the next generation from each combined population according to the niching

method used. In this way, each algorithm always keeps the best o↵spring according

to the selection rules of the associated niching method. Wu et al. [109] investigated

the high-level ensemble of multiple existing DE variants. A multi-population-based

framework (MPF) is proposed to realize the ensemble of multiple DE variants to derive

a new algorithm named EDEV for short. EDEV consists of three highly popular and

e�cient DE variants, namely JADE [93] (adaptive di↵erential evolution with optional

external archive), CoDE (di↵erential evolution with composite trial vector generation

strategies and control parameters) and EPSDE (di↵erential evolution algorithm with

ensemble of parameters and mutation strategies) [108]. Wu et al. [109] provide an

extensive survey about the ensemble strategies.

There are other approaches for solving MMOPs that cannot be categorised in the

above mentioned sections 2.2.1-2.2.5. Hence, those approaches are discussed below.

Yang et al. [9] studied the application of Estimation of Distribution Algorithms

(EDA) for solving MMOPs. They aimed at taking advantage of Gaussian and Cauchy

distributions to generate the o↵spring at the niche level by alternatively using these

two distributions. Such utilization can also potentially o↵er a balance between ex-

ploration and exploitation. Two popular niching strategies, crowding, and speciation,

were incorporated in Multimodal EDA (MEDA), leading to MCEDA and MSEDA, re-

spectively. Multi-objective Optimization (MO) problems involve multiple objectives,

which should be optimized simultaneously and that often are in conflict with each

14

other. This results in a group of alternative solutions (Pareto optimal set) that must

be considered equivalent in the absence of information concerning the relevance of the

others. Many EAs were formulated by the researchers to tackle multi-objective prob-

lems in recent past [77,78]. Deb and Saha [79,80] took an MO approach for solving the

multimodal optimization problems. They converted the single-objective multimodal

problem into a suitable bi-objective optimization problem so that all optimal solutions

become members of the resulting weak Pareto optimal set. One of the objectives was

the objective function of the multimodal optimization problem and the authors made

a number of suggestions for choosing the other objective. Starting with the gradient-

based approaches (demonstrating the foundation of the bi-objective approach), more

pragmatic neighborhood count based approaches were developed for this purpose.

2.3 Di↵erential evolution for multimodal optimiza-

tion

Di↵erential Evolution (DE) [60–62] is arguably one of the most powerful stochastic

real-parameter optimization algorithms of current interest. DE has been frequently

adopted to tackle multi-objective, constrained, dynamic, large scale, and multi- modal

optimization problems and the resulting variants have been achieving top ranks in var-

ious competitions held under the IEEE CEC (Congress on Evolutionary Computation)

conference series. In DE community, the individual trial solutions (which constitute

a population) are called parameter vectors or genomes. DE operates through the

same computational steps as employed by a standard EA. However, unlike traditional

EAs, DE employs di↵erence of the parameter vectors to explore the objective function

landscape. Like other population-based search techniques, DE generates new points

(trial solutions) that are perturbations of existing points, but these deviations are not

samples from a predefined probability density function, like those in ESs. Instead, DE

perturbs current generation vectors with the scaled di↵erence of two randomly selected

population vectors. In its simplest form, DE adds the scaled, random vector di↵erence

15

to a third randomly selected population vector to create a donor vector cor- respond-

ing to each population vector (also known as target vector). Next the components of

the target and donor vectors are mixed through a crossover operation to produce a

trial vector. In the selection stage, the trial (or o↵spring) vector competes against the

population vector of the same index, i.e. the parent vector. Once the last trial vector

has been tested the survivors of all the pair wise competitions become parents for the

next generation in the evolutionary cycle. A detailed survey on the state-of-the-art

research on DE as well as its applications to di↵erent kinds of optimization problems

can be found in [62]. Thomsen integrated the fitness sharing concept with DE to form

the sharing DE [63]. Sharing DE utilizes the classical sharing technique described in

Eqs. (2.1) and (2.2), using the Euclidean distance as the distance metric. In each

generation the number of o↵spring generated is equal to the parent population size.

Thus after Np trial vectors have been generated from Np parents, the sharing function

is used to calculate the fitness for each individual and the worst half of the popula-

tion is purged. The algorithm provides elitism by always preserving the individual

with best un-scaled fitness. The algorithm requires defining �share that represents the

threshold of dissimilarity or niche radius. Thomsen also proposed to extend DE with

a crowding Scheme (Crowding DE) [63] to allow it to tackle multimodal optimization

problems. In Crowding DE (CDE) when an o↵spring is generated by using he stan-

dard DE, it competes only with the most similar (measured by Euclidean distance)

individual in the current population. The o↵spring will replace this individual if it has

a better fitness value. To avoid replacement error in CDE, the crowding factor CF is

taken equal to the population size Np. Li proposed the Species-based DE (SDE) algo-

rithm, built around the notion of speciation [64], for solving multimodal optimization

problems. The Species-based DE (SDE) is capable of locating multiple global optima

simultaneously through adaptive formation of multiple species (or subpopulations) in

a DE population at each iteration step. The DE population is partitioned into species

according to an Euclidean distance based similarity metric. Opposition DE [48] is one

of the variants of DE based on the concept of opposition based learning. Generally

speaking, evolutionary optimization methods start with some initial solutions (initial

16

population) and try to improve them toward some optimal solution(s). The process

of searching terminates when some predefined criteria are satisfied. In the absence

of a priori information about the solution, it usually start with random guesses. The

computation time, among others, is related to the distance of these initial guesses

from the optimal solution. It can improve the chance of starting with a closer (fitter)

solution by simultaneously checking the opposite solution. By doing this, the fitter

one (guess or opposite guess) can be chosen as an initial solution. In fact, according

to probability theory, 50 percent of the time a guess is further from the solution than

its opposite guess. Therefore, starting with the closer of the two guesses (as judged by

its fitness) has the potential to accelerate convergence. The same approach can be ap-

plied not only to initial solutions but also continuously to each solution in the current

population. The oppositon DE majorily involves two stages namely opposition-based

population initialization and opposition based generation jumping. The pseudocode

for opposition DE is described in algorithm 1. Notations used in algorithm 1 are P0:

Initial population,OP0: Opposite of initial population, Np: Population Size,P :Current

Population, OP :Opposite of current population, V : Noise vector,U : Trial vector, D

: Problem dimension,: raj, bjsRange of the j
th variable, BFV : Best fitness value so

far, V TR: value to reach, NFC: Number of function calls,MAXNFC : Maximum

number of function calls, F : Mutation Factor, randp0, 1q: Uniform random variable,

Cr:crossover rate, fp.q: objective function, P ,: population of next generation, Jr :

Jumping rate, min
p
j : minimum value of the jth variable in current population,: maxi-

mum value of the j
th variable in the current poplulation.

A first approach that employs DE to evolve subpopulations for achieving simultaneous

convergence to multiple optima of a multimodal function can be traced in [65]. The

proposed algorithm implements a mating restriction, so that the variation operations

are performed only inside each subpopulation. Additionally, a penalty is applied to

members of each subpopulation that are too close to members of di↵erent subpopula-

tions to drive each subpopulation toward a di↵erent optimum. The method requires

definition of the number of subpopulations, a penalty term, and the minimum spanning

distance to be maintained among the subpopulations, which are all problem-dependent

17

Algorithm 1 Opposition Di↵erential Evolution
{˚Opposition-Based Population Initialization˚{
1. Generate uniformly distributed random population P0

2. forpi “ 0; i†Np; i ` `q
3. forpj “ 0; j†D; j ` `q
4. OP0i,j “ aj ` bj ´ P0i,j

5. Select Np fittest individuals from the set P0, OP0 as initial population P0

{˚End of Opposition-Based Population Initialization˚{
6. While(BFV °V TR and NFC†MAXNFC)

7. forpi “ 0; i†Np; i ` `q
8. Select three parents Pi1, Pi2, Pi3 randomly from the current

population where i ‰ i1 ‰ i2 ‰ i3

9. Vi “ Pi1 ` F ˚ pPi2 ´ Pi3q
10. for(j=0;j<D;j++)

11. if (randp0, 1q†Cr)

12. Ui,j “ Vi,j

13. else

14. Ui,j “ Pi,j

15. Evaluate Ui

16. if fpUiq § fpPiq
17. P

,
i “ Ui

18. else

19. P
,
i “ Pi

20. P “ P
1

{˚Opposition-Based Generation Jumping˚{
21. if (randp0, 1q†Jr)

22. forpi “ 0; i†Np; i ` `q
23. forpj “ 0; j†D; j ` `q
24. OPi,j “ MIN

p
j ` MAX

p
j ´ Pi,j

25. Select Np fittest individuals from the set P,OP as population P

{˚End of Opposition-Based Generation Jumping˚{
26. End While 18

parameters and thus form a major di�culty for the use of the method. Rumbler and

Moore [66] attempted to overcome these limitations by suggesting a NewEDE method

for determining the optimal values for these parameters. The idea is to simply run

the algorithm repeatedly with di↵erent parametric setups to determine suitable values

and at the same time keep record of the found solutions. Of course the repeated runs

increase the computational complexity of the whole process.

Zaharie [67] proposed a Multi-resolution Multipopulation DE (MMDE), which di-

vides the population to c equally sized subpopulations. The search is divided into

epochs, between which the subpopulations are reinitialized using a finer separation of

the domain, so that the number of sub-domains increases by c after each epoch. The

best solution in each subpopulation is stored in an archive after each epoch. To pre-

vent redundant solutions from entering the archive, the Euclidean distance between

each new entree is calculated for each existing solution in the archive, and too sim-

ilar solutions are discarded. A hill–valley detection method [51] is used to exclude

solutions belonging to the same peak. MMDE does not require the definition of the

niche radius parameter, but introduces a set of new parameters, the number and size

of the subpopulations, as well as the number and length of the epochs. Hendershot

took a similar approach in his MultiDE algorithm [68] by considering equal-sized sub-

populations. However, in MultiDE the number of subpopulations is kept variable i.e.

subpopulations can appear and disappear. MultiDE uses a structure similar to archive

in MMDE, called population 0. When an element from a subpopulation is similar to

an element from population 0, the former is no longer considered for further evolu-

tions. The similarity is based on a precision parameter to be controlled by the user.

MultiDE employs a minimum spanning distance to encourage the search for di↵erent

optima. It also introduces another time delay regarding the tunable parameter oper-

ation i.e. the number of generations after which a subpopulation is eliminated if it

fails to discover a new optimum. Zaharie devised a multipopulation crowding DE [69]

by integrating a crowding based niching technique along with the multipopulation DE

algorithm. Under this scheme subpopulation reinitialization is no more necessary as

each subpopulation is capable of locating multiple optima. The crowding computa-

19

tion is kept limited to subpopulations so that a global processing step can be avoided.

DE with Local Selection (DELS) [70] is a variant of DE where the target vector and

the base vector for mutation are kept same. In the selection phase each population

member is always compared to its own mutant. When the selection is local, evolution

of a vector only depends on the current set of vector di↵erences, and not directly

on the parameter values of vectors other than those of the target. In e↵ect, local

selection partitions the population into Np niches, each of which is inhabited by a

single vector that evolves in isolation. In order to employ the potential of DELS for

solving multimodal problems, Rönkkönen and Lampinen divided the mutation opera-

tion of DELS into two parts [71]: local mutation and global mutation. The resulting

algorithm, DELS using local mutation (DELL) [71, 72], also adopts the “either/or”

concept [61](p. 117), which uses only one variation operator for generating each trial.

The selection between two possible operators is done probabilistically for each trial

using the PX parameter to control the probabilities for using either. While it would be

possible to use the traditional uniform crossover operation also with DELS, it would

destroy the rotational invariance of the approach, and thus the crossover has been re-

moved from the proposed algorithm. More recently, Qu and Suganthan [73] proposed

a neighborhood-based DE mutation for multimodal optimization. The experimen-

tal results suggested that the performances of the DE-niching algorithms are greatly

improved with the introduction of neighborhood mutation. Qu et al. [89] proposed

a neighborhood mutation strategy and integrated with various niching DEs to solve

MMOPs. The proposed neighborhood concept allows a higher exploitation of the ar-

eas piloting the moves, thereby facilitating multiple convergences. In neighborhood

mutation, di↵erence vector generation is limited to a number (parameter m) of similar

individuals as measured by Euclidean distance. Each individual is evolved toward its

nearest optimal point and the possibility of between niche di↵erence vector generation

is reduced. Basak et al. [90] proposed biobjective formulation of the multimodal op-

timization problem and used di↵erential evolution (DE) with nondominated sorting

followed by hypervolume measure-based sorting to finally detect a set of solutions cor-

responding to multiple global and local optima of the function under test. Unlike the

20

two earlier multiobjective approaches (biobjective multipopulation genetic algorithm

and niching-based nondominated sorting genetic algorithm II), the proposed multi-

modal optimization with biobjective DE (MOBiDE) algorithm does not require the

actual or estimated gradient of the multimodal function to form its second objective.

Niching DE with indexed based neighborhood is studied in [91]. Epitropakis et al. [91]

presented a niching DE algorithm that attempts to overcome the population size in-

fluence and produces good performance almost independently of its population size.

Taking DE/nrand/1 [92] as a baseline model, they proposed a parameter indepen-

dent algorithm by incorporating two additional mechanisms into its structure: a well

known control parameter adaptation technique [93] and an external dynamic archive

along with a reinitialization mechanism [94]. The adaptive control parameter tech-

nique will alleviate the problem of having to fine-tune the standard control parameters

required by Di↵erential Evolution, i.e. the mutation and recombination factor. On

the other hand, the dynamic archive along with the reinitialization mechanism will

be responsible for keeping the best potential solutions found by the algorithm and

it will simultaneously re-initialize some individuals to allow the algorithm to search

unexplored regions of the problem space. As a result, the algorithm is able to con-

tinue its search for additional good global solutions, without being bound by an initial

small population size, resulting in a niching algorithm with its performance being al-

most independent from the population size parameter, i.e. small populations should

be su�cient to tackle complex multimodal problems. Liang et al. [95] proposed DE

based on fitness Euclidean-distance ratio for multimodal optimization. In the stan-

dard di↵erential evolution, vectors are randomly chosen from the whole population

to generate the di↵erential vectors. While since the individuals which are far from

given individual cannot represent the properties of the local landscape of the given

individual, this operator is not suitable for the multi-modal optimization. Thus in the

proposed di↵erential evolution based on fitness Euclidean-distance ratio (FERDE),

the fittest-and-closest individuals are chosen as vectors to generate the o↵spring. And

considering that the scaling factor ↵ is a constant value for the current population

and does not a↵ect the sorting of FER values, it is omitted in the proposed algorithm

21

to decrease the computational complexity. Zhang et al. [96] introduced a variant of

DE by combining the Composite DE(CoDE) [97] with Queue Selection (QS) mech-

anism. CoDE randomly combines three trial vector generation strategies and three

control parameter settings. The trial vector generation strategies and control parame-

ter settings of CoDE are chosen in a way that they have distinct advantages. Therefore,

their combination can be e↵ective in solving di↵erent kind of problems. The three trial

vector generation strategies are: 1) rand/1/bin 2) rand/2/bin 3) current-to-rand/1.

The proposed queueing selection operator is an adaptation of the clearing procedure

which is described in [96]. Huang et al. [99] proposed a hypercube-based partition of

neighborhoods, and then apply it to DE with neighborhood mutation for multimodal

optimization. The hypercube-based partition strategy is more computationally inex-

pensive but can still help DE to achieve a good solution accuracy and convergence

speed. Although hypercube is a geometrical concept rarely adopted in DEs, it can

indeed be used to form niches in DEs. Similar to distance- based neighborhood parti-

tions, the hypercube-based partition divides a population into niches so as to maintain

the diversity of the whole population. Besides, it is computationally inexpensive since

neighborhoods are divided based on subtraction rather than Euclidean distance be-

tween any two individuals. Moreover, every individual has its own hypercube in the

proposed hypercube-based DE, which serves as a niche or subpopulation in DE. And

it can change the radius vector of its hypercube adaptively so as to adjust the number

of members in each niche. Thus, the diversity and convergence of DE are adjustable.

Based on hyper-cube-based neighborhoods, neighborhood mutation is adopted due to

its high e�ciency, and comparative selection takes place between an o↵spring and the

closest individual in its hypercube. Zhao et al. [100] proposed a di↵erential evolution

(DE) algorithm based on the local binary pattern (LBP). The LBP makes use of the

neighbors’ information for extracting relevant pattern information, so as to identify

the multiple regions of interests, which is similar to finding multiple peaks in MMOP.

Inspired by the principle of LBP, this paper proposes an LBP-based adaptive DE

(LBPADE) algorithm. It enables the LBP operator to form multiple niches, and fur-

ther to locate multiple peak regions in MMOP. Moreover, based on the LBP niching

22

information, authors developed a niching and global interaction (NGI) mutation strat-

egy and an adaptive parameter strategy (APS) to fully search the niching areas and

maintain multiple peak regions. The proposed NGI mutation strategy incorporates

information from both the niching and the global areas for e↵ective exploration, while

APS adjusts the parameters of each individual based on its own LBP information

and guides the individual to the promising direction. Wang et al. [101] proposed a

new automatic niching technique based on the a�nity propagation clustering (APC)

and design a novel niching di↵erential evolution (DE) algorithm, termed as automatic

niching DE (ANDE), for solving MMOPs. In the proposed ANDE algorithm, APC

acts as a parameter-free automatic niching method that does not need to predefine

the number of clusters or the cluster size. Also, it can facilitate locating multiple

peaks without extra FEs. Furthermore, the ANDE algorithm is enhanced by a con-

tour prediction approach (CPA) and a two-level local search (TLLS) strategy. Firstly,

the CPA is a predictive search strategy. It exploits the individual distribution infor-

mation in each niche to estimate the contour landscape, and then predicts the rough

position of the potential peak to help accelerate the convergence speed. Secondly,

the TLLS is a solution refine strategy to further increase the solution accuracy after

the CPA roughly predicting the peaks. Wang et al. [103] developed a parameter-free

niching method based on the adaptive estimation distribution (AED). Specifically, the

AED first utilizes several close individuals to estimate an approximate distribution for

each individual. Then, the AED will adaptively determine the appropriate niche size

based on the distribution information for each individual. By using the AED, each

individual will find its own appropriate niche size to form a niche and will act as an

independent unit to find a global optimum, which avoids the di�culty of population

partition and the sensitivity of niching parameters. After using AED to find the ap-

propriate niche size, each individual will form a niche by finding its several close indi-

viduals according to its own niche size. Then, these niches co- evolve based on the

master–slave multiniche distributed model. This distributed model is applied to DE,

where the operators of DE are executed within each niche on the corresponding slave,

forming a distributed DE (DDE). The multiniche co-evolution mechanism can fully

23

exchange the evolutionary information among di↵erent niches to enhance the popu-

lation diversity for fully exploring the search space and finding more global optima.

After that, to refine the solution accuracy and locate multiple global optima more

precisely, a probabilistic local search (PLS) is further proposed.

2.4 Performance Measures

Our objective is to compare the capabilities of di↵erent niching algorithms to locate

all global optima. To achieve this, first we need to specify a level of accuracy (e.g., 0

†✏ § 1), a threshold value under which we would consider a global optimum is found.

Second, we assume that for each test function, the following information is available:

1. The number of global optima.

2. The objective function value of the global optima (or peak height), which is

known or can be estimated.

3. A niche radius value that can su�ciently distinguish two closest global optima.

We use peak ratio (PR) [28] and success rate (SR) as two performance measures,

to evaluate the performance of a niching algorithm over multiple runs. Given a fixed

maximum number of function evaluations (MaxFEs) and a required accuracy level ✏,

PR measures the average percentage of all known global optima found over multiple

runs:

PR “
∞NR

run“1 NPFi

NKP ˚ NR

where NPFi denotes the number of global optima found in the end of the i
th run,

NKP the number of known global optima, and NR the number of runs. SR measures

the percentage of successful runs (a successful run is defined as a run where all known

global optima are found) out of all runs:

SR “ NSR

NR

where NSR denotes the number of successful runs.

