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Abstract 

Machine availability and reliability are two of the most essential concerns for an 

industry. Increased availability is required by industries to stay competitive in 

today’s global market competition. To achieve increased availability, a good 

maintenance strategy is required that reduces the losses due to unplanned 

shutdowns and keep the preventive maintenance at minimum. Among all 

available maintenance strategies; Condition Based Maintenance (CBM) is the 

most effective strategy to achieve these goals. Effectiveness of Condition Based 

Maintenance (CBM) strategy depends on accuracy in prediction of Remaining 

Useful Life (RUL). Prognostic is the technology used to predict the RUL based on 

monitored parameters. Prognostic approaches can be broadly classified into two 

categories: physics based prognostic approaches and data driven prognostic 

approaches. Current research focus is only on data driven prognostic approaches.  

 

Presence of noise in the data reduces the accuracy of RUL prediction with data 

driven prognostic approaches. Presence of unknown initial wear and presence of 

multiple failure behaviour in data may act as sources of data noise. If these 

sources of data noise are not handled appropriately, then it may give poor 

prediction of the RUL. Another major issue found with the data driven 

prognostics approaches is the larger variation present in the historically observed 

Condition Monitored (CM) data obtained from the fleet. This   leads to poor 

model performance. Updating the model parameters based on new information for 

a unit can help in reducing the variation and improve accuracy of prediction. 

Third issue is handling of multidimensional features (i.e. RMS, kurtosis, 

skewness, mean, median etc.). Features are generally extracted from the raw data 

to represent the degradation of the component. Number of features can be 

extracted from the raw data to represent the degradation of the component. If all 

these features have been taken as input to the model, then it will over fit the 

model. Over fitting is the situation where model performs well during training, 

but shows significantly poor performance during testing.   
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The objective of this thesis is to increase the prediction accuracy of prognostic 

model while considering the presence of the noise, effect of multidimensional 

condition monitoring features and continuously updating the model parameters. 

Different industrial systems have been considered for this study such as aircraft 

engine, gas turbine, and roller ball bearings. Also, life prediction for a smart 

material components (SMA springs) is also demonstrated.    

 

Remaining Useful Life Prediction of an Aircraft Engine under Unknown Initial 

Wear is presented. Two Artificial Neural Network (ANN) models were 

developed. First model is developed by neglecting the effect of the presence of 

noise in the data (i.e. sample with abnormal initial wear); while the second model 

is developed after removing the noise associated with the data.  

Another model is developed by considering another type of noise in the data. 

Inner race failure, outer race failure and cage failure are the major failure modes 

associated with ball bearing. Presence of multiple failure modes and their 

interaction may cause noise in the data set. Clustering and Change Point 

Detection Algorithm (CPDA) is used for identification of presence of multiple 

failure behaviour due to multiple failure modes in the data. Combined output of 

Clustering and CPDA is used for developing RUL prediction model. Separate 

models for single failure behaviour and multiple failure behaviour are 

constructed. General Log- Linear Weibull (GLL- Weibull) model is used for the 

same. Effects of multidimensional features are also considered here. 

 

A PCA-ANN based algorithm is used to predict the RUL of ball bearings while 

considering the effect of the multidimensional features. Instead of giving all 

features directly to the model, the best three principal component values obtained 

from PCA are used as input parameters to the model.  

 

A risk based maintenance strategy to optimize forecast of a gas turbine failures is 

also presented. The algorithm does not completely rely on historically observed 

condition monitored data but also updates the model parameters as and when new 
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information is available. Bayesian approach is used to update the model 

parameters. 

 

Second part of thesis focuses on reliability estimation of Shape Memory Alloy 

(SMA) springs. The reliability of the SMA springs was estimated by using life 

test data of the springs. The spring has undergone thermo mechanical fatigue and 

it was observed that recovering to original shape is disappearing with number of 

cycles due to inelastic deformation. The life prediction model was developed here 

using GLL- Weibull. Bayesian approach is used to update the parameters of the 

model. As experiments were performed on accelerated condition; an accelerated 

life testing model was also developed to extrapolate the Probability Density 

Function (PDF) at normal use condition. 

 

In essence, present thesis contributes towards the development of accurate 

approaches for prognostic of various components. Thus, the outcome is of high 

importance in effective planning of Condition Based Maintenance of asset 

intensive systems and reducing unplanned down time losses to the industries. 

Also, the novel attempt is made to first time study the life prediction approaches 

for shape memory allow springs. The results are encouraging and open up further 

scope prognostics for systems with such components. 
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Chapter 1 

Introduction 

 

1.1 Background and Motivation 

Maintenance and repair costs cover a significant portion of Life Cycle Cost (LCC) 

of any asset intensive system. For examples, airlines in India spend 13-15% of 

revenue towards the maintenance which is second highest cost after the cost of the 

fuel [1]. Similarly, about one third of total defense budget of USA in 2002 was 

used for maintenance and repair activities [2]. Therefore, a cost effective 

maintenance strategy is required for industries. Maintenance strategy can be 

broadly classified in two categories: proactive maintenance and reactive 

maintenance. Reactive maintenance is generally a corrective or break down type 

of maintenance which is performed on failure of the unit. It generally leads to 

excessive unplanned downtime losses. Proactive maintenance is again divided in 

two parts viz., preventive and predictive maintenance. Preventive maintenance is 

performed after a fixed interval of time. The time is either the calendar time or 

age of the unit. The objective of preventive maintenance is prevention of failures. 

It is very conservative, typically costly, labor intensive, and often makes 

unneeded inspection and repairs in an effort to ensure failures do not occur. 

Predictive maintenance is an on-demand maintenance strategy. It is performed 

based on the condition of the unit. Therefore, it is often referred to as Condition 

Based Maintenance (CBM). CBM is also a costly technique because prediction of 

condition requires costly sensors and lots of historical data. The effect of the cost 

on different maintenance approaches is shown in figure 1.1. 

From figure 1.1 it can be seen that corrective maintenance approach has a 

relatively low maintenance cost but high operating costs associated with the high 

cost of unplanned shutdowns. In contrast, preventative maintenance generally has 

a low operating cost, but often results in high maintenance cost associated with 

the removal of components before they have reached the end of their useful lives 

[3]. Most efficient approach is to plan proactive maintenance just before the 
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failure of the machine. CBM can be used for the same. From above it can be 

concluded that CBM is a cost effective maintenance strategy.  

 

Figure 1.1 Cost associated with different maintenance approaches [3] 

 

But, effectiveness of CBM strategy depends on accuracy in prediction of RUL. 

Prognostics is the technology used to predict the RUL based on monitored 

parameters. Advancement in sensor and computing technologies have already 

made prognostics a promising solution for reducing unplanned outages, increasing 

operational safety, increased asset availability by effective spare management and 

extracting maximum life of the machine by performing maintenance only when 

needed. However, effective implementation of prognostics requires an accurate 

model for predicting the RUL of components and system risk assessment. In this 

thesis, following five such approaches are developed. 

a) Remaining Useful Life Prediction of Aircraft Engine Based under the 

presence of initial wear in the data. 

b) Multiple Failure Mode Identification and Remaining Useful Life 

Prediction of Ball Bearings. 
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c) PCA- ANN Based Approach for Roller Ball Bearings Remaining Useful 

Life Prediction. 

d) Development of a Risk Based Maintenance Strategy to Optimize Forecast 

of a Gas Turbine Failures. 

e) Shape memory alloy springs reliability estimation and life prediction using 

Bayesian approach.  

 

1.2 Literature Review 

Advancement in sensor and computing technology make more condition 

monitored data available, and in last few years there have been an increase in 

number of publications in the field of prognostics. But still there are areas which 

require more attention from researchers to increase accuracy in RUL prediction. 

Based on the above motivation; literature review is done to identify some of the 

key issues that need to be consider during prognostics model formation. 

Following sub section highlights the information gained from the literature survey 

that helped in formulating the problem statement. 

1.2.1 Data Noise 

The current technology of prognostics is facing difficulties associated with data 

noise. Presence of unknown initial wear and presence of multiple failure modes in 

a components failure data are two of the important sources of data noise. If these 

sources of data noise are not handled appropriately, then it may give poor 

prediction of the RUL.  

1.2.1.1 Presence of Initial Wear 

In real life system initial wear is commonly observed because of manufacturing 

inefficiencies. Presence of initial wear makes a difference in useful operational 

life of the component and effect the RUL prediction accuracy [4]. This initial 

wear should be considered during model formulation.  

1.2.1.2 Presence of Multiple Failure Modes 

A single mechanical component may fail due to different types of failure mode 

such as a roller bearing can fail due to inner race failure, outer race failure, and 
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cage failure. The condition monitored data indirectly observe these failure modes. 

The existence and interaction among these different failure modes may cause 

uncertainty in the model and results in poor prediction accuracy. It is difficult to 

predict the RUL if these failure modes are not identified and treated appropriately. 

Literatures on prognostics models to handle such kind of noise (i.e. multiple 

failure modes) are completely absent. Some work has been reported for reliability 

estimation of a system with multiple failure modes. 

Wang (2013) developed a reliability model for mechanical components with 

dependent failure modes. The joint probability density function is derived to 

correlate all the failure modes. Drawback with this model is linear correlation was 

assumed between different failure modes, which never possible [5]. The reliability 

model for electronic devices with multiple competing failure modes was 

developed by Haung and Askin (2003). The failure mode assumes in this study is 

solder/Cu pad interface fracture (e.g. catastrophic failure) and light intensity 

degradation (e.g. degradation failure) [6]. Moghaddass and Zuo (2014) developed 

a prognostics model for a system with multistate degradation and with two 

independent failure modes. The independent condition monitor indicator was 

assumed for each failure modes [7]. This study also elaborates the importance of 

considering different failure modes of a device. Mixed Weibull proportional 

hazard model was present by Zhang et al. (2014) to combine the multiple failure 

modes of an overall system. The model parameter estimates by combining the 

historical lifetime and condition monitor data of all failure modes. The system 

reliability and failure time was estimated by proportionally mixing the failure 

probability density function of multiple failure modes [8]. Son (2011) represents a 

mathematical model for estimating the mechatronic servo system reliability. The 

system performance is measured by considering the competing failure modes of 

the system with degraded phenomena [9]. 

So, a prognostics model is required that can handle all these kind of noise in the 

data set. 
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1.2.2 Multidimensional Features Handling during Model Development 

The raw data obtained from the sensors is not suitable to represent the degradation 

of the component because it is associated with the noise and bias in sensor 

measurement. Features are generally extracted from the raw data to get the 

relevant information about component degradation. Obtaining the most effective 

feature and inputting to prognostics system is a challenge, because the 

effectiveness of any prediction models based on the quality and sensitivity of 

features utilized to evaluate the condition and spread of the faults [10]. Some 

attempts have been made to identify the sensitive features which correlate with 

the fault propagation in the component.  

In order to avoid the problem of dimensionality related to features and improve 

the accuracy of prediction, Chen et al. (2011) used correlation analysis to identify 

the best features set. It selects salient features of tool wear state and discards the 

irrelevant or redundant features [11]. Root Mean Square (RMS) and kurtosis of 

vibration signals are generally used as features for prognostics of bearing failures. 

However, Mahamad et al. (2010) used the fitted measurement value as input 

parameters to the model instead of real measurement value. It helped in reducing 

the external noise from the measurement data [12].  Autoregressive and extreme 

learning machine algorithm is presented by [13] to select the best features from 

non-trending condition monitoring data. The shortcoming with this algorithm is 

that it will not help in removing the noise associated with the signal. Therefore, 

denoising filter technique is separately required to remove the noise associated 

with the signal.  

The all above mentioned approach are focused on selecting the best feature that 

can best fit to the model. But it is always not possible to identify the features 

which are more sensitive to the fault propagation. Even though possible, 

significant amount of time and expert judgment is required to identify the 

features. On the other hand, number of features may come out which are sensitive 

to fault propagation in the component. However, all these features should not be 

used as input parameters to the RUL prediction model. If the entire set of features 
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has been taken as input parameters to the model, then it may over fit the model 

i.e. during training the performance may be good but during testing performance 

is significantly worse.  

Therefore, an algorithm is required which can fuse all these features in such a way 

that it reduce the dimensionality of the features and at the same time retain the 

sensitivity or variability of all the features. 

1.2.3 Model Parameter Updating 

Model for RUL prediction generally requires historically observed condition 

monitored data from the fleet of machinery. It means the developed model will 

give the distribution of the fleet.  But, the damage parameters such as crack length 

and wear may differ for similar components operating under the same condition. 

In addition, in future two type of scenario can be happen: damage parameters can 

come better then fleet or damage parameters can come worse than fleet. So, 

completely relies on the historically observed condition monitored data can make 

under prediction or over prediction in RUL estimation.  

For example, from first scenario; when a unit will inspect, the damage parameters 

may be find smaller than the fleet (shown by yellow dots in figure 1.2). The blue 

distribution represents the expected distribution of the damage based on any 

prediction model. If damage is calculated using the normal model for the next 

inspection, then it will state that machine is not safe till next interval and it will 

reach critical damage level before the next inspection interval. But practically, the 

unit is safe at the next interval and will reach to critical damage level after the 

next inspection. So, for the current problem a model is required which can shift 

the distribution down by a certain amount.  
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Figure 1.2 Approach for model parameter updating 

From second scenario; when a unit will inspect, the damage parameters may be 

find larger than the fleet. If damage is calculated using the normal model for the 

next inspection, then it will state that machine is safe till next interval and the 

critical damage level will reach after the next inspection. But practically, the unit 

already reaches to the critical damage before the next inspection. So, for this 

problem a model is required which can shift the distribution up by a certain 

amount.  

In addition, the damage parameters value may come which is not historically 

observed. For example, when model was developed then bearing crack length 

values ranges from 1mm to 5mm. But in future for some component of the fleet , 
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the damage parameters value may observed greater than 5mm or less than 1mm. 

In that case, if conventional method of prognostics has been used; then again new 

model has to be developed for considering the new damage parameters value. But, 

it will be time consuming.  

To overcome these uncertainty, an approach is required that can automatically 

update the model parameters based on new available information. This parameter 

update methodology is divided in two main phase: offline and online. In offline 

phase, RUL prediction model is developed that can best fit to the available data 

set. In online phase, model parameter will get updated based on new online 

available information. The work reported in literature for model parameter 

updating is presented here under: 

[14] Used the Bayesian approach for estimating the failure rate of a transformer 

based on new available condition monitored information. It was found that 

Bayesian approach is very flexible to estimate the failure rate of each individual 

transformer with different conditions. The uncertainty in clinical decision making 

is reduced by using Bayesian approach. Methodology reported help in integrating 

the clinical and medical background knowledge; which helps in representing the 

uncertainty and discovering the patterns in biomedical data [15]. Mosallam et al. 

(2013) used the Bayesian methodology for accurately predicting the RUL of 

Lithium- ion battery. The methodology includes the sources of uncertainty such as 

system, model and sensory noise while predicting the RUL [16].   

 

1.3 PHM in Industry 

In last few years, a significant amount of research has been undertaken to develop 

prognostics models. But fewer industries have applied this tool for their 

component life prediction. But this tool is very important for industries, because 

today‟s complex and advanced machine demand highly sophisticated and cost 

effective maintenance strategy [17]. The industries which has been successfully 

implemented this tool are gas turbine industry, wind turbine industry, aviation 
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industry. Approaches applied by these industries for their component life 

prediction are given hereunder. 

1.3.1 PHM in Gas Turbine Industry 

A classification model has been presented to diagnosis any malfunction of the 

combustion system. Exhaust temperature spread has been collected to detect the 

combustion chamber problem. Two multiclass classification algorithms, one 

based on logistic regression, the other on artificial neural networks, have been 

trained on labeled patterns extracted from real cases of normal behavior, sensor 

anomaly, cold spot and hot spot [18]. Anomaly detection rules and models are 

presented to monitor the gas turbine health [19]. A neural network based 

algorithm is presented for fault detection and isolation in gas turbine [20].  Neuro-

fuzzy algorithm has been presented for fault diagnosis of gas turbine working on 

different operating points [21].     

The hybrid approaches which can combine the bearing health monitoring data and 

model based technique are presented for aircraft gas turbine [22].  

1.3.2 PHM in Aviation Industry 

A physics based approach is used for the health monitoring of a pumping unit in 

an aircraft engine fuel system [23].  

1.3.3 PHM in Wind Turbine Industry 

Model is developed for fault prediction of the bearing of a large utility scale wind 

turbine. Using the developed models, it is possible for wind farm operators to 

identify wind turbines in which a potential fault within the main bearing is 

developing. The particle filter approach was also used manage the uncertainty 

associated with predicting the future behavior of degrading component [3]. Wind 

turbine gearbox lubricating oil RUL is predicted using physics based model. It 

helped in establishment of mathematical relationship between the lubrication oil 

degradation and particle contamination level [24]. A fault detection methodology 

is proposed for wind turbine bearing. The methodology uses adaptive filter 

technique to improve the fault signal to noise ratio [25]. Adaptive Neuro-Fuzzy 
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Inference System (ANFIS) and Nonlinear Autoregressive Model with exogenous 

inputs (NARX) were used to measure the wind turbine gearbox health [26]. 

