
MULTI-OBJECTIVE DESIGN SPACE

EXPLORATION IN HIGH LEVEL

SYNTHESIS FOR APPLICATION

SPECIFIC COMPUTING

Ph.D. Thesis

By

VIPUL KUMAR MISHRA

DISCIPLINE OF COMPUTER SCIENCE &

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE
MARCH 2015

MULTI-OBJECTIVE DESIGN SPACE

EXPLORATION IN HIGH LEVEL

SYNTHESIS FOR APPLICATION

SPECIFIC COMPUTING

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

VIPUL KUMAR MISHRA

DISCIPLINE OF COMPUTER SCIENCE &

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE
MARCH 2015

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

 CANDIDATE’S DECLARATION

 I hereby certify that the work which is being presented in the thesis entitled MULTI-

OBJECTIVE DESIGN SPACE EXPLORATION IN HIGH LEVEL SYNTHESIS FOR

APPLICATION SPECIFIC COMPUTING in the partial fulfillment of the requirements

for the award of the degree of DOCTOR OF PHILOSOPHY and submitted in the

DISCIPLINE OF COMPUTER SCIENCE & ENGINEERING, INDIAN INSTITUTE

OF TECHNOLOGY INDORE, is an authentic record of my own work carried out during

the time period from January 2013 to March 2015 under the supervision of Dr. Anirban

Sengupta, Assistant Professor, Indian Institute of Technology Indore.

 The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other institute.

Signature of the student with date

VIPUL KUMAR MISHRA

--

 This is to certify that the above statement made by the candidate is correct to the best

of my/our knowledge.

Signature of Thesis Supervisor with date

(Dr Anirban Sengupta)

Vipul Kumar Mishra has successfully given his/her Ph.D. Oral Examination held on July

11, 2015.

Signature(s) of Thesis Supervisor(s) Convener, DPGC

Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #1 Signature of External

Examiner

Date: Date: Date:

ACKNOWLEDGEMENTS

 First of all, I would like to thank my supervisor Dr. Anirban Sengupta,

who was a constant source of inspiration during my work, without his constant

guidance and research directions this research work could not be completed. His

continuous support and encouragement has motivated me to remain streamlined

in my research work. I am grateful to Dr. Abhishek Srivastava, Head, CSE

Discipline, for all his extended help and support.

 I would like to thank my family, especially my mother, father and my

sweet wife for always believing in me, for their continuous source of inspiration

and their support in my decisions. Without them I could not have made it here.

 I am thankful to Dr. Surya Prakash and Dr. Vivek Kanhangad, for taking

out some valuable time to evaluate my research progress all these years. Their

expert comments and suggestions helped me to improve my work at various

stages.

 I wish to thank all my colleagues, and staff from the Discipline of

Computer Science and Engineering for their suggestions and friendship. A

special thanks to Tanveer and Saumya for their constructive opinions, efficiency

and assistance on various matters, understanding and constant encouragement.

 I extend my sincere thanks to many government bodies like DST,

MHRD and IIT Indore to help me with financial support.

Dedicated to my family

Abstract

High level synthesis (HLS) has gained rapid dominance in the design flow of application

specific computing. In HLS, design space exploration (DSE) is an indispensable part, which

plays a vital role during design process. Due to advancement in DSE, the designing of an

optimal digital circuit for highly complex applications has become possible. Therefore, this

thesis proposed four novel automated DSE methodologies for designing application specific

systems (ASP) or hardware accelerators. This thesis solves four different types of problem in

DSE: a) Design space exploration problem for data intensive application during power

performance trade-off by proposing a novel DSE methodology employing particle swarm

optimization (PSO). In addition, a novel model for power metric, a novel fitness function

used for design quality assessment, a novel mutation algorithm, a novel end terminal

perturbation algorithm to handle boundary outreach problem during exploration have also

been proposed through this solution. Moreover, sensitivity analysis of different PSO

parameters such as swarm size, inertia weight, acceleration coefficient, and termination

condition on multi objective DSE have also been presented in this solution. b) Multi-

objective DSE problem for single loop based control and data intensive application by

proposing a novel automated methodology for simultaneous exploration of data path and loop

unrolling factor (UF) through an integrated multi-dimensional particle encoding process

using swarm intelligence. Moreover, to enhance exploration process an estimation model for

computation of execution delay of a loop unrolled control and data flow graph (CDFG)

(based on a resource configuration visited) without requiring to tediously unroll the entire

CDFG for the specified loop value for single loop based application has also been presented.

c) DSE problem during area performance trade-off for single loop based CDFG by proposing

automated exploration of data path and loop UF together through PSO. d) DSE problem for

perfectly nested loop based applications during power performance trade-off by proposing a

novel methodology for automated exploration of architecture and UFs for nested loop using

particle swarm optimization. Moreover, a model has been derived which directly estimates

the execution time of nested loop, based on resource constraint and UFs without necessity of

tediously unrolling the entire CDFG for the specified UFs values in most cases. The proposed

exploration approaches can be applied for designing application specific systems, standalone

application specific integrated circuits (ASIC’s), hardware accelerators, or DSP cores.

Results of the experiments for proposed approaches on the standard benchmarks indicated

improvements in terms of exploration runtime and enhancement of quality of final solution

(final cost) when compared to recent approaches.

LIST OF PUBLICATIONS

International Journals (5)

1. Vipul Kumar Mishra, Anirban Sengupta, “'Swarm Inspired Exploration of

Architecture and Unrolling Factors for Nested Loop Based Application in

Architectural Synthesis” IEEE/IET Electronics Letters , Volume 51, Issue: 2, pp.

157 – 159, Jan 2015 (5yr Impact Factor = 1.1).

2. Anirban Sengupta, Vipul Kumar Mishra “Automated Exploration of Datapath and

Unrolling Factor during Power-Performance Tradeoff in Architectural Synthesis

Using Multi-Dimensional PSO Algorithm”, Elsevier Journal on Expert Systems

With Applications, Volume 41, Issue 10, pp 4691-4703, August 2014 (5yr Impact

Factor = 2.339).

3. Vipul Kumar Mishra, Anirban Sengupta “MO-PSE: Adaptive Multi Objective Particle

Swarm Optimization Based Design Space Exploration in Architectural Synthesis for

Application Specific Processor Design”, Elsevier Journal on Advances in

Engineering Software, Volume 67, Issue: C, pp. 111–124, January 2014. (5yr

Impact Factor = 1.5).

4. Anirban Sengupta, Vipul Mishra. Simultaneous Exploration of Optimal Datapath and

Loop Based High level Transformation during Area-Delay Tradeoff in Architectural

Synthesis Using Swarm Intelligence, IOS Press, International Journal of

Knowledge-based and Intelligent Engineering Systems, vol. 19, no. 1 pp.47-61,

2015

5. Anirban Sengupta, Reza Sedaghat, Vipul Kumar Mishra, "Execution Time – Area

Tradeoff in GA using Residual Load Decoder: Integrated Exploration of Chaining

Based Schedule and Allocation in HLS for Hardware Accelerators, Journal

of Electronics and Energetics: Facta Universitatis, Volume 27, No. 2, pp. 235-249,

February 2014.

Peer Reviewed Conferences (9)

6. Anirban Sengupta, Vipul Kumar Mishra, " Integrated Particle Swarm Optimization (i-

PSO): An Adaptive Design Space Exploration Framework for Power-Performance

Tradeoff in Architectural Synthesis ", Proceedings of IEEE 15th International

Symposium on Quality Electronic Design (ISQED 2014), Santa Clara, California,

USA, pp. 60 – 67, March 2014 (BLIND REVIEW). Note- Amongst top 10 EDA/VLSI

conferences

7. Anirban Sengupta, Vipul Kumar Mishra, " Swarm Intelligence Driven Simultaneous

Adaptive Exploration of Datapath and Loop Unrolling Factor during Area-

Performance Tradeoff ", Proceedings of 13th IEEE Computer Society Annual

International Symposium on VLSI (ISVLSI), Florida, USA, pp. 106-112, July 2014

(BLIND REVIEW). Note- Amongst top 10 EDA/VLSI conferences

8. Vipul Mishra, Anirban Sengupta "Swarm Intelligence Driven Design Space

Exploration: An Integrated Framework for Power-Performance Trade-off in

Architectural Synthesis ", Proceedings of 25th IEEE International Conference on

Microelectronics (ICM 2013), pp. 1- 4, Sep 2013.

9. Anirban Sengupta, Vipul Mishra, " Automated Parallel Exploration of Datapath and

Unrolling Factor in High Level Synthesis using Hyper-Dimensional Particle Swarm

Encoding ", Proceedings of 27th IEEE Canadian Conference on Electrical and

Computer Engineering, Toronto, pp. 069 - 073, May 2014.

10. Vipul Kumar Mishra, Anirban Sengupta, “PSDSE: Particle Swarm Driven Design

Space Exploration of Architecture and Unrolling Factors for Nested Loops in High

Level Synthesis” Proceedings of 5
th

 International Symposium On Electronic

System Design (ISED 2014) pp. 10- 14, Dec 2014 (DOUBLE BLIND REVIEW).

11. Anirban Sengupta and Vipul Kumar Mishra, "Time Varying vs. Fixed Acceleration

Coefficient PSO Driven Exploration during High Level Synthesis: Performance and

Quality ", Proceedings of 13th IEEE International Conference on

Information Technology, pp. 281- 286, Dec 2014 (DOUBLE BLIND REVIEW).

12. Anirban Sengupta, Vipul Kumar Mishra, Pallabi Sarkar, "Rapid Search of Pareto

Fronts using D-logic Exploration during Multi-Objective Tradeoff of Computation

Intensive Applications ", Proceedings of IEEE 5th Asian Symposium on Quality

Electronic Design (ASQED), Malaysia, pp. 113-122, August 2013.

13. Anirban Sengupta, Vipul Mishra, "D-logic Exploration: Rapid Search of Pareto

Fronts during Architectural Synthesis of Custom Processors", IEEE International

Conference on Advances in Computing, Communications and Informatics

(ICACCI-2013), Mysore, pp. 586 - 593, August 2013.

14. Anirban Sengupta, Vipul Mishra, “Multidimensional Encoding Based Evolutionary

Exploration Approach: Adaptive Methodology for Parametric Trade-offs in High

Level Synthesis for Control flow Graphs; Proceedings of 3rd IEEE CALCON, IEEE

Kolkata, pp. 43 – 46, Nov 2014.

TABLE OF CONTENTS

 ABSTRACT VI

 LIST OF PUBLICATION VIII

 LIST OF FIGURES XIV

 LIST OF TABLES XVI

 NOMENCLATURE IXX

 ACRONYMS XXII

1. Chapter 1

Introduction

1

 1.1. Preamble 1

 1.2. Overview on the Abstraction Level of Optimization 3

 1.3. A Brief history of High Level Synthesis 3

 1.4. Theoretical background on High level synthesis 4

 1.5. Theoretical Background on Design Space Exploration 9

 1.6. Reasons for Studying High Level Synthesis 9

 1.7. Thesis Organization 10

2. Chapter 2

Previous Works and Thesis Contribution

11

 2.1. Related work 11

 2.2. Selected bio inspired framework used for design space

exploration

15

 2.3. Background of particle swarm optimization 16

 2.4. Popular population based optimization 19

 2.5. Objective 22

 2.6. Summary of contribution 23

3 Chapter 3

MO-PSE: Adaptive Multi Objective Particle Swarm

Optimization Based Design Space Exploration in

Architectural Synthesis for Application Specific Processor

Design

25

 3.1. Description of proposed methodology 25

 3.1.1. Problem formulation 25

 3.1.2. Generic overview of proposed MO-PSE 26

 3.1.3. Proposed Models for Evaluation of Particles (Design

Points) during MO-PSE

31

 3.2. Demonstration with detail description of the proposed

methodology

32

 3.3. Handling control flow graphs through proposed approach 44

4 Chapter 4

Automated Exploration of Datapath and Unrolling Factor

during Power-Performance Trade-off in Architectural

Synthesis Using Multi-Dimensional PSO Algorithm

47

 4.1. Problem Formulation 48

 4.2. The Proposed Framework and Mapping Process 48

 4.3. Proposed Evaluation Models 49

 4.4. Demonstration of proposed methodology 53

5 Chapter 5

Simultaneous Exploration of Optimal Datapath and Loop

Based High level Transformation during Area-Delay Trade-off

in Architectural Synthesis Using Swarm Intelligence

59

 5.1. Problem Formulation 59

 5.2. The Proposed Framework 60

 5.3. Evaluation Models 60

 5.4. Demonstration of Proposed Methodology 63

6 Chapter 6

Swarm Inspired Exploration of Architecture and Unrolling

Factors for Nested Loop Based Application in Architectural

Synthesis

69

 6.1. Problem Formulation 70

 6.2. The Proposed Framework and Mapping Process 70

 6.3. Proposed Evaluation Models 73

 6.4. Demonstration of proposed methodology 78

 6.5. Process of transforming non-perfect nested loop into

perfect nested loop

82

7 Chapter 7

Result and analysis

85

 7.1. Experimental results: the proposed approach ‘MO-PSE:

Adaptive Multi Objective Particle Swarm Optimization

Based Design Space Exploration in Architectural

Synthesis for Application Specific Processor Design’

85

 7.2. Experimental results: the proposed approach ‘Automated

Exploration of Datapath and Unrolling Factor during

Power-Performance Trade-off in Architectural Synthesis

Using Multi-Dimensional PSO Algorithm’

 102

 7.3. Experimental results: the proposed approach

‘Simultaneous Exploration of Optimal Datapath and Loop

Based High level Transformation during Area-Delay

Trade-off in Architectural Synthesis Using Swarm

Intelligence’

112

 7.4. Experimental results: the proposed approach ‘Swarm

Inspired Exploration of Architecture and Unrolling

Factors for Nested Loop Based Application in

Architectural Synthesis’

121

8 Chapter 8

Conclusion and future work

125

 8.1. Conclusion 125

 8.2. Future work 126

 References 128

 Appendix A 139

LIST OF FIGURES

Figure 1.1 Basic block diagram of high level synthesis 5

Figure 1.2 Taxonomy of widely used scheduling algorithm in VLSI 7

Figure 2.1 Basic particle swarm optimization algorithm 18

Figure 3.1 Flow chart of proposed MO-PSE 27

Figure 3.2 Pseudo code of MO-PSE algorithm 28

Figure 3.3 Data Flow Graph of 2
nd

 order IIR 36

Figure 3.4 Determination of initiation interval / cycle time during

functional pipelining of data path for particle X1 (1(+),

1(*), 1(-))

37

Figure 3.5 Procedure for local best up-gradation 38

Figure 3.6 Determination of New Position 40

Figure 3.7 Adaptive end terminal perturbation algorithm 41

Figure 3.8 Adaptive rotation mutation algorithm 43

Figure 3.9 Control and data flow graphs 45

Figure 4.1 Proposed mapping of the DSE problem with PSO 48

Figure 4.2 Block diagram of proposed approach 49

Figure 4.3 Pseudo code of proposed exploration 50

Figure 4.4 Demonstration of loop unrolling based on 2(*), 2(+),

1(<) constraints using As Soon As Possible (ASAP)

scheduling for test case

51

Figure 4.5 Pre-processing of UF 55

Figure 4.6 Algorithm for inclusion of some special UFs 55

Figure 5.1 Block diagram of proposed approach 61

Figure 5.2 Flow diagram of proposed algorithm 62

Figure 5.3 Demonstration of loop unrolling based on a resource

constraint of 2(*), 2(+), 1(<) for FIR

64

Figure 6.1 Typical physically unrolled loop for UF= (2, 3) and

schedule with ASAP with 2(*), 1(+), 1(<). 71

Figure 6.2 Proposed Mapping of DSE problem with PSO 71

Figure 6.3 Block diagram of proposed DSE Engine 72

Figure 6.4 Exploration algorithm 72

Figure 6.5 A CDFG Example for demonstration 73

Figure 6.6 Procedure for estimation of execution time 74

Figure 6.7 An example of loop transformation from non-perfect

nested loop to perfect nest loop

83

Figure 7.1 Comparison of convergence runtime w.r.t ‘b’ 90

Figure 7.2 Comparison of exploration runtime w.r.t ‘b’ 90

Figure 7.3 Comparison of MO-PSE and [27], [29] in terms of

exploration time

100

Figure 7.4 Comparison of MO-PSE and [27], [29] in terms of QoR 100

Figure 7.5 Change in cost of global best particle for various

benchmarks

107

Figure 7.6 Analysis of power, execution time, control steps of

global best particle w.r.t unrolling factor

109

Figure 7.7 Analysis of area, execution time, control steps of global

best particle w.r.t unrolling factor

117

Figure 7.8 Comparison of PSDSE with [39], [31], and [27] in term

of QoR

124

Figure 7.9 Comparison of PSDSE with [39], [31], and [27] in term

of Exploration time

124

LIST OF TABLES

Table 3.1 Values of EFU for major FU’s at 5V and α = 0.5 [61] 33

Table 3.2 Values of EFU for minor FU’s at 5V and α = 0.5 [61] 33

Table 3.3 Min Max analysis of user constraints 34

Table 3.4 Initial velocity of particle 36

Table 4.1 An example of pre-processing of unrolling factors for

test case

56

Table 5.1 An example of pre-processing of unrolling factors for

FIR

65

Table 7.1 Comparison of convergence time (ms) with respect to

parameter "ɷ"

87

Table 7.2 Comparison of exploration time (ms) with respect to

parameter " ɷ "

88

Table 7.3 Comparison of exploration time (ms) with respect to

parameter "b"

89

Table 7.4 Comparison of convergence time (ms) with respect to

parameter "b"

89

Table 7.5 Comparison of convergence time (ms) w.r.t. constant

acceleration coefficient and time varying acceleration

coefficient

91

Table 7.6 Comparison of exploration time (ms) w.r.t. constant

acceleration coefficient and time varying acceleration

coefficient

92

Table 7.7 Comparison of convergence time (milliseconds) with

respect to swarm size (S)

93

Table 7.8 Comparison of exploration time (milliseconds) with

respect to swarm size (S)

93

Table 7.9 Comparison of convergence time (ms) with respect to

stopping criterion (S
1
 S

2
)

94

Table 7.10 Experimental result of comparison with [29] for the

tested benchmarks

96

Table 7.11 Comparison of proposed approach with [29] in terms of

exploration time and QoR

97

Table 7.12 Experimental result of comparison with [27] for the

tested benchmarks

98

Table 7.13 Comparison of proposed approach with [27] in terms of

exploration time and QoR

99

Table 7.14 Results of estimated power and execution time using

proposed approach for the CDFG benchmarks

101

Table 7.15 Comparison of cost and exploration time with respect to

swarm size (S) for the proposed approach

104

Table 7.16 Results of estimated power and execution time using

proposed approach for DFGs

105

Table 7.17 Results of estimated power and execution time using

proposed approach for CDFGs

106

Table 7.18 Comparison of proposed approach with [42] in terms of

exploration run time and QoR

110

Table 7.19 Comparison of proposed approach with [27] in terms of

exploration run time and QoR

111

Table 7.20 Comparison of cost and exploration time with respect to

swarm size (S)

113

Table 7.21 Results of estimated area and execution time using

proposed approach for DFGs

115

Table 7.22 Results of estimated area and execution time using

proposed approach for CDFGs

116

Table 7.23 Comparison of proposed approach with [27] in terms of

exploration run time and QoR

119

Table 7.24 Comparison of proposed approach with [59] in terms of

exploration run time and QoR

120

Table 7.25 Results of estimated power and execution time using

proposed approach for CDFGs

122

Table 7.26 Comparison of proposed approach with [27] , [31] and

[39] in terms solution found and respective QoR

123

NOMENCLATURE

Symbol Explanation

Xi Particle /Position of a particle

Rx Candidate resource combination

UFN N
th

 Unrolling factor

PT Power consumed by a resource combination

PD Dynamic power

Ps Static power

Pmax Maximum power consumption

Pmin Minimum power consumption

TE Execution time consumed by a resource combination

Tmax Maximum execution time

Tmin Minimum execution time

Pcons Power constraint specified by the user

Tcons Execution time constraint specified by the user

Rd d
th

Resource type

N(Rd) Number of instances of resource type ‘Rd’

CS Control Step

CT Total CSs required to execute the loop completely

Cbody Number of CSs required to execute loop body once

Cfirst Number of CSs required to execute first iteration

I Maximum number of iteration (loop count)

CII Number of CSs required between initiations of consecutive iterations

∆ Delay of one CS in nanoseconds

L Latency of a scheduling solution

Tc Cycle time of a scheduling solution

N
Number of input samples to be processed by a functionally pipelined

data-path

α  I

UF

quotient

Z Stopping criterion

W1 User defined weightage to power

W2 User defined weightage to execution time

EFU Energy consumption of the resources

EMUX/DMUX Energy consumed by a multiplexer and demultiplexer

cP Power dissipated per area unit (e.g. transistors).

S Swarm size

D Number of dimension

di
V Velocity of i

th
 particle in d

th
 dimension

di
V


 New velocity of i

th
 particle in d

th
 dimension

di
R Resource value or UF value of particle Xi in d

th
 dimension

di
R New resource value or UF value of particle Xi in d

th
 dimension

lbidR Resource value or UF value of Xlbi in d
th

 dimension

gbdR Resource value or UF value of Xgb in d
th

 dimension

ω Inertia weight

b1,b2 Acceleration coefficients

r1,r2 Random numbers between [0-1].

iX

fC Fitness of particle Xi

i

lbi

X

fC Local best fitness of particle Xi

Xlbi Local best position of i
th

particle

Xgb Global best position of the population

iRN Number of instance of resource Ri

iRK Area occupied by resource Ri

/MUX DMUXN Number of the multiplexer or demultiplexer

/MUX DMUXK Area occupied by the multiplexer or demultiplexer

v Number of resource types

1 User defined weightage to power

2 User defined weightage to execution time

min(Rd) minimum values of resources or UF of d
th

 dimension

max(Rd) maximum values of resources or UF of d
th

 dimension

ACRONYMS

DSE Design space exploration

HLS High level synthesis

PSO Particle swarm optimization

GA Genetic algorithm

ACO Ant colony optimization

DFG Data flow graph

CDFG Control and data flow graph

IC Integrated circuit

RTL Register transfer level

VHDL VHSIC hardware description language

ASP Application specific processor

ASIC Application specific integrated circuit

DSP Digital signal processing

ALU Arithmetic and logical unit

PSGA Problem specific genetic algorithm

WSPSO Weighted sum particle swarm optimization

PFA Pareto front arithmetic

UF Unrolling factor

FPGA Field programmable gate array

EA Evolutionary algorithm

SA Simulated annealing

QoR Quality of result

MO-PSE Multi objective particle swarm exploration

PSDSE Particle swarm design space exploration

H-SI Hyper dimension swarm intelligence

AS Architectural synthesis

RC Resource combination/configuration

FU Functional unit

ARF Auto regressive filter

BPF Band pass filter

DCT Discrete cosine transformation

IDCT Inverse discrete cosine transformation

DWT Discrete wavelet transformation

WDF Wave digital filter

FIR Finite impulse response

EWF Elliptic wave filter

FFT Fast Fourier transformation

MMV MPEG motion vectors

1

Chapter 1

Introduction

1.1. Preamble

As per Moore’s law, the density of transistors in an integrated circuit (IC) has been growing

consistently since the era of 70s. Such an exponential growth envisioned to produce more

capable and powerful devices. However, this exponential growth increased the complexity of

the circuit even more. Although, full custom designs of ICs were possible, however, full

custom design process was considered a tedious task. It was evident from the fact that, full

custom designing was used to design very small chips or highly regular chips like memory.

After recognizing this problem in its early stages, a feasible solution was to start the design

process at a higher level of abstraction. To complement this approach, researchers in early

80s came up with the idea of fully automated synthesis tools for layout design. As a result of

these efforts, the design process became much simpler and helped the designers to focus on

the logic level design. But, these solutions also fell short on several fronts. This was mainly

due to the fact that the era saw a continued growth in circuit complexity. This increased

design complexity, again motivated the designers to move to yet another abstraction level

called as the register transfer level (RTL). Thus, with the development of RTL synthesis tools

like Synopsis design compiler, RTL design was widely accepted in the 90s. The method

received tremendous popularity, and widely employed in the industry. RT level requires the

description of the data path & controller specified in a Hardware Description Language such

as Verilog or VHDL, which was fed to the synthesis tool to seamlessly produce a

combination logic network (logic level netlist). Over the years, RTL synthesis continued to

grow. The success of RTL synthesis led the designers to think that raising the design

abstraction to another level, i.e. the behaviour level, could enhance design productivity and

reduce time to market. This was a perfectly viable idea and indeed bore fruitful results [1, 2,

3, 6].

2

To enhance design productivity and reduce time to market, researchers introduced high level

synthesis, (also known as behavioural synthesis or architectural synthesis) that is a process of

transforming a behavioural description (in high level language) into a functionally equivalent

Register transfer level design. The high level synthesis provides a link between behavioural

level and register transfer level. As a result, designer could specify behaviour of an

application in a high level language such as C, C++, JAVA etc. that provides more flexibility

for functional verification, estimation of system’s performance and the capability to work at

higher abstraction levels. Further, it provides chance to get benefits of high level

transformation at higher level to produce more optimized design. On the other hand, in the

absence of such a design process, a designer is forced to implement a RTL design, which

indeed is a tedious task. Therefore, the current objective of research community is to provide

facility to designer so that they can start the design process at behavioural (algorithmic) level

and HLS tools generate a functionally equivalent optimized RTL design.

Therefore, the objective of HLS process is not only to transform a behavioural description

into its equivalent RTL design, but also to rapidly assess various alternatives in order

toproduce an optimal high performance low power design, that satisfies the user constraints

such as power, delay and area. This is possible due to advances of design space exploration

methodology in HLS, which maintains trade-off between conflicting parameters such as

power and performance while searching for an optimal solution of its RTL design.This

requirement of designing a high performance circuit with least power consumption is often

common in the area of digital signal processing, multimedia, communication and network

processing. For example, in many embedded systems, application specific hardware (or

application specific processors) is highly utilized for simultaneously handling the need of low

power, low area and high performance circuit. Smart phones are one of the best examples

where designers used these elements such as DSP cores, which provide high processing speed

with low battery consumption (i.e. low power). Therefore, during designing of these

elements, the efficient exploration of an optimal solution plays an important role, which

balance conflicting metrics such as power, area and execution time, to produce high-quality

solutions in acceptable exploration time. This process is formally known as design space

exploration (DSE).

A design space exploration problem consists of two orthogonal issues; first is to accurately

evaluate design points, and second is the capability to explore all corners of the design space.

An exhaustive search would eventually explore all corners of the design space and find an

optimal solution for a smaller design at a cost of high exploration time, but for large and

3

complex designs exhaustive search is impractical. Therefore, the designer must balance the

accuracy of evaluation by a more accurate evaluation model, and maximize the design space

coverage by a better exploration algorithm. Moreover, another objective of DSE should be to

reduce manual intervention with improving the automation process by taking intelligent

decisions during exploration.

Use of multi-objective algorithms is an excellent way to handle such problem; the multi-

objective algorithms have capability to handle conflicting objectives simultaneously and

search an optimal solution which maintains trade-off amongst multiple objectives. The

proposed method has an inclination towards yielding high quality solutions which fulfil multi

parametric optimization requirements with its unique features for optimization. It also solves

orthogonal issues such as exploring high-quality results in lesser exploration runtime.

1.2. Overview on the Abstraction Level of Optimization

Due to increasing complexity, the optimization process of the circuits starts from highest

level of abstraction. In digital designs there are many abstraction levels viz. system level,

behavioural level (algorithmic level or high level), register transfer level, logic level and

layout (physical) level. Optimization at higher level always gives more opportunity to

designer to handle complex decisions at early stage, that ease the process of optimization at

lower level which is more complex than higher level. Moreover, higher level optimization

also provides more flexibility, productivity, and design specification awareness than lower

level of abstraction. More specifically, for current generation of high performance, power

intensive designs, optimization at logic/transistor level is not sufficient for efficient

optimization due to exponential complexity of the design. Therefore, optimization at higher

level is very crucial for current complex system. Therefore, designers are expected consider

user goals from higher abstraction levels i.e. algorithmic level to generate high quality design

(at RT level) and also enhance opportunity of optimization at lower level of abstraction i.e.

logic level/transistor level.

1.3. A Brief history of High Level Synthesis

The success of compiler for high level language in 1950s, automatically gave an inspiration

to hardware designer for generating circuit implementation from high level behavioural

specification, due to increasing complexity of digital circuits. To the authors’ knowledge, the

4

first high level synthesis methodology CMU-DA was developed at Carnegie Mellon

University at 1979 by Parker et.al [7, 8]. The innovative flow of CMU-DA quickly generated

significant research interest. In subsequent years, between 1980s and 1990s, HLS has gained

sufficient interest of researchers and several attempts such as HAL[9], Hercules [10],

BSSC[11] introduced by researcher. Moreover, an approach presented in [34], describe a

bottom up design technique in the synthesis of digital systems. Generally, these approaches

break down the synthesis task into following major steps: a) code transformation b) operation

scheduling, c) module selection and allocation d) datapath and controller generation. Several

researchers addressed these individual problems of HLS. For example, to solve scheduling

problem the researchers introduced list scheduling [13] and force-directed scheduling [14].