24

Chapter 3

Enhanced Opposition Di↵erential

Evolution Algorithm for

Multimodal Optimization

3.1 Introduction

In this chapter, we are going to propose an opposition DE-based methodology

for solving MMOPs. We follow the multi-species framework and hence the global

population must be divided into local sub-populations. The key idea is to generate

a standard DE population as well as an opposition DE population and select the

best members for the next generation. Also, apart from the evolution process, the

parameters of the algorithm need to be set adaptively to adapt to the di↵erent regions

in the overall function landscape. Since the population size impacts the evolution

process, hence a minimum size must be maintained. Also, there must be a mechanism

to improve the candidate solutions by searching in the vicinity of the best candidate

in the species. Considering all these above points, the contribution of this chapter is

as follows:

1. To propose a method that divides the global population into local sub-

populations e�ciently such that each sub-population corresponds to a niche and

25

most of the niches are located.

2. To develop a better balancing technique for the newly created sub-populations

to help enhance convergence speed towards optima within the sub-population.

3. To propose a modified version of ODE that acts as an e�cient evolution process.

4. To develop an adaptive technique to learn the parameters, mutation factor (F)

and crossover rate (CR) over the generations.

5. To propose a method that performs an e�cient local search within each sub-

population to refine the candidate solutions.

6. To introduce a method to deal with multiple peak values corresponding to the

same species.

The remainder of this chapter is organized as follows. In Section 3.2 we describe

the basic concepts for our contribution. In Section 3.3 we elaborate on the proposed

algorithm and its components. Section 3.4 describes the experiments and results

obtained. Finally, this chapter is concluded in Section 3.5.

3.2 Preliminaries

In order to achieve objective 1 mentioned in section 3.1, we have proposed a modi-

fied version of NBC-Minsize [39]. NBC-Minsize is an enhanced version of NBC. Nearest

Better Clustering(NBC) [23] is a technique used in MMOPs to divide the population

into several species and each species tries to find an optimal solution. The parameter

' controls the number of species in NBC. When we set ' to a relatively small value,

the population could be divided into more species. Thus, more promising areas could

be located by di↵erent species. However, a small ' value results in excessive segments.

Moreover, the number of species containing only a few individuals (e.g., one or two

individuals) would greatly increase, making the species incapable of evolving with

the mutation operators of DE. Therefore, the parameter minsize is used to limit the

minimal number of individuals in the species. It is noted that the value of minsize

26

must be carefully handled. If it is too small, the minimum size limitation mechanism

is ine↵ective; if it is too large, two species locating at di↵erent peaks would likely be

still linked together. To obtain better results, minsize should take a small value in

the early stage and relatively large values in the middle and later stages. In the early

stage of the evolution process, since the exploration of search space is desirable over

exploitation, more niches needs to be located that apparently target more peaks. In

the middle and later stages of the evolution, the population tends to converge near

the region of optima, a larger minsize helps merge the species having global optima

with the nearby species having local optima. Thus, the species converge to the global

optima more quickly. Algorithm 2 refers to the NBC-Minsize.

First, the value of minsize of species is set by equations (3.1) and (3.2) which are as

follows:

minsizepgq “ 5 ` g{2 (3.1)

bound “ maxp10, 3 ˚ Dq (3.2)

Second, a spanning tree of population is constructed identical to the standard NBC

and the mean distance µdist is calculated. Following this, we calculate the follow

vector. Each element of follow represents the number of nodes in the subtree rooted

at the corresponding individual; specifically, each value of follow is initially set to 1.

Next, the edges are sorted in descending order according to the fitness values of the

follower individuals. Finally, for each edge, the follow value of each follower individual

is added to that of a leader individual. Following this, the edges in T are sorted

by their Euclidean distance in descending order. Subsequently, edges satisfying the

conditions are cut o↵ to form two species with the end points of the edge as species’

seeds. In addition to the condition of standard NBC, that the distance exceeds the

weighted mean distance, the other condition is that the sizes of the two species after

the cuto↵ must be all greater than or equal to minsize (illustrated in lines 8–16 of

Algorithm 2). Finally, the partition scheme is returned and the species are obtained.

27

Algorithm 2 NBC-Minsize

1: Set minsize by equation (3.1), (3.2);

2: Construct the spanning tree T ;

3: Calculate the mean distance µdist ;

4: Calculate the follow vector;

5: Sort the edges in T from the longest to the shortest;

6: for each e P T do

7: if distpeq°' * µdist then

8: Set ef to the follower individual of e;

9: Set er to the root of the subtree containing ef ;

10: if followpef q • minsize and

11: followperq ´ followpef) • minsize and

12: f(ef`er
2)<fper) and f(ef`er

2)<fpef) then
13: Cut o↵ e;

14: Set el to the leader individual of e;

15: for each x on the path from el to er do

16: followpxq “ followpxq ´ followpef q
17: end for

18: end if

19: end if

20: end for

28

3.3 Enhanced Opposition Di↵erential Evolution

Algorithm(EODE) for Multimodal Optimiza-

tion

In this section, we present the opposition DE based method for solving MMOPs.

The proposed method consists of five di↵erent components which are presented in

the form of Algorithms 3-5, 8-9 where Algorithm 3 represents the generic framework

used for solving MMOPs. Algorithms 4-5, 8-9 are further components of Algorithm

3. Algorithms 6-7 are components of Algorithm 5. The proposed method is tested on

the IEEE CEC 2013 benchmark functions.

In the next sub-section, we describe the multi-species framework used for solving

MMOPs.

3.3.1 Multi-Species Framework

In multi-species framework, the idea is to divide the randomly distributed popula-

tion into sub-populations called species and perform the evolutionary process on each

species independently [19]. The block diagram represented by Figure 3.1 broadly de-

picts the components of EODE Algorithm. In Figure 3.1, initialization is the process

of randomly assigning values to the population within bounds and it corresponds to

step 2 of Algorithm 3. Two-level speciation is used to divide the global population into

local sub-populations or species. Two-level speciation corresponds to section 3.3.1.1

and step 5 of Algorithm 3. Species balance strategy is used to balance the oversized

and undersized species. It corresponds to section 3.3.1.2 and step 6 of Algorithm

3. Evolutionary process is employed to evolve the hybrid population that has been

generated by DE and ODE operations. Evolutionary process corresponds to section

3.3.1.3 and step 8 of Algorithm 3 while local search corresponds to section 3.3.1.5 and

step 9 of the Algorithm 3. Merge Archive procedure checks for the peaks belonging to

the same species in order to locate multiple di↵erent peaks. It corresponds to section

3.3.1.6 and step 10 of Algorithm 3. Fes represents the current count of fitness evalua-

29

Figure 3.1: Block Diagram of EODE Algorithm

tions while MaxFes represents the count of maximum fitness evaluations allowed. The

procedures such as two-level speciation, species balance strategy, evolutionary process,

local search and merge archive keep on running until the current fitness count becomes

greater than or equal to maximum count of fitness evaluations allowed. Algorithm 3

represents the generic framework which further consists of five other algorithms. In al-

gorithm 4, the population is initialized randomly within the bounds specified for each

30

Algorithm 3 EODE

1: Input: Function (fp ~Xq),Population Size (NP), MaxFes

2: Initialize the population randomly within the bounds of the dimensions

3: Gen “ 0,Fes “ 0,archive “ r s
4: while Fes § MaxFes do

5: Obtain multiple species by two-level application of Algorithm 2

6: balanceSpecies(multi-species)

7: for each species P multi-species do

8: localbest=Modified Opposition DE(species, speciesfitness)

9: bestfit=localSearch(localbest,species)

10: mergeArchive(archive,bestfit)

11: end for

12: Gen+=1

13: end while

dimension. The parameters Gen, Fes, archive represents generation number, number

of fitness evaluations, and archive, respectively. The archive is used to store optimum

values. Steps 5-10 are performed until maximum fitness evaluations are reached. Al-

gorithm 3 is invoked for creating multiple species out of the global population in step

5. After the formation of multiple species, there is a need to balance the species as

each species could be representing di↵erent niches in the function landscape. To this

aim, step 6 is introduced which balances the species based on the shape and size of

niches. Now, for each species that is present in multi-species, steps 8-10 are carried

out. In step 8, modified ODE (section 3.3.1.2) is applied to each species and returns

the local best for that species. Local search (section 3.3.1.4) is a method to refine the

accuracy of the best solution obtained so far. Step 9 tries to find the better solution

nearby the localbest achieved. It may so happen that the localbest obtained is very

very close to one of the optima already present in the archive and both are part of

the same niche. Hence, there is a need to check the redundancy of the optimizers

obtained. To this aim, Step 10 is introduced.

31

In the next section we describe the two-level speciation procedure using the appli-

cation of Algorithm 2 on the global population.

3.3.1.1 Two-level speciation

This section corresponds to the step-5 of the multi-species framework described in

Algorithm 3. In this section we describe how the global population is divided into

local sub-populations using Algorithm 2. In Algorithm 2, while using mNBC [39] for

speciation, it may so happen that the root node (er) and follower node (ef) belong to

the same niche. In such a case, the existing mNBC will cut o↵ the edge between er and

ef resulting in the formation of two di↵erent species even though they are part of the

same species. This will lead to a wastage of fitness evaluations. Hence, to improve the

e�cacy of mNBC, an additional check is applied in Algorithm 1. Step 12 Algorithm 2

represents the check which checks for the presence of valley between er and ef by using

an extra fitness evaluation. Even though an extra fitness evaluation is used, it will save

many unnecessary fitness evaluations. We have applied two-level speciation to capture

the narrow regions of a peak. First-level speciation is performed with higher minsize

and hence it may associate multiple regions of a peak in a single species. To identify

those close species, we employ a second level of speciation within the large species to

segregate the nearby species. Second-level speciation is performed with lowerminsize.

Hence, it introduces four parameters i.e. '1,'2,minsize1,minsize2. The parameters

'1,minsize1 are associated with first-level speciation and '2,minsize2 are associated

with second-level speciation.

In the next section we describe the procedure to balance the species’ that is ob-

tained after two-level speciation.

3.3.1.2 Species Balance Strategy

In this section, we describe a method to balance the the species’ by redistributing

members across the di↵erent species’. Step-6 in Algorithm 3 corresponds to the species

balancing strategy. After multiple species are obtained, some species with a narrow

and small basin of attraction could have many individuals and some species with a

32

wide and large basin of attraction could have fewer individuals, hence there is a need

to balance such unbalanced species. Since the niches could be of di↵erent shapes and

sizes, the species balance strategy should be dynamic. In algorithm 4, initially, a

minimum threshold of 10 individuals has to be present in the species which is taken

care of by steps 3-4. It is done to be able to compute the covariance matrix of

t best individuals in the species indicated in step 6. The variance or spread of a

species is calculated by summing up the eigenvalues of the covariance matrix. The

eigen values are represented using eigeni (step 8) where i runs from 1 to k and k

represents the dimensionality of the problems. The average species size is computed

in step 9 which considers the global population size(NP). Step 10 checks if the size of

the species(speciessize) is greater than the product of � and the average size of the

species(avgsize) then the individuals with the least fitness values are removed from the

species indicated by step 11. � is a hyperparameter here that controls the number of

new individuals generated in a species. The underbalanced species with large variance

is balanced first and hence step 12. For each unbalanced species, the new individuals

are generated in the vicinity of species seed using the Gaussian distribution. To this

aim, Steps 13-15 are introduced.

In the next section we present the modified opposition DE for evolving the species

that we obtained after balancing them.

3.3.1.3 Modified Opposition DE

In this section, we introduce the modified opposition DE to evolve the sub-

population. This procedure corresponds to the step 8 mentioned in Algorithm 3

(section 3.3.1) . Algorithm 6 consists of the application of modified opposition DE to

each species.

The notations used in algorithm 5 are as below:

F1set: Set to store successful ~F1 values, F2set:Set to store successful ~F2 values, CRset:

Set to store successful ~CR values, MaxFES: Maximum Fitness Evaluations, FES:

Current fitness evaluations, Gen: Current Generation Number, MaxGen: Maximum

Generation Number, ~FB: First Best Member, ~SB: Second Best Member, ~TB: Third

33

Algorithm 4 balanceSpecies

1: Input: multi-species

2: For each species P multi-species

3: if speciessize § dim or speciessize § 10

4: c “ maxpdim ´ popsize, 10q
5: Initialize c individuals around the species seed

6: t “ maxpspeciessize{Gen, 10q
7: Compute covariance matrix of t best members of species

8: Compute variance of species using: var “ ∞k
i“1 eigeni

9: Average species sizepavgsizeq “ NP
No of Species

10: if speciessize°� ˚ avgsize
11: Remove the pspeciessize ´ � ˚ avgsizeq worst individuals from the species

12: sortedspecies “Sort the species in descending order of variances.

13: for each species P sortedspecies

14: ifpspecies†� ˚ avgsizeq
15: Generate (� ˚ avgsize-speciessize) number of individuals around the species

seed using covariance matrix computed in step 7 and Gaussian distribution with

standard deviation given by equation (3.8).

34

Best Member, ~Xrk: Population Member, pr: Probability, NP: Population size, ~U : Trial

vector, F1: Mutation factor, F2: Mutation factor, CR: Crossover rate, JR: Jumping

Rate, D: Dimensions,MINj: Minimum in j
th dimension , MAXj: Maximum in j

th

dimension, OPij: Opposite member, Pij: Current member , P : Current Population,

OP : Opposite Population

The initial population is generated by using the math formulation mentioned in 1.1.2.

Three sets are taken to store the successful values of ~F1, ~F2, and ~CR. The success-

ful values here mean the values which lead to the production of better o↵spring. pr

represents the probability with which the exploitation needs to be done. In early gen-

erations, more exploration of search space needs to be done while in the later phases

more exploitation needs to be done. Hence, to this aim steps 8-17 are introduced. Step

10 represents the perturbation of lower degree as there is only one mutation compo-

nent while step 12 represents the perturbation to be of higher degree as two mutation

components are introduced. The moderate and strong exploitation are introduced by

Step 15 and 17 respectively.

Step 15 uses the candidate with highest fitness value within that species represented

by ~FB with random di↵erential vector to create the target vector. The step 17 uses the

best 3 di↵erent candidates of the species. The bounds are checked using the following

equation.

Pi,d “

$
’&

’%

minpubrds, 2 ˚ lbrds ´ Pi,dq ifpPi,d†lbrdsq

maxplbrds, 2 ˚ ubrds ´ Pi,dq ifpPi,d°ubrdsq
(3.3)

where ’d’ represents dimension, ub[d] and lb[d] represents upper and lower bounds

in dimension ’d’. Pi,d represents the value of d
th dimension of i

th member in the

population. The successful parameters such as mutation factor and crossover rate are

stored in their respective sets using step 23. The jumping rate JR determines the

degree of opposition applied to the species to create the opposite population. The

opposite population is generated during the 33% of the evolution process to enable

better exploitation. The key point to note here is that the mutation factors (~F1, ~F2)

and crossover rate (~CR) are calculated for each dimension for every generation in the

population. We have used the vector representations of mutation factors and crossover

35

Algorithm 5 Modified Opposition DE

1: Input : species, speciesfitness

2: F1set “ �, F2set “ �, CRset “ �

3: While FES†MaxFES and Gen†MaxGen

4: For each memberP species

5: Find first(~FB), second(~SB) and third(~TB) best members in the species.

6: Randomly sample 5 membersp ~Xr1,
~Xr2,

~Xr3,
~Xr4,

~Xr5q from the species

7: pr “ Gen{MaxGen

8: if pr §0.33

9: if random(0,1)§ 0.75

10: ~V “ ~Xr1 ` ~F1 ˚ p ~Xr2 ´ ~Xr3q
11: else

12: ~V “ ~Xr1 ` ~F1 ˚ p ~Xr2 ´ ~Xr3q ` ~F2 ˚ p ~Xr3 ´ ~Xr4q
13: else if pr §0.67

14: Randomly select 2 members (~Xk1,
~Xk2) out of

NP
2 best members

15: ~V “ ~FB ` ~F1 ˚ p ~Xk1 ´ ~XK2q
16: else

17: ~V “ ~FB ` ~F1 ˚ p ~SB ´ ~TBq
18: Apply binomial crossover operation to get ~U

19: Check for the bounds of ~U in each dimension using equation (3.3)

20: Evaluate the child fitness.

21: FES+=1

22: If childfitness>parentfitness

23: F1set Y ~F1, F2set Y ~F2, CRset Y ~CR,

24: JR “ Gen{MaxGen

25: if JR § 1 and JR°0.67

26: Find the minimum, maximum bounds of the current species in each dimension.

27: forpi “ 0; i†NP ; i ` `q
28: if random(0,1)† 0.33

29: forpj “ 0; j†D; j ` `q
30: OPi,j “ MINj ` MAXj ´ Pi,j

31: else

32: forpj “ 0; j†D; j ` `q
36

33: OPi,j “ MINj ` randomp0, 1q ˚ pMAXj ´ MINjq
34: Evaluate the opposite population

35: FES+=NP

36: Restart the candidates randomly that are stuck for 10 successive generations.

37: Select the NP candidates with best fitness from tP Y OP u
38: Update ~F1,

~F2, and ~CR

39: Gen` “ 1

40: Return the best member of the species

rate to be able to capture the degree of perturbation in every generation individually.

This helps in creating diverse o↵springs for better exploration.

While creating the opposite population, we have introduced a tweak while creating

the o↵spring. Steps 20 - 22 indicate the modification. Instead of creating the opposite

population in the shrunken space, some amount of randomization is introduced to help

in the exploration of the function space. For the rest of the 50% of time, the target

vector is produced by the di↵erential perturbation of randomly selected vectors of the

sub-population. During the evolution process, the population may get trapped in local

optima. To avoid the trap, the population members are checked for improvement in

fitness values, if they do not improve over some k (let say 10) successive generations

as compared to global best member, then it is an indication of potential trap at local

optima. To this end, step 36 is introduced. Step 38 is introduced at the end of every

generation to update the algorithm parameters using adaptive parameter strategy

described in the next section.

3.3.1.4 Adaptive Parameter Strategy

In this section, we describe the adaptive parameter strategy to update the mu-

tation factors and crossover rate in such a way that it adapts to the landscapes of

di↵erent shapes and sizes and helps in e�cient evolution of the species. The evolution

process i.e. modified ODE is discussed in section 3.3.1.3. The adaptive parameter

strategy is used by modified ODE and it indirectly corresponds to the step 8 of the

37

Algorithm 3 (section 3.3.1). To update the values of ~F1,
~F2,

~CR, we have used a mech-

anism inspired from SHADE [41]. The complete pseudocode is given by Algorithm 7

and Algorithm 8. We have used two mutation factors (~F1 and ~F2) to guide the pop-

ulation towards the optima based on the stage of evolution. Weighted power mean is

used in the calculation of ~F1 and ~CR whereas weighted Lehmer mean is used in the

calculation of the ~F2. Power mean is used to interpolate between the minimum and

maximum values using arithmetic mean and harmonic mean. Lehmer mean is used

to capture the non-linearity of the moving averages of the parameter values. Weights

are used to capture the improvement in influencing parameter adaptation. Weighted

Lehmer mean and weighted power mean are computed using equation (3.5) and (3.4)

respectively. The S~F represents the set of mutation factors that produces a better o↵-

spring. wk, computed using equation (3.6), represents the weight, and �fk represents

the fitness di↵erence between parent and o↵spring. The consideration of all the dimen-

sions while calculating the ~F1, ~F2, ~CR for next-generation helps predict the degree of

perturbation to be introduced in each dimension for better exploration. randomp0, 1q
represents the random number between 0 and 1 including them. wlm, wpm represents

weighted Lehmer mean and weighted power mean respectively. ~Fold represents the ~F

of the previous generation. ~max, ~min represents the boundaries of the current species

(sub-population) to which DE operations are applied. ~U , ~L represents the upper and

lower bounds of the objective function respectively. So, essentially the calculation of

~F considers the older values of ~F , the shape and size of the basin of attraction, and

the information about the stage of evolution to estimate the parameter values of the

algorithm for the next generation.