In addition, following are the major issue with data during implementation of 

PHM in industry: 

1. Failure of component with very low exposure. 

2. As the component age is increasing, the component operational hour or 

start is decreasing. 

3. Data contain zero values (indicate missing value in the data). 

4.  Data associated with sensor noise and bias. 

5. For a system, the component level aging parameters are different than the 

system level aging parameters due to replacement of some component. 

6. Damage parameters values can come beyond the model critical limit. 

7. Lack of data availability for newly installed fleet. 

8. Data can come beyond the expected values (i.e. outliers) 

 

1.4 Objectives 

From the above literature survey, research objectives are identified. The major 

objective of this thesis is “to develop efficient RUL prediction algorithms for 

various components of industrial systems while considering the effect of the data 

noise, multidimensional features and model parameter updating”. Following are 

the sub objectives which direct relate with the overall objective. 

Sub Objective 1: Development of methodologies to handle the effect of the initial 

wear in the data source. 

Sub objective 2: Development of methodologies to handle the effect of the 

multiple failure behaviour in the data source 

Sub Objective 3: Managing Multidimensional features during model 

development. 

Sub Objective 4: Model to update the parameters when new information is 

available. 
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Sub objective 5: Development of life prediction models for Shape Memory Alloy 

springs undergoing thermo mechanical fatigue. 

 

1.5 Summary 

This chapter presented an overview of the research problem, i.e., “Development 

of effective approaches for Prognostics of Industrial System”. Background and 

motivation for the research is also presented. Based on literature review; 

objectives of current research were identified. Application of PHM in different 

industries and issues with implementation of PHM in industry is also given. 
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Chapter 2 

Prognostics and Health Management 

 

2.1 Background 

The objective of PHM technologies is to enhance the effective reliability and 

availability of a product during its life-cycle by detection of current condition and 

approaching failures. It aims at predicting and protecting the integrity of 

equipment and complex systems, and avoiding unanticipated operational 

problems leading to mission performance deficiencies and adverse effects to 

mission safety [27]. 

 

Figure 2.1 Stages of PHM architecture 

 

Figure 2.1 provides an overview of the PHM architecture. PHM system is an 

integration of six stages. Description of each stage is given hereafter.  

Stage 1: Data Acquisition 

It is used to provide the collection of data from the sensors. It usually measures 

the real world physical conditions and converts the resulting samples into digital 
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numerical values that can be manipulated by a computer. To predict health of any 

component, lots of information about the condition of that component is required. 

So, numbers of sensors are put on the various location of machine to monitor 

various parameters. The sensors mainly used for monitoring the health of the 

component are: accelerometer used for measuring vibration in rotating 

components; thermocouple used for measuring gas turbine exhaust temperature 

spread; dynamometer used for measuring force signal in milling machine etc. 

Collection of all sensor readings is done by data acquisition system.  

Stage 2: Data Processing/ Feature Extraction 

The second stage of any PHM systems typically involves appropriate processing 

of equipment sensor data. This stage is often referred as feature extraction. The 

feature extraction stage within a PHM system is designed to generate a vector of 

data features, which can be used to infer the current fault status of a monitored 

system. The generation of an appropriate feature vector is typically application 

dependent and is one of the most important stage in a PHM system. One of the 

methodologies for feature extraction from the raw vibration signal is shown in 

figure 2.2 

 

Figure 2.2 Vibration based feature extraction methods [28] 
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Stage 3: Feature Selection: 

Features selection is the most critical step for implementation of prognostics 

models; because the effectiveness of such models depends on the quality and 

sensitivity of features utilized to evaluate the condition and spread of the faults. 

Many features may be extracted which are sensitive to fault propagation in the 

component or system. However, all these features should not be used as input 

parameters to the RUL prediction model. If many features are used in the model 

development, it may tend to describe the random error or noise instead of 

underlying relationship [29]. This is called over fitting of the model i.e. during 

training the performance may be good but during testing performance is 

significantly worse. Figure 2.3 shows the over fitting associated with the 

prognostic model. 

 

 

Figure 2.3 Over fitting in prognostics model 

 

Many algorithms are available for selection of optimum set of features in a 

prognostics model: PCA, p value approach, fuzzy based feature selection, 

trendability etc. P value approach and PCA based algorithm for feature selection 

are discussed in chapter 4 and 5 respectively. 
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Stage 4: FMEA Analysis 

The objective of FMEA studies is to relate the failure events to root causes. It 

generally investigates all relevant issues regarding potential failure modes of 

monitored systems including: the severity of different failure modes, their 

frequency of occurrence, their testability, and the fault symptoms which are 

suggestive of systems behaviour under different fault conditions. 

Stage 5: Fault Diagnosis 

Fault diagnosis is concerned with detecting, isolating, and identifying an 

impending, or incipient, failure condition in a system. The term fault here implies 

that the system under observation is still operational, but cannot continue 

operating indefinitely without maintenance intervention. 

Step 6: Prognostics 

Prognostics involve predicting the time progression of a specific failure mode 

from its incipience to the time of component failure. This module generally takes 

the data from all previous modules and predicts the RUL of the component or 

system. 

From the entire above step; key step is how to do prognostics. Next section will 

focus on prognostics. 

2.2 Fault Prognosis 

Fault prognosis is the ultimate goal for machine health monitoring. Prognostics 

means remaining useful life prediction of any mechanical system based on their 

current health state and its past operation profile. From figure 2.4 RUL can be 

written as below: 

                   (  )                   (2.1) 
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Figure 2.4 Illustration of RUL 
 

 

Any model is used for prognostics should be able to understand past operational 

profile of that component. Because based on that profile only RUL will be 

calculated. RUL predicted from model always have some uncertainty; because 

actual system performance and model performance are very difficult to 

coincident. Well understanding of the data and use of prognostics algorithm that 

best fit to the data generally helps in reducing this uncertainty.  The number of 

approaches available in literature for prognostics; all of them are discussed in next 

section. 

 

2.3 Prognostics Approaches 

Various prognostics approaches have been developed for system RUL calculation. 

These approaches can be broadly classified in two categories: physics based 

prognostics approach, and data driven prognostics approach. Figure 2.3 illustrates 

how, as we move from data based to physics based prognostics approach, with 

increased capabilities and performance, there is a likewise decrease in the 

applicability of the different approaches. The reduction in applicability is a 
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reflection of the increasing complexity/ cost of the different approaches [3]. Table 

2.1 shows the advantages and disadvantages associated with different prognostics 

approaches. 

 

Figure 2.5 Technical approaches to prognostics [3] 

 

2.3.1 Physics Based Prognostics Approach 

Physics based prognostics are generally required the stress at each failure site as a 

function of loading conditions, the product geometry and material properties. 

Damage models are then used to determine fault generation and propagation [31]. 

Paris law for crack propagation [32], Foreman law crack growth modeling [33] 

and stiffness based damage rule [34] model are generally used for modeling the 

physics of failure. These physics models are used to make prediction of how long 

it will take for the failure to progress to a predefined state such as a crack to grow 

to a certain size.  

 

2.3.2 Data based Prognostics Approach 

Data driven prognostics approach use historical and current data statistically and 

probabilistically derive prediction of RUL of a system [35]. It can again 
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categorize into two different areas: Artificial Intelligence (AI) based prognostics 

approach and reliability based prognostics approach. 

 

Table 2.1 Advantages and Disadvantages with prognostics approaches [17] 

Approach 

Name 

Advantage Disadvantage 

Physics 

Based 

 Can be highly accurate if 

physics of models remain 

consistent across systems 

 Require less data than data 

driven technique 

 Real life system physics is 

often too stochastic and 

complex to model 

 Defect – Specific 

Ex: Paris Crack Growth Model etc. 

Artificial 

Intelligence 

Based 

 Do not require assumption 

or empirical estimation of 

physics parameters. 

 Ease of Calculation 

 Generally required a large 

amount of data to be accurate 

 Rely on past degradation 

pattern and can be lead to 

inaccurate forecasts in time of 

change. 

Ex: ANN, SVM, Random Forest etc. 

Reliability 

Based 

 Do not require Condition 

monitor data 

 Population characteristics 

information enable longer- 

range forecast. 

 Only provide general, overall 

estimates for the entire 

population of identical units. 

 Not necessarily accurate for 

individual operating units. 

Ex: Weibull, Lognormal Model etc. 

Covariate 

Based 

Reliability 

Model 

 For prediction it will not 

consider time only, but also 

consider the covariates 

under which it is operating. 

 Require both event and 

condition data to be accurate. 

Ex: Weibull-PHM, Lognormal -PHM 

 

2.3.2.1 Artificial Intelligence based Prognostics Approach 

This is the most widely used approach for RUL calculation. The prognostics 

knowledge in this approach is developed using failure data to learn the time-to-

failure characteristics of a specific failure. This a19pproach is generally used to 

solve non-linear problems and don‟t require any empirical estimation of physics 



 

20 
 

parameters. Generally these methods require a large amount of data to be 

accurate, which sometimes can be limitation.    

The prediction requirement using AI approach can be qualitative or quantitative. 

Predicting a qualitative response (healthy or faulty prediction) for an observation 

can be referred to as classifying that observation, since it involves assigning the 

observation to a category, or class. Accuracy can‟t be used as reliable metric for a 

classifier, because for unbalanced data set it will yield misleading results i.e. 

when the number of samples in different classes varies greatly. For example, if 

there were 90 faulty units and only 10 healthy units in the data set, the classifier 

could easily be biased into classifying all the samples as faulty.  

So, the performance of every classification approach is described by confusion 

matrix which is also called error matrix. It is a specific table layout with two rows 

and two columns and visualizes the performance of an algorithm.  

Table 2.2 Confusion Matrix 

Model Results 

Healthy Faulty 

True Positive False Positive 

(Type 1 Error) 

Healthy  

 

Actual Results 
False Negative 

(Type 2 Error) 

True Negative Faulty 

 

Sometime output requirement is quantitative instead of qualitative i.e. crack 

length, wear etc. Quantitative model accuracy is defined by error (%) or score 

value, which is more, illustrated in chapter 3 and 4. Artificial Intelligent (AI) 

methods such as neural networks [36, 37, 38, and 39], logistic regression model 

[40], support vector machine [41], hidden markov model [41] and clustering 

methods [42] have been applied for prognostics. The present study uses Artificial 

Neural Network (ANN) and clustering algorithm, both of them are discussed here 

under: 
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2.3.2.1.1 Artificial Neural Network 

Artificial Neural Networks (ANNs) are nonlinear data driven self-adaptive 

approach, which is inspired from the biological nervous systems. Like biological 

neural network it contains large number of highly interconnected processing 

elements (neurons) work as a single language to solve a specific problem. Like 

human brain system; ANN is also learns by example. It has many applications 

such as pattern recognition, data classification and prediction through a learning 

process. The pictorial view of the biological and artificial neural network is 

shown in figure 2.6 and 2.7 respectively. From figures it can be seen that ANN is 

a mathematical model of biological neural network.  

 

Figure 2.6 Biological Neural Network [43] 

 

Figure 2.7 Artificial Neural Network [43] 

 

In actual neurons the electric signals received by the dendrite from the axons of 

other neurons, in ANN these electrical signals are represented as numerical 

values. At the synapses between the dendrite and axons, electrical signals are 
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modulated in various amounts. This is also modeled in the ANN by multiplying 

each input value by a value called the weight. An actual neuron fires an output 

signal only when the total strength of the input signals exceeds a certain threshold. 

In ANN this phenomena is modeled by calculating the weighted sum of the inputs 

to represent the total strength of the input signals, and applying a step function on 

the sum to determine its output.  

During training of the ANN, the weights of the each unit are adjusted in such a 

way that the error between the desired output and the actual output is reduced, i.e., 

it calculates how the error changes as each weight is increased or decreased 

slightly.  

2.3.2.1.2 Clustering Algorithm 

Clustering is an unsupervised learning algorithm and it can be directly applied to 

measured vibration data. Thus, it simply eliminates the need of the training data 

from the defective bearing. Clustering in general groups the similar data in to 

same cluster and divides dissimilar data in to different clusters by using some 

predefined criteria. There are number of clustering methods are available, two 

best known are hierarchical and K-means clustering.  

 

K- Means Clustering: 

This algorithm divides the data set into K distinct, non-overlapping clusters. It is 

the oldest and most popular approach for finding groups in multivariate data set, 

which has five steps [44]:  

1. Choose K, number of clusters. 

2. Calculate the means of the K clusters and collect the mean values. 

Collection of these means is called as centroids. 

3. For each observation, calculate the distance from that observation to each 

of the k centroids and assign that observation to closet cluster, i.e. centroid 

4. After all the observation have been assigned to one and only one cluster, 

calculate the new centroid for each cluster using the observations that have 

been assigned to that cluster. The cluster centroids “drift” toward areas of 

high density, where there are many observations. 



 

23 
 

5. If the new centroids are very different from old centroids, the centroids 

have drifted. So return to step 3. If new centroids and the old centroids are 

the same so that additional iterations will not change the centroids, then 

the algorithm terminates. 

The advantage of this algorithm that its execution time is proportional to the 

number of observations, so it can be applied to large data set. The disadvantage 

is that it requires us to pre-specify the number of clusters K.  

 

Hierarchical Clustering: 

Hierarchical clustering is an alternative approach which does not require that we 

commit to a particular choice of K. Hierarchical clustering has an added 

advantage over K-means clustering in that it results in an attractive tree-based 

representation of the observations, called a dendrogram. In this approach at the 

start of the algorithm, each observation is considered as its own cluster. The 

distance between each cluster and all other clusters is computed and the nearest 

clusters are merged. Following are the steps generally performed for hierarchical 

clustering: 

1. At starting assume each observation as its own cluster and calculate the 

initial cluster distance by using squared Euclidean distance between 

cluster points: 

     ({  } {  })             
  (2.2) 

 

2. Nearest clusters are merged after calculating the distance between each 

cluster and all other clusters 

3. At each step after merging, find the pair of clusters which leads to 

minimum increment in total with in clusters variance.  

4. If there are n observations, this process is repeated n-1 times until there is 

only one large cluster. 
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2.3.2.2 Reliability based Prognostics Approach 

This is the simplest approach among all the prognostics approach. In this 

approach, only historic time to failure data is required for RUL calculation. This 

approach doesn‟t have predictive capability and cannot be described as truly 

predictive prognostics techniques. This approach is mainly used where sensor 

data is not available and has wide applicability in system with low criticality or 

cost.  

Weibull, poisson, exponential and log-normal probability distributions have been 

used for calculation of probability of failure.  

The major challenge with reliability based prognostics approach is that it 

generally doesn‟t consider factors such as environmental and operational 

conditions while estimating the RUL. Typically, systems operating in harsher 

operating and environmental condition will fail at earlier times than those in 

milder environments. To fix this disadvantage covariate based reliability model 

has been used. Benefit of using this over conventional reliability model that it 

consider the other factors like, environmental and operational conditions which 

influence probability of failure instead of time to failure only i.e. reliability as a 

function of time as well as covariates under which it is operating.  Most widely 

used models in this category are the GLL- Weibull model and GLL- Lognormal 

Model. Both of these methods are explained in chapter 4 and 5 respectively. 

2.5 Summary 

This chapter presented about the overview of Prognostics and Health 

Management (PHM). The various step involved while doing prognostics is also 

discuss. Various approaches used for prognostics with advantages and 

disadvantages are also given here. 

 

 

 

 

 



 

25 
 

 

 



 

26 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Introduction to Thesis 

 Literature Review 

 Objectives 

 PHM in Industry 

Prognostics and Heath Management Overview 

 Steps Involved in PHM 

 PHM approaches 

Handling Initial Wear 

 Aircraft Engine RUL prediction Using ANN 

 

Handling Multiple Failure Modes 

 Roller Ball Bearing RUL prediction using 

GLL- Weibull and multiple failure behaviour 

identification using CPDA and Clustering 

 

Model Parameter Updating 

 Risk Based Maintenance Strategy to Optimize 

Forecast of a Gas Turbine Failures using 

Bayesian Approach 

 

Handling Multidimensional Features 

 PCA- ANN Based Approach for Roller Ball 

Bearings Remaining Useful Life Prediction 

 

 Chapter 3    

SMA Reliability Estimation and Life 

Prediction 

 Reliability Estimation and Life Prediction 

Models for Shape Memory Alloy Springs 

undergoing Thermo Mechanical Fatigue 

 



 

27 
 

 

Chapter 3 

RUL Prediction of an Aircraft Engine under Unknown Initial 

Wear 

 

3.1 Problem Description 

Predicting the progression of damage in aircraft engine turbo machinery under 

unknown initial wear is very important task for CBM planning. Initial wear can 

occur due to manufacturing inefficiencies and are commonly observed in real 

systems.  