These early researches helped to form a base for high level synthesis. However, these efforts

were not enough for wide acceptance of HLS among designer. In 90s, as a result of

improvement in RTL synthesis methodologies and wide adoption of RTL based designs,

focus on development of high level synthesis became more practical. In 1995, several

industrial tools such as Behavioural Compiler [15, 16] from Synopsis, Monet from Mentor

Graphics [17], were introduced. The main reasons behind failure of these tools was that, these

tools had an exhaustive nature of DSE and used HDL such as VHDL or Verilog for

behavioural description as input, which were not well suited for modelling behaviour at a

high level. Further, since 2000, a new generation of high level synthesis methodologies has

been developed. Although, most of these methodologies focused on using C based languages

for behavioural description unlike previous approaches, but lacked in advance DSE methods.

1.4. Theoretical background on high level synthesis

The process of high level synthesis (HLS) accepts the behavioural description of a system

along with a set of user constraints and goals, and generates a register transfer level design

which satisfies the constraints [1-4]. HLS comprises of interdependent tasks such as design

space exploration of architecture, scheduling, allocation and binding as shown in Figure 1.1.

HLS performs sequence of operations to transform a behavioural description into RTL

circuit. The final RTL circuit has two segments, one is datapath circuit and another is

controller circuit. The datapath design comprises of functional units such as multipliers,

arithmetic logical units, storage elements (such as registers) and interconnects. The controller

can be described in the form of control state diagram. The behavioural (algorithmic)

description is a set of operations and data transfer between storage elementsor can be simply

5

defined as mapping between input and output of the system. The first step of high level

synthesis is the compilation of the formal language into an internal description using

graphical representation that contains control and data flow graph. The data flow graph states

the input/output relation of the application and the data dependency. The data flow graph is

defined in terms of its vertex and edges, where the vertices denote the operations and the

edges denoted the data dependency presented between the operations. The next step of high

level synthesis is high level transformation, which includes compiler like transformations

such as dead code elimination, common sub expression elimination, inline expansion of

procedure, constant propagation, and loop transformation. Then next phase is design space

exploration. Performing design space exploration at higher abstraction level provides more

optimal results than at lower level of abstraction, i.e. logic level or transistor level. Therefore,

DSE becomes very crucial segment of high level synthesis for an optimized circuit. Then

finally, to realize the RTL design, high level synthesis performs scheduling, allocation and

binding. Scheduling involves assigning the operations to control steps. Where, a control step

is the fundamental sequencing unit in synchronous systems, corresponding to a clock cycle.

Allocation and binding are responsible to assign operations and data into hardware units i.e.

functional units (such as multiplier, ALUs), storage (such as registers), and interconnects

Figure 1.1 Basic block diagram of high level synthesis

6

(such as multiplexer and demultiplexer) and specifying their uses [2, 3, 12]. Further, the

description of the HLS phases as follows:

 Scheduling

Scheduling is an important task in HLS which involves assigning the operations to control

step. Scheduling algorithm can be broadly divided into two categories: constructive

scheduling and iterative scheduling as given in Figure 1.2. In constructive scheduling

scheduler starts with a node and construct a scheduling solution by assigning node

(operation) to a control step and finally produce a scheduling solution. There are number of

approaches under category of constructive scheduling such as, As soon as possible (ASAP),

As late as possible (ALAP), List scheduling [86], Force direct scheduling [75], and Integer

linear programming based scheduling[82, 83]. The ASAP scheduling process arranges the

operations topologically according to their data or control flow. ASAP scheduling places the

operations in the sorted order by stamping them in the earliest possible control step. The

ALAP scheduling places the operations in the latest possible control step. These two

algorithms are simple, yet needed in most of the advanced scheduling algorithms. The ALAP

scheduling considers the number of steps resulting from the ASAP schedule as a latency

constraint [5]. Moreover, the ILP-based scheduling uses the ASAP and ALAP. ILP

minimizes cost functions in the form of power, area, and delay under resource, time or power

constraints. The ILP-based algorithm provides an exact solution, but it is slow and has an

exponential worst-time time complexity. It is difficult to use it for large and practical circuits

as the formulation grows exponentially with the number of vertices [5, 82, 83]. However,

List-based scheduling is a heuristic approach to solve the scheduling problem. The list-based

algorithm takes a sequencing DFG and resource constraints as inputs and generates a

scheduled sequencing DFG as output. In list scheduling, the operations available for

scheduling are kept in a list for each control step. This list is ordered by some priority

function such as mobility of the vertex or the length of path from the operation to the sink

while ranking the vertices in decreasing order. An operation on the list is scheduled one by

one if the resource needed by the operation is free; otherwise, it is deferred to the next clock

cycle [5, 86]. Furthermore, the basic idea of force direct scheduling algorithm is to balance

the concurrency of operations without increasing the total execution time to maximize the

utilization of resources such that the number of required resources is minimal [5, 75].

7

Another category of scheduling algorithm is iterative scheduling. Where designer

starts with an initial (random) solution and iteratively updates the solution and finally

produce an optimal scheduling solution which satisfied the user constraints such as

power/area and latency. One of the benefit in iterative scheduling is that, designer have

multiple scheduling solution, which are generated in intermediate steps. Mostly used iterative

scheduling are iterative refinement [5, 86], genetic algorithm based scheduling [25, 26, 27,

29, 81], simulated annealing based scheduling [5, 90], and ant colony based scheduling

algorithm [37, 79].

Simulated annealing based scheduling algorithm similar to the annealing process in

Materials Science. In scheduling, the nodes of a DFG are analogous to the atoms, and

temperature is analogous to the total number of available resources. The mobility of the

nodes/vertices is dependent on the total number of available low-cost resources. Therefore,

the simulated annealing scheduling approach explores the trade-offs among power,

performance and area [5, 90].

Genetic algorithms are probabilistic search algorithms based on the principle of “survival

of the fittest.” Genetic algorithms create a collection of scheduling solutions that evolve

according to a quality measure based on power and delay; the evolution works on a search

space represented by a chromosome. The algorithm improves the average fitness of a

Scheduling

Constructive Scheduling Iterative Scheduling

As Soon as Possible Scheduling

As late as Possible Scheduling

List Based Scheduling

Force direct Scheduling

ILP based Scheduling

Iterative Refinement

Genetic Algorithm Scheduling

Simulated Annealing Scheduling

Ant Colony Scheduling

Figure 1.2 Taxonomy of widely used scheduling algorithm in VLSI

8

population (collection of chromosomes) by constructing a new population through selection

and crossover and mutation [5, 29, 81, 86].

In iteration refinement scheduling, the task-levels used in scheduling iteration are the

completion times of the tasks that result from the very previous scheduling iteration. For this,

each scheduling iteration passes its output to the next iteration to use as task-levels. The

objective of this iterative process is to search solutions with shorter finish times as a result of

using a more refined estimate of the task-level throughout [86, 91].

 Allocation and binding

Allocation is the process of identifying required resources (i.e. functional unit, storage and

interconnect) to realise the implementation of the application.Binding is the task to assign

operation to particular resource such as computation to functional unit, storage to register and

data transfer to interconnect. There are various algorithms present in the literature for solving

binding process such as clique partitioning, circular-arc graph colouring or left edge

algorithm. In clique partition approach, we analyse compatibility of two operations by "if

operations need resources of the same type and are not scheduled in the same clock cycle thus

operations are compatible and can use the same resources". To analyse compatibility of

vertices/operations, a data structure called “compatibility graph” is used [5, 86, 89].

Moreover, in graph colouring approach, we analyse, that two operations have a conflict if

they are not compatible. To analyse the conflicts of vertices/operations, a data structure called

“conflict graph” is used [5, 87]. Furthermore, in the left edge algorithm, the birth time of a

variable is mapped to the left edge, and the death time of a variable is mapped to the right

edge. The variables are sorted in increasing order of their birth time. The first variable is then

assigned to the first register. Then, the current register receives the next variable whose birth

time is larger or equal to the death time of the previous variable [5, 86].

Therefore, high level synthesis can broadly be divided into high level transformation,

architecture exploration, scheduling, allocation, and binding. Although all the phases are

equally responsible for generation of optimal RTL design, but the design space exploration of

architecture plays a key role in high level synthesis for constructing an optimal RTL circuit.

This is because the DSE is responsible for finding optimal architecture and optimal high level

transformation from the large design space while simultaneously maintaining trade-off

among multiple conflicting parameters [2, 3, 4].

9

1.5. Theoretical Background on Design Space Exploration

The Design space exploration is a procedure for analysing the various points in the design

space to obtain an optimum design point for given behavioural description based on

predefined user constraints [3, 32]. With the increasing complexity of digital

circuits,conducting exhaustive analysis on the design spaceof the current generation of very

large scale integrated designs with multi objective nature is strictly prohibited. Thus, design

space exploration is always considered a challenging task for researchers due to duality

among multiple objectives and parameters involved in the process. Due to its non-trivial

nature, researchers have attempted multiple techniques to resolve this issue. For example,

researchers in [30, 35] tried to reduce the design space into a set of Pareto optimal points.

However, this Pareto optimal set may itself become very large for analysis and selection of an

optimal design point for system implementation. Moreover, distinct requirement of designs

for different purposes makes design space exploration more complex. For example, in case of

mobile devices, handheld devices require ASICs with low power and acceptable

performance. On other hand, in real time systems, high performance systems require high

speed ASICs with acceptable power consumption.

1.6. Reasons for Studying High Level Synthesis

With the increasing demand of low power high performance hardware accelerators used in

embedded systems and time to market pressure, high level synthesis has gained attentions

amongst designers. Therefore, dominance of high level synthesis has increased because of

several reasons as discussed below [1, 2, 3, 5, 12]:

 Continuous and reliable design flow

The high-level synthesis process provides a continuous and reliable flow from high-level

specifications in the form of C or SystemC to RTL description of the circuit in the form of

VHDL or Verilog automatically with minimal manual intervention.

 Shorter design cycle and fewer errors

Due to automation of the design process, there has been reduction in the number of man-

power used and time to market, resulting reduction in overall cost of the chip. Moreover,

correct design decisions at the higher levels of circuit abstraction can ensure that the errors

are not propagated to the lower levels, which are too complex and costly to correct.

10

 Easy and flexible design space exploration

Because a synthesis system can produce several designs in a short time, the designers have

more flexibility to choose the better design considering different trade-offs of power, area and

performance. Even power and performance optimization can be performed at any level of

circuit abstraction, from system level to silicon. Thus, as the level of abstraction goes lower,

the complexity of the circuit increases; and also reduces the degree of freedom, and thus

opportunity of power reduction and high performance, decreases. Therefore, high level or

behavioural level provides a better degree of freedom for design space exploration.

 Availability of circuit technology to more people

As design expertise is incorporated into the synthesis tools, it becomes easier for a non-expert

to produce a chip that meets a given set of specifications. Hence, the designer can be hired at

a lower price, which will reduce the non-recurring cost and overall design cost of the chip.

1.7. Thesis Organization

The rest of the thesis is organized as follows: Chapter 3 describes in details of the proposed

framework for solving the design space exploration problem for data intensive application

using particle swarm optimization during power performance trade-off. In chapter 4, describe

proposed approach to solve the problem of automated design space exploration of datapath

and loop unrolling factor for single loop based control and data intensive application during

power-performance trade-off using swarm intelligence framework, while in chapter 5, solves

the problem of simultaneous exploration of datapath and unrolling factor for single loop

based control and data intensive application during area-performance trade-off. Moreover,

chapter 6 describes the proposed approach for solving automated design space exploration of

datapath and loop unrolling factors for nested loop based applications. The results of the

proposed DSE approaches for various well known high level synthesis benchmarks indicating

exploration time and quality improvements obtained when compared to the current existing

DSE approach are provided in Chapter 7. Chapter 8 concludes the research work presented in

the thesis and provides future scope of work in this area.

11

Chapter 2

Previous Works and Thesis Contribution

2.1. Related work

The problem of design space exploration in HLS is a NP-complete problem [22, 23, 24] and

the heuristic algorithms has been proved their ability to solve NP-complete problem, this

motivated researchers for utilizing these algorithms to solve DSE problem. Therefore,

researchers employed heuristic algorithms such as Genetic algorithm for solving DSE of

architectures as well as integrated exploration problem of scheduling, allocation and binding

in HLS. For example, in [25] and [26], authors presented a work based on problem space

genetic algorithm (PSGA), to solve DSE problem in HLS. The authors used binary encoding

of the chromosomes for DSE in architectural synthesis for area-latency trade-off. Moreover,

in [27], a framework based on node priority scheme has been suggested for DSE of data paths

in high level synthesis which maintains the trade-off between latency and area. Though the

results are promising, but exploration process is very computationally expensive. In addition,

authors in [28], have applied GA to solve the problem of binding and allocation in HLS. The

authors have introduced an unconventional crossover technique depending on a force directed

data path binding algorithm. Although, the approaches presented in [26, 27, 28] optimized

area and latency, but failed to consider power and execution time (function of latency as well

as cycle time for pipelined dataset), which are critical issues for modern handheld, battery

operated high speed devices. Recently, in [29], the DSE problem was addressed by proposing

multi structure genetic algorithm (GA), which assists in deciding Pareto fronts amongst the

different design variances. The approach is computationally complex in nature and considers

only static power while calculating total power. Due to inconsideration of total power and

computationally complex nature of approach, the approach lacks to produce high-quality

optimized results within acceptable exploration time. Furthermore, in [30], the authors have

proposed a discrete particle swarm optimization based design space exploration in high level

synthesis. The work partially relates the PSO with DSE problem. However, the technique

12

suffers from some major drawbacks. The authors have not considered the concept of local

best (cognitive factor) during exploration. Further, while updating the particles’ velocity, the

authors updated only direction (step length was kept constant). Therefore, if a particle is far

away from an optimal solution, then algorithm required more iteration to reach near optimal

solution. Moreover, the authors divided the swarm into sub-swarms and each objective was

accomplished by one sub-swarm only. Hence, the technique required a large swarm size

which may lead to heavy computation time per iteration. In the proposed approach every

swarm explores the design space by considering all conflicting objective simultaneously.

Moreover, authors in the [31] described an approach to solve DSE problem which is based on

GA and weighted sum particle swarm optimization (WSPSO). The authors performed

crossover between local/global best and current position (similar to GA) to update the

position instead of using conventional way to update the position by velocity, which reduces

the ability to clinically balance between exploration and exploitation. In addition, authors did

not consider user constraints for power and execution time in the cost function, which are

critical for hardware accelerators (computationally expensive application). In another

research, a deterministic method was introduced in [32] based on Pareto optimal analysis. In

this work, the design space was ordered in the form of an architecture vector design space for

architecture variant analysis and optimization of performance parameters. But the approach

was not completely capable to generate optimal points, due to high nonlinearity of DSE

problem. In addition, authors in [33] have proposed machine learning method: random forest

for DSE and introduced an experimental design which can wisely sample micro-architecture

choices and used them for training in the learning model. However, the authors in [33] have

not considered power and data pipelining. Furthermore in [35], authors have proposed a

fuzzy-based DSE scheme using hierarchical criterion method. The approach is partially based

on fuzzy logics and fuzzy sets which mimics the ordered design space for the performance

parameters. The approach is very promising for area-delay tradeoffs as compared to other

current approaches. However, it lacks the capability to mostly produce optimal solutions.

Further, no promising results for power performance trade-off are presented. In another

research, to explore the giant search space, an approach for synthesis of heterogeneous

embedded systems by using Pareto Front Arithmetic (PFA) was proposed by the researchers

in [36].Their approach exploited the hierarchical problem structure for searching the set of

Pareto optimal set, but suffers from slow exploration speed and lacks concurrent

consideration of state-of-art metrics such as power, execution time, and area. Moreover, the

DSE problem was solved with ant colony optimization (ACO) algorithm in [37] where

13

authors handle resource and time constraints based scheduling during area latency trade-off.

Furthermore, in [38], authors proposed a clustering based DSE algorithm which performs

exploration of best knob settings based on high level transformation such as loop unrolling,

function inline, array access but does not handle exploration of datapaths which is very

crucial in HLS. Besides above the approaches presented in [25-38] are unable to handle loop

based applications. In addition, the authors used exploration capability of evolutionary

approach in [39] for DSE. In [39], during exploration process to asses a design point this

approach determines circuit area by product of base circuit area and specified unrolling

factor, in case of latency calculation, approach simply divide base latency by specified

unrolling factor. The base area and base latency evaluated without any loop unrolling. This

process of evaluation design point, when handle loop unrolling, is impractical for real

application. Moreover, the selection of unrolling factor was user driven and considered only

those unrolling factors which are multiples of loop iteration count. Although the works

described in [27, 28, 30, 37, 38, 39] considered area and latency but failed to consider power

and execution time (which are crucial for current power hungry hardware accelerators), due

to which the approaches were unable to achieve high-quality optimized results.

Additionally, there are some tools presented in academia and industry for HLS such as an

open-source high-level synthesis tool called LegUp was proposed in [21], which is used for

FPGA-based processor/accelerator systems. LegUp is able to synthesize C language to

hardware, thereby providing a nice platform to perform high level synthesis. Different FPGA

architectures are supported by this tool, and allow new scheduling algorithms and parallel

accelerators. Furthermore, tool such as ROCCC has also been proposed in [19], which is an

open-source high-level synthesis tool for generating RTL structure from C. It is designed for

kernels that perform computation intensive tasks such as DSP cores. Therefore, ROCCC

applies to a specific class of applications (streaming-oriented applications), and is not a

general C-to-hardware compiler, like LegUp [21]. In [18], the authors introduced SPARK

tool for HLS. SPARK takes a behavioural description in ANSI-C as input and produces

synthesizable register-transfer level VHDL. The shortcoming of this tool is that the unrolling

factor for the loop is user-directed and the approach is unable to automatically determine the

optimal combination of UF and datapath together. Further, a tool AutoPilot introduced in [40]

addresses the problem of exploration in HLS. It performs C/C++/systemC-to-RTL synthesis.

The scope of this tool is very limited and targeted only for FPGA’s. Furthermore, in [41],

authors introduced a tool ‘SystemCoDesigner’ for performing area-delay trade-off that offers

rapid design space exploration with prototyping of behavioural systemC models. Moreover,

14

there also exist some other commercial tools for HLS in the market such as GAUT [20].

GAUT has also caught huge attention in the electronic design automation (EDA) community.

It takes input in the form of a C/C++ description of the behaviour description, for

automatically generating a RTL structure based on compulsory constraint of throughput (or

initiation interval) and clock period. Furthermore, tools such as CatapultC from Mentor

Graphics (now acquired by Calypto) [43], Cynthesizer from Forte[44], CyberWorkBenck

from NEC[45], Vivado from Xilinx[46] use C/C++ to describe the functional intent and

generating Register Transfer Level (RTL) structure. Tools described in [40-46] perform

power-performance-area trade-off but, [41, 48] handle only area-performance trade-off. The

shortcomings of all the above tools are that, automated exploration of loop unrolling factor

and datapath is not performed and therefore, the tools are unable to automatically determine

the optimal combination of UF and datapath based on the conflicting user constraints.

Most of the algorithm mentioned above, considered area and latency as parameter but did not

consider power and execution time (which is function of latency as well as cycle time based

on pipelining) during exploration, which are crucial for modern power efficient and high

speed devices. Only few algorithms use static power as optimization metrics, instead of

considering composition of dynamic and static power, due to which previous algorithm is

unable to produce high-quality results for handheld, battery operated mobile devices. Also,

the algorithm suffered by poor implementation runtime and there is no guarantee for always

yielding superior design points. Moreover, only few approaches handle high level

transformation such as loop unrolling during exploration. The approaches or tools which

handle loop unrolling require manual intervention to decide the unrolling factor (UF) and

some approaches consider only those UFs as potential candidates which evenly divide the

iteration count. To the best of the author’s knowledge no publicly available tool/approach

exists in the literature so far which automatically explores datapaths and loop unrolling

together. Moreover automated exploration of datapaths and loop unrolling factor for nested

loop based applications has not been taken into account by any approach/tool. Therefore, the

DSE methodologies proposed so far suffers from: a) higher computational complexity b)

inability to handle essential parameters such as power (average dynamic power and leakage

power) and execution time (cycle time, latency together)for modern devices such as portable

devices c) inability to simultaneously explore datapath and loop unrolling for single/nested

loop based applications. The deficiencies of the above motivated us for further research and

propose novel solutions to the aforesaid problems. These deficiencies have been gradually

resolved through multiple phases as highlighted in this thesis: first, the efforts are made to

15

handle parameters such as power and execution time for data intensive applications by

proposing fast and efficient DSE methodology based on particle swarm optimization. Next,

we handle single loop based CDFGs with power- performance and area- performance trade-

off by proposing DSE approaches, which handle datapath and loop unrolling together.

Finally, we handle nested loop based applications by proposing a DSE approach which

handles datapath and nested loop unrolling simultaneously.

2.2. Selected bio inspired framework used for design space exploration

2.2.1. Genetic algorithm based DSE

Genetic algorithm is one the widely used bio inspired heuristic algorithm for solving various

NP-Complete problems of different domains. GA is a model or abstraction of biological

evolution inspired from Charles Darwin's theory of natural selection. In order to solve design

space exploration problem, GA is used by the researchers in [25, 26, 27, 29]. The authors in

[25, 26, 27, 29] solved integrated scheduling and datapath exploration problem. In these

approaches, the chromosome has two parts: first part, which represents the scheduling

information, while second represents the datapath information (i.e. number of functional units

and operating frequency information). In [25, 26] authors encoded scheduling information in

chromosomes as ‘work remaining’. Moreover, the scheduling information in [27], is encoded

with ‘node priority’ and this node priority is defined by location in chromosome (priority

decreases from left to right). In [29], authors used the scheduling information in chromosome

encoded by “load factor” and used a heuristic to decode the scheduling information from

encoded chromosome. However, in [25, 26, 27, 29], the second part of chromosome is

encoded with max number of FU’s available during scheduling. Moreover, in [29], authors

also considered multiple versions of the functional units during exploration process.

Furthermore, in [25, 26, 27], the authors considered area and latency during cost calculation

while, [29] considered power and execution time in cost calculation. In order to explore new

solutions the approaches perform genetic operator (such as crossover and mutation) between

two chromosomes.

2.2.2. Bacterial forging based DSE

Bacterial foraging optimization algorithm (BFOA) is a popular bio inspired optimization

algorithm for global optimization problem [73]. BFOA is inspired by the social foraging

16

behaviour of Escherichia coli bacteria. The BFOA has been utilized by authors in [72], to

solve design space exploration problem in high level synthesis. The framework presented in

the [72] focused on solving design space exploration problem of datapath. The basic

mechanisms viz. chemotaxis, replication and elimination-dispersal were imitated to explore

new architectural solutions (resource combination) in BFOA. During the exploration process

chemotaxis plays an important role, where process performs swim and tumble to determine

new architectural solution. The algorithm also generates new solutions during dispersal

process. The new solution is accepted only when new solution has better fitness than current

fitness or has not been traversed before. Moreover, in order to determine the fitness of the

solutions, authors used a penalty based cost function composed of area and execution time

factors. With this cost function, authors maintained trade-off between area/power and

execution time.

2.2.3. Hybrid genetic algorithm and particle swarm optimization

based DSE

With the inspiration of two successful algorithms GA and PSO, the authors in [31] solved

design space exploration problem with hybrid GA and PSO based algorithm. In this

framework, to find new solution, crossover is performed between current position with global

best position and local best position. Thus, to incorporate GA, crossover is performed, which

is the basic operator of GA and to incorporate PSO, the crossover is performed between

current position and global and local best position. In this approach, authors solved the

integrated scheduling and datapath exploration where the encoding of the chromosome

(combination of scheduling information and max available FUs) is adopted from [27] as

described in the previous sections. In order to determine fitness of the solution authors’

evaluated latency from scheduling solution, area from maximum FU available for scheduling

and determined power with the help of compatibility graph to determine binding information.

The authors use weighted combination of latency, area and power during fitness evaluation.

New solutions were determined by performing crossover between current solution and local

best/global best solution.

2.3. Background of particle swarm optimization

The design space exploration in high level synthesis is a NP complete problem [23, 24,59].

As discussed in literature, the NP-complete problems can be successfully solved by heuristic

17

approaches [63 - 66]. In literature, researchers gave a lot of efforts to solve DSE in HLS

using GA and EA, but, PSO has not been explored enough for solving DSE in HLS. It has

been proved in the literature that there are many applications where PSO outperforms GA or

EA [67, 68]. Therefore, investigation on the exploration capability of PSO to solve DSE

problem in HLS is essential.

Particle Swarm Optimization is a population based stochastic optimization technique. which

was developed by Kennedy and Eberhart in 1995. PSO imitated the behaviour of flocks of

birds [48, 49]. Similar to flocks of the birds, PSO searches the design space of an objective

function by adjusting the trajectories of individual agents, called particles. The movement of

a swarming particle consists of two major components: a stochastic component and a

deterministic component. Each particle is attracted towards the position of the current global

best x
gb

 and its own best location x
lb

 in history. When a particle finds a location that is better

than any previously found locations, then it updates it as the new current best for particle i.

There is a current best for all n particles at any time t during iterations. The aim is to find the

global best among all the current best solutions until the objective no longer improves or after

a certain number of iterations.

2.3.1. PSO algorithm

The essential steps of the particle swarm optimization can be summarized as the pseudo code

shown in Figure 2.1.

Let xi and vi be the position and velocity vector for particle i
th

, respectively. The position of i
th

particle is changed by adding the velocity to the current position as follows:

(1) () (1)i i ix t x t v t   
 (2.1)

while the velocity is updated with the following rule:

1 1 2 2(1) () (()) (())lb gb

i i i i iv t v t b r x x t b r x x t     
 (2.2)

where b1 is the cognitive learning factor, b2 is the social learning factor, r1, r2 are random

numbers in the range [0, 1], is the best position of i
th

particle with respect to the minimization

problem, x
gb

 is the global best position found so far. As can be noted, the formulation of the

problem leads to solutions which try to ’follow’ the leader’s x
gb

 position as well as attracting

solutions versus the personal best solution of the particle .

18

2.3.2. Inertia particle swarm optimization [93]

The inertia weight is introduced to control the exploration and exploitation ability of PSO,

and provide a balance between the exploration and exploitation abilities during searching

process. It has been observed that PSO produces better results when its exploration ability is

more favoured in the early optimization stages to allow the exploration of as many promising

areas of the search space as possible. Then, towards the end of the optimization process, the

local exploitation ability of the algorithm should be promoted, instead, to allow for a more

refined search around the best areas previously roughly detected [93]. This is possible by

controlling the velocity of the particles in the later search stages. This means the effect of the

previous velocity term, which is known as inertia factor, will gradually decrease over PSO

iterations. Therefore, a linearly decreasing inertia weight, ω, was introduced by Shi and

Eberhart [93], as shown in equation (2.3). In the linearly decreasing inertia weight, initially,

ω is set to a high value, ωmax, around 0.9 in order to allow the particles to move freely, and

quickly explore the global optimum neighbourhood [105]. In the later stages, the value of the

inertia weight is decreased to a small amount, ωmin, around 0.4 in order to refine the search,

and shift the optimization process from an exploratory mode to an exploitative mode [93]

[106]. With inertia weight new velocity is updated by following eqn:

1 1 2 2(1) () (()) (())lb gb

i i i i iv t v t b r x x t b r x x t     
 2.3

Where ɷ is called the inertia weight, which updates based on eqn. 2.4:

Objective function f{x), x = (x1, ...,xd)

Initialize locations and velocity of n particles.

Find x
gb

 from min{f(x1),f(x2)..., f(xn)} (at t = 0)

while (stopping criterion)

t = t + 1 (pseudo time or iteration counter)

for all particle

Generate new velocity using equation

Calculate new locations using equation

Evaluate objective functions at new locations

Find the current best for each particle x
lb

end for

Find the current global best particle

end while

Output the final results (x
gb

) and cost

Figure 2.1 Basic particle swarm optimization algorithm

19

max max min

max

() ()
t

t
t

     

 2.4

2.4. Popular population based optimization

Other than PSO there are many population based optimization technique. Such as Genetic

algorithm, simulated annealing, ant colony optimization, Tabu search are most popular [].

The basic descriptions based on source of inspiration, important parameters, method to find

new solution, control of exploration and exploitation, local minima problem, and application

analysis are given in next sub sections.

2.4.1. Genetic algorithm

Genetic algorithm was proposed by Holland in 1975 [94, 95] that mimics the evolutionary

processes in nature as explained in Darwin’s theory. Genetic algorithm employs a population

of possible solutions to an optimization problem. Specifically, they operate on encoded

representations of the solutions, equivalent to the genetic material of individuals in nature,

and not directly on the solutions themselves. As in natural evolution based on Charles

Darwin's theory, selection provides the necessary driving mechanism for better solutions to

survive. Each solution has a fitness value (based on the fitness function of the problem) that

reflects how good solution is, compared with other solutions in the population. The better

fitness value of an individual solution represents the higher chance of survival and

reproduction. Recombination of genetic material in genetic algorithms is simulated through a

crossover mechanism that exchanges portions between encoded solutions. Another very

important operation is mutation, has a direct analogy from nature and plays the role of

regenerating lost genetic material. Parameters which play a vital role in the success of GA are

population size, number of iterations, crossover probability, and mutation probability. The

mechanism for generation of new solution depend upon selection, crossover and mutation are

defined below:

Selection- Parent selection emulates the survival-of-the-fittest mechanism in nature. It is

expected that a fitter chromosome receives a higher number of offspring and thus has a

higher chance of surviving in the subsequent generation. There are many ways to achieve

effective selection, including ranking, tournament, and proportionate schemes but the key

assumption is to give preference to fitter individuals.