MeanW,Powerp~Fsuccessq “ p 1

|S~F |

|S~F |ÿ

k“1

wk ˚ S~F ,kq 1
1.5 (3.4)

MeanW,Lehmer

´
~Fsuccess

¯
“

∞|S~F |
k“1 wk ¨ S2

~F ,k
∞S~F |

k“1 wk ¨ S~F ,k

(3.5)

wk “ �fk∞|SCR|
k“1 �fk

(3.6)

38

whereMeanW,Powerp~Fsuccessq, MeanW,Lehmer

´
~Fsuccess

¯
represents weighted power mean

and weighted Lehmer mean. S~F ,k represents set of successful mutation factors while

|S~F | represents the size of the set which contains successful mutation factors. �fk

represents the fitness di↵erence between the parent and successful o↵spring.

Algorithm 6 Adaptive Parameter Strategy(~F)

1: wf “ 0.8 ` 0.2 ˚ randomp0, 1q
2: Compute weighted power mean for ~F1 and weighted Lehmer mean for ~F2.

3: ~F “ 0.25 ˚ ~Fold ` 0.25 ˚ p ~max ´ ~minq{p~U ´ ~Lq ` 0.5 ˚ p1 ´ FES
MaxFesq

4: ~F “ wf ˚ ~Fold ` p1 ´ wfq ˚ wpm(or wlm)

Algorithm 7 Adaptive Parameter Strategy(~CR)

1: wf “ 0.9 ` 0.1 ˚ randomp0, 1q
2: Compute weighted power mean.

3: ~CR “ wf ˚ ~CRold ` p1 ´ wfq ˚ wpm

The adaptive parameter strategy for mutation factors is described in Algorithm 6.

Algorithm 7 introduces adaptive parameter strategy for crossover rate. In the next

section, we define the local search method to improve the best solution obtained after

applying modified ODE in hope to further improve its fitness.

3.3.1.5 Local Search

Local search methods are generally used to refine the accuracies of the obtained

solutions. It is being used in step 9 of Algorithm 3. Our proposed local search method

is described in Algorithm 8. Essentially, we generate some members in the vicinity

of the best candidate obtained so far in the species in a hope to find further better

candidate. We initialize variances (vars) using step 4 described in algorithm 8. The

key idea is to keep incrementing the variances (vars) if the better o↵springs are not

found in the near by region of the best individual of the species. dim represents

dimensionality of the problem. dirvec, computed in step 16, can be visualized as

a direction vector and it is used to perform a guided search nearby the localbest

39

candidate. The degree of the shift from the localbest is continuously updated in the

hope of finding a better solution by incrementing the variances. In Algorithm 8,

Gaussian distribution has been used to generate o↵springs around the localbest in the

current species. For e�cient search in the nearby region of the localbest candidate, we

generate o↵spring by di↵erential vector perturbation and estimating the distribution

of the handful of better candidates in the species. Mean and standard deviation are

computed using (3.7), (3.8).

µ
d
i “ 1

M

Mÿ

j“1

X
d
j (3.7)

�
d
i “

gffe 1

M ´ 1

Mÿ

j“1

`
Xd

j ´ µd
i

˘2
(3.8)

where µi “
“
µ
1
i , . . . , µ

d
i , . . . , µ

D
i

‰
and �i “

“
�
1
i , . . . , �

d
i , . . . , �

D
i

‰
p1 § i § sq are, re-

spectively, the mean and standard deviation (std) vectors of the i
th niche, Xj “

“
X

1
j , . . . , X

d
j , . . . , X

D
j

‰
is the jth individual in the ith niche and D is the dimension size

of the multimodal problem.

The covariance matrix is used to capture the behavior of variances of each di-

mension with respect to the other dimensions. Covariance between two variables of

dimension D is computed as follows:

COVX,Y “
∞D

i“1 pXi ´ x̄q pYi ´ ȳq
D ´ 1

(3.9)

where x̄, ȳ represents X mean and Y mean. ~Ofitness,
~Xbestfitness represents the o↵spring

fitness and member with best fitness respectively. In the next section, mergeArchive

procedure is discussed that aims at removing the peaks belonging to the same niche.

3.3.1.6 Merge Archive

In this section, we describe the procedure to deal with duplicate peaks in the

archive. This section corresponds to the step 10 of the Algorithm 3. Since we are

storing the peaks in an archive, it is important to store the peaks only. Other-

wise, we may end up storing the entire candidates of a sub-population (species) and

40

Algorithm 8 localSearch

1: Input :localbest,species

2: dirvec=None

3: k=10

4: vars “ randomp0.001, 0.01q
5: While(k)

6: mean “ localbest

7: if dirvec is not None and randomp0, 1q § 0.5

8: o↵spring[k]=localbest+vars*dirvec

9: else

10: mbest=max(speciessize/4,10)

11: Find the covariance matrix of the mbest candidates of species using equation

(3.9).

12: if dim° 1

13: o↵spring[k]=Apply multivariate normal distribution with mean as mean

and covariance matrix as computed in step 11.

14: else

15: o↵spring[k]=Apply univariate normal distribution with mean as mean and

standard deviation is as computed using equation (3.7)

16: if ~Ofitness° ~Xbestfitness

17: dirvec=o↵spring[k]-localbest

18: localbest=o↵spring[k]

19: else

20: for d in dim:

21: varsrds+=randomp0.001, 0.01q
22: k=k-1

23: Return the localbest

41

subsequently the entire population. This will lead to the consumption of more com-

putational resources since the archive will contain huge points. Hence, given two

individuals, it is essential to check whether they belong to similar species or di↵erent

species. It is critical to algorithm performance in locating all the global optima. In

algorithm 4, the input is localbest, and it needs to be checked whether this is a new

species seed or an old species seed. The nearest peak to the given local best is found

out, and the midpoint between them is calculated. If the midpoint has lower fitness

than the nearest peak and localbest, it indicates the presence of a valley between them.

Hence, local best can be considered species seed of new species, and it is added to the

archive. In the next section, we describe the experiments performed and the results

obtained.

Algorithm 9 mergeArchive

1: Input :archive, localbest

2: Find the nearest peak to localbest present in the archive

3: Find the mid-point between localbest and nearest peak

4: if (midpointfitness >localbest and midpointfitness >nearest peak)

5: Add localbest to the archive

6: else

7: Replace the better fit individual between localbest and nearest peak with mid-

point.

3.3.2 Illustrative Example

In order to explain the components of EODE, an example is presented in this sec-

tion. We have considered low dimensional (2-D) composition function F11 described

in Table A.1 of Appendix section for demonstration purpose.

As it can be seen from Figure 3.1, the population is randomly initialized in the

function space. Now we will try to map the steps given in Algorithm 3 to the process

that happens in Figures 3.2-3.3.

42

Figure 3.2: Initialization Figure 3.3: Niching and Balancing

Figure 3.4: ODE and Local Search

1. Initially, the randomly distributed population needs to be divided into sub-

populations that represent regions around the peaks. The multiple species

marked as black circles in Figure 3.2 are shown as S1-S7. In species S4, the

blue circles represent two species that got located as a single species S4. To

avoid such merging, two-level speciation is introduced. To this aim step, 5 (Al-

gorithm 3) is introduced.

2. As the multiple species are formed, some species may have huge population

size and some may have small population size as can be seen from Figure 3.2.

Hence, the species balance strategy is introduced that aims to generate o↵springs

using Gaussian distribution. Also, the species balance strategy is discussed in

43

Algorithm 4 which maps to step 6 in Algorithm 3.

3. Modified ODE (section 3.3.1.3) acts as an evolutionary process that tries to

further converge the sub-populations towards the peak they represent. The

species are represented in Figure 3.3 as P1-P8. Further, it is more e↵ective to

converge towards global optima rather than local optima. It can be seen in

Figure 3.3 in which P7 and P8 are local optima. This process maps to step 8 in

Algorithm 3.

4. After the evolution process completes, the population gets converged near the

optima but may not be able to reach the optima accurately as can be seen in

Figure 3.3. Hence, we proposed a local search method to search in the vicinity

of the best individual of the species as the actual peak would be nearby the best

value in the species. The local search method is described in Algorithm 8 and

it maps to step 9 of Algorithm 3.

5. Since the speciation process is repeated after every certain number of genera-

tions, the best solutions returned by the local search method could be part of the

same species that has been explored in the previous generations. Hence, there is

a need to detect the best individuals that belong to the same species and they

should not be added to the archive. Therefore, Algorithm 9 is introduced that

maps to step 10 of Algorithm 3.

3.4 Experiments and Results

We have performed the experiments on a computer system with RAM 8GB, 1.8GHz

CPU and MacOS 11 operating system. In this section, EODE is independently run 50

times for each function. The algorithm calculated the results in five levels of accuracy

✏ = {1e´1, 1e´2, 1e´3, 1e´4, 1e´5}. For di↵erent problems, the value of NP is shown

in Table 3.1. The parameters of EODE are listed in Table 3.2. '1, '2 are used for

creating multiple species out of the global population by applying mNBC twice and

44

Index Function NKP Peak height r MaxFEs NP

1 F1p1Dq 2 200.0 0.01 5.0E ` 4 250

2 F2p1Dq 5 1.0 0.01 5.0E ` 4 250

3 F3p1Dq 1 1.0 0.01 5.0E ` 4 250

4 F4p2Dq 4 200.0 0.01 5.0E ` 4 250

5 F5p2Dq 2 1.03163 0.5 5.0E ` 4 250

6 F6p2Dq 18 186.731 0.5 2.0E ` 5 2000

7 F7p2Dq 36 1.0 0.2 2.0E ` 5 2000

8 F6p3Dq 81 2709.0935 0.5 4.0E ` 5 3000

9 F7p3Dq 216 1.0 0.2 4.0E ` 5 4000

10 F8p2Dq 12 ´2.0 0.01 2.0E ` 5 1000

11 F9p2Dq 6 0 0.01 2.0E ` 5 1000

12 F10p2Dq 8 0 0.01 2.0E ` 5 1000

13 F11p2Dq 6 0 0.01 2.0E ` 5 1000

14 F11p3Dq 6 0 0.01 4.0E ` 5 1000

15 F12p3Dq 8 0 0.01 4.0E ` 5 1000

16 F11p5Dq 6 0 0.01 4.0E ` 5 1000

17 F12p5Dq 8 0 0.01 4.0E ` 5 2000

18 F11p10Dq 6 0 0.01 4.0E ` 5 1000

19 F12p10Dq 8 0 0.01 4.0E ` 5 1000

20 F12p20Dq 8 0 0.01 4.0E ` 5 800

Table 3.1: Information of the benchmark problems and the population size

45

Parameters Values

'1 1

'2 1

minsize1 ´1

minsize2 5

� 1.0

F1 p0, 1q
F2 p0, 1q
CR p0, 1q

MaxGen 40pD †“ 10q
60pD°10q

Table 3.2: Parameters in EODE

their values are set as 1, 1 respectively. minsize1, minsize2 are parameters used

in two-level application of mNBC and their values are set as -1, 5 respectively. We

define the minsize1 as -1 to adapt the first level species as per the dimension and

generation of the population. minsize2 is set to be 5 to identify the peaks that have

narrow basins of attraction as the species size would be very low in such regions. � is

used in the species balance strategy and it is set to 1. The mutation factors (~F1, ~F2)

and crossover rate (~CR) are initially chosen from the closed interval [0,1] after which

algorithm learns to adapt their values. MaxGen represents the number of generations

for which the ODE needs to run for the given species. The experimental results of

EODE for all benchmark problems are listed in Table 3.3 at all five accuracy levels.

These results show that EODE is very stable. In addition, EODE finds all peaks on the

simple functions and most of the peaks in the low-dimensional composition problems.

EODE is able to find more than 80% of all peaks on the functions containing a large

number of global peaks, except for F7(3D).

46

3.4.1 Comparison with other algorithms

In this section, the results of various algorithms (including EODE) are compared.

For simplicity, we have compared the results at ✏ = 1e-4, which are commonly adopted

in [110] and [111]. In order to better evaluate the performance of EODE, 15 popular

comparison algorithms are selected, such as CDE [28], SDE [64], NCDE, NSDE [89],

MOMMOP [112], LoICDE, LoISDE [35], PNPCDE [46], LIPS [82], and the recently

proposed algorithms of DEcl [113], LMCEDA, LMSEDA [9], FBK-DE [39], LB-

PADE [100], MaHDE [114]. Table 3.4, 3.5, 3.6 shows the di↵erent PRs and SRs

at the accuracy level ✏ = 1e-4, where the row “bprs” represents the number of the

best PR results achieved by these algorithms. The algorithm(s) with the best PR

value for a given function is marked in bold. All the algorithms used their own default

population sizes. Most of the recently compared results are from their corresponding

papers, and the results of other algorithms are still from these papers. From Table

3.4, 3.5, 3.6, it is clear that EODE obtains most of the best PR results among the

compared algorithms. The detailed analyses are given below.

1) For the first five problems, most algorithms including EODE can find all global

optimal solutions.

2) For the 6th–9th problems (with a large number of global peaks), EODE does not

perform as well; however, the results still exceed most of the compared algorithms.

For problem 6, the di↵erence is of order 0.005 which is very small. In addition, for the

10th problem, EODE can find all the optimal solutions.

3) For problems 11,12,13 and 15 that are low-dimensional composition functions,

EODE obtained the best results. Although on the 14th function EODE does not pro-

duce optimal results, the di↵erence between EODE and the best algorithm is small

(around 10%). It is worth noting that EODE and FBK-DE find all global peaks on

the 13th problem while the other algorithms do not.

4) For the 16th–20th composition functions (in the relatively high dimensions), EODE

achieves the best results for all except the 20th function. Especially on the 5-D prob-

lem, the best result obtained by EODE exceeds 5% of the best result. For the 18th

47

problem, EODE performed a little better than the best algorithm while for the 19th

problem it performed equivalently well.

3.4.2 Di↵erent Components of EODE

3.4.2.1 Di↵erent Mutation Operators

First, we compare di↵erent mutation operators of EODE. In order to show the

balancing ability for exploration and exploitation, four algorithms denoted as EODE,

EODE-r, EODE-b, EODE-rb are compared. For mutation operators, EODE-r uses

only DE/rand/1 and DE/rand/2 to evolve the species. In addition, EODE-b uses both

DE/best/1 and DE/best/2, EODE-rb uses DE/rand/1, DE/rand/2, DE/best/1 and

DE/best/2 for mutation, which can be referred from [40]. The two mutation operators

in the above algorithms are selected with an equal probability. Except for the muta-

tion operators, the other components are identical. The results are shown in Table 3.8

at ✏ = 1e´4. From Table 3.8, it is clear that EODE produces the best PR results for

all benchmark problems except for the 6th and 12th functions. The performances of

EODE-r and EODE-b are not so good as no peaks are found on the relatively high-

dimensional functions. In addition, Table 3.8 shows that most compared algorithms

perform well on 1st–5th functions, while EODE-b and EODE-rb are unable to find

all the global peaks for function 2 and 4 respectively. EODE-r finds all peaks in the

first five functions. Here, we specifically compare the results of EODE and EODE-rb

to illustrate the e↵ect of three stage-wise mutation operators. Similar to the previous

experiment, the comparisons on four type of problems are discussed.

1) On the 1st–5th problems, considered as simple functions, both EODE and EODE-rb

can achieve the desired results for all global optima except for function 4.

2) On the many global peaks problems (the 6th–10th optimization functions), it is

clear that the performances of EODE are significantly better than that of EODE-rb

except for function 6, which shows that the evolution stage-wise mutation operators

are highly e↵ective.

3) On the low-dimensional composition problems (the 11th–15th functions), the PR

48

results for EODE are superior to those of EODE-rb except for function 12. For func-

tions 11 and 12, EODE-rb either performs better or equivalently well. For problems

13-15, EODE-rb does not perform well as compared to EODE.

4) On the relatively high-dimensional composition problems (the 16th–20th problems),

EODE performs better than EODE-rb, indicating that the evolution stage-wise mu-

tation operations can improve the overall performance of the algorithm.

3.4.2.2 Di↵erent values of '1,'2

Here, the di↵erent values of '1,'2 are compared. In Section 3.3.1.1, '1,'2 are

used to form local sub-populations from global population. Thus, we set ('1,'2)

to three di↵erent values (1,1), (0.6,0.6), and (2,1) respectively. From Table 3.7 it

can be seen that for '1 “ 1,'2 “ 1, EODE achieves the best overall results. For

'1 “ 0.6,'2 “ 0.6, EODE achieves best result for function 15. For functions 1-5,

'1 “ 2,'2 “ 1 achieves better results as compared to that of '1 “ 0.6,'2 “ 0.6.

For functions 6-9 having large number of optima, '1 “ 0.6,'2 “ 0.6 achieves better

results than '1 “ 2,'2 “ 1. However, for higher dimensional functions 16-20, EODE

with '1 “ 2,'2 “ 1 seems to perform better except for functions 16 and 20. The

behaviour is attributed to the number of species formed out of the global population.

If the number of optima is large, then lower value of '1,'2 is e↵ective while if the

number of optima is small, then higher value of '1,'2 is e↵ective.

3.4.3 Di↵erent values of Jumping Rate (JR)

Here, di↵erent values of JR are compared and it can be referred to from Table

3.9. In section 3.3.1.3, JR is used to form the opposite population. We modified

the JR values to see if the opposite population in the exploration stage helps or they

help in the exploitation stage. JR is dependent upon the current generation and the

maximum generation allowed using equation (3.10):

JR “ Gen

MaxGen
(3.10)

49

0 § JR § 0.5 indicates that the opposite population is generated in the early stage of

evolution i.e. exploration while 0.67 § JR § 1 indicates that the opposite population

is generated in the later stage of evolution i.e. exploitation. 0 § JR § 1 indicates

that the opposite population is generated across the evolution stages. It can be seen

that the opposite population generated in the later phase of evolution turns out to be

helpful in locating more peaks. For the functions 1-5, EODE with 0.67 § JR § 1 and

0 § JR § 1 performs equivalently well. For functions 6-9, EODE with 0 § JR § 1

performs better than EODE with 0 § JR § 0.5 except the function 8. For functions

17 and 20, EODE with 0 § JR § 1 achieves best results similar to that of EODE

with 0.67 § JR § 1.