In the present work we have taken the problem which was reported in PHM 2008 

prognostics data challenge [45]. System monitored data of an aircraft engine is 

taken from National Aeronautics and Space Administration (NASA) Prognostics 

Center of Excellence Data Repository [46], which consist of multiple multivariate 

time series. Each time series is from a different engine; i.e., the data can be 

considered to be from a fleet of engines of the same type. The engine is operating 

normally at the start of each time series, and starts to degrade at some point during 

the series. The initial wear is modeled by variations in flow and efficiencies of the 

various modules. There are three operational settings and 21 sensor measurements 

that have a substantial effect on engine performance. Table 3.1 gives the details of 

operational settings and sensor measurements [45]. 

The main challenge with this data is the presence of initial wear in the system 

monitored data, as it may make a difference in useful operational life of a 

component. The objective is to predict the number of remaining operational 

cycles in the test set, i.e., the number of operational cycles after the last cycle that 

the engine will continue to operate properly. 

 

3.2 The Proposed ANN RUL Prediction Models 

ANN has been considered to be one of the most promising approaches for 

prediction of RUL due to their adaptability, nonlinearity, and ability of arbitrary 
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function approximation [37]. Three layers Feed Forward Neural Network is used 

for RUL prediction in this work. Figure 3.1 shows the configuration of the 

network. The network is divided into three layers; input, hidden and output layers. 

For ANN training, there are 25 inputs fed into the network, out of which one is 

current age (  ), three are operational conditions and 21 are sensor measurements.  

Table 3.1 Operational settings and sensor measurements description 

Operational Settings 

S.No. Description Range 

1 Altitude 0-42K ft. 

2 Mach number 0-0.84 

3 Throttle resolver angle 20-100 

Sensor Measurements 

S.No. Description 

1 Total temperature at fan inlet (°R) 

2 Total temperature at LPC outlet (°R) 

3 Total temperature at HPC outlet (°R) 

4 Total temperature at LPT outlet (°R) 

5 Pressure at fan inlet (psia) 

6 Total pressure in bypass-duct (psia) 

7 Total pressure at HPC outlet(psia) 

8 Physical fan speed (rpm) 

9 Physical core speed (rpm) 

10 Engine pressure ratio (P50/P2) 

11 Static pressure at HPC outlet (psia) 

12 Ratio of fuel flow to Ps30 (pps/psi) 

13 Corrected fan speed (rpm) 

14 Corrected core speed (rpm) 

15 Bypass Ratio 

16 Burner fuel-air ratio 

17 Bleed Enthalpy 

18 Demanded fan speed (rpm) 

19 Demanded corrected fan speed (rpm) 

20 HPT coolant bleed (lbm/s) 

21 LPT coolant bleed (lbm/s) 
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Figure 3.1 Feed Forward Neural Network model for aircraft engine RUL estimation 

The3 percentage residual life of engine   is used as the output of the network. 

   is calculated as follows: 

   
                             

              
 

(3.1) 

 

The output is normalized between 0 and 1, which gives same order of magnitude 

variables to avoid numerical instability [39]. 1 indicates that 100% life is 

remaining (i.e. component is new) and the unit is failed when the residual life 

percentage reaches 0.  

Levenberg Marquardt (LM) learning algorithm [37] is used to train the network. 

MATLAB neural network tool box is used for the training of ANN model. The 

configuration of ANN model uses tansig (Hyperbolic tangent sigmoid) transfer 

function in its hidden and output layer.  

In order to avoid over fitting of data, two different sets of data are required for 

training and validating the network. In the training set, the degradation grows in 

magnitude until a predefined threshold is reached beyond which it is not 

preferable to operate the engine. In the validation set, the time series ends some 

time prior to complete degradation. During over fit situation, Mean Squared Error 

(MSE) for the validation set decreases first and comes to a minimum value and 
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later increases, though the MSE of the training set continues to decrease. When 

the MSE of the validation set increases, it is assumed that the regression algorithm 

is over fitting the training data [36]. Thus, the training is stopped as soon as MSE 

in the validation set begins to increase. For the selection of Feed Forward Neural 

Network topology, there is no specific method. Trial and error search method is 

the best option to select the optimum topology for the prediction. 

In this work, the training set uses the original data from input feed to the network 

but the validation set is perturbed with +10% of the fed. The ANN model is train 

and validated in order to find the minimum validation error. The training and 

validation for ANN are setup from two to thirty nodes or neurons. The network 

which gives minimum validation error is selected as the optimum model. 

The trained ANN model is tested with test data set and performance of the model 

is evaluated. For performance assessment Mean Squared Error (MSE) in RUL 

cycles and average score indices are calculated. These are defined as follows: 

Mean Squared Error: MSE is the average of the squares of the difference 

between the actual observations and predicted values. 
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(3.2) 

Where,   = Predicted value,   = Actual value, N= Number of data points. 

Score: The score for one prediction is defined as the exponential penalty to the 

prediction error; and the score of an algorithm is defined as the total score S from 

all the predictions for the units in the testing data set [47]. 
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(3.3) 

Where, S is the computed score, d is the difference between estimated RUL and 

actual RUL, and n is the number of units under test. 
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The penalty function is asymmetric as if give more penalty to late predictions. 

Lower scores are better; a perfect algorithm would score zero. Average of the 

calculated score for the given units in test data set is used for performance 

assessment in this chapter. The overall procedure of the proposed method can be 

illustrated in a flow chart as shown in figure 3.2.  

 

Figure 3.2 Flow chart of the proposed method for aircraft engine RUL estimation 
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3.3 Results and Discussion 

The system monitored data includes operational data from 218 different units. In 

the present work variable data is divided in two subsets: training data (160 units) 

and test data (58 units). Table 3.2 presents the results of the ANN model. 

 

Table 3.2 Results of ANN model 

Validation Error 0.00451 

No. of Neurons 13 

MSE in RUL Cycles 1256 

Average Score 130 

 

Study of the Effect of Initial Wear: As the data was subjected to unknown initial 

wear, it is important to study the effect of the same on the prediction accuracy. 

Statistical control chart technique is used to screen the data with abnormal initial 

wear. Statistical control charts are generally used to monitor variables data from 

production machinery and identify the presence of abnormal process behavior 

because of chance causes [48]. 

In the present case, time to failure of units is considered as the variable monitored 

through control chart.  ̅ and R chart is used in the present study. Figure 3.3 shows 

 ̅ and R chart obtained for the given data. Statistical control limit on  ̅ chart are: 

upper control limit = 275 and lower control limit = 146. Thus after removing units 

that fall above or below the control limit on  ̅ chart; 187 units are obtained for 

further analysis. These 187 units are further divided into training set (137 units) 

and test set (50 units). 
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Figure 3.3  ̅ and R chart 

Table 3.3 shows the results of ANN model applied after screening of sample data. 

On comparing the results of table 3.2 and 3.3, it can be concluded that the 

prediction performance is significantly affected by the presence of the abnormal 

initial wear in the data. Hence, adequate measures should be taken before 

maintenance planning to handle such effects. 

Table 3.3 Results of ANN model after screening abnormal initial wear samples 

Validation Error 0.00306 

No. of Neurons 13 

MSE in RUL Cycles 708 

Average Score 14 

 

Guidelines to Handle the Effects of Initial Wear: As the presence of abnormal 

initial wear in the data may lead to poor prediction performance, the same needs 

to be quantify as accurately as possible. However it may not be possible many 

times to quantify such initial wear. In such cases updating the prediction with age 

of the component will be useful; as the prediction accuracy late in the life of the 

unit is more important than that early in its life. This will more likely affect the 

decision on whether or not preventive replacement should be performed at the 

current inspection point [37]. To investigate the prediction accuracy late in the 

unit life, we tested the prediction performance of units which have completed less 
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than 50% of its life and which have completed more than 50% of its life. Table 

3.4 indicates that the units which have completed less than 50% of its life have 

very high MSE and average score. On the other hand units which have completed 

more than 50% of its life have very low MSE and average score. Thus, a unit with 

short history tends to produce great uncertainty or variance, which results in 

unreasonably long or short estimation. The RUL prediction becomes more 

accurate when it is close to the failure time. Thus, continuously updating the RUL 

prediction will help in reducing the effects of abnormal initial wear on CBM 

planning. 

Table 3.4 Accuracy late in the life of the unit and early in its life 

ANN Model 1 

MSE in RUL Cycles 

(>50%) 

535 Count 

27 

AverageScore (>50%) 32  

MSE in RUL Cycles 

(<50%) 

1885 Count 

31 

Average Score (<50%) 221  

 

3.4 Summary 

This chapter has presented an ANN approach for RUL prediction of an aircraft 

engine under unknown initial wear. Two ANN models were developed. First 

model uses complete data which have unknown initial wear, while the second 

model is developed after removing samples with abnormal initial wear. The 

statistical quality control  ̅and R chart was used to screen the samples with 

abnormal initial wear.  

It is evident from test results that a unit with abnormal initial wear significantly 

affects the RUL prediction performance. It is also concluded that RUL estimation 

of a unit with short history tends to produce great uncertainty which leads to 

inaccurate prediction. Hence, updating the RUL prediction is the key to effective 

CBM planning. 
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Chapter 4 

Multiple Failure Behaviour Identification and Remaining Useful 

Life Prediction of Ball Bearings 

 

4.1 Problem Description 

The bearing degradation data used in this research is taken from the PRONOSTIA 

platform (figure 4.1), which is an experimental platform used for testing and 

validation of diagnostic and prognostic approaches for rolling bearings. These 

data are used for this study with permission from IEEE PHM 2012 committee 

[49]. It can be seen from figure 4.1 that two accelerometers are mounted in the 

test platform to measure the vibration signals in horizontal and vertical direction. 

These accelerometers measure raw vibration signals at an interval of 10 seconds 

and with a sampling frequency of 25.6 kHz. It means 2560 data points are 

available at an interval of 10 seconds. When the amplitude of the vibration signal 

over passed 20g, the tested bearings were deemed failures. 

 

Figure 4.1 PRONOSTIA Platform 

 

Data used in this work corresponds to the failure of the seven bearings under the 

operating conditions of 1800 rpm and 4000N. The failure time for each bearing is 

shown in table 4.1. All these bearings are run till failure, i.e., the defects are not 
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seeded on the bearings. Thus, the bearings may fail due to any of the possible 

failure modes like failure of balls, rings or cage or their combinations. The 

presence of these failure modes resulting into multiple failure behaviour or 

patterns in life test data obtained from various units. Such data are very common 

in real industrial fleet. It is therefore required to identify the presence of multiple 

information in the data which is in the present case, is primarily due to presence 

of the multiple failure modes.   

Further, small amount of training data and high variability (1h to 7h) in 

experimental duration poses additional challenges in failure prediction. Thus, the 

problem handled in this research was how to reduce the noise because of presence 

of the multiple failure modes and make accurate prediction of RUL. 

 

Table 4.1 Time to failure for each bearing 

Bearing ID 1 2 3 4 5 6 7 

Time to 

failure 

(Second) 

28030 8710 23750 14280 24630 24480 22590 

 

4.2 Proposed Methodology for RUL Prediction 

Figure 4.2 represents the flow chart of the present methodology. Experiment and 

data collection step is already discussed in section 4.1. The all other steps mention 

in the flow chart is discussed hereunder: 

4.2.1 Feature Selection 

The vibration data is very important to predict the health of the roller ball bearing; 

because both amplitude and the distribution of vibration signal change as bearing 

reaches close to failure. But, the raw vibration data obtained from the sensors is 

not suitable to represent the bearing degradation. Features are generally extracted 

from the raw data to get the relevant information about component degradation. 

Previous studies show that Root Mean Square (RMS), peak, kurtosis, skewness 

and crest factor are the major time domain features to represent any component 

failure using vibration signals [11, 12].The first two parameters reflect the 

vibration amplitude and energy in time domain; next three parameters represent 
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the time series distribution of the signal in time domain. Table 4.2 contains the 

mathematical description of all the features.  

From table 4.2, the parameter peak is used to represent the maximum excursion of 

the signal from the zero or equilibrium point. RMS is used to detect the imbalance 

in rotating machinery. However, RMS is not enough sensitive to detect incipient 

faults in particular. Crest factor is generally used to detect the changes in signal 

pattern due to impulsive vibration sources such as defect on the outer race of the 

bearing or a tooth breakage on the gear [50]. Kurtosis describes the impulsive 

shape of the signal and measures the peakdness of the signal. Skewness is the 

measure of the asymmetry of the probability of a signal about its mean. 

Thus, the features mentioned above represent bearing degradation from different 

perspective. However, if all these features have been taken as input parameters to 

the model; then it may result into model over fitting. Over fitting means during 

training the model performance is good but during testing model performance is 

significantly worse. It generally occurs because of complexity in the model i.e. 

such as having too many parameters relative to the number of observations. Thus, 

before using these features as input parameters to the model, it is desirable to 

select the best bearing degradation indicative features from the feature set and 

remove the less indicative features to improve the model accuracy.  
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Figure 4.2 Proposed RUL prediction approach 

 

Table 4.2 Feature parameters 
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where xi is a signal series for i = 1, 2, 3… N and N is the number of data points.  ̅ and 

    are the mean and standard deviation of the signal respectively.  

 

Conventional regression analysis has been used to select the most appropriate 

features. P value has been considered for best feature selection during model 

formation. P value is the probability of observing a sample statistic as extreme as 
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the test statistic. The test statistic has been considered here is chi- square test. The 

chi –square value is mathematically represented as:  

            ∑
       

 

  
   

 

   

 
(4.1) 

where,    is the observed value of the event i and    is the expected value of the 

event i.  

This test is mainly used to compare observed data with data we would expect to 

obtain according to a specific hypothesis. If    is the null hypothesis (i.e. no 

relationship between input and output parameters) and    is the alternate 

hypothesis (i.e. some relationship between input and output parameters) then p 

value is defined as probability of obtaining observed sample results using chi-

square test when the null hypothesis is actually true. It means low value of p 

indicates that alternate hypothesis is true and some relationship is present between 

the input and output parameters. 

In the present example, the features with p value less than 0.05 are considered for 

model formation. RMS and kurtosis were found as best features for model 

formation. 

4.2.2 Multiple Failure Behaviour Identification 

The data provided by the PRONOSTIA platform are different because it 

corresponds to “normally” degraded bearings.  It means the bearing defects (rings, 

balls and cage) are not initially initiated and any type of failure (balls, rings and 

cage) or their combinations can occur. Therefore, it is necessary to separate out 

the bearings with different failure mode. Clustering and CPDA is discussed in the 

next section is used for the same. 

4.2.2.1 Clustering Approach 

Clustering is an unsupervised learning algorithm and it can be directly applied to 

measured vibration data. Thus, it simply eliminates the need of the training data 

from the defective bearing. Clustering in general groups the similar data in to 
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same cluster and divides dissimilar data in to different clusters by using some 

predefined criteria. Among various types of clustering algorithms, present study is 

using hierarchical clustering [44]. Following are the steps generally performed for 

hierarchical clustering: 

 At starting assume each observation as its own cluster and calculate the 

initial cluster distance by using squared Euclidean distance between cluster 

points: 

     ({  } {  })             
  (4.2) 

 Nearest clusters are merged after calculating the distance between each 

cluster and all other clusters 

 At each step after merging, find the pair of clusters which leads to 

minimum increment in total with in clusters variance.  

 If there are n observations, this process is repeated n-1 times until there is 

only one large cluster. 

As information about number of failure behaviour is not available, to get the 

optimum number of failure behaviour (clusters) in the data; clustering approach is 

optimized using silhouette width value algorithm. The algorithm is discussed here 

under. 

4.2.2.1.1 Silhouette Width Approach 

Silhouette width approach calculates the difference between within- cluster 

tightness and separation from the rest [51]. Mathematically silhouette width s(j) 

for entity i € M is calculated as: 

     
         

               
 

(4.3) 

where, a(j) is the average dissimilarity of j with all other data and b(j) is the 

minimum of the averages dissimilarity of j to any other cluster. 
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Its value lies between -1 and 1. -1 signifies the entity is misclassified, 1 signifies 

that set M is well clustered and near to zero means that the entity may belong to 

another cluster as well. Higher average silhouette width value of individual 

entities represents high closeness of the entities with in a cluster and high 

separateness between clusters. Thus highest value of average silhouette width is 

desirable.  

 

  

  

Figure 4.3 Silhouette width values for different number of clusters 

 

For the present example, the average silhouette width values found with two, 

three, four and five number of clusters are 0.6637, 0.7183, 0.6055, and 0.6054 

respectively. The largest average silhouette width is with three numbers of 

clusters. From silhouette plot also, it can be seen that in comparison of other 

number of clusters; with three numbers of clusters the entity in clusters are well 

grouped and for almost all of them silhouette width value is greater than zero. It 
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means high tightness in the clusters and they are well separated from each other. 

Thus, the best number of clusters for the current data set is three. 