20

Crossover- Crossover is a recombination operator that combines subparts of two parent

chromosomes to produce offspring that contain some parts of both parents’ genetic material.

A probability term, pc, is set to determine the operation rate.

Mutation- Mutation is an operator that introduces variations into the chromosome. This

variation can be global or local. The operation occurs occasionally (usually with small

probability pm) but randomly alters the value of an encoded solution.

The drawbacks of the GA are there is no specific method to control exploration and

exploitation in GA. The GA is computationally expensive and less efficient for design space

exploration problem. On other hand GA performs better for combinatorial problem such as

scheduling problem in HLS [107, 96].

2.4.2. Simulated annealing

Simulated annealing (SA) [99,100] is a random search population based technique for global

optimization problems, which mimics the annealing process in material processing when a

metal cools and freezes into a crystalline state with the minimum energy and larger crystal

size so as to reduce the defects in metallic structures. The annealing process involves the

careful control of temperature and cooling rate, often called annealing schedule. Simulated

annealing algorithm uses Markov chain for identifying potential solutions, which converge

under appropriate conditions concerning their transition probability.

The basic idea of the simulated annealing algorithm is to use random search in terms

of a Markov chain, which not only accepts changes that improve the objective function, but

also keep some changes that are not ideal with a probability [100]. For example, in case of

minimization problem, any better moves or changes that decrease the value of the cost will be

accepted; however, some changes that increase cost will also be accepted with a probability

p. This probability p, also called the transition probability, is determined by p

where kb is the Boltzmann's constant, T is the temperature for controlling the annealing

process. ΔE is the change in energy levels.

During optimization process selection of initial temperature is very crucial parameter

[101]. If T is too high, the system is at a high energy state on the topological landscape, and

the minima are not easily reached. If T is too low, the system may be trapped in a local

minimum, not necessarily the global minimum, and there is not enough energy for the system

21

to jump out the local minimum to explore other minima including the global minimum. So a

proper initial temperature should be calculated.

The higher temperature indicates more exploration while lower temperature indicates

the exploitation in optimization process. Thus, cooling rate controls the exploration and

exploitation. Therefore selection of optimum cooling rate is very crucial for convergence.

The drawback of the simulated annealing is that SA is a computationally expensive algorithm

and more suitable for combinatorial optimization problem. Moreover, lack of randomness

causes local optima solution [99].

2.4.3. Ant colony optimization

Ant Colony Optimization (ACO) was introduced by Dorigo et al. [102, 103, 104] in 1996, it

is a cooperative heuristic searching algorithm inspired by the ethological study on the

behaviour of ants. It was observed that ants could manage to establish the optimal path

between their colony and the food source within a very short period of time without vision

capability. This is done by an indirect communication known as stigmergy via pheromone,

left by the ants on the paths. Though any single ant moves essentially at random, it will make

a decision on its direction biased on the “strength” of the pheromone trails that lie before it,

where higher amount of pheromone indicates a better path. As an ant traverses a path, it

strengthens that path with its own pheromone. A collective behaviour emerges as more ants

will choose the shortest trails, which in turn creates an even larger amount of pheromone on

those short trails, which makes those short trails more likely to be chosen by future ants. The

ACO algorithm is inspired by such observation. It is a population based approach where a

collection of agents cooperate together to explore the search space. They communicate via a

mechanism imitating the pheromone trails.

The central component of an ACO algorithm is a parametrized probabilistic model,

which is called the pheromone model. The pheromone model consists of a vector of model

parameters called pheromone trail parameters. The pheromone model is used to

probabilistically generate solutions to the problem under consideration by assembling them

from a finite set of solution components. At runtime, ACO algorithms update the pheromone

values using previously generated solutions. The update aims to concentrate the search in

regions of the search space containing high quality solutions. In particular, the strengthening

of solution components depending on the solution quality is an important ingredient of ACO

algorithms. It implicitly assumes that good solutions consist of good solution components. To

learn which components contribute to good solutions can help assembling them into better

22

solutions. In general, the ACO approach attempts to solve an optimization problem by

repeating the following two steps:

• Candidate solutions are constructed using a pheromone model, that is, a parametrized

probability distribution over the solution space;

• The candidate solutions are used to modify the pheromone values in a way that is deemed to

bias future sampling toward high quality solutions.

ACO belongs to the class of meta-heuristics, which are approximate algorithms used to

obtain good enough solutions to hard combinatorial optimization problems in a reasonable

amount of computation time [102]. To the best of author’s knowledge, ACO was used only to

solve scheduling problem not for DSE in HLS.

2.5. Objective

The objective of this thesis is to develop fast and efficient DSE methodologies in HLS for

application specific computing (or hardware accelerators for loop kernels) based on multi

objective trade off. In order to realize the above aim, the following objectives have been set:

1. Develop a methodology for proficient DSE in HLS for data intensive applications

during power- performance trade-off that produces high quality design solutions.

2. Develop an automated methodology for simultaneous exploration of datapath and

unrolling factor for single loop based applications during power-delay trade-off in

HLS.

3. Develop an automated methodology for simultaneous exploration of datapath and

unrolling factor for single loop based applications during area-delay trade-off in

HLS.

4. Develop an automated DSE framework for simultaneous exploration of datapath and

unrolling factors for nested loop based applications during power- performance trade-

off.

5. Design a power model which consists of dynamic and static power to analyse design

solutions during DSE process.

6. Develop a delay prediction model for faster exploration process in case of single and

nested loop based control data flow graph(CDFGs) without tediously unrolling

CDFG loop completely.

7. Investigate the impact of algorithmic parameters regulating the DSE process on

performance and quality of the final solution.

23

2.6. Summary of contribution

This thesis proposes fast and efficient design space exploration in high level synthesis based

on multi-objective trade-off during designing of hardware accelerators for data intensive

applications or loop kernels.

In order to resolve the issues present in the state-of-the-art approaches (related works), the

following contributions have been made through this research:

 Solve the problem of design space exploration during power performance trade-off for

data intensive applications.

(Publications: J3, C6, C8, C14)

a) Proposed a novel DSE methodology driven through particle swarm optimization

(PSO) framework for multi-objective trade-off, capable of simultaneously improving

Quality of Results (QoR) as well as reducing exploration time.

b) Introduced a novel model for power metrics used during evaluation of design points

in design space exploration process.

c) Proposed a novel fitness function, used for design quality assessment in design space

exploration process.

d) Proposed a novel mutation algorithm for improving DSE convergence and exploration

time.

e) Propose a novel perturbation algorithm to handle boundary outreach problem during

exploration.

f) A novel sensitivity analysis of different PSO parameters such as swarm size, inertia

weight, acceleration coefficient, and termination condition and its impact on the DSE.

This analysis is expected to assist the designer in pre-tuning the PSO parameters to an

optimum value for achieving efficient exploration results within a quick runtime.

 Solve the problem of automated design space exploration during power-performance trade

of single loop based control and data intensive applications.

(Publications: J2, C7)

a) Simultaneous exploration of data path and loop UF through an integrated multi-

dimensional particle encoding process using swarm intelligence which maintains

24

trade-off between power-performance metrics as well as control states and execution

delay during loop unrolling.

b) Proposed an estimation model for computation of execution delay of a loop unrolled

CDFG (based on a resource configuration visited) without tediously requiring

unrolling the entire CDFG for the specified loop value.

c) Presented an analysis of design metrics such as power, execution time and number of

control steps of the global best particle found in every iteration with respect to

increase/decrease in unrolling factor.

 Solve the problem of automated design space exploration during area-performance trade

of for single loop based control and data intensive applications.

(Publications: J4, C9)

a) Simultaneous exploration of data path and loop UF using particle swarm optimization

which balances the trade-off between area-performance metrics as well as control

states and execution delay during loop unrolling.

b) Presented an analysis of design metrics such as area, execution time and number of

control steps of the global best particle found in every iteration with respect to

increase/decrease in unrolling factor.

 Solve the problem of automated design space exploration during power-performance

trade-off for nested loop based control intensive applications.

(Publications: J1, C10)

a) Proposed a novel automated exploration of architecture and UFs for nested loops

using particle swarm intelligence that in parallel maintains trade-off between

conflicting metrics of power–performance and balance orthogonal issues by

improving QoR and reducing the exploration runtime.

b) Proposed a novel execution time model which directly estimates the execution time of

nested loop based on resource constraints and UFs without tediously requiring

unrolling the entire CDFG for the specified UFs values in most cases.

25

Chapter 3

MO-PSE: Adaptive Multi Objective Particle Swarm

Optimization Based Design Space Exploration in

Architectural Synthesis for Application Specific Processor

Design

This chapter presents a fast and efficient design space exploration framework termed as multi

objective particle swarm exploration (MO-PSE), based on particle swarm optimization

(PSO)[48, 49, 50] algorithm in high level synthesis for data intensive application. During

exploration process, in the proposed MO-PSE, trade-off between conflicting parameters such

as power consumption and execution time is maintained. In addition, MO-PSE is capable to

resolve orthogonal issues such as enhancing quality of result as well as exploration speed,

thereby being able to produce higher-quality results in lesser exploration time than existing

approaches. To the best of the authors’ knowledge this is the first framework that directly

maps a complete PSO process for multi-objective DSE during power-performance trade-off

for application specific computing in high level synthesis. Moreover, this chapter presents a

novel power model (which considers static power as well as dynamic power) for assessment

of a design point. Further, a novel cost model has also been presented in this chapter for

evaluation of a design point. The detail description of the proposed process along with

demonstration of the proposed framework has been given in subsequent sections.

3.1. Description of proposed methodology

3.1.1. Problem formulation

Given a data flow graph (DFG), explore the design space and find an optimal solution which

satisfies the conflicting user constraints and minimize the overall cost. The problem can be

formulated as:

26

For a given DFG, find a resource combination Rx:

1 2{ (), (),... ()... ()x d DR N R N R N R N R ;

with minimum hybrid cost: PT and TE;

and subjected to: PT <= Pcons and TE <= Tcons.

where, ‘N(Rd)’ is the number of instances of resource type ‘Rd’; ‘D’ is the total number of

resource types; ‘Rx’ is a candidate resource combination for optimal solution; ‘PT’ and ‘TE’

are the power and execution time consumed by a candidate resource combination; ‘Pcons’ and

‘Tcons’ is power and execution time constraint specified by the user.

3.1.2. Generic overview of proposed MO-PSE

This section presents an overview of the proposed exploration algorithm. The flow chart

shown in Figure 3.1 represents the proposed multi-objective particle swarm exploration (MO-

PSE) algorithm and the pseudo code of proposed algorithm is given in Figure 3.2. Based on

the flow chart provided in Figure 3.1, the description of the proposed algorithm is as follows:

The inputs to the proposed framework are behavioural description of application in the form

of data flow graph (DFG) that describes data-path, user specified design constraints for power

and execution time (with user specified weight factor), and module library. The module

library contains four different information viz. Energy consumed by each resource in Pico

joule (Pj), hardware area of each resource (#of transistor), latency of each resource in

nanoseconds (ns) and user specified maximum available resources. The proposed framework

checks the user constraints, if user constraints are not valid then show an error message and

requests for valid user constraints values.

As mentioned before, in the proposed work, PSO algorithm has been directly mapped onto

the DSE process of architectures. The proposed mapping of PSO on DSE is as follows:

 PSO DSE

Position of particle Resource configuration

Velocity of particle Exploration deviation/drift

Dimension Number of Resource type

Further, the swarm population is mapped as set of initial design points in design space

(considered as initial design solutions which will be subjected to improvement in each

27

Figure 3.1 Flow chart of proposed MO-PSE

NO

Optimal Resource combination - global best resource

combination
Stop

YES

YES

Update the global best resource combination and global best fitness

Is stopping

criteria met?

YES

Invalid

Perform Adaptive end

terminal Perturbation

Check exploration

drift violation

Calculate the new fitness of a particle

for new resource combination

Update local best fitness and local best resource combination

Is all particles

updated?

YES

Start

Check user constraints?

!Error: Invalid user

constraints and Request

user to correct values

Read Module library, DFG, User Constraints

Initialize all the Resource combination and Velocity of all particles.

Calculate fitness of all particles

Calculate a) New Velocity of particle b) New Resource combination (position)

Check boundary

outreach

Perform Velocity clamping

Initialize Local best resource combination with current resource combination

and local best fitness with fitness of particle calculated before.

Determine the global best particle – fittest particle (Minimum fitness)

R
ep

ea
t

fo
r

al
l

p
ar

ti
cl

es

 Iteratio
n

 P
ro

cess

Valid

Perform Mutation on local best resource combination for each particle

(the result of mutation is accepted based on the following condition)

Update the global best resource combination and global best fitness

28

Algorithm: MO-PSO
Input- DFG, Module library, User Constraints
Output- Optimal resource configuration
{
 Read Library ()
 Read DFG ()
 Determine boundary constraints for power and execution time

 If ((||min max min maxP P P T T Tc c   )) //checking validity of user constraints

 {
 !! Show error message and request for valid constraints
 }
 Initialization (resource configuration, velocity)
 For i =1 to S //S = # of particles)
 {

 (,)
X

f

iC f Power Execution time // calculate fitness of all particle

 }
 //find best resource configuration that is the current global best resource configuration

 31 2

1 1 1
[(, ,)]n

lb lb lb lbn

X XX X

gb i f f f fX X Min C C C C

 While (stopping criterion)
 {
 For i=1 to S //S = (# of particle)
 {
 For d=1 to D
 {
 // determine new resource configuration and velocity for i

th
 particle and d

th
 dimension

 (,)
d d di i i

R f V R
 


 IF (
max max

d d di i i
V V V


  )

 {
 Perform Velocity Clamping ()
 }
 //check boundary constraints outreach

 IF (min(R) R max(R)
d d di


 )

 {
 Adaptive-end-terminal-perturbation ()
 }
 }
 // check for local best resource configuration

 IF (()
i iX X

C t Cf flb)

 {

 
 

lbi i

 t

 X X t

i iX X

flb f
C C



 }
 }
 // determine new global best resource configuration

 31 2

1 1 1
[(, ,)]n

lb lb lb lbn

X XX X

gb i f f f fX X Min C C C C

 Adaptive-Rotation-Mutation

 31 2

1 1 1
[(, ,)]n

lb lb lb lbn

X XX X

gb i f f f fX X Min C C C C

 } // end of while loop;
 Output – Global best position (optimal resource configuration)
 }

Figure 3.2 Pseudo code of MO-PSE algorithm

29

iteration) while the social and cognitive component of PSO are used as factors that

supplement in exploration drift process during architecture optimization.

In the proposed approach, the initial swarm population has multiple particles. The first

particle X1: (first initial design point) is constructed by mapping the resource configuration

with minimum value which represents the serial implementation, the second particle: X2

(second initial design point) is constructed by mapping the resource configuration with

maximum value which represents the maximum parallel implementation, the third particle:

X3 is constructed by mapping the average value of minimum and maximum resource

configuration. The rest of the particles (X4....Xn) are constructed as follows:

() (min() max()) / 2d d dN R R R    (3.1)

where, ‘min(Rd)’

is minimum resource of d

th
type, ‘max(Rd)’ is

 maximum resource of d

th
type

(obtained from module library) and ‘β’ is a random value between max(Rd)

and min(Rd). The

details of the initial swarm population are described in the upcoming sections. Additionally in

the proposed algorithm, all the particles’ initial velocity is assigned to zero. In fact, for any

physical objects in the initial position, their initial velocities must be zero (as they are

stationary). If particles are initialized with nonzero velocities, then physical analogy is

violated [49]. Once the particles are initialized, determination of particles fitness is performed

and the fittest particle (which has minimum fitness) is chosen. The fittest particle becomes

the global best resource configuration and fitness of this particle act as best fitness for the

next iteration. After this step, iteration process initiates. According to the algorithm, in each

iteration, the new resource configuration (design points denoted by the position of the

particle) of all particles based on the given function are upgraded and evaluated by:

(,)
i i id d dR f V R  (3.2)

Eqn. (3.2) denotes the procedure for determining the next resource configuration (position)

during PSO using the information of the current position or resource configuration (
idR) and

new velocity or exploration drift (
idV 
). The detailed description of eqn. (3.2) will be given in

section 3.2.6. The process of determining the new resource configuration (
idR) needs critical

introspection. There may arise two cases where boundary constraints may not be met. The

proposed approach handles it as follows:

a) As discussed during the resource up gradation process, there may be a possibility of

boundary outreach (i.e. the new resource value jumps beyond the design space). In order to

30

combat this problem, we proposed an ‘adaptive end terminal perturbation’ algorithm, which

redeems any violations encountered during the DSE process.

b) The proposed approach also uses a concept of ‘velocity clamping’ in the MO-PSE

in order to control the excessive exploration drift thereby preserving unwarranted diversity

control.

For example, during evaluation of exploration drift/velocity metric, large value of v
+
 may

result in the particle outreaching the boundaries of the given design space [49]. Therefore,

velocity clamping is achieved to mitigate this issue based on:

max (min() max()) / 2
id d dV R R   (3.3)

After recalculation of the fitness of all particles with new resource configuration;

updation of the local best positions (resource configuration) and global best position

(resource configuration) is performed, when the new fitness is better than previous fitness.

Once the global resource configuration is found, the proposed adaptive rotation mutation

scheme on all local best resource configurations is executed with the hope of exploring a

better global best resource configuration than the existing one. For this process, fitness of

mutated local best configurations are evaluated and the global best solution is updated, if

found fitter.

Similarly, the steps above are repeated (iteration process) until the stopping criterion is

reached (the stopping criterions are described in the section 3.2.10). Hence, after completing

the process the algorithm yields the optimal architecture which is the global best resource

solution for the given application and user constraints.

The proposed algorithm however has some scope of improvement in terms of deciding

an ideal stopping criterion. This is because; an ideal value will help in obtaining faster

convergence time for a solution. As shown in results (chapter 7) later in the thesis, several

experiments were carried out to achieve the best possible stopping criterion. We however still

believe that this topic requires further investigation. Further, regarding the usability of the

approach, it is limited to handle multi-criterion optimization problems during design of

application specific data intensive (and control) processors. Its applicability for handling

optimization problems during designing general purpose counterparts needs further

investigation. Nevertheless, the greatest advantage of the approach is its adaptation to

changing technology. With rapid change in technology, there is a change in the values of

static power per transistor (owing to voltage scaling and device geometry shrinkage) as well

31

as in frequency. These parameters directly affect the dynamic energy and static power

dissipation of the circuit. In our approach, these variables (V: voltage supply and pc: static

power per transistor as shown in eqn. 3.12 and 3.8 respectively) are user controlled (through

module library), therefore it provides flexibility to our DSE algorithm to handle the changing

technology demands.

3.1.3. Proposed Models for Evaluation of Particles (Design Points) during

MO-PSE

3.1.3.1. Proposed Power Model

Let the total power consumed by the functional resources is given as ‘PT’ where, PT is a

composition of dynamic power (PD) and static power (PS) given by eqn. (3.4):

T D SP P P  (3.4)

The average dynamic power consumed by the functional resources is a function of dynamic

activity of the resources and can be described as:

c

FU
D

TNL

EN
P






)1(
 (3.5)

Where, ‘EFU’ represents the total energy consumption of the resources obtained from [61],

‘N’ represents the data elements to be processed (during data pipelining), ‘L’ represents the

latency of a scheduling solution and ‘Tc’ represents the initiation interval or cycle time of a

scheduling solution. Equation (3.5) can be further written as in eqn. (3.6):

c

demuxmuxs

D
TNL

EEEN
P






)1(

)(Re (3.6)

Where, ‘ERes’ is the energy consumed by the major functional units such as adders,

subtractors and multipliers.

On the other hand, static power is majorly a function of area of resources and is independent

of dynamic activity of a module. Therefore static power can be written as in equation (3.7 &

3.8):

1

()S Ri Ri c

i

P N K p




   (3.7)

1 1 2 2(..).S R R R R R R cP N K N K N K p        (3.8)

32

Where ‘NRi’ represents the number of resource Ri. ‘KRi’ represents the area occupied by

resource Ri, ‘v’ is the number of resources (FU’s) and ‘pc’ denotes the power dissipated per

area unit (e.g. transistors).

Substituting eqn. (3.6) and (3.7) in eqn. (3.4):

Re

1

()
()

(1)

s mux demux
T Ri Ri c

ic

N E E E
P N K p

L N T





  
   

  
 (3.9)

3.1.3.2. Model for execution time parameter

For a system with ‘v’ functional resources the time of execution (TE) can be represented as

[32] [35]:

[(1)]E cT L N T    (3.10)

Where, the variables L, N and Tc have been defined in section 3.1.3.1.

3.1.3.3. Proposed model for fitness function

The fitness function (Cf) developed which considers total execution time and total power

consumptions shown in eqn. (3.11).

1 2

max max

iX T cons E cons
f

P P T T
C

P T
 

 
  (3.11)

Where iX

fC = Fitness of particle Xi; φ1, φ2= User weight for power and execution time

parameters. The function to calculate PT and TE are stated in eqn. (3.9) and (3.10)

respectively.

3.2. Demonstration with detail description of the proposed methodology

3.2.1. Resource Library Information and Operating Constraints

The values of EFU assumed in the library of the proposed approach have been adopted from

[61, 54, 74] (portion of library information are shown in Table 3.1 and Table 3.2). The

estimation of EFU has been done in [61] through the standard function for dynamic energy as

shown in eqn. (3.12):

21/ 2FUE C V a    (3.12)

Where ‘V’ is the supply voltage of functional unit FU; ‘C’ is the physical capacitance of the

functional unit FU and ‘a’ is the average switching activity at the inputs of FU.

33

The DFG of 2
nd

 order digital IIR filter shown in Figure 3.3 will be used as a simple example

in the upcoming sections to demonstrate the proposed approach. Additionally, for the sake of

demonstration of the proposed algorithm using this example, we will assume some real

constraint values for Power (Pcons) and Execution time (Tcons) as well as user defined

specifications as follows:

Pcons = 8W; Tcons = 310 us;

Maximum available multiplier FU’s: 6, and adder FU’s: 4, and subtractor FU’s: 4; N = 1000

(Number of sets of data) while ‘pc’ is assumed to be 1mW; additionally, the number/type of

mux and demux is directly extracted from the scheduling solution. (Note: The values chosen

for constraints and filter DFG as application are purely arbitrary. The efficiency of the

method by any means is not restricted to the values/example assumed. This has been verified

by our implementation results achieved for various benchmarks). Therefore, the goal of

exploration problem is to simultaneously meet the provided constraints for power and

execution time.

3.2.2. Max-Min analysis for user threshold

In order to determine the extreme bounds values for the user constraints, the Max-Min

analysis is performed for the applications. In this analysis boundary values (maximum and

minimum values) of power and execution time are identified based on the given resource

constraints for the application. The minimum value of execution time and maximum value of

power is determined by utilizing maximum available resources to execute operations. This

indicates maximum possible parallelism of the target application. On the other hand,

maximum value of execution time and minimum value of power is determined by using

minimum resources (i.e. single instance of all resources). This indicates complete serial

execution of the target application. This minimum and maximum value of power and

Table 3.1. EFU at 5V and α = 0.5 [61]

Major FU`s Add16 Mul16 Sub16

Energy (pJ) 106.76 2310.6 106.76

Area(#transistor) 2032 2464 2032

Latency (ns) 20 100 20

Table 3.2. EFU at 5V and α = 0.5 [61]

Minor FU`s Mux16:2/1 Mux16:4/1 Mux32:4/1

Energy(pj) 24.05 68.032 136.06

34

execution time are used to set the upper and lower threshold (bounds) for user constraints.

Finally, conclusion of this analysis is given in the table 3.3.

3.2.3. Boundary Constraints Check Module

This module checks whether the specified user constraint falls in the valid range of boundary

limits. The following condition is checked for each parametric constraint specified:

1. Check: ||
min max min max

P P P T T T
cons cons

   

2. If the above condition is true then stop and correct the constraints.

Else the above condition fails and goes to step 3.

3. Execute the initialization process of Module.

3.2.4. Initialization of particles

a) Position

This section will formally define the positions of particles used in the proposed algorithm.

For a DFG, the particle position ‘Xi’ of an ‘i
th

’ particle is given as:

Xi =Rx= (N(R1), (N(R2),..(N(Rd).. (N(RD))

Initialization plays very important role in the algorithm. Usually, the positions (resource

configuration) of particles are initialized to uniformly cover the design space. It is important

to note that the efficiency of the MO-PSE is biased by the initial diversity of the population,

i.e. how much of the design space is covered and how well particles are distributed over the

design space. Therefore, the algorithm initializes position as follows (keeping in mind that an

optimal design solution to a multi-objective exploration problem will always lies between the

maximum parallel and serial implementation of the application):

 The first particle’s position is initialized by minimum resources (serial implementation):

X1= (min(R1), min(R2),.. min(RD))

X1= (1, 1, 1)

 The second particle’s position is initialized by maximum resources (maximum parallel

implementation):

X2 = (max(R1), max(R2),.. max(RD))

Table 3.3 Min Max analysis of user constraints

Resource

Utilization

Power Execution

time

Execution Behaviour

maximum Maximum Minimum Maximum parallel

Minimum Minimum maximum Completely serial

35

Therefore based on the user defined resources assumed in section 3.2.1, X2 can be

customized as follows:

X2= (6, 4, 4)

 The third particle’s position is initialized by average of maximum and minimum values.

X3=((min(R1)+max(R1))/2, (min(R2)+max(R2))/2,.....,((min(RD)+max(RD))/2

Therefore, X3 can be customized as:

X3= (3, 2, 2)

 The rest of the particles (X4....Xn) are initialized by eqn. 3.1. This function has been

proposed to introduce an element of stochasticity (as well as diversity) into the

initialization process.

MO-PSE, like other population based exploration process, relies on the initial population. If

the proposed MO-PSE is unable to efficiently initialize the population then this will affect

the following:

 Exploration time- An inefficient initialization causes higher exploration time. For

example if initial solution are too far from the global best solution then exploration

process requires more time to reach the optimum solution.

 Local minima – If initialization process is not able to cover the entire design space

then there is a possibility that the MO-PSE may suffer with the local minima problem.

Therefore, the proposed MO-PSE utilizes efficient initialization scheme as discussed in

this thesis to avoid the above aforesaid problems.

b) Velocity

Furthermore, velocities of all particles are initialized to zero (see Table 3.4); the motivation

for such an initialization process has been discussed in section 3.1.2.

c) Acceleration Coefficients

In order for the algorithm to achieve convergence, it has been theoretically established before

in [50, 69] that the cognitive learning factor (b1) and the social learning factor (b2) can be

initialized to any value between [1, 4] (Note: The detail of this proof has been given by

authors in [50]). The impact of convergence and exploration time of MO-PSE for various

benchmarks based on the variation of ‘b’ between [1, 4] has been provided in result chapter

in the thesis. However, we have been able to empirically prove, that for tested benchmarks

tuning the value of ‘b’ between [2, 3] yields the best results during DSE.

36

Figure 3.3 Data Flow Graph of 2
nd

 order IIR

 C X(n-3) X(n-2) X(n-1) B X(n) A Y(n-2)

X X X X X

+

+

+

-

Y

1 2 3
4 5

6

7

8

9

Table 3.4 Initial velocity of particle

Xn :Vn V1 V2 V3

X1 0 0 0

X2 0 0 0

X3 0 0 0

3.2.5. Calculation of fitness of a particle

Based on the initialization of particles performed in section 3.2.3, the initial fitness of the

particles is calculated using eqn. (3.11). But, before eqn. (3.11) can be applied, the individual

values of power and execution time for all particles needs to be calculated. For example, the

calculation of total power (PT) of X1= (1, 1, 1) using eqn. and (3.9) is as follows. (Note:

Values obtained for ‘L’ and ‘Tc’ used for power and execution time determination are

calculated using functional pipelining shown in Figure 3.4 to incorporate the transformation

technique of algorithmic concurrency).

Re

1 1 2 2

()

(1)
(..).s mux dmux

T

c

R R R R Rn Rn c

N E E E
P

L N T
N K N K N K p

  


  
     

5*2310.6 3*106.76 1*106.76 2*192.49
1000

 1*192.49 2*68.032 1*68.032
P =

520 (1000 1)500

(1*2464 1*2032 1*2032)*1

T

mw

   
 
   

 

  

= 6.553W (3.13)

37

Figure 3.4 Determination of initiation interval / cycle time during functional pipelining of

data path for particle X1 (1(+), 1(*), 1(-))

Cycle time=500ns

Opr2 Opr3 Opr4 Opr5 Opr1

Opr6 Opr7 Opr8

Opr9

Opr2 Opr3 Opr4 Opr5 Opr1

Opr6 Opr7 Opr8

Opr9

Output Y1 Output Y2

FU’S

Time (ns)

Second set

First set
MUL M1

ADD A1

SUB S1

0ns 100ns 200ns 300ns 400ns 520ns 700ns 800ns 900ns 1020ns

Latency=520ns

Subsequently, the execution time is calculating using eqn. (3.10):

[(1)]
E c

T L N T   

520 (1000 1)500 500.020
E

T s    (3.14)

While, Pmax = 31. 15W and Tmax = 500.02us are calculated by considering the maximum

resources during scheduling based on user provided specification and minimum resources

(one instance of each resource type) respectively.

