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Abstract 

High level synthesis (HLS) has gained rapid dominance in the design flow of application 

specific computing. In HLS, design space exploration (DSE) is an indispensable part, which 

plays a vital role during design process. Due to advancement in DSE, the designing of an 

optimal digital circuit for highly complex applications has become possible. Therefore, this 

thesis proposed four novel automated DSE methodologies for designing application specific 

systems (ASP) or hardware accelerators. This thesis solves four different types of problem in 

DSE: a) Design space exploration problem for data intensive application during power 

performance trade-off by proposing a novel DSE methodology employing particle swarm 

optimization (PSO). In addition, a novel model for power metric, a novel fitness function 

used for design quality assessment, a novel mutation algorithm, a novel end terminal 

perturbation algorithm to handle boundary outreach problem during exploration have also 

been proposed through this solution. Moreover, sensitivity analysis of different PSO 

parameters such as swarm size, inertia weight, acceleration coefficient, and termination 

condition on multi objective DSE have also been presented in this solution. b) Multi-

objective DSE problem for single loop based control and data intensive application by 

proposing a novel automated methodology for simultaneous exploration of data path and loop 

unrolling factor (UF) through an integrated multi-dimensional particle encoding process 

using swarm intelligence. Moreover, to enhance exploration process an estimation model for 

computation of execution delay of a loop unrolled control and data flow graph (CDFG) 

(based on a resource configuration visited) without requiring to tediously unroll the entire 

CDFG for the specified loop value for single loop based application has also been presented. 

c) DSE problem during area performance trade-off for single loop based CDFG by proposing 

automated exploration of data path and loop UF together through PSO. d) DSE problem for 

perfectly nested loop based applications during power performance trade-off by proposing a 

novel methodology for automated exploration of architecture and UFs for nested loop using 

particle swarm optimization. Moreover, a model has been derived which  directly estimates 



the execution time of nested loop, based on resource constraint and UFs without necessity of 

tediously unrolling the entire CDFG for the specified UFs values in most cases. The proposed 

exploration approaches can be applied for designing application specific systems, standalone 

application specific integrated circuits (ASIC’s), hardware accelerators, or DSP cores. 

Results of the experiments for proposed approaches on the standard benchmarks indicated 

improvements in terms of exploration runtime and enhancement of quality of final solution 

(final cost) when compared to recent approaches. 
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Chapter 1 

Introduction 

1.1. Preamble 

As per Moore’s law, the density of transistors in an integrated circuit (IC) has been growing 

consistently since the era of 70s. Such an exponential growth envisioned to produce more 

capable and powerful devices. However, this exponential growth increased the complexity of 

the circuit even more. Although, full custom designs of ICs were possible, however, full 

custom design process was considered a tedious task. It was evident from the fact that, full 

custom designing was used to design very small chips or highly regular chips like memory. 

After recognizing this problem in its early stages, a feasible solution was to start the design 

process at a higher level of abstraction. To complement this approach, researchers in early 

80s came up with the idea of fully automated synthesis tools for layout design. As a result of 

these efforts, the design process became much simpler and helped the designers to focus on 

the logic level design. But, these solutions also fell short on several fronts. This was mainly 

due to the fact that the era saw a continued growth in circuit complexity. This increased 

design complexity, again motivated the designers to move to yet another abstraction level 

called as the register transfer level (RTL). Thus, with the development of RTL synthesis tools 

like Synopsis design compiler, RTL design was widely accepted in the 90s. The method 

received tremendous popularity, and widely employed in the industry. RT level requires the 

description of the data path & controller specified in a Hardware Description Language such 

as Verilog or VHDL, which was fed to the synthesis tool to seamlessly produce a 

combination logic network (logic level netlist). Over the years, RTL synthesis continued to 

grow. The success of RTL synthesis led the designers to think that raising the design 

abstraction to another level, i.e. the behaviour level, could enhance design productivity and 

reduce time to market. This was a perfectly viable idea and indeed bore fruitful results [1, 2, 

3, 6].  
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To enhance design productivity and reduce time to market, researchers introduced high level 

synthesis, (also known as behavioural synthesis or architectural synthesis) that is a process of 

transforming a behavioural description (in high level language) into a functionally equivalent 

Register transfer level design. The high level synthesis provides a link between behavioural 

level and register transfer level. As a result, designer could specify behaviour of an 

application in a high level language such as C, C++, JAVA etc. that provides more flexibility 

for functional verification, estimation of system’s performance and the capability to work at 

higher abstraction levels. Further, it provides chance to get benefits of high level 

transformation at higher level to produce more optimized design. On the other hand, in the 

absence of such a design process, a designer is forced to implement a RTL design, which 

indeed is a tedious task. Therefore, the current objective of research community is to provide 

facility to designer so that they can start the design process at behavioural (algorithmic) level 

and HLS tools generate a functionally equivalent optimized RTL design. 

Therefore, the objective of HLS process is not only to transform a behavioural description 

into its equivalent RTL design, but also to rapidly assess various alternatives in order 

toproduce an optimal high performance low power design, that satisfies the user constraints 

such as power, delay and area. This is possible due to advances of design space exploration 

methodology in HLS, which maintains trade-off between conflicting parameters such as 

power and performance while searching for an optimal solution of its RTL design.This 

requirement of designing a high performance circuit with least power consumption is often 

common in the area of digital signal processing, multimedia, communication and network 

processing. For example, in many embedded systems, application specific hardware (or 

application specific processors) is highly utilized for simultaneously handling the need of low 

power, low area and high performance circuit. Smart phones are one of the best examples 

where designers used these elements such as DSP cores, which provide high processing speed 

with low battery consumption (i.e. low power). Therefore, during designing of these 

elements, the efficient exploration of an optimal solution plays an important role, which 

balance conflicting metrics such as power, area and execution time, to produce high-quality 

solutions in acceptable exploration time. This process is formally known as design space 

exploration (DSE). 

A design space exploration problem consists of two orthogonal issues; first is to accurately 

evaluate design points, and second is the capability to explore all corners of the design space. 

An exhaustive search would eventually explore all corners of the design space and find an 

optimal solution for a smaller design at a cost of high exploration time, but for large and 
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complex designs exhaustive search is impractical. Therefore, the designer must balance the 

accuracy of evaluation by a more accurate evaluation model, and maximize the design space 

coverage by a better exploration algorithm. Moreover, another objective of DSE should be to 

reduce manual intervention with improving the automation process by taking intelligent 

decisions during exploration.  

Use of multi-objective algorithms is an excellent way to handle such problem; the multi-

objective algorithms have capability to handle conflicting objectives simultaneously and 

search an optimal solution which maintains trade-off amongst multiple objectives. The 

proposed method has an inclination towards yielding high quality solutions which fulfil multi 

parametric optimization requirements with its unique features for optimization. It also solves 

orthogonal issues such as exploring high-quality results in lesser exploration runtime. 

 

1.2. Overview on the Abstraction Level of Optimization 

Due to increasing complexity, the optimization process of the circuits starts from highest 

level of abstraction. In digital designs there are many abstraction levels viz. system level, 

behavioural level (algorithmic level or high level), register transfer level, logic level and 

layout (physical) level.  Optimization at higher level always gives more opportunity to 

designer to handle complex decisions at early stage, that ease the process of optimization at 

lower level which is more complex than higher level. Moreover, higher level optimization 

also provides more flexibility, productivity, and design specification awareness than lower 

level of abstraction. More specifically, for current generation of high performance, power 

intensive designs, optimization at logic/transistor level is not sufficient for efficient 

optimization due to exponential complexity of the design. Therefore, optimization at higher 

level is very crucial for current complex system. Therefore, designers are expected consider 

user goals from higher abstraction levels i.e. algorithmic level to generate high quality design 

(at RT level) and also enhance opportunity of optimization at lower level of abstraction i.e. 

logic level/transistor level.   

 

1.3. A Brief history of High Level Synthesis 

The success of compiler for high level language in 1950s, automatically gave an inspiration 

to hardware designer for generating circuit implementation from high level behavioural 

specification, due to increasing complexity of digital circuits. To the authors’ knowledge, the 



4 
 

first high level synthesis methodology CMU-DA was developed at Carnegie Mellon 

University at 1979 by Parker et.al [7, 8]. The innovative flow of CMU-DA quickly generated 

significant research interest. In subsequent years, between 1980s and 1990s, HLS has gained 

sufficient interest of researchers and several attempts such as HAL[9], Hercules [10], 

BSSC[11] introduced by researcher. Moreover, an approach presented in [34], describe a 

bottom up design technique in the synthesis of digital systems. Generally, these approaches 

break down the synthesis task into following major steps: a) code transformation b) operation 

scheduling, c) module selection and allocation d) datapath and controller generation. Several 

researchers addressed these individual problems of HLS. For example, to solve scheduling 

problem the researchers introduced list scheduling [13] and force-directed scheduling [14].  

These early researches helped to form a base for high level synthesis. However, these efforts 

were not enough for wide acceptance of HLS among designer. In 90s, as a result of 

improvement in RTL synthesis methodologies and wide adoption of RTL based designs, 

focus on development of high level synthesis became more practical. In 1995, several 

industrial tools such as Behavioural Compiler [15, 16] from Synopsis, Monet from Mentor 

Graphics [17], were introduced. The main reasons behind failure of these tools was that, these 

tools had an exhaustive nature of DSE and used HDL such as VHDL or Verilog for 

behavioural description as input, which were not well suited for modelling behaviour at a 

high level. Further, since 2000, a new generation of high level synthesis methodologies has 

been developed. Although, most of these methodologies focused on using C based languages 

for behavioural description unlike previous approaches, but lacked in advance DSE methods.  

 

1.4. Theoretical background on high level synthesis 

The process of high level synthesis (HLS) accepts the behavioural description of a system 

along with a set of user constraints and goals, and generates a register transfer level design 

which satisfies the constraints [1-4]. HLS comprises of interdependent tasks such as design 

space exploration of architecture, scheduling, allocation and binding as shown in Figure 1.1. 

HLS performs sequence of operations to transform a behavioural description into RTL 

circuit. The final RTL circuit has two segments, one is datapath circuit and another is 

controller circuit. The datapath design comprises of functional units such as multipliers, 

arithmetic logical units, storage elements (such as registers) and interconnects. The controller 

can be described in the form of control state diagram. The behavioural (algorithmic) 

description is a set of operations and data transfer between storage elementsor can be simply 
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defined as mapping between input and output of the system. The first step of high level 

synthesis is the compilation of the formal language into an internal description using 

graphical representation that contains control and data flow graph. The data flow graph states 

the input/output relation of the application and the data dependency. The data flow graph is 

defined in terms of its vertex and edges, where the vertices denote the operations and the 

edges denoted the data dependency presented between the operations. The next step of high 

level synthesis is high level transformation, which includes compiler like transformations 

such as dead code elimination, common sub expression elimination, inline expansion of 

procedure, constant propagation, and loop transformation. Then next phase is design space 

exploration. Performing design space exploration at higher abstraction level provides more 

optimal results than at lower level of abstraction, i.e. logic level or transistor level. Therefore, 

DSE becomes very crucial segment of high level synthesis for an optimized circuit. Then 

finally, to realize the RTL design, high level synthesis performs scheduling, allocation and 

binding. Scheduling involves assigning the operations to control steps. Where, a control step 

is the fundamental sequencing unit in synchronous systems, corresponding to a clock cycle. 

Allocation and binding are responsible to assign operations and data into hardware units i.e. 

functional units (such as multiplier, ALUs), storage (such as registers), and interconnects 

 
 

Figure 1.1 Basic block diagram of high level synthesis   
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(such as multiplexer and demultiplexer) and specifying their uses [2, 3, 12]. Further, the 

description of the HLS phases as follows:  

 Scheduling 

Scheduling is an important task in HLS which involves assigning the operations to control 

step. Scheduling algorithm can be broadly divided into two categories: constructive 

scheduling and iterative scheduling as given in Figure 1.2. In constructive scheduling 

scheduler starts with a node and construct a scheduling solution by assigning node 

(operation) to a control step and finally produce a scheduling solution. There are number of 

approaches under category of constructive scheduling such as, As soon as possible (ASAP), 

As late as possible (ALAP), List scheduling [86], Force direct scheduling [75], and Integer 

linear programming based scheduling[82, 83]. The ASAP scheduling process arranges the 

operations topologically according to their data or control flow. ASAP scheduling places the 

operations in the sorted order by stamping them in the earliest possible control step. The 

ALAP scheduling places the operations in the latest possible control step. These two 

algorithms are simple, yet needed in most of the advanced scheduling algorithms. The ALAP 

scheduling considers the number of steps resulting from the ASAP schedule as a latency 

constraint [5]. Moreover, the ILP-based scheduling uses the ASAP and ALAP. ILP 

minimizes cost functions in the form of power, area, and delay under resource, time or power 

constraints. The ILP-based algorithm provides an exact solution, but it is slow and has an 

exponential worst-time time complexity. It is difficult to use it for large and practical circuits 

as the formulation grows exponentially with the number of vertices [5, 82, 83]. However, 

List-based scheduling is a heuristic approach to solve the scheduling problem. The list-based 

algorithm takes a sequencing DFG and resource constraints as inputs and generates a 

scheduled sequencing DFG as output. In list scheduling, the operations available for 

scheduling are kept in a list for each control step. This list is ordered by some priority 

function such as mobility of the vertex or the length of path from the operation to the sink 

while ranking the vertices in decreasing order. An operation on the list is scheduled one by 

one if the resource needed by the operation is free; otherwise, it is deferred to the next clock 

cycle [5, 86]. Furthermore, the basic idea of force direct scheduling algorithm is to balance 

the concurrency of operations without increasing the total execution time to maximize the 

utilization of resources such that the number of required resources is minimal [5, 75]. 
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Another category of scheduling algorithm is iterative scheduling. Where designer 

starts with an initial (random) solution and iteratively updates the solution and finally 

produce an optimal scheduling solution which satisfied the user constraints such as 

power/area and latency. One of the benefit in iterative scheduling is that, designer have 

multiple scheduling solution, which are generated in intermediate steps. Mostly used iterative 

scheduling are iterative refinement [5, 86], genetic algorithm based scheduling [25, 26, 27, 

29, 81], simulated annealing based scheduling [5, 90], and ant colony based scheduling 

algorithm [37, 79].  

Simulated annealing based scheduling algorithm similar to the annealing process in 

Materials Science. In scheduling, the nodes of a DFG are analogous to the atoms, and 

temperature is analogous to the total number of available resources. The mobility of the 

nodes/vertices is dependent on the total number of available low-cost resources. Therefore, 

the simulated annealing scheduling approach explores the trade-offs among power, 

performance and area [5, 90]. 

Genetic algorithms are probabilistic search algorithms based on the principle of “survival 

of the fittest.” Genetic algorithms create a collection of scheduling solutions that evolve 

according to a quality measure based on power and delay; the evolution works on a search 

space represented by a chromosome. The algorithm improves the average fitness of a 

Scheduling 

Constructive Scheduling Iterative Scheduling 

As Soon as Possible Scheduling 

As late as Possible Scheduling 

List Based Scheduling 

Force direct Scheduling 

ILP based Scheduling 

Iterative Refinement 

Genetic Algorithm Scheduling 

Simulated Annealing Scheduling 

Ant Colony Scheduling 

Figure 1.2 Taxonomy of widely used scheduling algorithm in VLSI 
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population (collection of chromosomes) by constructing a new population through selection 

and crossover and mutation [5, 29, 81, 86]. 

In iteration refinement scheduling, the task-levels used in scheduling iteration are the 

completion times of the tasks that result from the very previous scheduling iteration. For this, 

each scheduling iteration passes its output to the next iteration to use as task-levels. The 

objective of this iterative process is to search solutions with shorter finish times as a result of 

using a more refined estimate of the task-level throughout [86, 91]. 

 

 Allocation and binding 

Allocation is the process of identifying required resources (i.e. functional unit, storage and 

interconnect) to realise the implementation of the application.Binding is the task to assign 

operation to particular resource such as computation to functional unit, storage to register and 

data transfer to interconnect. There are various algorithms present in the literature for solving 

binding process such as clique partitioning, circular-arc graph colouring or left edge 

algorithm. In clique partition approach, we analyse compatibility of two operations by "if 

operations need resources of the same type and are not scheduled in the same clock cycle thus 

operations are compatible and can use the same resources". To analyse compatibility of 

vertices/operations, a data structure called “compatibility graph” is used [5, 86, 89]. 

Moreover, in graph colouring approach, we analyse, that two operations have a conflict if 

they are not compatible. To analyse the conflicts of vertices/operations, a data structure called 

“conflict graph” is used [5, 87]. Furthermore, in the left edge algorithm, the birth time of a 

variable is mapped to the left edge, and the death time of a variable is mapped to the right 

edge. The variables are sorted in increasing order of their birth time. The first variable is then 

assigned to the first register. Then, the current register receives the next variable whose birth 

time is larger or equal to the death time of the previous variable [5, 86]. 

Therefore, high level synthesis can broadly be divided into high level transformation, 

architecture exploration, scheduling, allocation, and binding. Although all the phases are 

equally responsible for generation of optimal RTL design, but the design space exploration of 

architecture plays a key role in high level synthesis for constructing an optimal RTL circuit. 

This is because the DSE is responsible for finding optimal architecture and optimal high level 

transformation from the large design space while simultaneously maintaining trade-off 

among multiple conflicting parameters [2, 3, 4].  
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1.5. Theoretical Background on Design Space Exploration 

The Design space exploration is a procedure for analysing the various points in the design 

space to obtain an optimum design point for given behavioural description based on 

predefined user constraints [3, 32]. With the increasing complexity of digital 

circuits,conducting exhaustive analysis on the design spaceof the current generation of very 

large scale integrated designs with multi objective nature is strictly prohibited. Thus, design 

space exploration is always considered a challenging task for researchers due to duality 

among multiple objectives and parameters involved in the process. Due to its non-trivial 

nature, researchers have attempted multiple techniques to resolve this issue. For example, 

researchers in [30, 35] tried to reduce the design space into a set of Pareto optimal points. 

However, this Pareto optimal set may itself become very large for analysis and selection of an 

optimal design point for system implementation.  Moreover, distinct requirement of designs 

for different purposes makes design space exploration more complex. For example, in case of 

mobile devices, handheld devices require ASICs with low power and acceptable 

performance. On other hand, in real time systems, high performance systems require high 

speed ASICs with acceptable power consumption. 

1.6. Reasons for Studying High Level Synthesis 

With the increasing demand of low power high performance hardware accelerators used in 

embedded systems and time to market pressure, high level synthesis has gained attentions 

amongst designers. Therefore, dominance of high level synthesis has increased because of 

several reasons as discussed below [1, 2, 3, 5, 12]:  

 Continuous and reliable design flow 

The high-level synthesis process provides a continuous and reliable flow from high-level 

specifications in the form of C or SystemC to RTL description of the circuit in the form of 

VHDL or Verilog automatically with minimal manual intervention.  

 Shorter design cycle and fewer errors 

Due to automation of the design process, there has been reduction in the number of man-

power used and time to market, resulting reduction in overall cost of the chip. Moreover, 

correct design decisions at the higher levels of circuit abstraction can ensure that the errors 

are not propagated to the lower levels, which are too complex and costly to correct. 
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 Easy and flexible design space exploration  

Because a synthesis system can produce several designs in a short time, the designers have 

more flexibility to choose the better design considering different trade-offs of power, area and 

performance. Even power and performance optimization can be performed at any level of 

circuit abstraction, from system level to silicon. Thus, as the level of abstraction goes lower, 

the complexity of the circuit increases; and also reduces the degree of freedom, and thus 

opportunity of power reduction and high performance, decreases. Therefore, high level or 

behavioural level provides a better degree of freedom for design space exploration. 

 Availability of circuit technology to more people  

As design expertise is incorporated into the synthesis tools, it becomes easier for a non-expert 

to produce a chip that meets a given set of specifications. Hence, the designer can be hired at 

a lower price, which will reduce the non-recurring cost and overall design cost of the chip. 

 

1.7. Thesis Organization 

The rest of the thesis is organized as follows: Chapter 3 describes in details of the proposed 

framework for solving the design space exploration problem for data intensive application 

using particle swarm optimization during power performance trade-off. In chapter 4, describe 

proposed approach to solve the problem of automated design space exploration of datapath 

and loop unrolling factor for single loop based control and data intensive application during 

power-performance trade-off using swarm intelligence framework, while in chapter 5, solves 

the problem of simultaneous exploration of datapath and unrolling factor for single loop 

based control and data intensive application during area-performance trade-off. Moreover, 

chapter 6 describes the proposed approach for solving automated design space exploration of 

datapath and loop unrolling factors for nested loop based applications. The results of the 

proposed DSE approaches for various well known high level synthesis benchmarks indicating 

exploration time and quality improvements obtained when compared to the current existing 

DSE approach are provided in Chapter 7. Chapter 8 concludes the research work presented in 

the thesis and provides future scope of work in this area. 
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Chapter 2 

Previous Works and Thesis Contribution  

2.1. Related work 
 

The problem of design space exploration in HLS is a NP-complete problem [22, 23, 24] and 

the heuristic algorithms has been proved their ability to solve NP-complete problem, this 

motivated researchers for utilizing these algorithms to solve DSE problem. Therefore, 

researchers employed heuristic algorithms such as Genetic algorithm for solving DSE of 

architectures as well as integrated exploration problem of scheduling, allocation and binding 

in HLS. For example, in [25] and [26], authors presented a work based on problem space 

genetic algorithm (PSGA), to solve DSE problem in HLS. The authors used binary encoding 

of the chromosomes for DSE in architectural synthesis for area-latency trade-off. Moreover, 

in [27], a framework based on node priority scheme has been suggested for DSE of data paths 

in high level synthesis which maintains the trade-off between latency and area. Though the 

results are promising, but exploration process is very computationally expensive. In addition, 

authors in [28], have applied GA to solve the problem of binding and allocation in HLS. The 

authors have introduced an unconventional crossover technique depending on a force directed 

data path binding algorithm. Although, the approaches presented in [26, 27, 28] optimized 

area and latency, but failed to consider power and execution time (function of latency as well 

as cycle time for pipelined dataset), which are critical issues for modern handheld, battery 

operated high speed devices. Recently, in [29], the DSE problem was addressed by proposing 

multi structure genetic algorithm (GA), which assists in deciding Pareto fronts amongst the 

different design variances. The approach is computationally complex in nature and considers 

only static power while calculating total power. Due to inconsideration of total power and 

computationally complex nature of approach, the approach lacks to produce high-quality 

optimized results within acceptable exploration time. Furthermore, in [30], the authors have 

proposed a discrete particle swarm optimization based design space exploration in high level 

synthesis. The work partially relates the PSO with DSE problem. However, the technique 
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suffers from some major drawbacks. The authors have not considered the concept of local 

best (cognitive factor) during exploration. Further, while updating the particles’ velocity, the 

authors updated only direction (step length was kept constant). Therefore, if a particle is far 

away from an optimal solution, then algorithm required more iteration to reach near optimal 

solution. Moreover, the authors divided the swarm into sub-swarms and each objective was 

accomplished by one sub-swarm only. Hence, the technique required a large swarm size 

which may lead to heavy computation time per iteration. In the proposed approach every 

swarm explores the design space by considering all conflicting objective simultaneously. 

Moreover, authors in the [31] described an approach to solve DSE problem which is based on 

GA and weighted sum particle swarm optimization (WSPSO). The authors performed 

crossover between local/global best and current position (similar to GA) to update the 

position instead of using conventional way to update the position by velocity, which reduces 

the ability to clinically balance between exploration and exploitation. In addition, authors did 

not consider user constraints for power and execution time in the cost function, which are 

critical for hardware accelerators (computationally expensive application). In another 

research, a deterministic method was introduced in [32] based on Pareto optimal analysis. In 

this work, the design space was ordered in the form of an architecture vector design space for 

architecture variant analysis and optimization of performance parameters. But the approach 

was not completely capable to generate optimal points, due to high nonlinearity of DSE 

problem. In addition, authors in [33] have proposed machine learning method: random forest 

for DSE and introduced an experimental design which can wisely sample micro-architecture 

choices and used them for training in the learning model. However, the authors in [33] have 

not considered power and data pipelining. Furthermore in [35], authors have proposed a 

fuzzy-based DSE scheme using hierarchical criterion method. The approach is partially based 

on fuzzy logics and fuzzy sets which mimics the ordered design space for the performance 

parameters. The approach is very promising for area-delay tradeoffs as compared to other 

current approaches. However, it lacks the capability to mostly produce optimal solutions. 

Further, no promising results for power performance trade-off are presented. In another 

research, to explore the giant search space, an approach for synthesis of heterogeneous 

embedded systems by using Pareto Front Arithmetic (PFA) was proposed by the researchers 

in [36].Their approach exploited the hierarchical problem structure for searching the set of 

Pareto optimal set, but suffers from slow exploration speed and lacks concurrent 

consideration of state-of-art metrics such as power, execution time, and area. Moreover, the 

DSE problem was solved with ant colony optimization (ACO) algorithm in [37] where 
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authors handle resource and time constraints based scheduling during area latency trade-off. 

Furthermore, in [38], authors proposed a clustering based DSE algorithm which performs 

exploration of best knob settings based on high level transformation such as loop unrolling, 

function inline, array access but does not handle exploration of datapaths which is very 

crucial in HLS. Besides above the approaches presented in [25-38] are unable to handle loop 

based applications. In addition, the authors used exploration capability of evolutionary 

approach in [39] for DSE. In [39], during exploration process to asses a design point this 

approach determines circuit area by product of base circuit area and specified unrolling 

factor, in case of latency calculation, approach simply divide base latency by specified 

unrolling factor. The base area and base latency evaluated without any loop unrolling. This 

process of evaluation design point, when handle loop unrolling, is impractical for real 

application. Moreover, the selection of unrolling factor was user driven and considered only 

those unrolling factors which are multiples of loop iteration count. Although the works 

described in [27, 28, 30, 37, 38, 39] considered area and latency but failed to consider power 

and execution time (which are crucial for current power hungry hardware accelerators), due 

to which the approaches were unable to achieve high-quality optimized results. 