With three numbers of clusters, figure 4.4 shows the results obtained from the 

hierarchical clustering. The relationship of each bearing with different clusters is 

clearly displayed in figure 4.4. Result indicates that bearing 1, 2, 3and 4 clearly 

belong to one cluster and 5 and 7 may have some overlap or confusion with 

cluster 2 and 3. Similarly, bearing 6 may go in cluster 1 and 2 both. To overcome 

this confusion Change Point Detection Algorithm (CPDA) is used.       

 

Figure 4.4 Hierarchical clustering approach 

 

4.2.2.2 Change Point Detection Algorithm 

Change point analysis is the process of detecting any kind of distributional change 

within a time series, i.e., point at which the statistical properties of a sequence of 

observations change [52]. 

For a finite time series data           , a change point is said to occur when 

there exists a time,     {       } such that the statistical properties 

of {       } and {         } are differ in some way. So, for multiple 

change points in data, we will have c number of change points together with their 

positions,       {       }. The detection of a change point can be placed as 

a hypothesis test. The null hypothesis    corresponds to no change point (c = 0) 

and the alternative hypothesis    is a single change point (c = 1). Consequently c 
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change points will split the data into c + 1 segment, with the      segment 

containing              .  

R (version 3.1.1) script is written to solve CPDA. For analysis change in mean 

and variance has been considered. Four change points in the bearing vibration 

signal are observed. Two different types of degradation pattern are found in the 

data set, i.e., gradual failure and abrupt failure based on the change points. 

Gradual failure was observed in bearing 1, 3 and 4 and abrupt failure was 

observed in bearing 2, 5, 6 and 7. For example, from table 4.3 and 4.4, as bearing 

1, 3 and 4 approaches to the failure state, the observed vibration signals showed 

very high variation, i.e., variance and high amplitude, i.e., mean. These 

parameters (i.e. change in mean and variance) values continuously increase as we 

move from 2
nd

 change point to 3
rd

 change point and 3
rd

 change point to 4
th

 change 

point (drastic change in mean and variance both happened). 4
th

 change point is the 

point of occurrence of failure. Whereas in bearing 2, 5, 6 and 7 such type of 

scenario is not observed and their parameter values are almost constant till third 

change point and suddenly large change was observed in these values from 3
rd

 

change point to 4
th

 change point. Similar pattern can be seen from figure 4.5, 

where change points in time series for each bearing are highlighted by horizontal 

lines.      

Table 4.3 CPDA mean results 

 

 

Bearing 

ID 

1
st
 Change 

Point (Time) 

2
nd

 Change 

Point (Time) 

3
rd

 Change 

Point (Time) 

4
th

 Change Point 

(Failure Point) 

1 0.366 (14500) 0.72 (23720) 1.26 (27480) 3.67 (28030) 

2 0.465 (170) 0.34 (7380) 0.38 (8260) 1.32 (8710) 

3 0.369 (13340) 0.55 (16680) 0.95 (21230) 2.55 (23750) 

4 0.42 (2880) 0.38 (10850) 3.96 (12680) 7.61 (14280) 

5 0.33 (6900) 0.28 (11020) 0.26 (24110) 0.68 (24630) 

6 0.42 (5490) 0.35 (15870) 0.36 (24190) 1 (24480) 

7 0.42 (2290) 0.33 (10890) 0.40 (22060) 1.50 (22590) 
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Table 4.4 CPDA variance results 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Bearing 

ID 

1
st
 Change 

Point (Time) 

2
nd

 Change Point 

(Time) 

3
rd

 Change Point 

(Time) 

4
th

 Change Point  

(Failure Point) 

1 3E-03 (14500) 2.4E-02 (23720) 4.9E-02 (27480) 1.26 (28040) 

2 4.2E-02 (170) 1.9E-02 (7380) 5.1E-03 (8260) 8.2E-02 (8710) 

3 7.7E-04 (13340) 6.23E-03 (16680) 4.9E-02 (21230) 3.89 (23750) 

4 4.9E-04 (2880) 3.9E-04 (10850) 2.04 (12680) 1.60 (14280) 

5 6.8E-04 (6900) 8.93E-05 (11020) 1.04E-04 (24110) 1.53E-01 (24630) 

6 8.5E-04 (5490) 6.1E-04 (15870) 6.3E-03 (24190) 3.09E-02 (24480) 

7 1.8E-03 (2290) 4.2E-04 (10890) 5.7E-04 (22060) 0.197 (22590) 
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(e) 

 
(f) 

 
(g) 

 

Figure 4.5 Graphical representation of CPDA mean and variance results 

 
 

Table 4.5 Summarize results of clustering and CPDA 

CPDA Clustering 

Failure Pattern 

(FP) 

FP1 

Bearing ID 

1, 3, 4 

Cluster 

C1 

Bearing ID 

1, 2, 3, 4 ,6 

FP2 2, 5, 6, 7 C2 

C3 

5, 6, 7 

5,7 

  

Table 4.5 summarizes the results of CPDA and clustering approach. Combining 

the results of CPDA and clustering, following observations are made.  
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 Two distinct failure behaviour or patters (FP1 and FP2) are present in the 

data which may be because of the presence of two different failure modes 

in the test bearings. Cluster1 represents one type of failure behaviour 

(FP1) whereas the bearings in cluster 2 and 3 are closer to second type of 

failure behaviour (FP2).    

 Thus, from both the approaches, it is clear that bearing 1, 3, and 4 has one 

type of failure behaviour (FP1) and bearing 5 and 7 show second type 

failure behaviour (FP2).   

 Bearing 2 does not clearly classify under any of these two types of failure 

behaviour, as clustering approach classify it in first failure behaviour and 

CPDA classify the same in second type of the failure behaviour. Thus can 

be classified as abnormal behaviour and should be removed from the 

analysis. Later it is shown that removing bearing 2 from the analysis 

actually improves the model accuracy.  

 Bearing 6 though classify under second type of failure behaviour from 

CPDA approach, the same also shows some closeness with first type of 

failure behaviour from clustering approach. Physically, this may happen if 

a component fails with one failure mode, while other failure mode is also 

initiated in it. In the next section, the implication of presence of such 

multiple failure behaviour, in model development is also highlighted.   

4.2.3 General Log- Linear Weibull Model  

Generally systems operating in harsher operating and environmental condition 

will fail at earlier times than those in milder environments. It means there are 

some additional factors that contribute to failure mode progression. These factors 

may be vibration, temperature, humidity, and pressure. The GLL-Weibull model 

was developed to estimates the effect of these different factors influencing the 

time to failures of a system. The output of the model is F  |            , which 

is the probability of failing at time„t‟, given the presence of other 

covariates           . It is a kind of covariate based model and generalization 

of Weibull – Proportional Hazard Model (Weibull-PHM).The difference between 

the equation of the GLL- Weibull and Weibull- PHM is that the life parameter is 
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moved into the denominator of the exponent in GLL-Weibull (equation 4.4 and 

4.6). The equation for Weibull-PHM can be expressed as: 

          (            ∑     
 
   ) (4.4) 

where, t is the time to failure, β is the shape parameter, ao is constant,   indexes 

the number of the covariates,    represents the coefficient for vital axis which 

defines the influence of the covariates on the failure process and xi represents the 

vector of covariates. But for GLL-Weibull it becomes: 

          ( (
 

  
)
 

) 
(4.5) 

where, η' =      ∑     
 
   . It can be rewritten as: 

          ( (
 

      ∑     
 
   

)

 

) 
(4.6) 

where, F (t) is failure probability, i.e., ratio of current time and total time. Total 

time means sum of current time and remaining useful life. So, RUL can be 

calculated as: 

RUL   = 
                   

    
                     (4.7) 

Maximum likelihood estimation is commonly used for calculating the unknown 

parameters of GLL- Weibull.  The likelihood function for GLL-Weibull is given 

by: 

L (β,  ) = ∏ (
 

  
 (

  

  
)
   

    ( (
  

  
)
 
)) 

    
(4.8) 

However, the log likelihood function is more tractable as compare to likelihood 

function. The log-likelihood function for WPHM is: 
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ln [L (β,  )] =                         ∑     
 
     ∑ (

 

  
) 

   

 
 

(4.9) 

The maximization of equation 4.9 results in the estimation of the unknown 

parameters. 

As, RMS and kurtosis were found as best features using p value, after considering 

these features the usual form of the GLL-Weibull used in current RUL prediction 

model is: 

          ( (
 

                           
)
 

)   
    (4.10) 

 

4.3 Results and Discussion 

Based on the observations from clustering and CPDA, for bearings RUL 

prediction following four models were trained here using GLL-Weibull: 

(a) Single failure behaviour model (M1): Trained with bearing 1 and 4. 

Exclude bearing 2 from the model training due to the abnormal behaviour, 

as discussed in section 3.2.2. The model is tested with bearing 3 and 

bearing 6.  

(b) Single failure behaviour model (M2): Trained with bearing 1, 2, and 4, i.e. 

including bearing 2. The model is tested with bearing 3.   

(c) Multiple failure behaviour model (M3): The failure probability density is 

obtained by integrating the failure probability density of the multiple 

failure behaviour, i.e., integrating the failure probability density of the two 

different failure behaviour presents in the data set. This model is 

developed using bearing 1, 4, 5, and 7. Exclude bearing 2 from the model 

training.  The model is tested with bearing 3 and bearing 6.  

(d) Multiple failure behaviour model (M4): This model is trained using 

bearing 1, 2, 4, 5, and 7, i.e., including bearing 2. The model is tested with 

bearing 6.  
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The distribution parameters for the GLL-Weibull model are found for above four 

cases (a, b, c and d), by using lifetime and condition monitored data. The obtained 

distribution parameters for each model are shown in table 4.6. 

 

Table 4.6 Models distribution parameters 

Parameters M1 M2 M3 M4 

   

(Intercept) 

9.43 9.35 9.34 9.35 

   (RMS) 0.0075 0.019 0.099 0.12 

   

(Kurtosis) 

0.0048 -0.004 0.0134 -0.004 

 

As from GLL- Weibull model,    and    are the coefficient of the covariates, i.e., 

RMS and kurtosis respectively, these coefficient generally represents the 

influence of the covariates on the failure process. The values of the coefficients of 

RMS and kurtosis obtained from model 1(M1) and model 3 (M3) are positive. It 

means increase in the value of the RMS and kurtosis will increase the failure rate 

of the component. Whereas, from model 2 (M2) and model 4 (M4) RMS 

coefficients is positive and kurtosis coefficients is negative. It means according to 

M2 and M4, increase in the RMS value will increase the failure rate and increase 

in the kurtosis value will decrease the failure rate. But physically, as bearings 

approach to failure state, the RMS and kurtosis both should increases. Therefore, 

it can be concluded that bearing 2 has some abnormality and should be removed 

from the analysis. Similar results were observed in section 3.2.2. The effect of 

such abnormal behaviour in data, on RUL prediction can be seen from figure 4.6 

and 4.7.  

In figure 4.6 (a), the predicted RUL is closer to actual RUL from model M1 (i.e. 

without bearing 2) compared to model M2 (i.e. with bearing 2). Similarly in 

figure 4.6 (b), though both models M3 (i.e. without bearing 2) and model 4 (i.e., 

with bearing 2) give closer RUL predictions, the error in prediction is lesser in 

model M3 (i.e., without bearing 2), as more peaks are observed in case of model 4 

(i.e., with bearing 2) near to the end life of bearing.  
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In order to get more clear picture, an error histogram is plotted as shown in figure 

4.7(a)-(d). From error histogram: with model 1 (i.e., without bearing 2), only 3% 

of time the error in RUL prediction was more than 10%. With model 2 (i.e., with 

bearing 2), 47 % of time the error in RUL prediction was more than 10%. 

Similarly, with model 3 (i.e., without bearing 2), 29 % of time the error in RUL 

prediction was more than 10% and with model 4 (i.e., with bearing 2), 45 % of 

time the error in RUL prediction was more than 10%. It means including the 

bearing 2 in any of models result in high prediction error. Thus, CPDA and 

clustering provides an important input for RUL prediction model by identifying 

such abnormal data in the sample. 

 

  

(a) (b) 

Figure 4.6. Comparative RUL prediction results of  (a) Bearing 3 with M1 and M2 

(b)  Bearing 6 with M3 and M4 

 

 

  
(a) (b) 



 

53 
 

  
(c) (d) 

Figure 4.7. Relative error histogram of (a) Bearing 3 (M1) (b) Bearing 6 (M3) (c) 

Bearing 3 (M2) (d) Bearing 6 (M4) 

 

Finally after eliminating the bearing 2 from the model, to visualize the benefit of 

segregation of the bearings with different failure behaviour; model M1 (i.e. single 

failure behaviour model) is tested on bearing 6 (i.e. bearing having multiple 

failure behaviour) and model M3 (i.e. multiple failure behaviour model) is tested 

on bearing 3 (i.e. bearing having single failure behaviour). The figure 4.8 and 4.9 

shows the results obtained from both the models on these bearings.  

From figure 4.6, 4.7, 4.8, and 4.9, it can be seen that model M1 (i.e. single failure 

behaviour model) gives good result with bearing 3(i.e. bearing having single 

failure behaviour) but worse result with bearing 6 (i.e. bearing having multiple 

failure behaviour); whereas model M3 (.e. multiple failure behaviour model) 

gives good result with bearing 6 (i.e. bearing having single failure behaviour) and 

worse result with bearing 3 (i.e. bearing having multiple failure behaviour). Thus, 

both the models gave good results only with their respective failure behaviour 

bearings and gave worse results with other failure behaviour bearings. Therefore, 

identifying the presence of multiple failure behaviour helps in improving the RUL 

prediction accuracy.  
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Figure 4.8. RUL prediction (a) and error histogram (b) plot for bearing 6 tested 

on model M1 

  

Figure 4.9. RUL prediction (a) and error histogram (b) plot for bearing 3 tested 

on model M3 

 

4.4 Summary 

The main focus of this chapter was to identify the multiple failure behaviour and 

integrate that information for efficient RUL prediction of ball bearings. Starting 

from review of prognostics modelling of individual failure behaviour, the present 

study provides an extension of prognostics analysis of a component with multiple 

failure behaviour. Condition monitoring variables provides the indirect 

information regarding the failure behaviour of each bearing. Hierarchical 

clustering and CPDA algorithm was used for the same. Combined results obtained 

from both approaches shows that before using any RUL prediction model it is 

desirable to use these approaches. These approaches will help in eliminating the 

components with abnormal behaviour in a sample and also helps in identifying the 

multiple failure behaviour present in the data set. Later it was found from RUL 

prediction model that this failure behaviour identification helped in accurate 

prediction of RUL. The model used for RUL prediction is GLL- Weibull 
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distribution. The benefit of using this distribution is that the parameter values 

obtained from the distribution helped in eliminating the bearing which gave 

wrong information after including into the distribution. The lifetime and condition 

monitor data is used to estimate the parameters of the distribution. Different 

model were developed for single failure behaviour bearings and multiple failure 

behaviour bearings. The case study shows that proposed methodology is proved 

effective in RUL prediction using the developed models. The comparative study 

also indicates that the developed models are superior in accurately predicting 

RUL with respective failure ball bearings. 
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Chapter 5 

PCA- ANN Based Approach for Roller Ball Bearings Remaining 

Useful Life Prediction 

 

5.1 Problem Description 

Roller ball bearing is one of the important components in rotating machinery. 

Research shows that the failures of bearings can produce around 40% of motor 

faults in rotating machinery [54]. The presence of these faults causes very high 

vibration and may affect the performance of other surrounding components. 

Timely prediction and elimination of these faults will help in reducing the 

downtime cost and economic loss to the customers [10]. Prognostic is the 

technology mainly used for timely prediction of these faults. Features extraction is 

the most critical step for implementation of prognostic approach as the 

effectiveness of such approach depends on the quality and sensitivity of features 

utilized to evaluate the condition and spread of the faults [10].   

The work reported in literature is focused on selecting the best feature that can 

best fit to the model. However, it is always not possible to identify the features 

which are more sensitive to the fault propagation. In addition, even though 

possible; these features are still with high dimensionality and sparse information.  

The main objective of this chapter is to fuse all these features in such a way that it 

reduce the dimensionality of the features and at the same time retain the 

sensitivity or variability of all the features. 

For that vibration signals from PRONOSTIA [49] platform is used for the RUL 

prediction of the roller ball bearings. A Multi feature fusion technique PCA has 

been implemented here to extract out the optimum set of features for the current 

RUL prediction model. As the bearing vibration signal has the non-stationary and 

non-linear characteristics, ANN based prognostic algorithm is most widely used 

for bearing RUL prediction. The same is used in the present work also. To 
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improve the accuracy of the conventional ANN model; best three principal 

components values obtained from the PCA and current time is used as input 

parameters to the model. The effectiveness of the current methodology is 

demonstrated over the conventional ANN. 

5.2 Mixture of PCA and ANN 

5.2.1 Principal Component Analysis (PCA) 

PCA is a multi-feature fusion technique. This algorithm summarizes the large set 

of correlated variables with a smaller number of representative variables [44]. 