50

1E-1 1E-2 1E-3 1E-4 1E-5

Functions (PR,SR) (PR,SR) (PR,SR) (PR,SR) (PR,SR)

F1(1D) (1,1) (1,1) (1,1) (1,1) (1,1)

F2(1D) (1,1) (1,1) (1,1) (1,1) (1,1)

F3(1D) (1,1) (1,1) (1,1) (1,1) (1,1)

F4(2D) (1,1) (1,1) (1,1) (1,1) (1,1)

F5(2D) (1,1) (1,1) (1,1) (1,1) (1,1)

F6(2D) (1,1) (0.995,0.9) (0.995,0.9) (0.995,0.9) (0.9,0.822)

F7(2D) (0.805,0) (0.805,0) (0.805,0) (0.805,0) (0.805,0)

F6(3D) (0.886,0) (0.852,0) (0.852,0) (0.845,0) (0.832,0)

F7(3D) (0.509,0) (0.505,0) (0.505,0) (0.505,0) (0.442,0)

F8(2D) (1,1) (1,1) (1,1) (1,1) (1,1)

F9(2D) (1,1) (1,1) (1,1) (1,1) (1,1)

F10(2D) (0.975,0.8) (0.975,0.8) (0.975,0.8) (0.975,0.8) (0.975,0.8)

F11(2D) (1,1) (1,1) (1,1) (1,1) (1,1)

F11(3D) (0.8,0) (0.8,0) (0.8,0) (0.8,0) (0.8,0)

F12(3D) (0.8,0) (0.8,0) (0.8,0) (0.8,0) (0.77,0)

F11(5D) (0.733,0) (0.730,0) (0.730,0) (0.730,0) (0.728,0)

F12(5D) (0.7,0) (0.7,0) (0.7,0) (0.684,0) (0.684,0)

F11(10D) (0.7,0) (0.7,0) (0.7,0) (0.684,0) (0.684,0)

F12(10D) (0.525,0) (0.525,0) (0.525,0) (0.520,0) (0.505,0)

F12(20D) (0.25,0) (0.25,0) (0.25,0) (0.25,0) (0.25,0)

Table 3.3: Results on accuracy levels 1e-1,1e-2,1e-3,1e-4,1e-5

51

Function EODE CDE SDE NCDE NSDE MOMMOP

Index PR SR PR SR PR SR PR SR PR SR PR SR

1 1 1 1 1 0.657 0.373 1 1 1 1 1 1

2 1 1 1 1 0.737 0.529 1 1 0.776 0.667 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 0.284 0 1 1 0.240 0 1 1

5 1 1 1 1 0.922 0.843 1 1 0.745 0.490 1 1

6 0.995 0.9 1 1 0.056 0 0.305 0 0.056 0 1 1

7 0.805 0 0.861 0 0.054 0 0.873 0 0.053 0 1 1

8 0.845 0 0 0 0.015 0 0.001 0 0.013 0 1 1

9 0.505 0 0.474 0 0.011 0 0.461 0 0.006 0 1 1

10 1 1 1 1 0.147 0 0.989 0.863 0.098 0 1 1

11 1 1 0.330 0 0.314 0 0.729 0.059 0.248 0 0.716 0.020

12 0.975 0.8 0.002 0 0.208 0 0.252 0 0.135 0 0.939 0.549

13 1 1 0.141 0 0.297 0 0.667 0 0.225 0 0.667 0

14 0.8 0 0.026 0 0.216 0 0.667 0 0.190 0 0.667 0

15 0.8 0 0.005 0 0.108 0 0.319 0 0.125 0 0.618 0

16 0.730 0 0 0 0.108 0 0.667 0 0.170 0 0.650 0

17 0.684 0 0 0 0.076 0 0.250 0 0.108 0 0.505 0

18 0.684 0 0.167 0 0.026 0 0.500 0 0.163 0 0.497 0

19 0.520 0 0 0 0.105 0 0.348 0 0.098 0 0.223 0

20 0.250 0 0 0 0 0 0.250 0 0.123 0 0.125 0

bprs 14 7 1 5 2 10

Table 3.4: Comparison with other algorithms on accuracy level 1e-4

52

Function EODE LoICDE LoISDE PNPCDE LIPS DEcl

Index PR SR PR SR PR SR PR SR PR SR PR SR

1 1 1 1 1 1 1 1 1 0.833 0.686 1 1

2 1 1 1 1 0.235 0.039 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 0.961 0.961 1 1

4 1 1 0.975 0.902 0.250 0 1 1 0.990 0.961 1 1

5 1 1 1 1 0.667 0.333 1 1 1 1 1 1

6 0.995 0.9 1 1 0.056 0 0.537 0 0.246 0 0.942 0.340

7 0.805 0 0.705 0.02 0.029 0 0.874 0 0.4 0 0.986 0.64

8 0.845 0 0 0 0.012 0 0 0 0.084 0 0.999 0.9

9 0.505 0 0.187 0 0.005 0 0.472 0 0.104 0 0.726 0

10 1 1 1 1 0.083 0 1 1 0.748 0 1 1

11 1 1 0.66 0 0.167 0 0.66 0 0.974 0.843 0.667 0

12 0.975 0.8 0.495 0 0.125 0 0 0 0.574 0 0.943 0.58

13 1 1 0.51 0 0.167 0 0.461 0 0.794 0.176 0.667 0

14 0.8 0 0.657 0 0.167 0 0.592 0 0.644 0 0.667 0

15 0.8 0 0.299 0 0.125 0 0.258 0 0.336 0 0.623 0

16 0.730 0 0.559 0 0.167 0 0 0 0.304 0 0.667 0

17 0.684 0 0.223 0 0.076 0 0 0 0.162 0 0.42 0

18 0.684 0 0.219 0 0.157 0 0.147 0 0.098 0 0.667 0

19 0.520 0 0.037 0 0.027 0 0 0 0 0 0.357 0

20 0.250 0 0.123 0 0.088 0 0 0 0 0 0.212 0

bprs 14 6 2 6 2 6

Table 3.5: Comparison with other algorithms on accuracy level 1e-4

53

Function EODE LMCEDA LMSEDA FBK-DE LBPADE MaHDE

Index PR SR PR SR PR SR PR SR PR SR PR SR

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1

6 0.995 0.9 0.99 0.843 0.972 0.588 0.990 0.820 1 1 1 1

7 0.805 0 0.734 0 0.673 0 0.813 0 0.889 0 0.804 0

8 0.845 0 0.367 0 0.613 0 0.824 0 0.575 0 0.983 0.291

9 0.505 0 0.284 0 0.248 0 0.425 0 0.476 0 0.351 0

10 1 1 1 1 0.998 0.98 1 1 1 1 1 1

11 1 1 0.667 0 0.892 0.392 1 1 0.674 0 0.725 0.078

12 0.975 0.8 0.75 0 0.99 0.922 0.935 0.480 0.750 0 0.650 0

13 1 1 0.667 0 0.667 0 1 1 0.667 0 0.667 0

14 0.8 0 0.667 0 0.667 0 0.907 0.460 0.667 0 0.667 0

15 0.8 0 0.696 0 0.738 0 0.730 0 0.654 0 0.648 0

16 0.730 0 0.667 0 0.667 0 0.707 0 0.667 0 0.667 0

17 0.684 0 0.456 0 0.62 0 0.630 0 0.532 0 0.352 0

18 0.684 0 0.657 0 0.66 0 0.667 0 0.667 0 0.663 0

19 0.520 0 0.451 0 0.458 0 0.520 0 0.475 0 0.455 0

20 0.250 0 0.059 0 0.248 0 0.450 0 0.275 0 0.250 0

bprs 14 6 5 10 7 7

Table 3.6: Comparison with other algorithms on accuracy level 1e-4

54

Function '1 “ 1,'2 “ 1 '1 “ 0.6,'2 “ 0.6 '1 “ 2,'2 “ 1

Index PR SR PR SR PR SR

1 1 1 1 1 1 1

2 1 1 0.68 0.2 0.92 0.6

3 1 1 1 1 1 1

4 1 1 0.5 1 0.9 0.6

5 1 1 1 1 1 1

6 0.995 0.9 1 1 1 1

7 0.805 0 0.744 0 0.688 0

8 0.845 0 0.723 0 0.650 0

9 0.505 0 0.476 0 0.420 0

10 1 1 1 1 1 1

11 1 1 1 1 0.95 0.9

12 0.975 0.8 0.95 0.4 1 1

13 1 1 0.733 0 0.95 0.9

14 0.8 0 0.733 0 0.667 0

15 0.8 0 1 1 0.8 0

16 0.730 0 0.709 0 0.667 0

17 0.684 0 0.515 0 0.580 0

18 0.684 0 0.342 0 0.620 0

19 0.520 0 0.125 0 0.418 0

20 0.250 0 0.175 0 0.125 0

bprs 19 7 7

Table 3.7: Experimental results of di↵erent values of '1,'2 on the benchmark problems

at the accuracy level ✏ “ 1e´4

55

Function EODE EODE-r EODE-b EODE-rb

Index PR SR PR SR PR SR PR SR

1 1 1 1 1 1 1 1 1

2 1 1 1 1 0.88 0.4 1 1

3 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 0.75 0.4

5 1 1 1 1 1 1 1 1

6 0.995 0.9 1 1 0.997 0 1 1

7 0.805 0 0.734 0 0.733 0 0.788 0

8 0.845 0 0.567 0 0.306 0 0.809 0

9 0.505 0 0.314 0 0.452 0 0.425 0

10 1 1 1 1 1 1 1 1

11 1 1 1 1 0.933 0.4 1 1

12 0.975 0.8 0.925 0 0.8 0 1 1

13 1 1 0.735 0 0.55 0 0.667 0

14 0.8 0 0.667 0 0.505 0 0.667 0

15 0.8 0 0.580 0 0.612 0 0.785 0

16 0.730 0 0.409 0 0.441 0 0.549 0

17 0.684 0 0.186 0 0.279 0 0.667 0

18 0.684 0 0.147 0 0 0 0.558 0

19 0.520 0 0 0 0 0 0.395 0

20 0.250 0 0 0 0 0 0.125 0

bprs 18 8 5 8

Table 3.8: Experimental results of di↵erent mutation operators on the benchmark

problems at the accuracy level ✏ “ 1e´4

56

Function 0.67 § JR § 1 0 § JR § 0.5 0 § JR § 1

Index PR SR PR SR PR SR

1 1 1 1 1 1 1

2 1 1 0.84 0.6 1 1

3 1 1 1 1 1 1

4 1 1 0.95 0.9 1 1

5 1 1 1 1 1 1

6 0.995 0.9 1 1 1 1

7 0.805 0 0.722 0 0.768 0

8 0.845 0 0.701 0 0.682 0

9 0.505 0 0.433 0 0.488 0

10 1 1 1 1 0.9 0.4

11 1 1 1 1 0.933 0.6

12 0.975 0.8 0.95 0.4 0.925 0.4

13 1 1 0.866 0.2 0.9 0.4

14 0.8 0 0.667 0 0.667 0

15 0.8 0 0.667 0 0.6 0

16 0.730 0 0.667 0 0.670 0

17 0.684 0 0.480 0 0.684 0

18 0.684 0 0.486 0 0.470 0

19 0.520 0 0.225 0 0.345 0

20 0.250 0 0.150 0 0.250 0

bprs 19 6 8

Table 3.9: Experimental results of di↵erent values of JR on the benchmark problems

at the accuracy level ✏ “ 1e´4

57

Below figures 3.1-3.11 depict the convergence behaviour of the algorithm on some

of the functions. The red dot is a marker which represent the coordinate where the

optimum was achieved (or the species got converged).

Figure 3.5: F1 Figure 3.6: F2

Figure 3.7: F3 Figure 3.8: F4

58

Figure 3.9: F5 Figure 3.10: F6

Figure 3.11: F7 Figure 3.12: F10

Figure 3.13: F11 Figure 3.14: F12

59

Figure 3.15: F13

3.5 Summary

In this chapter, we have proposed EODE to handle MMOPs, where several species

techniques have been adopted to simultaneously find multiple optima. In EODE, two-

level NBC-minsize has been embedded to divide the population into several species

to locate the optima. To overcome the disadvantages of NBC-minsize an additional

check is also performed to improve its e�cacy. In addition, a species balance strategy

has been adopted to balance the number of individuals generated by the species. We

have also proposed modified opposition di↵erential evolution algorithm that acts as

the evolutionary process. The evolutionary process is further divided virtually into

three stages and mutation operations for each of the stages are embedded individually.

Besides, an adaptive parameter strategy has also been proposed to learn the param-

eters of the algorithm dynamically. We have also proposed a local search method

to improve the quality of candidate solutions. Finally, EODE has been compared

with several state-of-the-art algorithms. The experimental results shows that EODE

performed better than other algorithms on most multimodal benchmark problems.

However, in our experiments, we have achieved better results for problems having a

moderate number of global optima, but it still needs to improve on highly multimodal

functions. Hence, we aim to improve EODE in our future work and test it on highly

multimodal problems.

60

Chapter 4

Estimation of Distribution

Algorithm based Di↵erential

Evolution Algorithm for

Multimodal Optimization

4.1 Introduction

The multimodal optimization technique proposed in the previous chapter uses op-

position DE as well as standard DE for creating mutants of the population. However,

it is not e�cient at handling the problems with a huge number of optima. In this chap-

ter, we extend the idea of the DE algorithm to be able to handle problems with massive

multimodality. To this aim, we have proposed a hybrid DE algorithm (EDADE) which

uses Estimation of Distribution Algorithms (EDA) as well as standard DE operations

to create mutants. Our contributions in this chapter are

• We propose EDA and DE-based hybrid method for generating better o↵spring

in the population and evolving the hybrid species.

• We propose a probabilistic local search method to refine the obtained candidate

solutions.

61

• We introduce a simple strategy embedded in the evolutionary process of EDADE

to avoid the population trap at local optima.

The remainder of this chapter is organized as follows. In Section 4.2 we describe the

basic concepts for our contribution in this chapter. In Section 4.3 we elaborate on the

proposed algorithm and its components. Section 4.4 describes the experiments and

results obtained. Finally, this chapter is summarised in Section 4.5.

4.2 Preliminaries

EDAs [116], [117] form a new family of EAs, which generate o↵spring according to

a probability distribution and have been intensively studied in the context of single

optimization. A general framework of EDAs is outlined in Algorithm 10.

Algorithm 10 EDA

1: Input: population size NP, the number of selected individuals K

2: Randomly initialize the population

3: While the termination criteria is not satisfied

4: Select K best individuals from the population

5: Estimate the probability distribution of the population according to the selected

individuals

6: Sample new individuals according to the estimated distribution

7: Combine the sampled individuals and the old population to create a new popula-

tion with NP individuals

8: Output: the best individual and its fitness

EDAs are capable of capturing the correlation between the dimensions of the pop-

ulation members via covariance matrix. Figure 4.1 shows density plot for the di↵erent

correlation values for 2D Gaussian distribution. In every sub-figure of Figure 4.1,

each of the two variables has a standard deviation equals to 1, so here the correlation

coe�cient equals to the covariance. It can be seen that if the dimensions are not

correlated the contour plot is circular (Figure 4.1(a)). As, the correlation between the

62

Figure 4.1: Demonstrations of 2D Gaussian distributions with di↵erent correlation

coe�cients.

The contours denote the Gaussian densities.

dimensions increases, the contour plot becomes more elliptical (Figure 4.1(c)). EDAs

have achieved success in both combinatorial optimizations [55], [56] and continuous

optimization domains [118], [119], [120] [121] [122].

4.3 EDADE for solving MMOPs

In this section, we present the EDA based DE method for solving MMOPs. The

proposed method consists of five di↵erent components which are presented in the

form of Algorithms. Algorithm 11 represents the generic framework used for solving

MMOPs. Algorithm 2 (chapter 3), Algorithm 4 (chapter 3), Algorithm 9 (chapter 3),

Algorithms 12 and 13 are further components of Algorithm 11. The proposed method

is tested on the IEEE CEC 2013 benchmark functions. In the next section, we describe

the multi-species framework used for solving MMOPs.

4.3.1 Multi-Species Framework

As discussed in section section 3.3.1, in multi-species framework, the idea is to

divide the randomly distributed population into sub-populations called species and

perform the evolutionary process on each species independently. The block diagram

represented by Figure 4.2 broadly depicts the components of EDADE Algorithm. In

63

Figure 4.2: Block Diagram of EDADE Algorithm

Figure 4.2, initialization is the process of randomly assigning values to the population

within bounds and it corresponds to step 2 of Algorithm 11. Enhanced two-level speci-

ation is used to locate multiple niches in the landscape. Enhanced two-level speciation

corresponds to section 4.3.1.1 and step 5 of Algorithm 11. Species balance strategy is

employed to redistribute population members across multiple species. It corresponds

64

to section 3.3.1.2 and step 6 of Algorithm 11. We use evolutionary process to evolve

the species that have population members generated by EDA and DE operations. It

corresponds to section 4.3.1.3 and step 8 of Algorithm 11. Probabilistic local search

is performed on the evolved species to improve the accuracy of the best member in

the species. It corresponds to section 4.3.1.4 and step 9 of the Algorithm 11. Merge

Archive is employed to avoid the insertion of duplicate peaks in the archive to be able

to locate di↵erent peaks. It corresponds to section 4.3.1.5 and step 10 of Algorithm

11. Fes represents the current count of fitness evaluations while MaxFes represents

the count of maximum fitness evaluations allowed. The procedures such as enhanced

two-level speciation, species balance strategy, EDA and DE based evolutionary pro-

cess, probabilistic local search and merge archive keep on running until the current

fitness count becomes greater than or equal to maximum count of fitness evaluations

allowed. Algorithm 11 represents the generic framework which further consists of five

other algorithms. It is similar to the multi-species framework mentioned in chapter

3. However, some of the components are di↵erent in Algorithm 11. In algorithm 11,

Algorithm 11 EDADE

1: Input: Function (fp ~Xq),Population Size (NP), MaxFes

2: Initialize the population randomly within the bounds of the dimensions

3: Gen “ 0,Fes “ 0,archive “ r s
4: while Fes § MaxFes do

5: Obtain multiple species by two-level application of Algorithm 2

6: balanceSpecies(multi-species)

7: for each species P multi-species do

8: localbest=Evolutionary Process of EDADE(species, speciesfitness)

9: bestfit=probabilisticlocalSearch(localbest,species)

10: mergeArchive(archive,bestfit)

11: end for

12: Gen+=1

13: end while

65

the population is initialized randomly within the bounds specified for each dimension.

The parameters Gen, Fes, archive represents generation number, number of fitness

evaluations, and archive, respectively. The archive is used to store optimum values.

Steps 5-10 are performed until maximum fitness evaluations are reached. Algorithm 2

(chapter 3) is invoked for creating multiple species out of the global population in step

5. The strategy for speciation is discussed in 4.3.1.1. After the formation of multiple

species, there is a need to balance the species as each species could be representing

di↵erent niches in the function landscape. To this aim, step 6 is introduced which

balances the species based on the shape and size of niches. Now, for each species that

is present in multi-species, steps 8-10 are carried out. In step 8, evolutionary process

of EDADE (section 4.3.1.3) is applied to each species and returns the local best for

that species. Probabilistic local search (section 4.3.1.4) is a method to refine the ac-

curacy of the best solution obtained so far. Step 9 tries to find the better solution

nearby the localbest achieved. It may so happen that the localbest obtained is very

very close to one of the optima already present in the archive and both are part of the

same niche. Such occurences inhibits the capability of the algorithm to find multiple

optima. Hence, there is a need to check the redundancy of the optimizers obtained. To

this aim, Step 10 is introduced. In the following subsection we describe the two-level

speciation procedure using the application of Algorithm 2 on the global population.

4.3.1.1 Enhanced Two-level speciation

In this section we describe the the two-level speciation process which is mostly

similar to that of chapter 3. This procedure maps to the step 5 of Algorithm 11.

The population is initialized randomly across the function landscape initially. The

speciation process is similar to that of EODE and it is described in chapter 3 section

3.2.1.1. However, we have proposed a small modification in the calculation of µdist

parameter used in Algorithm 2. In the complex multimodal functions, the peaks could

be unevenly located. The niches could be very close in some regions and very distant

in other regions. Since µdist is a sensitive parameter in the creation of niches, it can

be very large or very low if some niches are very distant or very close as it strongly

66

impacts the mean calculation. Hence, median distance is used to reduce the e↵ect

of the region of distant niches and densely located niches on speciation. In the next

section, we discuss the species balance strategy used in EDADE.

4.3.1.2 Species balance strategy

The species balance strategy corresponds to the step 6 of Algorithm 11. The species

balance strategy is mostly similar to that of EODE algorithm described in chapter

3. However, certain modifications are introduced with respect to the behaviour in

EDADE environment. Species seed is the individual with the best fitness value in the

sub-population. To estimate the distribution of the species a good enough species size

is required since as the population size increases the estimation of probability distribu-

tion improves. Also, DE requires a minimum population size to be able to evolve the

species e�ciently. Hence, after multi-species formation, species balancing is required

to maintain a minimal sub-population size in the species. However, covariance matrix

can be approximated by univariate normal distribution which is computationally less

intensive. Hence, there is a modification in step 15 of Algorithm 4 to enable it for use

in EDADE environment. Instead of using covariance matrix for generating o↵spring,

we have used Gaussian and Cauchy distribution alternatively with mean as species

seed and variance (var) for each dimension is computed with the equation (4.1).

varrds “ randomp0.1, 0.3q; d P dimensions (4.1)

In the next section, we discuss the core evolutionary process behind the EDADE

algorithm.

4.3.1.3 EDA and DE based Evolutionary Process of EDADE

In this section, we discuss the evolutionary process of the EDADE algorithm and

it maps to the step 8 our main algorithm i.e. Algorithm 11. After balancing the

species, the evolution process begins to exploit the niche and reach the optima within

that niche. DE generates the o↵spring by first creating the mutants using di↵eren-

tial perturbation and then applying crossover operation to the mutant. It does not

67

consider the correlation between the dimensions within the niche landscape and hence

it is not e↵ective in generating suitable o↵spring which could help reach optima fast.