Additionally, there are some tools presented in academia and industry for HLS such as an 

open-source high-level synthesis tool called LegUp was proposed in [21], which is used for 

FPGA-based processor/accelerator systems. LegUp is able to synthesize C language to 

hardware, thereby providing a nice platform to perform high level synthesis. Different FPGA 

architectures are supported by this tool, and allow new scheduling algorithms and parallel 

accelerators.  Furthermore, tool such as ROCCC has also been proposed in [19], which is an 

open-source high-level synthesis tool for generating RTL structure from C. It is designed for 

kernels that perform computation intensive tasks such as DSP cores. Therefore, ROCCC 

applies to a specific class of applications (streaming-oriented applications), and is not a 

general C-to-hardware compiler, like LegUp [21]. In [18], the authors introduced SPARK 

tool for HLS. SPARK takes a behavioural description in ANSI-C as input and produces 

synthesizable register-transfer level VHDL. The shortcoming of this tool is that the unrolling 

factor for the loop is user-directed and the approach is unable to automatically determine the 

optimal combination of UF and datapath together. Further, a tool AutoPilot introduced in [40] 

addresses the problem of exploration in HLS. It performs C/C++/systemC-to-RTL synthesis. 

The scope of this tool is very limited and targeted only for FPGA’s. Furthermore, in [41], 

authors introduced a tool ‘SystemCoDesigner’ for performing area-delay trade-off that offers 

rapid design space exploration with prototyping of behavioural systemC models. Moreover, 
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there also exist some other commercial tools for HLS in the market such as GAUT [20]. 

GAUT has also caught huge attention in the electronic design automation (EDA) community. 

It takes input in the form of a C/C++ description of the behaviour description, for 

automatically generating a RTL structure based on compulsory constraint of throughput (or 

initiation interval) and clock period. Furthermore, tools such as CatapultC from Mentor 

Graphics (now acquired by Calypto) [43], Cynthesizer from Forte[44], CyberWorkBenck 

from NEC[45], Vivado from Xilinx[46] use C/C++ to describe the functional intent and 

generating Register Transfer Level (RTL) structure. Tools described in [40-46] perform 

power-performance-area trade-off but, [41, 48] handle only area-performance trade-off. The 

shortcomings of all the above tools are that, automated exploration of loop unrolling factor 

and datapath is not performed and therefore, the tools are unable to automatically determine 

the optimal combination of UF and datapath based on the conflicting user constraints. 

Most of the algorithm mentioned above, considered area and latency as parameter but did not 

consider power and execution time (which is function of latency as well as cycle time based 

on pipelining) during exploration, which are crucial for modern power efficient and high 

speed devices. Only few algorithms use static power as optimization metrics, instead of 

considering composition of dynamic and static power, due to which previous algorithm is 

unable to produce high-quality results for handheld, battery operated mobile devices. Also, 

the algorithm suffered by poor implementation runtime and there is no guarantee for always 

yielding superior design points. Moreover, only few approaches handle high level 

transformation such as loop unrolling during exploration. The approaches or tools which 

handle loop unrolling require manual intervention to decide the unrolling factor (UF) and 

some approaches consider only those UFs as potential candidates which evenly divide the 

iteration count. To the best of the author’s knowledge no publicly available tool/approach 

exists in the literature so far which automatically explores datapaths and loop unrolling 

together. Moreover automated exploration of datapaths and loop unrolling factor for nested 

loop based applications has not been taken into account by any approach/tool. Therefore, the 

DSE methodologies proposed so far suffers from: a) higher computational complexity b) 

inability to handle essential parameters such as power (average dynamic power and leakage 

power) and execution time (cycle time, latency together)for modern devices such as portable 

devices c) inability to simultaneously explore datapath and loop unrolling for single/nested 

loop based applications. The deficiencies of the above motivated us for further research and 

propose novel solutions to the aforesaid problems. These deficiencies have been gradually 

resolved through multiple phases as highlighted in this thesis: first, the efforts are made to 



15 
 

handle parameters such as power and execution time for data intensive applications by 

proposing fast and efficient DSE methodology based on particle swarm optimization. Next, 

we handle single loop based CDFGs with power- performance and area- performance trade-

off by proposing DSE approaches, which handle datapath and loop unrolling together. 

Finally, we handle nested loop based applications by proposing a DSE approach which 

handles datapath and nested loop unrolling simultaneously. 

 

2.2. Selected bio inspired framework used for design space exploration 

2.2.1. Genetic algorithm based DSE 

Genetic algorithm is one the widely used bio inspired heuristic algorithm for solving various 

NP-Complete problems of different domains.  GA is a model or abstraction of biological 

evolution inspired from Charles Darwin's theory of natural selection. In order to solve design 

space exploration problem, GA is used by the researchers in [25, 26, 27, 29].   The authors in 

[25, 26, 27, 29] solved integrated scheduling and datapath exploration problem. In these 

approaches, the chromosome has two parts: first part, which represents the scheduling 

information, while second represents the datapath information (i.e. number of functional units 

and operating frequency information). In [25, 26] authors encoded scheduling information in 

chromosomes as ‘work remaining’. Moreover, the scheduling information in [27], is encoded 

with ‘node priority’ and this node priority is defined by location in chromosome (priority 

decreases from left to right). In [29], authors used the scheduling information in chromosome 

encoded by “load factor” and used a heuristic to decode the scheduling information from 

encoded chromosome. However, in [25, 26, 27, 29], the second part of chromosome is 

encoded with max number of FU’s available during scheduling. Moreover, in [29], authors 

also considered multiple versions of the functional units during exploration process. 

Furthermore, in [25, 26, 27], the authors considered area and latency during cost calculation 

while, [29] considered power and execution time in cost calculation. In order to explore new 

solutions the approaches perform genetic operator (such as crossover and mutation) between 

two chromosomes. 

 

2.2.2. Bacterial forging based DSE 

Bacterial foraging optimization algorithm (BFOA) is a popular bio inspired optimization 

algorithm for global optimization problem [73]. BFOA is inspired by the social foraging 
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behaviour of Escherichia coli bacteria. The BFOA has been utilized by authors in [72], to 

solve design space exploration problem in high level synthesis. The framework presented in 

the [72] focused on solving design space exploration problem of datapath. The basic 

mechanisms viz. chemotaxis, replication and elimination-dispersal were imitated to explore 

new architectural solutions (resource combination) in BFOA. During the exploration process 

chemotaxis plays an important role, where process performs swim and tumble to determine 

new architectural solution. The algorithm also generates new solutions during dispersal 

process. The new solution is accepted only when new solution has better fitness than current 

fitness or has not been traversed before. Moreover, in order to determine the fitness of the 

solutions, authors used a penalty based cost function composed of area and execution time 

factors. With this cost function, authors maintained trade-off between area/power and 

execution time.  

 

2.2.3. Hybrid genetic algorithm and particle swarm optimization 

based DSE 

With the inspiration of two successful algorithms GA and PSO, the authors in [31] solved 

design space exploration problem with hybrid GA and PSO based algorithm. In this 

framework, to find new solution, crossover is performed between current position with global 

best position and local best position. Thus, to incorporate GA, crossover is performed, which 

is the basic operator of GA and to incorporate PSO, the crossover is performed between 

current position and global and local best position. In this approach, authors solved the 

integrated scheduling and datapath exploration where the encoding of the chromosome 

(combination of scheduling information and max available FUs) is adopted from [27] as 

described in the previous sections. In order to determine fitness of the solution authors’ 

evaluated latency from scheduling solution, area from maximum FU available for scheduling 

and determined power with the help of compatibility graph to determine binding information. 

The authors use weighted combination of latency, area and power during fitness evaluation. 

New solutions were determined by performing crossover between current solution and local 

best/global best solution.  

 

2.3. Background of particle swarm optimization 

The design space exploration in high level synthesis is a NP complete problem [23, 24,59]. 

As discussed in literature, the NP-complete problems can be successfully solved by heuristic 
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approaches [63 - 66]. In literature, researchers gave a lot of efforts to solve DSE in HLS 

using GA and EA, but, PSO has not been explored enough for solving DSE in HLS. It has 

been proved in the literature that there are many applications where PSO outperforms GA or 

EA [67, 68]. Therefore, investigation on the exploration capability of PSO to solve DSE 

problem in HLS is essential. 

Particle Swarm Optimization is a population based stochastic optimization technique. which 

was developed by Kennedy and Eberhart in 1995. PSO imitated the behaviour of flocks of 

birds [48, 49]. Similar to flocks of the birds, PSO searches the design space of an objective 

function by adjusting the trajectories of individual agents, called particles. The movement of 

a swarming particle consists of two major components: a stochastic component and a 

deterministic component. Each particle is attracted towards the position of the current global 

best x
gb

 and its own best location x
lb

 in history. When a particle finds a location that is better 

than any previously found locations, then it updates it as the new current best for particle i. 

There is a current best for all n particles at any time t during iterations. The aim is to find the 

global best among all the current best solutions until the objective no longer improves or after 

a certain number of iterations.  

2.3.1. PSO algorithm 

The essential steps of the particle swarm optimization can be summarized as the pseudo code 

shown in Figure 2.1. 

Let xi and vi be the position and velocity vector for particle i
th

, respectively. The position of i
th

 

particle is changed by adding the velocity to the current position as follows: 

( 1) ( ) ( 1)i i ix t x t v t   
     (2.1)

 

while the velocity is updated with the following rule: 

1 1 2 2( 1) ( ) ( ( )) ( ( ))lb gb

i i i i iv t v t b r x x t b r x x t     
   (2.2)

 

where b1 is the cognitive learning factor, b2 is the social learning factor, r1, r2 are random 

numbers in the range [0, 1],  is the best position of i
th 

particle with respect to the minimization 

problem, x
gb

 is the global best position found so far. As can be noted, the formulation of the 

problem leads to solutions which try to ’follow’ the leader’s x
gb

 position as well as attracting 

solutions versus the personal best solution of the particle .  
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2.3.2. Inertia particle swarm optimization [93] 

The inertia weight is introduced to control the exploration and exploitation ability of PSO, 

and provide a balance between the exploration and exploitation abilities during searching 

process. It has been observed that PSO produces better results when its exploration ability is 

more favoured in the early optimization stages to allow the exploration of as many promising 

areas of the search space as possible. Then, towards the end of the optimization process, the 

local exploitation ability of the algorithm should be promoted, instead, to allow for a more 

refined search around the best areas previously roughly detected [93]. This is possible by 

controlling the velocity of the particles in the later search stages. This means the effect of the 

previous velocity term, which is known as inertia factor, will gradually decrease over PSO 

iterations. Therefore, a linearly decreasing inertia weight, ω, was introduced by Shi and 

Eberhart [93], as shown in equation (2.3). In the linearly decreasing inertia weight, initially, 

ω is set to a high value, ωmax, around 0.9 in order to allow the particles to move freely, and 

quickly explore the global optimum neighbourhood [105]. In the later stages, the value of the 

inertia weight is decreased to a small amount, ωmin, around 0.4 in order to refine the search, 

and shift the optimization process from an exploratory mode to an exploitative mode [93] 

[106]. With inertia weight new velocity is updated by following eqn: 

1 1 2 2( 1) ( ) ( ( )) ( ( ))lb gb

i i i i iv t v t b r x x t b r x x t     
   2.3

 

Where ɷ is called the inertia weight, which updates based on eqn. 2.4: 

Objective function f{x), x = (x1, ...,xd) 

Initialize locations and velocity of n particles. 

Find x
gb

 from min{f(x1),f(x2)..., f(xn)} (at t = 0) 

while ( stopping criterion ) 

t = t + 1 (pseudo time or iteration counter) 

for all particle 

Generate new velocity using equation 

Calculate new locations using equation 

Evaluate objective functions at new locations 

Find the current best for each particle x
lb

 

end for 

Find the current global best particle 

end while 

Output the final results (x
gb

) and cost  

Figure 2.1 Basic particle swarm optimization algorithm 
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max max min

max

( ) ( )
t

t
t

     

     2.4
 

 

2.4. Popular population based optimization  

Other than PSO there are many population based optimization technique. Such as Genetic 

algorithm, simulated annealing, ant colony optimization, Tabu search are most popular []. 

The basic descriptions based on source of inspiration, important parameters, method to find 

new solution, control of exploration and exploitation, local minima problem, and application 

analysis are given in next sub sections. 

2.4.1. Genetic algorithm 

Genetic algorithm was proposed by Holland in 1975 [94, 95] that mimics the evolutionary 

processes in nature as explained in Darwin’s theory. Genetic algorithm employs a population 

of possible solutions to an optimization problem. Specifically, they operate on encoded 

representations of the solutions, equivalent to the genetic material of individuals in nature, 

and not directly on the solutions themselves. As in natural evolution based on Charles 

Darwin's theory, selection provides the necessary driving mechanism for better solutions to 

survive. Each solution has a fitness value (based on the fitness function of the problem) that 

reflects how good solution is, compared with other solutions in the population. The better 

fitness value of an individual solution represents the higher chance of survival and 

reproduction. Recombination of genetic material in genetic algorithms is simulated through a 

crossover mechanism that exchanges portions between encoded solutions. Another very 

important operation is mutation, has a direct analogy from nature and plays the role of 

regenerating lost genetic material. Parameters which play a vital role in the success of GA are 

population size, number of iterations, crossover probability, and mutation probability. The 

mechanism for generation of new solution depend upon selection, crossover and mutation are 

defined below: 

Selection- Parent selection emulates the survival-of-the-fittest mechanism in nature. It is 

expected that a fitter chromosome receives a higher number of offspring and thus has a 

higher chance of surviving in the subsequent generation. There are many ways to achieve 

effective selection, including ranking, tournament, and proportionate schemes but the key 

assumption is to give preference to fitter individuals.  
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Crossover- Crossover is a recombination operator that combines subparts of two parent 

chromosomes to produce offspring that contain some parts of both parents’ genetic material. 

A probability term, pc, is set to determine the operation rate.  

Mutation- Mutation is an operator that introduces variations into the chromosome. This 

variation can be global or local. The operation occurs occasionally (usually with small 

probability pm) but randomly alters the value of an encoded solution.  

The drawbacks of the GA are there is no specific method to control exploration and 

exploitation in GA. The GA is computationally expensive and less efficient for design space 

exploration problem. On other hand GA performs better for combinatorial problem such as 

scheduling problem in HLS [107, 96]. 

2.4.2. Simulated annealing 

Simulated annealing (SA) [99,100] is a random search population based technique for global 

optimization problems, which mimics the annealing process in material processing when a 

metal cools and freezes into a crystalline state with the minimum energy and larger crystal 

size so as to reduce the defects in metallic structures. The annealing process involves the 

careful control of temperature and cooling rate, often called annealing schedule. Simulated 

annealing algorithm uses Markov chain for identifying potential solutions, which converge 

under appropriate conditions concerning their transition probability. 

The basic idea of the simulated annealing algorithm is to use random search in terms 

of a Markov chain, which not only accepts changes that improve the objective function, but 

also keep some changes that are not ideal with a probability [100]. For example, in case of 

minimization problem, any better moves or changes that decrease the value of the cost will be 

accepted; however, some changes that increase cost will also be accepted with a probability 

p. This probability p, also called the transition probability, is determined by p 

    
  

    

where kb is the Boltzmann's constant, T is the temperature for controlling the annealing 

process. ΔE is the change in energy levels. 

During optimization process selection of initial temperature is very crucial parameter 

[101].  If T is too high, the system is at a high energy state on the topological landscape, and 

the minima are not easily reached. If T is too low, the system may be trapped in a local 

minimum, not necessarily the global minimum, and there is not enough energy for the system 
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to jump out the local minimum to explore other minima including the global minimum. So a 

proper initial temperature should be calculated. 

The higher temperature indicates more exploration while lower temperature indicates 

the exploitation in optimization process. Thus, cooling rate controls the exploration and 

exploitation. Therefore selection of optimum cooling rate is very crucial for convergence. 

The drawback of the simulated annealing is that SA is a computationally expensive algorithm 

and more suitable for combinatorial optimization problem. Moreover, lack of randomness 

causes local optima solution [99].  

2.4.3. Ant colony optimization 

Ant Colony Optimization (ACO) was introduced by Dorigo et al. [102, 103, 104] in 1996, it 

is a cooperative heuristic searching algorithm inspired by the ethological study on the 

behaviour of ants. It was observed that ants could manage to establish the optimal path 

between their colony and the food source within a very short period of time without vision 

capability. This is done by an indirect communication known as stigmergy via  pheromone, 

left by the ants on the paths. Though any single ant moves essentially at random, it will make 

a decision on its direction biased on the “strength” of the pheromone trails that lie before it, 

where higher amount of pheromone indicates a better path. As an ant traverses a path, it 

strengthens that path with its own pheromone. A collective behaviour emerges as more ants 

will choose the shortest trails, which in turn creates an even larger amount of pheromone on 

those short trails, which makes those short trails more likely to be chosen by future ants. The 

ACO algorithm is inspired by such observation. It is a population based approach where a 

collection of agents cooperate together to explore the search space. They communicate via a 

mechanism imitating the pheromone trails. 

The central component of an ACO algorithm is a parametrized probabilistic model, 

which is called the pheromone model. The pheromone model consists of a vector of model 

parameters called pheromone trail parameters. The pheromone model is used to 

probabilistically generate solutions to the problem under consideration by assembling them 

from a finite set of solution components. At runtime, ACO algorithms update the pheromone 

values using previously generated solutions. The update aims to concentrate the search in 

regions of the search space containing high quality solutions. In particular, the strengthening 

of solution components depending on the solution quality is an important ingredient of ACO 

algorithms. It implicitly assumes that good solutions consist of good solution components. To 

learn which components contribute to good solutions can help assembling them into better 
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solutions. In general, the ACO approach attempts to solve an optimization problem by 

repeating the following two steps:  

• Candidate solutions are constructed using a pheromone model, that is, a parametrized 

probability distribution over the solution space; 

• The candidate solutions are used to modify the pheromone values in a way that is deemed to 

bias future sampling toward high quality solutions. 

ACO belongs to the class of meta-heuristics, which are approximate algorithms used to 

obtain good enough solutions to hard combinatorial optimization problems in a reasonable 

amount of computation time [102]. To the best of author’s knowledge, ACO was used only to 

solve scheduling problem not for DSE in HLS.   

 

2.5. Objective  

The objective of this thesis is to develop fast and efficient DSE methodologies in HLS for 

application specific computing (or hardware accelerators for loop kernels) based on multi 

objective trade off. In order to realize the above aim, the following objectives have been set: 

1. Develop a methodology for proficient DSE in HLS for data intensive applications 

during power- performance trade-off that produces high quality design solutions. 

2. Develop an automated methodology for simultaneous exploration of datapath and 

unrolling factor for single loop based applications during power-delay trade-off in 

HLS. 

3. Develop an automated methodology for simultaneous exploration of datapath and 

unrolling factor for single loop based applications during area-delay trade-off in 

HLS. 

4. Develop an automated DSE framework for simultaneous exploration of datapath and 

unrolling factors for nested loop based applications during power- performance trade-

off. 

5. Design a power model which consists of dynamic and static power to analyse design 

solutions during DSE process. 

6.  Develop a delay prediction model for faster exploration process in case of single and 

nested loop based control data flow graph(CDFGs) without tediously unrolling 

CDFG loop completely. 

7. Investigate the impact of algorithmic parameters regulating the DSE process on 

performance and quality of the final solution. 
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2.6. Summary of contribution 

This thesis proposes fast and efficient design space exploration in high level synthesis based 

on multi-objective trade-off during designing of hardware accelerators for data intensive 

applications or loop kernels. 

In order to resolve the issues present in the state-of-the-art approaches (related works), the 

following contributions have been made through this research: 

 

 Solve the problem of design space exploration during power performance trade-off for 

data intensive applications. 

(Publications: J3, C6, C8, C14) 

a) Proposed a novel DSE methodology driven through particle swarm optimization 

(PSO) framework for multi-objective trade-off, capable of simultaneously improving 

Quality of Results (QoR) as well as reducing exploration time. 

b) Introduced a novel model for power metrics used during evaluation of design points 

in design space exploration process. 

c) Proposed a novel fitness function, used for design quality assessment in design space 

exploration process. 

d) Proposed a novel mutation algorithm for improving DSE convergence and exploration 

time. 

e) Propose a novel perturbation algorithm to handle boundary outreach problem during 

exploration. 

f) A novel sensitivity analysis of different PSO parameters such as swarm size, inertia 

weight, acceleration coefficient, and termination condition and its impact on the DSE. 

This analysis is expected to assist the designer in pre-tuning the PSO parameters to an 

optimum value for achieving efficient exploration results within a quick runtime. 

 

 Solve the problem of automated design space exploration during power-performance trade 

of single loop based control and data intensive applications. 

(Publications: J2, C7) 

a) Simultaneous exploration of data path and loop UF through an integrated multi-

dimensional particle encoding process using swarm intelligence which maintains 
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trade-off between power-performance metrics as well as control states and execution 

delay during loop unrolling. 

b) Proposed an estimation model for computation of execution delay of a loop unrolled 

CDFG (based on a resource configuration visited) without tediously requiring 

unrolling the entire CDFG for the specified loop value. 

c) Presented an analysis of design metrics such as power, execution time and number of 

control steps of the global best particle found in every iteration with respect to 

increase/decrease in unrolling factor. 

 

 Solve the problem of automated design space exploration during area-performance trade 

of for single loop based control and data intensive applications. 

(Publications: J4, C9) 

a) Simultaneous exploration of data path and loop UF using particle swarm optimization 

which balances the trade-off between area-performance metrics as well as control 

states and execution delay during loop unrolling. 

b) Presented an analysis of design metrics such as area, execution time and number of 

control steps of the global best particle found in every iteration with respect to 

increase/decrease in unrolling factor. 

 

 

 Solve the problem of automated design space exploration during power-performance 

trade-off for nested loop based control intensive applications. 

(Publications: J1, C10) 

a) Proposed a novel automated exploration of architecture and UFs for nested loops 

using particle swarm intelligence that in parallel maintains trade-off between 

conflicting metrics of power–performance and balance orthogonal issues by 

improving QoR and reducing the exploration runtime. 

b) Proposed a novel execution time model which directly estimates the execution time of 

nested loop based on resource constraints and UFs without tediously requiring 

unrolling the entire CDFG for the specified UFs values in most cases. 
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Chapter 3  

MO-PSE: Adaptive Multi Objective Particle Swarm 

Optimization Based Design Space Exploration in 

Architectural Synthesis for Application Specific Processor 

Design 

 

This chapter presents a fast and efficient design space exploration framework termed as multi 

objective particle swarm exploration (MO-PSE), based on particle swarm optimization 

(PSO)[48, 49, 50] algorithm in high level synthesis for data intensive application. During 

exploration process, in the proposed MO-PSE, trade-off between conflicting parameters such 

as power consumption and execution time is maintained. In addition, MO-PSE is capable to 

resolve orthogonal issues such as enhancing quality of result as well as exploration speed, 

thereby being able to produce higher-quality results in lesser exploration time than existing 

approaches. To the best of the authors’ knowledge this is the first framework that directly 

maps a complete PSO process for multi-objective DSE during power-performance trade-off 

for application specific computing in high level synthesis. Moreover, this chapter presents a 

novel power model (which considers static power as well as dynamic power) for assessment 

of a design point. Further, a novel cost model has also been presented in this chapter for 

evaluation of a design point. The detail description of the proposed process along with 

demonstration of the proposed framework has been given in subsequent sections.    

 

3.1. Description of proposed methodology 

3.1.1. Problem formulation 

Given a data flow graph (DFG), explore the design space and find an optimal solution which 

satisfies the conflicting user constraints and minimize the overall cost. The problem can be 

formulated as: 
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For a given DFG, find a resource combination Rx: 

1 2{ ( ), ( ),... ( )... ( )x d DR N R N R N R N R ; 

with minimum hybrid cost: PT and TE; 

and subjected to: PT <= Pcons and TE <= Tcons. 

where, ‘N(Rd)’ is the number of instances of resource type ‘Rd’; ‘D’ is the total number of 

resource types; ‘Rx’ is a candidate resource combination for optimal solution; ‘PT’ and ‘TE’ 

are the power and execution time consumed by a candidate resource combination; ‘Pcons’ and 

‘Tcons’ is power and execution time constraint specified by the user. 

 

3.1.2. Generic overview of proposed MO-PSE 

This section presents an overview of the proposed exploration algorithm. The flow chart 

shown in Figure 3.1 represents the proposed multi-objective particle swarm exploration (MO-

PSE) algorithm and the pseudo code of proposed algorithm is given in Figure 3.2. Based on 

the flow chart provided in Figure 3.1, the description of the proposed algorithm is as follows: 

The inputs to the proposed framework are behavioural description of application in the form 

of data flow graph (DFG) that describes data-path, user specified design constraints for power 

and execution time (with user specified weight factor), and module library. The module 

library contains four different information viz. Energy consumed by each resource in Pico 

joule (Pj), hardware area of each resource (#of transistor), latency of each resource in 

nanoseconds (ns) and user specified maximum available resources. The proposed framework 

checks the user constraints, if user constraints are not valid then show an error message and 

requests for valid user constraints values.  