Generally three kinds of variability exist in the data. For example we have a two 

dimensional feature set; then there is some unique variability in first feature, 

variability unique to the second feature, and common variability to both the 

features.  

The PCA approach generally transforms these two features into uncorrelated 

features while keeping the two sources of unique variation such that the total 

variation in the two features remains the same. It means PCA eliminates 

unnecessary correlations between variables or keeping the maximum variation 

among the variables with a minimum loss of information. The procedure of PCA 

implementation is describes in following sub section 

5.2.1.1 Steps for PCA Algorithm 

Suppose we have an n- dimensional data series             , where         

.Implementation of PCA will reduce this data in to k- dimensional data 

series              , where        . Following are the steps involved to 

convert this n dimensional data series into k dimensional data series. 

 Before PCA implementation, it is mandatory to perform mean 

normalization. 

   ̅   ∑  
 

 

   

 (5.1) 

Replace each   
  with the      ̅.  Now each feature has the zero mean. 
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 If it is required, perform feature scaling. Because sometime it is possible 

that different features have very different scales. Scaling means the 

variables should be centered to have mean zero and standard deviation is 

one. 

        
    

   
     ̅

          
 (5.2) 

 

 Compute the covariance matrix 

       
 

 
∑(  )(  )

 
 

   

 (5.3) 

Since,    is the matrix of order    . So, sigma will be the matrix of order     

 Now use the Singular Value Decomposition (SVD) to calculate the Eigen 

vector of the sigma matrix.  

 [     ]              
 (5.4) 

where, matrix U is used for the calculation of principal components and        . 

Now, let us suppose k numbers of principal components are required. Then select 

the first     vector of the U matrix. Now         and principal component (Z) is 

representing as below: 

  [    ]
     (5.5) 

where,      . So, these sets of k variables are uncorrelated variables and called as 

principal components.  

Principal component 1 is accounts for most variation in the data set. Principal 

component 2 is uncorrelated with the 1st and accounts for the second most 

variation in the data set. Similarly,    principal component is uncorrelated with 

principal components             and account for the    most variation in 

the data set.   
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5.2.1.2. Proportion of Variance Explained and Optimum Number of 

Principal Components 

Implementation of PCA generally loss some amount of information due to 

projection of the original features into few principal components. This amount of 

information is explained by proportion of variance.  

The major objective of the PCA is to increase the total variance among the 

data  
 

 
∑ ‖  ‖

  
    , while minimzing the average squared projection 

error  
 

 
∑ ‖         

 ‖
  

    . Proportion of Variance Explained (PVE), 

mathematically can be written as: 

       

 
 
∑ ‖         

 ‖
  

   

 
 
∑ ‖  ‖  
   

 (5.6) 

where,        [    ]    

This PVE also helps in selecting the optimum number of principal components 

required for model formation. Following are the steps involved in calculation for 

optimum number of principal components: 

 Try PCA with k=1  

 Compute          
                      

        
         

  

 Now, check if  

(  

 
 
∑ ‖         

 ‖
  

   

 
 
∑ ‖  ‖  
   

      ) (5.7) 

 

 If not, the try with k=2 and so on. 

The limit defined above can be any value but at least should be greater than 0.85.  
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5.2.2 PCA-ANN 

Due to adaptability, non-linearity, and ability of arbitrary function approximation 

artificial neural network is most widely used algorithm for RUL prediction [55]. 

Remaining useful life prediction using artificial neural network (ANN) were 

reported in many papers [36, 37, 55]. The difference is in present work instead of 

features obtained from raw vibration signal; the best principal components derive 

from those features using PCA are used as input parameters for the model. This 

helped in reducing the computational time and improving the model accuracy. 

This novel combination termed here after as „PCA-ANN‟. Figure 5.1 shows the 

basic architecture of the proposed PCA-ANN approach. 

 

Figure 5.1 The architecture of the proposed PCA-ANN approach 

 

The normalized RUL is taken as output parameter for the model, which 

mathematically is defined as: 

                       

                       
 (5.8) 

5.3 Methodology 

The RUL prediction methodology involves the training and testing of the 

proposed PCA-ANN model. Figure 5.2 shows the flow chart of proposed 

methodology. The proposed PCA-ANN approach is already discussed in previous 

section. The best set of features identification, comparative results and prediction 
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performance between the conventional ANN and PCA-ANN are discussed in next 

section. Next subsection contains the information about the data used in this 

research.  

 

Figure 5.2 Flow chart of bearing RUL prediction procedure 
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5.3.1 Data Collection 

For training and testing of proposed model bearing run to failure data has been 

taken from PRONOSTIA platform. The platform can collects both horizontal and 

vertical vibrations signals with a sampling frequency of 25.6 kHz i.e. 2560 

samples recorded at intervals of 10 seconds. Four bearing under operating 

conditions of 1800 rpm and 4000N loads were analyzed here. Bearing 1 and 2 are 

used for training of the model whereas model was tested on bearing 3 and 4. The 

tested bearing data sets are truncated run to failure data sets, and an algorithm is 

required to estimate the remaining useful life from the truncation point to failure. 

 

 

Figure 5.3 Overview of PRONOSTIA platform 

5.4 Results and Discussion 

5.4.1 Vibration Signal Analysis and Optimum Set of Features Identification  

Proper selection of features from raw vibration data is the key step for RUL 

prediction. Previous studies indicate that RMS, kurtosis, peak, skewness, and 

crest factor are major indicator of fault propagation from vibration signal [11]. So, 

these five time domain features are extracted from both horizontal and vertical 

vibration signals. The dimensions of the extracted features are now reduced using 

PCA. As mentioned already, the variance should be calculated before performing 
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PCA; for bearing 1 the calculated variance are 0.091, 91.30, 2.43, 0.37, and 7.69 

for RMS, kurtosis, crest factor, skewness, and peak respectively. It means for the 

current example, before performing PCA feature scaling is required. If we 

perform PCA on these unscaled variables, then the first principal component 

weight vector will have a large weighing for kurtosis, since that variable has by 

far the highest variance. 

To check out the optimum number of principal components in the data, iteration 

has been performed up to      principal component. As all of them are not so 

much important, first few principal components are only required to visualize or 

interpret the data. The scree plot has been plotted to check out the smallest 

number of principal components are required to explain a sizable amount of 

variation in data.  

 

Figure 5.4 Scree plot depicting the proportion of variance explained 

From figure 5.4, it can be seen that almost 90% of the variability is explained by 

three principal components and the fourth principal component explains less than 

5% variability. Therefore, three principal components have been chosen for 

further analysis. 
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5.4.2 Model Over Fitting 

Three layer (Input, hidden and output) feed forward back propagation neural 

network has been used for RUL prediction of roller ball bearings. Transig 

(Hyperbolic tangent sigmoid) is used as transfer function in the hidden and output 

layer of the current model. Levenberg Marquardt (LM) learning algorithm with 20 

numbers of neurons in the hidden layer is used to construct the model.  To see the 

effect of the over fitting in the model; in PCA-ANN model iteration has been 

made from principal component 1 to principal component 10. 

MSE was calculated in each iteration. Figure 5.5 shows how the training and 

testing MSE is changing with number of principal components. It can be seen 

with lesser number of principal components; both training and testing error are 

high but close to each other. Whereas, with more number of principal components 

training error is very low but testing error is very high, which is the indication of 

the over fitting. The minimum testing error is obtained with three principal 

components. It means three is the optimum number of principal components that 

should be used for further model development.  This results also validate the 

result obtained using PVE in sub section 5.4.1 

 

Figure 5.5 Error associated with number of principal components 
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5.4.3 Comparative Results between PCA-ANN Approach and Conventional 

ANN Approach 

Following two models are developed here for RUL prediction:  

a) Conventional ANN model: Developed using current age and five time 

domain features extracted from both horizontal and vertical vibration 

signals as input parameters to the model. Normalized RUL is taken as 

output parameter to the model. 

b) PCA-ANN model: Developed using current age and best three principal 

components obtained from the PCA as input parameters to the model. 

Normalized RUL is output for the model. 

In order to see the improvement in accuracy with PCA-ANN model over the 

conventional ANN model, following performance indices are used.  

     
 

 
∑                           
 

   

 

 

(5.9) 

       
                        

          
      

 

(5.10) 

               |    | 
(5.11) 

 

    {
                               

                              
 (5.12) 

where, MSE is the mean squared error,       is the % error and    is the score of 

accuracy. 

First three performance indices are widely used in prognostics literature and are 

self-explanatory. The score of accuracy is designed in such a way that it will give 

exponential penalty to prediction error. It is asymmetric and gives more penalties 



 

67 
 

to over prediction. Score value near to 1 indicates the highly accurate results and 

near to zero indicates worse result [49].  

Table 5.1 shows the MSE values obtained using both the approaches. Table 5.1 

clearly indicates that for conventional ANN model, testing MSE is significantly 

higher than training MSE which indicates over fitting. However, for the proposed 

PCA-ANN approach training MSE and testing MSE are almost close to each 

other. It means proposed approach reduces the over fitting of the model. 

 

Table 5.1 Comparative error estimation from Conventional ANN and PCA-ANN 

Approach Training MSE Testing MSE 

Conventional ANN 0.0007 0.023 (B3) 

0.0757 (B4) 

PCA-ANN 0.0019 0.0170 (B3) 

0.0239 (B4) 

 

Table 5.2 indicates the all other performance indices values obtained from both 

the approaches. It can be seen from table 5.2 that the RUL predicted by the 

proposed approach is better than the conventional ANN approach. It means the 

proposed PCA-ANN based approach also reduces the noise and non-linear 

characteristics of the bearing vibration signal. 

Table 5.2 RUL prediction result from Conventional ANN and PCA-ANN 

Bearing ID Actual 

RUL 

Predicted RUL % Error % Accuracy Score of 

accuracy 

3 

(PCA-ANN) 

5730 5577 2.8 97.2 0.68 

4 

(PCA-ANN) 

2890 2721 5.84 94.16 0.44 

3 

(Conventiona

l ANN) 

5730 1958 65.82 34.18 1×10
-4

 

4 

(Conventiona

l ANN) 

2890 1532.62 46.96 53.04 1.48×10
-3
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5.5 Summary 

The novelty in this work is to improve the ANN model accuracy by obtaining the 

optimum set of input parameters for the model. Conclusions drawn from this 

work are summarized here under. 

 Multi feature fusion technique PCA is used here for calculation of 

optimum set of features that can be input to the model. Benefit of using 

PCA here is that, it generally keeps the sensitivity of all the features and 

removes the unwanted noise and bias associated with combination of all 

the features.   

 With increment in number of parameters to the model, it shows high 

testing error as compare to training error. To overcome this optimum 

number of principal components were found; it helps in reducing the over 

fitting in the model. 

 Due to non-linear nature of bearing vibration signal; ANN approach is 

used for RUL estimation. The proposed approach is validated with 

experimental data of accelerated life tests of roller bearings. 

 Comparative study on both the approaches reveals that proposed PCA-

ANN approach is better than conventional ANN. It means the combine 

PCA-ANN approach is helps us in reducing the over fitting of the model.  

 The RUL predicted by the proposed methodology is much better than 

conventional ANN approach. It means proposed approach largely able to 

reduce the noise and non-linear characteristics of the bearing vibration 

signals. 

 All the prediction performances also validate the usefulness of the 

proposed methodology. 
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Chapter 6 

RBM Strategy to Optimize Forecast of a Gas Turbine Failures 

 

6.1 Problem Description 

Competition and aging of equipment‟s create two competing financial pressures 

on businesses viz., to reduce operating cost and the reduction of consequential 

cost of forced outages [56]. Proper maintenance of the machine helps in achieving 

these goals. Condition based maintenance can be used for the same. However, the 

effectiveness of the CBM depends on the accurate prediction of the future risk of 

failure of the unit.  

The objective of the work reported in this chapter is to predict future risk of the 

failure of the unit to assist in effective implementation of the CBM strategy in the 

industry. A Risk Based Maintenance (RBM) methodology is developed for the 

same.  It calculates the future risk of failure of a gas turbine power plant system 

so that the maintenance can be planned just before occurrence of failure.  

To calculate the risk, first a General Log Linear Lognormal (GLL- Lognormal) 

model, which tells about damage growth of the machine, is developed. Bayesian 

approach is then used to update the model parameters (i.e. GLL- Lognormal) on 

the basis of new inspection data (i.e. crack length) and calculate the updated risk. 

It is recommended that risk should be continuously updated with the age of the 

unit to increase the effectiveness of RBM policy. The novelty in this work is that 

the failure probability is directly dependent on observed crack length instead of 

time to failures. The whole analysis is illustrated with cap effusion plate 

inspection data of actual gas turbine system. 

 

6.2 Proposed Risk Based Maintenance Approach 

Risk based maintenance (RBM) framework is comprised of two main phases as 

shown in figure 6.1. First is the risk assessment and second is maintenance 

planning on the basis of the calculated risk [57]. The risk assessment phase 
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involves (i) identification of scope/case study (ii) Damage growth model (iii) Risk 

(normal fleet level model) (iv) Updated risk (Bayesian Approach) (v) Financial 

impact. These are discussed briefly in following paragraphs. 

6.2.1 Case Study: Heavy Duty Gas Turbine 

The purpose of Gas Turbine is to convert chemical energy of fuel into electrical 

energy. Mainly, gas turbine consists of air compressor, combustor, turbine and 

generator (figure 6.2). These four components also contain some subcomponents. 

For example, combustor consists of fuel nozzle, end covers, cap effusion plate, 

combustion liner and transition pieces. Different parts of combustor have different 

types of failure modes. Some of the historically observed failure modes in a 

combustor are liner cracks, liner bulging, thermal barrier coating spallation, fuel 

nozzle clogging, end cover braze leaking joint and effusion plate cracks [58]. In 

the present work, focus is on the failure of a cap effusion plate of a gas turbine 

(figure 6.3). Cap effusion plate acts a thermal barrier to reduce temperature and 

thermal gradients [59]. It has premixed tubes acting as shrouds for the fuel nozzle. 

For this study a fleet of GE gas turbine has been considered. 

6.2.2 Damage Growth Model 

For predicting the damage growth of the cap effusion plate General Log Linear 

Lognormal (GLL- Lognormal) model is used. A random variable is log normally 

distributed if the logarithm of the random variable follows the normal distribution. 

Because of this, there are many mathematical similarities between the lognormal 

distribution and a normal distribution.  If crack length follows lognormal 

distribution then cumulative probability of failures is given in equation 6.1. 

           (
       

 
) (6.1) 

Lognormal distribution is a two parameter distribution. It‟s characterized by µ and 

σ, which are the mean and the standard deviation of the distribution respectively. 

ɸ is the standard normal cumulative density function and L is the crack length. 
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Figure 6.1 General risk – based maintenance approach 

 

 

Figure 6.2 Block diagram of a Gas Turbine 

Power System 

Figure 6.3 Cap effusion plate cracking 

[59] 
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The probability of failure changes with exposure as well as other factors like, 

environmental and operational conditions factors. The GLL was developed to 

estimate the effect of different factors influencing the time to failures of a system. 

According to GLL, the probability of failure is affected not only by the 

operational exposure, but also by the covariates under which it operates. The 

mathematical formulation of GLL- Lognormal is given in equation in 6.2. 

            (
                                

 
)  (6.2) 

 

Where, µ = (ao+a1x1+a2x2+……………………..+anxn), ao is intercept and a1, a2 

are the coefficients for critical X‟s respectively which are correlate to failure. 

As seen from equation 6.1 and 6.2 the GLL- Lognormal has all of the properties 

of a standard lognormal, except the lognormal mean is a linear function of critical 

X‟s which are correlated to failure. For the current model critical X‟s is ln(hours). 

The usual form of the GLL- Lognormal used in current damage accumulation 

model is: 

                     (
                               

 
)   (6.3) 

Where, Lcritical is critical length above which the component is replaced.  

6.2.3 Risk Calculation 

The risk of failure is defined as the conditional probability of a part failing at 

some additional operating time ∆t, given that it has survived up to time t. So, risk 

is calculated as: 

         (      )          
            

      
       (6.4) 

Where, P (t+∆t) and P (t) are the probabilities of a crack exceeding a given limit 

at time (t+∆t) and t respectively. 
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         (                  )    

      (
                               

 
) 

(6.5) 

Risk brings together contributory elements of the business and multiple 

engineering disciplines [56]. So from business point of view financial impact is 

calculated using equation 6.6.  

                                                       (6.6) 

where, failure consequences are the downtime cost associated with the failure.  

Financial impact is used to calculate the updated inspection/maintenance schedule 

to accommodate customer demand of extending the inspection schedule of the gas 

turbine by certain hours. On the basis of financial impact decision has to be made 

whether to go for maintenance or not or by how many hours machine can be run 

safely to accommodate customer demand.  