Finally, substituting eqn. (3.13), (3.14) in eqn. (3.11), the fitness of the particle X1 is

calculated as:

1
6.553 8 500.020 310

0.5 0.5
31.159 500.020

X

fC
    

    
   

1 0.1667
X

fC 

(3.15)

(Note- 1 = 1 = 0.5 is chosen for providing equal weightage to power and execution time

factor during calculating fitness of particle). Similarly, the fitness of all other particles is

calculated using eqn. (3.11).

 1X

fC = 0.1667 fitness of X1 (1, 1, 1)

2X

fC = 0.1691 fitness of X2 (6, 4, 4)

3X

fC = 0.0116 fitness of X3 (3, 2, 2)

38

3.2.6. Determination of local & global best positions/resource

configurations

After calculating the fitness of each particle, the next step of the algorithm (as shown in

Figure 3.1) is to determine the local best position Xlbi of each particle and finally determine

the global best particle (Xgb). For example, let us assume that the new fitness of a particle

‘Xi’ is given as ‘ iX

fC ’ and the fitness of the previous local best particle ‘Xlbi’ is given as ‘

iX

flbC ’. Now, if the new fitness of particle is less than the current local best fitness then new

Xi becomes new lbiX of the particle. The process of determining upgraded lbiX

is shown in

Figure 3.5. Since in iteration 1, there was no previous local best position (‘Xlbi’) therefore the

current position (Xi) assumes the value of Xlbi. Next, the Xgb of the population is determined

using eqn. (3.16) as follows:

31 2

1 1 1
[(, ,)]n

lb lb lb lbn

X XX X

gb i f f f fX X Min C C C C (3.16)

Therefore, substituting the values of fitness cost for each particle in eqn. (3.16) yields:

  gbX Min 0.1667, 0.1691, 0.0116iX

gb 3X (3, 2, 2)X

(3.17)

Thus, the third particle’s ‘Xi’ is the ‘Xgb’ for next iteration.

3.2.7. Determination of new configuration of the particle

After completing the initialization phase, the iteration process is started; the first task of the

iteration is calculation of
idR (new resource configuration). The

idR is calculated using eqn.

Procedure to upgrade local best resource combination from
2

nd
 iteration onwards

i

lbi

X

fC - Local best cost of particle ‘Xi’

iX

fC - cost of particle ‘Xi’

Xlbi – Local best resource combination of particle ‘Xi’

iX – Position (resource combination) of i
th

 particle.

 If (iX

fC < i

lbi

X

fC) then

i

lbi

X

fC = iX

fC

 Xlbi = Xi

Figure 3.5 Procedure for local best up-gradation

39

(3.2):

(,)
d d di i i

R f V R
 


The function of
idR

consist of two parts: first part is new velocity (
idV ) and second part is

previous resource configuration (
idR). Further,

idV  is calculated using eqn. (3.18):

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

      (3.18)

In eqn. (3.18), three components contribute to determination of new velocity (exploration

drift).

 First, di
V is called inertia component. This component represents the momentum which

prevents drastic change in the direction of a particle.

 Second,  
lbid1 1 dR Rb r  is called the cognitive component. The effect of the cognitive

component represents the tendency of a particle to return to its individual best resource

configuration from the past.

 Third, -2 2 gb id db R Rr    is called the social component. The social component’s effect is

that, each particle moves towards the best resource configuration found by all its

neighbours (including itself).

Where ω is inertia weight, b1 and b2 are acceleration coefficients and r1 and r2 are random

numbers between [0-1]. Therefore, eqn. (3.2) can be re-written as:

idi d di

R R V
 
  (3.19)

Where, dR , R , and
i id dV
 

 have been defined in section 3.1.2. The visualization of

determination of new position is shown in Figure 3.6 where, Xi represents D dimension

vector of resource combination. In Figure 3.6, green arrows show contribution of previous

velocity, cognitive component, and social component to determine new position (represented

by yellow arrow). Based on the above explanation the R
id


 in D-dimensions (for

demonstration using the example, three dimensions 1, 2, 3 have been used to represent each

particle/design point) are calculated as follows:

i) Particle X1:

In ‘1
st
’ dimension:

Using eqn. (3.18) new velocity is calculated as:

40

11V


= 1*0 + 2*0.5(1-1) + 2*0.5(3-1) = 2 (3.20)

Using eqn. (3.19) and (3.20) the upgraded resource configuration for 1
st
 dimension is:

11R


= 1+2 = 3 (3.21)

In ‘2
nd

’ dimension:

 Using eqn. (3.18) new velocity is calculated:

12V


= 1*0 + 2*0.5(1-1) + 2*0.5(2-1) = 1 (3.22)

Using eqn. (3.19) and (3.22) the upgraded resource configuration for 2
nd

 dimension is:

12R


= 1+1= 2 (2.23)

In ‘3
rd

’ dimension:

Using eqn. (3.18) new velocity is calculated:

13V


= 1*0 + 2*0.5(1-1) + 2*0.5(2-1) = 1 (3.24)

Using eqn. (3.19) and (3.24) the upgraded resource configuration for 3
rd

 dimension is:

13R


= 1+1 = 2 (3.25)

1X 
= (3, 2, 2) is new resource configuration of 1

st
particle.

Figure 3.6 Determination of New Position [48, 49]

41

ii) Particle X2:

Similarly, the value of 2X


 for 2
nd

 particle is found as:

2X


= (3, 2, 2)

iii) Particle X3:

Similarly, the value of 3X


 for 3
rd

 particle is found as:

 3X


= (3, 2, 2).

3.2.8. Adaptive End Terminal Perturbation Algorithm: Particle Outreach

Verification Module

DSE being a complicated optimization process, MO-PSE methodology requires embedded

algorithms to handle critical issues such as boundary outreach violation. This happens during

the resource up gradation phase, where there is a possibility of particle outreaching the

boundary of the design space intervals. The proposed MO-PSE always handles such a case by

applying an algorithm called ‘adaptive end terminal perturbation’ after the resource up-

gradation process (determination of new particle position) to assure that every particle must

be within the design space boundary interval (max and min). The proposed ‘adaptive end

terminal perturbation’ algorithm to handle the violation of boundary constraint limit during

resource up-gradation is shown in Figure 3.7.

Adaptive end terminal perturbation

Input- Resource value (
idR) which crosses the design space

Output- New valid value of resource lying in the design space

//When
idR crosses the design space boundary

While (
idR < min (dR))

i id dR R Y 

End While

While (
idR > max (dR))

i id dR R Y 

End While

/* where ‘Y’ is a random value between min (Rd) and max (Rd).

Figure 3.7 Adaptive end terminal perturbation algorithm

42

3.2.9. Velocity clamping

As mentioned in section 3.1.2, ‘velocity clamping’ in the MO-PSE is used in order to control

the excessive exploration drift thereby preserving unwarranted diversity control. The velocity

clamping is performed, when any particle’s exploration drift (velocity) crosses the
max

idV . It

helps particles to stay within the design space and to take sensibly step size in order to

explore through the design space. Without this velocity clamping in the searching space the

process will be prone to explode and particles’ resource configuration shall change hastily.

The exploration drift is proposed by the following eqn:


max max

max max

i i i

i

i i i

d d d

d

d d d

V if V V
V

V if V V







  


  
 (3.26)

where, the value of max

idV is determining using max (max() min())

2i

d d
d

R R
V


  (as described

in eqn. (3.3));

3.2.10. Mutation operation

In the proposed work, the balanced contribution of local best and global best solutions during

searching a new solution makes PSO less vulnerable to premature convergence as compared

to genetic algorithm and other population based DSE process. The local best component

(cognitive component) enhances the exploration capability to search locally, which

introduces diversity in the solution. On the other hand, global best component (social

component) attracts solution towards current global best solution, which introduces

convergence of the population. But, over the time when momentum of the exploration

becomes small then this can cause premature convergence. In order to overcome this

premature convergence problem we introduced adaptive rotation mutation. The mutation

process introduces diversity in the solution as well as may produce better quality solution

than current solution.

Mutation operation is performed on all local best resource configuration with probability

Mp=1.0. The proposed adaptive rotation mutation algorithm is shown in Figure 3.8.

Adaptive rotation mutation algorithm is a novel algorithm for mutation operation where

algorithm uses two basic operations for mutation. First is rotation operation, and second is

increment or decrement operation. To perform these operations, the total population is

43

divided into two groups: one is the even group in which algorithm performs left rotation

operation and second group is the odd group in which algorithm performs increment or

decrement with a random number. After mutation algorithm calculates new fitness value of

local best resource configuration and if found better fitness then new value will become local

best fitness otherwise does not change older value as shown in eqn. 3.27. For the sake of

clarity, an example of mutation operation is given below:

Assume before mutation the local best resource configurations are:

lb1X = (3, 2, 2) - X1 particle

lb2X = (2, 1, 1) - X2 particle

lb3X = (4, 3, 3) - X3 particle

After mutation the mutated local best resource configurations are:

lb1X = (4, 2, 3) after increment/ decrement with value one.

lb2X = (1, 1, 2) after rotation (left) operation

lb3X = (3, 4, 2) after increment/ decrement with value one.

Adaptive rotation mutation

Input – Local best resource combination Xlbi

Output – New mutated local best resource combination Xlbi

For i=1 to S Do

 If (i%2==0) // Left Rotation

For d=1 to D Do

 (1)

(1)

i

i i

i

d

d d

d

Temp R

R R

R Temp

d











 

End For

End If

If (i%2==1)

For d=1 to D Do

i id dR R Q 

// Q is a random number between [1-3]

d++;

End For

End If

 i++;

End For

Figure 3.8 Adaptive rotation mutation algorithm

44

() () (),X ()
(),X ()

(),X ()

i i i

lbi lbi lbi
i

lbi i

lbi

X X X

f f f lbiX

f lbi X

f lbi

ifC new C old thenC new new
C new new

elseC old old

  
  
  

 (3.27)

Once mutation operation is completed then MO-PSE calculates new fitness of mutated local

best resource configurations using eqn. (3.11). If any fitter particle is found then, the value of

Rgb will be updated with new resource configuration.

3.2.11. Termination criteria (Z)

Termination criterion is a very important aspect of an iterative algorithm. Therefore, while

deciding the termination criterion, two important aspects have been considered in our

approach:

 The proposed algorithm should not prematurely converge because of the terminating

criterion.

 The algorithm must not trap inside an infinite loop.

With the consideration of above aspects, the proposed algorithm proposed the following

terminating criteria. If one of them is true then algorithm will terminate. Two conditions are

as follows:

a) Terminates when the maximum number of iteration have been exceeded (M = 100) or,

b) Terminates under the following two stopping criteria :

I. S
1
: When no improvement is seen in gbR over ‘£’ number of iteration. (£=10)

II. S
2
: If the population reaches to equilibrium state i.e. all particles velocity become zero

(V
+
 = 0).

3.3. Handling control flow graphs through proposed approach

Handling of the CDFG is not a trivial task. The proposed algorithm is capable to handle

conditional CDFG. To handle the CDFG, first algorithm finds the worst case path (which is

computationally largest). After that, proposed algorithm performs exploration process and

find an optimal result for worst case delay of the given CDFG which satisfies the given user

constraints for power and execution time. This process enables the methodology to extract the

latency information for a given resource configuration during fitness evaluation. Initially, we

emphasize on handling three different types of CDFG problems. Firstly, CDFG 1: multiple

conditional operators followed by different operation as child node is shown in Figure 3.9(a).

Secondly, CDFG 2: single conditional operator followed by two similar operator types as

45

child node is shown in Figure 3.9(c). Thirdly, CDFG 3: single conditional operator followed

by multiple different operator types as child node is shown in Figure 3.9(e). For example, in

case of Figure 3.9(a), the proposed algorithm extracts the worst case DFG as shown in Figure

3.9(b) from the given CDFG problem. Then, the latency and cycle time information are

extracted from worst case DFG for a given resource configuration for final fitness

computation. Based on the fitness, the proposed algorithm explores the optimal resource

configuration. (Note-The datapath circuit and schematic diagram of CDFG1 are given in

Appendix A.)

Note – Results of the proposed method are given in chapter 7 section 7.1

Figure 3.9 Control and data flow graph [56] (a) CDFG1 (b) computationally worst case DFG

of CDFG1 (c) CDFG2 (d) computationally worst case DFG of CDFG2 (e) CDFG3 (d)

computationally worst case DFG of CDFG3 (only colored node of (b), (d), (e) are taken into

account in while extracting the latency information)

46

47

Chapter 4

Automated Exploration of Datapath and Unrolling Factor

during Power-Performance Trade-off in Architectural

Synthesis Using Multi-Dimensional PSO Algorithm

After achieving the first milestone of this research, i.e. solving the design space

exploration problem for data intensive applications through proposed MO-PSE. The second

milestone is to solve the design space exploration problem for control and data intensive

applications (single loop based). In the loop based applications designers have opportunity to

optimize the design by loop transformation. Loop unrolling is a widely used technique for

loop transformation by the designers, to exploit the parallelism, for better throughput in

control data flow applications. In loop unrolling, designers replicate the loop body to achieve

parallelism. But at the same time, to perform parallel operations; more resources,

interconnects and storage are required which further increase the power consumption of the

design. So, it becomes critical for designers to search an optimal combination of unrolling

factor and datapath for high quality design [3, 18, 38].

This chapter presents an automated design space exploration methodology for

simultaneous exploration of datapath and unrolling factor in high level synthesis. Proposed

approach utilizes the exploration capability of particle swarm optimization to solve design

space exploration problem during multi parametric optimization for control and data

intensive applications (based on single loop). To the best of the authors’ knowledge, this is

the first approach which automatically handles both datapath and loop unrolling factor

simultaneously by swarm based optimization for power performance trade-off in high level

synthesis for application specific computing. Moreover, a novel prediction (estimation)

model for execution time is proposed in this chapter which is a non-linear function of UF.

Using this model, the execution time of the complete application can be estimated based on

resource combination found without completely unrolling CDFGs in most cases. The detailed

description of the proposed methodology is given in subsequent sections.

48

4.1. Problem Formulation

 Given a CDFG, explore the design space and find out an optimal solution which satisfies

the user constraints and minimizes the overall cost. The problem can be formulated as:

Find: Optimal (Xi) =(Rx, UFN)

with minimum hybrid cost: PT and TE;

Subjected to: PT<= Pcons and TE<= Tcons

where, ‘Xi’ is a set comprising of resources combination and UF formally represented as:

1 2 1X (,) { (), (),... ()... (), }i x N d D NR UF N R N R N R N R UF 

where, N(Rd) is the number of instances of resource type ‘Rd’, ‘UFN’ is N
th

 unrolling factor of

loop, ‘Rx’ is a candidate resource combination for optimal solution; ‘PT’ and ‘TE’ are the

power and execution time consumed by a candidate solution; ‘Pcons’ and ‘Tcons’ is power and

execution time constraint specified by the user. ‘D-1’ is the total number of resource types.

4.2. The Proposed Framework and Mapping Process

The block diagram of the proposed approach is shown in Figure 4.2 and the pseudo code of

proposed approach is presented in Figure 4.3 while the proposed mapping is given in Figure

4.1. To transform the PSO into multi-objective DSE problem the position of a particle is

represented by a set comprising of resource combination and UF; total number of dimensions

is represented by sum of the number of resource types and UF. Finally, the velocity of the

particle in d
th

 dimension acts as a parameter that provides the drift during DSE. Based on the

pseudo code shown in Figure 4.3, the description of the algorithm with demonstration is

given in subsequent sections.

Figure 4.1 Proposed mapping of the DSE problem with PSO

Position of a particle (Xi) (Resource combination, UF)

Velocity of a particle in d
th

 dimension (
idV) Exploration drift

Dimension (D) Number of resource types +1

49

4.3. Proposed Evaluation Models

For evaluation of a particle (or design point), the following models have been proposed.

4.3.1. Proposed model for execution time

In order to describe the formulation of proposed execution time (TE) (function of loop

unrolling factor) for a CDFG, an example of loop unrolling is used, shown in Figure 4.4.

Figure 4.4(a) shows ‘C’ code of the original loop and Figure 4.4(b) shows an As Soon As

Possible (ASAP) scheduled CDFG unrolled once with resource constraints of 2(*), 2(+) and

1(<). The execution delay model for a loop unrolled CDFG is derived considering the

following three possible cases:

PSO Process

Figure 4.2: Block diagram of proposed approach

Evaluation Model

Particles encoding

Determination of

new Velocity

Proposed

Mutation

Adaptive

Perturbation

Fitness evaluation

Total delay

estimation from

scheduled graph

Power & Execution
Time calculation

Module

Library

User

Constraints

CDFG

/ DFG

Control parameter e.g.

Swarm size, # iteration,

Acceleration coefficient

Determination of

new Location

Update global

best and local

best

Velocity

Clamping

Pre-

processing of

Unrolling

factors Optimal

resource

combination

and UF

50

Algorithm: H-SI based Exploration

Input: CDFG, module library, user constraints

Output: Optimal combination resources (FU’s) and unrolling factor (UF)

Begin

 Read library information and CDFG/DFG

 Check for boundary constraint ()

 //perform pre-processing of UF for screening the UF //

 Pre-processing UF ()

 //Initialize particle location and velocity//

 Initialization ()

 //Calculate fitness of all particles//

 For i=1 to S Do // where S is the swarm size//

(X)iX

f iC calculatefitness

 End Loop //for i

// Update local best solution and fitness of the particle//

 Update global best solution ()

//Iteration process starts here//

 While (!stopping condition)

For i=1 to S Do

 For d=1 to D Do

//Determination of new velocity//

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

     

Check for velocity clamping ()

//Determination of new solution//

idi d di

R R V
 
 

Check for adaptive end terminal perturbation ()

 End Loop // for d

(X)iX

f iC calculatefitness

 //Update local best position of the particle //

(if iX

fC < i

lbi

X

fC) then

i

lbi

X

fC = iX

fC

Xlbi=Xi

 End if

End Loop // for i

 Update global best solution ()

//perform mutation //

 Adaptive rotation mutation ()

 Update global best solution ()

 End while loop

Output: global best solution

END

Figure 4.3 Pseudo code of proposed exploration

51

Case 1: When the unrolling factor (UF) is equal to one (indicates no unrolling) then,

Total # of control steps (CSs) = # of CSs required to execute loop body once * # of duplicate

iterations of loop body

(C *)
T body

C  (4.1)

(C *) , 1

quotient

body body first

I

UF

where C C and UF   
  

C (C *I)T first (4.2)

where, ‘CT’ is total CSs required to execute the loop completely, ‘Cbody’ is the number of CSs

required to execute loop body once, ‘Cfirst’ is number of CSs required to execute first

iteration, ‘I’ is the maximum number of iteration (loop count), α is  I

UF

quotient .

Figure 4.4 Demonstration of loop unrolling based on 2(*), 2(+),

1(<) constraints using As Soon As Possible (ASAP) scheduling for

test case

For(i=0; i<36; i++) {

 P = P * (Ai + Bi)

q = q + (Ai * Bi)

}

(a) ‘C’ code of original loop

(b) Loop unrolled once (UF = 2)

p

+

(1) (2)

(3) (4)

(5) (6)

(7)

(8)

(9)

(10)

1100

p

p

q

q

q

C
b
o
d
y

1

14

550

564

1650

+

C
II=

5
5

0

+

+

<

Ai Bi

35

C
first=

1
1
0
0

*

*

*

+

*

i 2

Ai+1 Bi+1 UF=2

52

Case 2: When UF evenly divides the loop count (I), then the total number of CSs is:

(C (1)*)body first IIC UF C   (as evident from Figure 4.4(b)). Now, substituting Cbody in eqn.

(4.1) yields:

(C (1)*)*T first IIC UF C    (4.3)

where, ‘CII’ is the number of CSs required between initiations of consecutive iterations.

Case 3: When UF unevenly divides I: In such case, ImodUF iterations will be executed

sequentially, therefore, the total number of CSs is:

(C (1)*)* (mod)*T first II firstC UF C I UF C    (4.4)

 {Total CSs for unrolled loop} {Total CSs for sequential loop}

Furthermore, execution time for the system is calculated as:

*E TT C  (4.5)

where, ‘∆’ is the delay of one CS in nanoseconds.

Finally, TE can be formulated as:

((C (1))*)(mod)*E first II firstT UF C I UF C     (4.6)

Eqn. (4.6) is an estimation model for TE, where there is no need to tediously unroll the

CDFG to calculate TE, unless # of independent operations required to be performed in

parallel due to unrolling exceeds the available resource units (specified in a solution).

While for the DFGs, the estimation of execution time is [32, 35]:

[(1)]E cT L N T    (4.7)

where, ‘N’ is the number of input samples to be processed by a functionally pipelined data-

path, ‘L’ represents the latency of a scheduling solution and ‘Tc’ represents the initiation

interval or cycle time of a scheduling solution

4.3.2. Proposed Power Model

The total power consumed by a resource combination is denoted by ‘PT’. ‘PT’ is

composed of dynamic power (PD) and static power (PS) given by eqn. (4.8) below:

T D S
P P P  (4.8)

The average dynamic power consumed by is source combination is a function of dynamic

activity of the resources for CDFG. It is formulated as:

53

()
D

P
Total energy consumption

Avg dynamic power
Total execution time



/
* (

* ((C (1) *) * (mod)*)

)
D

first II first

FU MUX DMUX
E E

P
UF C I UF C





   


 (4.9)

For a DFG, the average dynamic power can be described as:

/
(

(1)

)
D

c

FU MUX DMUX
N E E

P
L N T




  


 (4.10)

where, ‘EFU’ represents the total energy consumption of the resources, ‘EMUX/DMUX’

represents the total energy consumed by multiplexer and demultiplexer. The variables Cfirst,

CII, I, UF, α, L, N and Tc have already been defined in previous sections.

 On the other hand, static power is a function of area of the resources, multiplexer and

the leakage power per transistor. Therefore static power can be defined as:

/ /

1

() *
i iS R R MUX DMUX MUX DMUX c

i

P N K N K P




 
    
 
 (4.11)

where, ‘NRi’ represents the number of instance of resource Ri; ‘KRi’ represents the area

occupied by resource Ri, ‘v’ is the number of resource types, ‘NMUX/DMUX’ is number of the

multiplexer or demultiplexer, ‘KMUX/DMUX’ is area occupied by the multiplexer or

demultiplexer and ‘pc’ denotes the power dissipated per area unit (e.g. transistors).

4.3.3. Proposed model for fitness function

The proposed fitness function (considering execution time and power consumption of a

solution) is defined as:

1 2

max max

iX T cons E cons
f

P P T T
C

P T
 

 
  (4.12)

Where, iX

fC = Fitness of particle Xi; 1 , 2 = User defined weights for power and execution

time.

4.4. Demonstration of proposed methodology

 This section describes the proposed approach (based on particle swarm optimization [48,

49]) with demonstration of a sample test case.

54

4.4.1. User specification

 The CDFG used for demonstration (shown in Figure 4.4) along with the user specified

design constraints for power and execution time as well as module library [52, 54, 74, 92] are

taken as inputs to the proposed framework. For the sake of explanation, we are assuming

some real values for power constraint (Pcons=1.5mW) and execution time constraint

(Tcons=500us); Maximum available multiplier FU’s: 4, adder FU’s: 4, comparator FU’s: 2 and

total user specified loop iteration I = 36; additionally power dissipated per transistor (pc) is

assumed to be 29.33nW; also, number/type of mux/demux is directly extracted from the

scheduling solution.

4.4.2. Boundary constraint check module

After specifying constraints, the proposed framework checks for valid user constraints. If

user constraints are not valid then an error is shown and again requests for valid values:

1. Check: ||max maxmin min
P P P T T Tcons cons   

2. If above condition is true then stop and correct constraints.

Else execute the initialization process of module.

In order to check the constraints, maximum and minimum value of power and execution

time are determined. Minimum power (Pmin) and maximum execution time (Tmax) are

calculated with minimum resource (single instance of resource) and min(UF)=1, while,

maximum power (Pmax) and minimum execution time (Tmin) is calculated with maximum

resource and max(UF)=I (maximum # of loop iterations).

4.4.3. Pre-processing of unrolling factor

 In order to prune the design space, the proposed methodology performs pre-processing of

the unrolling factor. The proposed pre-processing algorithm, shown in Figure 4.5, filters unfit

UFs to create a list of viable solutions. The pre-processing algorithm filters those UFs which

produce higher sequential loops and also filter higher value of UF because higher UFs gives

minor improvement in execution time with high power consumption. Therefore, overall cost

is high of such unrolling factors. Moreover, to ensure the inclusion of good candidates, some

special UFs have been added which may have been initially screened out in pre-processing

phase, using the algorithm shown in Figure 4.6.

An example of pre-processing for test case is given in Table 4.1 for I=36.

55

4.4.4. Proposed initialization process of particles

 After preprocessing step, initialization of particles is done. During initialization

process particles position, velocity and acceleration coefficient are initialized as follows:

a) Position: For a CDFG, a particle position Xi is given as:

Xi = (N(R1), (N(R2),..(N(Rd).. (N(RD-1),UF)

In the proposed approach, the initialization of particles is such that it uniformly covers the

entire design space as follows:

X1= (min(R1), min(R2),.. min(RD-1),min(UF)) (4.13)

X2 = (max(R1), max(R2),.. max(RD-1),max(UF) (4.14)

X3=(((min(R1)+max(R1))/2..,((min(RD-1)+max(RD-1))/2,max(UF)/2) (4.15)

Rest of the particles positions (X4…Xn) are initialized with random values between minimum

and maximum values of resources and UF as explain in section 3.2.2. Since, an optimal

design solution to a multi-objective exploration problem always lies between the maximum

parallel and serial implementation of the application. Therefore, keeping in mind the above,

X1 is represented by the serial implementation, X2 by parallel implementation, X3 with the

mid value between serial and parallel implementation and X4-Xn as scattered positions

between serial and parallel implementations. Hence, using eqn. (4.13) – (4.15),

Pre-processing of unrolling factor

Input – value of ‘I’ (Total no. of loop
iteration)
Output – screened set of unrolling factor
(UF)

1 Begin

// Screening of UF//

2 For UF =2 to I Do

2.1 IF ((I mod UF <
2

UF) &&

 (UF <= I/2)) Then

//Add UF into the accepted UF list//

2.2 Accepted UF[k] = UF

2.3 k++

2.4 End IF

2.5 End For

3 End

Algorithm

1 Begin

2 For UF =2 to I do

//All U F are added into the accepted list

until (I mod UF) <
2

UF //

2.1 IF ((I mod UF)<
2

UF) Then

2.2 Terminate adding process jump to

the end of the function

2.3 End IF

2.4 Accepted UF[k] =UF

2.5 k++

2.6 End For

3 End

Figure 4.5 Pre-processing of UF

Figure 4.6 Algorithm for inclusion of some

special UFs

56

Table 4.1: An example of pre-processing of

unrolling factors for test case

I=36

UF

Sequential

Loop

(I mod UF)

Pipelined

loop

(I- I mod

UF)

Accepted

(1)

2 0 36 1

3 0 36 1

4 0 36 1

5 1 35 1

6 0 36 1

7 1 35 1

8 4 32 0

9 0 36 1

10 6 30 0

11 3 33 1

12 0 36 1

13 10 26 0

14 8 28 0

15 6 30 1

16 4 32 1

17 2 34 1

18 0 36 1

19 17 19 0

20 16 20 0

21 15 21 0

22 14 22 0

23 13 23 0

24 12 24 0

25 11 25 0

26 10 26 0

27 9 27 0

28 8 28 0

29 7 29 0

30 6 30 0

31 5 31 0

32 4 32 0

33 3 33 0

34 2 34 0

35 1 35 0

36 0 36 0

57

X1 = (1, 1, 1, 1), X2 = (4, 4, 2, 36); X3= (2, 2, 1, 18) and X4= (2, 2, 1, 2).

b) Initialization of velocity, acceleration coefficient

Velocities of all particles are initialized to zero in the proposed approach [49] while

acceleration coefficient is initialized to any value between 1 and 4 in order to attain

convergence as proved mathematically in [50].

4.4.5. Determination fitness and update local and global best position

Once the all particles are initialized, fitness of the particles is determined. First power is

calculated according to eqn. (4.8), (4.9), and (4.11).