As mentioned before, in the proposed work, PSO algorithm has been directly mapped onto 

the DSE process of architectures. The proposed mapping of PSO on DSE is as follows:  

   PSO     DSE 

Position of particle   Resource configuration 

Velocity of particle   Exploration deviation/drift 

Dimension                 Number of Resource type 

 

Further, the swarm population is mapped as set of initial design points in design space 

(considered as initial design solutions which will be subjected to improvement in each  
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Figure 3.1 Flow chart of proposed MO-PSE 
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Algorithm:  MO-PSO 
Input- DFG, Module library, User Constraints 
Output- Optimal resource configuration 
{ 
 Read Library ( ) 
 Read DFG ( ) 
 Determine boundary constraints for power and execution time  

 If (( ||min max min maxP P P T T Tc c    )) //checking validity of user constraints 

 { 
   !! Show error message and request for valid constraints 
 }  
 Initialization (resource configuration, velocity) 
 For i =1 to S     //S = # of particles) 
 { 

  ( , )
X

f

iC f Power Execution time // calculate fitness of all particle 

 }  
 //find best resource configuration that is the current global best resource configuration 

  31 2

1 1 1
[ ( , , .... )]n

lb lb lb lbn

X XX X

gb i f f f fX X Min C C C C  

 While (stopping criterion) 
 { 
  For i=1 to S   //S = (# of particle) 
  { 
   For d=1 to D 
   { 
                // determine new resource configuration and velocity for i

th
 particle and d

th
 dimension 

    ( , )
d d di i i

R f V R
 


 

    IF (
max max

d d di i i
V V V


   ) 

    { 
     Perform Velocity Clamping ( ) 
    } 
    //check boundary constraints outreach 

    IF ( min(R ) R max(R )
d d di


  ) 

    { 
     Adaptive-end-terminal-perturbation ( ) 
    } 
   } 
   // check for local best resource configuration 

   IF ( ( )  
i iX X

C t Cf flb ) 

   { 

    
 
 

lbi i

 t  

 X  X t

i iX X

flb f
C C


 

   } 
   } 
  // determine new global best resource configuration  

  31 2

1 1 1
[ ( , , .... )]n

lb lb lb lbn

X XX X

gb i f f f fX X Min C C C C      

   Adaptive-Rotation-Mutation      

    31 2

1 1 1
[ ( , , .... )]n

lb lb lb lbn

X XX X

gb i f f f fX X Min C C C C  

 } // end of while loop; 
 Output – Global best position (optimal resource configuration) 
 } 

Figure 3.2 Pseudo code of MO-PSE algorithm 
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iteration) while the social and cognitive component of PSO are used as factors that 

supplement in exploration drift process during architecture optimization.  

In the proposed approach, the initial swarm population has multiple particles. The first 

particle X1: (first initial design point) is constructed by mapping the resource configuration 

with minimum value which represents the serial implementation, the second particle: X2 

(second initial design point) is constructed by mapping the resource configuration with 

maximum value which represents the maximum parallel implementation, the third particle: 

X3 is constructed by mapping the average value of minimum and maximum resource 

configuration. The rest of the particles (X4....Xn) are constructed as follows: 

( ) (min( ) max( )) / 2d d dN R R R                     (3.1) 

where, ‘min(Rd)’
 
is minimum resource of d

th 
type, ‘max(Rd)’ is

 
 maximum resource of d

th 
type 

(obtained from module library) and ‘β’ is a random value between max(Rd)
 
and min(Rd). The 

details of the initial swarm population are described in the upcoming sections. Additionally in 

the proposed algorithm, all the particles’ initial velocity is assigned to zero. In fact, for any 

physical objects in the initial position, their initial velocities must be zero (as they are 

stationary). If particles are initialized with nonzero velocities, then physical analogy is 

violated [49]. Once the particles are initialized, determination of particles fitness is performed 

and the fittest particle (which has minimum fitness) is chosen. The fittest particle becomes 

the global best resource configuration and fitness of this particle act as best fitness for the 

next iteration. After this step, iteration process initiates. According to the algorithm, in each 

iteration, the new resource configuration (design points denoted by the position of the 

particle) of all particles based on the given function are upgraded and evaluated by: 

( , )
i i id d dR f V R               (3.2) 

Eqn. (3.2) denotes the procedure for determining the next resource configuration (position) 

during PSO using the information of the current position or resource configuration (
idR ) and 

new velocity or exploration drift (
idV 
). The detailed description of eqn. (3.2) will be given in 

section 3.2.6. The process of determining the new resource configuration (
idR ) needs critical 

introspection. There may arise two cases where boundary constraints may not be met. The 

proposed approach handles it as follows:  

a) As discussed during the resource up gradation process, there may be a possibility of 

boundary outreach (i.e. the new resource value jumps beyond the design space). In order to 
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combat this problem, we proposed an ‘adaptive end terminal perturbation’ algorithm, which 

redeems any violations encountered during the DSE process. 

b) The proposed approach also uses a concept of ‘velocity clamping’ in the MO-PSE 

in order to control the excessive exploration drift thereby preserving unwarranted diversity 

control. 

For example, during evaluation of exploration drift/velocity metric, large value of v
+
 may 

result in the particle outreaching the boundaries of the given design space [49]. Therefore, 

velocity clamping is achieved to mitigate this issue based on: 

 
max (min( ) max( )) / 2
id d dV R R                (3.3) 

After recalculation of the fitness of all particles with new resource configuration; 

updation of the local best positions (resource configuration) and global best position 

(resource configuration) is performed, when the new fitness is better than previous fitness. 

Once the global resource configuration is found, the proposed adaptive rotation mutation 

scheme on all local best resource configurations is executed with the hope of exploring a 

better global best resource configuration than the existing one. For this process, fitness of 

mutated local best configurations are evaluated and the global best solution is updated, if 

found fitter.  

Similarly, the steps above are repeated (iteration process) until the stopping criterion is 

reached (the stopping criterions are described in the section 3.2.10). Hence, after completing 

the process the algorithm yields the optimal architecture which is the global best resource 

solution for the given application and user constraints.  

The proposed algorithm however has some scope of improvement in terms of deciding 

an ideal stopping criterion. This is because; an ideal value will help in obtaining faster 

convergence time for a solution. As shown in results (chapter 7) later in the thesis, several 

experiments were carried out to achieve the best possible stopping criterion. We however still 

believe that this topic requires further investigation. Further, regarding the usability of the 

approach, it is limited to handle multi-criterion optimization problems during design of 

application specific data intensive (and control) processors. Its applicability for handling 

optimization problems during designing general purpose counterparts needs further 

investigation. Nevertheless, the greatest advantage of the approach is its adaptation to 

changing technology. With rapid change in technology, there is a change in the values of 

static power per transistor (owing to voltage scaling and device geometry shrinkage) as well 
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as in frequency. These parameters directly affect the dynamic energy and static power 

dissipation of the circuit. In our approach, these variables (V: voltage supply and pc: static 

power per transistor as shown in eqn. 3.12 and 3.8 respectively) are user controlled (through 

module library), therefore it provides flexibility to our DSE algorithm to handle the changing 

technology demands.  

 

3.1.3. Proposed Models for Evaluation of Particles (Design Points) during 

MO-PSE 

3.1.3.1. Proposed Power Model 

Let the total power consumed by the functional resources is given as ‘PT’ where, PT is a 

composition of dynamic power (PD) and static power (PS) given by eqn. (3.4): 

T D SP P P                                                         (3.4) 

The average dynamic power consumed by the functional resources is a function of dynamic 

activity of the resources and can be described as: 

c

FU
D

TNL

EN
P






)1(
                                                    (3.5) 

Where, ‘EFU’ represents the total energy consumption of the resources obtained from [61], 

‘N’ represents the data elements to be processed (during data pipelining), ‘L’ represents the 

latency of a scheduling solution and ‘Tc’ represents the initiation interval or cycle time of a 

scheduling solution. Equation (3.5) can be further written as in eqn. (3.6): 

c

demuxmuxs

D
TNL

EEEN
P






)1(

)( Re                                  (3.6) 

Where, ‘ERes’ is the energy consumed by the major functional units such as adders, 

subtractors and multipliers.        

On the other hand, static power is majorly a function of area of resources and is independent 

of dynamic activity of a module. Therefore static power can be written as in equation (3.7 & 

3.8): 

 
1

( )S Ri Ri c

i

P N K p




                                                         (3.7) 

1 1 2 2( .. ).S R R R R R R cP N K N K N K p                         (3.8) 
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Where ‘NRi’ represents the number of resource Ri. ‘KRi’ represents the area occupied by 

resource Ri, ‘v’ is the number of resources (FU’s) and ‘pc’ denotes the power dissipated per 

area unit (e.g. transistors).  

Substituting eqn. (3.6) and (3.7) in eqn. (3.4): 

 

Re

1

( )
( )

( 1)

s mux demux
T Ri Ri c

ic

N E E E
P N K p

L N T





  
   

  
                      (3.9) 

 

3.1.3.2. Model for execution time parameter 

For a system with ‘v’ functional resources the time of execution (TE) can be represented as 

[32] [35]: 

[ ( 1) ]E cT L N T                                                    (3.10) 

Where, the variables L, N and Tc have been defined in section 3.1.3.1. 

3.1.3.3. Proposed model for fitness function 

The fitness function (Cf) developed which considers total execution time and total power 

consumptions shown in eqn. (3.11). 

1 2

max max

iX T cons E cons
f

P P T T
C

P T
 

 
          (3.11) 

Where iX

fC  = Fitness of particle Xi; φ1, φ2= User weight for power and execution time 

parameters. The function to calculate PT and TE are stated in eqn. (3.9) and (3.10) 

respectively.  

3.2. Demonstration with detail description of the proposed methodology  

3.2.1. Resource Library Information and Operating Constraints 

The values of EFU assumed in the library of the proposed approach have been adopted from 

[61, 54, 74] (portion of library information are shown in Table 3.1 and Table 3.2). The 

estimation of EFU has been done in [61] through the standard function for dynamic energy as 

shown in eqn. (3.12): 

21/ 2FUE C V a                                               (3.12) 

Where ‘V’ is the supply voltage of functional unit FU; ‘C’ is the physical capacitance of the 

functional unit FU and ‘a’ is the average switching activity at the inputs of FU.  
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The DFG of 2
nd

 order digital IIR filter shown in Figure 3.3 will be used as a simple example 

in the upcoming sections to demonstrate the proposed approach. Additionally, for the sake of 

demonstration of the proposed algorithm using this example, we will assume some real 

constraint values for Power (Pcons) and Execution time (Tcons) as well as user defined 

specifications as follows: 

Pcons = 8W; Tcons = 310 us;  

Maximum available multiplier FU’s: 6, and adder FU’s: 4, and subtractor FU’s: 4; N = 1000 

(Number of sets of data) while ‘pc’ is assumed to be 1mW; additionally, the number/type of 

mux and demux is directly extracted from the scheduling solution. (Note: The values chosen 

for constraints and filter DFG as application are purely arbitrary. The efficiency of the 

method by any means is not restricted to the values/example assumed. This has been verified 

by our implementation results achieved for various benchmarks). Therefore, the goal of 

exploration problem is to simultaneously meet the provided constraints for power and 

execution time. 

3.2.2. Max-Min analysis for user threshold 

In order to determine the extreme bounds values for the user constraints, the Max-Min 

analysis is performed for the applications.  In this analysis boundary values (maximum and 

minimum values) of power and execution time are identified based on the given resource 

constraints for the application. The minimum value of execution time and maximum value of 

power is determined by utilizing maximum available resources to execute operations. This 

indicates maximum possible parallelism of the target application. On the other hand, 

maximum value of execution time and minimum value of power is determined by using 

minimum resources (i.e. single instance of all resources).  This indicates complete serial 

execution of the target application. This minimum and maximum value of power and 

Table 3.1. EFU at 5V and α = 0.5 [61] 

Major FU`s Add16 Mul16 Sub16 

Energy (pJ) 106.76 2310.6 106.76 

Area(#transistor) 2032 2464 2032 

Latency (ns) 20 100 20 
 

Table 3.2. EFU at 5V and α = 0.5 [61] 

Minor FU`s Mux16:2/1 Mux16:4/1 Mux32:4/1 

Energy(pj) 24.05 68.032 136.06 
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execution time are used to set the upper and lower threshold (bounds) for user constraints. 

Finally, conclusion of this analysis is given in the table 3.3.  

3.2.3. Boundary Constraints Check Module  

This module checks whether the specified user constraint falls in the valid range of boundary 

limits. The following condition is checked for each parametric constraint specified: 

1. Check: ||
min max min max

P P P T T T
cons cons

     

2. If the above condition is true then stop and correct the constraints. 

Else the above condition fails and goes to step 3. 

3. Execute the initialization process of Module.  

3.2.4. Initialization of particles 

a) Position  

This section will formally define the positions of particles used in the proposed algorithm. 

For a DFG, the particle position ‘Xi’ of an ‘i
th

’ particle is given as:  

Xi =Rx= (N(R1), (N(R2),..(N(Rd).. (N(RD))                 

Initialization plays very important role in the algorithm. Usually, the positions (resource 

configuration) of particles are initialized to uniformly cover the design space. It is important 

to note that the efficiency of the MO-PSE is biased by the initial diversity of the population, 

i.e. how much of the design space is covered and how well particles are distributed over the 

design space. Therefore, the algorithm initializes position as follows (keeping in mind that an 

optimal design solution to a multi-objective exploration problem will always lies between the 

maximum parallel and serial implementation of the application): 

 The first particle’s position is initialized by minimum resources (serial implementation): 

X1= (min(R1), min(R2),.. min(RD)) 

X1= (1, 1, 1) 

 The second particle’s position is initialized by maximum resources (maximum parallel 

implementation):  

X2 = (max(R1), max(R2),.. max(RD))  

Table 3.3 Min Max analysis of user constraints 

Resource 

Utilization 

Power Execution 

time 

Execution Behaviour 

maximum Maximum Minimum Maximum parallel 

Minimum Minimum maximum Completely serial 
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Therefore based on the user defined resources assumed in section 3.2.1, X2 can be 

customized as follows: 

X2= (6, 4, 4)  

 The third particle’s position is initialized by average of maximum and minimum values. 

X3=((min(R1)+max(R1))/2, (min(R2)+max(R2))/2,.....,((min(RD)+max(RD))/2   

Therefore, X3 can be customized as: 

X3= (3, 2, 2) 

 The rest of the particles (X4....Xn) are initialized by eqn. 3.1. This function has been 

proposed to introduce an element of stochasticity (as well as diversity) into the 

initialization process. 

MO-PSE, like other population based exploration process, relies on the initial population. If 

the proposed MO-PSE is unable to efficiently initialize the population then this will affect 

the following: 

 Exploration time- An inefficient initialization causes higher exploration time. For 

example if initial solution are too far from the global best solution then exploration 

process requires more time to reach the optimum solution.  

 Local minima – If initialization process is not able to cover the entire design space 

then there is a possibility that the MO-PSE may suffer with the local minima problem.   

Therefore, the proposed MO-PSE utilizes efficient initialization scheme as discussed in 

this thesis to avoid the above aforesaid problems.  

 

b) Velocity  

Furthermore, velocities of all particles are initialized to zero (see Table 3.4); the motivation 

for such an initialization process has been discussed in section 3.1.2. 

 

c) Acceleration Coefficients 

In order for the algorithm to achieve convergence, it has been theoretically established before 

in [50, 69] that the cognitive learning factor (b1) and the social learning factor (b2) can be 

initialized to any value between [1, 4] (Note: The detail of this proof has been given by 

authors in [50]). The impact of convergence and exploration time of MO-PSE for various 

benchmarks based on the variation of ‘b’ between [1, 4] has been provided in result chapter 

in the thesis. However, we have been able to empirically prove, that for tested benchmarks 

tuning the value of ‘b’ between [2, 3] yields the best results during DSE. 
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Figure 3.3 Data Flow Graph of 2
nd

 order IIR 
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Table 3.4 Initial velocity of particle 

 
Xn :Vn V1 V2 V3 

X1 0 0 0 

X2 0 0 0 

X3 0 0 0 

 

 

 

3.2.5. Calculation of fitness of a particle  

Based on the initialization of particles performed in section 3.2.3, the initial fitness of the 

particles is calculated using eqn. (3.11).  But, before eqn. (3.11) can be applied, the individual 

values of power and execution time for all particles needs to be calculated. For example, the 

calculation of total power (PT) of X1= (1, 1, 1) using eqn. and (3.9) is as follows. (Note: 

Values obtained for ‘L’ and ‘Tc’ used for power and execution time determination are 

calculated using functional pipelining shown in Figure 3.4 to incorporate the transformation 

technique of algorithmic concurrency). 

 

Re

1 1 2 2

( )

( 1)
( .. ).s mux dmux

T

c

R R R R Rn Rn c

N E E E
P

L N T
N K N K N K p

  


  
       

5*2310.6 3*106.76 1*106.76  2*192.49
1000

 1*192.49 2*68.032 1*68.032
P =

520 (1000 1)500

(1*2464 1*2032 1*2032)*1

T

mw

   
 
   

 

  

 

= 6.553W                 (3.13) 
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Figure 3.4 Determination of initiation interval / cycle time during functional pipelining of 

data path for particle X1 (1(+), 1(*), 1(-)) 

 

Cycle time=500ns 

Opr2 Opr3 Opr4 Opr5 Opr1 

Opr6 Opr7 Opr8 

Opr9 

Opr2 Opr3 Opr4 Opr5 Opr1 

Opr6 Opr7 Opr8 

Opr9 

Output Y1 Output Y2 

FU’S 

Time (ns) 

Second set 

First set 
MUL M1 

ADD A1 

SUB S1 

0ns 100ns 200ns 300ns 400ns 520ns 700ns 800ns 900ns 1020ns 

Latency=520ns 

Subsequently, the execution time is calculating using eqn. (3.10):  

[ ( 1) ]
E c

T L N T     

520 (1000 1)500 500.020
E

T s               (3.14)  

While, Pmax = 31. 15W and Tmax = 500.02us are calculated by considering the maximum 

resources during scheduling based on user provided specification and minimum resources 

(one instance of each resource type) respectively.  

Finally, substituting eqn. (3.13), (3.14) in eqn. (3.11), the fitness of the particle X1 is 

calculated as: 

1
6.553 8 500.020 310

0.5 0.5
31.159 500.020

X

fC
    

    
     

1 0.1667
X

fC 
           

(3.15) 

(Note- 1  = 1 = 0.5 is chosen for providing equal weightage to power and execution time 

factor during calculating fitness of particle). Similarly, the fitness of all other particles is 

calculated using eqn. (3.11). 

  1X

fC = 0.1667 fitness of X1 (1, 1, 1)  

2X

fC = 0.1691 fitness of X2 (6, 4, 4) 

3X

fC = 0.0116 fitness of X3 (3, 2, 2) 
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3.2.6. Determination of local & global best positions/resource 

configurations 

After calculating the fitness of each particle, the next step of the algorithm (as shown in 

Figure 3.1) is to determine the local best position Xlbi of each particle and finally determine 

the global best particle (Xgb).  For example, let us assume that the new fitness of a particle 

‘Xi’ is given as ‘ iX

fC ’ and the fitness of the previous local best particle ‘Xlbi’ is given as ‘

iX

flbC ’.  Now, if the new fitness of particle is less than the current local best fitness then new 

Xi becomes new lbiX of the particle. The process of determining upgraded lbiX
 
is shown in 

Figure 3.5. Since in iteration 1, there was no previous local best position (‘Xlbi’) therefore the 

current position (Xi) assumes the value of Xlbi. Next, the Xgb of the population is determined 

using eqn. (3.16) as follows: 

31 2

1 1 1
[ ( , , .... )]n

lb lb lb lbn

X XX X

gb i f f f fX X Min C C C C         (3.16) 

Therefore, substituting the values of fitness cost for each particle in eqn. (3.16) yields:  

  gbX Min 0.1667, 0.1691, 0.0116iX
 

gb 3X (3, 2, 2)X
      

(3.17) 

Thus, the third particle’s ‘Xi’ is the ‘Xgb’ for next iteration. 

 

3.2.7. Determination of new configuration of the particle 

After completing the initialization phase, the iteration process is started; the first task of the 

iteration is calculation of 
idR  (new resource configuration). The 

idR is calculated using eqn. 

Procedure to upgrade local best resource combination from 
2

nd
 iteration onwards 

 
i

lbi

X

fC - Local best cost of particle ‘Xi’  

iX

fC -  cost of particle ‘Xi’ 

Xlbi – Local best resource combination of particle ‘Xi’ 

iX – Position (resource combination) of i
th

 particle. 

   If ( iX

fC < i

lbi

X

fC ) then 

i

lbi

X

fC = iX

fC  

 Xlbi = Xi 

 

 
Figure 3.5 Procedure for local best up-gradation 
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(3.2):  

( , )
d d di i i

R f V R
 
  

The function of 
idR

consist of two parts: first part is new velocity (
idV  ) and second part is 

previous resource configuration (
idR ). Further, 

idV   is calculated using eqn. (3.18): 

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

                  (3.18) 

In eqn. (3.18), three components contribute to determination of new velocity (exploration 

drift).  

 First, di
V is called inertia component. This component represents the momentum which 

prevents drastic change in the direction of a particle. 

 Second,  
lbid1 1 dR Rb r   is called the cognitive component. The effect of the cognitive 

component represents the tendency of a particle to return to its individual best resource 

configuration from the past.   

 Third, -2 2 gb id db R Rr    is called the social component.  The social component’s effect is 

that, each particle moves towards the best resource configuration found by all its 

neighbours (including itself). 

Where ω is inertia weight, b1 and b2 are acceleration coefficients and r1 and r2 are random 

numbers between [0-1]. Therefore, eqn. (3.2) can be re-written as: 

 
idi d di

R R V
 
               (3.19) 

Where, dR , R , and
i id dV
 

 have been defined in section 3.1.2. The visualization of 

determination of new position is shown in Figure 3.6 where, Xi represents D dimension 

vector of resource combination. In Figure 3.6, green arrows show contribution of previous 

velocity, cognitive component, and social component to determine new position (represented 

by yellow arrow). Based on the above explanation the R
id


 in D-dimensions (for 

demonstration using the example, three dimensions 1, 2, 3 have been used to represent each 

particle/design point) are calculated as follows:  

i) Particle X1: 

In ‘1
st
’ dimension: 

Using eqn. (3.18) new velocity is calculated as:  
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11V


= 1*0 + 2*0.5(1-1) + 2*0.5(3-1) = 2                        (3.20) 

Using eqn. (3.19) and (3.20) the upgraded resource configuration for 1
st
 dimension is: 

11R


= 1+2 = 3              (3.21) 

In ‘2
nd

’ dimension: 

 Using eqn. (3.18) new velocity is calculated:  

12V


= 1*0 + 2*0.5(1-1) + 2*0.5(2-1) = 1                       (3.22) 

Using eqn. (3.19) and (3.22) the upgraded resource configuration for 2
nd

 dimension is: 

12R


= 1+1= 2             (2.23) 

 

In ‘3
rd

’ dimension: 

Using eqn. (3.18) new velocity is calculated:  

13V


= 1*0 + 2*0.5(1-1) + 2*0.5(2-1) = 1        (3.24) 

Using eqn. (3.19) and (3.24) the upgraded resource configuration for 3
rd

 dimension is: 

13R


= 1+1 = 2         (3.25) 

1X 
= (3, 2, 2) is new resource configuration of 1

st
particle. 

 
Figure 3.6 Determination of New Position [48, 49] 
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ii) Particle X2: 

Similarly, the value of 2X


 for 2
nd

 particle is found as: 

2X


= (3, 2, 2)  

iii) Particle X3: 

Similarly, the value of 3X


 for 3
rd

 particle is found as: 

 3X


= (3, 2, 2). 

3.2.8. Adaptive End Terminal Perturbation Algorithm: Particle Outreach 

Verification Module 

DSE being a complicated optimization process, MO-PSE methodology requires embedded 

algorithms to handle critical issues such as boundary outreach violation. This happens during 

the resource up gradation phase, where there is a possibility of particle outreaching the 

boundary of the design space intervals. The proposed MO-PSE always handles such a case by 

applying an algorithm called ‘adaptive end terminal perturbation’ after the resource up-

gradation process (determination of new particle position) to assure that every particle must 

be within the design space boundary interval (max and min). The proposed ‘adaptive end 

terminal perturbation’ algorithm to handle the violation of boundary constraint limit during 

resource up-gradation is shown in Figure 3.7.  

Adaptive end terminal perturbation 

Input- Resource value (
idR ) which crosses the design space 

Output- New valid value of resource lying in the design space 

//When 
idR  crosses the design space boundary 

While (
idR  < min ( dR )) 

i id dR R Y   

End While 

While (
idR  > max ( dR )) 

i id dR R Y    

End While 

/* where ‘Y’ is a random value between min (Rd) and max (Rd). 

 
Figure 3.7 Adaptive end terminal perturbation algorithm 
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3.2.9. Velocity clamping 

As mentioned in section 3.1.2, ‘velocity clamping’ in the MO-PSE is used in order to control 

the excessive exploration drift thereby preserving unwarranted diversity control. The velocity 

clamping is performed, when any particle’s exploration drift (velocity) crosses the
max

idV . It 

helps particles to stay within the design space and to take sensibly step size in order to 

explore through the design space. Without this velocity clamping in the searching space the 

process will be prone to explode and particles’ resource configuration shall change hastily. 

The exploration drift is proposed by the following eqn: 


max max

max max

i i i

i

i i i

d d d

d

d d d

V if V V
V

V if V V







  


  
                 (3.26) 

where, the value of max

idV is determining using max (max( ) min( ))

2i

d d
d

R R
V


    (as described 

in eqn. (3.3));  

3.2.10. Mutation operation 

In the proposed work, the balanced contribution of local best and global best solutions during 

searching a new solution makes PSO less vulnerable to premature convergence as compared 

to genetic algorithm and other population based DSE process. The local best component 

(cognitive component) enhances the exploration capability to search locally, which 

introduces diversity in the solution. On the other hand, global best component (social 

component) attracts solution towards current global best solution, which introduces 

convergence of the population. But, over the time when momentum of the exploration 

becomes small then this can cause premature convergence. In order to overcome this 

premature convergence problem we introduced adaptive rotation mutation.  The mutation 

process introduces diversity in the solution as well as may produce better quality solution 

than current solution.      

Mutation operation is performed on all local best resource configuration with probability 

Mp=1.0. The proposed adaptive rotation mutation algorithm is shown in Figure 3.8. 

Adaptive rotation mutation algorithm is a novel algorithm for mutation operation where 

algorithm uses two basic operations for mutation. First is rotation operation, and second is 

increment or decrement operation. To perform these operations, the total population is 
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divided into two groups: one is the even group in which algorithm performs left rotation 

operation and second group is the odd group in which algorithm performs increment or 

decrement with a random number. After mutation algorithm calculates new fitness value of 

local best resource configuration and if found better fitness then new value will become local 

best fitness otherwise does not change older value as shown in eqn. 3.27. For the sake of 

clarity, an example of mutation operation is given below: 

Assume before mutation the local best resource configurations are: 

lb1X = (3, 2, 2) - X1 particle 

lb2X = (2, 1, 1) - X2 particle 

lb3X = (4, 3, 3) - X3 particle 

After mutation the mutated local best resource configurations are: 

lb1X = (4, 2, 3) after increment/ decrement with value one. 

lb2X = (1, 1, 2) after rotation (left) operation 

lb3X = (3, 4, 2) after increment/ decrement with value one. 