To deal with this drawback, we have proposed a hybrid methodology for generating

o↵spring. The o↵springs are generated using DE mutation operation as well as Gaus-

sian distribution. The complete method is described in algorithm 12. The meaning of

variables FES,MaxFES,Gen,MaxGen, ~X, randompa, bq, ~U can be referred from the

section 3.2.3. Another parameter is pr that represents the probability that indicates

the stage of evolution. During the early phase, exploration needs to be higher, and

hence pr value will be low. For the 50% of the time algorithm focuses on exploration

and for the rest 50%, it focuses on exploitation. This is done to maintain a balance

between exploration and exploitation. The same can be seen from steps 7-17. The

perturbation (trial vector generation) is done using ”DE/rand/1”, ”DE/rand/2”, a

simple modification of ”DE/current-to-rand/1” and ”DE/current-to-rand/2” [40]. To

induce convergence, four members with the best fitness values are chosen randomly

from the k best members of the species. The value of k is determined by equation

(4.2) where size represents the species size.

k “ size ˚ p1 ´ expp Gen
MaxGenq

1 ` expp Gen
MaxGenqq (4.2)

While exploitation, if the absolute di↵erence between fitness values of two mem-

bers is lower than 0.00001 then random small perturbation is added to enable e↵ective

convergence. Besides, ”DE/best/1” and ”DE/best/2” are used probabilistically alter-

natively to generate trial vector generation. Steps 19-26 indicate the exploitation stage

in DE. ~lb represents the member with the best fitness value in the species. Steps 27-

31 represent crossover and selection operation. After applying DE operations on the

population, EDA has been applied on the modified species obtained by DE. Essen-

tially, we apply exploration operations for 50% of the time and exploitation for the

rest of the time. The variance is required for o↵spring generation for 1-D(dimensional)

functions while and covariance matrix is required for n-D(dimensional) functions. The

covariance of two individuals (X and Y) of D dimensions is computed using equation

68

Algorithm 12 Evolutionary Process of EDADE

1: Input : species, speciesfitness

2: F1 “ 1, F2 “ 1, CR “ randomp0.7, 1q
3: While FES†MaxFES and Gen†MaxGen

4: pr “ FES{MaxFES

5: For each member-index (i)P species

6: Randomly sample 5 membersp ~Xr1,
~Xr2,

~Xr3,
~Xr4,

~Xr5q from the species

7: if pr §0.5

8: if randomp0, 1q § 0.5

9: if randomp0, 1q § 0.5

10: ~V “ ~Xr1 ` F1 ˚ p ~Xr2 ´ ~Xr3q
11: else

12: ~V “ ~Xr1 ` F1 ˚ p ~Xr2 ´ ~Xr3q ` F2 ˚ p ~Xr4 ´ ~Xr5q
13: else

14: if randomp0, 1q § 0.5

15: ~V “ ~Xi ` F1 ˚ p ~Xr2 ´ ~Xr3q
16: else

17: ~V “ ~Xi ` F1 ˚ p ~Xr2 ´ ~Xr3q ` F2 ˚ p ~Xr4 ´ ~Xr5q
18: else

19: Select 4 members (~Xt1,2,3,4u) from the k best members randomly from the popu-

lation.

20: if |fitnessp ~X1q ´ fitnessp ~X2q|†0.00001 or |fitnessp ~X3q ´ fitnessp ~X4q|†0.00001

21: if randomp0, 1q† 0.4

22: ~Xt1,2,3,4u “ ~Xt1,2,3,4u ` randomp0.1, 0.3q
23: if randomp0, 1q § 0.5

24: ~V “ ~lb ` F1 ˚ p ~X1 ´ ~X2q
25: else

26: ~V “ ~lb ` F1 ˚ p ~X1 ´ ~X2q ` F2 ˚ p ~X3 ´ ~X4q
27: Apply binomial crossover operation to get ~U

28: Check for the bounds of ~U in each dimension using equation (3.3)

29: Evaluate the child fitness.

30: FES+=1

31: Perform selection operation between parent and child

69

32: if randomp0, 1q § 0.5

33: Compute the mean, variance (for 1-D functions), covariance matrix (for n-D

functions) of the species.

34: for each member-index(i)P species

35: Generate o↵spring around ~Xi using univariate and multivariate Gaussian

distribution for 1-D and n-D functions respectively.

36: else

37: Find the k best members of the species using equation (4.2)

38: Compute the mean, variance (for 1-D functions), covariance matrix (for n-D

functions) of the k best members of the species using equation (3.7), (3.8) and (3.9)

39: Generate o↵spring around mean using univariate and multivariate gaussian

distribution for 1-D and n-D functions respectively.

40: Perform selection operation between parent and o↵spring.

41: c “ 0

42: for member-index(i) in species

43: if |fitnessp ~Xiq ´ fitnessp ~Xbestq| † 0.00001 and |fitnessp ~Xbest)-

fitnessp ~Xgbestq|° 5

44: c` “ 1

45: if c°popsize
2

46: break

47: if c°popsize
2

48: Add a random(0.1,0.5) perturbation to popsize
2 members.

49: break

50: Gen` “ 1

51: Return the best member of the species

70

(3.9). The covariance matrix of dimensions D*D is computed using equation (3.9). In

the exploration stage, the o↵spring is generated in the vicinity of the parent to explore

the space. Contrary to the exploration stage, mean, variance, and covariance matrix

of best k members are calculated in the exploitation stage since algorithms tend to

converge near the better candidate solutions. To this end, steps 32-39 are introduced

in algorithm 12. The mean and variance are computed using equations (4.3) and (4.4):

µ
d
i “ 1

M

Mÿ

j“1

X
d
j (4.3)

�
d
i “

gffe 1

M ´ 1

Mÿ

j“1

`
Xd

j ´ µd
i

˘2
(4.4)

where µi “
“
µ
1
i , . . . , µ

d
i , . . . , µ

D
i

‰
and �i “

“
�
1
i , . . . , �

d
i , . . . , �

D
i

‰
p1 § i § sq are, respec-

tively, the mean and variance vectors of the i
th niche, Xj “

“
X

1
j , . . . , X

d
j , . . . , X

D
j

‰

is the j
th individual in the i

th niche and D is the dimension size of the multimodal

problem.

During the evolution process, the species is likely to stuck at the local optima and

hence it becomes important to identify such scenarios to reduce the wastage of fitness

evaluations and get e↵ective exploration. To this aim, steps 42-49 are introduced.

The key idea here is to keep checking the absolute di↵erence between the fitness val-

ues of the best member and the given member and also to check the fitness di↵erence

between the species best member and the global best member of the entire popula-

tion. ~Xbest,
~Xgbest represents the sub-population best fitness and global population

best fitness value respectively. popsize represents the sub-population size.

In the next section we describe the local search mechanism to further improve the

fitness of the best candidate.

4.3.1.4 Probabilistic Local search

A local search is performed to refine the obtained solutions. In this section a

probabilistic approach is described and it maps to the step 9 of Algorithm 11. The

probabilistic local search method is described in algorithm 13. We have computed

71

variance, covariance matrix for 1-D and n-D functions. Since the algorithm is in

strong convergence phase, it is important to consider the members with better fitness

in the population. Initially, the mbest members are calculated using step 3 where

speciessize represents the species size. The mbest members estimate the parameters

of the distribution in the region of exploitation that helps create better o↵springs in

the population. Steps 4-13 define the o↵spring generation process. If o↵spring is not

better than the species seed then a random noise is added in the variance defined by

step 18 in a hope to find better individual in the further broadened search region in

the vicinity of the best candidate.

4.3.1.5 Merge Archive

To avoid the insertion of multiple best members from the same species into archive,

mergeArchive procedure is used which is described in chapter 3 section 3.2.6.

To understand the EDADE on a broad level, the illustrative example discussed in

chapter 3 section 3.3.2 can be referred. In the next section we describe the details of

experiments and results.

4.3.2 Illustrative Example

In order to explain the components of EDADE, an example is presented in this sec-

tion. We have considered low dimensional (2-D) composition function F11 described

in Table A.1 of Appendix section for demonstration purpose.

As it can be seen from Figure 4.2, the population is randomly initialized in the

function space. Now we will try to map the steps given in Algorithm 11 to the process

that happens in Figures 4.2-4.4.

1. Initially, the randomly distributed population needs to be divided into sub-

populations that represent regions around the peaks. The multiple species

marked as black circles in Figure 4.3 are shown as S1-S7. In species S4, the

blue circles represent two species that got located as a single species S4. To

avoid such merging, two-level speciation is introduced. To this aim, step 5 of

72

Algorithm 13 probabilisticlocalSearch

1: Input :localbest, species

2: k=10

3: mbest=max(speciessize/4,10)

4: Compute the variance (for 1-D functions), covariance matrix (for n-D functions)

of the mbest candidates of species.

5: While(k)

6: mean=localbest

7: if uniformp0, 1q § 0.5

8: if uniformp0, 1q § 0.5

9: Generate o↵spring using normal distribution around mean with variance

computed in step 4.

10: else

11: Generate o↵spring using cauchy distribution around mean with variance

computed in step 4..

12: else if dimension >1

13: Generate o↵spring using multivariate gaussian distribution around mean with

covariance matrix computed in step 4.

14: if fitnesspoffspringq°fitnessplocalbestq
15: Replace the localbest with the o↵spring.

16: else

17: for d in dim:

18: varsrds+=randomp0.001, 0.01q
19: k=k-1

20: Return the localbest

73

Figure 4.3: Initialization Figure 4.4: Niching and Balancing

Figure 4.5: Evolutionary process and Local

Search

Algorithm 11 is introduced that is further discussed in section 4.3.1.1.

2. As the multiple species are formed, some species may have huge population

size and some may have small population size as can be seen from Figure 4.2.

Hence, the species balance strategy introduced in section 3.3.1.2 is used with

some modifications to it. We have used the Gaussian and Cauchy probability

distributions to generate o↵springs instead of covariance matrix as is used in

section 3.3.1.2. The modification is further discussed in section 4.3.1.2.

3. The hybrid method based on EDA and DE operations acts as an evolutionary

74

process that tries to further converge the sub-populations towards the peak they

represent. The species are represented in Figure 4.4 as P1-P8. Univariate and

multivariate Gaussian distributions along with di↵erential vector perturbation

are used to generate o↵springs.

4. After the evolution process completes, the population gets converged near the

optima but may not be able to reach the optima accurately as can be seen in

Figure 4.4. Hence, we proposed a local search method to search in the vicinity

of the best individual of the species as the actual peak would be nearby the

best value in the species. In this chapter, we have used a probabilistic local

search method that aims to utilize Gaussian and Cauchy distributions with equal

probability to generate o↵springs near the species seed. The complete description

is indicated by Algorithm 13.

5. Since the speciation process is repeated after every certain number of genera-

tions, the best solutions returned by the local search method could be part of the

same species that has been explored in the previous generations. Hence, there is

a need to detect the best individuals that belong to the same species and they

should not be added to the archive. Therefore, Algorithm 9 from chapter 3 is

referred to that maps to step 10 of Algorithm 11.

4.4 Experiments and Results

We have performed the experiments on a computer system with RAM 8GB, 1.8GHz

CPU and MacOS 11 operating system. In this chapter, EDADE is independently run

50 times for each function. The algorithm calculated the results in the 1e-4 level

of accuracy. For di↵erent problems, the value of NP is shown in Table 4.1. The

parameters of EDADE are listed in Table 4.2. The parameters '1, '2, minsize1,

minsize2 are used for creating multiple species out of the global population. � is used

in the species balance strategy and it is set to 1. MaxGen represents the number of

generations for which the EDADE needs to run for the given species and it is set to

75

40 for problems with dimension less than equal to 10 and 60 for higher-dimensional

problems. F1, F2 are set to 1 while CR is chosen between 0.7 and 1. The PRs

highlighted in bold represent the best PR value for that particular function. The bprs

in the last row of the tables represent the number of functions for which the given

algorithm performed the best. The algorithm is shown to perform better as compared

to EODE for problems with a large number of optima. The experimental result and

comparison with other algorithms at accuracy level 1e-4 are shown in tables 4.3-4.6.

4.4.1 Comparison with other algorithms

In this section, the results of various algorithms (including EDADE) are com-

pared. For simplicity, we compare the results at ✏ “ 1e´4. In order to better evaluate

the performance of EDADE, 16 popular comparison algorithms are selected, such as

CDE [28], SDE [64], NCDE, NSDE [89], MOMMOP [112], LoICDE, LoISDE [35],

PNPCDE [46], LIPS [82], and the recently proposed algorithms of DEcl [113], LM-

CEDA, LMSEDA [9], FBK-DE [39], LBPADE [100], MaHDE [114], AED-DDE [123],

EODE(proposed in chapter 3). Most of the recently compared results are from their

corresponding papers, and the results of other algorithms are still from these papers.

From Tables 4.3-4.6 it is clear that EDADE obtains most of the best PR results among

the compared algorithms. The detailed analyses are given below.

1) For the first five problems, most algorithms including EDADE can find all global

optimal solutions.

2) For the problems 6–9 (with a large number of global peaks), EDADE stands as the

second-best algorithm and it finds most of the optima. In addition, for the problem

10, EDADE can find all the optimal solutions. For the 7th problem having 36 optima,

EDADE can find 92% of the optima. For the problems 8-9 having 81, 216 optima

respectively, EDADE can find 95%, 65% optima.

3) For problems 11,12,13,14 and 15 that are low-dimensional composition functions,

EDADE obtained the best results for problems 11,12, and 15. Although on the 13th,

function EDADE does not produce optimal results, the di↵erence between EDADE

and the best algorithm is small (around 7%).

76

Index Function NKP Peak height r MaxFEs NP

1 F1p1Dq 2 200.0 0.01 5.0E ` 4 250

2 F2p1Dq 5 1.0 0.01 5.0E ` 4 250

3 F3p1Dq 1 1.0 0.01 5.0E ` 4 250

4 F4p2Dq 4 200.0 0.01 5.0E ` 4 250

5 F5p2Dq 2 1.03163 0.5 5.0E ` 4 250

6 F6p2Dq 18 186.731 0.5 2.0E ` 5 2000

7 F7p2Dq 36 1.0 0.2 2.0E ` 5 2000

8 F6p3Dq 81 2709.0935 0.5 4.0E ` 5 2000

9 F7p3Dq 216 1.0 0.2 4.0E ` 5 3000

10 F8p2Dq 12 ´2.0 0.01 2.0E ` 5 1000

11 F9p2Dq 6 0 0.01 2.0E ` 5 1000

12 F10p2Dq 8 0 0.01 2.0E ` 5 1000

13 F11p2Dq 6 0 0.01 2.0E ` 5 1000

14 F11p3Dq 6 0 0.01 4.0E ` 5 1000

15 F12p3Dq 8 0 0.01 4.0E ` 5 1000

16 F11p5Dq 6 0 0.01 4.0E ` 5 1000

17 F12p5Dq 8 0 0.01 4.0E ` 5 2000

18 F11p10Dq 6 0 0.01 4.0E ` 5 1000

19 F12p10Dq 8 0 0.01 4.0E ` 5 1000

20 F12p20Dq 8 0 0.01 4.0E ` 5 1000

Table 4.1: Information of the benchmark problems and the population size

77

Parameters Values

'1 2

'2 1

minsize1 ´1

minsize2 5

F1 1

F2 1

CR p0.7, 1q
MaxGen 40pD †“ 10q

60pD°10q

Table 4.2: Parameters in EDADE

4) For the composition functions (in the relatively high dimensions) 16-20, EDADE

achieves the best results for the 18th, 19th functions. However, for the 16th function,

the di↵erence between EDADE and the best algorithm result is around 7%. For the

17th problem, the di↵erence between EDADE and the best algorithm is around 2%.

For the 18th, 19th problems EDADE performs equivalent to the best algorithm.

4.4.2 Di↵erent Parameters of EDADE

4.4.2.1 Di↵erent values of F1, F2

Here, the di↵erent values of F1, F2 are compared. In Section 4.3.1.3, F1, F2 are

used to generate o↵springs via di↵erential vector perturbation. Thus, we set (F1, F2)

to three di↵erent values (1,1), (0.5,0.5), and (2,2) respectively. From Table 4.7 it

can be seen that for F1 “ 1, F2 “ 1, EDADE achieves the best overall results. For

functions 1-5, EDADE with F1 “ 2, F2 “ 2 locates all the optima as is the case with

F1 “ 1, F2 “ 1. For F1 “ 0.5, F2 “ 0.5, EDADE achieves best result for function 7

and 9 which have 36, 216 optima respectively. The reason for better performance over

massive multimodal functions could be a lower mutation factor that helps in better

convergence. For functions 10-12 EDADE with F1 “ 0.5, F2 “ 0.5 and F1 “ 1, F2 “ 1

78

Function EDADE CDE SDE NCDE NSDE MOMMOP

Index PR SR PR SR PR SR PR SR PR SR PR SR

1 1 1 1 1 0.657 0.373 1 1 1 1 1 1

2 1 1 1 1 0.737 0.529 1 1 0.776 0.667 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 0.284 0 1 1 0.240 0 1 1

5 1 1 1 1 0.922 0.843 1 1 0.745 0.490 1 1

6 1 1 1 1 0.056 0 0.305 0 0.056 0 1 1

7 0.927 0.4 0.861 0 0.054 0 0.873 0 0.053 0 1 1

8 0.950 0.1 0 0 0.015 0 0.001 0 0.013 0 1 1

9 0.648 0 0.474 0 0.011 0 0.461 0 0.006 0 1 1

10 1 1 1 1 0.147 0 0.989 0.863 0.098 0 1 1

11 1 1 0.330 0 0.314 0 0.729 0.059 0.248 0 0.716 0.020

12 1 1 0.002 0 0.208 0 0.252 0 0.135 0 0.939 0.549

13 0.93 1 0.141 0 0.297 0 0.667 0 0.225 0 0.667 0

14 0.667 0 0.026 0 0.216 0 0.667 0 0.190 0 0.667 0

15 0.75 0 0.005 0 0.108 0 0.319 0 0.125 0 0.618 0

16 0.667 0 0 0 0.108 0 0.667 0 0.170 0 0.650 0

17 0.667 0 0 0 0.076 0 0.250 0 0.108 0 0.505 0

18 0.667 0 0.167 0 0.026 0 0.500 0 0.163 0 0.497 0

19 0.520 0 0 0 0.105 0 0.348 0 0.098 0 0.223 0

20 0.250 0 0 0 0 0 0.250 0 0.123 0 0.125 0

bprs 11 7 1 5 2 10

Table 4.3: Comparison with other algorithms on accuracy level 1e-4

79

Function EDADE LoICDE LoISDE PNPCDE LIPS DEcl

Index PR SR PR SR PR SR PR SR PR SR PR SR

1 1 1 1 1 1 1 1 1 0.833 0.686 1 1

2 1 1 1 1 0.235 0.039 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 0.961 0.961 1 1

4 1 1 0.975 0.902 0.250 0 1 1 0.990 0.961 1 1

5 1 1 1 1 0.667 0.333 1 1 1 1 1 1

6 1 1 1 1 0.056 0 0.537 0 0.246 0 0.942 0.340

7 0.927 0.4 0.705 0.02 0.029 0 0.874 0 0.4 0 0.986 0.64

8 0.950 0.1 0 0 0.012 0 0 0 0.084 0 0.999 0.9

9 0.648 0 0.187 0 0.005 0 0.472 0 0.104 0 0.726 0

10 1 1 1 1 0.083 0 1 1 0.748 0 1 1

11 1 1 0.66 0 0.167 0 0.66 0 0.974 0.843 0.667 0

12 1 1 0.495 0 0.125 0 0 0 0.574 0 0.943 0.58

13 0.93 1 0.51 0 0.167 0 0.461 0 0.794 0.176 0.667 0

14 0.667 0 0.657 0 0.167 0 0.592 0 0.644 0 0.667 0

15 0.75 0 0.299 0 0.125 0 0.258 0 0.336 0 0.623 0

16 0.667 0 0.559 0 0.167 0 0 0 0.304 0 0.667 0

17 0.667 0 0.223 0 0.076 0 0 0 0.162 0 0.42 0

18 0.667 0 0.219 0 0.157 0 0.147 0 0.098 0 0.667 0

19 0.520 0 0.037 0 0.027 0 0 0 0 0 0.357 0

20 0.250 0 0.123 0 0.088 0 0 0 0 0 0.212 0

bprs 11 6 2 6 2 6

Table 4.4: Comparison with other algorithms on accuracy level 1e-4

80

Function EDADE LMCEDA LMSEDA FBK-DE LBPADE MaHDE

Index PR SR PR SR PR SR PR SR PR SR PR SR

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 0.99 0.843 0.972 0.588 0.990 0.820 1 1 1 1