Example, for particle X4= (2, 2, 1, 2):

6
(2464 * 2 2030 * 2 2030 3 * 3 *126 3 * 3 *126) * 2 933 *10 0 389. .sP mW


     

18 * (4 * 9.8 5 * 0.739 0.739 6 * 3 * 0.1 6 * 3 * 0.1) pj
0.0006

20 * ((1100 (2 1) * 550) *18 0 *1100)
D

mWP
   



  



0.39
T

P mW

 (4.16)

Next, execution time metric is calculated as using eqn. (4.6):

20 * ((1100 (2 1) * 550) *18 0 *1100) 594000
E

T ns     (4.17)

Finally the fitness of the particle is calculated by eqn. (4.12). Therefore, the fitness of X4 is:

4 0.101
X

fC   (4.18)

Similarly, fitness of all the particles is determined by providing equal weightage to power

(φ1) and execution time (φ2). Further, local best position of the particles and global best

position are found out as describe in chapter 3 section 3.2.5.

4.4.6. Determine global best position

The global best position of the population is determined using eqn. (4.19) as follows:

31 2

1 1 1
[(, ,)]n

lb lb lb lbn

X XX X

gb i f f f fX X Min C C C C (4.19)

The global best particle position has minimum cost among all local best positions (Xlb1

…..Xlbn).

58

4.4.7. Determination of new position of each particle

Iteration process initiates at this step. According to the algorithm, in each iteration, the new

position of a particle Xi in d
th

 dimension can be given by:

idi d di

R R V
 
  (4.20)

where,
di

R
 = new resource value or UF value of particle Xi in d

th
 dimension and

idR =

previous resource value or UF value of particle Xi in d
th

 dimension;
di

V  is the new velocity

of particle Xi in d
th

 dimension which is updated by eqn. (4.21):

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

      (4.21)

where, ‘
lbidR ’ is the resource value of Xlbi in d

th
 dimension, idV is the inertia component,

‘
gbdR ’

is the resource value of Xgb in d

th
 dimension, b1, b2 are acceleration coefficients and

r1 and r2 are random numbers between [0-1]

Where, 1 1{ ,... ,UF}lbi Dlbi lbi
X R R  and 1 1{ ,... , UF}gb Dgb gb

X R R 

4.4.8. Adaptive end terminal perturbation & adaptive rotation mutation

To handle boundary outreach problem during exploration process we propose adaptive end

terminal perturbation, described in section 3.2.7.

In order to increase variation and diversity, mutation is performed on all the local best

positions of each particle with probability Mp=1.0 using Adaptive rotation mutation described

in section 3.2.9.

4.4.9. Stopping condition

The proposed algorithm terminates when the maximum number of iterations exceeds by 100

count, or when no improvement is visible in gbX over ‘£’ number of iteration. (£=10). The

detailed description of the stopping criterion is given in section 3.2.10.

Note – Results of the proposed method are given in chapter 7 section 7.2

59

Chapter 5

Simultaneous Exploration of Optimal Datapath and Loop

Based High level Transformation during Area-Delay

Trade-off in Architectural Synthesis Using Swarm

Intelligence

With the shrinking of device geometry with the evolution of technology, area

optimization has become an important aspect for the designers. The area optimization is

highly dependent on unrolling factor in case of control and data intensive application. Thus,

the impact of unrolling factor (with datapath) in the circuit area during designing of ASPs or

hardware accelerators requires significant attention. Therefore, it becomes very essential to

solve the problem of simultaneous exploration of optimal datapath and UF during area- delay

trade-off in HLS.

This chapter presents an automated design space exploration methodology based on

hyper dimensional swarm encoding for simultaneous searching of datapath and unrolling

factor (for single loop based application) during area-performance trade-off in high level

synthesis for application specific computing. During exploration process the proposed

methodology not only maintains trade-off between conflicting parameters such as area and

execution time but also resolves orthogonal issues such as quality of results and exploration

speed. The detail description of the proposed methodology is given in subsequent sections of

this chapter.

5.1. Problem Formulation

Given a CDFG, explore the design space and find an optimal solution which satisfies the

conflicting user constraints and minimize the overall cost. The problem solved is formulated

as:

60

Find: Optimal (Xi) = (Rx, UFN)

with minimum hybrid cost: AT and TE;

Subjected to: AT <= Acons and TE <= Tcons

where, ‘Xi’ is a set comprising of resources combination and UF formally represented as:

1 2 1X (,) { (), (),... ()... (), }i x N d D NR UF N R N R N R N R UF 

where, ‘N(Rd)’ is the number of instances of resource type ‘Rd’; ‘D-1’ is the total number of

resource types; UFN is N
th

 unrolling factor; ‘Rx’ is an candidate resource combination; ‘AT’

and ‘TE’ are the area and execution time consumed by a candidate solution; ‘Acons’ and ‘Tcons’

is area and execution time constraint specified by the user.

5.2. The Proposed Framework

The block diagram of proposed approach is shown in Figure 5.1 and the flow diagram of

proposed approach is shown in Figure 5.2. Based on the flow diagram, the description of the

algorithm with demonstration is given in subsequent sections.

5.3. Evaluation Models

During exploration process the design points are need to be evaluate. To evaluate a design

point model for execution time, model for area evaluation and model for cost (fitness) have

been presented in the following subsection:

5.3.1. Execution time model

To evaluate the execution time of CDFG based application without tediously complete

unrolling the CDFG during exploration process, the execution time model formulated as:

((C (1))*)(mod)*E first II firstT UF C I UF C    

 (5.1)

Where, ‘TE’ is the total execution time; ‘Cfirst’ is number of CSs required to execute first

iteration, ‘CII’ is the number of CSs required between initiations of consecutive iterations ‘I’

is the maximum number of iteration (loop count), UF is the specified loop unrolling factor;

61

‘∆’ is the delay of one CS in nanoseconds; α is  I

UF
floor value . (Note - The detail

description of the execution time model has been given in chapter 4 section 4.3.)

Eqn (5.1) is an estimation model for TE, where the necessity of tediously unrolling the CDFG

is not required to calculate TE, unless # of independent operations required to be performed

in parallel due to unrolling exceeds the available resource units (specified in a solution).

5.3.1.1. Area model

The total area consumed by a resource combination and multiplexer is denoted by ‘AT’.

 / /

1

()
i iT R R MUX DMUX MUX DMUX

i

A N K N K




 
    
 
 (5.2)

where, ‘NRi’ represents the number of instance of resource Ri; ‘KRi’ represents the area

occupied by resource Ri (#transistor), ‘v’ is the number of resource types, ‘NMUX/DMUX’ is

number of the multiplexer or demultiplexer, and ‘KMUX/DMUX’ is area occupied by the

Figure 5.1 Block diagram of proposed approach

USER

PSO Process

Evaluation Model

Particles encoding

Determination of

new Velocity

Proposed

Mutation

Proposed

Perturbatio

n

Fitness evaluation

Execution Time

calculation
Area calculation

User Constraints

CDFG/ DFG

Control parameter e.g

Swarm size, #

iteration, Acceleration

coefficient

Determination of

new Location

Update global best

and local best

Velocity

Clamping

Pre-processing

Classification of UF

based on unrolled

and sequential loop

Screening of UF

Output

Optimal resource

combination and UF

Module Library

(Resources Detail)

1) Maximum

available resources

2) Area

3) Delay per

resource unit

62

Position and velocity update module

Calculate new Velocity of particle

Figure 5.2 Flow diagram of proposed algorithm

NO Is stopping

criteria met?

Local Best and Global

best update module

Optimal Resource combination global best

resource combination
 Stop

YES

No

Perform Mutation on

local best resource

combination for each

particle

YES

Calculate the new fitness of a particle

for new resource combination

Are all particles

updated?

YES

Start

Read Module library, CDFG, User Constraints

a) Initialize the Position (Resource combination, UF)

b) Initialize the Velocity of all particles.

c) Calculate fitness of all particles

Pre-processing of Unrolling Factor,

and add some suitable candidate UF

Invalid

Check user constraints?

!Error: Invalid user

constraints and Request

user to correct values

Valid

Update Local best

Position and local best

fitness

Calculate new Position of particle

Perform Velocity

clamping

Perform Adaptive

end terminal

Perturbation

Determine the global

best particle fittest

particle (Minimum

fitness)

YES

Check exploration

drift violation

Check boundary

outreach

63

multiplexer or demultiplexer (Note:- area is calculated in terms of number of au) (1 au = 1

transistor).

5.3.1.2. Model for fitness function

The fitness function (considering execution time and area of a solution) is defined as:

1 2

max max

iX T cons E cons
f

A A T T
C

A T
 

 
  (5.3)

Where, iX

fC = Fitness of particle Xi; 1 , 2 = User defined weights for area and

execution time; TMax is maximum execution time calculated with minimum resource (single

instance of resource) and min (UF)=1 while Amax is calculated with maximum resource and

max(UF)=I (maximum # of iterations).

5.4. Demonstration of Proposed Methodology

5.4.1. User specification

 The CDFG used for demonstration (as shown in Figure 5.3) along with the user specified

design constraints for area and execution time as well as the module library[52, 54, 74, 92]

are taken as inputs to the proposed framework (area of adder= 2030au, multiplier= 2464au,

comparator= 2030au multiplexer (2:1) = 126au ; delay of adder= 270ns, multiplier =

11000ns, comparator= 270ns multiplexer= 20ns; where one (4:1) multiplexer needs three

(2:1) multiplexer and one (8:1) multiplexer needs seven (2:1) multiplexer; we assume (1 au =

1 transistor). For the sake of explanation, we are assuming some real values for area

constraint (Acons=18000 au and execution time constraint (Tcons=60us); Maximum available

multiplier FU’s: 8, adder FU’s: 4, comparator FU’s: 2 and total user specified loop iteration I

= 8; number/type of mux/demux is directly extracted from the scheduling.

5.4.2. Boundary constraint check module

After specifying constraints, the proposed framework checks for valid user constraints. If

user constraints are not valid then an error is shown and requests for valid values:

1. Check: ||max maxmin min
A A A T T Tcons cons   

2. If above condition is true then stop and correct constraints.

Else execute the initialization process of module.

64

In order to check the constraints, maximum and minimum value of area and execution

time are determined. Minimum are (Amin) and maximum execution time (Tmax) are calculated

with minimum resource (single instance of resource) and min (UF)=1, while, maximum area

(Amax) and minimum execution time (Tmin) is calculated with maximum resource and

max(UF)=I (maximum # of loop iterations).

5.4.3. Pre-processing of unrolling factor

In order to reduce the design space and enhance the exploration speed, pre-processing of the

loop unrolling factor is performed by the proposed algorithm. The pre-processing algorithm

is given in chapter 4 (Figure 4.5 and Figure 4.6). An example of pre-processing shown in

Table 5.1 for FIR shown in Figure 5.3 (used for demonstration).

5.4.4. Initialization process of particles

 After pre-processing step, initialization of the particles takes place as describe in

chapter 4 section 4.4.

a) Position

For (i=0; i<8; i++) {

 Yn = Yn + (coeffi * Xn-i)

}
 ‘C’ code of original loop

Figure 5.3 Demonstration of loop unrolling based on a resource constraint of

2(*), 2(+), 1(<) for FIR

Yn

(1) (3)

(2)

(4)

(6)

C
b

o
d

y

1

14

550

564

578

C
II=

1
4

<

coeffi

Xn-i

7

+

C
first=

5
6

4

*

Yn

*

+

i 2 coeffi+1

Xn-(i+1)

UF=2

(5) +

(b) Original loop unrolled once

+

<

+

*

(1)

(2)

(3)

(4)

Yn

1

550

564

Yn

UF=1

coeffi Xn-i i 1

8

C
b

o
d

y =
C

first

14

(a) Original loop

65

Hence, the initial solution are:

X1 = (1, 1, 1, 1)

X2 = (8, 4, 2, 8)

X3= (4, 2, 1, 4)

b) Initialization of velocity and acceleration coefficient

 Velocities of all particles are initialized to zero in the proposed approach and acceleration

coefficient can be initialized to any value between 1 and 4 [50].

5.4.5. Determination of local and global best position

Once the all particles are initialized, fitness of the particles is determined. First area is

calculated according to eqn. (5.2).

Example, for particle X3= (4, 2, 1, 4):

(2464 * 4 2030 * 2 2030 *1 12 *126 3 * 7 *126 3 * 3 *126)
T

A      

21238 au
T

A 

 (5.4)

Where the module values (library) are assumed, discussed in section 5.3.1.

Next, execution time metric is calculated as using eqn. (5.1):

20 * ((564 (4 1) *14) * 2 0 * 564) 24240
E

T ns     (5.5)

(Note- the values of Cfirst, CII, are derived from the ASAP scheduled CDFG with resource

combination: 4 (*), 2 (+), 1(<), UF=2) shown in figure 5.3(b).

Table 5.1: An example of pre-processing

of unrolling factors for FIR

I=8

UF

Sequential

Loop

(I mod UF)

Pipelined

loop

(I- I mod

UF)

Accepted

(1)

2 8 0 1

3 6 2 0

4 8 0 1

5 5 3 0

6 6 2 0

7 7 1 0

8 8 0 0

66

Finally the fitness of the particles is calculated by eqn. (5.3). Therefore, the fitness of X3 is:

3 0.1507
X

fC   (5.6)

Similarly, fitness of all the particles is determined and local best position of the particle and

global best particle are found out as describe in chapter 3 section 3.2.5. (Note- 1 = 1 = 0.5 is

chosen for providing equal weightage to area and execution time).

5.4.6. Determination of new position of each particle

 Iteration process initiates at this step. According to the algorithm, in each iteration, the

new position of a particle Xi in d
th

 dimension can be given by:

idi d di

R R V
 
  (5.7)

where,
di

R
 = new resource value or UF value of particle Xi in d

th
 dimension and

idR =

previous resource value or UF value of particle Xi in d
th

 dimension;
di

V  is the new velocity

of particle Xi in d
th

 dimension which is updated by eqn. (5.8):

 - -1 1 2 2di i gb ilbi id d dV b b R Rd dV r R R r

      (5.8)

where, ‘
lbidR ’ is the resource value of Xlbi in d

th
 dimension, idV is the inertia component, ‘

gbdR ’

is the resource value of Xgb in d

th
 dimension, b1, b2 are acceleration coefficients and r1

and r2 are random numbers between [0-1].

Note- 1 1{ ,... ,UF}lbi Dlbi lbi
X R R  and 1 1{ ,... , UF}gb Dgb gb

X R R 

For example, particle position X3, di
V


and di

R
 are calculated for 1

st
 dimension using eqn.

(5.8) and (5.7) as:

   
3 31 1 0.5*0 2*0.5 4 4 2*0.5 4 4 0; R 4 0 2V
 
        

 (Note-
gbdR

 = 4 for 1st dimension is used in eqn. (5.7) and Vdi =0 has been assumed

initially (as explained in section 5.3.4))

Similarly, the
di

V


and
di

R for all dimensions of all particles can be calculated. To handle

boundary outreach and excessive drift adaptive end terminal perturbation and velocity

67

clamping is performed. (Note: The details of adaptive end terminal perturbation and velocity

clamping are given in chapter 3 section 3.2.7.and section 3.2.8 respectively.

5.4.7. Mutation operation

 To increase variation and diversity, mutation is performed on all the local best position of

each particles with probability Mp=1.0 using Adaptive rotation mutation. The detail

description of the mutation algorithm is given in chapter 3 section 3.2.9.

5.4.8. Stopping condition

From chapter 3 section 3.2.10, the proposed algorithm can terminate either:

a) When the maximum number of iterations exceeds 100, or,

b) When no improvement is visible in
gbX over ‘£’ number of iteration (£=10).

Note – Results of the proposed method are given in chapter 7 section 7.3

68

69

Chapter 6

Swarm Inspired Exploration of Architecture and

Unrolling Factors for Nested Loop Based Application in

Architectural Synthesis

Loop Unrolling is very popular technique to exploit parallelism and when loop unrolling

combine with data path during design space exploration process, then produces better quality

design, as we found in our previous investigation on single loop based application (as explain

in chapter 4 and 5). Further, this investigation required more efforts for nested loop based

application because in nested loops based application designer have more opportunity for

unrolling, but, in other hand, the complexity of the problem also increases because of design

space increases exponentially. Moreover, the direction of unrolling (i.e., which loops should

be unrolled) and the unrolling factor have an extremely strong effect on the efficiency of the

execution of the unrolled loop. As we know, in the domain of multimedia, digital signal

processing, medical etc, there exist many applications, which are nested loop in nature.

Therefore, considering nested loops as part of optimization process during DSE in high level

synthesis is crucial for designers.

In order to handle such applications, a novel framework for automated design space

exploration of architectures and unrolling factors for perfectly nested loops in architectural

synthesis (AS) has been presented in this chapter, which maintains trade-off between power

and performance during exploration and also resolve orthogonal issues such as exploration

speed and quality of result (QoR). Moreover, a novel model for determining (predicting)

execution time based on architecture and unrolling factors (UFs) for nested loop without

tiresomely unrolling completely is proposed. The detail description of the proposed approach

is given in subsequent sections in this chapter.

70

6.1. Problem Formulation

Given a CDFG, find a minimal cost solution (S) which satisfies the conflicting user

constraints. The formulation is as follows:

Minimize (S)f (Hybrid cost of PT and TE)

Subjected to:
T cons E consP P and T T 

1 2

1 2

(,)

, (R ,R , ,R)

L 1

, (, , ,)

L 1

n

R R

i i i

m

UF UF

j j j

S R UF

where R

R U wherei to n

and UF UF UF UF

UF U where j to m





  



  

1 2 1 2{R ,R , ,R , , , , }n mS UF UF UF

(6.1)

and, D= n+m

where, ‘Rn’ is the number of instances of n
th

 resource type; ‘n’ is the total number of resource

types; UFm is unrolling factor of m
th

 loop; ‘m’ is the total depth of nested loop; ‘ R ’ is an

candidate resource combination, ‘UF ’ is a set of candidate UFs; ‘ LR

i
’ and ‘ R

iU ’ are minimum

and maximum available i
th

 resource (Ri) type; ‘ LUF

j
’ and ‘ UF

jU ’ are minimum (no unrolling)

and maximum (equal to loop count I) unrolling factor of j
th

 loop; ‘PT’ and ‘TE’ are the power

and execution time consumed by a candidate solution; ‘Pcons’ and ‘Tcons’ are power and

execution time constraint specified by the user;‘D’ is number of dimension in a solution;‘m’

is number of resource types; ‘n’ depth of the loop (in nested loop). Unrolling factor indicates

the number of times a loop body (single or nested) is unfolded to exploit parallelism. For

example, in Figure 6.1 the original loop body (shown in Figure 6.1 (b)) has been typically

unrolled (UF=2, 3) with respect to both inner and outer loop (shown in Figure 6.1 (c)). Note-

nested loop cannottransform into single loop when loop body dependent upon both inner and

outer indices.

6.2. The Proposed Framework and Mapping Process

The proposed mapping between Design space exploration problem for nested loop based

application and particle swarm optimization is shown in Figure 6.2 and the block diagram of

the methodology given in Figure 6.3 while the algorithm for exploration process is explained

71

For(i=0;i<8;i++){

For(j=0;j<8;j++){

 Ai +=Bj*Bj-i

 }

}

Figure 6.1 (a) ‘C’

code for original

loop of

Autocorrelation

benchmark
Figure 6.1 (b) CDFG of Original loop

8
8

(5) +

<

(4)

Loop

Body
Ai

Ai

1

550

564

14

+

*

(1)

(2)

<

(6)

Bj Bj-i i 1 j 1

(3)

UFs=(1,1)

+

Figure 6.1(c) figure shows typical physically unrolled loop for

UF= (2, 3) and schedule with ASAP with 2(*), 1(+), 1(<).

Typical unrolling:

(UFi, UFj) = (2, 3)

1

550

564

578

Ai+1

Ai

Bj Bj-i Bj Bj-(i+1)

j

+

+

* *

S
eq

u
en

tial lo
o

p

+

<

6

8

Ai+1

 Ai

Ai+1

Ai+1

Ai+1

Ai

Ai

1128

j

3

6

B(j+2)-(i+1)

Bj+2

Bj+2-i Bj+2

B(j+1)-(i+1) Bj+1
Bj+1-i Bj+1

Bj-(i+1) Bj
Bj-i Bj

14

550

564

578

1114

1650

+

i 2

8

+

< +

<

+

+

* *

+

* *

+

*

+

*

Figure 6.2 Proposed Mapping of DSE problem with PSO

Position of a particle Solution (Si) of problem

Velocity of a particle (V
d

i
) Exploration drift

Dimension (D) #Resource types + # UFs

72

Figure 6.3: Block diagram of proposed DSE Engine

Optimal Solution

DSE Engine

PSDSE

Module

Fitness

Evaluation

Module

User

Constraints
CDFG

Control

parameters

Module Lib

Algorithm: PSDSE

Input: CDFG, module library, user constraints

Output: Optimal combination resources (FU’s) and unrolling factors (UFs)

Begin

 Read library information and CDFG

 Constraint validity check()

 Pre-processing UF ()

 Initialization()

 Cost evaluation Process()

 Update global best and local best solution

 //Iteration process starts here//

 While (!stopping condition)

For i=1 to A Do //where ‘A’ is swarm size

 Determine new solution

 Cost evaluation Process()

 Update local best solution of the particle

 End Loop

 Update global best solution

 Adaptive rotation mutation ()

 Update global best solution

 End while loop

Output: global best solution which is optimal combination of resources

(FU’s) and UFs

End

END

Figure 6.4 Exploration algorithm

73

in Figure 6.4. Based on the algorithm, the detail description with demonstration is given in

section 6.2.

6.3. Proposed Evaluation Models

For evaluation of a solution (or design point), the following models have been proposed.

6.3.1. Proposed model for execution time

In order to describe the formulation of proposed execution time (TE) (function of loop

unrolling factor) for a CDFG, an example of loop unrolling is used shown in Fig. 6.5. Fig.

6.5(a) shows the ‘c’ code of original loop, Fig 6.5(b) shows CDFG for original loop and Fig.

6.5(c) shows an as soon as possible (ASAP) scheduled CDFG unrolled 2*λ times (In this

example λ =2) with resource constraint of 2(*), 1(+) and 1(<).

The Proposed Procedure to estimate execution time for nested loop and single loop

application is given in Figure 6.6.

For(i=0;i<8;i++){

For(j=0;j<8;j++){

 Ai +=Bj*Bj-i

 }

}

(a) ‘C’ code of original

loop

1

550

564

14

Loop

Body

(5)
+

<

+

*

(1)

(2)

(4)

UFs=(1,1)

8 +

<
(6)

Bj Bj-i i 1 j 1

8
(3)

(b) CDFG of Original loop

Ai

<

+

i 2

8

+

<

j 2

8

(c) Determine G

firstC and G

cycleC for G where G is formed by scheduling twice ‘λ’

time unrolled loop body with ASAP with 2(*), 1(+), 1(<), here ‘λ’ = 2

Figure 6.5 CDFG of Autocorrelation for demonstration

Ai

Bj Bj-i Bj Bj-(i+1)

14

550

564

578

1114

1128

G

G’ G

firstC

Ai+1

Bj+1 Bj+1-i B(j+1)-(i+1)

+

+

*

Ai

+

*

Ai+1

Bj+1

+

*

Ai

Ai

*

Ai+1

Ai+1

G

cycleC

74

Procedure to estimate execution time

Input-Resource combination (RC), UFs, CDFG

Output- Execution time of CDFG based on RC and UFs

Step 1- Determine max number parallel independent operations in original loop body

(denoted by ‘γ’).

Step 2- Determine effective unrolling factor ‘UFe’ and αe defined as:

1

m

e
z

zUF UF


 (6.2)

1

m

z

z
e

z

I
floor valueof

UF




 
  

 
 (6.3)

λ = number of resources corresponding to ‘γ'

Where ‘Iz’ is z
th

 loop of I; UFz is the z
th

 unrolling factor of UF.

Step 3- if ((Total number of independent operations due to effective unrolling > λ) &&

(UFe mod λ =0))

 Go to step 4.

Else

Unrolled completely and determine CTotal and use eqn. (6.5)

Step 4- Unroll loop body λ times which to group (denoted by ‘G’).

Step 5- Schedule G with as soon as possible (ASAP) to determine
G

firstC and
G

cycleC as

describe in Fig 6.5(c).

Step 6- Determine total control steps (CS)

(1)* *G Ge
Total first cycle e

UF
C C C 



 
   
 

 (6.4)

Step 7- Repeat step 2 and 6 for sequential loop (if any). Finally

CTotal = CTotal(pipelined) + CTotal (sequential)

*E TotalT C  (6.5)

where, ‘TE’ is total execution time; ‘∆’ is the delay of one control step in nanoseconds; ‘
G

firstC ’ is required number of CS to execute G once; ‘ G

cycleC ’ is number of CS between two

consecutive iteration of G, ‘CTotal’ is total number of CS required to execute the loop

completely.

Figure 6.6 Procedure to estimate execution time for loop based application

75

On the other hand, for single loop application, TE formulated as:

((C (1))*)(mod)*E first II firstT UF C I UF C     (6.6)

Where ‘Cfirst’ is number of CSs required to execute first iteration, ‘CII’ is the number of CSs

required between initiations of consecutive iterations, ‘I’ is the maximum number of iteration

(loop count), and ‘α’ is floor value of (I/UF).(Note- detail description of the model given in

chapter 4 section 4.3.)

The model given in eqn. (6.6) is not used when #of independent operations required to be

performed in parallel due to unrolling exceeds the available resource units specified in a

solution. In such cases loop unrolled tediously. To overcome above limitation proposed

model given in (6.5) is used with UFe = UF.

Note- The utility of the proposed model is wide spectrum. The execution time model

proposed in this paper is useful for any DSE process which handles single or perfectly nested

loop.

6.3.2. Power Model

The total power consumed by a resource combination is denoted by ‘PT’. ‘PT’ is

composed of dynamic power (‘PD’) and static power (PS) given by (6.7) below:

T D S
P P P  (6.7)

PT is formulated as:

/

/ /

1

(

() *

)

i i

T

FU MUX DMUX

R R MUX DMUX MUX DMUX c

i

E

E E
P

T

N K N K P






 
   

 





 (6.8)

where, ‘EFU’ represents the total energy consumption of the resources , ‘EMUX/DMUX’

represents the total energy consumed by multiplexer and demultiplexer. ‘NRi’ represents the

number of instance of resource Ri; ‘KRi’ represents the area occupied by resource Ri, ‘v’ is

the number of resource types, ‘NMUX/DMUX’is number of the multiplexer or demultiplexer,

‘KMUX/DMUX’ is area occupied by the multiplexer or demultiplexer and ‘Pc’ denotes the power

dissipated per area unit (e.g. transistors).

76

6.3.3. Cost model

The fitness function (considering execution time and power consumption of a solution) is

defined as:

1 2

max max

(S) T cons E consP P T T
f

P T
 

 
  (6.9)

Where, (S)f =fitness (cost) of solution S; 1 , 2 = User defined weights for power and

execution time.

6.3.4. Demonstration of proposed execution time estimation procedure

To demonstrate the procedure for estimation of execution time (presented in Figure 6.6) for

nested loops, the CDFG presented in Figure 6.1 and Figure 6.5 is used. The Figure 6.5(c)

shows the unrolled loop with UF(2, 2) which has been scheduled by as soon as possible

(ASAP) scheduling algorithm with resource constraint of 2(*), 1(+) and 1(<).The

demonstration of the procedure based on Figure 6.5 is as follows:

Resource combination = 2(*), 1(+), 1(<)

Unrolling Factor = UF1=4, UF2= 4

Step 1- Determine ‘γ’

From the Figure 6.5(b) only one multiplication operation is independent in the loop body so

γ = 1

Step 2- Using eqn.6.2 and eqn.6.3

1

m

e
z

zUF UF




UFe = UF1 * UF2 = 4 * 4 =16

1

m

z

z
e

z

I
floor valueof

UF




 
  

 


1 1*
1 1

8 8
* 4

4 4

e

I I
floor valueof floor valueof

UF UF

floor valueof floor valueof


   

    
   

   
    

   

λ = 2 i.e. multiplier (Number of resources of γ resource type)

Step 3- Number of operations due to effective unrolling = UFe * γ = 16 * 1

77

Check condition explained in step 3 of Figure 6.6

Accordingly, ((16 > 2) and (16 mod 2 = 0)) = True

Thus, move to step 4

Step 4- Schedule the 2 * λ times unrolled loop body, using ASAP to form G and G’.

Step 5- Determine
G

firstC and
G

cycleC as shown in Figure 6.5 (c).

(Note- the values of G

firstC and G

cycleC are derived from the ASAP scheduled CDFG with

resource combination: 2 (*), 1 (+),1(<), UFs= (2,2)) shown in Figure 6.5(c).

Step 6 and Step 7- Determine execution time metric using eqn. (6.4) and (6.5):

((578 (16 / 2 1) * 550) * 4) * 20 354240
E

T ns    (6.10)

In case of Figure 6.1, the Figure 6.1(c) shows the physically unrolled loop with UF(2, 3)

which is scheduled by as soon as possible (ASAP) algorithm with resource constraint of 2(*),

1(+) and 1(<). Moreover, the UF for j
th

 loop (i.e. 3) is not a factor of (divisible) j
th

 loop index

(i.e. 8) which leads two remainder loops for every ‘i’ index resulting in total sixteen

remainder loops for i = 8 as shown in Figure 6.1(c) i.e.