Adaptive rotation mutation 

Input – Local best resource combination Xlbi
 

Output – New mutated local best resource combination Xlbi 

For i=1 to S Do  

 If (i%2==0) // Left Rotation 

For d=1 to D Do 

 ( 1)

( 1)

i

i i

i

d

d d

d

Temp R

R R

R Temp

d











 

 

End For 

End If 

If (i%2==1) 

For d=1 to D Do 

 
i id dR R Q   

// Q is a random number between [1-3] 

d++; 

End For 

End If 

 i++; 

End For 

Figure 3.8 Adaptive rotation mutation algorithm 
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( ) ( ) ( ),X ( )
( ),X ( )

( ),X ( )

i i i

lbi lbi lbi
i

lbi i

lbi

X X X

f f f lbiX

f lbi X

f lbi

ifC new C old thenC new new
C new new

elseC old old

  
  
  

     (3.27) 

Once mutation operation is completed then MO-PSE calculates new fitness of mutated local 

best resource configurations using eqn. (3.11). If any fitter particle is found then, the value of 

Rgb will be updated with new resource configuration. 

3.2.11. Termination criteria (Z) 

Termination criterion is a very important aspect of an iterative algorithm. Therefore, while 

deciding the termination criterion, two important aspects have been considered in our 

approach: 

 The proposed algorithm should not prematurely converge because of the terminating 

criterion.   

 The algorithm must not trap inside an infinite loop. 

With the consideration of above aspects, the proposed algorithm proposed the following 

terminating criteria. If one of them is true then algorithm will terminate. Two conditions are 

as follows: 

a) Terminates when the maximum number of iteration have been exceeded (M = 100) or, 

b) Terminates under the following two stopping criteria : 

I. S
1
: When no improvement is seen in gbR  over ‘£’ number of iteration. (£=10) 

II. S
2
: If the population reaches to equilibrium state i.e. all particles velocity become zero 

(V
+
 = 0).  

 

3.3. Handling control flow graphs through proposed approach 

 

Handling of the CDFG is not a trivial task. The proposed algorithm is capable to handle 

conditional CDFG. To handle the CDFG, first algorithm finds the worst case path (which is 

computationally largest). After that, proposed algorithm performs exploration process and 

find an optimal result for worst case delay of the given CDFG which satisfies the given user 

constraints for power and execution time. This process enables the methodology to extract the 

latency information for a given resource configuration during fitness evaluation. Initially, we 

emphasize on handling three different types of CDFG problems. Firstly, CDFG 1: multiple 

conditional operators followed by different operation as child node is shown in Figure 3.9(a). 

Secondly, CDFG 2: single conditional operator followed by two similar operator types as 
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child node is shown in Figure 3.9(c). Thirdly, CDFG 3:  single conditional operator followed 

by multiple different operator types as child node is shown in Figure 3.9(e). For example, in 

case of Figure 3.9(a), the proposed algorithm extracts the worst case DFG as shown in Figure 

3.9(b) from the given CDFG problem. Then, the latency and cycle time information are 

extracted from worst case DFG for a given resource configuration for final fitness 

computation. Based on the fitness, the proposed algorithm explores the optimal resource 

configuration. (Note-The datapath circuit and schematic diagram of CDFG1 are given in 

Appendix A.) 

Note – Results of the proposed method are given in chapter 7 section 7.1 

 
Figure 3.9 Control and data flow graph [56] (a) CDFG1 (b) computationally worst case DFG 

of CDFG1 (c) CDFG2 (d) computationally worst case DFG of CDFG2 (e) CDFG3 (d) 

computationally worst case DFG of CDFG3 (only colored node of (b), (d), (e) are taken into 

account in while extracting the latency information) 
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Chapter 4  

Automated Exploration of Datapath and Unrolling Factor 

during Power-Performance Trade-off in Architectural 

Synthesis Using Multi-Dimensional PSO Algorithm 

After achieving the first milestone of this research, i.e. solving the design space 

exploration problem for data intensive applications through proposed MO-PSE. The second 

milestone is to solve the design space exploration problem for control and data intensive 

applications (single loop based). In the loop based applications designers have opportunity to 

optimize the design by loop transformation. Loop unrolling is a widely used technique for 

loop transformation by the designers, to exploit the parallelism, for better throughput in 

control data flow applications. In loop unrolling, designers replicate the loop body to achieve 

parallelism. But at the same time, to perform parallel operations; more resources, 

interconnects and storage are required which further increase the power consumption of the 

design. So, it becomes critical for designers to search an optimal combination of unrolling 

factor and datapath for high quality design [3, 18, 38].  

This chapter presents an automated design space exploration methodology for 

simultaneous exploration of datapath and unrolling factor in high level synthesis. Proposed 

approach utilizes the exploration capability of particle swarm optimization to solve design 

space exploration problem during multi parametric optimization for control and data 

intensive applications (based on single loop). To the best of the authors’ knowledge, this is 

the first approach which automatically handles both datapath and loop unrolling factor 

simultaneously by swarm based optimization for power performance trade-off in high level 

synthesis for application specific computing. Moreover, a novel prediction (estimation) 

model for execution time is proposed in this chapter which is a non-linear function of UF. 

Using this model, the execution time of the complete application can be estimated based on 

resource combination found without completely unrolling CDFGs in most cases. The detailed 

description of the proposed methodology is given in subsequent sections. 
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4.1. Problem Formulation  

 Given a CDFG, explore the design space and find out an optimal solution which satisfies 

the user constraints and minimizes the overall cost. The problem can be formulated as: 

Find: Optimal (Xi) =(Rx, UFN) 

with minimum hybrid cost: PT and TE; 

Subjected to: PT<= Pcons and TE<= Tcons 

where, ‘Xi’ is a set comprising of resources combination and UF formally represented as: 

1 2 1X ( , ) { ( ), ( ),... ( )... ( ), }i x N d D NR UF N R N R N R N R UF   

where, N(Rd) is the number of instances of resource type ‘Rd’, ‘UFN’ is N
th

 unrolling factor of 

loop, ‘Rx’ is a candidate resource combination for optimal solution; ‘PT’ and ‘TE’ are the 

power and execution time consumed by a candidate solution; ‘Pcons’ and ‘Tcons’ is power and 

execution time constraint specified by the user. ‘D-1’ is the total number of resource types.  

 

4.2. The Proposed Framework and Mapping Process 

The block diagram of the proposed approach is shown in Figure 4.2 and the pseudo code of 

proposed approach is presented in Figure 4.3 while the proposed mapping is given in Figure 

4.1. To transform the PSO into multi-objective DSE problem the position of a particle is 

represented by a set comprising of resource combination and UF; total number of dimensions 

is represented by sum of the number of resource types and UF. Finally, the velocity of the 

particle in d
th

 dimension acts as a parameter that provides the drift during DSE. Based on the 

pseudo code shown in Figure 4.3, the description of the algorithm with demonstration is 

given in subsequent sections. 

 

 

 

 

Figure 4.1 Proposed mapping of the DSE problem with PSO 

Position of a particle (Xi)         (Resource combination, UF) 

Velocity of a particle in d
th

 dimension (
idV )         Exploration drift  

Dimension (D)     Number of resource types +1 
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4.3. Proposed Evaluation Models 

For evaluation of a particle (or design point), the following models have been proposed.  

 

4.3.1. Proposed model for execution time  

In order to describe the formulation of proposed execution time (TE) (function of loop 

unrolling factor) for a CDFG, an example of loop unrolling is used, shown in Figure 4.4. 

Figure 4.4(a) shows ‘C’ code of the original loop and Figure 4.4(b) shows an As Soon As 

Possible (ASAP) scheduled CDFG unrolled once with resource constraints of 2(*), 2(+) and 

1(<). The execution delay model for a loop unrolled CDFG is derived considering the 

following three possible cases: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSO Process 

Figure 4.2: Block diagram of proposed approach 
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Algorithm: H-SI based Exploration 

Input: CDFG, module library, user constraints 

Output: Optimal combination resources (FU’s) and unrolling factor (UF) 

Begin 

 Read library information and CDFG/DFG 

 Check for boundary constraint (  ) 

 //perform pre-processing of UF for screening the UF // 

 Pre-processing UF ( ) 

        //Initialize particle location and velocity// 

        Initialization ( ) 

      //Calculate fitness of all particles//  

 For i=1 to S Do // where S is the swarm size//  
  

(X )iX

f iC calculatefitness
 

 End Loop //for i 

// Update local best solution and fitness of the particle// 

 Update global best solution ( ) 

//Iteration process starts here// 

 While (!stopping condition) 

For i=1 to S Do 

 For d=1 to D Do 

//Determination of new velocity// 

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

      

Check for velocity clamping ( ) 

//Determination of new solution//  

 
idi d di

R R V
 
 

 
Check for adaptive end terminal perturbation ( ) 

  End Loop // for d  

(X )iX

f iC calculatefitness  

 //Update local best position of the particle // 

(if iX

fC < i

lbi

X

fC ) then  

i

lbi

X

fC = iX

fC  

Xlbi=Xi 

 End if 

End Loop // for i 

 Update global best solution ( ) 

//perform mutation // 

   Adaptive rotation mutation ( ) 

          Update global best solution ( ) 

 End while loop 

Output: global best solution  

END   

 

Figure 4.3 Pseudo code of proposed exploration 
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Case 1: When the unrolling factor (UF) is equal to one (indicates no unrolling) then, 

Total # of control steps (CSs) = # of CSs required to execute loop body once * # of duplicate 

iterations of loop body  

(C * )
T body

C                 (4.1) 

(C * ) , 1

quotient

body body first

I

UF

where C C and UF   
  

 

C (C *I)T first              (4.2) 

where, ‘CT’ is total CSs required to execute the loop completely, ‘Cbody’ is the number of CSs 

required to execute loop body once, ‘Cfirst’ is number of CSs required to execute first 

iteration, ‘I’ is the maximum number of iteration (loop count), α is  I

UF

quotient . 

Figure 4.4 Demonstration of loop unrolling based on 2(*), 2(+), 

1(<) constraints using As Soon As Possible (ASAP) scheduling for 

test case 

For(i=0; i<36; i++) { 

 P = P * (Ai + Bi) 

q = q + (Ai * Bi) 

} 

(a) ‘C’ code of original loop 

 

(b) Loop unrolled once (UF = 2) 
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Case 2: When UF evenly divides the loop count (I), then the total number of CSs is: 

(C ( 1)* )body first IIC UF C    (as evident from Figure 4.4(b)). Now, substituting Cbody in eqn. 

(4.1) yields: 

(C ( 1)* )*T first IIC UF C               (4.3) 

where, ‘CII’  is the number of CSs required between initiations of consecutive iterations. 

 

Case 3: When UF unevenly divides I: In such case, ImodUF iterations will be executed 

sequentially, therefore, the total number of CSs is:  

(C ( 1)* )* ( mod )*T first II firstC UF C I UF C               (4.4) 

              {Total CSs for unrolled loop}    {Total CSs for sequential loop}  

 

Furthermore, execution time for the system is calculated as: 

*E TT C               (4.5) 

where, ‘∆’ is the delay of one CS in nanoseconds.  

Finally, TE can be formulated as: 

*((C ( 1)* )* )( mod )*E first II firstT UF C I UF C                (4.6) 

Eqn. (4.6) is an estimation model for TE, where there is no need to tediously unroll the 

CDFG to calculate TE, unless # of independent operations required to be performed in 

parallel due to unrolling exceeds the available resource units (specified in a solution). 

While for the DFGs, the estimation of execution time is [32, 35]: 

[ ( 1) ]E cT L N T                  (4.7) 

where, ‘N’ is the number of input samples to be processed by a functionally pipelined data-

path, ‘L’ represents the latency of a scheduling solution and ‘Tc’ represents the initiation 

interval or cycle time of a scheduling solution  

4.3.2. Proposed Power Model 

The total power consumed by a resource combination is denoted by ‘PT’. ‘PT’ is 

composed of dynamic power (PD) and static power (PS) given by eqn. (4.8) below: 

T D S
P P P               (4.8) 

The average dynamic power consumed by is source combination is a function of dynamic 

activity of the resources for CDFG. It is formulated as: 
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( )
D

P
Total energy consumption

Avg dynamic power
Total execution time

  

/
* (

* ((C ( 1) * ) * ( mod )* )

)
D

first II first

FU MUX DMUX
E E

P
UF C I UF C





   


         (4.9)      

For a DFG, the average dynamic power can be described as: 

/
(

( 1)

)
D

c

FU MUX DMUX
N E E

P
L N T




  


          (4.10) 

where, ‘EFU’ represents the total energy consumption of the resources, ‘EMUX/DMUX’ 

represents the total energy consumed by multiplexer and demultiplexer. The variables Cfirst, 

CII, I, UF, α, L, N and Tc have already been defined in previous sections. 

 On the other hand, static power is a function of area of the resources, multiplexer and 

the leakage power per transistor. Therefore static power can be defined as: 

/ /

1

( ) *
i iS R R MUX DMUX MUX DMUX c

i

P N K N K P




 
    
 
          (4.11) 

where, ‘NRi’ represents the number of instance of resource Ri; ‘KRi’ represents the area 

occupied by resource Ri, ‘v’ is the number of resource types, ‘NMUX/DMUX’ is number of the 

multiplexer or demultiplexer, ‘KMUX/DMUX’ is area occupied by the multiplexer or 

demultiplexer and ‘pc’ denotes the power dissipated per area unit (e.g. transistors). 

 

4.3.3. Proposed model for fitness function 

The proposed fitness function (considering execution time and power consumption of a 

solution) is defined as:  

1 2

max max

iX T cons E cons
f

P P T T
C

P T
 

 
           (4.12) 

Where, iX

fC  = Fitness of particle Xi; 1 , 2 = User defined weights for power and execution 

time. 

 

4.4. Demonstration of proposed methodology 

 This section describes the proposed approach (based on particle swarm optimization [48, 

49]) with demonstration of a sample test case. 
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4.4.1. User specification 

 The CDFG used for demonstration (shown in Figure 4.4) along with the user specified 

design constraints for power and execution time as well as module library [52, 54, 74, 92] are 

taken as inputs to the proposed framework. For the sake of explanation, we are assuming 

some real values for power constraint (Pcons=1.5mW) and execution time constraint 

(Tcons=500us); Maximum available multiplier FU’s: 4, adder FU’s: 4, comparator FU’s: 2 and 

total user specified loop iteration I = 36; additionally power dissipated per transistor (pc) is 

assumed to be 29.33nW; also, number/type of mux/demux is directly extracted from the 

scheduling solution. 

4.4.2. Boundary constraint check module 

After specifying constraints, the proposed framework checks for valid user constraints. If 

user constraints are not valid then an error is shown and again requests for valid values: 

1. Check: ||max maxmin min
P P P T T Tcons cons     

2. If above condition is true then stop and correct constraints. 

Else execute the initialization process of module. 

In order to check the constraints, maximum and minimum value of power and execution 

time are determined. Minimum power (Pmin) and maximum execution time (Tmax) are 

calculated with minimum resource (single instance of resource) and min(UF)=1, while, 

maximum power (Pmax) and minimum execution time (Tmin) is calculated with maximum 

resource and max(UF)=I (maximum # of loop iterations). 

4.4.3. Pre-processing of unrolling factor 

 In order to prune the design space, the proposed methodology performs pre-processing of 

the unrolling factor. The proposed pre-processing algorithm, shown in Figure 4.5, filters unfit 

UFs to create a list of viable solutions. The pre-processing algorithm filters those UFs which 

produce higher sequential loops and also filter higher value of UF because higher UFs gives  

minor improvement in execution time with high power consumption. Therefore, overall cost 

is high of such unrolling factors. Moreover, to ensure the inclusion of good candidates, some 

special UFs have been added which may have been initially screened out in pre-processing 

phase, using the algorithm shown in Figure 4.6. 

An example of pre-processing for test case is given in Table 4.1 for I=36.  
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4.4.4. Proposed initialization process of particles 

 After preprocessing step, initialization of particles is done. During initialization 

process particles position, velocity and acceleration coefficient are initialized as follows: 

a) Position: For a CDFG, a particle position Xi is given as:  

Xi = (N(R1), (N(R2),..(N(Rd).. (N(RD-1),UF) 

In the proposed approach, the initialization of particles is such that it uniformly covers the 

entire design space as follows: 

X1= (min(R1), min(R2),.. min(RD-1),min(UF))           (4.13) 

X2 = (max(R1), max(R2),.. max(RD-1),max(UF)          (4.14) 

X3=(((min(R1)+max(R1))/2..,((min(RD-1)+max(RD-1))/2,max(UF)/2)  (4.15) 

Rest of the particles positions (X4…Xn) are initialized with random values between minimum 

and maximum values of resources and UF as explain in section 3.2.2. Since, an optimal 

design solution to a multi-objective exploration problem always lies between the maximum 

parallel and serial implementation of the application. Therefore, keeping in mind the above, 

X1 is represented by the serial implementation, X2 by parallel implementation, X3 with the 

mid value between serial and parallel implementation and X4-Xn as scattered positions 

between serial and parallel implementations. Hence, using eqn. (4.13) – (4.15),  

Pre-processing of unrolling factor 
 
Input – value of ‘I’ (Total no. of loop 
iteration) 
Output – screened set of unrolling factor 
(UF) 
 
1 Begin 

// Screening of UF// 

2 For UF =2 to I Do 

2.1 IF ((I mod UF <
2

UF  ) &&  

 (UF <= I/2)) Then 

//Add UF into the accepted UF list// 

2.2 Accepted UF[k] = UF 

2.3 k++   

2.4  End IF 

2.5 End For 

3 End  

Algorithm 
 

1 Begin 

2 For UF =2 to I do  

//All U F are added into the accepted list 

until (I mod UF) <
2

UF //  

2.1 IF ((I mod UF)< 
2

UF ) Then 

2.2  Terminate adding process jump to 

the end of the function 

2.3 End IF 

2.4 Accepted UF[k] =UF 

2.5 k++ 

2.6 End For 

3 End 

 

 

Figure 4.5 Pre-processing of UF  

 

Figure 4.6 Algorithm for inclusion of some 

special UFs 
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Table 4.1: An example of pre-processing of 

unrolling factors for test case 

I=36 

UF 

Sequential 

Loop 

(I mod UF) 

Pipelined 

loop 

(I- I mod 

UF) 

Accepted 

(1) 

2 0 36 1 

3 0 36 1 

4 0 36 1 

5 1 35 1 

6 0 36 1 

7 1 35 1 

8 4 32 0 

9 0 36 1 

10 6 30 0 

11 3 33 1 

12 0 36 1 

13 10 26 0 

14 8 28 0 

15 6 30 1 

16 4 32 1 

17 2 34 1 

18 0 36 1 

19 17 19 0 

20 16 20 0 

21 15 21 0 

22 14 22 0 

23 13 23 0 

24 12 24 0 

25 11 25 0 

26 10 26 0 

27 9 27 0 

28 8 28 0 

29 7 29 0 

30 6 30 0 

31 5 31 0 

32 4 32 0 

33 3 33 0 

34 2 34 0 

35 1 35 0 

36 0 36 0 
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X1 = (1, 1, 1, 1), X2 = (4, 4, 2, 36); X3= (2, 2, 1, 18) and X4= (2, 2, 1, 2).  

b) Initialization of velocity, acceleration coefficient  

Velocities of all particles are initialized to zero in the proposed approach [49] while 

acceleration coefficient is initialized to any value between 1 and 4 in order to attain 

convergence as proved mathematically in [50].  

 

4.4.5. Determination fitness and update local and global best position  

Once the all particles are initialized, fitness of the particles is determined. First power is 

calculated according to eqn. (4.8), (4.9), and (4.11).  

Example, for particle   X4= (2, 2, 1, 2): 

 

6
(2464 * 2 2030 * 2 2030 3 * 3 *126 3 * 3 *126) * 2 933 *10 0 389. .sP mW


     

   
  

18 * (4 * 9.8 5 * 0.739 0.739 6 * 3 * 0.1 6 * 3 * 0.1) pj
0.0006

20 * ((1100 (2 1) * 550) *18 0 *1100)
D

mWP
   



  



    

0.39
T

P mW
      

 (4.16) 

Next, execution time metric is calculated as using eqn. (4.6): 

20 * ((1100 (2 1) * 550) *18 0 *1100) 594000
E

T ns               (4.17) 

Finally the fitness of the particle is calculated by eqn. (4.12). Therefore, the fitness of X4 is: 

4 0.101
X

fC         (4.18) 

Similarly, fitness of all the particles is determined by providing equal weightage to power 

(φ1) and execution time (φ2).  Further, local best position of the particles and global best 

position are found out as describe in chapter 3 section 3.2.5.   

4.4.6. Determine global best position  

The global best position of the population is determined using eqn. (4.19) as follows: 

31 2

1 1 1
[ ( , , .... )]n

lb lb lb lbn

X XX X

gb i f f f fX X Min C C C C               (4.19) 

The global best particle position has minimum cost among all local best positions (Xlb1 

…..Xlbn). 
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4.4.7. Determination of new position of each particle 

Iteration process initiates at this step. According to the algorithm, in each iteration, the new 

position of a particle Xi in d
th

 dimension can be given by:  

 
idi d di

R R V
 
              (4.20) 

where, 
di

R
  = new resource value or UF value of particle Xi in d

th
 dimension and 

idR = 

previous resource value or UF value of particle Xi in d
th

 dimension;  
di

V   is the new velocity 

of particle Xi in d
th

 dimension which is updated by eqn. (4.21): 

 

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

                     (4.21)  

where, ‘
lbidR ’ is the resource value of Xlbi in d

th
 dimension, idV is the inertia component, 

‘
gbdR ’

 
is the resource value of Xgb in d

th
 dimension, b1, b2 are acceleration coefficients and 

r1 and r2 are random numbers between [0-1] 

Where, 1 1{ ,... ,UF}lbi Dlbi lbi
X R R  and 1 1{ ,... , UF}gb Dgb gb

X R R 
 

4.4.8.  Adaptive end terminal perturbation & adaptive rotation mutation 

To handle boundary outreach problem during exploration process we propose adaptive end 

terminal perturbation, described in section 3.2.7.  

In order to increase variation and diversity, mutation is performed on all the local best 

positions of each particle with probability Mp=1.0 using Adaptive rotation mutation described 

in section 3.2.9. 

4.4.9. Stopping condition 

The proposed algorithm terminates when the maximum number of iterations exceeds by 100 

count, or when no improvement is visible in gbX  over ‘£’ number of iteration. (£=10). The 

detailed description of the stopping criterion is given in section 3.2.10. 

 

Note – Results of the proposed method are given in chapter 7 section 7.2 
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Chapter 5 

Simultaneous Exploration of Optimal Datapath and Loop 

Based High level Transformation during Area-Delay 

Trade-off in Architectural Synthesis Using Swarm 

Intelligence 

 

With the shrinking of device geometry with the evolution of technology, area 

optimization has become an important aspect for the designers. The area optimization is 

highly dependent on unrolling factor in case of control and data intensive application. Thus, 

the impact of unrolling factor (with datapath) in the circuit area during designing of ASPs or 

hardware accelerators requires significant attention. Therefore, it becomes very essential to 

solve the problem of simultaneous exploration of optimal datapath and UF during area- delay 

trade-off in HLS. 

This chapter presents an automated design space exploration methodology based on 

hyper dimensional swarm encoding for simultaneous searching of datapath and unrolling 

factor (for single loop based application) during area-performance trade-off in high level 

synthesis for application specific computing. During exploration process the proposed 

methodology not only maintains trade-off between conflicting parameters such as area and 

execution time but also resolves orthogonal issues such as quality of results and exploration 

speed. The detail description of the proposed methodology is given in subsequent sections of 

this chapter.  

5.1. Problem Formulation 

Given a CDFG, explore the design space and find an optimal solution which satisfies the 

conflicting user constraints and minimize the overall cost. The problem solved is formulated 

as: 
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Find: Optimal (Xi) = (Rx, UFN) 

with minimum hybrid cost: AT and TE; 

Subjected to: AT <= Acons and TE <= Tcons 

where, ‘Xi’ is a set comprising of resources combination and UF formally represented as: 

 
1 2 1X ( , ) { ( ), ( ),... ( )... ( ), }i x N d D NR UF N R N R N R N R UF   

where, ‘N(Rd)’ is the number of instances of resource type ‘Rd’; ‘D-1’ is the total number of 

resource types; UFN is N
th

 unrolling factor; ‘Rx’ is an candidate resource combination; ‘AT’ 

and ‘TE’ are the area and execution time consumed by a candidate solution; ‘Acons’ and ‘Tcons’ 

is area and execution time constraint specified by the user. 

 

5.2. The Proposed Framework  

The block diagram of proposed approach is shown in Figure 5.1 and the flow diagram of 

proposed approach is shown in Figure 5.2. Based on the flow diagram, the description of the 

algorithm with demonstration is given in subsequent sections. 

 

5.3. Evaluation Models 

During exploration process the design points are need to be evaluate. To evaluate a design 

point model for execution time, model for area evaluation and model for cost (fitness) have 

been presented in the following subsection:  

 

5.3.1. Execution time model 

To evaluate the execution time of CDFG based application without tediously complete 

unrolling the CDFG during exploration process, the execution time model formulated as: 

*((C ( 1)* )* )( mod )*E first II firstT UF C I UF C    
 

      (5.1) 

 

Where, ‘TE’ is the total execution time; ‘Cfirst’ is number of CSs required to execute first 

iteration, ‘CII’  is the number of CSs required between initiations of consecutive iterations ‘I’ 

is the maximum number of iteration (loop count),  UF is the specified loop unrolling factor; 
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‘∆’ is the delay of one CS in nanoseconds; α is  I

UF
floor value . (Note - The detail 

description of the execution time model has been given in chapter 4 section 4.3.) 