7 0.927 0.4 0.734 0 0.673 0 0.813 0 0.889 0 0.804 0

8 0.950 0.1 0.367 0 0.613 0 0.824 0 0.575 0 0.983 0.291

9 0.648 0 0.284 0 0.248 0 0.425 0 0.476 0 0.351 0

10 1 1 1 1 0.998 0.98 1 1 1 1 1 1

11 1 1 0.667 0 0.892 0.392 1 1 0.674 0 0.725 0.078

12 1 1 0.75 0 0.99 0.922 0.935 0.480 0.750 0 0.650 0

13 0.93 1 0.667 0 0.667 0 1 1 0.667 0 0.667 0

14 0.667 0 0.667 0 0.667 0 0.907 0.460 0.667 0 0.667 0

15 0.75 0 0.696 0 0.738 0 0.730 0 0.654 0 0.648 0

16 0.667 0 0.667 0 0.667 0 0.707 0 0.667 0 0.667 0

17 0.667 0 0.456 0 0.62 0 0.630 0 0.532 0 0.352 0

18 0.684 0 0.657 0 0.66 0 0.667 0 0.667 0 0.663 0

19 0.520 0 0.451 0 0.458 0 0.520 0 0.475 0 0.455 0

20 0.250 0 0.059 0 0.248 0 0.450 0 0.275 0 0.250 0

bprs 11 6 5 13 7 7

Table 4.5: Comparison with other algorithms on accuracy level 1e-4

81

Function EDADE AED-DDE EODE

Index PR SR PR SR PR SR

1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1

5 1 1 1 1 1 1

6 1 1 1 1 0.995 0.9

7 0.927 0.4 0.838 0.039 0.805 0

8 0.950 0.1 0.747 0 0.845 0

9 0.648 0 0.384 0 0.505 0

10 1 1 1 1 1 1

11 1 1 1 1 1 1

12 1 1 1 1 0.975 0.8

13 0.93 1 0.686 0 1 1

14 0.667 0 0.667 0 0.8 0

15 0.75 0 0.637 0 0.8 0

16 0.667 0 0.667 0 0.730 0

17 0.667 0 0.375 0 0.684 0

18 0.684 0 0.654 0 0.684 0

19 0.520 0 0.375 0 0.520 0

20 0.250 0 0.250 0 0.250 0

bprs 11 9 13

Table 4.6: Comparison with other algorithms on accuracy level 1e-4

82

Function F1 “ 1, F2 “ 1 F1 “ 0.5, F2 “ 0.5 F1 “ 2, F2 “ 2

Index PR SR PR SR PR SR

1 1 1 1 1 1 1

2 1 1 0.88 0.4 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1

5 1 1 1 1 1 1

6 1 1 1 1 0.78 0

7 0.927 0.4 0.938 0 0.822 0

8 0.950 0.1 0.944 0 0.92 0

9 0.648 0 0.650 0 0.425 0

10 1 1 1 1 1 1

11 1 1 1 1 0.76 0.2

12 1 1 1 1 0.925 0.4

13 0.93 1 1 1 0.667 0

14 0.667 0 0.667 0 0.667 0

15 0.75 0 0.680 0 0.586 0

16 0.667 0 0.667 0 0.667 0

17 0.667 0 0.455 0 0.635 0

18 0.684 0 0.668 0 0.645 0

19 0.520 0 0.465 0 0.419 0

20 0.250 0 0.125 0 0.250 0

bprs 17 13 9

Table 4.7: Results on di↵erent values of F1, F2 at accuracy level 1e-4

83

Function '1 “ 2,'2 “ 1 '1 “ 0.5,'2 “ 0.5 '1 “ 1,'2 “ 1

Index PR SR PR SR PR SR

1 1 1 1 1 1 1

2 1 1 0.96 0.8 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1

5 1 1 1 1 1 1

6 1 1 1 1 1 1

7 0.927 0.4 0.895 0 0.905 0

8 0.950 0.1 0.927 0 0.910 0

9 0.648 0 0.655 0 0.625 0

10 1 1 1 1 1 1

11 1 1 1 1 1 1

12 1 1 0.925 0.4 0.948 0.6

13 0.93 1 0.833 0 1 1

14 0.667 0 0.667 0 0.667 0

15 0.75 0 0.667 0 0.706 0

16 0.667 0 0.667 0 0.667 0

17 0.667 0 0.595 0 0.610 0

18 0.684 0 0.672 0 0.625 0

19 0.520 0 0.495 0 0.454 0

20 0.250 0 0.250 0 0.250 0

bprs 18 11 12

Table 4.8: Results on di↵erent values of '1,'2 at accuracy level 1e-4

84

achieves best results. Higher values of mutation factors lead to more divergence. For

function 13, EDADE with F1 “ 0.5, F2 “ 0.5 achieves the best result. It can be seen

from Table 4.7 that for functions 14-20, EDADE with F1 “ 1, F2 “ 1 achieves the best

result.

4.4.3 Di↵erent values of '1,'2

Here, the di↵erent values of '1,'2 are compared. In Section 4.3.1.1, '1,'2 are

used to form local sub-populations from global population. Thus, we set ('1,'2) to

three di↵erent values (1,1), (0.5,0.5), and (2,1) respectively. From Table 4.8 it can be

seen that for '1 “ 2,'2 “ 1, EDADE achieves the best overall results. For functions

1-5, EDADE with '1 “ 1,'2 “ 1 and '1 “ 2,'2 “ 1 achieves the best results. For

function 6, EDADE with '1 “ 1,'2 “ 1, '1 “ 2,'2 “ 1 and '1 “ 0.5,'2 “ 0.5

achieves the best results. For functions 7-8 EDADE with '1 “ 2,'2 “ 1 achieves best

results. For function 9, lower value of '1,'2 (0.5) is e↵ective in locating large number

of peaks. For functions 10-12, EDADE with '1 “ 2,'2 “ 1 achieves best results.

However, EDADE with '1 “ 0.5,'2 “ 0.5 and '1 “ 1,'2 “ 1 also achieves best

results for functions 10-11. For functions 13-20, EDADE with '1 “ 2,'2 “ 1 achieves

best results except for function 13 as can be seen from Table 4.8. In essence, lower

values of '1,'2 are e↵ective in locating large number of optima. To locate optima

within wider basin of attraction larger values of '1,'2 are e↵ective, since the species

size is large if values of '1,'2 are large.

In the next section, we visually describe the convergence of population towards the

peaks of the functions.

85

4.4.4 Convergence of population

During evolution, the MMOPs require that the algorithm can locate many global

optima simultaneously. The algorithm with good performance not only can maintain

the global optima that have been identified (found) but also can continue to search

for the other global optima that have not been found. To investigate the performance

of EDADE on maintaining the identified optima, the solution distribution of some

functions (i.e., F2, F4, F6, F7, F10, F11, F12, and F13), described in Appendix A, is

presented on some specific generations. Figures 4.6-4.8 shows the solution distribution

of F2 with di↵erent generations (i.e., the generations are 1, 2, and 3).

Figure 4.6: Gen-1 (F2) Figure 4.7: Gen-2 (F2) Figure 4.8: Gen-3 (F2)

Figure 4.9: Gen-1 (F4) Figure 4.10: Gen-5 (F4) Figure 4.11: Gen-9 (F4)

We can find that EDADE has obtained all of the global optima when the genera-

tion is 3 on F2 [i.e., Figure 4.8]. It indicates that EDADE can locate the global optima

quickly, namely, EDADE has a good ability of global search. It is important to note

that the generation here refers to the number of times a multi-species framework is

performed given in Algorithm 4. It does not refer to the generation of DE operations

86

Figure 4.12: Gen-1 (F6) Figure 4.13: Gen-2 (F6) Figure 4.14: Gen-3 (F6)

Figure 4.15: Gen-1 (F7) Figure 4.16: Gen-8 (F7) Figure 4.17: Gen-15 (F7)

Figure 4.18: Gen-1 (F10) Figure 4.19: Gen-5 (F10) Figure 4.20: Gen-11 (F10)

Figure 4.21: Gen-1 (F11) Figure 4.22: Gen-8 (F11) Figure 4.23: Gen-14 (F11)

directly. Figures 4.9-4.11 shows the solution distribution of F4 with di↵erent genera-

tions (i.e., 1, 5, and 9). From Figure 4.11, we can find that the population converges

completely in the 9th generation. Similarly, for F7, F10, EDADE obtained complete

87

Figure 4.24: Gen-1 (F12) Figure 4.25: Gen-5 (F12) Figure 4.26: Gen-11 (F12)

Figure 4.27: Gen-1 (F13) Figure 4.28: Gen-5 (F13) Figure 4.29: Gen-11 (F13)

convergence. However, for F6 (4.12-4.14), F11(4.21-4.23), F12(4.24-4.25), and F13

(4.27-4.29) there is some dispersion from the peak but still, the convergence is nearly

complete. Hence, it can be concluded that with the increasing generation, all solutions

gradually achieve the convergence state. Overall, it is clear that the found solutions

are not dispersed with the increasing evolution in EDADE. Namely, our EDADE can

maintain the global optima until the end of evolution.

In the next section we describe the summary of the chapter.

88

4.5 Summary

In this chapter, we have proposed EDADE to handle MMOPs, where multi-species

technique has been adopted to simultaneously find multiple global optima. In EDADE,

modified NBC-minsize has been used to divide the population into several species to

locate the optima. Also, two-level speciation has been applied to identify the narrow

niches. We have used the species balance strategy described in chapter 3 with some

modifications to it. We have proposed an evolutionary method that evolves a hybrid

population generated from DE operations and EDA operations. We have also proposed

a probabilistic local search method to improve the accuracy of candidate solutions.

To avoid the trap into local optima, we have proposed a simple strategy embedded

in EDADE’s evolutionary process. Finally, EDADE has been compared with several

state-of-the-art algorithms to assess its e↵ectiveness. The experimental results has

shown that EDADE performed better on highly multimodal functions than other

algorithms on most multimodal benchmark problems. However, in our experiments,

we achieved better results for problems of lower dimensions but it still does not perform

well for higher-dimensional problems. Hence, we aim to improve EDADE in our future

work and test it on high-dimensional problems.

89

Chapter 5

Conclusion and Future Work

In this chapter, we summarize the techniques to solve MMOPs presented in the

thesis and provide few directions for future work in this area. The goal of our work was

to propose methods to solve MMOPs which can handle functions with the arbitrarily

complex multimodal functional landscape.

MMOPs are widely seen in real-world scenarios, where the decision-making can be

made based on multiple optimal solutions of a given optimization problem. Some of the

real-world applications of MMOPs consist of virtual camera composition, metabolic

network modeling, laser pulse shaping, job scheduling, data clustering, feature selec-

tion, and neural network ensembles. Hence, there is a need for e�cient methodolo-

gies to solve MMOPs. We have described the problem of multimodal optimization.

We have discussed DE and Non-DE-based approaches used in the literature to solve

MMOPs. The existing methods are not e�cient at handling the massive multimodal-

ity and complex functional landscapes. Hence, we have proposed two algorithms for

solving problems with a large number of optima and uneven rugged landscapes.

5.1 Thesis Contributions

In this section, we summarize two methodologies proposed for solving MMOPs

described in this thesis. In the first contribution, we have proposed an adaptive

opposition DE-based approach to solve MMOPs while in the second contribution, we

90

have proposed EDA-based methodology to estimate the probability distribution of the

species and generate better o↵springs.

5.1.1 Enhanced Opposition Di↵erential Evolution Algorithm

for solving MMOPs

The proposed approach is an adaptive version of the DE algorithm to learn the

parameters of the algorithm, explore and exploit the uneven complex multimodal

landscapes e�ciently. We have proposed a multi-species-based framework for solv-

ing MMOPs. Essentially, the core idea is to divide the global population into local

sub-populations and evolve the sub-populations independently. To divide the global

population, we have introduced two-level speciation to locate a maximum number of

peak regions (niches or species) as accurately as possible. Since the species could be

of uneven sizes based on the shape and size of the basin of attraction, it becomes

important to balance the species to perform the evolution process e↵ectively. Hence,

to this end, we have introduced a dynamic species balance strategy. It is important

to note that each sub-population (species) virtually represents an area near one of

the peaks. The proposed algorithm tries to locate those areas first and then reach

the optima represented by those regions. Since the landscapes of the functions could

be rugged and uneven, it becomes a challenge to handle di↵erent landscapes using

one specific methodology. Hence, an adaptive mechanism is needed to handle di↵er-

ent landscapes di↵erently. To this end, we introduced an adaptive parameter control

strategy that computes the parameter values of next-generation (g+1) based on those

parameter values of the previous generation (g) which produced better o↵springs in the

generation (g). The parameter values are used in the evolution process to introduce

randomness in the population by creating diverse o↵spring. The modified opposition

DE is used to perform the evolution process of the algorithm. Even after the evolu-

tion process, sometimes it is not guaranteed to reach the optima accurately. Hence,

to deal with such a scenario local search-based methodology is proposed. Besides, a

check is also performed to avoid considering the optima from the same species. The

91

proposed EODE is compared with the 15 state-of-the-art algorithms in the section

3.4.1. From the Tables 3.4-3.6, it can be concluded that EODE performs better than

state-of-the-art algorithms.

5.1.2 Estimation of Distribution Algorithm (EDA) based Dif-

ferential Evolution Algorithm for solving MMOPs

Our first Multi-Modal Optimization (MMO) method summarized in the previous

sub-section is not able to handle the problems with massive multimodality. Hence, to

improve the performance of problems with a large number of global optima without

degrading the performance on complex composite functions, EDADE is proposed. The

multi-species framework is followed as discussed in section 5.1.1 in this method. The

massively multimodal functions have optima very closely spaced and hence most of

the optima fall under a single species. This becomes a major reason for many optima

to go undetected by the algorithm. Moreover, some functions may not be separable

and hence it becomes di�cult to generate o↵spring using DE operations as it consists

of random perturbations only. However, a lower crossover rate is found to be useful

for non-separable functions but it is di�cult to capture the non-linear relationships

amongst the dimensions of the target vector. Also, probability distribution helps

in capturing the correlation between the dimensions that enables generation of the

better o↵spring. Hence, there is a need to predict the parameters of the probability

distribution. To this aim, we have proposed EDA based DE algorithm so that the best

of both worlds are used in the evolution process to guide the sub-population to reach

optima e↵ectively. Gaussian and Cauchy distributions are used to generate o↵spring.

Due to the presence of large number of local optima in the landscape, the population

may get trapped at local optima due to high selection pressure. To deal with such

scenarios, we have proposed a simple strategy that avoids the population from getting

stuck at local optima. We have also proposed a probabilistic local search method

to refine the obtained solutions. The proposed EDADE is compared with the 16

state-of-the-art algorithms in the section 4.4.1. It is also compared with the proposed

92

EODE (chapter 3) Algorithm. From the experiments and obtained results, it can be

concluded that EDADE performs better at handling problems with a large number of

optima without degrading the performance on complex composite functions.

5.2 Future Work

Our work on multimodal optimization can be extended in many ways. Following

are the few possible extensions.

1. Dynamic Population Size: Since the population size impacts the evolution

process, it would be an interesting exercise to dynamically increase or decrease

the population size [34] based on the evolution stage and the shape and size of the

species’ landscape. If this exercise is implemented, then it would be interesting

to study the convergence behavior of the algorithm.

2. Application to Real-World Problems: There are many real-world applica-

tions of multimodal optimization such as virtual camera composition [124],

metabolic network modeling [125], laser pulse shaping [126], job scheduling [127],

and neural network ensembles [128] e.t.c. It would be interesting work to apply

the proposed algorithm to real-world datasets.

3. Performance Improvement Over Higher-Dimensional Problems: Since the

proposed algorithm is not e↵ective at locating optima in higher-dimensional

problems, it becomes an open area of work to suggest modifications to the pro-

posed algorithms to enhance their performance on high-dimensional multimodal

functions.

93

Bibliography

[1] Q. Ling, G. Wu, and Q. Wang, “Restricted evolution based multimodal function

optimization in holographic grating design,” in Proc. IEEE Congr. Evol. Comput.,

Edinburgh, U.K., 2005, pp. 789–794.

[2] D.-K. Woo, J.-H. Choi, M. Ali, and H.-K. Jung, “A novel multimodal optimization

algorithm applied to electromagnetic optimization,” IEEE Trans. Magn., vol. 47,

no. 6, pp. 1667–1673, Jun. 2011.

[3] K.-C. Wong, K.-S. Leung, and M.-H. Wong, “Protein structure predict- tion on

a lattice model via multimodal optimization techniques,” in Proc. Conf. Genet.

Evol. Comput., Portland, OR, USA, 2010, pp. 155–162.

[4] M. Boughanem and L. Tamine, “A study on using genetic niching for query

optimisation in document retrieval,” in Advances in Information Retrieval. Hei-

delberg, Germany: Springer, 2002, pp. 135–149.

[5] E. C. Osuna and D. Sudholt, “Runtime analysis of crowding mechanisms for

multimodal optimisation,” IEEE Trans. Evol. Comput., to be published. doi:

10.1109/TEVC.2019.2914606.

[6] Y. H. Li, Z.-H. Zhan, S. J. Lin, J. Zhang, and X. N. Luo, “Competitive and

cooperative particle swarm optimization with information sharing mechanism for

global optimization problems,” Inf. Sci., vol. 293, no. 1, pp. 370–382, Feb. 2015.

94

[7] J. Yao, N. Kharma, and P. Grogono, “Bi-objective multipopulation genetic algo-

rithm for multimodal function optimization,” IEEE Trans. Evol. Comput., vol.

14, no. 1, pp. 80–102, Feb. 2010.

[8] Q. Yang et al., “Adaptive multimodal continuous ant colony optimization,” IEEE

Trans. Evol. Comput., vol. 21, no. 2, pp. 191–205, Apr. 2017.

[9] Q. Yang, W.-N. Chen, Y. Li, C. L. P. Chen, X.-M. Hu, and J. Zhang, “Multimodal

estimation of distribution algorithms,” IEEE Trans. Cybern., vol. 47, no. 3, pp.

636–650, Mar. 2017.

[10] Y. L. Cao, H. Zhang, W. F. Li, M. C. Zhou, Y. Zhang, and W. A. Chaoval-

itwongse, “Comprehensive learning particle swarm optimization algorithm with

local search for multimodal functions,” IEEE Trans. Evol. Comput., to be pub-

lished. doi: 10.1109/TEVC.2018.2885075.

[11] Z.-J. Wang et al., “Automatic niching di↵erential evolution with contour predic-

tion approach for multimodal optimization problems,” IEEE Trans. Evol. Com-

put., to be published. doi: 10.1109/TEVC.2019.2910721.

[12] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive sys-

tems,” Ph.D. thesis, Univ. Michigan, Ann Arbor, MI, USA, 1975.

[13] A. Petrowski, “A clearing procedure as a niching method for genetic algorithms,”

in Proc. 3rd IEEE Congr. Evol. Comput., Nagoya, Japan, 1996, pp. 798–803.

[14] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI, USA:

Univ. of Michigan Press, 1975.

[15] A. D. Cioppa, C. D. Stefano, and A. Marcelli, “Where are the niches? Dynamic

fitness sharing,” IEEE Trans. Evol. Comput., vol. 11, no. 4, pp. 453–465, Aug.