Total loop iterations (64) = unrolled loop (48) + sequential loop (16);

The demonstration of execution time evaluation for CDFG (given in Figure 6.1) is as follows:

Step 1- Determine ‘γ’

From the Figure 6.1(b) only one multiplication operation is independent in the loop body so

γ= 1

Step 2- Using eqn.6.2 and eqn.6.3

1

m

e
z

zUF UF




UFe = UF1 * UF2 = 2 * 3 = 6

1

m

z

z
e

z

I
floor valueof

UF




 
  

 


1 1*
1 1

8 8
* 8

2 3

e

I I
floor valueof floor valueof

UF UF

floor valueof floor valueof


   

    
   

   
    

   

78

λ = 2 i.e. multiplier (Number of resources of γ resource type)

Step 3- Number of operation due to effective unrolling = UFe * γ = 6 * 1

Check condition explain in step 3 of Figure 6.6

Accordingly, ((6 > 2) and (6 mod 2 = 0)) = True

Thus, move to step 4

Step 4- Schedule the 2* λ times unroll loop body, using ASAP to form G and G’

Step 5- Determine
G

firstC and
G

cycleC for ‘λ’ =2 (as shown in Figure 6.5 (c))

Step 6 and Step 7- Determine execution time metric using eqn. (6.4) and (6.5):

((578 (6 / 2 1) * 550) * 8) 13424()TotalC cspipelined    

Similarly for sequential loop (as shown in Figure 6.1)

CTotal (sequential) = 6936 cs

CTotal = 13424 + 6936 = 203605

Using eqn. (6.5)

TE = 20360 * 20 = 407200 ns

6.4. Demonstration of proposed methodology

6.4.1. Input module library, user constraints and CDFG

First of all, the PSDSE framework takes module library [52, 54], CDFG, and user

specified design constraints for power and execution time as inputs. For the sake of

demonstration, power constraint (Pcons=1.25mW) and execution time constraint (Tcons=250us)

are taken as input. Further, the module library consist area (#transistor), energy consumption,

delay and maximum availability of functional units. For demonstration maximum available

multiplier = 8, adder = 8, comparator = 2 and total user specified loop iteration I1 = 8 and I2 =

8; power dissipated per transistor (Pc) is assumed to be 29.33nW; furthermore, number/type

of mux/demux is directly extracted from the scheduling and binding solution.

6.4.2. Constraint validity check

After taking the user constraints for power and execution time the algorithm checks

validity of user constraints, In order to check the constraints, maximum and minimum value

of power and execution time need to be calculated. Maximum power (Pmax) and minimum

79

execution time (Tmin) is calculated with maximum resource and max(UFi)=Ii (maximum # of

loop iterations) while minimum power (Pmin) and maximum execution time (Tmax) are

calculated with minimum resource (single instance of resource) and min (UFi)=1.

After determining maximum and minimum value of power and execution time the

algorithm checks for valid user constraints. If user constraints are not valid then an error is

shown and requests for valid values.

IF () ()(max maxmin min
AND OR ANDP P P P T T T Tcons cons cons cons   )

 Proceed for initialization process.

ELSE

Requests to user for input correct constraints.

6.4.3. Pre-processing of unrolling factor

 The pre-processing step filters unfit UFs to create a list of feasible solutions. Moreover, to

ensure the inclusion of good candidates, some special UFs have been added which may have

been initially screened out in pre-processing phase. The detail description of the pre-process

is given in chapter 4 section 4.4.

6.4.4. Initialization process of the particle

 After preprocessing step initialization of the particle take place. During initialization

process solutions (particles position), velocity and acceleration coefficient are initialized as

follows:

a) Solution: For a CDFG, a particle position Si representing a candidate solution (as

described in section 6.1) is given in eqn. (6.1):

1 2 1 2{R ,R , ,R , , , , }n mS UF UF UF

In PSDSE, the initialization of particles is such that it comprehensively covers the entire

design space as follows:

min min min min min min

1 1 2 1 2{R ,R , ,R , , , , }n mS UF UF UF (6.11)

max max max max max max

2 1 2 1 2{R ,R , ,R , , , , }n mS UF UF UF (6.12)

3 1 2 1 2{R ,R , ,R , , , , }avg avg avg avg avg avg

n mS UF UF UF (6.13)

avg = (max + min)/2

80

Where ‘ minRn ’ is minimum the number of instances of n
th

 resource type, ‘ maxRn ’ is maximum

the number of instances of n
th

 resource type,
min

mUF is minimum unrolling factor (equal to 1) of

m
th

 loop,
max

mUF is maximum unrolling factor (equal to I) of m
th

 loop.

Rest of the solutions (S4…Sn) is initialized with random values between minimum and

maximum values of resources and UFs as describe in chapter 3 section 3.2.3. Hence, using

eqn. (6.11) – (6.13),

S1 = (1, 1, 1, 1, 1),

S2 =(8, 8, 2, 8, 8);

S3= (4, 4, 1, 4, 4);

S4= (2, 1, 1, 4, 4).

b) Initialization of velocity and acceleration coefficient

 Velocities of all particles are initialized to zero in the proposed approach[49] and

acceleration coefficient can be initialized to any value between 1 and 4 [50].

6.4.5. Cost evaluation and local, global best update

Once the all particles are initialized, fitness of the particles is determined. First power is

calculated according to (6.8). Example, for particle S4= (2, 1, 1, 4, 4):

6

4 * (16 * 9.8 17 * 0.739 1* 0.739 3 * 6 * 0.1 3 *15 * 0.1) pj

((578 (16 / 2 1) * 550) * 4) * 20

(2464 *1 2030 * 2 2030 *1 3 * 7 *126 3 *15 *126) * 2 933 *10.

T

ns

P



   

 

   

 

0.495
T

P mW

 (6.14)

Next, determination the execution time for particle S4= (2, 1, 1, 4, 4) where 2(*),1(+),1(<) are

resources and 4,4 are UFS . The execution time of the solution S4 is:

TE = 354240ns by eqn. 6.10 as describe in section 6.3.4

Finally the fitness of the particles is calculated by (6.9). Therefore, the fitness of S4 is:

4(S) 0.0654f   (6.15)

Similarly, fitness of all the particles is determined. (Note- 1 = 1 = 0.5 is chosen for

providing equal weightage to power and execution time).

81

 After cost evaluation next step is local best solution (position) update. If cost of new

solution is lesser than the local best cost of the particle then the new solution become local

best solution and new solution cost become local best cost. Further, the global best solution is

updated as follows:

1 2[((), (),.... ())]gb i lb lb lbAS S Min f S f S f S

 (6.16)

6.4.6. Determination of new solution

 To determine new solution firstly, determine new velocity of the particle. The velocity of

the particle is determined as (6.17) is given below:

 
1 1 2 2

- S - S
di i gb ilbi id d dV b b Sd dV r S r

      (6.17)

where,
di

V  is the new velocity of particle i
th

 solution in d
th

 dimension, ‘
lbidS ’ is the value of

i
th

 solution in d
th

 dimension, di
V is the inertia component, ‘ gbdS ’is the value of Sgb in d

th

dimension, b1, b2 are acceleration coefficients and r1 and r2 are random numbers between [0-

1].

Secondly, new solution (position) of the particle is updated with new velocity defined in

(6.18) as follows:

idi d di

Vs s 
  (6.18)

where,
di

S
 = new resource value or UF value of i

th
 particle in d

th
 dimension and

idS = previous

resource value or UF value of i
th

 particle in d
th

 dimension;

Note-
1 1{ ,... ,UF , ,UF }

lbi lbi lbi lbilbi n mS R R and
1 1{ ,... ,UF , ,UF }

gb gb gb gbgbi n mS R R

(Note: To control the excessive exploration drift velocity clamping and to handle boundary

outreach violation adaptive end terminal perturbation are described in chapter 3).

6.4.7. Mutation operation and Stopping criterion

 With the hope of better solution and improving local optima problem the adaptive rotation

mutation is performed on all the local best position of each particle with probability equal

one. The description of mutation operation is given in chapter 3.

 The proposed algorithm terminates when no improvement observe in
gbS over ‘£’

number of iteration. (£=10) or when the iteration count exceeds maximum number of

iterations equal to 100.

82

6.5. Process of transforming non-perfect nested loop into perfect nested loop

The proposed approach only handlesthe perfectly nested loop based applications. A perfect

nested loop is a loop where there are no statements between different loop-levels. For

example, the CDFG (autocorrelation) of nested loop in Figure 6.7(a) is not a perfect loop

(called non-perfect nested loop) since there is code between the innermost level and the outer

level (e.g. sum=0; and r[i]= sum>>15).To handle such application, transformation of non-

perfect nested loop to perfect nested loop is performed. In order to make a non-perfect nested

loop to perfectly nested loop, a transformation method is used, which has been adopted from

[70]. This section presents an overview of the transformations. The transformation is divided

into two parts viz. renaming and loop distribution. The procedure is as follows:

6.5.1. Renaming.

 In this step all reused variables are renamed, to make loop distribution feasible. For this,an

array of same dimension as number of iterations of the outer loop isintroduced (if this

number is not available at compile time, then take maximum value in the worst case) and

then use the array elements to replace the variables in the code. For example, in Figure 6.7(a)

‘sum’ is a variable which is initialized to the loop body of the innermost loop. Its value will

be stored after innermost loop is finished. For each iteration of the outer loop, sumis reused.

So an array for sum is created with ‘nr’ dimension (loop count of outer loop) (i.e. sum[nr]).

The nested loop given in Figure 6.7(a) changes to Figure 6.7 (b) after renaming is applied.

6.5.2. Loop distribution

After renaming has been done, the next step is loop distribution. In loop distribution, the loop

body of the outer loop is divided into three parts: initialization part, the innermost loop, and

the result stored part. This distribution converts the original loop into three different loops.

The first loop is initialization loop, which is a single level loop. The second part is innermost

loop, which is the main part of the code and form a perfectly nested loop. The third part is

result store part, which is also single level loop. For example, the renamed loop shown in

Figure 6.7(b) converted to the perfectly nested loop after distribution shown in Figure 6.7 (c).

Note – Results of the proposed method are given in chapter 7 section 7.4

83

inti, k;

int sum;

for (i = 0; i < nr; i++)

 {

sum = 0;

for (k = nr; k <nx + nr; k++)

 {

sum += x[k] * x[k-i];

 }

r[i] = sum >> 15;

 }

Figure 6.7 (a) Original nested loop

Initialization Statement

Result Store Statement

Main loop body

Figure 6.7 An example of loop transformation from non-perfect to perfect nest loop

inti, k;

int Sum[nr];

for (i = 0; i < nr; i++)

 {

 Sum[i] = 0;

for (k = nr; k <nx + nr; k++)

 {

Sum[i] += x[k] * x[k-i];

 }

 r[i] = Sum[i] >> 15;

 }

Figure 6.7 (b) Renaming

Renaming

of ‘Sum;

to ‘Sum[]’

inti, k;

int Sum[nr];

for (i = 0; i < nr; i++)

 {

 Sum [i]= 0;

}

for (i = 0; i < nr; i++) {

 for (k = nr; k <nx + nr; k++)

 {

 Sum[i] += x[k] * x[k-i];

 }

}

for (i = 0; i < nr; i++) {

r[i] = Sum[i] >> 15;

 }

Figure 6.7 (c) Final after renaming and distribution

Initialization loop

Main perfectly Nested Loop

Result Store loop

84

85

Chapter 7

Result and Analysis

This chapter describes the complete experimental results of the proposed methodologies for

design space exploration described in previous chapters. This chapter divided into four

sections where each section present results of the respective methodology. Four sections are

as follows:

a) MO-PSE: Adaptive Multi Objective Particle Swarm Optimization Based Design

Space Exploration in Architectural Synthesis for Application Specific Processor

Design

b) Automated Exploration of Datapath and Unrolling Factor during Power-Performance

Trade-off in Architectural Synthesis Using Multi-Dimensional PSO Algorithm

c) Simultaneous Exploration of Optimal Datapath and Loop Based High level

Transformation during Area-Delay Trade-off in Architectural Synthesis Using Swarm

Intelligence

d) Simultaneous Exploration of Optimal Datapath and Loop Based High level

Transformation during Area-Delay Trade-off in Architectural Synthesis Using Swarm

Intelligence

The results included implementation details, library details, sensitivity analysis of control

parameter and improvements achieved compared to the state of art approaches.

7.1 Experimental results: the proposed approach ‘MO-PSE: Adaptive

Multi Objective Particle Swarm Optimization Based Design Space

Exploration in Architectural Synthesis for Application Specific

Processor Design’

This section describes the experimental results of the proposed approach explained in Chapter

3 and the improvements obtained compared to recent approach [27, 29]. The proposed MO-

86

PSE approach has been implemented in java language and run on Intel core i5-2450M

processor 2.5 GHz with 3MB L3 cache memory and 4GB DDR3 primary memory. Various

high level synthesis DSP benchmarks were chosen for testing such as autoregressive filter

(ARF) [53,57], band-pass filter (BPF) [5], elliptic wave filter (EWF) [53], finite impulse

response (FIR) filter [5,57], IIR Butterworth [53], MESA-Horner Bezier[53], MPEG motion

vectors (MMV) [5, 53], JPEG Downsample [5]. The library is given in chapter 3 Table 3.1,

3.2. The proposed MO-PSE approach is experimented with two aspects given below:

 Analysis of variation in multiple PSO parameters and their impact on the MO-PSE

performance (or efficiency).

 Comparison of MO-PSE with previous DSE approaches [29], [27] in terms of

exploration time (or speed) and Quality of Results (QoR) achieved.

7.1.1. Impact of Proposed MO-PSE with variation in PSO parameters:

Investigation and Analysis

This section will investigate the impact of variation in multiple internal PSO parameters on

proposed design space exploration approach for selected benchmarks. However, it should be

noted that this subsection will not discuss the quality of results achieved through the proposed

DSE approach. The quality of solution found and its comparison with other DSE approaches

will be discussed in the next subsection. Further in this subsection, post-experimental analysis

will also assist in pre-tuning PSO parameters to an appropriate value (for MO-PSE) while

performing DSE comparison.

7.1.1.1. Inertia weight (ɷ)

In the proposed approach (MO-PSE), inertia weight controls to the exploration drift process

of the particle by weighing the involvement of the previous exploration drift. During the

experiment, the following three variations of ‘ɷ’ have been analysed and its impact on the

performance of MO-PSE has been reported:

a) Linearly decreasing ‘ɷ’ in every iteration between [0.9- 0.1] throughout the exploration

process.

b) A constant value of ɷ = 1 throughout the exploration process.

c) A constant value of ɷ = 0.5 throughout the exploration process.

87

As evident from Table 7.1 and Table 7.2, for all benchmarks the MO-PSE’s convergence

time and exploration time is generally better with linearly decreasing value of ‘ɷ’. For

example in Table 7.1, in case of MPGE Motion Vectors, the convergence time is 100.5ms for

linearly decreasing ‘ɷ’, while it is 111.33ms and 102.6ms at ‘ɷ’ = 0.5 and ‘ɷ’ = 1

respectively. Therefore, it is clear from the empirical evidence that MO-PSE during

exploration of variances converges to optimal solution faster when the ‘ɷ’ is decreased

linearly in every iteration until the magnitude becomes 0.1. Further, in case of MESA, the

exploration time for finding the optimal solution is 78.5ms when ‘ɷ’ is linearly decreased

between [0.9 – 0.1] compared to 86ms and 109.33ms when ‘ɷ’ = 0.5 and ‘ɷ’ = 1 respectively

as shown in Table 7.2.

7.1.1.2. Acceleration Coefficients (b)

a) Comparison amongst constant acceleration coefficient

The Acceleration Coefficients b1 and b2 control the influence of cognitive and social

component in exploration drift. Where b1 expresses how much confidence a particle has in

itself, while b2 expresses how much confidence a particle has on other particles [49]. During

experimentation ‘b1’ and ‘b2’ were kept equal to ‘b’. Four different values of b were taken

Table 7.1. Comparison of convergence time (ms)

with respect to parameter " ɷ "

Benchmark Linearly

decreasing
ɷ (0.5) ɷ (1)

IIR Butterworth 22.5 27.33 27.5

BPF 121.66 118.33 116

EWF 116.16 121 168

ARF 127 134 137

JPEG SAMPLE 80.5 81 108

MESA 39 45.16 50.5

FIR 73.6 82.5 62.66

MPEG MMV 100.5 111.33 102.66

88

for experimental analysis viz. b= 1,2,3,4. (Note: The reason for setting ‘b’ in the range [1-4]

for PSO has been shown in [50]). As indicated in Table 7.3 and Table 7.4, in terms of

convergence and exploration time both, pre-opting an exact choice of ‘b’ before performing

design space exploration for ASP’s is a non-trivial issue. This is because there is no general

trend that can be observed for the selected benchmarks for making a pre-defined choice as

shown in Figure 7.1 and Figure 7.2. As seen in Table 7.3 and 7.4 in order to achieve minimal

convergence and exploration time, for IIR and MESA value of b = 1 is suitable, for FIR

value of b = 2 is suitable, for ARF, BPF, MPEG value of b=3 is suitable and for EWF and

JPEG Downsample value of b=4 is suitable. However, it can assumed that the best quality

solutions for attaining faster convergence and exploration speed are mostly clustered at b = 2

or b =3 in most tested cases.

b) comparison between time varying and constant acceleration coefficient

By changing the acceleration coefficient b1 and b2 with time, the effect of cognitive

component on new velocity decreases, simultaneously the effect of social component on

new velocity increases is tested in this section. With a large b1 and small b2 at the

beginning, agents are allowed to move around the design space, indicating higher

exploration capability. On the other hand, a small value of b1 and a large value of b2 signify

the convergence to the global best. Therefore, during exploration process the value of b1 is

Table 7.2 Comparison of exploration time (ms)

with respect to parameter " ɷ "

Benchmark Linearly

decreasing
ɷ (0.5) ɷ (1)

IIR Butterworth 56.5 69.5 71.33

BPF 261 244 238

EWF 323 320 368

ARF 252.16 263 269.33

JPEG SAMPLE 205 206 252.16

MESA 78.5 86 109.33

FIR 136 147 122.66

MPEG MMV 212 227 213.66

89

Table 7.4 Comparison of convergence time (ms) with respect to

parameter "b"

Benchmark b(1) b(2) b(3) b(4)

IIR

Butterworth
26.166 23.5 26 28.5

BPF 78.33 121.66 78 84.166

EWF 115.5 116.166 117 121.66

ARF 129.5 127 124.33 157.33

JPEG

SAMPLE
80.166 80.5 86.5 73.166

MESA 38.166 39 41 42

FIR 80.166 73.66 86.5 90.33

MPEG MMV 162.5 100.5 89 176

Table 7.3 Comparison of exploration time (ms) with respect to

parameter "b"

Benchmark b(1) b(2) b(3) b(4)

IIR Butterworth 55.5 56.5 60.166 56.833

BPF 200 261 195.166 205.5

EWF 328.66 323 316.66 313.66

ARF 274 252 251.83 287

JPEG SAMPLE 207.33 205.16 228.33 205.15

MESA 76.833 78.5 79.66 82.83

FIR 149.33 136 147.16 153

MPEG MMV 275.66 212.66 199 288

90

decreased from 2.5 to 0.5 and value of b2 is increased from 0.5 to 2.5 with time. Formally,

value of b1 and b2 are evaluated as:

1 1 1 1()f i i

t
b b b b

T
  

2 2 2 2()f i i

t
b b b b

T
  

Where b1 is current acceleration coefficient, b2 is current social acceleration coefficient, b1i

is initial cognitive acceleration coefficient = 2.5, b1f final cognitive acceleration coefficient

= 0.5, b2i is initial social acceleration coefficient =0.5, b2f is final social acceleration

coefficient =2.5,‘t’ is current iteration, and ‘T’ is total no of iterations.

In case of constant value, the value of cognitive coefficient and social coefficient are set as a

constant value equal to 2 (b1=2, b2=2) during the exploration process (as concluded from

previous section). Reason behind this setting is to investigate the effect of a constant and

same value of acceleration coefficients which aims to maintain equal balance between

cognitive effect and social effect during the entire design space exploration process.

As evident from Table 7.5 and Table 7.6, for all benchmarks the PSO based DSE’s

convergence time and exploration time is better with constant value of acceleration

coefficient (equal to 2) as compared to time varying acceleration coefficient. Reason behind

this is the constant and equal value of acceleration coefficients during the entire exploration

Figure 7.2 Comparison of exploration runtime
w.r.t ‘b’

0

50

100

150

200

250

300

350

E
x
p

lo
ra

ti
o

n
 R

u
n

ti
m

e
(m

s)

Comparison of "b"

b(1)

b(2)

b(3)

b(4)

Figure 7.1 Comparison of convergence runtime

w.r.t ‘b’

0

20

40

60

80

100

120

140

160

180

200

C
o

n
v
er

g
en

ce
 t

im
e

(m
s)

Comparison of "b"

b(1)

b(2)

b(3)

b(4)

91

process gives equal weightage to the social component and cognitive component (from the

beginning of exploration) thereby reducing the convergence and exploration time. Further, as

it has been observed during experiment that particles tend to converge to optimal early

(owing to lesser diversity in candidate population), therefore the effect of time varying

acceleration coefficient (where the weightage of social component is slowly increased from

0.5 onwards to a high value) is not dominant in context of DSE. (Note: - if a range between

2.5 to 2 is kept for time varying acceleration coefficient, then this setting of acceleration

coefficients is likely to produce better exploration speed in context of DSE in HLS). For

example, in Table 7.5, in case of ARF, the convergence time is 579.8ms with constant b1 and

b2 while the convergence time is 654.57ms with time varying acceleration coefficient.

Further, in Table 7.6, in case of DCT the exploration time is 690.57ms and 773.14ms for

constant b1, b2 and time varying b1, b2 respectively. It is clearly evident that for multi

objective DSE problem in HLS the constant value of acceleration coefficient (PSO

parameter) provides better result as compared to time varying acceleration coefficient for all

the tested benchmark. It is important to note that in both the cases analyzed viz. a) time

varying acceleration coefficient; b) fixed acceleration coefficient, the PSO-DSE explores the

same solution set.

Table 7.5 Comparison of convergence time (ms) w.r.t. constant

acceleration coefficient and time varying acceleration

coefficient

Benchmarks Convergence time

(ms)

b1=2, b2=2

(Constant)

Convergence time

(ms)

b1(Decreasing),

b2(Increasing)

IIR

Butterworth

20.0 26.6

ARF 579.8 654.57

DCT 522 566.8

MESA 59.28 75.71

EWF 216.14 229.57

MPEG 447.42 525.0

IDCT 768.57 882.57

BPF 170.57 172.0

JPEG 42.57 55.57

WDF 264.28 288.14

92

7.1.1.3. Swarm size (S)

A large ‘S’ value covers larger number of design points in the design space per iteration, but

a larger number of particles increase the computational complexity per iteration. However, it

should also be noted that using a few number of particles will require a large number of

iterations during exploration of variances and hence will deteriorate the success rate [49].

During the experimental analysis of selected benchmarks, it was found that the best size of

swarm for proposed MO-PSE is three (i.e. analogues to selecting three diverse initial parents

(or design variances) in evolutionary algorithms) for most of the benchmarks. The results are

shown in Table 7.7 and Table 7.8. As evident from the results, the best balance between

achieving fast exploration and searching optimal solution can be obtained by setting S = 3 for

the tested benchmarks.

7.1.1.4. Stopping criterion (Z)

During experiment two stopping criterion have been tested, described in section 3.2.10. The

first stopping criterion, maximum number of iteration controls the endless process while

second controls the convergence time and exploration time. In worst case MO-PSE reaches

Table 7.6 Comparison of Exploration Time (ms) w.r.t. constant

acceleration coefficient and time varying acceleration coefficient

Benchmarks Exploration

time(ms) b1=2,

b2=2 (Constant)

Exploration time(ms)

b1(Decreasing),

b2(Increasing)

IIR

Butterworth

29.6 33.6

ARF 685.85 757.85

DCT 690.57 773.14

MESA 67.57 85.28

EWF 226.14 242.28

MPEG 505.85 572.71

IDCT 901.85 977.57

BPF 216.14 218.71

JPEG 81.42 103

WDF 273.85 301.28

93

Table 7.7. Comparison of convergence time (milliseconds) with respect

to swarm size (S)

Benchmark S(3) S(5) S(7)

IIR Butterworth 22.5 30.3 34.16

BPF 121.66 104.5 135.83

EWF 116.166 171.66 233.5

ARF 127 177.83 203.33

JPEG SAMPLE 80.5 106.833 132.833

MESA 39 56.16 59

FIR 73.66 84 124

MPEG MMV 100.5 138 220.33

Table 7.8 Comparison of exploration time (milliseconds) with respect

to swarm size (S)

Benchmark S(3) S(5) S(7)

IIR Butterworth 56.5 67.33 81.66

BPF 261 298.5 404.66

EWF 323 502.16 692.66

ARF 252 387.16 504.5

JPEG SAMPLE 205.16 314 428

MESA 78.5 112.83 130.16

FIR 136 183 267

MPEG MMV 212.66 319.166 480.33

94

maximum number of iteration. Both option of second condition have been tested and result

shown in Table 7.9. As apparent from result, the MO-PSE produces the better result in terms

of faster convergence with first stopping criterion (S
1
). For example in Table 7.9, in case of

JPEG Downsample, the convergence time for finding optimal solution is 80.5ms with S
1
,

while 219ms with S
2
. Moreover, in case of MPEG Motion Vector, the convergence time for

finding optimal solution is 100.5ms with S
1
, while 390ms with S

2
.

7.1.2. Comparison of MO-PSE with previous approaches

This subsection will describe comparison of proposed MO-PSE with various previous

approaches [29] and [27]. The MO-PSE is compared with [29],[27] approaches in terms of

following parameters: a) Implementation runtime b) Resource configuration c) Execution

time d) Power and e) Quality of Results (QoR). The QoR is evaluated as:

(7.1)

Where PT, TE, Pmax, Tmax defined in chapter 3. W1 and W2 are equal to 0.5 for giving equal

weightage to power and execution time.

Table 7.9 Comparison of convergence time (ms)

with respect to stopping criterion (S
1
 S

2
)

Benchmarks S
1

S
2

IIR Butterworth 23.5 42.66

BPF 121.66 171.166

EWF 116.166 233.833

ARF 127 984

JPEG SAMPLE
80.5 219

MESA 39 78.5

FIR 73.66 486.5

MPEG MMV 100.5 390

1 2

max max

T EP T
QoR w w

P T
 

95

As describe in eqn. (3.11), φ1 and φ2 are the user specified weightage for power consumption

and execution time. During our experiments, for the proposed MO-PSE, the following

settings were maintained based on the inferences drawn from the obtained results in section

7.1.1: φ1 and φ2 equal to 0.5, the value of ɷ will be linearly decreased between [0.9-0.1],

value of b = 2, swarm size = 3 (indicating three initial solutions), stopping criterion = S
1
 and

M = 100.

7.1.2.1. Comparison with [29]

Table 7.10 and Table 7.11 show the detailed comparison with [29]. As obvious from Table

7.10 and Table 7.11, without compromising the QoR, the exploration speed of proposed MO-

PSE is multiple times higher than [29]. Moreover, the approach presented in [29], fails

(underlined values in Table 7.10) to meet the specified constraint for power with respect to

benchmarks such as IIR Butterworth, MESA, FIR, EWF and MPEG. Besides, the MO-PSE

achieved better QoR (normalized cost function of power and execution time) as compared to

[29] for most of the benchmarks. The average improvement in QoR is more than 10% and

average reduction in exploration runtime is 90% as shown in Table 7.11. For quick

observation, graphical representation of the comparison is given in Fig 7.3 and Fig 7.4

respectively.

7.1.2.2. Comparison with [27]

The proposed approach when compared to [27] achieved increased acceleration in

exploration process as shown in Table 7.12. Besides above, the proposed MO-PSE approach

considers cycle time resulting from initiation interval and latency to create a genuinely

pipelined functional data-path during performance calculation. Therefore, the execution time

(in µs) for the proposed MO-PSE is determined from eqn. (3.10). On the other hand, the

approach presented in [27], does not able to optimize the execution time considerably due to

its inability to create a genuinely pipelined functional data-path. Therefore the total execution

time (function of latency, cycle time, and pipelined data as shown in eqn. 3.10.) does not get

sufficiently optimized for [27]. Thus, for determining of execution time in [27], “N” set of

processing data is multiplied directly with the latency as per:

 . Further, the

proposed MO-PSE directly considers the total power consumption during exploration as

shown in eqn. (3.4). In contrast to MO-PSE, [27] only considers area minimization while

96

optimizing circuit latency (and does not report power values in the paper). Therefore, for the

sake of comparison, we have evaluated the estimated power using [27] for all selected

benchmarks.

With respect to achieved QoR, the MO-PSE produces better solutions in terms of execution

time compared to [27] for all the benchmarks as clearly shown in Table 7.12. For example in

case of IIR Butterworth filter benchmark the optimal resource configuration found 2 (*) and

1(+), the execution time of solution is 220.01 µs and power consumed by optimal solution is

7.01W. On the other hand [27], based on same constraints, yields an optimal resource

configuration which is 4(*), 1(+) with 260 µs execution time and 9.42w power consumption.