Eqn (5.1) is an estimation model for TE, where the necessity of tediously unrolling the CDFG 

is not required to calculate TE, unless # of independent operations required to be performed 

in parallel due to unrolling exceeds the available resource units (specified in a solution). 

 

5.3.1.1. Area model 

The total area consumed by a resource combination and multiplexer is denoted by ‘AT’.  

 / /

1

( )
i iT R R MUX DMUX MUX DMUX

i

A N K N K




 
    
 
         (5.2) 

where, ‘NRi’ represents the number of instance of resource Ri; ‘KRi’ represents the area 

occupied by resource Ri (#transistor), ‘v’ is the number of resource types, ‘NMUX/DMUX’ is 

number of the multiplexer or demultiplexer, and ‘KMUX/DMUX’ is area occupied by the  

Figure 5.1 Block diagram of proposed approach 
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Figure 5.2 Flow diagram of proposed algorithm 
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multiplexer or demultiplexer (Note:- area is calculated in terms of number of au ) (1 au = 1 

transistor). 

5.3.1.2. Model for fitness function  

The fitness function (considering execution time and area of a solution) is defined as:  

1 2

max max

iX T cons E cons
f

A A T T
C

A T
 

 
                (5.3) 

Where, iX

fC  = Fitness of particle Xi; 1 , 2 = User defined weights for area and 

execution time; TMax is maximum execution time calculated with minimum resource (single 

instance of resource) and min (UF)=1 while Amax is calculated with maximum resource and 

max(UF)=I (maximum # of iterations). 

5.4. Demonstration of Proposed Methodology 

5.4.1. User specification 

 The CDFG used for demonstration (as shown in Figure 5.3) along with the user specified 

design constraints for area and execution time as well as the module library[52, 54, 74, 92] 

are taken as inputs to the proposed framework (area of adder= 2030au, multiplier= 2464au, 

comparator= 2030au multiplexer (2:1) = 126au ; delay of adder= 270ns, multiplier = 

11000ns, comparator= 270ns multiplexer= 20ns; where one (4:1) multiplexer needs three 

(2:1) multiplexer and one (8:1) multiplexer needs seven (2:1) multiplexer; we assume (1 au = 

1 transistor). For the sake of explanation, we are assuming some real values for area 

constraint (Acons=18000 au and execution time constraint (Tcons=60us); Maximum available 

multiplier FU’s: 8, adder FU’s: 4, comparator FU’s: 2 and total user specified loop iteration I 

= 8; number/type of mux/demux is directly extracted from the scheduling.      

                           

5.4.2. Boundary constraint check module 

After specifying constraints, the proposed framework checks for valid user constraints. If 

user constraints are not valid then an error is shown and requests for valid values:   

1. Check: ||max maxmin min
A A A T T Tcons cons     

2. If above condition is true then stop and correct constraints. 

Else execute the initialization process of module. 
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In order to check the constraints, maximum and minimum value of area and execution 

time are determined. Minimum are (Amin) and maximum execution time (Tmax) are calculated 

with minimum resource (single instance of resource) and min (UF)=1, while, maximum area 

(Amax) and minimum execution time (Tmin) is calculated with maximum resource and 

max(UF)=I (maximum # of loop iterations). 

 

5.4.3.  Pre-processing of unrolling factor 

In order to reduce the design space and enhance the exploration speed, pre-processing of the 

loop unrolling factor is performed by the proposed algorithm. The pre-processing algorithm 

is given in chapter 4 (Figure 4.5 and Figure 4.6). An example of pre-processing shown in 

Table 5.1 for FIR shown in Figure 5.3 (used for demonstration).  

5.4.4. Initialization process of particles  

 After pre-processing step, initialization of the particles takes place as describe in 

chapter 4 section 4.4. 

a) Position 

For (i=0; i<8; i++) { 

        Yn = Yn + (coeffi * Xn-i) 

} 
 ‘C’ code of original loop 

 

Figure 5.3 Demonstration of loop unrolling based on a resource constraint of 

2(*), 2(+), 1(<) for FIR 
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Hence, the initial solution are:  

X1 = (1, 1, 1, 1) 

X2 = (8, 4, 2, 8) 

X3= (4, 2, 1, 4)  

b) Initialization of velocity and acceleration coefficient 

 Velocities of all particles are initialized to zero in the proposed approach and acceleration 

coefficient can be initialized to any value between 1 and 4 [50]. 

5.4.5. Determination of local and global best position  

Once the all particles are initialized, fitness of the particles is determined. First area is 

calculated according to eqn. (5.2).  

Example, for particle X3= (4, 2, 1, 4): 

(2464 * 4 2030 * 2 2030 *1 12 *126 3 * 7 *126 3 * 3 *126)
T

A      
 

21238 au
T

A 
                        

        (5.4) 

Where the module values (library) are assumed, discussed in section 5.3.1.                                       

Next, execution time metric is calculated as using eqn. (5.1): 

20 * ((564 (4 1) *14) * 2 0 * 564) 24240
E

T ns             (5.5) 

(Note- the values of Cfirst, CII, are derived from the ASAP scheduled CDFG with resource 

combination: 4 (*), 2 (+), 1(<), UF=2) shown in figure 5.3(b).  

Table 5.1: An example of pre-processing 

of unrolling factors for FIR 

I=8 

UF 

Sequential 

Loop 

(I mod UF) 

Pipelined 

loop 

(I- I mod 

UF) 

Accepted 

(1) 

2 8 0 1 

3 6 2 0 

4 8 0 1 

5 5 3 0 

6 6 2 0 

7 7 1 0 

8 8 0 0 
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Finally the fitness of the particles is calculated by eqn. (5.3). Therefore, the fitness of X3 is: 

3 0.1507
X

fC         (5.6) 

Similarly, fitness of all the particles is determined and local best position of the particle and 

global best particle are found out as describe in chapter 3 section 3.2.5. (Note- 1  = 1 = 0.5 is 

chosen for providing equal weightage to area and execution time).  

5.4.6.  Determination of new position of each particle 

 Iteration process initiates at this step. According to the algorithm, in each iteration, the 

new position of a particle Xi in d
th

 dimension can be given by:  

 
idi d di

R R V
 
                      (5.7) 

where, 
di

R
  = new resource value or UF value of particle Xi in d

th
 dimension and 

idR = 

previous resource value or UF value of particle Xi in d
th

 dimension;  
di

V   is the new velocity 

of particle Xi in d
th

 dimension which is updated by eqn. (5.8): 

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

         (5.8)  

where, ‘
lbidR ’ is the resource value of Xlbi in d

th
 dimension, idV is the inertia component, ‘

gbdR ’
 
is the resource value of Xgb in d

th
 dimension, b1, b2 are acceleration coefficients and r1 

and r2 are random numbers between [0-1]. 

Note- 1 1{ ,... ,UF}lbi Dlbi lbi
X R R  and 1 1{ ,... , UF}gb Dgb gb

X R R   

For example, particle position X3, di
V


and di

R
 are calculated for 1

st
 dimension using eqn. 

(5.8) and (5.7) as: 

   
3 31 1 0.5*0  2*0.5 4 4   2*0.5 4 4 0;  R  4 0  2V
 
          

 (Note- 
gbdR

 
 = 4 for 1st dimension is used in eqn. (5.7) and Vdi  =0 has been assumed 

initially (as explained in section 5.3.4)) 

Similarly, the 
di

V


and 
di

R  for all dimensions of all particles can be calculated. To handle 

boundary outreach and excessive drift adaptive end terminal perturbation and velocity 
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clamping is performed. (Note: The details of adaptive end terminal perturbation and velocity 

clamping are given in chapter 3 section 3.2.7.and section 3.2.8 respectively. 

5.4.7. Mutation operation  

 To increase variation and diversity, mutation is performed on all the local best position of 

each particles with probability Mp=1.0 using Adaptive rotation mutation. The detail 

description of the mutation algorithm is given in chapter 3 section 3.2.9.  

 

5.4.8.  Stopping condition 

From chapter 3 section 3.2.10, the proposed algorithm can terminate either:  

a) When the maximum number of iterations exceeds 100, or,  

b) When no improvement is visible in 
gbX  over ‘£’ number of iteration (£=10).  

 

Note – Results of the proposed method are given in chapter 7 section 7.3 
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Chapter 6 

Swarm Inspired Exploration of Architecture and 

Unrolling Factors for Nested Loop Based Application in 

Architectural Synthesis 

 

Loop Unrolling is very popular technique to exploit parallelism and when loop unrolling 

combine with data path during design space exploration process, then produces better quality 

design, as we found in our previous investigation on single loop based application (as explain 

in chapter 4 and 5). Further, this investigation required more efforts for nested loop based 

application because in nested loops based application designer have more opportunity for 

unrolling, but, in other hand, the complexity of the problem also increases because of design 

space increases exponentially. Moreover, the direction of unrolling (i.e., which loops should 

be unrolled) and the unrolling factor have an extremely strong effect on the efficiency of the 

execution of the unrolled loop.  As we know, in the domain of multimedia, digital signal 

processing, medical etc, there exist many applications, which are nested loop in nature. 

Therefore, considering nested loops as part of optimization process during DSE in high level 

synthesis is crucial for designers. 

In order to handle such applications, a novel framework for automated design space 

exploration of architectures and unrolling factors for perfectly nested loops in architectural 

synthesis (AS) has been presented in this chapter, which maintains trade-off between power 

and performance during exploration and also resolve orthogonal issues such as exploration 

speed and quality of result (QoR). Moreover, a novel model for determining (predicting) 

execution time based on architecture and unrolling factors (UFs) for nested loop without 

tiresomely unrolling completely is proposed. The detail description of the proposed approach 

is given in subsequent sections in this chapter.  
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6.1. Problem Formulation  

Given a CDFG, find a minimal cost solution (S ) which satisfies the conflicting user 

constraints. The formulation is as follows: 

Minimize (S)f   (Hybrid cost of PT and TE) 

Subjected to: 
T cons E consP P and T T   

1 2

1 2

( , )

, (R ,R , ,R )

L 1

, ( , , , )

L 1

n

R R

i i i

m

UF UF

j j j

S R UF

where R

R U wherei to n

and UF UF UF UF

UF U where j to m





  



  

 

1 2 1 2{R ,R , ,R , , , , }n mS UF UF UF
    

(6.1) 

and, D= n+m 

where, ‘Rn’ is the number of instances of n
th

 resource type; ‘n’ is the total number of resource 

types; UFm is unrolling factor of  m
th

 loop; ‘m’ is the total depth of nested loop; ‘ R ’ is an 

candidate resource combination, ‘UF ’ is a set of candidate UFs; ‘ LR

i
’ and ‘ R

iU ’ are minimum 

and maximum available i
th

 resource (Ri) type; ‘ LUF

j
’ and ‘ UF

jU ’ are  minimum (no unrolling ) 

and maximum (equal to loop count I) unrolling factor of j
th

 loop; ‘PT’ and ‘TE’ are the power 

and execution time consumed by a candidate solution; ‘Pcons’ and ‘Tcons’ are power and 

execution time constraint specified by the user;‘D’ is number of dimension in a solution;‘m’ 

is number of resource types; ‘n’ depth of the loop (in nested loop). Unrolling factor indicates 

the number of times a loop body (single or nested) is unfolded to exploit parallelism. For 

example, in Figure 6.1 the original loop body (shown in Figure 6.1 (b)) has been typically 

unrolled (UF=2, 3) with respect to both inner and outer loop (shown in Figure 6.1 (c)). Note- 

nested loop cannottransform into single loop when loop body dependent upon both inner and 

outer indices. 

6.2. The Proposed Framework and Mapping Process 

The proposed mapping between Design space exploration problem for nested loop based 

application and particle swarm optimization is shown in Figure 6.2 and the block diagram of 

the methodology given in Figure 6.3 while the algorithm for exploration process is explained   
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For(i=0;i<8;i++){ 

For(j=0;j<8;j++){ 

     Ai +=Bj*Bj-i 

 } 

} 

Figure 6.1 (a) ‘C’ 

code for original 

loop of 

Autocorrelation 

benchmark 
Figure 6.1 (b) CDFG of Original loop 
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Figure 6.2 Proposed Mapping of DSE problem with PSO 
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Figure 6.3: Block diagram of proposed DSE Engine 

 

Optimal Solution 

DSE Engine 

PSDSE 

Module 

Fitness 

Evaluation 

Module 

User 

Constraints 
CDFG 

Control 

parameters 

Module Lib 

Algorithm: PSDSE 

Input: CDFG, module library, user constraints 

Output: Optimal combination resources (FU’s) and unrolling factors (UFs) 

Begin 

 Read library information and CDFG 

 Constraint validity check()  

 Pre-processing UF () 

 Initialization() 

 Cost evaluation Process() 

 Update global best and local best solution 

 //Iteration process starts here// 

 While (!stopping condition) 

For i=1 to A Do       //where ‘A’ is swarm size 

 Determine new solution 

 Cost evaluation Process() 

 Update local best solution of the particle 

 End Loop 

     Update global best solution 

    Adaptive rotation mutation () 

   Update global best solution  

  End while loop 

Output: global best solution which is optimal combination of resources 

(FU’s) and UFs 

End 

END  

Figure 6.4 Exploration algorithm 
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in Figure 6.4. Based on the algorithm, the detail description with demonstration is given in 

section 6.2. 

6.3.  Proposed Evaluation Models 

For evaluation of a solution (or design point), the following models have been proposed.  

6.3.1. Proposed model for execution time  

In order to describe the formulation of proposed execution time (TE) (function of loop 

unrolling factor) for a CDFG, an example of loop unrolling is used shown in Fig. 6.5. Fig. 

6.5(a) shows the ‘c’ code of original loop, Fig 6.5(b) shows CDFG for original loop and Fig. 

6.5(c) shows an as soon as possible (ASAP) scheduled CDFG unrolled 2*λ times (In this 

example λ =2 ) with resource constraint of 2(*), 1(+) and 1(<).  

The Proposed Procedure to estimate execution time for nested loop and single loop 

application is given in Figure 6.6. 

For(i=0;i<8;i++){ 

For(j=0;j<8;j++){ 

     Ai +=Bj*Bj-i 

 } 

} 
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Procedure to estimate execution time  

Input-Resource combination (RC), UFs, CDFG 

Output- Execution time of CDFG based on RC and UFs 

Step 1- Determine max number parallel independent operations in original loop body 

(denoted by ‘γ’). 

Step 2- Determine effective unrolling factor ‘UFe’ and αe defined as: 

1

m

e
z

zUF UF


       (6.2) 

1

m

z

z
e

z

I
floor valueof

UF




 
  

 
       (6.3) 

λ = number of resources corresponding to ‘γ'  

Where ‘Iz’ is z
th

 loop of I; UFz is the z
th

 unrolling factor of UF.   

Step 3- if ((Total number of independent operations due to effective unrolling > λ) && 

(UFe mod λ =0)) 

       Go to step 4. 

Else  

Unrolled completely and determine CTotal and use eqn. (6.5) 

Step 4- Unroll loop body λ times which to group (denoted by ‘G’). 

Step 5- Schedule G with as soon as possible (ASAP) to determine 
G

firstC and 
G

cycleC  as 

describe in Fig 6.5(c). 

Step 6- Determine total control steps (CS) 

( 1)* *G Ge
Total first cycle e

UF
C C C 



 
   
 

        (6.4) 

Step 7- Repeat step 2 and 6 for sequential loop (if any). Finally 

CTotal = CTotal(pipelined) + CTotal (sequential) 

*E TotalT C       (6.5) 

where, ‘TE’ is total execution time; ‘∆’ is the delay of one control step in nanoseconds; ‘
G

firstC ’ is required number of CS to execute G once; ‘ G

cycleC ’ is number of CS between two 

consecutive iteration of G, ‘CTotal’ is total number of CS required to execute the loop 

completely. 

Figure 6.6 Procedure to estimate execution time for loop based application 
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On the other hand, for single loop application, TE formulated as: 

*((C ( 1)* )* )( mod )*E first II firstT UF C I UF C         (6.6) 

Where ‘Cfirst’ is number of CSs required to execute first iteration, ‘CII’ is the number of CSs 

required between initiations of consecutive iterations, ‘I’ is the maximum number of iteration 

(loop count), and ‘α’ is floor value of (I/UF).(Note- detail description of the model given in 

chapter 4 section 4.3.) 

The model given in eqn. (6.6) is not used when #of independent operations required to be 

performed in parallel due to unrolling exceeds the available resource units specified in a 

solution. In such cases loop unrolled tediously. To overcome above limitation proposed 

model given in (6.5) is used with UFe = UF. 

Note- The utility of the proposed model is wide spectrum. The execution time model 

proposed in this paper is useful for any DSE process which handles single or perfectly nested 

loop. 

6.3.2. Power Model 

The total power consumed by a resource combination is denoted by ‘PT’. ‘PT’ is 

composed of dynamic power (‘PD’) and static power (PS) given by (6.7) below: 

T D S
P P P               (6.7) 

PT is formulated as: 

/

/ /

1

(

( ) *

)

i i

T

FU MUX DMUX

R R MUX DMUX MUX DMUX c

i

E

E E
P

T

N K N K P






 
   

 





    (6.8)      

where, ‘EFU’ represents the total energy consumption of the resources , ‘EMUX/DMUX’ 

represents the total energy consumed by multiplexer and demultiplexer. ‘NRi’ represents the 

number of instance of resource Ri; ‘KRi’ represents the area occupied by resource Ri, ‘v’ is 

the number of resource types, ‘NMUX/DMUX’is number of the multiplexer or demultiplexer, 

‘KMUX/DMUX’ is area occupied by the multiplexer or demultiplexer and ‘Pc’ denotes the power 

dissipated per area unit (e.g. transistors). 
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6.3.3.  Cost model 

The fitness function (considering execution time and power consumption of a solution) is 

defined as:  

1 2

max max

(S) T cons E consP P T T
f

P T
 

 
           (6.9) 

Where, (S)f  =fitness (cost) of solution S; 1 , 2 = User defined weights for power and 

execution time. 

6.3.4. Demonstration of proposed execution time estimation procedure  

 

To demonstrate the procedure for estimation of execution time (presented in Figure 6.6) for 

nested loops, the CDFG presented in Figure 6.1 and Figure 6.5 is used. The Figure 6.5(c) 

shows the unrolled loop with UF( 2, 2 ) which has been scheduled by as soon as possible 

(ASAP) scheduling algorithm with resource constraint of 2(*), 1(+) and 1(<).The 

demonstration of the procedure based on Figure 6.5 is as follows:  

Resource combination = 2(*), 1(+), 1(<) 

Unrolling Factor = UF1=4, UF2= 4 

Step 1- Determine ‘γ’ 

From the Figure 6.5(b) only one multiplication operation is independent in the loop body so  

γ = 1 

Step 2- Using eqn.6.2 and eqn.6.3 

1

m

e
z

zUF UF



 

UFe = UF1 * UF2 = 4 * 4 =16 

1

m

z

z
e

z

I
floor valueof

UF




 
  

 
  

1 1*
1 1

8 8
* 4

4 4

e

I I
floor valueof floor valueof

UF UF

floor valueof floor valueof


   

    
   

   
    

   

 

λ = 2 i.e. multiplier (Number of resources of γ resource type)  

Step 3- Number of operations due to effective unrolling = UFe * γ = 16 * 1 
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Check condition explained in step 3 of Figure 6.6   

Accordingly, ((16 > 2 ) and (16 mod 2 = 0)) = True  

Thus, move to step 4 

Step 4- Schedule the 2 * λ times unrolled loop body, using ASAP to form G and G’. 

Step 5- Determine 
G

firstC and 
G

cycleC  as shown in Figure 6.5 (c). 
  

(Note- the values of G

firstC and G

cycleC  are derived from the ASAP scheduled CDFG with 

resource combination: 2 (*), 1 (+),1(<), UFs= (2,2)) shown in Figure  6.5(c). 

Step 6 and Step 7- Determine execution time metric using eqn. (6.4) and (6.5): 

((578 (16 / 2 1) * 550) * 4) * 20 354240
E

T ns              (6.10) 

In case of Figure 6.1, the Figure 6.1(c) shows the physically unrolled loop with UF(2, 3) 

which is scheduled by as soon as possible (ASAP) algorithm with resource constraint of 2(*), 

1(+) and 1(<). Moreover, the UF for j
th

 loop (i.e. 3) is not a factor of (divisible) j
th

 loop index 

(i.e. 8) which leads two remainder loops for every ‘i’ index resulting in total sixteen 

remainder loops for i = 8 as shown in Figure 6.1(c) i.e.  

Total loop iterations (64) = unrolled loop (48) + sequential loop (16); 

The demonstration of execution time evaluation for CDFG (given in Figure 6.1) is as follows: 

Step 1- Determine ‘γ’ 

From the Figure 6.1(b) only one multiplication operation is independent in the loop body so  

γ= 1 

Step 2- Using eqn.6.2 and eqn.6.3 

1

m

e
z

zUF UF



 

UFe = UF1 * UF2 = 2 * 3 = 6 

1

m

z

z
e

z

I
floor valueof

UF




 
  

 
  

1 1*
1 1

8 8
* 8

2 3

e

I I
floor valueof floor valueof

UF UF

floor valueof floor valueof


   

    
   

   
    

   
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λ = 2 i.e. multiplier (Number of resources of γ resource type)  

Step 3- Number of operation due to effective unrolling = UFe * γ = 6 * 1 

Check condition explain in step 3 of Figure 6.6 

Accordingly, ((6 > 2) and (6 mod 2 = 0)) = True  

Thus, move to step 4 

Step 4- Schedule the 2* λ times unroll loop body, using ASAP to form G and G’  

Step 5- Determine 
G

firstC and 
G

cycleC   for ‘λ’ =2 (as shown in Figure 6.5 (c))
 
 

Step 6 and Step 7- Determine execution time metric using eqn. (6.4) and (6.5): 

((578 (6 / 2 1) * 550) * 8) 13424( )TotalC cspipelined    
 

         

Similarly for sequential loop (as shown in Figure 6.1) 

CTotal (sequential) =  6936 cs 

CTotal = 13424 + 6936 = 203605 

Using eqn. (6.5)  

TE = 20360 * 20 = 407200 ns 

6.4.  Demonstration of proposed methodology  

6.4.1. Input module library, user constraints and CDFG 

First of all, the PSDSE framework takes module library [52, 54], CDFG, and user 

specified design constraints for power and execution time as inputs. For the sake of 

demonstration, power constraint (Pcons=1.25mW) and execution time constraint (Tcons=250us) 

are taken as input. Further, the module library consist area (#transistor), energy consumption, 

delay and maximum availability of functional units. For demonstration maximum available 

multiplier = 8, adder = 8, comparator = 2 and total user specified loop iteration I1 = 8 and I2 = 

8; power dissipated per transistor (Pc) is assumed to be 29.33nW; furthermore, number/type 

of mux/demux is directly extracted from the scheduling and binding solution.                        

6.4.2. Constraint validity check  

After taking the user constraints for power and execution time the algorithm checks 

validity of user constraints, In order to check the constraints, maximum and minimum value 

of power and execution time need to be calculated. Maximum power (Pmax) and minimum 
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execution time (Tmin) is calculated with maximum resource and max(UFi)=Ii (maximum # of 

loop iterations) while minimum power (Pmin) and maximum execution time (Tmax) are 

calculated with minimum resource (single instance of resource) and min (UFi)=1. 

After determining maximum and minimum value of power and execution time the 

algorithm checks for valid user constraints. If user constraints are not valid then an error is 

shown and requests for valid values.  

IF ( ) ( )( max maxmin min
AND OR ANDP P P P T T T Tcons cons cons cons    ) 

 Proceed for initialization process. 

ELSE 

Requests to user for input correct constraints. 

6.4.3.  Pre-processing of unrolling factor 

 The pre-processing step filters unfit UFs to create a list of feasible solutions. Moreover, to 

ensure the inclusion of good candidates, some special UFs have been added which may have 

been initially screened out in pre-processing phase. The detail description of the pre-process 

is given in chapter 4 section 4.4. 

6.4.4. Initialization process of the particle  

 After preprocessing step initialization of the particle take place. During initialization 

process solutions (particles position), velocity and acceleration coefficient are initialized as 

follows: 

a) Solution: For a CDFG, a particle position Si representing a candidate solution (as 

described in section 6.1) is given in eqn. (6.1):  

1 2 1 2{R ,R , ,R , , , , }n mS UF UF UF  

In PSDSE, the initialization of particles is such that it comprehensively covers the entire 

design space as follows:  

min min min min min min

1 1 2 1 2{R ,R , ,R , , , , }n mS UF UF UF    (6.11) 

max max max max max max

2 1 2 1 2{R ,R , ,R , , , , }n mS UF UF UF    (6.12) 

3 1 2 1 2{R ,R , ,R , , , , }avg avg avg avg avg avg

n mS UF UF UF    (6.13) 

avg = (max + min)/2 
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Where ‘ minRn ’ is minimum the number of instances of n
th

 resource type, ‘ maxRn ’ is maximum 

the number of instances of n
th

 resource type, 
min

mUF is minimum unrolling factor (equal to 1) of  

m
th

 loop, 
max

mUF is maximum unrolling factor (equal to I) of  m
th

 loop. 

Rest of the solutions (S4…Sn) is initialized with random values between minimum and 

maximum values of resources and UFs as describe in chapter 3 section 3.2.3. Hence, using 

eqn. (6.11) – (6.13),  

S1 = (1, 1, 1, 1, 1), 

S2 =(8, 8, 2, 8, 8); 

S3= (4, 4, 1, 4, 4); 

S4= (2, 1, 1, 4, 4). 

b) Initialization of velocity and acceleration coefficient 

 Velocities of all particles are initialized to zero in the proposed approach[49] and 

acceleration coefficient can be initialized to any value between 1 and 4 [50]. 

6.4.5. Cost evaluation and local, global best update 

Once the all particles are initialized, fitness of the particles is determined. First power is 

calculated according to (6.8). Example, for particle S4= (2, 1, 1, 4, 4): 

6

4 * (16 * 9.8 17 * 0.739 1* 0.739 3 * 6 * 0.1 3 *15 * 0.1) pj

((578 (16 / 2 1) * 550) * 4) * 20

(2464 *1 2030 * 2 2030 *1 3 * 7 *126 3 *15 *126) * 2 933 *10.