2007.

[16] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for multi-

modal function optimization,” in Proc. 2nd Int. Conf. Genet. Algorithms, 1987,

pp. 41–49.

95

[17] G. R. Harik, “Finding multimodal solutions using restricted tournament selec-

tion,” in Proc. 6th Int. Conf. Genet. Algorithms, 1995, pp. 24–31

[18] J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species conserving

genetic algorithm for multimodal function optimization,” Evol. Comput., vol. 10,

no. 3, pp. 207–234, 2002.

[19] D. Zaharie, “A multipopulation di↵erential evolution algorithm for mul- timodal

optimization,” in Proc. 10th MENDEL Int. Conf. Soft Comput.,2004, pp. 17–24.

[20] X. Yin and N. Germay, “A fast genetic algorithm with sharing scheme using

cluster analysis methods in multi-modal function optimization,” in Proc. Int.

Conf. Artif. Neural Nets Genet. Algorithms, 1993, pp. 450– 457.

[21] G. Dick and P. Whigham, “Spatially-structured sharing technique for multimodal

problems,” J. Comput. Sci. Technol., vol. 23, no. 1, pp. 64– 76, 2008.

[22] F. Cara�ni, A. V. Kononova, and D. Corne, “Infeasibility and structural bias in

di↵erential evolution,” Inf. Sci., vol. 496, pp. 161–179, Sep. 2019.

[23] M. Preuss, “Niching the CMA-ES via nearest-better clustering,” in Proc. ACM

12th Annu. Conf. Companion Genet. Evol. Comput., 2010, pp. 1711–1718.

[24] X. Lin, W. Luo and P. Xu, “Di↵erential Evolution for Multimodal Optimization

With Species by Nearest-Better Clustering,” in IEEE Transactions on Cybernet-

ics, vol. 51, no. 2, pp. 970-983, Feb. 2021, doi: 10.1109/TCYB.2019.2907657.

[25] S. Das and P. N. Suganthan, “Di↵erential evolution: A survey of the state-of-the-

art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31, Feb. 2011.

[26] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” Computer, vol.

27, no. 6, pp. 17–26, Jun. 1994.

[27] Mahfoud, Samir W, “Niching methods for genetic algorithms,” Citeseer ,1995 .

96

[28] R. Thomsen, “Multimodal optimization using crowding-based di↵erential evolu-

tion,” in Proc. IEEE Congr. Evol. Comput., vol. 2. Portland, OR, USA, 2004,

pp. 1382–1389.

[29] O. Mengsheol and D. Goldberg, “Probabilistic crowding: Deterministic crowding

with probabilistic replacement,” in Proc. GECCO, 1999, pp. 409–416.

[30] X. Li, “E�cient di↵erential evolution using speciation for multi- modal function

optimization,” in Proc. Conf. Genet. Evol. Comput., Washington, DC, USA, 2005,

pp. 873–880.

[31] C. Stoean, M. Preuss, R. Stoean, and D. Dumitrescu, “Multimodal optimization

by means of a topological species conservation algorithm,” IEEE Trans. Evol.

Comput., vol. 14, no. 6, pp. 842–864, Dec. 2010.

[32] W. Gao, G. G. Yen, and S. Liu, “A cluster-based di↵erential evolution with self-

adaptive strategy for multimodal optimization,” IEEE Trans. Cybern., vol. 44,

no. 8, pp. 1314–1327, Aug. 2014.

[33] Y. Jie, N. Kharma, and P. Grogono, “Bi-objective multipopulation genetic algo-

rithm for multimodal function optimization,” IEEE Trans. Evol. Comput., vol.

14, no. 1, pp. 80–102, Feb. 2010.

[34] R. Tanabe, A. Fukunaga, “Improving the search performance of SHADE using

linear population size reduction,” 2014 IEEE Congress on Evolutionary Compu-

tation (CEC) (2014) 1658–1665.

[35] S. Biswas, S. Kundu, and S. Das, “Inducing niching behavior in di↵erential evo-

lution through local information sharing,” IEEE Trans. Evol. Comput., vol. 19,

no. 2, pp. 246–263, Apr. 2015.

[36] X. Li, “Niching without niching parameters: Particle swarm optimization using

a ring topology,” IEEE Trans. Evol. Comput., vol. 14, no. 1, pp. 150–169, Feb.

2010.

97

[37] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, “Opposition-Based Dif-

ferential Evolution”, in IEEE Transactions on Evolutionary Computation, vol.

12, no. 1, pp. 64-79, Feb. 2008, doi: 10.1109/TEVC.2007.894200.

[38] S. Guo and C. Yang, “Enhancing Di↵erential Evolution Utilizing Eigenvector-

Based Crossover Operator”, in IEEE Transactions on Evolutionary Computation,

vol. 19, no. 1, pp. 31-49, Feb. 2015, doi: 10.1109/TEVC.2013.2297160.

[39] X. Lin, W. Luo and P. Xu, “Di↵erential Evolution for Multimodal Optimization

With Species by Nearest-Better Clustering,” in IEEE Transactions on Cybernet-

ics, vol. 51, no. 2, pp. 970-983, Feb. 2021, doi: 10.1109/TCYB.2019.2907657.

[40] S. M. Islam, S. Das, S. Ghosh, S. Roy and P. N. Suganthan, “An Adaptive

Di↵erential Evolution Algorithm With Novel Mutation and Crossover Strategies

for Global Numerical Optimization,” in IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 482-500, April 2012,

doi: 10.1109/TSMCB.2011.2167966.

[41] R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation for

Di↵erential Evolution,” 2013 IEEE Congress on Evolutionary Computation, Can-

cun, Mexico, 2013, pp. 71-78, doi: 10.1109/CEC.2013.6557555.

[42] J. J. Liang, B. Y. Qu, P. N. Suganthan, and A. G. Hernández-Dıaz ,“Problem def-

initions and evaluation criteria for the cec 2013 special session on real-parameter

optimization,” Nanyang Technological University, Tech. Rep., 2013

[43] X. Li, A. Engelbrecht, and M. G. Epitropakis, “Benchmark functions for

CEC’2013 special session and competition on niching methods for multimodal

function optimization,” Evol. Comput. Mach. Learn. Group, RMIT University,

Rep., Melbourne, VIC, Australia, Rep., 2013.

[44] Q. Yang et al., “Multimodal estimation of distribution algorithms,” IEEE Trans.

Cybern., vol. 47, no. 3, pp. 636–650, Mar. 2017.

98

[45] Z.-J. Wang et al., “Dual-strategy di↵erential evolution with a�nity propagation

clustering for multimodal optimization problems,” IEEE Trans. Evol. Comput.,

vol. 22, no. 6, pp. 894–908, Dec. 2018.

[46] S. Biswas, S. Kundu, and S. Das, “An improved parent-centric mutation with

normalized neighborhoods for inducing niching behavior in di↵erential evolution,”

IEEE Trans. Cybern., vol. 44, no. 10, pp. 1726–1737, Oct. 2014.

[47] Zhu, L., Ma, Y. Bai, Y. “A self-adaptive multi-population di↵erential evolution

algorithm.” Nat Comput 19, 211–235 (2020). https://doi.org/10.1007/s11047-

019-09757-3

[48] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, “Opposition-Based Dif-

ferential Evolution,” in IEEE Transactions on Evolutionary Computation, vol.

12, no. 1, pp. 64-79, Feb. 2008, doi: 10.1109/TEVC.2007.894200.

[49] D.E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine

Learning,” Addison-Wesley, New York, 1989.

[50] O.J. Mengshoel, D.E. Goldberg, “The crowding approach to niching in genetic

algorithms,” Evolutionary Computation 16 (2008) 315–354.

[51] R.K. Ursem, “Multinational evolutionary algorithms,” in: Proceedings of the

Congress on Evolutionary Computation, vol. 3, 1999, pp. 1633–1640.

[52] R.K. Ursem, “Multinational GAs: multimodal optimization techniques in dy-

namic environments,” in: Proceedings of the Second Genetic and Evolutionary

Computation Conference, GECCO, Morgan Kaufmann, 2000.

[53] J. Kennedy, R.C. Eberhart, “Particle swarm optimization,” in: Proc. IEEE Int.

Conf. Neural Netw., ICNN, vol. 4, November 1995, pp. 1942–1948.

[54] J. Kennedy, R.C. Eberhart, Y. Shi, “Swarm Intelligence,” Morgan Kaufmann,

San Francisco, CA, 2001.

99

[55] A.P. Engelbrecht, “Fundamentals of Computational Swarm Intelligence,” John

Wiley Sons, 2006.

[56] Y. del Valle, G.K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez, R.G.

Harley, “Particle swarm optimization: basic concepts, variants and applications in

power systems,” IEEE Transactions on Evolutionary Computation 12 (2) (2008)

171–195.

[57] H.P. Schwefel: “Numerische optimierung von computer-modellen,” Ph.D. Thesis.

Reprinted by Birkhäuser, 1977.

[58] H.G. Beyer, H.-P. Schwefel, “Evolution strategies: a comprehensive introduction,”

Natural Computing 1 (1) (2002) 3–52.

[59] N. Hansen, A. Ostermeier, “Completely derandomized self-adaptation in evolu-

tion strategies,” Evolutionary Computation 9 (2) (2001) 159–195.

[60] R. Storn, K.V. Price, “Di↵erential evolution—a simple and e�cient heuristic for

global optimization over continuous spaces,” Journal of Global Optimization 11

(4) (1997) 341–359.

[61] K.V. Price, R. Storn, J. Lampinen, “Di↵erential Evolution—A Practical Ap-

proach to Global Optimization,” Springer, Berlin, 2005.

[62] S. Das, P.N. Suganthan, “Di↵erential evolution—a survey of the state-of-the-art,”

IEEE Transactions on Evolutionary Computation 15 (1) (2011) 4–31.

[63] R. Thomsen, “Multimodal optimization using crowding-based di↵erential evo-

lution”” in: Proceedings of the Congress on Evolutionary Computation 2004,

Portland, vol. 2, June 2004, pp. 1382–1389.

[64] X. Li, “E�cient di↵erential evolution using speciation for multimodal function

optimization,” in: Proceedings of the Conference on Genetic and Evolutionary

Computation, GECCO 2005, Washington DC, USA, 2005, pp. 873–880.

100

[65] B. Rigling, F. Moore, “Exploitation of subpopulations in evolutionary strate-

gies for improved numerical optimization,” in: Proceedings of the Eleventh Mid-

west Artificial Intelligence and Cognitive Science Conference, MAICS 1999, AAAI

Press, 1999, pp. 80–88.

[66] J. Rumpler, F. Moore, “Automatic selection of subpopulations and minimal

spanning distances for improved numerical optimization,” in: Proceedings of the

Congress on Evolutionary Computation, CEC 2001, vol. 1, 2001, pp. 38–43.

[67] D. Zaharie, “A multipopulation di↵erential evolution algorithm for multimodal

optimization,” in: Proceedings of 10th MENDEL International Conference on

Soft Computing, Brno, Czech Republic, June 2004, pp. 17–22.

[68] Z. Hendershot, “A di↵erential evolution algorithm for automatically discovering

multiple global optima in multidimensional discontinuous spaces,” in: Proceed-

ings of the Fifteenth Midwest Artificial Intelligence and Cognitive Sci- ences Con-

ference, Chicago, April 2004, pp. 92–97.

[69] D. Zaharie, “Extensions of di↵erential evolution algorithms for multimodal op-

timization,” in: Proceedings of SYNASC’04, 6th International Symposium of

Symbolic and Numeric Algorithms for Scientific Computing, 2004, pp. 523–534.

[70] K.V. Price, J. Rönkkönen, “Comparing the uni-modal scaling performanceee of

global and local selection in mutation-only di↵erential evolution algorithm,” in:

Proceedings of 2006 IEEE World Congress on Computational Intelligence, Van-

couver, Canada, 16–21 July 2006, pp. 7387–7394.

[71] J. Rönkkönen, J. Lampinen, “On determining multiple global optima by di↵er-

ential evolution,” in: Evolutionary and Deterministic Methods for Design, Op-

timization and Control, Proceedings of EUROGEN 2007, Jyyvaskyla, Finland,

11–13 June 2007, pp. 146–151.

101

[72] J. Rönkkönen, “Continuous multimodal global optimization with di↵erential

evolution-based methods,” Ph.D. Thesis, Lappeenranta University of Technol-

ogy, Lappeenranta, Finland, 2009.

[73] B.Y. Qu, P.N. Suganthan, “Di↵erential evolution with neighborhood mutation

for multi-modal optimization,” IEEE Transactions on Evolutionary Computation

(2011) (in press)

[74] L. Qing, W. Gang, Y. Zaiyue, W. Qiuping, “Crowding clustering genetic algo-

rithm for multimodal function optimization,” Applied Soft Computing 8 (2008)

88–95.

[75] F. Streichert, G. Stein, H. Ulmer, A. Zell, “A clustering based niching method for

evolutionary algorithms,” in: Proceedings of the Conference on Genetic and Evo-

lutionary Computation, GECCO 2003, in: Lecture Notes in Computer Science,

vol. 2723, Springer, 2003, pp. 644–645.

[76] E.L. Yu, P.N. Suganthan, “An ensemble of niching algorithms,” Information Sci-

ences 180 (15) (2010) 2815–2833. Elsevier.

[77] K. Deb, “Multi-Objective Optimization using Evolutionary Algorithms,” John

Wiley Sons, 2001.

[78] C.A. Coello Coello, G.B. Lamont, D.A. Van Veldhuizen, “Evolutionary Algo-

rithms for Solving Multi-Objective Problems,” Springer, 2007.

[79] K. Deb, A. Saha, “Multimodal optimization using a bi-objective evolutionary

algorithm,” KanGAL Report No. 2009006, IIT Kanpur, December 2009.

[80] K. Deb, A. Saha, “Finding multiple solutions for multimodal optimization prob-

lems using a multi-objective evolutionary approach,” in: Proceedings of the 12th

Annual Conference on Genetic and Evolutionary Computation, GECCO ’10,

ACM, New York, NY, Portland, Oregon, USA, 2010, pp. 447–454.

102

[81] Bonabeau E, Dorigo M, Theraulaz G. “Swarm Intelligence: From Natural to Ar-

tificial Systems,” Journal of Artificial Societies and Social Simulation. 1999;4:

320

[82] B. Y. Qu, P. N. Suganthan and S. Das, “A Distance-Based Locally Informed

Particle Swarm Model for Multimodal Optimization,” in IEEE Transactions

on Evolutionary Computation, vol. 17, no. 3, pp. 387-402, June 2013, doi:

10.1109/TEVC.2012.2203138.

[83] Sajjad Yazdani, Hossein Nezamabadi-pour, Shima Kamyab, “A grav-

itational search algorithm for multimodal optimization,Swarm and

Evolutionary Computation,” Volume 14,2014,Pages 1-14, ISSN 2210-

6502,https://doi.org/10.1016/j.swevo.2013.08.001.

[84] Cuevas, Erik Reyna Orta, Adolfo. “A Cuckoo Search Algorithm for Multimodal

Optimization,” The Scientific World Journal. 2014. 27. 10.1155/2014/497514.

[85] Thirugnanasambandam, K., Prakash, S., Subramanian, V., “Reinforced cuckoo

search algorithm-based multimodal optimization,” Appl Intell 49, 2059–2083

(2019). https://doi.org/10.1007/s10489-018-1355-3

[86] Y. Zhang, Y. Lin, Y. Gong and J. Zhang, “Particle Swarm Optimization

with Minimum Spanning Tree Topology for Multimodal Optimization,” 2015

IEEE Symposium Series on Computational Intelligence, 2015, pp. 234-241, doi:

10.1109/SSCI.2015.43.

[87] J. Wang, “Enhancing Particle Swarm Algorithm for Multimodal Optimization

Problems,” 2017 International Conference on Computing Intelligence and Infor-

mation System (CIIS), 2017, pp. 1-6, doi: 10.1109/CIIS.2017.10.

[88] Beyer, Hans-Georg Sendho↵, Bernhard. “Covariance Matrix Adaptation Revis-

ited – The CMSA Evolution Strategy,” 2008, –. 5199. 123-132. 10.1007/978-3-

540-87700-4 13.

103

[89] Qu, B. Y., Suganthan, P. N., Liang, J. J., “Di↵erential Evolution With Neigh-

borhood Mutation for Multimodal Optimization,” IEEE Transactions on Evolu-

tionary Computation, 2012, 16(5), 601–614. doi:10.1109/tevc.2011.2161873

[90] Basak, A., Das, S., Tan, K. C. “Multimodal Optimization Using a Biobjective

Di↵erential Evolution Algorithm Enhanced With Mean Distance-Based Selec-

tion,” IEEE Transactions on Evolutionary Computation, 2013, 17(5), 666–685.

doi:10.1109/tevc.2012.2231685

[91] M. G. Epitropakis, V. P. Plagianakos and M. N. Vrahatis, “Multimodal

optimization using niching di↵erential evolution with index-based neighbor-

hoods,” 2012 IEEE Congress on Evolutionary Computation, 2012, pp. 1-8, doi:

10.1109/CEC.2012.6256480.

[92] M.G.Epitropakis, V.P.Plagianakos, and M.N.Vrahatis, “Finding multiple global

optima exploiting di↵erential evolution’s niching capability”, in 2011 IEEE Sym-

posium on Di↵erential Evolution (SDE), April 2011, pp. 1–8

[93] J. Zhang and A. Sanderson, “JADE: adaptive di↵erential evolution with optional

external archive,” IEEE Transactions on Evolutionary Computation, vol. 13, no.

5, pp. 945–958, 2009.

[94] Z.Zhaiand, X.Li,“A dynamic archive based niching particle swarm optimizer using

a small population size,” in Proceedings of the Australian Computer Science

Conference (ACSC 2011), M. Reynolds, Ed. Perth, Australia: ACM, 2011, pp.

1–7.

[95] Liang, J. J., Qu, B. Y., Mao, X. B., Niu, B., Wang, D. Y. “Di↵erential evo-

lution based on fitness Euclidean-distance ratio for multimodal optimization,”

Neurocomputing, 2014, 137, 252–260. doi:10.1016/j.neucom.2013.03.069

[96] Zhang, Y.-H., Gong, Y.-J., Chen, W.-N., Zhang, J. “Composite di↵erential evo-

lution with queueing selection for multimodal optimization,” 2015 IEEE Congress

on Evolutionary Computation (CEC), 2015, doi:10.1109/cec.2015.7256921

104

[97] Zhang, Y.-H., Gong, Y.-J., Chen, W.-N., Zhang, J. “Composite di↵erential evo-

lution with queueing selection for multimodal optimization,” 2015 IEEE Congress

on Evolutionary Computation (CEC), 2015, doi:10.1109/cec.2015.7256921

[98] Z. Wang et al., “Dual-Strategy Di↵erential Evolution With A�nity Propaga-

tion Clustering for Multimodal Optimization Problems,” in IEEE Transactions

on Evolutionary Computation, vol. 22, no. 6, pp. 894-908, Dec. 2018, doi:

10.1109/TEVC.2017.2769108.

[99] Huang, H., Jiang, L., Yu, X., Xie, D. “Hypercube-Based Crowding Dif-

ferential Evolution with Neighborhood Mutation for Multimodal Optimiza-

tion,” International Journal of Swarm Intelligence Research, 2018, 9(2), 15–27.

doi:10.4018/ijsir.2018040102

[100] Zhao, H., Zhan, Z.-H., Lin, Y., Chen, X., Luo, X.-N., Zhang, J.,Zhang,

J. “Local Binary Pattern-Based Adaptive Di↵erential Evolution for Multi-

modal Optimization Problems,” IEEE Transactions on Cybernetics, 2019, 1–15.

doi:10.1109/tcyb.2019.2927780

[101] Wang, Z.-J., Zhan, Z.-H., Lin, Y., Yu, W.-J., Wang, H., Kwong, S., Zhang, J.