Moreover, for MPEG MMV the optimal resource configuration found is 4(*), 1(+) with

Table 7.10 Experimental Result of comparison with [29] for the tested benchmarks

Benchmark

Parameters of comparison

Resource
Configuration

Execution Time
(us)

Power
(W)

MO-PSE [29] MO-PSE [29]
MO-
PSE

[29]

IIR
Butterworth

2(*), 1(+) 4(*), 1(+)
220.01us 120us 7.01W 11.9W

Constraint =300us Constraint =8W

MESA
Horner
Bezier

3(*), 1(+) 3(*), 1(+)
100.1us 100us 9.61W 9.65W

Constraint = 400us Constraint = 8W

ARF 3(*), 1(+) 4(*), 1(+)
520.2us 341us 9.49W 11.9W

Constraint = 600us Constraint = 10W

EWF 2(*), 1(+) 2(*), 4(+)
320us 200us 7.02W 13.1W

Constraint =500us Constraint =8W

FIR 3(*), 1(+) 4(*), 2(+)
220.02us 201us 9.51W 14.01W

Constraint =500us Constraint =11W

MPEG MMV 4(*), 1(+) 5(*), 1(+)
340us 281us 11.9 W 14.4W

Constraint =600us Constraint =12W

BPF 2(*), 1(+) 4(*), 2(+)
500.04us 140us 7.01W 14.0W

Constraint =600us Constraint =12W

JPEG
Downsample

2(*), 4(+) 1(*), 2(+)
140.32us 300us 13.13W 6.57W

Constraint =400us Constraint =10W

97

340µs execution time and the power consumption is 11.9w; while [27] yields 4(*), 2(+) as an

optimal architecture with 480µs execution time and 13.91w power consumption.

Additionally, during experiments it was found out that [27] suffers from power constraint

violation (after estimation) for some selected benchmarks such as IIR, ARF and MPEG

MMV.

Therefore, it can be summarized from Table 7.13 that proposed approach achieved better

QoR more than 34%; the average reduction in exploration time is more than 40% compared

to [27] for the tested benchmarks. For quick observation, graphical representation of the

comparison is shown in Figure 7.3 and Figure 7.4 respectively.

Table 7.11 Comparison of proposed approach with [29] in terms of exploration

time and QoR

 Exploration Time Quality of Result (QoR)

Benchmark

MO-PSE [29] MO-PSE [29]

IIR Butterworth 0.065 sec 20secs 0.43 0.48

MESA Horner
Bezier

0.078 sec 2.30 min 0.361 0.367

ARF 0.252 sec 10.5 min 0.34 0.33

EWF 0.323 sec 10.1 min 0.47 0.63

FIR 0.136 sec 3.20 min 0.27 0.32

MPEG MMV 0.12 sec 6.43 min 0.25 0.26

BPF 0.261 sec 4.33 min 0.46 0.50

JPEG Downsample 0.205 sec 7.59 min 0.36 0.37

 Average Reduction = 99% Average Improvement= 10%

98

Table 7.12 Experimental Result of comparison with [27] for the tested benchmarks

Benchmark

Parameters of comparison

Resource
Configuration

Execution Time
(us)

Power
(W)

MO-PSE [27]
MO-
PSE

[27]
MO-
PSE

[27]

IIR
Butterworth

2(*), 1(+) 3(*), 1(+)
220.01us 260us 7.01W 9.42W

Constraint =300us Constraint =8W

MESA
Horner
Bezier

3(*), 1(+) 2(*), 1(+)
100.1us 620us 9.61W 6.95W

Constraint = 300us Constraint = 8W

ARF 3(*), 1(+) 4(*), 1(+)
520.2us 580us 9.49W 11.8W

Constraint = 600us Constraint = 10W

EWF 2(*), 1(+) 1(*), 1(+)
320us 1180us 7.02W 4.49W

Constraint =500us Constraint =8W

FIR 3(*), 1(+) 2(*), 2(+)
220.02us 540us 9.51W 8.98W

Constraint =500us Constraint =11W

MPEG
MMV

4(*), 1(+) 4(*), 2(+)
340us 480us 11.9 W 13.91W

Constraint =600us Constraint =12W

BPF 2(*), 1(+) 2(*), 2(+)
500.04us 600us 7.01W 8.98W

Constraint =600us Constraint =12W

JPEG
Downsample

2(*), 4(+) 2(*), 1(+)
140.32us 600us

13.13
W

6.524W

Constraint =400us Constraint =10W

99

Table 7.13 Comparison of proposed approach with [27] in terms of exploration time

and QoR

 Exploration Time Quality of Result (QoR)

Benchmark

MO-PSE [27] MO-PSE [27]

IIR Butterworth 0.065 sec 0.099 sec 0.43 0.55

MESA Horner
Bezier

0.078 sec 0.162 sec 0.36 0.60

ARF 0.252 sec 0.343 sec 0.34 0.40

EWF 0.323 sec 0.670 sec 0.47 0.94

FIR 0.136 sec 0.296 sec 0.27 0.48

MPEG MMV 0.12 sec 0.312 sec 0.25 0.32

BPF 0.261 sec 0.421 sec 0.46 0.57

JPEG Downsample 0.205 sec 0.546 sec 0.36 0.62

 Average Reduction = 49.45%
Average Improvement=

34.37%

100

Figure 7.3 Comparison of MO-PSE and [27], [29] in terms of exploration time

Figure 7.4 Comparison of MO-PSE and [27], [29] in terms of QoR

0.01

0.1

1

10

100

1000

E
x

p
lo

ra
ti

o
n

 t
im

e
 (

S
ec

)

Comparison of Exploration time

MO-PSE

[27]

[29]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
o
R

 (
C

o
st

)

Comparison of QoR (Cost)

MO-PSE

[27]

[29]

101

7.1.2.3. Results obtained through proposed approach for conditional

CDFGs

As evident from the Table 7.14, based on the user constraints specified for execution time

and power, the proposed approach has been comprehensively able to meet the specified

constraints and find an optimal result. For example, in case of CDFG1, the explored solution

is 2(*),1(+),1(<), 12(mux),3(demux). Additionally, the explored solution for CDFG1 has

execution time and power of 10.97ms and 0.26mW based on the specified constraint values

of 12ms and 0.30 mW respect

Table 7.14 Results of estimated power and execution time using

proposed approach for the CDFG benchmarks

Note: for proposed approach settings : φ = 0.5, the value of ɷ will be
linearly decreased between [0.9-0.1],value of b = 2, swarm size = 3, M

= 100, N=1000, £=10 and stopping Criterion: S
1

Bench-
marks

 Execution Time Power

Resources
found

Cons-
traint

Proposed
solution

Cons-
traint

Proposed
solution

CDFG1
2(*),

1(+),1(<)
12ms 10.9ms 0.30mW 0.26mW

CDFG2
3(*),

1(+),1(<)
12ms 10.67ms 0.40mW 0.33mW

CDFG3
2(*),

1(+),1(<)
13ms 11.0ms 0.30mW 0.26mW

102

7.2 Experimental results: the proposed approach ‘Automated

Exploration of Datapath and Unrolling Factor during Power-

Performance Trade-off in Architectural Synthesis Using Multi-

Dimensional PSO Algorithm’

This section describes the experimental results of the proposed approach explained in Chapter

4 and the improvements obtained compared to recent approach [27,42]. The proposed

approach has been implemented in Java and run on Intel core i5-2450M processor,2.5 GHz

with 3MB L3 cache memory and 4GB DDR3 RAM. Multiple benchmarks were chosen for

testing that include DFGs and CDFGs such as autoregressive filter (ARF) [53,57], band-pass

filter (BPF) [5], discrete cosine transformation (DCT) [5, 58], discrete wavelet transformation

(DWT) [5], elliptic wave filter (EWF) [53], fast Fourier transformation (FFT) [56], finite

impulse response (FIR) filter [5,57], IIR Butterworth [53], MESA-Horner Bezier[53], inverse

discrete cosine transformation (IDCT) [5, 58], MPEG motion vectors (MMV) [5, 53], wave

digital filter (WDF) [5], differential equation [56] and test case. Module library describe in

chapter 4 section 4.4.1. The results are divided into three phases.

 Sensitivity analysis of PSO swarm size (S).

(Note: In the proposed algorithm, the convergence time is evaluated @ I’ (the starting

iteration from which onwards the global best particle position remains constant for 10

consecutive iterations) while the exploration time is evaluated @ I = I’ + 10.

 The results obtained through proposed approach.

 Comparison of proposed approach with previous DSE approaches [42][27] in terms of

quality of result (QoR) and exploration run time.

7.2.1. Sensitivity analysis

 The impact of various PSO parameters on proposed design space exploration is

analysed and presented in this section. This experimental analysis assists the designer in

pre-tuning the PSO parameters to an optimum value before performing DSE. In this

subsection analysis of swarm size is presented and inertia weight, acceleration coefficient

and termination criterion not presented because the behaviour of these PSO parameter are

103

similar with section 7.1. Thus, we present only swarm size analysis and other PSO

parameters values taken from section 7.1.

 Swarm Size (S)

 Significant swarm size maintains tradeoff between exploration time and quality of result.

A larger swarm size covers larger design space during one iteration step (with a chance to get

a better result) but simultaneously subjected to increase in exploration time because of larger

number of particles as well as greater computational complexity per iteration. On the

contrary, a smaller swarm size needs more iteration to explore a better result for larger

problem size. Therefore, three different swarm sizes have been analyzed and their impacts on

cost and exploration time are reported (as shown in Table 7.15). At the time of selection, first

priority is given to lower cost solution (higher quality result), followed by the second priority

given to the exploration time. Based on this analysis, the selected swarm sizes for

benchmarks, used as our base line parameter are underlined in Table 7.15. As evident from

Table 7.15, the best tradeoff between fast exploration and searching optimal solution can be

obtained by setting S=3 in case of small benchmarks (with smaller design space) and S=5 or

7 in case of larger benchmark (with larger design space). For example, in case of ARF, S=3

give an optimal solution (cost = -0.159) in minimum exploration run time of 3183 ms. While,

in case of FFT, S=5 gives an optimal solution (cost = -0.232) in minimum exploration time of

85656 ms.

7.2.2. Results obtained through proposed algorithm

As evident from Table 7.16 and 7.17 the solution explored by the proposed approach

comprehensively meets the user defined constraints for power and execution time as well as

minimizes the hybrid cost. For example, in case of EWF, the explored solution 3(*),1(+) has

execution time 39.9 ms and power of 0.61 mW based on the user constraints of 50 ms and 0.7

mW respectively. Moreover, in case of FFT, the explored solution 4(*), 3(+), 2(-), 1(<) and

UF=4 has execution time of 348.48us and power of 1.44mW which satisfies (as well as

minimizes) the given user constraints. It is worthy to mention that the proposed approach also

has the capability to explore multiple optimal solutions as reported in Table 7.16 and 7.17.

 The Figure 7.5 shows the gradual improvement in the global cost, per iteration, over the

lifetime of the algorithm for all the tested benchmarks. The straight line in the curve denotes

104

Table 7.15 Comparison of cost and exploration time with respect to swarm

size (S) for the proposed approach

Benchmark Swarm

Size

Cost Exploration

run time

(milliseconds)

IIR Butterworth

3 -0.135 90

5 -0.135 130

7 -0.135 120

DCT

3 -0.162 2468

5 -0.162 3001

7 -0.162 3006

MESA Horner

3 -0.152 352

5 -0.152 409

7 -0.152 467

ARF

3 -0.159 3183

5 -0.159 3890

7 -0.159 4061

EWF

3 -0.109 508

5 -0.109 528

7 -0.109 580

DWT

3 -0.116 357

5 -0.129 490

7 -0.129 457

MPEG Motion

Vector

3 -0.127 2373

5 -0.127 3706

7 -0.127 3644

IDCT

3 -0.173 2839

5 -0.173 2779

7 -0.173 3184

BPF

3 -0.98 825

5 -0.98 838

7 -0.98 830

JPEG Downsample

3 -0.153 176

5 -0.153 215

7 -0.153 232

WDF

3 -0.153 788

5 -0.153 916

7 -0.153 1009

FIR

3 -0.213 3104

5 -0.213 5100

7 -0.213 5420

FFT

3 -0.225 93990

5 -0.232 85656

7 -0.232 97488

Differential Equation

3 -0.219 21045

5 -0.226 26770

7 -0.226 79279

Testcase

3 -0.241 7831

5 -0.241 11013

7 -0.241 15623

105

no change in last 10 iterations which indicates that the algorithm has converged to its optimal

point.

 The Figure 7.6 shows the variation in power, execution time and number of control steps

(number of control steps needed to execute loop body Cbody) with respect to the unrolling

factor as explored by the global best particle. We analyzed the following three aspects of our

solution found by the proposed algorithm:

a) When a solution with higher UF is explored at unchanged resource combination during

exploration process: In this case, a steady rise in power consumption and # of control steps

are noted with a simultaneous decline in the execution time value. This is due to the fact that

a solution with higher UF (but with same resource combination) will have more code density

(resources) as well as greater number of multiplexers for switching operation resulting in

higher value of power and control steps. However, higher UF will provide a better

performance than its counterpart with lower UF (under same resource constraint). This trend

can be observed in case of differential equation benchmark as shown in Fig 7.6 (a), (b) and

Table 7.16 Results of Estimated Power and Execution Time Using Proposed Approach for

DFGs

Note: for proposed approached baseline parameters: φ1 = φ2 = 0.5, the value of ɷ is
linearly decreased between [0.9-0.4],b = 2, swarm size (S) = 3,5 M = 100, λ=1000, £=10

Benchmark

 Execution Time Power

Resources
found

Constraint
Proposed
solution

Constraint
Proposed
solution

ARF 4(*), 1(+) 75ms 43.74ms 0.8mW 0.65mW

IDCT 3(*), 1(+) 70ms 33.37ms 0.9mW 0.79mW

BPF 4(*), 2(+) 30ms 11.50ms 0.75mW 0.72mW

IIR Filter 2(*), 1(+) 30ms 22.1ms 0.35mW 0.28mW

DCT 4(*), 1(+) 60ms 33.35ms 1.0mW 0.83mW

EWF 3(*), 1(+) 50ms 39.9ms 0.7mW 0.61mW

DWT
4(*), 1(+) 30ms 10.98ms 0.6mW 0.58mW

4(*), 2(+) 30ms 10.97ms 0.6mW 0.57mW

JPEG Down-
sample

2(*), 1(+) 20ms 10.95ms 0.6mW 0.56mW

MPEG MMV
4(*), 1(+) 36ms 33.35ms 1.0mW 0.65mW

6(*), 1(+) 36ms 22.42ms 1.0mW 0.77mW

MESA 3(*), 1(+) 30ms 10.90ms 0.5mW 0.45mW

WDF 4(*), 1(+) 35ms 11.51ms 0.8mW 0.76mW

106

(c) where as the value of UF increases from 2 to 4 under same resource combination of (1(+),

1(-), 6(*), 1(<)), the rise in power and # of CS as well as drop in execution time value are

observed (the change in power, # of CS and execution time are highlighted with labels).

However, for some applications an uncommon situation can also be observed as explained

below:

A solution with significant increase in UF (such as UF = 18) found compared to its previous

solution (UF = 2) may result in a sudden quantum jump in the value of execution time (which

is contrary to the belief) during the exploration process (as shown in Figure 7.6 (f)). The

increase in execution time is due the fact that Testcase is highly sequential in nature whereby

the output of the previous loop is used as an input in the next loop quite early (thereby

lacking the option for parallelization). Besides the logic above, the decrease in resources also

Table 7.17 Results of Estimated Power and Execution Time Using Proposed Approach for

CDFGs

Note: For proposed approached baseline parameters: φ1 = φ2 = 0.5, the value of ɷ is
linearly decreased between [0.9-0.4], b = 2, swarm size (S) = 3,5 M = 100, £=10

Bench-
mark Resources found

Execution Time Power

Constraint
Proposed
solution

Constraint
Proposed
solution

FIR
(I=8)

4(*), 1(+),1(<),
UF=4

60us 24.24us 0.5mW 0.47mW

3(*), 1(+),1(<),

UF=2
60us 46.24us 0.5mW 0.34mW

FFT
(I=16)

4(*), 3(+), 2(-),
1(<), UF=4

800us 348.48us 2.0mW 1.44mW

5(*), 1(+), 1(-),

1(<), UF=4
800us 358.5us 2.0mW 1.51mW

Differential
equation
(I=16)

6(*), 1(+), 1(-),
1(<), UF=2

600us 277.4us 1.2mW 0.73mW

6(*), 1(+), 1(-),

1(<), UF=4
600us 225.6us 1.2mW 0.95mW

Test case
(I=36)

2(*), 1(+),1(<),
UF=1

500us 406us 1.5mW 0.26mW

3(*), 1(+),1(<),

UF=2
500us 401us 1.5mW 0.39mW

107

contributes to the radical increase in execution time. Therefore this condition is highly

application dependent. Further in case of # of CS required, besides the explanation provided

above, the reduction in resources (from 2(+), 4(*), 1(<)) to 2(+), 2(*), 1(<)) also contributes

to its increase (as seen in Fig. 7.6 (i)). However, the increase in power (even with reduced

resources from 2(+), 4(*), 1(<)) to 2(+), 2(*), 1(<)) is anticipated due to heavy sharing of

resources (courtesy of large UF value) resulting in a large multiplexer size being required.

b) When a solution with higher resource combination is found at unchanged value of UF: in

Figure 7.5 Change in cost of global best particle for various benchmarks

Note: Baseline parameter: φ1and φ2=0.5; ω= linearly decreasing [0.9-0.4]; b = 2; S=3, 5;

M=100; λ=1000; £=10

108

such a case, power increases because of augmentation in number of resources. On other hand,

of control steps required and final execution time decreases (i.e. performance improves).

This trend can be observed in case of differential equation, as shown in figure 7.6 (a), (b), (c),

where a new solution with resource combination of(1(+),1(-), 6(*), 1(<)) is explored by the

algorithm compared to previous solution of (1(+), 1(-), 4(*), 1(<)); whereby in both cases the

UF value = 4 did not change while exploration. The power value increases and at the same

time execution time and control steps decreases (highlighted with data labels).

c) In the third case, when solution explored has redundant resources for a problem: In such a

case, decrement in a type of resource has no impact on execution time and control steps but

static power will be steadily decreasing resulting in decrease of total power. For example in

case of test case reported, as shown in fig 7.6 (g), (h), (i), UF = 1 remains constant, but the

resources changes from 1(+),3(*),1(-) to 1(+),2(*),1(-) during exploration. Now for the test

case CDFG (in Fig. 4.4), there are only two multiplication operations which can be

performed in parallel @ UF = 1 (i.e. in the non-unrolled version), hence, one extra multiplier

in the solution becomes redundant when it is not unrolled. Therefore, for some applications at

specific UF values there is no impact of higher resource quantity in the improvement of

performance and control step.

Thus from the empirical evidences obtained it is clearly shown that proposed algorithm

responds as per our anticipated reckoning and is able to perform a simultaneous exploration

of optimal datapath and UF under multi-objective user constraints at minimum exploration

time.

7.2.3. Comparison of proposed approach with [42] and [27]

Table 7.18 and Table 7.19 show the comparative qualitative analysis with [42] and [27] for

DFGs and CDFG benchmarks. For the sake of reporting comparative results, completely

unrolled CDFG (flattened version of the application), is taken as an input for [42] and [27] as

it is not directly handled by them. Therefore, as evident from Table 7.18 and Table 7.19, the

QoR as well as the exploration speed of proposed approach is significantly better than [42]

and [27] respectively. The QoR is determined using eqn. (7.1).

 Therefore, simple calculation revels that proposed approach is simultaneously able to

achieve average improvement in QoR of greater than 28% and 36% as well as average

109

reduction in exploration time of greater than 99% and 94% when compared with [42] and

[27] respectively as shown in Table 7.18 and Table 7.19.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.6 Analysis of power, execution time, control steps of global best particle w.r.t

unrolling factor

277.4

312.48

225.6

0

100

200

300

400

500

600

700

800

1(UF) 2(UF) 2(UF) 4(UF) 4(UF) 4(UF) 5(UF)

E
x

e
c
u

ti
o

n
 T

im
e

Differential Equation

1(+)
1(-)
2(*)
1(<)

1(+)
1(-)
6(*)
1(<)

1(+)
1(-)
7(*)
1(<)

1(+)
1(-)
4(*)
1(<)

1(+)
1(-)
6(*)
1(<)

2(+)
2(-)
7(*)
1(<)

3(+)
2(-)
7(*)
2(<)

I=16
S=5

0.734

0.878

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1(UF) 2(UF) 2(UF) 4(UF) 4(UF) 4(UF) 5(UF)

P
o

w
e
r

Differential Equation

I=16
S=5

1(+)
1(-)
2(*)
1(<)

1(+)
1(-)
6(*)
1(<)

1(+)
1(-)
7(*)
1(<)

1(+)
1(-)
4(*)
1(<)

1(+)
1(-)
6(*)
1(<)

2(+)
2(-)
7(*)
1(<)

3(+)
2(-)
7(*)
2(<)

1734

3906

2820

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1(UF) 2(UF) 2(UF) 4(UF) 4(UF) 4(UF) 5(UF)

C
o

n
tr

o
l

 S
te

p
s

Differential Equation

I=16
S=5

1(+)
1(-)
2(*)
1(<)

1(+)
1(-)
6(*)
1(<)

1(+)
1(-)
7(*)
1(<)

1(+)
1(-)
4(*)
1(<)

1(+)
1(-)
6(*)
1(<)

2(+)
2(-)
7(*)
1(<)

3(+)
2(-)
7(*)
2(<)

0

5

10

15

20

25

30

35

40

45

50

2(UF) 4(UF) 4(UF)

E
x

e
c
u

ti
o

n
 T

im
e

FIR

1(+)
4(*)
1(<)

2(+)
4(*)
1(<)

1(+)
3(*)
1(<)

I=8
S=3

0

0.1

0.2

0.3

0.4

0.5

0.6

2(UF) 4(UF) 4(UF)

P
o

w
e
r

FIR

I=8
S=3

1(+)
4(*)
1(<)

2(+)
4(*)
1(<)

1(+)
3(*)
1(<)

560

565

570

575

580

585

590

595

600

605

610

2(UF) 4(UF) 4(UF)

C
o

n
tr

o
l

S
te

p
s

FIR

I=8
S=3

1(+)
4(*)
1(<)

2(+)
4(*)
1(<)

1(+)
3(*)
1(<)

390

395

400

405

410

415

420

1(UF) 1(UF) 2(UF) 18(UF)

E
x

e
c
u

ti
o

n
 T

im
e

Testcase

1(+)
3(*)
1(<)

1(+)
2(*)
1(<)

2(+)
4(*)
1(<)

2(+)
2(*)
1(<)

I=36
S=3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1(UF) 1(UF) 2(UF) 18(UF)

P
o

w
e
r

Test Case

I=36
S=3

1(+)
3(*)
1(<)

1(+)
2(*)
1(<)

2(+)
4(*)
1(<)

2(+)
2(*)
1(<)

0

2000

4000

6000

8000

10000

12000

1(UF) 1(UF) 2(UF) 18(UF)

C
o

n
tr

o
l

S
te

p
s

Test Case

I=36
S=3

1(+)
3(*)
1(<)

1(+)
2(*)
1(<)

2(+)
4(*)
1(<)

2(+)
2(*)
1(<)

0

100

200

300

400

500

600

2(UF) 4(UF) 4(UF) 5(UF) 5(UF) 8(UF)

E
x
e
c
u

ti
o
n

 T
im

e

FFT

3(+)
1(-)
5(*)

2(<)

1(+)
1(-)
4(*)

2(<)

1(+)
1(-)
4(*)

1(<)

2(+)
1(-)
3(*)

1(<)

3(+)
1(-)
4(*)

1(<)

3(+)
1(-)
6(*)

1(<)

I=16
S=5

0

0.5

1

1.5

2

2.5

3

2(UF) 4(UF) 4(UF) 5(UF) 5(UF) 8(UF)

P
o

w
e
r

FFT

I=16
S=5

3(+)
1(-)
5(*)

2(<)

1(+)
1(-)
4(*)

2(<)

1(+)
1(-)
4(*)

1(<)

2(+)
1(-)
3(*)

1(<)

3(+)
1(-)
4(*)

1(<)

3(+)
1(-)
6(*)

1(<)

0

1000

2000

3000

4000

5000

6000

7000

2(UF) 4(UF) 4(UF) 5(UF) 5(UF) 8(UF)

C
o

n
tr

o
l

S
te

p
s

FFT

3(+)
1(-)
5(*)

2(<)

1(+)
1(-)
4(*)

2(<)

1(+)
1(-)
4(*)

1(<)

2(+)
1(-)
3(*)

1(<)

3(+)
1(-)
4(*)

1(<)

3(+)
1(-)
6(*)

1(<)

110

Table 7.18 Comparison of proposed approach with [42] in terms of exploration run time

and QoR

Benchmark

Resource combination
Exploration

Runtime
QoR (cost)

Proposed
approach

[42]
Proposed
approach

(sec)

[42]
(Min)

Proposed
approach

[42]

IIR Filter 2(*),1(+) 1(*),1(+) 0.09 1.30 0.46 0.72

DCT 4(*),1(+) 2(*),2(+) 2.46 7.59 0.44 0.52

MESA

Horner
3(*),1(+) 2(*),1(+) 0.352 2.12 0.46 0.50

EWF 3(*),1(+) 1(*),1(+) 0.508 13.09 0.59 0.81

DWT 4(*),2(+) 2(*),1(+) 0.457 3.02 0.48 0.56

ARF 4(*),1(+) 2(*),1(+) 3.183 5.16 0.43 0.49

MPEG MMV 4(*),1(+) 3(*),1(+) 2.373 5.45 0.32 0.39

IDCT 3(*),1(+) 1(*),1(+) 2.779 14.30 0.44 0.75

BPF 4(*),2(+) 3(*),2(+) 0.825 5.4 0.51 0.63

JPEG

Downsample
2(*),1(+) 1(*),2(+) 0.176 2.46 0.43 0.56

WDF 4(*),1(+) 2(*),1(+) 0.788 7.50 0.48 0.57

FIR

4(*),

1(+),1(<),

UF=4

3(*),

1(+),1(<),

UF=8

3.10 4.31 0.35 0.41

FFT
4(*), 3(+), 2(-

), 1(<), UF=4

3(*), 2(+),

1(-), 1(<),

UF=16

85.656 >1hr 0.28 0.60

Differential

equation

6(*), 1(+), 1(-

), 1(<), UF=2

4(*), 1(+),

2(-), 1(<),

UF=16

26.77 >1hr 0.24 0.52

Test case

2(*),

1(+),1(<),

UF=1

2(*),

4(+),1(<),

UF=36

7.831 >1hr 0.29 0.78

Average decrement in exploration run
time = 99.25%

Average reduction in cost = 28.88%

111

Table 7.19 Comparison of proposed approach with [27] in terms of exploration run time and

QoR

Benchmark

Resource combination
Exploration

Runtime
QoR (cost)

Proposed
approach

[27]
Proposed
approach

(sec)

[27]
(sec)

Proposed
approach

[27]

IIR Filter 2(*),1(+) 3(*),1(+) 0.09 2.13 0.46 0.52

DCT 4(*),1(+) 1(*),1(+) 2.46 13.3 0.44 0.80

MESA Horner 3(*),1(+) 1(*),1(+) 0.352 3.41 0.46 0.75

EWF 3(*),1(+) 1(*),1(+) 0.508 10.3 0.59 0.84

DWT 4(*),2(+) 1(*),1(+) 0.457 4.48 0.48 0.77

ARF 4(*),1(+) 2(*),1(+) 3.183 7.22 0.43 0.50

MPEG MMV 4(*),1(+) 5(*),1(+) 2.373 6.63 0.32 0.35

IDCT 3(*),1(+) 2(*),2(+) 2.779 11.29 0.44 0.55

BPF 4(*),2(+) 2(*),1(+) 0.825 7.7 0.51 0.75

JPEG

Downsample
2(*),1(+) 1(*),1(+) 0.176 8.21 0.43 0.72

WDF 4(*),1(+) 1(*),1(+) 0.788 10.77 0.48 0.85

FIR
4(*), 1(+),1(<),

UF=4

4(*),

1(+),1(<),

UF=8

3.10 5.03 0.35 0.38

FFT
4(*), 3(+), 2(-),

1(<), UF=4

2(*), 1(+),

1(-), 1(<),

UF=16

85.656 1415 0.28 0.70

Differential

equation

6(*), 1(+), 1(-),

1(<), UF=2

3(*), 1(+),

1(-), 1(<),

UF=16

26.77 436 0.24 0.51

Test case
2(*), 1(+),1(<),

UF=1

2(*),

1(+),1(<),

UF=36

7.831 351 0.29 0.87

Average decrement in exploration run
time = 94.50%

Average reduction in cost = 36.58%

112

7.3 Experimental results: the proposed approach ‘Simultaneous

Exploration of Optimal Datapath and Loop Based High level

Transformation during Area-Delay Trade-off in Architectural

Synthesis Using Swarm Intelligence’

This section describes the experimental results of the proposed approach explained in Chapter

5 and the improvements obtained compared to recent approach [27,59]. The proposed

approach has been implemented in Java and run on Intel core i5-2450M processor (2.5 GHz)

with 3MB L3 cache memory and 4GB DDR3 RAM. Multiple benchmarks were chosen for

testing that include DFGs and CDFGs. such as ARF, BPF, DCT, DWT, EWF, FFT, FIR

filter, IIR Butterworth, MESA-Horner Bezier, IDCT, MPEG motion vectors (MMV), WDF,

differential equation and test case. The module library is provided in chapter 5 section 5.3.1.