T

ns

P



   

 

   

 

 

0.495
T

P mW
    

 (6.14)                                          

Next, determination the execution time for particle S4= (2, 1, 1, 4, 4) where 2(*),1(+),1(<) are 

resources and 4,4 are UFS .  The execution time of the solution S4 is: 

 

TE = 354240ns by eqn. 6.10 as describe in section 6.3.4  

  

Finally the fitness of the particles is calculated by (6.9). Therefore, the fitness of S4 is: 

4(S ) 0.0654f         (6.15) 

Similarly, fitness of all the particles is determined. (Note- 1  = 1 = 0.5 is chosen for 

providing equal weightage to power and execution time). 
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 After cost evaluation next step is local best solution (position) update. If cost of new 

solution is lesser than the local best cost of the particle then the new solution become local 

best solution and new solution cost become local best cost. Further, the global best solution is 

updated as follows:  

1 2[ ( ( ), ( ),.... ( ))]gb i lb lb lbAS S Min f S f S f S
  

 (6.16) 

6.4.6.  Determination of new solution 

 To determine new solution firstly, determine new velocity of the particle. The velocity of 

the particle is determined as (6.17) is given below:  

 
1 1 2 2

- S - S
di i gb ilbi id d dV b b Sd dV r S r

         (6.17) 

where, 
di

V   is the new velocity of particle i
th

 solution in d
th

 dimension, ‘
lbidS ’ is the value of 

i
th

 solution in d
th

 dimension, di
V is the inertia component, ‘ gbdS ’is the value of Sgb in d

th
 

dimension, b1, b2 are acceleration coefficients and r1 and r2 are random numbers between [0-

1]. 

Secondly, new solution (position) of the particle is updated with new velocity defined in 

(6.18) as follows: 

 
idi d di

Vs s 
              (6.18) 

where, 
di

S
  = new resource value or UF value of i

th
 particle in d

th
 dimension and 

idS = previous 

resource value or UF value of  i
th

 particle in d
th

 dimension;     

Note- 
1 1{ ,... ,UF , ,UF }

lbi lbi lbi lbilbi n mS R R and 
1 1{ ,... ,UF , ,UF }

gb gb gb gbgbi n mS R R  

(Note: To control the excessive exploration drift velocity clamping and to handle boundary 

outreach violation adaptive end terminal perturbation are described in chapter 3). 

6.4.7. Mutation operation and Stopping criterion 

 With the hope of better solution and improving local optima problem the adaptive rotation 

mutation is performed on all the local best position of each particle with probability equal 

one. The description of mutation operation is given in chapter 3. 

 The proposed algorithm terminates when no improvement observe in 
gbS  over ‘£’ 

number of iteration. (£=10) or when the iteration count exceeds maximum number of 

iterations equal to 100. 
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6.5. Process of transforming non-perfect nested loop into perfect nested loop 

The proposed approach only handlesthe perfectly nested loop based applications. A perfect 

nested loop is a loop where there are no statements between different loop-levels. For 

example, the CDFG (autocorrelation) of nested loop in Figure 6.7(a) is not a perfect loop 

(called non-perfect nested loop) since there is code between the innermost level and the outer 

level (e.g. sum=0; and r[i]= sum>>15).To handle such application, transformation of non-

perfect nested loop to perfect nested loop is performed. In order to make a non-perfect nested 

loop to perfectly nested loop, a transformation method is used, which has been adopted from 

[70]. This section presents an overview of the transformations. The transformation is divided 

into two parts viz. renaming and loop distribution. The procedure is as follows: 

6.5.1. Renaming. 

 In this step all reused variables are renamed, to make loop distribution feasible. For this,an 

array of same dimension as number of iterations of the outer loop isintroduced ( if this 

number is not available at compile time, then take maximum value in the worst case) and 

then use the array elements to replace the variables in the code. For example, in Figure 6.7(a) 

‘sum’ is a variable which is initialized to the loop body of the innermost loop. Its value will 

be stored after innermost loop is finished. For each iteration of the outer loop, sumis reused. 

So an array for sum is created with ‘nr’ dimension ( loop count of outer loop) (i.e. sum[nr]). 

The nested loop given in Figure 6.7(a) changes to Figure 6.7 (b) after renaming is applied.  

6.5.2. Loop distribution 

After renaming has been done, the next step is loop distribution. In loop distribution, the loop 

body of the outer loop is divided into three parts: initialization part, the innermost loop, and 

the result stored part. This distribution converts the original loop into three different loops. 

The first loop is initialization loop, which is a single level loop. The second part is innermost 

loop, which is the main part of the code and form a perfectly nested loop. The third part is 

result store part, which is also single level loop. For example, the renamed loop shown in 

Figure 6.7(b) converted to the perfectly nested loop after distribution shown in Figure 6.7 (c). 

 

Note – Results of the proposed method are given in chapter 7 section 7.4 
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inti, k;                                                            

int sum;                                                                                                                             

for (i = 0; i < nr; i++)                                             

      {                                                                     

sum = 0;                                                                                                                       

for (k = nr; k <nx + nr; k++)                                    

          {                                                                 

sum += x[k] * x[k-i];                                         

          }                                                                                                                                

r[i] = sum  >> 15;                                                         

  } 

 

 

Figure 6.7 (a) Original nested loop  

Initialization Statement 

Result Store Statement 

Main loop body  

Figure 6.7 An example of loop transformation from non-perfect to perfect nest loop 

inti, k;                                                            

int Sum[nr];                                                                                                                             

for (i = 0; i < nr; i++)                                             

      {                                                                     

          Sum[i] = 0;                                                                                                                       

for (k = nr; k <nx + nr; k++)                                    

          {                                                                 

Sum[i] += x[k] * x[k-i];                                         

          }                         

          r[i] = Sum[i]  >> 15;                                                         

  } 
 

Figure 6.7 (b) Renaming 

Renaming 

of ‘Sum; 

to ‘Sum[]’ 

inti, k;                                                            

int Sum[nr];                                                                                                                             

for (i = 0; i < nr; i++)                                             

      {                                                                     

          Sum [i]= 0;    

}  

for (i = 0; i < nr; i++) {                                                                                                                  

       for (k = nr; k <nx + nr; k++)                                    

          {                                                                 

              Sum[i] += x[k] * x[k-i];                                         

          }  

} 

for (i = 0; i < nr; i++)  {                                                                                                                             

r[i] = Sum[i]  >> 15;                                                         

 } 

Figure 6.7 (c) Final after renaming and distribution 

 

Initialization loop 

Main perfectly Nested Loop  

Result Store loop 
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Chapter 7  

Result and Analysis 

 

This chapter describes the complete experimental results of the proposed methodologies for 

design space exploration described in previous chapters. This chapter divided into four 

sections where each section present results of the respective methodology. Four sections are 

as follows: 

a) MO-PSE: Adaptive Multi Objective Particle Swarm Optimization Based Design 

Space Exploration in Architectural Synthesis for Application Specific Processor 

Design 

b) Automated Exploration of Datapath and Unrolling Factor during Power-Performance 

Trade-off in Architectural Synthesis Using Multi-Dimensional PSO Algorithm 

c) Simultaneous Exploration of Optimal Datapath and Loop Based High level 

Transformation during Area-Delay Trade-off in Architectural Synthesis Using Swarm 

Intelligence 

d) Simultaneous Exploration of Optimal Datapath and Loop Based High level 

Transformation during Area-Delay Trade-off in Architectural Synthesis Using Swarm 

Intelligence   

The results included implementation details, library details, sensitivity analysis of control 

parameter and improvements achieved compared to the state of art approaches. 

 

7.1 Experimental results: the proposed approach ‘MO-PSE: Adaptive 

Multi Objective Particle Swarm Optimization Based Design Space 

Exploration in Architectural Synthesis for Application Specific 

Processor Design’  

This section describes the experimental results of the proposed approach explained in Chapter 

3 and the improvements obtained compared to recent approach [27, 29]. The proposed MO-
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PSE approach has been implemented in java language and run on Intel core i5-2450M 

processor 2.5 GHz with 3MB L3 cache memory and 4GB DDR3 primary memory. Various 

high level synthesis DSP benchmarks were chosen for testing such as autoregressive filter 

(ARF) [53,57], band-pass filter (BPF) [5], elliptic wave filter (EWF) [53], finite impulse 

response (FIR) filter [5,57], IIR Butterworth [53], MESA-Horner Bezier[53], MPEG motion 

vectors (MMV) [5, 53], JPEG Downsample [5]. The library is given in chapter 3 Table 3.1, 

3.2. The proposed MO-PSE approach is experimented with two aspects given below: 

 Analysis of variation in multiple PSO parameters and their impact on the MO-PSE 

performance (or efficiency). 

 Comparison of MO-PSE with previous DSE approaches [29], [27] in terms of 

exploration time (or speed) and Quality of Results (QoR) achieved. 

 

7.1.1. Impact of Proposed MO-PSE with variation in PSO parameters: 

Investigation and Analysis  

This section will investigate the impact of variation in multiple internal PSO parameters on 

proposed design space exploration approach for selected benchmarks. However, it should be 

noted that this subsection will not discuss the quality of results achieved through the proposed 

DSE approach. The quality of solution found and its comparison with other DSE approaches 

will be discussed in the next subsection. Further in this subsection, post-experimental analysis 

will also assist in pre-tuning PSO parameters to an appropriate value (for MO-PSE) while 

performing DSE comparison.   

 

7.1.1.1. Inertia weight (ɷ) 

In the proposed approach (MO-PSE), inertia weight controls to the exploration drift process 

of the particle by weighing the involvement of the previous exploration drift. During the 

experiment, the following three variations of ‘ɷ’ have been analysed and its impact on the 

performance of MO-PSE has been reported: 

a) Linearly decreasing ‘ɷ’ in every iteration between [0.9- 0.1] throughout the exploration 

process.  

b) A constant value of ɷ = 1 throughout the exploration process.  

c) A constant value of ɷ = 0.5 throughout the exploration process.  
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As evident from Table 7.1 and Table 7.2, for all benchmarks the MO-PSE’s convergence 

time and exploration time is generally better with linearly decreasing value of ‘ɷ’. For 

example in Table 7.1, in case of MPGE Motion Vectors, the convergence time is 100.5ms for 

linearly decreasing ‘ɷ’, while it is 111.33ms and 102.6ms at ‘ɷ’ = 0.5 and ‘ɷ’ = 1 

respectively. Therefore, it is clear from the empirical evidence that MO-PSE during 

exploration of variances converges to optimal solution faster when the ‘ɷ’ is decreased 

linearly in every iteration until the magnitude becomes 0.1. Further, in case of MESA, the 

exploration time for finding the optimal solution is 78.5ms when ‘ɷ’ is linearly decreased 

between [0.9 – 0.1] compared to 86ms and 109.33ms when ‘ɷ’ = 0.5 and ‘ɷ’ = 1 respectively 

as shown in Table 7.2.  

 

7.1.1.2. Acceleration Coefficients (b) 

a) Comparison amongst constant acceleration coefficient   

The Acceleration Coefficients b1 and b2 control the influence of cognitive and social 

component in exploration drift. Where b1 expresses how much confidence a particle has in 

itself, while b2 expresses how much confidence a particle has on other particles [49]. During 

experimentation ‘b1’ and ‘b2’ were kept equal to ‘b’.  Four different values of b were taken 

Table 7.1. Comparison of  convergence time (ms) 

with respect to parameter " ɷ " 

 

Benchmark  Linearly 

decreasing 
ɷ (0.5) ɷ (1) 

IIR Butterworth 22.5 27.33 27.5 

BPF 121.66 118.33 116 

EWF 116.16 121 168 

ARF 127 134 137 

JPEG SAMPLE 80.5 81 108 

MESA 39 45.16 50.5 

FIR 73.6 82.5 62.66 

MPEG MMV 100.5 111.33 102.66 
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for experimental analysis viz. b= 1,2,3,4.  (Note:  The reason for setting ‘b’ in the range [1-4] 

for PSO has been shown in [50]). As indicated in Table 7.3 and Table 7.4, in terms of 

convergence and exploration time both, pre-opting an exact choice of ‘b’ before performing 

design space exploration for ASP’s is a non-trivial issue. This is because there is no general 

trend that can be observed for the selected benchmarks for making a pre-defined choice as 

shown in Figure 7.1 and Figure 7.2. As seen in Table 7.3 and 7.4 in order to achieve minimal 

convergence and exploration time, for IIR and MESA value of  b = 1 is suitable, for FIR 

value of b = 2 is suitable, for ARF, BPF, MPEG value of b=3 is suitable and for EWF and 

JPEG Downsample value of b=4 is suitable.  However, it can assumed that the best quality 

solutions for attaining faster convergence and exploration speed are mostly clustered at b = 2 

or b =3 in most tested cases. 

b) comparison between time varying and constant acceleration coefficient 

By changing the acceleration coefficient b1 and b2 with time, the effect of cognitive 

component on new velocity decreases, simultaneously the effect of social component on 

new velocity increases is tested in this section. With a large b1 and small b2 at the 

beginning, agents are allowed to move around the design space, indicating higher 

exploration capability. On the other hand, a small value of b1 and a large value of b2 signify 

the convergence to the global best. Therefore, during exploration process the value of b1 is  

  

Table 7.2  Comparison of  exploration time (ms) 

with respect to parameter " ɷ " 
 

Benchmark Linearly 

decreasing 
ɷ (0.5) ɷ (1) 

IIR Butterworth 56.5 69.5 71.33 

BPF 261 244 238 

EWF 323 320 368 

ARF 252.16 263 269.33 

JPEG SAMPLE 205 206 252.16 

MESA 78.5 86 109.33 

FIR 136 147 122.66 

MPEG MMV 212 227 213.66 

 



89 

 

 

  

Table 7.4 Comparison of  convergence time (ms) with respect to 

parameter "b" 
 

Benchmark b(1) b(2) b(3) b(4) 

IIR 

Butterworth 
26.166 23.5 26 28.5 

BPF 78.33 121.66 78 84.166 

EWF 115.5 116.166 117 121.66 

ARF 129.5 127 124.33 157.33 

JPEG 

SAMPLE 
80.166 80.5 86.5 73.166 

MESA 38.166 39 41 42 

FIR 80.166 73.66 86.5 90.33 

MPEG MMV 162.5 100.5 89 176 

 

Table 7.3 Comparison of  exploration time (ms) with respect to 

parameter "b" 
 

Benchmark b(1) b(2) b(3) b(4) 

IIR Butterworth 55.5 56.5 60.166 56.833 

BPF 200 261 195.166 205.5 

EWF 328.66 323 316.66 313.66 

ARF 274 252 251.83 287 

JPEG SAMPLE 207.33 205.16 228.33 205.15 

MESA 76.833 78.5 79.66 82.83 

FIR 149.33 136 147.16 153 

MPEG MMV 275.66 212.66 199 288 
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decreased from 2.5 to 0.5 and value of b2 is increased from 0.5 to 2.5 with time. Formally, 

value of b1 and b2 are evaluated as:  

1 1 1 1( )f i i

t
b b b b

T
  

 

2 2 2 2( )f i i

t
b b b b

T
  

 

Where b1 is current acceleration coefficient, b2 is current social acceleration coefficient, b1i 

is initial cognitive acceleration coefficient = 2.5, b1f final cognitive acceleration coefficient 

= 0.5, b2i is initial social acceleration coefficient =0.5, b2f is final social acceleration 

coefficient =2.5,‘t’ is current iteration, and ‘T’ is total no of iterations. 

In case of constant value, the value of cognitive coefficient and social coefficient are set as a 

constant value equal to 2 (b1=2, b2=2) during the exploration process (as concluded from 

previous section). Reason behind this setting is to investigate the effect of a constant and 

same value of acceleration coefficients which aims to maintain equal balance between 

cognitive effect and social effect during the entire design space exploration process. 

As evident from Table 7.5 and Table 7.6, for all benchmarks the PSO based DSE’s 

convergence time and exploration time is better with constant value of acceleration 

coefficient (equal to 2) as compared to time varying acceleration coefficient. Reason behind 

this is the constant and equal value of acceleration coefficients during the entire exploration 

 
 

Figure 7.2 Comparison of exploration runtime 
w.r.t ‘b’ 
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process gives equal weightage to the social component and cognitive component (from the 

beginning of exploration) thereby reducing the convergence and exploration time. Further, as 

it has been observed during experiment that particles tend to converge to optimal early 

(owing to lesser diversity in candidate population), therefore the effect of time varying 

acceleration coefficient (where the weightage of social component is slowly increased from 

0.5 onwards to a high value) is not dominant in context of DSE. (Note: - if a range between 

2.5 to 2 is kept for time varying acceleration coefficient, then this setting of acceleration 

coefficients is likely to produce better exploration speed in context of DSE in HLS). For 

example, in Table 7.5, in case of ARF, the convergence time is 579.8ms with constant b1 and 

b2 while the convergence time is 654.57ms with time varying acceleration coefficient. 

Further, in Table 7.6, in case of DCT the exploration time is 690.57ms and 773.14ms for 

constant b1, b2 and time varying b1, b2 respectively. It is clearly evident that for multi 

objective DSE problem in HLS the constant value of acceleration coefficient (PSO 

parameter) provides better result as compared to time varying acceleration coefficient for all 

the tested benchmark. It is important to note that in both the cases analyzed viz. a) time 

varying acceleration coefficient; b) fixed acceleration coefficient, the PSO-DSE explores the 

same solution set. 

Table 7.5 Comparison of convergence time (ms) w.r.t. constant 

acceleration coefficient and time varying acceleration 

coefficient 

 

Benchmarks Convergence time 

(ms) 

b1=2, b2=2 

(Constant) 

Convergence time 

(ms) 

b1(Decreasing), 

b2(Increasing) 

IIR 

Butterworth 

20.0 26.6 

ARF 579.8 654.57 

DCT 522 566.8 

MESA 59.28 75.71 

EWF 216.14 229.57 

MPEG 447.42 525.0 

IDCT 768.57 882.57 

BPF 170.57 172.0 

JPEG 42.57 55.57 

WDF 264.28 288.14 
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7.1.1.3. Swarm size (S) 

A large ‘S’ value covers larger number of design points in the design space per iteration, but 

a larger number of particles increase the computational complexity per iteration. However, it 

should also be noted that using a few number of particles will require a large number of 

iterations during exploration of variances and hence will deteriorate the success rate [49]. 

During the experimental analysis of selected benchmarks, it was found that the best size of 

swarm for proposed MO-PSE is three (i.e. analogues to selecting three diverse initial parents 

(or design variances) in evolutionary algorithms) for most of the benchmarks. The results are 

shown in Table 7.7 and Table 7.8. As evident from the results, the best balance between 

achieving fast exploration and searching optimal solution can be obtained by setting S = 3 for 

the tested benchmarks.  

7.1.1.4. Stopping criterion (Z) 

During experiment two stopping criterion have been tested, described in section 3.2.10. The 

first stopping criterion, maximum number of iteration controls the endless process while 

second controls the convergence time and exploration time. In worst case MO-PSE reaches  

Table 7.6 Comparison of Exploration Time (ms) w.r.t. constant 

acceleration coefficient and time varying acceleration coefficient 

 

Benchmarks Exploration 

time(ms) b1=2, 

b2=2 (Constant) 

Exploration time(ms) 

b1(Decreasing), 

b2(Increasing) 

IIR 

Butterworth 

29.6 33.6 

ARF 685.85 757.85 

DCT 690.57 773.14 

MESA 67.57 85.28 

EWF 226.14 242.28 

MPEG 505.85 572.71 

IDCT 901.85 977.57 

BPF 216.14 218.71 

JPEG 81.42 103 

WDF 273.85 301.28 
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Table 7.7. Comparison of convergence time (milliseconds) with respect 

to swarm size (S) 
 

Benchmark S(3) S(5) S(7) 

IIR Butterworth 22.5 30.3 34.16 

BPF 121.66 104.5 135.83 

EWF 116.166 171.66 233.5 

ARF 127 177.83 203.33 

JPEG SAMPLE 80.5 106.833 132.833 

MESA 39 56.16 59 

FIR 73.66 84 124 

MPEG MMV 100.5 138 220.33 

 

Table 7.8 Comparison of exploration time (milliseconds) with respect 

to swarm size (S) 

 
 

Benchmark S(3) S(5) S(7) 

IIR Butterworth 56.5 67.33 81.66 

BPF 261 298.5 404.66 

EWF 323 502.16 692.66 

ARF 252 387.16 504.5 

JPEG SAMPLE 205.16 314 428 

MESA 78.5 112.83 130.16 

FIR 136 183 267 

MPEG MMV 212.66 319.166 480.33 
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maximum number of iteration.  Both option of second condition have been tested and result 

shown in Table 7.9. As apparent from result, the MO-PSE produces the better result in terms 

of faster convergence with first stopping criterion (S
1
). For example in Table 7.9, in case of 

JPEG Downsample, the convergence time for finding optimal solution is 80.5ms with S
1
, 

while 219ms with S
2
. Moreover, in case of MPEG Motion Vector, the convergence time for 

finding optimal solution is 100.5ms with S
1
, while 390ms with S

2
.     

7.1.2. Comparison of MO-PSE with previous approaches 

This subsection will describe comparison of proposed MO-PSE with various previous 

approaches [29] and [27]. The MO-PSE is compared with [29],[27] approaches in terms of 

following parameters: a) Implementation runtime b) Resource configuration c) Execution 

time d) Power and e) Quality of Results (QoR). The QoR is evaluated as: 

(7.1) 

 

Where PT, TE, Pmax, Tmax defined in chapter 3. W1 and W2 are equal to 0.5 for giving equal 

weightage to power and execution time.  

 

Table 7.9 Comparison of  convergence time (ms) 

with respect to stopping criterion (S
1
 S

2
) 

 
 

Benchmarks S
1 

S
2 

IIR Butterworth 23.5 42.66 

BPF 121.66 171.166 

EWF 116.166 233.833 

ARF 127 984 

JPEG SAMPLE 
80.5 219 

MESA 39 78.5 

FIR 73.66 486.5 

MPEG MMV 100.5 390 

 

1 2

max max

T EP T
QoR w w

P T
 
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As describe in eqn. (3.11), φ1 and φ2 are the user specified weightage for power consumption 

and execution time. During our experiments, for the proposed MO-PSE, the following 

settings were maintained based on the inferences drawn from the obtained results in section 

7.1.1: φ1 and φ2 equal to 0.5, the value of ɷ will be linearly decreased between [0.9-0.1], 

value of b = 2, swarm size = 3 (indicating three initial solutions), stopping criterion = S
1
 and 

M = 100.  

 

7.1.2.1. Comparison with [29] 

Table 7.10 and Table 7.11 show the detailed comparison with [29]. As obvious from Table 

7.10 and Table 7.11, without compromising the QoR, the exploration speed of proposed MO-

PSE is multiple times higher than [29]. Moreover, the approach presented in [29], fails 

(underlined values in Table 7.10) to meet the specified constraint for power with respect to 

benchmarks such as IIR Butterworth, MESA, FIR, EWF and MPEG. Besides, the MO-PSE 

achieved better QoR (normalized cost function of power and execution time) as compared to 

[29] for most of the benchmarks. The average improvement in QoR is more than 10% and 

average reduction in exploration runtime is 90% as shown in Table 7.11. For quick 

observation, graphical representation of the comparison is given in Fig 7.3 and Fig 7.4 

respectively.  

 

7.1.2.2. Comparison with [27] 

The proposed approach when compared to [27] achieved increased acceleration in 

exploration process as shown in Table 7.12. Besides above, the proposed MO-PSE approach 

considers cycle time resulting from initiation interval and latency to create a genuinely 

pipelined functional data-path during performance calculation. Therefore, the execution time 

(in µs) for the proposed MO-PSE is determined from eqn. (3.10). On the other hand, the 

approach presented in [27], does not able to optimize the execution time considerably due to 

its inability to create a genuinely pipelined functional data-path. Therefore the total execution 

time (function of latency, cycle time, and pipelined data as shown in eqn. 3.10.) does not get 

sufficiently optimized for [27]. Thus, for determining of execution time in [27], “N” set of 

processing data is multiplied directly with the latency as per:   
    

    . Further, the 

proposed MO-PSE directly considers the total power consumption during exploration as 

shown in eqn. (3.4). In contrast to MO-PSE, [27] only considers area minimization while 
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optimizing circuit latency (and does not report power values in the paper). Therefore, for the 

sake of comparison, we have evaluated the estimated power using [27] for all selected 

benchmarks.   

With respect to achieved QoR, the MO-PSE produces better solutions in terms of execution 

time compared to [27] for all the benchmarks as clearly shown in Table 7.12. For example in 

case of IIR Butterworth filter benchmark the optimal resource configuration found 2 (*) and 

1(+), the execution time  of solution is 220.01 µs and power consumed by optimal solution is 

7.01W. On the other hand [27], based on same constraints, yields an optimal resource 

configuration which is 4(*), 1(+) with 260 µs execution time and 9.42w power consumption. 

Moreover, for MPEG MMV the optimal resource configuration found is 4(*), 1(+) with 

Table 7.10 Experimental Result of comparison with [29] for the tested benchmarks 

 

Benchmark 
 

Parameters of comparison 

Resource 
Configuration 

Execution Time 
(us)  

Power  
(W) 

MO-PSE [29] MO-PSE [29] 
MO-
PSE 

[29] 

IIR 
Butterworth 

2(*), 1(+) 4(*), 1(+) 
220.01us 120us 7.01W 11.9W 

Constraint =300us Constraint =8W 

MESA 
Horner 
Bezier 

3(*), 1(+) 3(*), 1(+) 
100.1us 100us 9.61W 9.65W 

Constraint = 400us Constraint = 8W 

ARF 3(*), 1(+) 4(*), 1(+) 
520.2us 341us 9.49W 11.9W 

Constraint = 600us Constraint = 10W 

EWF 2(*), 1(+) 2(*), 4(+) 
320us 200us 7.02W 13.1W 

Constraint =500us Constraint =8W 

FIR 3(*), 1(+) 4(*), 2(+) 
220.02us 201us 9.51W 14.01W 

Constraint =500us Constraint =11W 

MPEG MMV 4(*), 1(+) 5(*), 1(+) 
340us 281us 11.9 W 14.4W 

Constraint =600us Constraint =12W 

BPF  2(*), 1(+) 4(*), 2(+) 
500.04us 140us 7.01W 14.0W 

Constraint =600us Constraint =12W 

JPEG 
Downsample 

2(*), 4(+) 1(*), 2(+) 
140.32us 300us 13.13W 6.57W 

Constraint =400us Constraint =10W 
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340µs execution time and the power consumption is 11.9w; while [27] yields 4(*), 2(+) as an 

optimal architecture with 480µs execution time and 13.91w power consumption.  