6.2.4 Risk Updating using Bayesian Approach 

In product reliability and availability studies, Bayesian methods offer an 

intelligent way of incorporating the field experience and data, resulting in an 

overall more precise failure probability estimation. Risk calculation using General 

Log Linear Lognormal is not accurate because it does not consider field data (i.e. 

crack length), it consider only operation exposure. Purpose of using Bayesian here 

is to use inspection data (observed crack length) to calculate the unit specific risk. 

The process of Bayesian update can be repeated continuously with each 

inspection. Any Bayesian update method for a damage accumulation model 

requires a few common elements given below:- 

a) An underlying damage accumulation model characterized by some 

parameters that have some statistical uncertainty associated with them (i.e. 

GLL- Lognormal here) 
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b) Some prior information about the uncertainty around these parameters 

(Ex: σ, µ are normally distributed with known mean and variance). 

c) Some field data that will be used to modify the original σ and µ (for 

example crack length in this chapter) 

 

Using the Bayesian method, we calculate “Bayesian update factors” for the 

distribution location and scale parameters. These factors adjust the location and 

scale parameters to reflect inspection data (i.e. they simply “push” or “pull” 

distribution) and on the basis of these updated parameters future risk is calculated. 

Bayesian approach is derived from Bayes theorem and is shown in equation 6.7.  

                      
                                  

       
 (6.7) 

where, P (Hypothesis) is the prior probability of hypothesis (before taking into 

account new inspection data), P (Hypothesis/Data) is the conditional probability 

of hypothesis given new inspection data and P (Data/Hypothesis) is the 

conditional probability of data given hypothesis. 

Thus, the observations of new inspection data update information on event of 

interest. In the current model hypothesis is model parameters (i.e. µ and σ) and 

the inspection data is the crack length. So, the Bayes theorem can be rewritten for 

the present case to update the risk as shown in equation 6.8. 

                       
                            

               
 (6.8) 

Where, left hand side of equation presents the posterior distribution of model 

parameters. It applies to predict the updated risk. In the right hand side of 

equation, in numerator, first factor presents the conditional probability of 

observed data with assumed model (lifetime distribution) given parameters and 

second factor presents the prior distribution of model parameters. Denominator of 

equation is called normalizing constant which assures that posterior distribution is 
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valid probability distribution and integrates to 1. Normalizing constant causes 

computational difficulties, so Bayes formula is expressed as: 

                                                           (6.9) 

It can be written as:  

Posterior α likelihood * prior                                                                           (6.10) 

And likelihood for a lognormal distribution is given in equation 6.11:  

                     

  ∏[
 

   √  
    ( 

 

 
(
        

 
)

 

)]

 

   

 
(6.11) 

 

6.2.4.1 Main Steps for Bayesian Update Algorithm 

Consider a density function with parameters θ, written as f (θ). The observed data 

is in vector data. The fundamental rule for Bayesian inference is: 

             
                

∫                  
 (6.12) 

       
          

∫            
 

 

Where R (θ) = L (θ)/L (θ
^
) is relative likelihood and f (θ) is prior density function. 

a) From damage accumulation model i.e. Log normal distribution (with a 

known σ and µ that is not known precisely), σ and µ has a prior 

distribution with some mean and variance.  

b) Generate the    sample, θi, i=1…... N, from prior f (θ).The prior can be 

sampled from the covariance matrix used in the damage accumulation 

model. 
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c) Now calculate likelihood function with prior distribution values and 

sampled distribution values, and then pass the relative likelihood ratio 

through a statistical filter (i.e. retain the    sample value,θi, with 

probability R (θi). Do this by generating Ui, a random quantity from a 

uniform (0, 1) and retain θ if Ui< R (θi).) 

d) It can be shown that the retained sample values, say θi*………… θN*(N* 

<N), are a random sample from posterior pdf f (θ/DATA). 

e) The average of the updated distribution of σ and µ is the new best estimate 

of σ and µ, i.e. this is the new value of scale parameters that will be used 

for risk calculations 

Thus, it can be concluded that Bayesian is very useful because it can build a 

model combining physics based models, expert opinion and data. Also, it is useful 

when sufficient data is not available. But to use Bayesian approach, we need to 

understand prior distributions and model evaluation. The overview of whole 

Bayesian update algorithm is shown in figure 6.4 

 

Figure 6.4 Overview of Bayesian Algorithm 

 

6.3 Results and Discussion 

The risk estimation model is constructed based on the hours and crack length of 

cap effusion plate using fleet of a gas turbine. JMP Pro 11 software is used to 

construct GLL- Lognormal. The coefficient obtained for the model are ao= -3.1 

and a1 = 0.30 and from these coefficient the risk estimation model is created 

which is shown in equation 6.13. 

Model for DATA 

(GLL- Lognormal) 

DATA (Crack 

Lengths) 

Prior f(x) 

Likelihood L(data/x) 

Posterior  

f(x/data) 
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        (     (
                             

    
))         (6.13) 

Let critical crack length as 2.5 inch and consequence of failure be $1.5 Million. 

Now, from new inspection data set, risk can be calculated in two ways: using 

normal fleet level model (GLL- Lognormal) and Bayesian update. A program has 

been written in Matlab version 2011 to solve Bayesian approach. The results from 

both models are shown in table 6.1. Risk and financial impact are calculated. If 

we assume that the cost of planned shutdown $ 1.5 million and cost of unplanned 

shutdown is $150 million then from equation 6.6, the threshold level of risk is 

becomes 1%. It means, whenever, risk exceeds 1% then extending inspection hour 

or planned PM schedule is not desirable. In other words, based on the critical limit 

of risk as 1%, extra time a machine can be run safely can be calculated. In the 

present work, the same is obtained as 7725 hours and 7994 hours using simple 

GLL- Lognormal and Bayesian update respectively. Thus, the gas turbine can be 

made available based on the demand of the customer, for production for 269 more 

hours based on the updated risk calculation. 

Risk value from both the approaches at various intervals of time is also calculated 

(table 6.2). It can be seen at time interval of 7900 hours the risk calculated using 

the conventional approach is 1.134% whereas the risk calculated from the 

Bayesian approach is 0.952%. It means by conventional approach turbine is above 

the critical limit (i.e. 1%) whereas from Bayesian approach it is away from the 

critical limit. Therefore, according to conventional approach turbine has to be 

stopped before 7900 hours but from the Bayesian approach it can run beyond 

7900 hours also. 

Thus, for the current problem, the Bayesian approach may give extra run hours, 

when requested. Owing to the strict data control policy of GE, the exact results 

are replaced with the current table. The results in current table are scaled version 

of actual results. 
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Table 6.1: Risk analysis results (Scaled up/notional Values) 

Normal fleet level model (GLL- Lognormal) Bayesian Update 

Hours Current 

Interval 

(6500) 

Future 

Interval 

(7500) 

Hours Current 

Interval 

(6500) 

Future 

Interval 

(7500) 

µ -0.466 -0.423 µ -0.333 -0.302 

σ 1.13 1.13 σ 1.1253 1.1253 

F(l>Lcritical) 11.059% 11.793% F(l>Lcritical) 13.352% 13.948% 

P(t+dt t) 

Risk 

0.8251% P(t+dt t) 

Risk 

0.6874% 

Financial Impact 1.24 Million $ Financial 

Impact 

1.03 Million $ 

 

Table 6.2: Comparative risk analysis table at various interval of time 

Time (Hours) Risk (GLL- Lognormal) Risk (Bayesian) 

6700 0.171597 0.145435 

6900 0.339758 0.287491 

7100 0.504639 0.426337 

7300 0.666386 0.562128 

7500 0.825131 0.695009 

7700 0.981002 0.825115 

7900 1.134115 0.952569 

8100 1.28458 1.077488 

 

6.4 Summary 

The chapter presents an approach to optimize the RBM methodology using 

Bayesian algorithm on GE gas turbine. This approach not only increases the 

availability but also reduces maintenance cost. It is also found that forecast of risk 

using Bayesian is better than normal fleet level model because it consider field 

experience and data. Finally, it concluded that proposed Risk Based Maintenance 
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(RBM) approach using Bayesian update can be used to increase the availability 

and optimize the high value critical assets (i.e. Gas Turbine) while reducing 

overall maintenance costs. 
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Chapter 7 

Reliability Estimation and Life Prediction Models for Shape 

Memory Alloy Springs undergoing Thermo Mechanical Fatigue 

 

7.1 Problem Description 

Need of miniaturisation is shifted the use of conventional actuators with smart 

actuators. Conventional actuators generally produce the power in proportion to 

their volume; which reduce their application in miniature and micro applications. 

Shape Memory Alloys (SMAs) is one of the most promising materials used in this 

kind of actuator. Due to light weight, high power to weight ratio, noiseless 

operation, ease of actuation and muscle like movement; this material is seen as an 

alternative to conventional actuators such as pneumatic and hydraulic [60]. As an 

actuator SMA has the wide range of application. For example, in medical they 

used in orthodontic wire, biliary stent, regional chemotherapy, endoscopic guide 

wire; in automobiles they used for oil controller and steam tap; in construction 

they have the application in underground ventilation and static rock breaker; and 

in aerospace they are used in cryofit, frangibot and in pin puller [61].  

It was found that with continuous input stimulus or because of aging effect; the 

degradation in the mechanical properties of the SMA material occurs. This results 

in steady departure from their initial performance specifications.  Reliability is the 

concern if SMA based devices used in any critical application and a key factor for 

successful commercialization of these devices. It is a key parameter for the 

eventual prevalence of SMA as either sub- components or as a standalone product 

and it also contributes to improve the device performance. The work reported in 

literature on SMA life analysis is discussed in the following paragraph. 

Bertacchini et al. (2003) presented the fatigue behaviour of the SMA wire 

undergoing thermo mechanical cyclic loading. It was observed that with aging of 

SMA wire; spallation oxidation occurring at its surface, which damages its 

properties. This cause the formation of micro cracks and growths of these circular 
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cracks are finally responsible for the component failure [62]. Saikrishna et al. 

(2012) evaluated the functional fatigue behaviour of NiTi SMA wires obtained 

from different sources. It was found that though wires had similar transformation 

temperatures and mechanical properties; their functional fatigue behaviour upon 

thermo- mechanical cycling was at variance. This is because of difference in 

residual stresses in SMA wires which generally occurs either of thermo 

mechanical processing and/or post processing stabilization treatment [63]. Pappas 

et al. (2007) observed that the after a long period of activation (either cyclic or 

continuous) under constrained conditions the SMA material loses its ability to act 

as a force generator. Through SEM they observed that it generally occurs because 

of gradual slipping of martensite variants over the twin boundary regions which 

causes the vanishing of preferentially oriented martensite within the wire structure 

[64]. Eggeler et al. (2004) found two different fatigue behaviour of the SMA: 

structural and functional fatigue. Structural fatigue means the accumulation of 

microstructural damage during cyclic loading. Whereas, functional fatigue means 

decrease in working displacement of the SMA with increasing cycle numbers 

which also cause the change in microstructure and leads to fatigue failure [65]. 

These observed information helped to introduce a reliability model for SMA 

which is discussed in section 7.5. So far no work has been reported on reliability 

analysis of shape memory alloy. The work presented in the current chapter will 

help research engineers to develop a high performance and high reliable SMA 

device in future. 

For reliability estimation, the root cause of the failure was understood and 

experiments were performed in accelerated conditions to obtain the life time data 

in a shorter period of time. The test plan starts with applying drive conditions (e.g. 

voltage) and environment conditions (e.g. mechanical load).   From obtained data, 

degradation model is developed using GLL- Weibull distribution and its 

parameter is continuously updated with the life of the spring to improve accuracy 

in life prediction. The Bayesian approach is used for the same. The deterioration 

of material with number of cycles was also investigated using TGA and SEM. 
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This whole analysis will help in understand the internal (i.e. technology and 

design related) and external variables (i.e. operating and environmental 

conditions) affecting the life of the SMA.  

 

7.2 SMA Overview 

Certain metallic material has the properties to regain back their original shape 

from an apparent plastic deformation on the application of heat. The material 

which shows this kind of behaviour is known as Shape Memory Alloy (SMA). 

The unique property of the SMA results from a crystalline phase change known as 

“thermo-elastic martensitic transformation”. Practically SMA has two different 

phases with three different crystal structures (i.e. twinned martensite, detwinned 

martensite and austenite) [60]. Below transformation temperature it exists in 

martensite phase and above transformation temperature it exists in austenite 

phase. This shape memory effect is characterized in two different categories: one 

way shape memory effect and two way shape memory effect.  

In one way; below transformation temperature its microstructure is characterized 

by “self-accommodating twins”. During this state SMA is quite soft and deformed 

to any shape by detwinning. When it heated above the transformation 

temperature; the transformation will take place from detwinned martensite to 

austenite. At this state SMA regain its original shape and convert the material into 

its high strength austenitic condition.        In one way, cooling from austenite 

phase does not cause any macroscopic change in shape and a deformation is 

required to create the low temperature shape.  
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Figure 7.1 Shape memory alloy behaviour [60] 

 

In two way; the material can remember two different shapes: one at low 

temperature and another at higher temperature, i.e., they have the ability to 

„memorise‟ both low temperature shape and as well as high temperature shape. 

Figure 7.1 is showing the different types of behaviour of the SMA. From figure 

7.1;    is the highest temperature above which SMA is permanently deformed 

like any ordinary metallic material. So, during experimentation the actuation 

temperature given to the SMA should not go beyond   .  

 

7.3 Experimental Platform and Data Collection 

The SMA fatigue behaviour is generally characterized in three different ways 

[66]. First, fatigue by fracture due to stress or strain cycling at constant 

temperature. Second, change in physical, mechanical and memory properties due 

to pure thermal cycling through the transformation region. Third, change in 

physical, mechanical and memory properties is due to combination of thermal 

cycling through the transformation region with constant stress or strain loading.  

In most of the mechanical application third kind of fatigue behaviour is common 

and same is considered here.  For that, an experimental set up was designed and 

developed to carry out the data from starting point to till failure. Figure 7.2 and 

7.3 represents the photograph and schematic overview of the experimental set up. 
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The set up used a Laser Displacement Sensor (LDS); J- type thermocouple; 

Programmable Power Supply (PPS); external weight applied to the spring with 

the help of pulley and SMA spring.  

 
Figure 7.2 Experimental set up to characterize SMA spring actuators 

 

Figure 7.3 Schematic overview of the set up for reliability assessment 

 

The Ni-Ti SMA spring was procured to investigate the life characteristics of the 

spring. The specification of the spring used for the current case study is given in 

table 7.1. It was one way trained and contract upon actuation, i.e., application of 

voltage. External load has been applied to keep the spring in the extended 

position. The specific energy required for the phase transformation of the spring is 

supplied through PPS. PPS also helps in controlling the heating and cooling 

cycles of the springs.  
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Table 7.1 Specification of the Ni-Ti SMA spring 

Wire Diameter 

(mm) 

Mean Diameter 

of the coil (mm) 

Number of 

turns 

Solid length 

(mm) 

Actuation 

Temperature (º C) 

0.77 5.69  18 13.86 70-80 

 

At beginning of the experiment; weight is applied to the spring and keep the 

spring in extended position. After applying a voltage    to the spring through PPS; 

spring recover its original length against the gravity by lifting the weights. After 

recovery; voltage has been cut off and allows the spring to cool at room 

temperature. During cooling, the external weight applied to the spring forced to 

spring back to the deformed shape.  Number of iteration has been performed to 

calculate the time for heating and cooling of the SMA spring. It was found that for 

particular spring specification; it takes 20 seconds to complete back to its original 

position (i.e. heating) and 70 seconds for complete extension (i.e. cooling). The 

heating and cooling phase of the spring is named as actuation and release of the 

spring respectively. The combined actuation and release is the one cycle for 

reliability testing of the spring. The reduction in elongation over the number of 

cycles is the representation of the failure. The elongation of the spring was 

measured with the help of the LDS. J- Type thermocouple was attached to 

measure the temperature during actuation and release of the spring.  

The designed experimental set up has the following advantages for reliability 

analysis: 

a) The voltage can be supplied to the spring from 0 V to 6 V. So, accelerated 

life analysis can be made through supplying of different voltages to the 

spring. 

b) Mechanical load applied to the spring can be varying from 0 N to 20 N. 

By considering mechanical load as a stress factor for the spring failure an 

accelerated life analysis can be done. 

c) Spring of different stiffness parameter can be used for the analysis. So, 

model can be developed by considering stiffness as a stress factor. 
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d) Stimulus (i.e. voltage) and weight can be applied in steps for accelerated 

step reliability analysis.   

 

7.4 Experimental Results 

In this study, experiments were performed at three different voltage waveforms of 

3.5 V, 3.75 V and 4 V and at an external load of 4 N. The spring was assumed to 

failed when the elongation reaches to 0.1 mm (i.e. critical elongation =0.1 mm). 