“Automatic Niching Di↵erential Evolution with Contour Prediction Approach for

Multimodal Optimization Problems,” IEEE Transactions on Evolutionary Com-

putation, 2019, 1–1. doi:10.1109/tevc.2019.2910721

[102] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,”

Science, vol. 315, no. 5814, pp. 972-976, 2007.

[103] Z. -J. Wang, Y. -R. Zhou and J. Zhang, “Adaptive Estimation Distribution

Distributed Di↵erential Evolution for Multimodal Optimization Problems,” in

IEEE Transactions on Cybernetics, doi: 10.1109/TCYB.2020.3038694.

[104] Gao, W., Yen, G. G., Liu, S. “A Cluster-Based Di↵erential Evolution With

Self-Adaptive Strategy for Multimodal Optimization,” IEEE Transactions on Cy-

bernetics, 2014, 44(8), 1314–1327. doi:10.1109/tcyb.2013.2282491

105

[105] Liu, Qingxue Du, Shengzhi Wyk, Barend Sun, Yanxia. “Niching particle

swarm optimization based on Euclidean distance and hierarchical clustering for

multimodal optimization,” Nonlinear Dynamics., 2020, 99. 1-19. 10.1007/s11071-

019-05414-7.

[106] S. Hui and P. N. Suganthan, “Ensemble and Arithmetic Recombination-

Based Speciation Di↵erential Evolution for Multimodal Optimization,” in IEEE

Transactions on Cybernetics, vol. 46, no. 1, pp. 64-74, Jan. 2016, doi:

10.1109/TCYB.2015.2394466.

[107] Wu, G., Mallipeddi, R., Suganthan, P. N., Wang, R., Chen, H. “Di↵erential evo-

lution with multi-population based ensemble of mutation strategies,” Information

Sciences, 2016, 329, 329–345. doi:10.1016/j.ins.2015.09.009

[108] Mallipeddi, Rammohan Suganthan, Ponnuthurai Pan, Quan-Ke Tasgetiren,

Mehmet. “Di↵erential evolution algorithm with ensemble of parameters and mu-

tation strategies,” Appl. Soft Comput., 2011, 11. 1679-1696.

[109] Wu, Guohua Mallipeddi, Rammohan Suganthan, Ponnuthurai. “Ensemble

strategies for population-based optimization algorithms – A survey,” Swarm and

Evolutionary Computation., 2017, 44. 10.1016/j.swevo.2018.08.015.

[110] Z.-J. Wang et al., “Dual-strategy di↵erential evolution with a�nity propagation

clustering for multimodal optimization problems,” IEEE Trans. Evol. Comput.,

vol. 22, no. 6, pp. 894–908, Dec. 2018.

[111] Q. Yang et al., “Adaptive multimodal continuous ant colony optimization,”

IEEE Trans. Evol. Comput., vol. 21, no. 2, pp. 191–205, Apr. 2017.

[112] Y. Wang, H. Li, G. G. Yen, and W. Song, “MOMMOP: Multiobjective op-

timization for locating multiple optimal solutions of multimodal optimization

problems,” IEEE Trans. Cybern., vol. 45, no. 4, pp. 830–843, Apr. 2015.

[113] B. Boškovic and J. Brest, “Clustering and di↵erential evolution for multimodal

optimization,” in Proc. IEEE Congr. Evol. Comput. (CEC), 2017, pp. 698–705.

106

[114] Z. Hong, Z. -G. Chen, D. Liu, Z. -H. Zhan and J. Zhang, “A Multi-Angle Hi-

erarchical Di↵erential Evolution Approach for Multimodal Optimization Prob-

lems,” in IEEE Access, vol. 8, pp. 178322-178335, 2020, doi: 10.1109/AC-

CESS.2020.3027559.

[115] Z. -J. Wang, Y. -R. Zhou and J. Zhang, “Adaptive Estimation Distribution

Distributed Di↵erential Evolution for Multimodal Optimization Problems,” in

IEEE Transactions on Cybernetics, doi: 10.1109/TCYB.2020.3038694.

[116] M. Hauschild and M. Pelikan, “An introduction and survey of estimation of

distribution algorithms,” Swarm Evol. Comput., vol. 1, no. 3, pp. 111-128, 2011.

[117] P. Larrañaga and J. A. Lozano, “Estimation of Distribution Algorithms: A New

Tool for Evolutionary Computation,” New York, NY, USA:Springer, 2002.

[118] M. Pelikan and H. Mühlenbein, “The bivariate marginal distribution algorithm”

in Advances in Soft Computing, London, U.K.:Springer, pp. 521-535, 1999.

[119] J. S. De Bonet, C. L. Isbell and P. Viola, “MIMIC: Finding optima by estimating

probability densities,” Proc. Conf. Adv. Neural Inf. Process. Syst., pp. 424-430,

1997.

[120] A. Zhou, J. Sun and Q. Zhang, “An estimation of distribution algorithm with

cheap and expensive local search methods,” IEEE Trans. Evol. Comput., vol. 19,

no. 6, pp. 807-822, Dec. 2015.

[121] C. W. Ahn, J. An and J.-C. Yoo, “Estimation of particle swarm distribution

algorithms: Combining the benefits of PSO and EDAs,” Inf. Sci., vol. 192, pp.

109-119, Jan. 2012.

[122] H. Karshenas, R. Santana, C. Bielza and P. Larranaga, “Multiobjective estima-

tion of distribution algorithm based on joint modeling of objectives and variables,”

IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 519-542, Aug. 2014.

107

[123] Z. -J. Wang, Y. -R. Zhou and J. Zhang, “Adaptive Estimation Distribution

Distributed Di↵erential Evolution for Multimodal Optimization Problems,” in

IEEE Transactions on Cybernetics, doi: 10.1109/TCYB.2020.3038694.

[124] M. Preuss, P. Burelli, and G. N. Yannakakis, “Diversified virtual camera com-

position,” in Proc. Eur. Conf. Appl. Evol. Comput., 2012, pp. 265–274.

[125] M. Kronfeld, A. Dräger, M. Ascho↵, and A. Zell, “On the benefits of multimodal

optimization for metabolic network modeling,” in Proc. GCB, 2009, pp. 191–200.

[126] O. M. Shir, C. Siedschlag, T. Bäck, and M. J. J. Vrakking, “Niching in evolution

strategies and its application to laser pulse shaping,” in Proc. Int. Conf. Artif.

Evol., 2005, pp. 85–96.

[127] E. Pérez, M. Posada, and F. Herrera, “Analysis of new niching genetic algorithms

for finding multiple solutions in the job shop scheduling,” J. Intell. Manuf., vol.

23, no. 3, pp. 341–356, Jun. 2012.

[128] C. Castillo, G. Nitschke, and A. Engelbrecht, “Niche particle swarm optimization

for neural network ensembles,” in Proc. Eur. Conf. Artif. Life, 2009, pp. 399–407.

108

Appendix A

Test Functions

In this Appendix, we describe the IEEE CEC 2013 benchmark functions that have

been used as test functions in our thesis. There are 20 multimodal functions that are

categorised in Table A.1 based on the dimensionality or complexity or no. of optima.

Functions 1-3 are 1-D functions whereas functions 4-9 are 2-D functions with massive

multimodality. Function 10 is modified rastrigin function that has no local optima but

only global optima. Functions 11-15 are low dimensional (2-3 D) composition functions

whereas functions 16-20 are high dimensional (5-20 D) composition functions.

109

Function-Index Function Name Dimensionality No. Of Optima

1 Five-Uneven-Peak Trap 1 2

2 Equal Maxima 1 5

3 Uneven Decreasing Maxima 1 1

4 Himmelblau 2 4

5 Six-Hump Camel Back 2 2

6 Shubert 2 18

7 Shubert 3 36

8 Vincent 2 81

9 Vincent 3 216

10 Modified Rastrigin 2 12

11 Composition Function 1 2 6

12 Composition Function 2 2 8

13 Composition Function 3 2 6

14 Composition Function 3 3 6

15 Composition Function 4 3 8

16 Composition Function 3 5 6

17 Composition Function 4 5 8

18 Composition Function 3 10 6

19 Composition Function 4 10 8

20 Composition Function 4 20 8

Table A.1: IEEE CEC 2013 benchmark functions

110

Now, we present the mathematical formulations of the test functions that are

defined in the Table A.1. ’D’ represents the dimensionality of the problem.

1. Five-Uneven-Peak Trap

F1pxq “

$
’’’’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’’’’%

80p2.5 ´ xq for 0 § x † 2.5

64px ´ 2.5q for 2.5 § x † 5.0

64p7.5 ´ xq for 5.0 § x † 7.5

28px ´ 7.5q for 7.5 § x † 12.5

28p17.5 ´ xq for 12.5 § x † 17.5

32px ´ 17.5q for 17.5 § x † 22.5

32p27.5 ´ xq for 22.5 § x † 27.5

80px ´ 27.5q for 27.5 § x § 30

(A.1)

Properties:

Variable ranges: x P [0,30]

No. of global optima: 2

No. of local optima: 3

2. Equal Maxima

F2pxq “ sin6p5⇡xq (A.2)

Properties:

Variable ranges: x P [0,1]

No. of global optima: 5

No. of local optima: 0

3. Uneven Decreasing Maxima

F3pxq “ exp

˜
´2 logp2q

ˆ
x ´ 0.08

0.854

˙2
¸
sin6

`
5⇡

`
x
3{4 ´ 0.05

˘˘
(A.3)

Properties:

Variable ranges: x P [0,1]

111

No. of global optima: 1

No. of local optima: 4

4. Himmelblau

F4px, yq “ 200 ´
`
x
2 ` y ´ 11

˘2 ´
`
x ` y

2 ´ 7
˘2

(A.4)

Properties:

Variable ranges: x, y P [6,6]

No. of global optima: 4

5. Six-Hump Camel Back

F5px, yq “ ´4

„ˆ
4 ´ 2.1x2 ` x

4

3

˙
x
2 ` xy `

`
4y2 ´ 4

˘
y
2

⇢
(A.5)

Properties: Variable ranges: x P r´1.9, 1.9s; y P r´1.1, 1.1s;
No. of global optima: 2

No. of local optima: 2

6. Shubert

F6p›Ñx q “ ´
Dπ

i“1

5ÿ

j“1

j cos rpj ` 1qxi ` js (A.6)

Properties:

Variable ranges: xi P r´10, 10sD, i “ 1, 2, . . . , D;

No. of global optima: D ¨ 3D

No. of local optima: many

7. Vincent

F7p›Ñx q “ 1

D

Dÿ

i“1

sin p10 log pxiqq (A.7)

Properties:

Variable range: xi P r0.25, 10sD, i “ 1, 2, . . . , D

112

No. of global optima: 6D

No. of local optima: 0

8. Modified Rastrigin

F9p›Ñx q “ ´
Dÿ

i“1

p10 ` 9 cos p2⇡kixiqq (A.8)

Properties:

Variable ranges: xi P r0, 1sD,i = 1,2,...,D;

No. of global optima:
±D

i“1 ki

No.of local optima:0;

Now we will describe the general framework for constructing multimodal compo-

sition functions with several global optima and then present the new composition

functions.

More specifically, a D -dimensional, composition function CFj : AD Ä RD Ñ R

can be generally constructed as a weighted aggregation of n basic functions fi : AD Ä
RD Ñ R. Each basic function is shifted to a new position inside the optimization

space AD and can be either rotated through a linear transformation matrix or used as

is. Thus, a composition function CFj is calculated according the following equation:

CFjp~xq “
nÿ

i“1

wi

´
f̂i pp~x ´ ›Ñoi q {�i ¨ Miq ` biasi

¯
` f

j
bias

where n is the number of basic functions used to construct the composition func-

tion, f̂i denotes a normalization of the i -th basic function, i P t1, 2, . . . , nu, wi is the

corresponding weight, ›Ñoi is the new shifted optimum of each f̂i,Mi is the linear trans-

formation (rotation) matrix of each f̂i, and �i is a parameter which is used to stretch

p�i ° 1q or compress p�i † 1q each f̂i function. The composition function includes

two bias parameters bias i and f
j
bias . The former defines a function value bias for each

basic function and denotes which optimum is the global optimum, while the latter

defines a function value bias for the constructed composition function. Here, we set

the bias i “ 0, @i P t1, 2, . . . , nu, thus the global optimum of each basic function is a

113

global optimum of the composition function. In addition, we set f j
bias “ 0, as such in

each composition function, all global optima have fitness values equal to zero.

The weight wi of each basic function can be easily calculated based on the following

equations:

wi “ exp
´

´
∞D

k“1pxk´oikq2
2D�2

i

¯

wi “

$
&

%
wi wi “ max pwiq

wi

`
1 ´ max pwiq10

˘
otherwise

Finally, the weights are normalized according to wi “ wi{
∞n

i“1 wi. The parameter �i

controls the coverage range of each basic function, with small values to produce a

narrow coverage range to the corresponding f̂i.

The pool of basic functions may include functions with di↵erent properties, char-

acteristics and heights. As such to have a better mixture of the basic functions a

normalization procedure is incorporated. The normalized function f̂i, can be defined

as: f̂ip¨q “ Cfip¨q{ |f i
max|, where C is a predefined constant pC “ 2000q and f

i
max is

estimated using: f i
max “ fi ppx‹{�iqMiq, with x

‹ “ r5, 5, . . . , 5s The pool of basic func-
tions that we have used to construct the composition functions includes the following:

- Sphere function:

fSp~xq “
Dÿ

i“1

x
2
i

- Grienwank’s function:

fGp~xq “
Dÿ

i“1

x
2
i

4000
´

Dπ

i“1

cos

ˆ
xi?
i

˙
` 1

- Rastrigin’s function:

fRp~xq “
Dÿ

i“1

`
x
2
i ´ 10 cos p2⇡xiq ` 10

˘
.

- Weierstrass function:

fW p~xq “
Dÿ

i“1

˜
kmaxÿ

k“0

↵
k cos

`
2⇡�k pxi ` 0.5q

˘
¸

´ D

kmaxÿ

k“0

↵
k cos

`
2⇡�kp0.5q

˘

114

where ↵ “ 0.5, � “ 3, and kmax “ 20. - Expanded Griewank’s plus Rosenbrock’s

function (EF8F2):

F8p~xq “
Dÿ

i“1

x
2
i

4000
´

Dπ

i“1

cos

ˆ
xi?
i

˙
` 1

F2p~xq “
D´1ÿ

i“1

´
100

`
x
2
i ´ xi`1

˘2 ` pxi ´ 1q2
¯

EF8F2p~xq “ F8F2 px1, x2, . . . , xDq

“ F8 pF2 px1, x2qq ` F8 pF2 px2, x3qq ` . . .

` F8 pF2 pxD´1, xDqq ` F8 pF2 pxD, x1qq

It is clear that the aforementioned basic functions do not incorporate either shifted

positions, or linear transformations (rotations). Thus, in order to calculate for ex-

ample fS pp~x ´ ›Ñoi q {�i ¨ Miq, one can easily first calculate ~z “ p~x ´ ›Ñoi q {�i ¨ Mi and

subsequently fSp~zq. It has to be noted that all composition functions are formulated

as maximization problems.

1. Composition Function 1 Composition Function 1 pCF1q is constructed based

on six basic functions pn “ 6q, thus it has six global optima in the optimiza-

tion box AD “ r´5, 5sD. The basic functions used here include the following:

´f1 ´ f2 : Grienwank’s function,

´f3 ´ f4 : Weierstrass function, and

- f5 ´ f6 : Sphere function.

The composition function is constructed based on the following parameter set-

tings:

´�i “ 1, @i P t1, 2, . . . , nu
´~� “ r1, 1, 8, 8, 1{5, 1{5s
- Mi are identity matrices @i P t1, 2, . . . , nu.
Fig. 9 shows the 2D version of CF1. Properties:

- Multi-modal,

- Shifted,

- Non-Rotated,

115

- Non-symmetric,

- Separable near the global optima,

- Scalable,

- Numerous local optima,

- Di↵erent function’s properties are mixed together,

- Sphere Functions give two flat areas for the function,

´ In the optimization box AD “ r´5, 5sD, there are six global optima
›Ñ
x

‹
i “

›Ñoi , i P t1, 2, . . . , nu with CF1

´›Ñ
x

‹
i

¯
“ 0, @i P t1, 2, . . . , nu

2. Composition Function 2

Composition Function 2 pCF2q is constructed based on eight basic functions

pn “ 8q, thus it has eight global optima in the optimization box AD “ r´5, 5sD.
The basic functions used here include the following:

´f1 ´ f2 : Rastrigin’s function,

- f3 ´ f4 : Weierstrass function,

´f5 ´ f6 : Griewank’s function, and

´f7 ´ f8 : Sphere function.

The composition function is constructed based on the following parameter set-

tings:

´�i “ 1, @i P t1, 2, . . . , nu
´~� “ r1, 1, 10, 10, 1{10, 1{10, 1{7, 1{7s
´Mi are identity matrices @i P t1, 2, . . . , nu.
Fig. 10 shows the 2D version of CF2. Properties:

- Multi-modal,

- Shifted,

- Non-Rotated,

- Non-symmetric,

- Separable near the global optima,

- Scalable,

- Numerous local optima,

116

- Di↵erent function’s properties are mixed together,

- In the optimization box AD “ r´5, 5sD, there are eight global optima
›Ñ
x

‹
i “ ›Ñoi , i P t1, 2, . . . , nu with CF2

´›Ñ
x

‹
i

¯
“ 0, @i P t1, 2, . . . , nu

3. Composition Function 3 Composition Function 3 pCF3q is constructed based

on six basic functions pn “ 6q, thus it has six global optima in the optimization

box AD “ r´5, 5sD. The basic functions used here include the following:

´f1 ´ f2 : EF8F2 function,

´f3 ´ f4 : Weierstrass function, and

- f5 ´ f6 : Griewank’s function. The composition function is constructed based

on the following parameter settings:

´~� “ r1, 1, 2, 2, 2, 2s,
´~� “ r1{4, 1{10, 2, 1, 2, 5s
- Mi are di↵erent linear transformation (rotation) matrices with condition num-

ber one.

Properties:

– Multi-modal,

– Shifted,

- Rotated,

- Non-symmetric,

- Non-separable,

- Scalable,

- A huge number of local optima,

- Di↵erent function’s properties are mixed together,

´ In the optimization box AD “ r´5, 5sD, there are six global optima
›Ñ
x

‹
i “

›Ñoi , i P t1, 2, . . . , nu with CF3

´›Ñ
x

‹
i

¯
“ 0, @i P t1, 2, . . . , nu

4. Composition Function 4 Composition Function 4 pCF4q is constructed based

on eight basic functions pn “ 8q, thus it has eight global optima in the optimiza-

tion box AD “ r´5, 5sD. The basic functions used here include the following:

´f1 ´ f2 : Rastrigin’s function,

117

´f3 ´ f4 : EF8F2 function,

´f5 ´ f6 : Weierstrass function, and

- f7 ´ f8 : Griewank’s function. The composition function is constructed based

on the following parameter settings:

- ~� “ r1, 1, 1, 1, 1, 2, 2, 2s
´~� “ r4, 1, 4, 1, 1{10, 1{5, 1{10, 1{40s
´Mi are di↵erent linear transformation (rotation) matrices with condition num-

ber one. Properties:

- Multi-modal,

- Shifted,

- Rotated,

- Non-symmetric,

- Non-separable,

- Scalable,

- A huge number of local optima,

- Di↵erent function’s properties are mixed together,

- In the optimization box AD “ r´5, 5sD, there are eight global optima
›Ñ
x

‹
i “ ›Ñoi , i P t1, 2, . . . , nu with CF4

´›Ñ
x

‹
i

¯
“ 0, @i P t1, 2, . . . , nu

118

Publications

1. Shatendra Singh, Aruna Tiwari, and Suchitra Agrawal, “Di↵erential Evolution

Algorithm For Multimodal Optimization:A Short Survey”, 10th International

Conference on Soft Computing for Problem Solving - SocProS 2020, Indore,

India, 2020 (Accepted)

2. Shatendra Singh, Aruna Tiwari, Enhanced Opposition Di↵erential Evolution

Algorithm for Multimodal Optimization. (To be submitted to Applied Intelli-

gence Journal)

119