Additionally, during experiments it was found out that [27] suffers from power constraint 

violation (after estimation) for some selected benchmarks such as IIR, ARF and MPEG 

MMV. 

Therefore, it can be summarized from Table 7.13 that proposed approach achieved better 

QoR more than 34%; the average reduction in exploration time is more than 40% compared 

to [27] for the tested benchmarks. For quick observation, graphical representation of the 

comparison is shown in Figure 7.3 and Figure 7.4 respectively. 

 

  

Table 7.11  Comparison of proposed approach with [29] in terms of exploration 

time and QoR 

 

 Exploration Time Quality of Result (QoR) 

Benchmark 
 

MO-PSE [29] MO-PSE [29] 

IIR Butterworth 0.065 sec 20secs 0.43 0.48 

MESA Horner 
Bezier 

0.078 sec 2.30 min 0.361 0.367 

ARF 0.252 sec 10.5 min 0.34 0.33 

EWF 0.323 sec 10.1 min 0.47 0.63 

FIR 0.136 sec 3.20 min 0.27 0.32 

MPEG MMV 0.12 sec 6.43 min 0.25 0.26 

BPF  0.261 sec 4.33 min 0.46 0.50 

JPEG Downsample 0.205 sec 7.59 min 0.36 0.37 

 Average Reduction = 99% Average Improvement= 10% 
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Table 7.12 Experimental Result of comparison with [27] for the tested benchmarks 

 

Benchmark 
 

Parameters of comparison 

Resource 
Configuration  

Execution Time 
(us)  

Power  
(W) 

MO-PSE [27] 
MO-
PSE 

[27] 
MO-
PSE 

[27] 

IIR 
Butterworth 

2(*), 1(+) 3(*), 1(+) 
220.01us 260us 7.01W 9.42W 

Constraint =300us Constraint =8W 

MESA 
Horner 
Bezier 

3(*), 1(+) 2(*), 1(+) 
100.1us 620us 9.61W 6.95W 

Constraint = 300us Constraint = 8W 

ARF 3(*), 1(+) 4(*), 1(+) 
520.2us 580us 9.49W 11.8W 

Constraint = 600us Constraint = 10W 

EWF 2(*), 1(+) 1(*), 1(+) 
320us 1180us 7.02W 4.49W 

Constraint =500us Constraint =8W 

FIR 3(*), 1(+) 2(*), 2(+) 
220.02us 540us 9.51W 8.98W 

Constraint =500us Constraint =11W 

MPEG 
MMV 

4(*), 1(+) 4(*), 2(+) 
340us 480us 11.9 W 13.91W 

Constraint =600us Constraint =12W 

BPF  2(*), 1(+) 2(*), 2(+) 
500.04us 600us 7.01W 8.98W 

Constraint =600us Constraint =12W 

JPEG 
Downsample 

2(*), 4(+) 2(*), 1(+) 
140.32us 600us 

13.13
W 

6.524W 

Constraint =400us Constraint =10W 
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Table 7.13 Comparison of proposed approach with [27] in terms of exploration time 

and QoR 

 Exploration Time Quality of Result (QoR) 

Benchmark 
 

MO-PSE [27] MO-PSE [27] 

IIR Butterworth 0.065 sec 0.099 sec 0.43 0.55 

MESA Horner 
Bezier 

0.078 sec 0.162 sec 0.36 0.60 

ARF 0.252 sec 0.343 sec 0.34 0.40 

EWF 0.323 sec 0.670 sec 0.47 0.94 

FIR 0.136 sec 0.296 sec 0.27 0.48 

MPEG MMV 0.12 sec 0.312 sec 0.25 0.32 

BPF 0.261 sec 0.421 sec 0.46 0.57 

JPEG Downsample 0.205 sec 0.546 sec 0.36 0.62 

 Average Reduction = 49.45% 
Average Improvement= 

34.37% 
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Figure 7.3 Comparison of MO-PSE and [27], [29] in terms of exploration time 

 

 

 
 

Figure 7.4 Comparison of MO-PSE and [27], [29] in terms of QoR 
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7.1.2.3. Results obtained through proposed approach for conditional 

CDFGs 

As evident from the Table 7.14, based on the user constraints specified for execution time 

and power, the proposed approach has been comprehensively able to meet the specified 

constraints and find an optimal result. For example, in case of CDFG1, the explored solution 

is 2(*),1(+),1(<), 12(mux),3(demux). Additionally, the explored solution for CDFG1 has 

execution time and power of 10.97ms and 0.26mW based on the specified constraint values 

of 12ms and 0.30 mW respect  

Table 7.14 Results of estimated power and execution time using 

proposed approach for the CDFG benchmarks 

 

Note: for proposed approach settings : φ = 0.5, the value of ɷ will be 
linearly decreased between [0.9-0.1],value of b = 2, swarm size = 3, M 

= 100, N=1000, £=10 and stopping Criterion: S
1
 

Bench-
marks 

 

 Execution Time Power 

Resources 
found 

Cons-
traint 

Proposed 
solution 

Cons-
traint 

Proposed 
solution 

CDFG1 
2(*), 

1(+),1(<) 
12ms 10.9ms 0.30mW 0.26mW 

CDFG2 
3(*), 

1(+),1(<) 
12ms 10.67ms 0.40mW 0.33mW 

CDFG3 
2(*), 

1(+),1(<) 
13ms 11.0ms 0.30mW 0.26mW 
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7.2 Experimental results: the proposed approach ‘Automated 

Exploration of Datapath and Unrolling Factor during Power-

Performance Trade-off in Architectural Synthesis Using Multi-

Dimensional PSO Algorithm’  

This section describes the experimental results of the proposed approach explained in Chapter 

4 and the improvements obtained compared to recent approach [27,42]. The proposed 

approach has been implemented in Java and run on Intel core i5-2450M processor,2.5 GHz 

with 3MB L3 cache memory and 4GB DDR3 RAM. Multiple benchmarks were chosen for 

testing that include DFGs and CDFGs such as autoregressive filter (ARF) [53,57], band-pass 

filter (BPF) [5], discrete cosine transformation (DCT) [5, 58], discrete wavelet transformation 

(DWT) [5], elliptic wave filter (EWF) [53], fast Fourier transformation (FFT) [56], finite 

impulse response (FIR) filter [5,57], IIR Butterworth [53], MESA-Horner Bezier[53], inverse 

discrete cosine transformation (IDCT) [5, 58], MPEG motion vectors (MMV) [5, 53], wave 

digital filter (WDF) [5], differential equation [56] and test case. Module library describe in 

chapter 4 section 4.4.1. The results are divided into three phases.  

 Sensitivity analysis of PSO swarm size (S).  

(Note: In the proposed algorithm, the convergence time is evaluated @ I’ (the starting 

iteration from which onwards the global best particle position remains constant for 10 

consecutive iterations) while the exploration time is evaluated @ I = I’ + 10. 

 The results obtained through proposed approach. 

 Comparison of proposed approach with previous DSE approaches [42][27] in terms of 

quality of result (QoR) and exploration run time. 

 

7.2.1. Sensitivity analysis 

 The impact of various PSO parameters on proposed design space exploration is 

analysed and presented in this section. This experimental analysis assists the designer in 

pre-tuning the PSO parameters to an optimum value before performing DSE. In this 

subsection analysis of swarm size is presented and inertia weight, acceleration coefficient 

and termination criterion not presented because the behaviour of these PSO parameter are 
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similar with section 7.1. Thus, we present only swarm size analysis and other PSO 

parameters values taken from section 7.1.   

 Swarm Size (S) 

 Significant swarm size maintains tradeoff between exploration time and quality of result. 

A larger swarm size covers larger design space during one iteration step (with a chance to get 

a better result) but simultaneously subjected to increase in exploration time because of larger 

number of particles as well as greater computational complexity per iteration. On the 

contrary, a smaller swarm size needs more iteration to explore a better result for larger 

problem size. Therefore, three different swarm sizes have been analyzed and their impacts on 

cost and exploration time are reported (as shown in Table 7.15). At the time of selection, first 

priority is given to lower cost solution (higher quality result), followed by the second priority 

given to the exploration time. Based on this analysis, the selected swarm sizes for 

benchmarks, used as our base line parameter are underlined in Table 7.15. As evident from 

Table 7.15, the best tradeoff between fast exploration and searching optimal solution can be 

obtained by setting S=3 in case of small benchmarks (with smaller design space) and S=5 or 

7 in case of larger benchmark (with larger design space). For example, in case of ARF, S=3 

give an optimal solution (cost = -0.159) in minimum exploration run time of 3183 ms. While, 

in case of FFT, S=5 gives an optimal solution (cost = -0.232) in minimum exploration time of 

85656 ms. 

 

7.2.2. Results obtained through proposed algorithm 

As evident from Table 7.16 and 7.17 the solution explored by the proposed approach 

comprehensively meets the user defined constraints for power and execution time as well as 

minimizes the hybrid cost. For example, in case of EWF, the explored solution 3(*),1(+) has 

execution time 39.9 ms and power of 0.61 mW based on the user constraints of 50 ms and 0.7 

mW respectively.  Moreover, in case of FFT, the explored solution 4(*), 3(+), 2(-), 1(<) and 

UF=4 has execution time of 348.48us and power of 1.44mW which satisfies (as well as 

minimizes) the given user constraints. It is worthy to mention that the proposed approach also 

has the capability to explore multiple optimal solutions as reported in Table 7.16 and 7.17. 

 The Figure 7.5 shows the gradual improvement in the global cost, per iteration, over the 

lifetime of the algorithm for all the tested benchmarks. The straight line in the curve denotes  
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Table 7.15 Comparison of cost and exploration time with respect to swarm 

size (S) for the proposed approach 
 

Benchmark Swarm 

Size 

Cost Exploration 

run time 

(milliseconds) 

IIR Butterworth 

3 -0.135 90 

5 -0.135 130 

7 -0.135 120 

DCT 

3 -0.162 2468 

5 -0.162 3001 

7 -0.162 3006 

MESA Horner 

3 -0.152 352 

5 -0.152 409 

7 -0.152 467 

ARF 

3 -0.159 3183 

5 -0.159 3890 

7 -0.159 4061 

EWF 

3 -0.109 508 

5 -0.109 528 

7 -0.109 580 

DWT 

3 -0.116 357 

5 -0.129 490 

7 -0.129 457 

MPEG Motion 

Vector 

3 -0.127 2373 

5 -0.127 3706 

7 -0.127 3644 

IDCT 

3 -0.173 2839 

5 -0.173 2779 

7 -0.173 3184 

BPF 

3 -0.98 825 

5 -0.98 838 

7 -0.98 830 

JPEG Downsample 

3 -0.153 176 

5 -0.153 215 

7 -0.153 232 

WDF 

3 -0.153 788 

5 -0.153 916 

7 -0.153 1009 

FIR 

3 -0.213 3104 

5 -0.213 5100 

7 -0.213 5420 

FFT 

3 -0.225 93990 

5 -0.232 85656 

7 -0.232 97488 

Differential Equation 

3 -0.219 21045 

5 -0.226 26770 

7 -0.226 79279 

Testcase 

3 -0.241 7831 

5 -0.241 11013 

7 -0.241 15623 
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no change in last 10 iterations which indicates that the algorithm has converged to its optimal 

point. 

 The Figure 7.6 shows the variation in power, execution time and number of control steps 

(number of control steps needed to execute loop body Cbody) with respect to the unrolling 

factor as explored by the global best particle. We analyzed the following three aspects of our 

solution found by the proposed algorithm:  

a) When a solution with higher UF is explored at unchanged resource combination during 

exploration process: In this case, a steady rise in power consumption and # of control steps 

are noted with a simultaneous decline in the execution time value. This is due to the fact that 

a solution with higher UF (but with same resource combination) will have more code density 

(resources) as well as greater number of multiplexers for switching operation resulting in 

higher value of power and control steps. However, higher UF will provide a better 

performance than its counterpart with lower UF (under same resource constraint). This trend 

can be observed in case of differential equation benchmark as shown in Fig 7.6 (a), (b) and 

Table 7.16 Results of Estimated Power and Execution Time Using Proposed Approach for 

DFGs 
 

Note: for proposed approached  baseline parameters: φ1 = φ2 = 0.5, the value of ɷ is 
linearly decreased between [0.9-0.4],b = 2, swarm size (S) = 3,5 M = 100, λ=1000, £=10 

Benchmark 
 
 

 Execution Time Power 

Resources 
found 

Constraint 
Proposed 
solution 

Constraint 
Proposed 
solution 

ARF 4(*), 1(+) 75ms 43.74ms 0.8mW 0.65mW 

IDCT 3(*), 1(+) 70ms 33.37ms 0.9mW 0.79mW 

BPF 4(*), 2(+) 30ms 11.50ms 0.75mW 0.72mW 

IIR Filter 2(*), 1(+) 30ms 22.1ms 0.35mW 0.28mW 

DCT 4(*), 1(+) 60ms 33.35ms 1.0mW 0.83mW 

EWF 3(*), 1(+) 50ms 39.9ms 0.7mW 0.61mW 

DWT 
4(*), 1(+) 30ms 10.98ms 0.6mW 0.58mW 

4(*), 2(+) 30ms 10.97ms 0.6mW 0.57mW 

JPEG Down-
sample 

2(*), 1(+) 20ms 10.95ms 0.6mW 0.56mW 

MPEG MMV 
4(*), 1(+) 36ms 33.35ms 1.0mW 0.65mW 

6(*), 1(+) 36ms 22.42ms 1.0mW 0.77mW 

MESA 3(*), 1(+) 30ms 10.90ms 0.5mW 0.45mW 

WDF 4(*), 1(+) 35ms 11.51ms 0.8mW 0.76mW 
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(c) where as the value of UF increases from 2 to 4 under same resource combination of (1(+), 

1(-), 6(*), 1(<)), the rise in power and # of CS as well as drop in execution time value are 

observed (the change in power, # of CS and execution time are highlighted with labels).  

However, for some applications an uncommon situation can also be observed as explained 

below: 

A solution with significant increase in UF (such as UF = 18) found compared to its previous 

solution (UF = 2) may result in a sudden quantum jump in the value of execution time (which 

is contrary to the belief) during the exploration process (as shown in Figure 7.6 (f)). The 

increase in execution time is due the fact that Testcase  is highly sequential in nature whereby 

the output of the previous loop is used as an input in the next loop quite early (thereby 

lacking the option for parallelization). Besides the logic above, the decrease in resources also 

Table 7.17 Results of Estimated Power and Execution Time Using Proposed Approach for 

CDFGs 
 

Note: For proposed approached baseline parameters: φ1 = φ2 = 0.5, the value of ɷ is 
linearly decreased between [0.9-0.4], b = 2, swarm size (S) = 3,5 M = 100, £=10 

Bench-
mark Resources found 

Execution Time Power 

Constraint 
Proposed 
solution 

Constraint 
Proposed 
solution 

FIR 
(I=8) 

4(*), 1(+),1(<), 
UF=4 

60us 24.24us 0.5mW 0.47mW 

3(*), 1(+),1(<), 

UF=2 
60us 46.24us 0.5mW 0.34mW 

FFT 
(I=16) 

4(*), 3(+), 2(-), 
1(<), UF=4 

800us 348.48us 2.0mW 1.44mW 

5(*), 1(+), 1(-), 

1(<), UF=4 
800us 358.5us 2.0mW 1.51mW 

Differential 
equation 
(I=16) 

6(*), 1(+), 1(-), 
1(<), UF=2 

600us 277.4us 1.2mW 0.73mW 

6(*), 1(+), 1(-), 

1(<), UF=4 
600us 225.6us 1.2mW 0.95mW 

Test case 
(I=36) 

2(*), 1(+),1(<), 
UF=1 

500us 406us 1.5mW 0.26mW 

3(*), 1(+),1(<), 

UF=2 
500us 401us 1.5mW 0.39mW 
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contributes to the radical increase in execution time. Therefore this condition is highly 

application dependent.  Further in case of # of CS required, besides the explanation provided 

above, the reduction in resources (from 2(+), 4(*), 1(<)) to 2(+), 2(*), 1(<)) also contributes 

to its increase (as seen in Fig. 7.6 (i)). However, the increase in power (even with reduced 

resources from 2(+), 4(*), 1(<)) to 2(+), 2(*), 1(<)) is anticipated due to heavy sharing of 

resources (courtesy of large UF value) resulting in a large multiplexer size being required.  

b) When a solution with higher resource combination is found at unchanged value of UF: in 

 
 

Figure 7.5 Change in cost of global best particle for various benchmarks 

Note: Baseline parameter: φ1and φ2=0.5; ω= linearly decreasing [0.9-0.4]; b = 2; S=3, 5; 

M=100; λ=1000; £=10 
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such a case, power increases because of augmentation in number of resources. On other hand,  

# of control steps required and final execution time decreases (i.e. performance improves). 

This trend can be observed in case of differential equation, as shown in figure 7.6 (a), (b), (c), 

where a new solution with resource combination of(1(+),1(-), 6(*), 1(<)) is explored by the 

algorithm compared to previous solution of (1(+), 1(-), 4(*), 1(<) ); whereby in both cases the 

UF value = 4 did not change while exploration. The power value increases and at the same 

time execution time and control steps decreases (highlighted with data labels). 

c) In the third case, when solution explored has redundant resources for a problem: In such a 

case, decrement in a type of resource has no impact on execution time and control steps but 

static power will be steadily decreasing resulting in decrease of total power. For example in 

case of test case reported, as shown in fig  7.6 (g), (h), (i),  UF = 1 remains constant, but the 

resources changes from 1(+),3(*),1(-) to 1(+),2(*),1(-) during exploration. Now for the test 

case CDFG (in Fig. 4.4), there are only two multiplication operations which can be 

performed in parallel @ UF = 1 (i.e. in the non-unrolled version), hence, one extra multiplier 

in the solution becomes redundant when it is not unrolled. Therefore, for some applications at 

specific UF values there is no impact of higher resource quantity in the improvement of 

performance and control step.  

Thus from the empirical evidences obtained it is clearly shown that proposed algorithm 

responds as per our anticipated reckoning and is able to perform a simultaneous exploration 

of optimal datapath and UF under multi-objective user constraints at minimum exploration 

time.  

 

7.2.3. Comparison of proposed approach with [42] and [27]  

Table 7.18 and Table 7.19 show the comparative qualitative analysis with [42] and [27] for 

DFGs and CDFG benchmarks. For the sake of reporting comparative results, completely 

unrolled CDFG (flattened version of the application), is taken as an input for [42] and [27] as 

it is not directly handled by them. Therefore, as evident from Table 7.18 and Table 7.19, the 

QoR as well as the exploration speed of proposed approach is significantly better than [42] 

and [27] respectively. The QoR is determined using eqn. (7.1). 

 Therefore, simple calculation revels that proposed approach is simultaneously able to 

achieve average improvement in QoR of greater than 28% and 36% as well as average 
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reduction in exploration time of greater than 99% and 94% when compared with [42] and 

[27] respectively as shown in Table 7.18 and Table 7.19. 

  

 
(a)    (b)    (c) 

 
(d)    (e)    (f) 

 
(g)    (h)    (i) 

 
(j)    (k)    (l) 

Figure 7.6 Analysis of power, execution time, control steps of global best particle w.r.t 

unrolling factor 
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Table 7.18 Comparison of proposed approach with [42] in terms of exploration run time 

and QoR 
 

Benchmark 

Resource combination 
Exploration 

Runtime 
QoR (cost) 

Proposed 
approach 

[42] 
Proposed 
approach 

(sec) 

[42] 
(Min) 

Proposed 
approach 

[42] 

IIR Filter 2(*),1(+) 1(*),1(+) 0.09 1.30 0.46 0.72 

DCT 4(*),1(+) 2(*),2(+) 2.46 7.59 0.44 0.52 

MESA 

Horner 
3(*),1(+) 2(*),1(+) 0.352 2.12 0.46 0.50 

EWF 3(*),1(+) 1(*),1(+) 0.508 13.09 0.59 0.81 

DWT 4(*),2(+) 2(*),1(+) 0.457 3.02 0.48 0.56 

ARF 4(*),1(+) 2(*),1(+) 3.183 5.16 0.43 0.49 

MPEG MMV 4(*),1(+) 3(*),1(+) 2.373 5.45 0.32 0.39 

IDCT 3(*),1(+) 1(*),1(+) 2.779 14.30 0.44 0.75 

BPF 4(*),2(+) 3(*),2(+) 0.825 5.4 0.51 0.63 

JPEG 

Downsample 
2(*),1(+) 1(*),2(+) 0.176 2.46 0.43 0.56 

WDF 4(*),1(+) 2(*),1(+) 0.788 7.50 0.48 0.57 

FIR 

4(*), 

1(+),1(<), 

UF=4 

3(*), 

1(+),1(<), 

UF=8 

3.10 4.31 0.35 0.41 

FFT 
4(*), 3(+), 2(-

), 1(<), UF=4 

3(*), 2(+), 

1(-), 1(<), 

UF=16 

85.656 >1hr 0.28 0.60 

Differential 

equation 

6(*), 1(+), 1(-

), 1(<), UF=2 

4(*), 1(+), 

2(-), 1(<), 

UF=16 

26.77 >1hr 0.24 0.52 

Test case 

2(*), 

1(+),1(<), 

UF=1 

2(*), 

4(+),1(<), 

UF=36 

7.831 >1hr 0.29 0.78 

Average decrement in exploration run 
time = 99.25% 

Average reduction in cost = 28.88% 
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Table 7.19 Comparison of proposed approach with [27] in terms of exploration run time and 

QoR 
 

Benchmark 

Resource combination 
Exploration 

Runtime 
QoR (cost) 

Proposed 
approach 

[27] 
Proposed 
approach 

(sec) 

[27] 
(sec) 

Proposed 
approach 

[27] 

IIR Filter 2(*),1(+) 3(*),1(+) 0.09 2.13 0.46 0.52 

DCT 4(*),1(+) 1(*),1(+) 2.46 13.3 0.44 0.80 

MESA Horner 3(*),1(+) 1(*),1(+) 0.352 3.41 0.46 0.75 

EWF 3(*),1(+) 1(*),1(+) 0.508 10.3 0.59 0.84 

DWT 4(*),2(+) 1(*),1(+) 0.457 4.48 0.48 0.77 

ARF 4(*),1(+) 2(*),1(+) 3.183 7.22 0.43 0.50 

MPEG MMV 4(*),1(+) 5(*),1(+) 2.373 6.63 0.32 0.35 

IDCT 3(*),1(+) 2(*),2(+) 2.779 11.29 0.44 0.55 

BPF 4(*),2(+) 2(*),1(+) 0.825 7.7 0.51 0.75 

JPEG 

Downsample 
2(*),1(+) 1(*),1(+) 0.176 8.21 0.43 0.72 

WDF 4(*),1(+) 1(*),1(+) 0.788 10.77 0.48 0.85 

FIR 
4(*), 1(+),1(<), 

UF=4 

4(*), 

1(+),1(<), 

UF=8 

3.10 5.03 0.35 0.38 

FFT 
4(*), 3(+), 2(-), 

1(<), UF=4 

2(*), 1(+), 

1(-), 1(<), 

UF=16 

85.656 1415 0.28 0.70 

Differential 

equation 

6(*), 1(+), 1(-), 

1(<), UF=2 

3(*), 1(+), 

1(-), 1(<), 

UF=16 

26.77 436 0.24 0.51 

Test case 
2(*), 1(+),1(<), 

UF=1 

2(*), 

1(+),1(<), 

UF=36 

7.831 351 0.29 0.87 

Average decrement in exploration run 
time = 94.50% 

Average reduction in cost = 36.58% 
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7.3 Experimental results: the proposed approach ‘Simultaneous 

Exploration of Optimal Datapath and Loop Based High level 

Transformation during Area-Delay Trade-off in Architectural 

Synthesis Using Swarm Intelligence’  

This section describes the experimental results of the proposed approach explained in Chapter 

5 and the improvements obtained compared to recent approach [27,59]. The proposed 

approach has been implemented in Java and run on Intel core i5-2450M processor (2.5 GHz) 

with 3MB L3 cache memory and 4GB DDR3 RAM. Multiple benchmarks were chosen for 

testing that include DFGs and CDFGs. such as ARF, BPF, DCT, DWT, EWF, FFT, FIR 

filter, IIR Butterworth, MESA-Horner Bezier, IDCT, MPEG motion vectors (MMV), WDF, 

differential equation and test case. The module library is provided in chapter 5 section 5.3.1. 

The results are divided into three phases.  

 Sensitivity analysis of various PSO parameters such as swarm size(S) and its impact on 

the proposed DSE methodology in terms of cost, exploration time. 

 The results obtained through proposed. 

 Comparison of proposed approach with previous DSE approaches [27] [59] in term of 

quality of result (QoR) and exploration run time achieved. 

7.3.1.  Sensitivity analysis 

 The impact of various PSO parameters on proposed design space exploration is 

analysed and presented in this section. This experimental analysis assists the designer in 

pre-tuning the PSO parameters to an optimum value before performing DSE. 

7.3.1.1. Swarm Size (S) 

 Significant swarm size maintains tradeoff between exploration time and quality of result. 