Ten spring‟s run to failure experiment were performed at each voltage, i.e., 30 

experiments. Figure 7.4 shows the reduction in elongation with number of cycle‟s 

at all three different voltages.  
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Figure 7.4 Plot showing reduction in elongation with number of cycles 

 

From figure 7.4, at each experimental condition; it was observed that recovery 

stress or strain in spring is continuously changing with number of cycles and this 

behavior gets stabilize only after some number of cycles. The time to failure 

obtained for each spring is shown in table 7.2.  

Table 7.2 SMA springs fatigue lifetime data 

Spring ID 1 2 3 4 5 6 7 8 9 10 

Time to Failure 

(3.5 V) (Cycles) 

384 601 250 655 683 319 520 402 596 657 

Time to Failure 

(3.75 V) 

(Cycles) 

307 281 167 405 212 350 322 303 360 300 

Time to Failure 

(4 V) (Cycles) 

218 265 424 52 142 161 342 198 186 77 

 

7.4.1 Failure Diagnosis Analysis using SEM and TGA 

The cause of the spring failure is degradation in mechanical properties; same is 

investigated using Scanning Electron Microscopy (SEM) and Thermogravimetric 

Analysis (TGA). SEM is generally used to carry out the surface morphology of 

the object. TGA is monitors the mass of a substance due to gas release or 
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absorption as a function of temperature as the specimen subjected to a control 

temperature program in a controlled atmosphere [67].  

Three different analyses have been carried out here: virgin spring (i.e. run for zero 

number of cycles), deformed spring (i.e. run for 100 number of cycles) and failed 

spring (i.e. run till failure). Figure 7.5 shows the obtained image using SEM for 

all three cases.  

From figure 7.5 (a), uniform surface morphology throughout the length of the 

virgin spring is observed and with cycles of operation spring is lead to cross the 

elastic deformation (figure 7.5 (b) and figure 7.5 (c)). It means with aging, 

material is not able to retain residual strain in it and results in generation of pores 

with number of cycles. These pores are generally formed because of during 

application of stimulus SMA is generally at higher temperature and oxygen is 

entrapped into it and which ultimately makes the material brittle and leads to 

failure of the spring. The same phenomenon has been investigated using TGA 

analysis. 

The TGA plot (figure 7.6) shows the percent mass as a function of sample 

temperature. During analysis the samples are put inside the furnace in an inert 

atmosphere. All samples were heated to 300º C from room temperature with a 

heating rate of 10º C/ minute. From TGA plot, it can be seen that the failed spring 

loses the material concentration with the temperature which indicates the 

accelerated melting in comparison of virgin spring. Because in failed spring, 

oxygen gets entrapped inside the alloy, which ultimately leads to break the bond 

between Ni and Ti and material gets removed at high temperature during TGA 

from failed spring. Furthermore, Ti is responsible for the oxidation formation 

inside the alloy; because Ti has the great affinity to react with the oxygen as 

comparison to Ni. In addition, from periodic table, as we go across a period, the 

nuclear charge will increase; whereas the energy level will stay same in same 

period. It means there is a stronger and stronger attraction for the electrons for the 

metal which is farther in periodic table as compare to the nearest metal. Thus, it is 
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more and more difficult to lose electrons and consequently the reactivity of the 

metal decreases as we go from left to right across the periodic table.  

As, Ti has atomic number 22 and Ni has atomic number 28, it means based on the 

reason explained in above paragraph Ti is more reactive than Ni. Consequently Ti 

has great affinity to react with the oxygen and generally forms TiO2 or TiO4.  

 So, from TGA and SEM it can be conclude that failed spring has the higher 

oxygen entrapment which results in retardation in actuation of the SMA spring.  

The specification of the instrument used for SEM and TGA analysis is given in 

appendix-C. 

  

 (a) 

  
(b) 

 

Mag =69 X 

Mag =69 X 

Mag =1 KX 

Mag =1 KX 
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(c) 

SEM image of the surface of the SMA spring (a) virgin spring (b) deformed spring (c) failed 

spring 

 

 
Figure 7.6 TGA results comparison between virgin, deformed and failed spring 

 

7.5 Model Development for Proposed Methodology 

The current life prediction methodology is divided in two phases: offline and 

online. In offline phase, reliability prediction model is developed that can best fit 

to the available data set. In online phase, model parameter will get updated based 

on new available online information. 

Offline Phase: 

In Offline phase the approach builds a reliability model based on the observed 

data. It relies on availability of failure data that will be used to develop probability 

distributions relating to operating parameters such as cycles of operation or crack 

length or wear. These probability distributions are then used to assess probability 

Mag =1 KX Mag =284 X 

X 
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of failure for a machine or life prediction of the machine.  In general, reliability 

based methods can be categorized in following two groups: 

7.5.1 Time based Reliability Models: 

This kind of models considers the failure as a probabilistic function of time. Many 

parametric models such as Weibull, Log-Normal, Normal, Exponential, Poisson 

distributions are generally used to model the component reliability. The most 

widely used is Weibull because of its ability to accommodate different types of 

behavior such as infant mortality (i.e.     , constant failure rate (i.e.     ; 

exponential distributions) and increasing failure rate (i.e.    ; behave as normal 

distributions when     ). The reliability function for Weibull distribution is 

mathematically defined as follows: 

        ( (
 

 
)
 

) 
(7.1) 

where,   is the characteristics life parameter; which defines as the time at which 

probability of failure is      ,   is the shape parameter and „t‟ is the time to 

failure. 

7.5.2 Covariate based Reliability Models: 

In conventional reliability analysis only cycles of operations is considered as a 

factor which represent the failure. However, in many industrial applications, the 

degradation of a component is caused by one or more factors that are called 

covariates [17]. For example, degradation of a ball bearing can be affected by 

material properties, temperature, running speed and load applied on the bearing. 

Time based reliability model doesn‟t consider these additional factors. Covariate 

based reliability models are generally used to incorporate these additional factors 

in to failure distributions.  

In present case study the covariates and factor representations of spring failure, 

i.e., life parameter are found by using cause and effect relationship. During 

experimentation stimulus, i.e., voltage is found as major cause of spring failure 

which was later validated using Inverse Power Law (IPL) discussed in section 7.6, 
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i.e., with higher stimulus lesser will be life and vice versa. In effect of which very 

large reduction in elongation at less cycles of operation was observed at higher 

voltage. In section 7.4, from SEM and TGA analysis, it was also observed that 

after a long period of activation under constraint conditions SMA material loses it 

properties, i.e., cycles of operation is secondary cause of failure. 

As voltage and cycles of operation are the cause of the failure; it means they 

should be considered as covariates. Whereas, reduction in elongation is the effect 

produce because of these cause; so it should be used as a life parameter based on 

which spring failure will be decided. The following steps have been used for 

covariate based reliability model formation for the current case study. 

Step 1: Sort the elongation in a descending order, i.e.,     {            }                                                                                                                                         

Step 2: Determine the best distribution based on the log- likelihood value i.e. 

Normal, Log-normal, and Weibull etc. 

For the current example, Weibull model was found to be best model to 

characterize the spring failure. So, Generalized Log Linear Weibull (GLL-

Weibull) model has been used for reliability estimation. 

Step 3: Estimate the model parameters i.e. 

                              (7.2) 

where, ao is constant and a1, a2 are the coefficient for vital axis which defines the 

influence of the covariates on the failure process and  x1, x2, x3.......xn are the 

vector of covariates. 

Step 4: By considering elongation as the life parameter, the reliability formula 

mathematically can be expressed as:  

                  ( (
          

                      
)
  

) 
(7.3) 

where,           is the critical elongation below which the SMA has to be 

replaced. 



 

96 
 

Step 5: However, in this study spring reliability means its working displacement 

should be greater than critical elongation. Then its reliability function 

mathematically can be expressed as: 

                     ( (
 

                      
)
  

) 
(7.4) 

 

Online Phase: 

Online phase for reliability estimation is already discussed in section 1.2.3. The 

Bayesian approach is used for updating the model parameters in online phase. 

Mathematically, steps involved for online model formation are discussed 

hereunder:   

Steps for Bayesian Algorithm: 

Step 1: From offline model i.e. GLL- Weibull model (with     that is not known 

precisely and has a prior distribution with some mean and variance. For example, 

from equation 7.12: 

                                                     (7.5) 

              (7.6) 

                        (7.7) 

                  √
 [       ]

  [       ]  
             

 Step 2: Collect the new unit inspect data,i.e, elongation, number of cycles, and 

voltage 

Step 3: Use the Monte Carlo simulation to update the model parameters.  

a) Generate the random sample from prior pdf. The prior will be sample 

from the covariance matrix used in offline model. 

b) Calculate the likelihood function with the prior distribution parameters 

and sampled distribution parameters. 
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c) Calculate the relative likelihood ratio and pass it through a statistical 

filter. The values which pass the filter; retain those values. 

d) The retained sample values are the representation of the posterior pdf 

           . 

e) The average of these sample values will be the best estimate of   and 

new value of   will be used for further reliability calculation. 

The whole Monte Carlo simulation used for updating of model parameter is 

mathematically mentioned in table 7.3 and the architecture for the same is 

represent in figure 7.7. 

Table 7.3: Monte Carlo simulation for Bayesian algorithm 

for j=1:2500 

   =     *rand (2500, 1) +                                                          (Generate random sample for    

for i=1:n 

                          ∏(
      

      
 (

  
      

)

        

    ( (
  

      
)

      

))

 

   

 

 

                     [               ] 

   ∏(
          

  
 (
  
  
)
            

    ( (
  
  
)
         

))

 

   

 

Relative likelihood ratio = 
                    

                
 

u = rand (2500, 1)                                                                  (Uniform random number generation) 

if u(j) < Relative likelihood                                                                                     (Statistical filter) 

Posterior eta (k) =    (j) 

end 

end 

end 

                  Posterior eta)                                                                   (Best estimate of    ) 
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Figure 7.7 Bayesian model parameter updating approach architecture 

From above conclusion can be made that the Bayesian approach is a powerful tool 

in reliability estimation as it incorporated the field experience, data and expert 

opinion at a single place.  To show the significance of the proposed methodology 

over the conventional methodology the life prediction results are compared which 

are discussed in next section (figure 7.8).   

 

7.6 Results and Discussion 

Accelerated test conditions are typically set up by testing the  products at higher 

stress level than normal, and some parameters are always chosen as the 

accelerated stress, i.e., temperature, pressure, load, voltage, current etc. to fail the 

product more quickly without introducing unrealistic failure mechanism [68]. 

During experimentation it was observed that SMA spring exhibits early failure at 

higher stimulus, i.e. voltage or temperature. So, voltage is assumed as an 

accelerated stress and to validate accelerated life testing analysis has been made 

using Inverse Power Law (IPL), i.e., non-thermal stress [68, 69]. It 

mathematically can be expressed as: 

       
 

   
 

(7.8) 

where, L represents a quantifiable life measure, i.e., characteristics life, mean life 

etc. V represents the stress level and K & n are the model parameters to be 

determined.   
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Figure 7.8 Comparative flow chart of the conventional methodology and proposed methodology 

 

 

For the current analysis, based on likelihood values Weibull distribution was 

found as best distribution. It means       becomes the characteristics life 

parameter, i.e.,    for the model. Therefore, IPL- Weibull can be derived by 

setting         , yielding the following IPL- Weibull PDF: 

                                  
      (7.9) 
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As SMA spring degradation data is available; degradation analysis has been 

performed to remove the uncertainty in the results. The three unknown parameters 

from the PDF equations for the current data are found as:              

     and       .  

Figure 7.9 shows the spring life v/s stress plot obtained during accelerated life 

testing analysis. The center triangle in the figure represents the mean life of the 

spring at corresponding voltage. It can be seen from the plot that with the 

increasing stress spring mean life is decreasing, which is quite obvious as 

obtained during experimentation also. It means voltage is an accelerating stress 

here.   

 

Figure 7.9 Spring life v/s stress plot 

 

As from cause and effect relationship two cause of spring failure was observed, 

i.e., voltage and cycle of operation.  So, to show the significance of considering 

external parameters in model, two different models are developed. First model 

(i.e. model 2) considers cycles of operation as a covariates and second model (i.e. 

model 3) considers cycles of operation and voltage as a covariates. In addition, a 
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third model (i.e. model 1) is developed (i.e., time based reliability model) to show 

the significance of covariate based reliability model over the time based reliability 

model.   

The steps involved in each model for predicting the life of the spring is mention 

here under: 

 Calculate the unknown parameters for each model, i.e.,          for time 

based model and         ,    etc. for covariate based model. 

 Based on these parameters calculate the reliability using mathematical 

equation mentioned in section 7.5. 

 As critical elongation is 0.1 mm, now perform reverse calculation by 

consider elongation as 0.1 mm and used      and reliability got from 

previous steps. 

 Perform this step after completion of each 50 (i.e. can be any value) 

number of cycles and stop it where the obtained TTF values is coming less 

than actually it run for that number of cycles or reliability value reaches 

1%. 

 The obtained TTF value from the previous step is the final TTF value of 

the spring obtained from the model.  

Model 1: Time based reliability model 

The first five spring TTF values at a voltage of 3.5 V are used for the estimation 

of the model parameters. The obtained parameters are                    ; 

based on these parameters the reliability function can be expressed as: 

        ( (
 

      
)
   

) 
(7.10) 

By assuming 1% as the critical limit of the reliability; the obtained TTF will be 

866.72 cycles. For each spring this model will give always the TTF value of 

866.72 cycles. However, TTF can differ for similar components operating under 

the similar conditions. This can be also seen from the TTF values shown in table 
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7.2. Working with such kind of problem, covariate based reliability model is 

developed to obtained the accurate prediction of TTF. 

 

Model 2: Covariate based reliability model (Considered number of cycles as a 

covariate) 

In this model first five spring elongation data at a voltage of 3.5 V along with 

number of cycles is used to estimate the model parameters.  The obtained 

parameter values are                                 ; based on these 

parameters the reliability function can be expressed as: 

                     ( (
          

                                  
)
     

)  
(7.11) 

For model testing another five springs at 3.5 V is considered and their life was 

predicted. The tested springs results are indicate by the green line in figure 7.10.  
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Model 3: Covariate based reliability model (Considered voltage and number of 

cycles as a covariate) 

Instead of developing the different models at different environmental conditions; 

this model tries to integrate the different operating and environmental stress 

variation. So, as compared to previous model this model will considered voltage 

as additional covariates. First five spring‟s elongation data along with number of 

cycle‟s at all three different voltages is used for estimating the model parameter, 

i.e. 15 test histories is used for model formation. The obtained parameter values 

are                                           ; based on these 

parameters the reliability function can be expressed as: 

                

     ( (
          

                                             
)
       

)  

(7.12) 

 

Another fifteen springs are used for testing of the model. The life prediction 

results using this model is indicate by the green line in the figure 7.11.    

 

 

Figure 7.10 Model 2 life prediction results for different test histories using GLL- Weibull 

and Bayesian 
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In model 2 and model 3; negative values of coefficient of covariates implies that 

increase in the value of that covariates will reduce the life of the component, 

which is experimentally true also. 

However, the results obtained from the model are still far from the actual TTF, 

this may because of didn‟t consider the uncertainty with the data, i.e., covariates 

values can be differ for similar components operating under similar conditions. 

This uncertainty is modeled here by using Bayesian approach.  

Figure 7.10 (i.e. model 2) and 7.11 (i.e. model 3) shows the life prediction results 

for different test histories using Bayesian and GLL- Weibull. The life prediction 

values for different test histories obtained from both the approaches are also 

mentioned in appendix- A and appendix- B using model 2 and model 3 

respectively. 

Finally, following conclusions can be made from this overall analysis: 

 IPL validates the assumption of considering voltage as a stress factor and 

it was found that higher the voltage lesser will be the life of the spring. 

This may be because of at higher voltage; the temperature of the SMA 

spring goes very high (i.e. >140 º C at 3.5 V; >160º C at 3.75 V; >180º C 

at 4 V) as compare to actuation temperature (i.e. 70º C). At higher 

temperature chances of oxygen entrapment is high which cause the spring 

early failure at higher voltage.   

 From figure 7.10 and 7.11 it can be seen that the life prediction results 

obtained using Bayesian approach are better than GLL- Weibull 

distribution; it means uncertainty associated with data is overcome by 

Bayesian. 

 At 3.5 V of stimulus; the results obtained from model 2 and model 3 are 

approximate same. It means that it is always better to keep the external 

factors (i.e., the factors which affecting the life of the component) in the 

model otherwise separate model has to be formed for each different 

operating conditions. For example, in present case study if voltage is not 
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considered as a covariates in the model then three different models are 

required to predict the life of the spring at three different voltages. But by 

keeping voltage as additional covariates, only one model is required to 

predict the life of the spring operating at any voltage. It eliminates the 

need of three different models and also reduces the time required to 

develop the model. 
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107 
 

  

 

 

Figure 7.11 Model 3 life prediction results for different test histories using GLL- Weibull 

and Bayesian 

 

7.7 Summary 

With the increasing availability and complicated nature of real world data has 

made it look over the uncertainties associated with the data. Therefore, an 

algorithm is required which allow to model the uncertainties, allow integrating 

data from various sources, and explicitly indicate the statistically dependence and 

independence. The present work tries to consider all these requirements; so that a 

good life prediction model can be developed. First, it was assumed that voltage 

would be a good stress factor to perform the experiment at accelerated conditions. 

To validate it experiments were performed at three different voltage waveforms 

and obtained life cycle data is fitted using Inverse Power Law (IPL). From the 

analysis it was found that voltage is statistically dependent on the failure of the 

spring. Now, GLL- Weibull model is used as a life prediction model to integrate 

the information from various sources, i.e., number of cycles, voltage, and 
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reduction in elongation. The uncertainty associated with the model is modelled by 

using Bayesian approach and its performance is compared with that of an existing 

non- Bayesian model, i.e., GLL- Weibull and normal Weibull. The proposed 

approach provides approximate accurate results with very less amount of 

uncertainty and demonstrates several advantages to integrate the data from 

multiple sources to address realistic life prediction challenges.   
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Chapter 8 

Conclusions  

8.1 Summary 

The main aim of this thesis was to develop the prognostics algorithm for various 

systems or components such as gas turbine system, aircraft engine, roller ball 

bearings and SMA spring. The thesis has discussed the data driven prognostics 

approaches for prognostics of these components or systems. As discussed in 

chapter 1, in last few years this area has made considerable research interest but 

still there are some areas which require needs of development in prognostics 

model to increase the accuracy in RUL prediction. The key of the thesis is to 

developed robust algorithms capable of operating in real word environments. In 

specific from the literature following gaps are identified: 

Gap 1: There is a lack of focus on considering the effect of the data noise in the 

model. 

Gap 2: More work is required to handle the multidimensional features extracted 

from the raw data. 

Gap 3: Updating of model parameters with the age of the component or system is 

required to consider the effect of uncertainty associated with the real world 

environment.    

Gap 4: No work is done to estimate the life of the smart materials, i.e., Shape 

Memory Alloy. 

8.2 Contributions of the Thesis 

Keeping in mind above gaps, following are the original contributions made by 

this thesis to bridge the gaps:  

1. Model is developed using Artificial Neural Network (ANN) for an aircraft 

engine. Presence of unknown initial wear in the samples is the source of 

the data noise here.  ̅ and R control chart is used to screen the samples 
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with abnormal initial wear. To calculate the remaining useful life of an 

aircraft engine two artificial neural network (ANN) based models are 

developed. First ANN model developed with the help of complete data; 

while second ANN model developed after removing samples with 

abnormal initial wear in the samples. It is concluded that a unit with 

abnormal initial wear significantly affects the RUL prediction 

performance.  

2. Mechanical components are prone to failures due to several failure modes; 

resulting into multiple failure behaviour or patterns in life test data 

obtained from various units. If such failure patterns or behaviour are not 

identified and treated appropriately, the same may act as one of the 

sources for data noise and may result into poor prediction accuracy. 

Clustering and Change Point Detection Algorithm (CPDA) is used for 

identification of presence of multiple failure behaviour or patterns in the 

data. Silhouette width value is used to find out optimum number of 

clusters, i.e., failure patterns. Combined output of Clustering and CPDA is 

used for developing RUL prediction models. Separate models for single 

and multiple failure patterns are constructed using General Log- Linear 

Weibull (GLL- Weibull) distribution. Results show that identification of 

failure behaviour helps in accurate prediction of RUL. 

3. PCA-ANN based approach is developed to manage the multiple 

dimensional features in the data set. First, five time domain features were 

extracted from vibration signals and then PCA is applied because 

extracted features still with high dimensionality and spare information. 

The extracted best three principal components and current age are used for 

ANN model construction. The proposed methodology is validated with an 

accelerated bearing run to failure experiment. A comparative study is 

presented between proposed PCA-ANN and conventional ANN approach, 

and the results demonstrate the effectiveness of the proposed methodology 

for accurate remaining useful life prediction. 
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4. Risk Based Maintenance (RBM) approach is developed for calculation of 

future risk of a gas turbine. It calculates the future risk of failure of a gas 

turbine power plant system so that the maintenance can be planned just 

before occurrence of failure. To calculate the risk, first a General Log- 

Linear Weibull (GLL- Weibull) model, which tells about damage growth 

of the machine, is developed. Bayesian approach is then used to update the 

model parameters (i.e. GLL- Weibull parameters) on the basis of new 

inspection data (i.e. crack length) and calculate the updated risk.  

5. The SMA springs reliability was estimated by using life testing data from 

a sample of the springs. For that, first a novel accelerated run to failure 

experimental set up was developed to collect the life test data of Nickel–

Titanium (Ni-Ti) SMA springs. Two operating parameters can be change 

to run the experiment on accelerated conditions: External weight applied 

to spring and voltage supplied for thermal heating of the spring. Voltage is 

assumed as an accelerating stress factor for present case study and Inverse 

Power Law (IPL) is used to validate it. It was observed that functional 

fatigue of the material leads to its failure, i.e., decrease in elongation with 

number of cycles. Based on the applied stimulus, elongation and cycles of 

operation; the spring life estimating model was developed by using 

Generalized Log- Linear Weibull (GLL-Weibull) distribution. It is 

recommended that parameters of the distribution should be continuously 

updated with the age of the spring. Bayesian approach is used to update 

the distribution parameters based on new available information (e.g. 

elongation). Comparative study has been made between the results 

obtained using simple Weibull, GLL-Weibull and Bayesian approach. It 

was found that integration of GLL- Weibull distribution with Bayesian 

approach helped in accurately life prediction of the SMA spring. In 

addition, degradation in the mechanical properties of the SMA material 

with number of cycles was investigated using Thermogravimetric Analysis 

(TGA) and Scanning Electronic Microscopy (SEM). 
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In overall, it can be concludes that data noise, multidimensional features extracted 

from the raw data and updating of model parameters with component or system 

age are the key issues and should be considered during any RUL prediction model 

development. Removal of data noise helped in eliminating the components with 

abnormal bahaviour. It is also recommended that before model development it is 

always better to understand the failure behaviour of the component. Furthermore, 

reducing the size of the features extracted from the raw data helped in reducing 

the noise and over fitting during model training. In addition, after model 

development its parameter should be updated with the age of the component to 

reduce the effect of the uncertainty associated with real world environment. At the 

end, as no work is done on SMA reliability, work reported here will help research 

engineers to develop high reliable and high performance SMA device in future.  

From above discussions, it can be said that the developed methodologies has a 

number of desirable properties, which can be applied across different application 

domains. I hope this thesis can be bridge for readers to solve more PHM 

challenges.  

In addition, the research accomplished in thesis should be continued in the 

directions mentioned in next section.  

8.3 Future Scope of the Study 

Many different types of machinery health diagnosis and prognostics technologies 

have been invented and presented in research papers, but only a few have found 

their way to industrial applications. Following are the areas which need to be 

considered further during PHM model development to improve the system 

performance. 

 It was found from literature and Industrial interactions that most of the 

diagnostics and prognostics model are either based on single component or 

considering single failure at a time. But the prediction result of one 

component or one failure mode might not be sufficient to predict overall 

machinery failures. For example, the degradation of a component may 
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initiate or accelerate the failure of another component or one failure mode 

may initiate another. So models should be instituted which can combine 

the multiple failure mode information and integrate component level 

failure information. It will help in predicting the overall machine health 

condition.     

 Most of the real life systems are equipped with many sensors. Identifying 

an appropriate and optimal set of sensors and information fusion for 

diagnostics and prognostics is key for successful implementation of PHM 

in any industry. Research is required to develop such capabilities.  

 Finally, it is realized that systematic framework for implementation of 

Prognostics and Health Management (PHM) approach in industries is 

missing, which can make use of multiple information, update prediction as 

soon as new data is available, use fuzzy information, controller alarm 

information‟s, etc. A tentative system for such approach is thought of and 

is shown in figure 8.1. 



 

114 
 

 

Figure 8.1 Flow chart of the proposed methodology for future research 
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APPENDICES 

 

 

A. The life prediction results for different test histories using Bayesian and 

GLL- Weibull (For number of cycles as a stress parameter) 

 

B. The life prediction results for different test histories using Bayesian and 

GLL- Weibull (For number of cycles and voltage as a stress parameter) 

 

C. Details of the instrument used for characterization of Shape Memory 

Alloy 

 Scanning Electron Microscope 

 Thermogravimetric Analyzer 
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APPENDIX-A 

Spring ID Number of 

cycles 

TTF (GLL- Weibull) TTF (Bayesian) Actual TTF 

 

 

 

6 

50 612.2620671 597.5716815  

 

 

319 

100 597.9509394 580.9524719 

150 592.9576006 574.3570852 

200 588.2846029 568.7174253 

250 584.9395016 564.9979148 

300 542.8926228 514.8679929 

310 498.2055925 461.8052352 

318 400.833988 343.1862694 

 

 

 

 

 

7 

50 634.3657863 629.5191009  

 

 

 

 

520 

100 637.0465556 629.8824736 

150 640.8958643 631.1473882 

200 642.8716208 630.2510969 

250 640.1976538 622.7080429 

300 628.228781 600.2964682 

350 626.6770118 591.7099707 

400 622.1144839 576.916349 

450 622.5329686 569.7156678 

500 619.0216796 569.7156678 

510 597.6144114 569.7156678 

519 597.6144114 569.7156678 

 

 

 

 

8 

50 601.8985129 595.3086227  

 

 

 

402 

100 599.2069724 587.1491309 

150 602.0518765 584.0542118 

200 576.389014 543.5328029 

250 501.7303242 429.7657002 

300 494.0054125 400.0357671 

350 494.0054125 400.0357671 

400 494.0054125 400.0357671 

 

 

 

 

50 651.7725031 642.041099  

 

 

 

100 654.3616244 642.8391006 

150 656.3669316 642.7724717 

200 658.0659652 642.8502896 
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9 

250 658.670842 640.7977489  

596 300 660.9035334 641.8431121 

350 662.4281304 639.850842 

400 651.8061514 603.9009215 

450 653.4381185 603.9009215 

500 635.6324364 603.9009215 

550 635.6324364 603.9009215 

580 635.6324364 603.9009215 

595 635.6324364 603.9009215 

 

 

 

 

 

 

10 

50 644.8026429 638.7782319  

 

 

 

 

657 

100 638.1508163 634.2295084 

150 638.9371597 638.4683048 

200 633.2814199 635.9264484 

250 634.6382226 640.4114201 

300 635.5210214 641.1731908 

350 636.4365861 641.2456668 

400 612.6153292 641.2456668 

450 609.4056019 641.2456668 

500 609.7329764 641.2456668 

550 608.4455758 641.2456668 

600 606.0224294 641.2456668 

650 606.0224294 641.2456668 

656 606.0224294 641.2456668 
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APPENDIX-B 

Spring ID 

(Voltage) 

Number of 

cycles 

TTF (GLL- Weibull) TTF (Bayesian) Actual TTF 

 

 

 

6 (3.5 V) 

50 559.4992448 541.7748587  

 

 

319 

100 547.6674409 526.6740292 

150 545.0258621 523.4695726 

200 542.8465785 520.7272643 

250 541.9854932 520.5670994 

300 508.0937983 477.6195754 

310 470.6231669 430.3534767 

318 388.6346696 324.966033 

 

 

 

 

 

7 (3.5 V) 

50 580.8696983 576.0785098  

 

 

 

 

520 

100 584.5553468 576.6189442 

150 589.1672309 578.5297509 

200 591.8989969 577.9210455 

250 590.4445515 571.4896118 

300 581.1268178 551.2364736 

350 580.9808362 543.8982155 

400 578.4155851 531.2969645 

450 579.9638584 525.4080385 

500 578.4162147 525.4080385 

510 562.1245747 525.4080385 

519 562.1245747 525.4080385 

 

 

 

 

8 (3.5 V) 

50 549.4794898 528.859068  

 

 

 

402 

100 548.8525463 528.5880725 

150 553.3998363 534.8437211 

200 532.1570882 506.5863817 

250 469.0145701 426.096195 

300 466.2547859 424.2635443 

350 466.2547859 424.2635443 

400 466.2547859 424.2635443 

 

 

 

 

50 597.6989669 589.6762675  

 

 

 

100 600.8926422 593.7807378 

150 603.4129301 596.7928472 

200 605.5527806 599.5919034 
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9 (3.5 V) 

250 606.6447549 600.9419276  

596 300 609.0907651 603.925329 

350 610.8403933 606.1683109 

400 602.6167278 595.8313222 

450 604.547131 598.1101915 

500 591.3107536 581.7643009 

550 591.3107536 581.7643009 

580 591.3107536 581.7643009 

595 591.3107536 581.7643009 

 

 

 

 

 

 

10 (3.5 V) 

50 593.2350468 584.1758063  

 

 

 

 

657 

100 590.7320479 580.842973 

150 594.6158277 585.9015695 

200 593.6856834 584.6122952 

250 597.6577099 589.7934232 

300 600.9646443 593.8284788 

350 603.9780176 597.4901339 

400 594.9530495 586.2427132 

450 596.7280025 588.316138 

500 599.8835002 592.3339418 

550 602.1911751 595.3629204 

600 603.9890891 597.581854 

650 603.9890891 597.581854 

656 603.9890891 597.581854 

6 (3.75 V) 

50 489.8860926 477.7403872 

350 

100 488.4042553 475.8517125 

150 491.4633478 479.9124022 

200 494.5207257 483.8354326 

250 497.9321525 488.1382931 

300 499.6418464 490.2273769 

340 409.0082261 376.7328394 

349 409.0082261 376.7328394 

7 (3.75 V) 

50 502.0787484 492.8835733 

322 

100 496.380058 485.9230667 

150 496.2474963 485.6413793 

200 495.1611348 484.372851 

250 497.6823916 487.574763 
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300 394.0554811 351.5445952 

305 390.3387246 344.0426624 

321 390.3387246 344.0426624 

8 (3.75 V) 

50 504.1397911 492.4753148 

303 

100 504.8008797 489.7065628 

150 505.2857177 486.7976516 

200 507.4899856 486.1410292 

250 460.7300469 394.4429086 

270 430.543542 330.6943338 

280 416.5693946 300.0213823 

302 416.5693946 300.0213823 

9 (3.75 V) 

50 463.6351917 448.4449384 

360 

100 468.1505002 452.867357 

150 472.7357457 453.786489 

200 471.4033091 445.5749287 

250 459.1361586 420.1570303 

300 457.7026089 407.1481985 

350 438.1208826 360.9701725 

359 438.1208826 360.9701725 

10 (3.75 V) 

50 483.1713668 463.8454943 

300 

100 461.4661301 437.6396356 

150 464.4484611 439.994893 

200 469.0070958 441.2343234 

250 466.0340496 429.4560979 

260 451.9550266 406.7778866 

265 384.3785108 300.3700426 

299 384.3785108 300.3700426 

6 (4 V) 

50 359.5659502 342.4554013 

161 

100 259.3681919 239.7739994 

150 271.3007115 264.8853716 

152 159.6380652 147.2628929 

160 159.6380652 147.2628929 

7 (4 V) 

50 416.0465985 408.5045604 

342 
100 417.6328302 410.5609873 

150 419.4396577 412.9263811 

200 416.8213723 409.4874677 
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250 403.2328674 392.6139663 

300 400.8420607 389.1678545 

320 365.0798804 343.8869097 

341 365.0798804 343.8869097 

8 (4 V) 

50 385.2107494 370.1770792 

198 

100 385.1876461 370.1275984 

150 382.453109 366.8744413 

180 302.9350981 267.5975823 

190 256.1970207 206.6571999 

197 256.1970207 206.6571999 

9 (4 V) 

50 388.8991678 377.0735907 

186 

100 338.7457938 314.6253976 

150 293.3970018 247.3964624 

170 263.1450967 200.6934793 

185 263.1450967 200.6934793 

10 (4 V) 

50 325.8875309 314.4312612 

77 
60 180.8185065 157.519143 

65 93.45385989 67.31870134 

76 93.45385989 67.31870134 
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APPENDIX-C 

 Scanning Electron Microscope 

 
 

 

Make Carl Zesis NTS GmbH, Germany 

Model SUPRA 55 

Resolution 1.0 nm @ 15 kV 

 1.7 nm @ 1 kV 

 4.0 nm @ 0.1 kV 

Acceleration Voltage 0.1 -30 kV 

Magnification 12x – 900,000x 

Stages 5- axes Motorized Eucentric Specimen 

Stage X = 130 mm, Y = 130 mm and 

Z= 50mm, T = -3º to 70º C, R = 360º 
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 Thermogravimetric Analyzer 

 
 

 

Make Mettler Toledo, USA 

Model TGA/ DSC 1 

Temperature Range Max 1100º C 

Heating Rate 0.02 to 250 K/min 

Cooling time 20 min (1100…100º C) 

Vacuum                        >10mbar 

Measurement Range ≤ 1g/ ≤ 5g 

Power Supply 230 V, 60Hz 
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