A larger swarm size covers larger design space during one iteration step (with a chance to get 

a better result) but simultaneously subjected to increase in exploration time because of larger 

number of particles as well as greater computational complexity per iteration. On the 

contrary, a smaller swarm size needs more iteration to explore a better result for larger 

problem size. Therefore, three different swarm sizes have been analyzed and their impacts on  
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Table 7.20 Comparison of cost and exploration time with respect to 

swarm size (S) 

Benchmark 
Swarm 

Size 
Cost 

Exploration 

 Run time 

(millisecond) 

IIR Butterworth  

3 -0.14 65 

5 -0.14 85 

7 -0.14 93 

DCT 

3 -0.175 1538 

5 -0.175 1675 

7 -0.175 1882 

MESA 

3 -0.132 216 

5 -0.132 245 

7 -0.132 252 

ARF 

3 -0.199 1728 

5 -0.199 1704 

7 -0.199 2086 

EWF 

3 -0.132 344 

5 -0.132 314 

7 -0.132 324 

DWT 

3 -0.169 311 

5 -0.169 231 

7 -0.169 290 

MPEG 

3 -0.88 1593 

5 -0.88 1711 

7 -0.88 2051 

IDCT 

3 -0.167 1407 

5 -0.167 1330 

7 -0.167 1718 

BPF 

3 -0.93 426 

5 -0.93 506 

7 -0.93 495 

JPEG 

Downsample 

3 -0.17 107 

5 -0.17 103 

7 -0.17 148 

WDF 

3 -0.155 548 

5 -0.155 576 

7 -0.155 642 

FIR 

3 -0.223 1866 

5 -0.223 2399 

7 -0.223 1924 

FFT 

3 -0.224 39999 

5 -0.23 91888 

7 -0.23 125548 

Differential eqn 

3 -0.197 14704 

5 -0.222 44245 

7 -0.222 56784 

Testcase 

3 -0.107 5120 

5 -0.107 5157 

7 -0.107 8145 
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cost and exploration time are reported (as shown in Table 7.20). At the time of selection, first 

priority is given to lower cost solution (higher quality result), followed by the second priority  

given to the exploration time. (Note:-based on this analysis, the selected swarm sizes for 

benchmarks used as our base line parameter are underlined.) 

As evident from Table 7.20, the best tradeoff between fast exploration and searching optimal 

solution can be obtained by setting S=3 in case of small benchmarks (with smaller design 

space) and S=5 or 7 in case of larger benchmark (with larger design space). For example, in 

case of MESA, S=3 give an optimal solution (cost = -0.132) in minimum exploration run 

time of 216ms. However, in case of FFT, S=5 give an optimal solution with least cost/best 

quality (cost = -0.23) in minimum exploration time of 91888 ms.  

7.3.2.  Results obtained through proposed algorithm 

As evident from Table 7.21 and 7.22 the solution explored by the proposed approach 

comprehensively meets the user defined constraints for area and execution time as well as 

minimizes the hybrid cost. For example, in case of DCT, the explored solution 4(*),1(+) has 

execution time 33356us and area of 28140au based on the user constraints of 60000us and 

35000au respectively.  Moreover, in case of FIR, the explored solution 4(*), 1(+), 1(<) and 

UF=4 has execution time of 24.24us and area of 16184au which satisfies (as well as 

minimizes) the given user constraints. (Note 1: that, since PSO is a parallel evolutionary 

algorithm, where multiple particles participate in exploration process therefore, it assures 

escaping the local optima. Moreover, inclusion of proposed mutation strongly reduces any 

chance of local optimal convergence. Further, the solutions obtained for the tested 

benchmarks are real optimal solutions in most of the cases (except FFT) which can be 

verified by comparing with the golden solutions found by exhaustive analysis. (Note 2:-The 

proposed approach also has the capability to explore multiple optimal solutions as reported 

in Table 7.21 and 7.22). 

 The Figure 7.7 shows the variation in area, execution time and number of control steps 

(number of control steps needed to execute loop body Cbody) with respect to the unrolling 

factor. (Note:- the corresponding resource combination for respective UFs are also indicated 

below the X axis).We analyzed the following three aspects of our solution found by the 

proposed algorithm:  

a) When a solution with higher UF is found at unchanged resource combination during 

exploration process: In this case, a steady rise in area and # of control steps are noted with a 
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simultaneous decline in the execution time value. This is due to the fact that a solution with 

higher UF (but with same resource combination) will have more code density (resources) as 

well as greater number of multiplexers for switching operation resulting in higher value of 

area and control steps. However, higher UF will provide a better performance than its 

counterpart with lower UF (under same resource constraint). This trend can be observed in 

case of differential equation benchmark as shown in Figure 7.7 (a), (b) and (c) where as the 

value of UF increases from 2 to 4 under same resource combination of (1(+), 1(-), 4(*), 1(<)), 

the rise in area and # of CS as well as drop in execution time value are observed.  

b) When a solution with higher resource combination is found at unchanged value of UF: in 

such a case, area increases because of augmentation in number of resources. On other hand,# 

of control steps required and final execution time decreases (i.e. performance improves). This 

trend can be observed in case of differential equation, as shown in Figure 7.7 (a), (b), (c), a 

new solution with resource combination of (1(+),1(-), 4(*), 1(<)) is explored by the algorithm 

compared to previous solution of (1(+), 1(-), 2(*), 1(<) ); whereby in both cases the UF = 4 

did not change while exploration. The area value increases and at the same time execution 

time and control steps decreases. 

Table 7.21 Results of Estimated Area and Execution Time Using Proposed 

Approach for DFGs 
Note: for proposed approached  baseline parameters  : φ1 = φ2 = 0.5, 

the value of ɷ will be linearly decreased between [0.9-0.1],value of b = 
2, swarm size = 3,5 M = 100, λ=1000, £=10  

Bench-
mark 

 
 

 Area (au) Execution Time(us) 

Resources 
found 

Const
raint 

Proposed 
solution 

Const
raint 

Proposed 
solution 

ARF 4(*),1(+) 30000 22092 75000 43741 

IDCT 3(*),1(+) 30000 26810 70000 33377.8 

BPF 4(*),2(+) 25000 24500 30000 11507 

IIR 
Butterwo

rth 

2(*),1(+) 12000 9604 30000 22150 

DCT  4(*),1(+) 35000 28140 60000 33356 

EWF 2(*),1(+) 25000 20944 50000 39969 

DWT  4(*),2(+) 22000 19208 30000 10979 

4(*),1(+) 22000 19824 30000 10979 

JPEG 
Downsa

mple 

2(*),1(+) 25000 19054 15000 10953 

MPEG 
MMV 

4(*),1(+) 30000 22092 36000 33355 

6(*),1(+) 30000 26264 36000 22420 

MESA 3(*),1(+) 16000 15092 30000 10979 

WDF 4(*),1(+) 27000 25872 35000 11511 
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c) In the third case, when solution explored have redundant resources for a problem. In such a 

case, increment in the resources has no impact on execution time and control steps but area 

steadily increases. For example in case of FIR reported, as shown in Figure  7.7 (d), (e), (f) at  

UF = 4, the resource configuration changes from 2(+),4(*),1(-) to 1(+),4(*),1(-) during 

exploration. As shown in CDFG (Figure 5.3) of the FIR, there are no parallel addition 

operations being performed in case of UF=2 (hence will be the same for UF=4), therefore, 

one extra adder in the solution becomes redundant (Note: A simple observation will reveal 

that the input of the adder of next iteration always requires the output from previous loop 

iteration, thereby rendering the additions to be sequential in nature). Therefore, no impact of 

higher resource number in the improvement of performance and control step can be noted.  

 Thus from the empirical evidences obtained it is clearly shown that proposed algorithm 

responds as per the theoretical calculation (as well as expectation) and is able to perform a 

simultaneous exploration of optimal datapath and UF under multi-objective user constraints 

at minimum exploration time.  

 

  

Table 7.22 Results of Estimated Area and Execution Time Using Proposed 

Approach for CDFGs 
Note: For proposed approached baseline parameters : φ1 = φ2 = 0.5, the value of 
ɷ will be linearly decreased between [0.9 - 0.1],value of b = 2, swarm size = 3,5 

M = 100, £=10  
Benchmark  Area (au) Execution Time (us) 

Resources 
found 

Constrain
t 

Proposed 
solution 

Constrain
t 

Proposed 
solution 

FIR 4(*), 1(+),1(<),  
UF=4 

18000 16184 60us 24.24 

FFT 4(*), 1(+), 1(-), 
1(<), UF=4 

69000 49588 800us 358.56 

5(*), 1(+), 2(-), 

1(<), UF=2 

69000 34426 800us 498.4 

Differential 
equation 

6(*), 1(+), 1(-), 
1(<), UF=2 

40000 25032 600us 277.4 

4(*), 1(+), 1(-), 

1(<), UF=2 

40000 20860 600us 360.96 

Test case 2(*), 1(+),1(<),  
UF=1 

20000 8988 500us 406.08 

3(*), 1(+),1(<), 

 UF=2 

20000 13342 500us 401.04 
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(a)    (b)     (c) 

 
(d)    (e)     (f) 

 
(g)    (h)     (i) 

 
(j)    (k)     (l) 

Figure 7.7 Analysis of area, execution time, control steps of global best particle w.r.t unrolling 

factor 
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7.3.3.  Comparison of proposed approach with [27] and [59]  

Table 7.23 and Table 7.24 shows the comparative qualitative analysis with [27] and [59] for 

DFGs and CDFG benchmarks. (Note: - For the sake of reporting comparative results, 

completely unrolled CDFG (flattened version of the application), is taken as an input for [27] 

and [59] as it is not directly handled by them). As evident from Table 7.23 and Table 7.24, 

the QoR as well as the exploration speed of proposed approach is significantly better than 

[27] and [59] respectively. The QoR is determined as:  

 
max max

1

2

T EA T
QoR

A T

 
  

 
           (7.2) 

Where, the variables Amax and TMax are defined in chapter 5. 

Therefore, simple calculation revels that proposed approach is simultaneously able to achieve 

average improvement in QoR of greater than 23% and 35% as well as average reduction in 

exploration time of greater than 99% and 92% when compared with [59] and [27] 

respectively as shown in Table 7.23 and Table 7.24. 
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Table 7.23 Comparison of proposed approach with [27] in terms of exploration run time and 

QoR 

Benchmark 

Resource combination 
Exploration 

Runtime 
QoR (cost) 

Proposed 
approach 

[27] 
Proposed 
approach 

(sec) 

[27] 
(sec) 

Proposed 
approach 

[27] 

IIR 

Butterworth 
2(*),1(+) 3(*),1(+) 0.065 2.38 0.47 0.52 

DCT 4(*),1(+) 1(*),1(+) 1.538 25.5 0.44 0.80 

MESA Horner 3(*),1(+) 1(*),1(+) 0.216 4.4 0.45 0.75 

EWF 2(*),1(+) 1(*),1(+) 0.314 20.6 0.60 0.84 

DWT 4(*),2(+) 1(*),1(+) 0.231 5.9 0.47 0.77 

ARF 4(*),1(+) 2(*),1(+) 1.704 11.34 0.43 0.50 

MPEG MMV 4(*),1(+) 5(*),1(+) 1.593 12.0 0.33 0.35 

IDCT 3(*),1(+) 2(*),2(+) 1.330 21.8 0.43 0.55 

BPF 4(*),2(+) 2(*),1(+) 0.426 13.5 0.51 0.76 

JPEG 

Downsample 
2(*),1(+) 1(*),1(+) 0.103 20.6 0.43 0.71 

WDF 4(*),1(+) 2(*),1(+) 0.548 22.4 0.49 0.75 

FIR 

(I=8) 

4(*), 1(+),1(<), 

UF=4 

4(*), 

1(+),1(<), 

UF=8 

1.86 4.23 0.36 0.38 

FFT 

(I=16) 

4(*), 1(+), 1(-), 

1(<), UF=4 

2(*), 1(+), 

1(-), 1(<), 

UF=16 

91.88 1259 0.29 0.96 

Differential 

equation 

(I=16) 

6(*), 1(+), 1(-), 

1(<), UF=2 

3(*), 1(+), 

1(-), 1(<), 

UF=16 

44.245 322 0.25 0.51 

Test case 

(I=36) 

2(*), 1(+),1(<), 

UF=1 

2(*), 

1(+),1(<), 

UF=36 

5.12 321 0.29 0.82 

Average decrement in exploration run time 
W.R.T [27]=92.68 % 

Average reduction in cost 
W.R.T [27]=35.33 % 
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  Table 7.24 Comparison of proposed approach with [59] in terms of exploration run time 

and QoR 

Benchmark 

Resource combination Exploration Runtime QoR (cost) 

Proposed 
approach 

[59] 
Proposed 
approach 

(sec) 
[59] (Min) 

Proposed 
approach 

[59] 

IIR 

Butterworth 
2(*),1(+) 4(*),1(+) 0.065 1.01 0.47 0.48 

DCT 4(*),1(+) 4(*),1(+) 1.538 16.5 0.44 0.44 

MESA 

Horner 
3(*),1(+) 1(*),1(+) 0.216 2.4 0.45 0.75 

EWF 2(*),1(+) 2(*),2(+) 0.314 7.4 0.60 0.64 

DWT 4(*),2(+) 4(*),1(+) 0.231 2.24 0.47 0.476 

ARF 4(*),1(+) 3(*),1(+) 1.704 9.11 0.43 0.47 

MPEG 

MMV 
4(*),1(+) 6(*),1(+) 1.593 4.3 0.33 0.33 

IDCT 3(*),1(+) 1(*),1(+) 1.330 18.5 0.43 0.74 

BPF 4(*),2(+) 4(*),1(+) 0.426 4.2 0.51 0.54 

JPEG 

Downsampl

e 

2(*),1(+) 1(*),1(+) 0.103 2.2 0.43 0.58 

WDF 4(*),1(+) 4(*),1(+) 0.548 10.0 0.49 0.48 

FIR 

(I=8) 

4(*), 

1(+),1(<), 

UF=4 

4(*), 

1(+),1(<), 

UF=8 

1.86 3.78 0.36 0.38 

FFT 

(I=16) 

4(*), 1(+), 

1(-), 1(<), 

UF=4 

2(*),1(+), 

1(-), 1(<), 

UF=16 

91.88 >1hr 0.29 0.63 

Differential 

equation 

(I=16) 

6(*), 1(+), 

1(-), 1(<), 

UF=2 

4(*), 1(+), 

1(-), 1(<), 

UF=16 

44.245 >1hr 0.25 0.48 

Test case 

(I=36) 

2(*), 

1(+),1(<), 

UF=1 

2(*), 

1(+),1(<), 

UF=36 

5.12 >1hr 0.29 0.70 

Average decrement in exploration run 
time 

W.R.T. [59]= 99.03% 

Average reduction in cost 

W.R.T. [59]= 23.01% 
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7.4 Experimental results: the proposed approach ‘Swarm Inspired 

Exploration of Architecture and Unrolling Factors for Nested Loop 

Based Application in Architectural Synthesis’  

 This section describes the experimental results of the proposed approach explained in 

Chapter 6 and the improvements obtained compared to recent approaches [27,31, 39]. The 

proposed approach has been implemented in Java and run on Intel core i5-2450M processor, 

2.5 GHz with 3MB L3 cache memory and 4GB DDR3 RAM. Multiple benchmarks were 

chosen for testing that include CDFGs with nested loops and single loop [55, 56, 71]. Note- 

the CDFGs are generated from the VHDL format of the benchmarks shown in [55, 71] 

however generation of CDFG is also possible from high level language (such as C). The 

results are divided into two phases. a) The results obtained through proposed approach are 

shown in Table 7.25. As evident from Table 7.25 the solution explored by the proposed 

approach comprehensively meets the user defined constraints for power and execution time 

as well as minimizes the hybrid cost. For example, in case of Autocorrelation, the explored 

solution 1(+), 4(*), 1(<) and UF1=1,UF2=8 has execution time of 96.96us and power of 

0.65mW which satisfies the given user constraints. The proposed approach also has the 

capability to explore multiple optimal solutions as reported in Table 7.25. 

 b) Moreover, Table 7.26 and Fig 7.8 and 7.9 show the comparative analysis with [27], [31] 

and [39] for CDFGs. As evident from Table 7.26, the QoR of proposed approach is much 

better than [27], [31] and [39], simultaneously exploration speed of proposed approach is 

multiple times higher than [27], [31] and [39] as shown in Figure 7.9.  QoR is determined as 

eqn. (7.1):  

A simple calculation with w1=0.5 and w2=0.5 revels that proposed approach is 

simultaneously able to achieve average improvement in QoR of more than 33% as well as 

average decrement in exploration time is more than 34% as shown in Figure 7.8 and Figure 

7.9. (Note: - For the sake of comparison, completely unrolled CDFG, is taken as an input 

because CDFGs were not directly handled by [27] and [31]). This is because in [27] and [31] 

optimal solution were not explored as seen from Table 7.26 (QoR values). Further [27] and 

[31] are not capable exploring optimal unrolling factor. Besides above these approaches uses 

GA which have exponential time complexity. Moreover, even the approach [39] able to 

handle unrolling factor during exploration but required manual intervention to decide 

unrolling factor. Thus approach [39] not able to achieve optimal solution (composition of 
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datapath and loop unrolling factor) and it is also clear from the Table 7.26 that our approach 

achieve more than 33 % QoR in lesser exploration time (as shown in Figure 7.9). In other 

hand our algorithm is able to achieve optimal solution for most of the benchmark and this has 

been proved when we compared our results with golden solution found with exhaustive 

search method. Besides above these approaches uses EA which has exponential time 

complexity and do not have time model to predict delay of solution without physically 

unrolling CDFG. 

 

Table 7.25 Results of Estimated Power and Execution Time Using Proposed Approach for  

CDFGs 

 

Note: For proposed approached baseline parameters : φ1 = φ2 = 0.5, the value of ɷ will 

be linearly decreased between [0.9-0.1],value of b = 2, 

swarm size = 3,5 M = 100, £=10 

Bench-
mark [55, 

5671] 

 Power Execution Time 

Resources found Constraint 
Proposed 
solution 

Constraint 
Proposed 
solution 

Autocor-
relation 

(I1=8,I2= 8) 

1(+),4(*), 1(<), 
UF1=1,UF2=8 

1.25mW 0.65mW 250us 96.96us 

1(+),4(*), 1(<), 

UF1=1,UF2=4 
1.25mW 0.47mW 250us 184.96us 

DHMC 
(I1=4,I2= 4) 

1(+),5(*), 1(<), 
UF1=1,UF2=2 

3.0mW 0.82mW 600us 363.2us 

1(+),4(*), 1(<), 

UF1=1,UF2=2 
3.0mW 0.81mW 600us 448.96us 

FIR 
(I= 8) 

1(+),4(*), 1(<), 
UF=4 

0.6mW 0.47mW 40us 24.24us 

1(+),3(*), 1(<), 

UF=2 
0.6mW 0.34mW 40us 46.24us 

FFT 
(I= 16) 

3(+),4(*), 2(-), 
1(<), UF=4 

1.5mW 1.44mW 500us 348.48us 

1(+),5(*), 1(-), 

1(<), UF=4 
1.5mW 1.51mW 500us 358.5us 

Differential 
equation 
(I= 16) 

1(+),6(*),  1(-), 
1(<), UF=2 

1.5mW 0.73mW 400us 277.4us 

1(+),6(*),  1(-), 

1(<), UF=4 
1.5mW 0.95mW 400us 225.6us 
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Table 7.26 Comparison of proposed approach with [27] , [31] and [39]  in terms solution found 

and respective  QoR 

 

Bench-
mark [55, 

56, 71] 

Resource combination  QoR (cost) 

PSDSE [27] GA [31]WSPSO [39]EA PSDSE [27] [31] [39] 

Autocor-

relation 

1(+),4(*), 

1(<), UF1=1, 

UF2=8 

1(+),5(*), 

1(<), 

UF1=8, 

UF2=8 

1(+),4(*), 

1(<), 

UF1=8, 

UF2=8 

4(+),4(*), 

4(<), 

UF1=2, 

UF2=2 

0.15 0.38 0.37 0.28 

DHMC 

1(+),5(*), 

1(<), UF1=1, 

UF2=2 

2(+),3(*), 

1(<), 

UF1=4, 

UF2=4 

1(+),4(*), 

1(<), 

UF1=4, 

UF2=4 

4(+),12(*), 

4(<), 

UF1=2, 

UF2=2 

0.16 0.46 0.49 0.29 

FIR 

1(+), 

4(*),1(<), 

UF=4 

1(+), 

4(*),1(<), 

UF=8 

1(+), 

3(*),1(<), 

UF=8 

2(+), 

2(*),2(<), 

UF=2 

0.35 0.38 0.40 0.49 

FFT 

3(+), 

4(*),2(-), 

1(<), UF=4 

1(+), 

2(*),1(-), 

1(<), 

UF=16 

1(+), 

4(*),1(-), 

1(<), UF=16 

4(+), 

8(*),4(-), 

4(<), UF=4 

0.28 0.70 0.56 0.34 

Diffe-

rential 

equation 

1(+), 

6(*),1(-), 

1(<), UF=2 

1(+),3(*),1(

-), 1(<), 

UF=16 

1(+), 

5(*),1(-), 

1(<), UF=16 

4(+), 

12(*),4(-), 

4(<), UF=4 

0.24 0.51 0.52 0.38 

Average reduction in cost 
w.r.t [27]= 51.4% w.r.t. [31]= 49.57% w.r.t. [39]= 33.74% 
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Figure 7.8 Comparison of PSDSE with [39], [31], and [27] in term of QoR 

 

 
 

Figure 7.9 Comparison of PSDSE with [39], [31], and [27] in term of 
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Chapter 8 

Conclusion and Future work 

 

8.1. Conclusion 

This thesis presented different methodologies for automated multi-objective design space 

exploration problem in high level synthesis for application specific computing. Each 

methodology is unique based on class of application handled by approach and design metrics 

optimized by the approach. The main aim was faster exploration of good quality solutions. In 

order to achieve this goal, many milestones were crossed, listed as follows: 

1. Proposed a novel particle swarm optimization based methodology for design space 

exploration of datapath during power-performance trade-off for data intensive 

application specific processor in high level synthesis. The proposed methodology is 

49% faster and produced 10% better quality solutions as compared to previous GA 

approaches.  

2. Proposed an automated framework for simultaneous exploration of datapath and loop 

unrolling factor during power performance duality in high level synthesis. The 

framework utilized the exploration capability of swarm intelligence to solve this 

twofold problem. The proposed framework produced average 28% better solutions 

with 94% lesser exploration time as compared to previous GA approaches. 

3. Proposed a novel methodology for automated design space exploration of datapath 

and unrolling factor during area-delay trade-off using hyper dimensional particle 

swarm encoding in high level synthesis for application specific computing. As 

compared to previous GA approaches the proposed methodology produced average 

23% better solutions with 92% faster exploration speed. 

4. Proposed a novel framework for automated exploration of datapath and unrolling 

factors for nested loop based applications during power performance trade-off in high 

level synthesis. The proposed framework explored average 33% better solutions with 

34% higher speed compared to previous approaches. 

5. Proposed a novel power and cost model for assessment of design points.  
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6. Proposed an execution time estimation model for single loop based applications based 

on resource constraints without tediously unrolling loop. 

7. Proposed a delay estimation model for nested loop based applications based on 

resource constraints without necessity of complete loop unrolling. 

8. Proposed an adaptive end terminal perturbation algorithm to handle boundary 

outreach problem. 

9. Presented a novel sensitivity analysis of PSO parameters for solving design space 

exploration problem in high level synthesis. This sensitivity analysis helps to the 

designer for pre-tuning the control parameters of PSO for getting high quality solution 

in lesser exploration time. 

10. Presented an analysis of power/area, performance, control step based on unrolling 

factors in case of control and data intensive application.   

Therefore, this thesis presented multiple design space exploration methodologies in high level 

synthesis, which have capability to handle data intensive applications as well as data and 

control intensive applications. The proposed methodologies can efficiently apply for 

exploration problem in HLS for any user criterion. Moreover, the execution time models (for 

control and data intensive application) presented in the thesis can widely applicable to 

determine execution time of an application in design space exploration process.   

 

8.2. Future work 

  

a) The area of design space exploration and high level synthesis is still required more 

research efforts for making high level synthesis as efficient as RTL synthesis, logic synthesis. 

There are various aspects which required more attention by the researcher such as handling 

reliability and temperature during design space exploration in high level synthesis. During 

handling temperature, the investigation required to handle two aspects a) reducing the peak 

temperature of the design which directly impact on the reliability of the design b) reduce the 

average temperature of the circuit which impacts on the leakage power and also impacts on 

the cooling and packaging of the circuit.  These algorithms can be integrated with existing 

high level synthesis techniques for generation of optimized RTL circuits. This will allow 

system architects to design systems based on performance-temperature trade-offs.  

b) Another aspect of the design space exploration problem is, reducing the exploration time 

for finding the final design architecture, and thereby accelerates the exploration process. 
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Further research can introduce another approach which required lesser evaluation of 

architectural variants to be during the exploration process for searching a high quality 

solution. Reducing the analysis of the architectural variants directly reduces the exploration 

time which in turn impacts the design time and hence will help in faster designing without 

compromising quality of the solution. 

c) In order to improving quality of solution, further research on high level synthesis to 

incorporate lower level information such as gate level or physical level information during 

DSE for improving accuracy of evaluation models which directly effect on the quality of 

solution.  
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Appendix A 
 

 
 

Schematic view of the designed MESA Horner in Xilinx ISE tool  
 

 
 

Simulation result of MESA Horner 
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RTL design of IIR Butterworth in Xilinx ISE tool  

 

 

 
 

Simulation result of IIR Butterworth 
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Data path circuit for scheduled CDFG1 with 1(*), 1(+), 1(<) resource configuration 

presented in chapter 3 Figure 3.9 
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RTL Diagram of the CDFG1 presented in chapter 3 (datapath given in previous figure) 

 

 
 

Simulation result of CDFG1 
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CDFG of Testcase used in Chapter 4 and Chapter 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detail of Testcase used in the thesis 

For(i=0; i<36; i++) { 

 P = P * (Ai + Bi) 

q = q + (Ai * Bi) 

} 

(a) ‘C’ code of original loop 

 

(b) Control and data flow graph of Testcase 
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