The results are divided into three phases.

 Sensitivity analysis of various PSO parameters such as swarm size(S) and its impact on

the proposed DSE methodology in terms of cost, exploration time.

 The results obtained through proposed.

 Comparison of proposed approach with previous DSE approaches [27] [59] in term of

quality of result (QoR) and exploration run time achieved.

7.3.1. Sensitivity analysis

 The impact of various PSO parameters on proposed design space exploration is

analysed and presented in this section. This experimental analysis assists the designer in

pre-tuning the PSO parameters to an optimum value before performing DSE.

7.3.1.1. Swarm Size (S)

 Significant swarm size maintains tradeoff between exploration time and quality of result.

A larger swarm size covers larger design space during one iteration step (with a chance to get

a better result) but simultaneously subjected to increase in exploration time because of larger

number of particles as well as greater computational complexity per iteration. On the

contrary, a smaller swarm size needs more iteration to explore a better result for larger

problem size. Therefore, three different swarm sizes have been analyzed and their impacts on

113

Table 7.20 Comparison of cost and exploration time with respect to

swarm size (S)

Benchmark
Swarm

Size
Cost

Exploration

 Run time

(millisecond)

IIR Butterworth

3 -0.14 65

5 -0.14 85

7 -0.14 93

DCT

3 -0.175 1538

5 -0.175 1675

7 -0.175 1882

MESA

3 -0.132 216

5 -0.132 245

7 -0.132 252

ARF

3 -0.199 1728

5 -0.199 1704

7 -0.199 2086

EWF

3 -0.132 344

5 -0.132 314

7 -0.132 324

DWT

3 -0.169 311

5 -0.169 231

7 -0.169 290

MPEG

3 -0.88 1593

5 -0.88 1711

7 -0.88 2051

IDCT

3 -0.167 1407

5 -0.167 1330

7 -0.167 1718

BPF

3 -0.93 426

5 -0.93 506

7 -0.93 495

JPEG

Downsample

3 -0.17 107

5 -0.17 103

7 -0.17 148

WDF

3 -0.155 548

5 -0.155 576

7 -0.155 642

FIR

3 -0.223 1866

5 -0.223 2399

7 -0.223 1924

FFT

3 -0.224 39999

5 -0.23 91888

7 -0.23 125548

Differential eqn

3 -0.197 14704

5 -0.222 44245

7 -0.222 56784

Testcase

3 -0.107 5120

5 -0.107 5157

7 -0.107 8145

114

cost and exploration time are reported (as shown in Table 7.20). At the time of selection, first

priority is given to lower cost solution (higher quality result), followed by the second priority

given to the exploration time. (Note:-based on this analysis, the selected swarm sizes for

benchmarks used as our base line parameter are underlined.)

As evident from Table 7.20, the best tradeoff between fast exploration and searching optimal

solution can be obtained by setting S=3 in case of small benchmarks (with smaller design

space) and S=5 or 7 in case of larger benchmark (with larger design space). For example, in

case of MESA, S=3 give an optimal solution (cost = -0.132) in minimum exploration run

time of 216ms. However, in case of FFT, S=5 give an optimal solution with least cost/best

quality (cost = -0.23) in minimum exploration time of 91888 ms.

7.3.2. Results obtained through proposed algorithm

As evident from Table 7.21 and 7.22 the solution explored by the proposed approach

comprehensively meets the user defined constraints for area and execution time as well as

minimizes the hybrid cost. For example, in case of DCT, the explored solution 4(*),1(+) has

execution time 33356us and area of 28140au based on the user constraints of 60000us and

35000au respectively. Moreover, in case of FIR, the explored solution 4(*), 1(+), 1(<) and

UF=4 has execution time of 24.24us and area of 16184au which satisfies (as well as

minimizes) the given user constraints. (Note 1: that, since PSO is a parallel evolutionary

algorithm, where multiple particles participate in exploration process therefore, it assures

escaping the local optima. Moreover, inclusion of proposed mutation strongly reduces any

chance of local optimal convergence. Further, the solutions obtained for the tested

benchmarks are real optimal solutions in most of the cases (except FFT) which can be

verified by comparing with the golden solutions found by exhaustive analysis. (Note 2:-The

proposed approach also has the capability to explore multiple optimal solutions as reported

in Table 7.21 and 7.22).

 The Figure 7.7 shows the variation in area, execution time and number of control steps

(number of control steps needed to execute loop body Cbody) with respect to the unrolling

factor. (Note:- the corresponding resource combination for respective UFs are also indicated

below the X axis).We analyzed the following three aspects of our solution found by the

proposed algorithm:

a) When a solution with higher UF is found at unchanged resource combination during

exploration process: In this case, a steady rise in area and # of control steps are noted with a

115

simultaneous decline in the execution time value. This is due to the fact that a solution with

higher UF (but with same resource combination) will have more code density (resources) as

well as greater number of multiplexers for switching operation resulting in higher value of

area and control steps. However, higher UF will provide a better performance than its

counterpart with lower UF (under same resource constraint). This trend can be observed in

case of differential equation benchmark as shown in Figure 7.7 (a), (b) and (c) where as the

value of UF increases from 2 to 4 under same resource combination of (1(+), 1(-), 4(*), 1(<)),

the rise in area and # of CS as well as drop in execution time value are observed.

b) When a solution with higher resource combination is found at unchanged value of UF: in

such a case, area increases because of augmentation in number of resources. On other hand,#

of control steps required and final execution time decreases (i.e. performance improves). This

trend can be observed in case of differential equation, as shown in Figure 7.7 (a), (b), (c), a

new solution with resource combination of (1(+),1(-), 4(*), 1(<)) is explored by the algorithm

compared to previous solution of (1(+), 1(-), 2(*), 1(<)); whereby in both cases the UF = 4

did not change while exploration. The area value increases and at the same time execution

time and control steps decreases.

Table 7.21 Results of Estimated Area and Execution Time Using Proposed

Approach for DFGs
Note: for proposed approached baseline parameters : φ1 = φ2 = 0.5,

the value of ɷ will be linearly decreased between [0.9-0.1],value of b =
2, swarm size = 3,5 M = 100, λ=1000, £=10

Bench-
mark

 Area (au) Execution Time(us)

Resources
found

Const
raint

Proposed
solution

Const
raint

Proposed
solution

ARF 4(*),1(+) 30000 22092 75000 43741

IDCT 3(*),1(+) 30000 26810 70000 33377.8

BPF 4(*),2(+) 25000 24500 30000 11507

IIR
Butterwo

rth

2(*),1(+) 12000 9604 30000 22150

DCT 4(*),1(+) 35000 28140 60000 33356

EWF 2(*),1(+) 25000 20944 50000 39969

DWT 4(*),2(+) 22000 19208 30000 10979

4(*),1(+) 22000 19824 30000 10979

JPEG
Downsa

mple

2(*),1(+) 25000 19054 15000 10953

MPEG
MMV

4(*),1(+) 30000 22092 36000 33355

6(*),1(+) 30000 26264 36000 22420

MESA 3(*),1(+) 16000 15092 30000 10979

WDF 4(*),1(+) 27000 25872 35000 11511

116

c) In the third case, when solution explored have redundant resources for a problem. In such a

case, increment in the resources has no impact on execution time and control steps but area

steadily increases. For example in case of FIR reported, as shown in Figure 7.7 (d), (e), (f) at

UF = 4, the resource configuration changes from 2(+),4(*),1(-) to 1(+),4(*),1(-) during

exploration. As shown in CDFG (Figure 5.3) of the FIR, there are no parallel addition

operations being performed in case of UF=2 (hence will be the same for UF=4), therefore,

one extra adder in the solution becomes redundant (Note: A simple observation will reveal

that the input of the adder of next iteration always requires the output from previous loop

iteration, thereby rendering the additions to be sequential in nature). Therefore, no impact of

higher resource number in the improvement of performance and control step can be noted.

 Thus from the empirical evidences obtained it is clearly shown that proposed algorithm

responds as per the theoretical calculation (as well as expectation) and is able to perform a

simultaneous exploration of optimal datapath and UF under multi-objective user constraints

at minimum exploration time.

Table 7.22 Results of Estimated Area and Execution Time Using Proposed

Approach for CDFGs
Note: For proposed approached baseline parameters : φ1 = φ2 = 0.5, the value of
ɷ will be linearly decreased between [0.9 - 0.1],value of b = 2, swarm size = 3,5

M = 100, £=10
Benchmark Area (au) Execution Time (us)

Resources
found

Constrain
t

Proposed
solution

Constrain
t

Proposed
solution

FIR 4(*), 1(+),1(<),
UF=4

18000 16184 60us 24.24

FFT 4(*), 1(+), 1(-),
1(<), UF=4

69000 49588 800us 358.56

5(*), 1(+), 2(-),

1(<), UF=2

69000 34426 800us 498.4

Differential
equation

6(*), 1(+), 1(-),
1(<), UF=2

40000 25032 600us 277.4

4(*), 1(+), 1(-),

1(<), UF=2

40000 20860 600us 360.96

Test case 2(*), 1(+),1(<),
UF=1

20000 8988 500us 406.08

3(*), 1(+),1(<),

 UF=2

20000 13342 500us 401.04

117

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.7 Analysis of area, execution time, control steps of global best particle w.r.t unrolling

factor

0

100

200

300

400

500

600

700

2(UF) 2(UF) 2(UF) 4(UF) 4(UF) 4(UF) 5(UF)

E
x

e
c
u

ti
o

n
 T

im
e

Differential equation

1(+)
1(-)
3(*)
1(<)

1(+)
1(-)
4(*)
1(<)

1(+)
1(-)
2(*)
1(<)

1(+)
2(-)
2(*)
1(<)

1(+)
1(-)
4(*)
1(<)

2(+)
1(-)
4(*)
2(<)

I=16
S=5

1(+)
1(-)
6(*)
1(<)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2(UF) 2(UF) 2(UF) 4(UF) 4(UF) 4(UF) 5(UF)

A
r
e
a

Differential equation

I=16
S=5

1(+)
1(-)
3(*)
1(<)

1(+)
1(-)
4(*)
1(<)

1(+)
1(-)
2(*)
1(<)

1(+)
2(-)
2(*)
1(<)

1(+)
1(-)
4(*)
1(<)

2(+)
1(-)
4(*)
2(<)

1(+)
1(-)
6(*)
1(<)

0

1000

2000

3000

4000

5000

6000

7000

8000

2(UF) 2(UF) 2(UF) 4(UF) 4(UF) 4(UF) 5(UF)

C
o

n
tr

o
l

s
te

p
s

Differential equation

I=16
S=5

1(+)
1(-)
3(*)
1(<)

1(+)
1(-)
4(*)
1(<)

1(+)
1(-)
2(*)
1(<)

1(+)
2(-)
2(*)
1(<)

1(+)
1(-)
4(*)
1(<)

2(+)
1(-)
4(*)
2(<)

1(+)
1(-)
6(*)
1(<)

0

5

10

15

20

25

30

35

40

45

50

4(UF) 4(UF) 4(UF)

E
x

e
c
u

ti
o

n
 T

im
e

FIR

1(+)
4(*)
1(<)

1(+)
2(*)
1(<)

2(+)
4(*)
1(<)

I=8
S=3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

4(UF) 4(UF) 4(UF)

A
r
e
a

FIR

1(+)
4(*)
1(<)

1(+)
2(*)
1(<)

2(+)
4(*)
1(<)

I=8
S=3

0

200

400

600

800

1000

1200

4(UF) 4(UF) 4(UF)

C
o

n
tr

o
l

S
te

p
s

FIR

1(+)
4(*)
1(<)

1(+)
2(*)
1(<)

2(+)
4(*)
1(<)

I=8
S=3

390

395

400

405

410

415

420

1(UF) 1(UF) 2(UF) 18(UF)

E
x

e
c
u

ti
o

n
 T

im
e

Testcase

1(+)
3(*)
1(<)

1(+)
2(*)
1(<)

1(+)
2(*)
1(<)

1(+)
2(*)
1(<)

I=36
S=3

0

10000

20000

30000

40000

50000

60000

1(UF) 1(UF) 2(UF) 18(UF)

A
r
e
a

Test Case

1(+)
3(*)
1(<)

1(+)
2(*)
1(<)

1(+)
2(*)
1(<)

1(+)
2(*)
1(<)

I=36
S=3

0

2000

4000

6000

8000

10000

12000

1(UF) 1(UF) 2(UF) 18(UF)

C
o

n
tr

o
l

S
te

p
s

Test Case

1(+)
3(*)
1(<)

1(+)
2(*)
1(<)

1(+)
2(*)
1(<)

1(+)
2(*)
1(<)

I=36
S=3

0

100

200

300

400

500

600

700

2(UF) 2(UF) 4(UF) 4(UF) 5(UF)

E
x
ec

u
ti

o
n

 T
im

e

FFT

1(+)
3(-)
3(*)

2(<)

1(+)
2(-)
4(*)

2(<)

1(+)
1(-)
2(*)

2(<)

1(+)
1(-)
4(*)

1(<)

3(+)
1(-)
5(*)

2(<)

I=16
S=5

0

10000

20000

30000

40000

50000

60000

70000

2(UF) 2(UF) 4(UF) 4(UF) 5(UF)

A
r
e
a

FFT

I=16
S=5

1(+)
3(-)
3(*)

2(<)

1(+)
2(-)
4(*)

2(<)

1(+)
1(-)
2(*)

2(<)

1(+)
1(-)
4(*)

1(<)

3(+)
1(-)
5(*)

2(<)

0

1000

2000

3000

4000

5000

6000

7000

2(UF) 2(UF) 4(UF) 4(UF) 5(UF)

C
o

n
tr

o
l

S
te

p
s

FFT

1(+)
3(-)
3(*)

2(<)

1(+)
2(-)
4(*)

2(<)

1(+)
1(-)
2(*)

2(<)

1(+)
1(-)
4(*)

1(<)

3(+)
1(-)
5(*)

2(<)

I=16
S=5

118

7.3.3. Comparison of proposed approach with [27] and [59]

Table 7.23 and Table 7.24 shows the comparative qualitative analysis with [27] and [59] for

DFGs and CDFG benchmarks. (Note: - For the sake of reporting comparative results,

completely unrolled CDFG (flattened version of the application), is taken as an input for [27]

and [59] as it is not directly handled by them). As evident from Table 7.23 and Table 7.24,

the QoR as well as the exploration speed of proposed approach is significantly better than

[27] and [59] respectively. The QoR is determined as:

max max

1

2

T EA T
QoR

A T

 
  

 
 (7.2)

Where, the variables Amax and TMax are defined in chapter 5.

Therefore, simple calculation revels that proposed approach is simultaneously able to achieve

average improvement in QoR of greater than 23% and 35% as well as average reduction in

exploration time of greater than 99% and 92% when compared with [59] and [27]

respectively as shown in Table 7.23 and Table 7.24.

119

Table 7.23 Comparison of proposed approach with [27] in terms of exploration run time and

QoR

Benchmark

Resource combination
Exploration

Runtime
QoR (cost)

Proposed
approach

[27]
Proposed
approach

(sec)

[27]
(sec)

Proposed
approach

[27]

IIR

Butterworth
2(*),1(+) 3(*),1(+) 0.065 2.38 0.47 0.52

DCT 4(*),1(+) 1(*),1(+) 1.538 25.5 0.44 0.80

MESA Horner 3(*),1(+) 1(*),1(+) 0.216 4.4 0.45 0.75

EWF 2(*),1(+) 1(*),1(+) 0.314 20.6 0.60 0.84

DWT 4(*),2(+) 1(*),1(+) 0.231 5.9 0.47 0.77

ARF 4(*),1(+) 2(*),1(+) 1.704 11.34 0.43 0.50

MPEG MMV 4(*),1(+) 5(*),1(+) 1.593 12.0 0.33 0.35

IDCT 3(*),1(+) 2(*),2(+) 1.330 21.8 0.43 0.55

BPF 4(*),2(+) 2(*),1(+) 0.426 13.5 0.51 0.76

JPEG

Downsample
2(*),1(+) 1(*),1(+) 0.103 20.6 0.43 0.71

WDF 4(*),1(+) 2(*),1(+) 0.548 22.4 0.49 0.75

FIR

(I=8)

4(*), 1(+),1(<),

UF=4

4(*),

1(+),1(<),

UF=8

1.86 4.23 0.36 0.38

FFT

(I=16)

4(*), 1(+), 1(-),

1(<), UF=4

2(*), 1(+),

1(-), 1(<),

UF=16

91.88 1259 0.29 0.96

Differential

equation

(I=16)

6(*), 1(+), 1(-),

1(<), UF=2

3(*), 1(+),

1(-), 1(<),

UF=16

44.245 322 0.25 0.51

Test case

(I=36)

2(*), 1(+),1(<),

UF=1

2(*),

1(+),1(<),

UF=36

5.12 321 0.29 0.82

Average decrement in exploration run time
W.R.T [27]=92.68 %

Average reduction in cost
W.R.T [27]=35.33 %

120

 Table 7.24 Comparison of proposed approach with [59] in terms of exploration run time

and QoR

Benchmark

Resource combination Exploration Runtime QoR (cost)

Proposed
approach

[59]
Proposed
approach

(sec)
[59] (Min)

Proposed
approach

[59]

IIR

Butterworth
2(*),1(+) 4(*),1(+) 0.065 1.01 0.47 0.48

DCT 4(*),1(+) 4(*),1(+) 1.538 16.5 0.44 0.44

MESA

Horner
3(*),1(+) 1(*),1(+) 0.216 2.4 0.45 0.75

EWF 2(*),1(+) 2(*),2(+) 0.314 7.4 0.60 0.64

DWT 4(*),2(+) 4(*),1(+) 0.231 2.24 0.47 0.476

ARF 4(*),1(+) 3(*),1(+) 1.704 9.11 0.43 0.47

MPEG

MMV
4(*),1(+) 6(*),1(+) 1.593 4.3 0.33 0.33

IDCT 3(*),1(+) 1(*),1(+) 1.330 18.5 0.43 0.74

BPF 4(*),2(+) 4(*),1(+) 0.426 4.2 0.51 0.54

JPEG

Downsampl

e

2(*),1(+) 1(*),1(+) 0.103 2.2 0.43 0.58

WDF 4(*),1(+) 4(*),1(+) 0.548 10.0 0.49 0.48

FIR

(I=8)

4(*),

1(+),1(<),

UF=4

4(*),

1(+),1(<),

UF=8

1.86 3.78 0.36 0.38

FFT

(I=16)

4(*), 1(+),

1(-), 1(<),

UF=4

2(*),1(+),

1(-), 1(<),

UF=16

91.88 >1hr 0.29 0.63

Differential

equation

(I=16)

6(*), 1(+),

1(-), 1(<),

UF=2

4(*), 1(+),

1(-), 1(<),

UF=16

44.245 >1hr 0.25 0.48

Test case

(I=36)

2(*),

1(+),1(<),

UF=1

2(*),

1(+),1(<),

UF=36

5.12 >1hr 0.29 0.70

Average decrement in exploration run
time

W.R.T. [59]= 99.03%

Average reduction in cost

W.R.T. [59]= 23.01%

121

7.4 Experimental results: the proposed approach ‘Swarm Inspired

Exploration of Architecture and Unrolling Factors for Nested Loop

Based Application in Architectural Synthesis’

 This section describes the experimental results of the proposed approach explained in

Chapter 6 and the improvements obtained compared to recent approaches [27,31, 39]. The

proposed approach has been implemented in Java and run on Intel core i5-2450M processor,

2.5 GHz with 3MB L3 cache memory and 4GB DDR3 RAM. Multiple benchmarks were

chosen for testing that include CDFGs with nested loops and single loop [55, 56, 71]. Note-

the CDFGs are generated from the VHDL format of the benchmarks shown in [55, 71]

however generation of CDFG is also possible from high level language (such as C). The

results are divided into two phases. a) The results obtained through proposed approach are

shown in Table 7.25. As evident from Table 7.25 the solution explored by the proposed

approach comprehensively meets the user defined constraints for power and execution time

as well as minimizes the hybrid cost. For example, in case of Autocorrelation, the explored

solution 1(+), 4(*), 1(<) and UF1=1,UF2=8 has execution time of 96.96us and power of

0.65mW which satisfies the given user constraints. The proposed approach also has the

capability to explore multiple optimal solutions as reported in Table 7.25.

 b) Moreover, Table 7.26 and Fig 7.8 and 7.9 show the comparative analysis with [27], [31]

and [39] for CDFGs. As evident from Table 7.26, the QoR of proposed approach is much

better than [27], [31] and [39], simultaneously exploration speed of proposed approach is

multiple times higher than [27], [31] and [39] as shown in Figure 7.9. QoR is determined as

eqn. (7.1):

A simple calculation with w1=0.5 and w2=0.5 revels that proposed approach is

simultaneously able to achieve average improvement in QoR of more than 33% as well as

average decrement in exploration time is more than 34% as shown in Figure 7.8 and Figure

7.9. (Note: - For the sake of comparison, completely unrolled CDFG, is taken as an input

because CDFGs were not directly handled by [27] and [31]). This is because in [27] and [31]

optimal solution were not explored as seen from Table 7.26 (QoR values). Further [27] and

[31] are not capable exploring optimal unrolling factor. Besides above these approaches uses

GA which have exponential time complexity. Moreover, even the approach [39] able to

handle unrolling factor during exploration but required manual intervention to decide

unrolling factor. Thus approach [39] not able to achieve optimal solution (composition of

122

datapath and loop unrolling factor) and it is also clear from the Table 7.26 that our approach

achieve more than 33 % QoR in lesser exploration time (as shown in Figure 7.9). In other

hand our algorithm is able to achieve optimal solution for most of the benchmark and this has

been proved when we compared our results with golden solution found with exhaustive

search method. Besides above these approaches uses EA which has exponential time

complexity and do not have time model to predict delay of solution without physically

unrolling CDFG.

Table 7.25 Results of Estimated Power and Execution Time Using Proposed Approach for

CDFGs

Note: For proposed approached baseline parameters : φ1 = φ2 = 0.5, the value of ɷ will

be linearly decreased between [0.9-0.1],value of b = 2,

swarm size = 3,5 M = 100, £=10

Bench-
mark [55,

5671]

 Power Execution Time

Resources found Constraint
Proposed
solution

Constraint
Proposed
solution

Autocor-
relation

(I1=8,I2= 8)

1(+),4(*), 1(<),
UF1=1,UF2=8

1.25mW 0.65mW 250us 96.96us

1(+),4(*), 1(<),

UF1=1,UF2=4
1.25mW 0.47mW 250us 184.96us

DHMC
(I1=4,I2= 4)

1(+),5(*), 1(<),
UF1=1,UF2=2

3.0mW 0.82mW 600us 363.2us

1(+),4(*), 1(<),

UF1=1,UF2=2
3.0mW 0.81mW 600us 448.96us

FIR
(I= 8)

1(+),4(*), 1(<),
UF=4

0.6mW 0.47mW 40us 24.24us

1(+),3(*), 1(<),

UF=2
0.6mW 0.34mW 40us 46.24us

FFT
(I= 16)

3(+),4(*), 2(-),
1(<), UF=4

1.5mW 1.44mW 500us 348.48us

1(+),5(*), 1(-),

1(<), UF=4
1.5mW 1.51mW 500us 358.5us

Differential
equation
(I= 16)

1(+),6(*), 1(-),
1(<), UF=2

1.5mW 0.73mW 400us 277.4us

1(+),6(*), 1(-),

1(<), UF=4
1.5mW 0.95mW 400us 225.6us

123

Table 7.26 Comparison of proposed approach with [27] , [31] and [39] in terms solution found

and respective QoR

Bench-
mark [55,

56, 71]

Resource combination QoR (cost)

PSDSE [27] GA [31]WSPSO [39]EA PSDSE [27] [31] [39]

Autocor-

relation

1(+),4(*),

1(<), UF1=1,

UF2=8

1(+),5(*),

1(<),

UF1=8,

UF2=8

1(+),4(*),

1(<),

UF1=8,

UF2=8

4(+),4(*),

4(<),

UF1=2,

UF2=2

0.15 0.38 0.37 0.28

DHMC

1(+),5(*),

1(<), UF1=1,

UF2=2

2(+),3(*),

1(<),

UF1=4,

UF2=4

1(+),4(*),

1(<),

UF1=4,

UF2=4

4(+),12(*),

4(<),

UF1=2,

UF2=2

0.16 0.46 0.49 0.29

FIR

1(+),

4(*),1(<),

UF=4

1(+),

4(*),1(<),

UF=8

1(+),

3(*),1(<),

UF=8

2(+),

2(*),2(<),

UF=2

0.35 0.38 0.40 0.49

FFT

3(+),

4(*),2(-),

1(<), UF=4

1(+),

2(*),1(-),

1(<),

UF=16

1(+),

4(*),1(-),

1(<), UF=16

4(+),

8(*),4(-),

4(<), UF=4

0.28 0.70 0.56 0.34

Diffe-

rential

equation

1(+),

6(*),1(-),

1(<), UF=2

1(+),3(*),1(

-), 1(<),

UF=16

1(+),

5(*),1(-),

1(<), UF=16

4(+),

12(*),4(-),

4(<), UF=4

0.24 0.51 0.52 0.38

Average reduction in cost
w.r.t [27]= 51.4% w.r.t. [31]= 49.57% w.r.t. [39]= 33.74%

124

Figure 7.8 Comparison of PSDSE with [39], [31], and [27] in term of QoR

Figure 7.9 Comparison of PSDSE with [39], [31], and [27] in term of

Exploration time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Autocorreln DHMC FIR FFT Diff eqn

Q
o
R

 (
C

o
st

)

Comparison of QoR (Cost)

PSDSE [39] EA [31] WSPSO [27]GA

0.1

1

10

100

1000

10000

100000

1000000

Autocorreln DHMC FIR FFT Diff eqn

E
x
p

lo
r
a
ti

o
n

 t
im

e
(s

e
c)

Comparison of Exploration Time

PSDSE [39] EA [31] WSPSO [27]GA

125

Chapter 8

Conclusion and Future work

8.1. Conclusion

This thesis presented different methodologies for automated multi-objective design space

exploration problem in high level synthesis for application specific computing. Each

methodology is unique based on class of application handled by approach and design metrics

optimized by the approach. The main aim was faster exploration of good quality solutions. In

order to achieve this goal, many milestones were crossed, listed as follows:

1. Proposed a novel particle swarm optimization based methodology for design space

exploration of datapath during power-performance trade-off for data intensive

application specific processor in high level synthesis. The proposed methodology is

49% faster and produced 10% better quality solutions as compared to previous GA

approaches.

2. Proposed an automated framework for simultaneous exploration of datapath and loop

unrolling factor during power performance duality in high level synthesis. The

framework utilized the exploration capability of swarm intelligence to solve this

twofold problem. The proposed framework produced average 28% better solutions

with 94% lesser exploration time as compared to previous GA approaches.

3. Proposed a novel methodology for automated design space exploration of datapath

and unrolling factor during area-delay trade-off using hyper dimensional particle

swarm encoding in high level synthesis for application specific computing. As

compared to previous GA approaches the proposed methodology produced average

23% better solutions with 92% faster exploration speed.

4. Proposed a novel framework for automated exploration of datapath and unrolling

factors for nested loop based applications during power performance trade-off in high

level synthesis. The proposed framework explored average 33% better solutions with

34% higher speed compared to previous approaches.

5. Proposed a novel power and cost model for assessment of design points.

126

6. Proposed an execution time estimation model for single loop based applications based

on resource constraints without tediously unrolling loop.

7. Proposed a delay estimation model for nested loop based applications based on

resource constraints without necessity of complete loop unrolling.

8. Proposed an adaptive end terminal perturbation algorithm to handle boundary

outreach problem.

9. Presented a novel sensitivity analysis of PSO parameters for solving design space

exploration problem in high level synthesis. This sensitivity analysis helps to the

designer for pre-tuning the control parameters of PSO for getting high quality solution

in lesser exploration time.

10. Presented an analysis of power/area, performance, control step based on unrolling

factors in case of control and data intensive application.

Therefore, this thesis presented multiple design space exploration methodologies in high level

synthesis, which have capability to handle data intensive applications as well as data and

control intensive applications. The proposed methodologies can efficiently apply for

exploration problem in HLS for any user criterion. Moreover, the execution time models (for

control and data intensive application) presented in the thesis can widely applicable to

determine execution time of an application in design space exploration process.

8.2. Future work

a) The area of design space exploration and high level synthesis is still required more

research efforts for making high level synthesis as efficient as RTL synthesis, logic synthesis.

There are various aspects which required more attention by the researcher such as handling

reliability and temperature during design space exploration in high level synthesis. During

handling temperature, the investigation required to handle two aspects a) reducing the peak

temperature of the design which directly impact on the reliability of the design b) reduce the

average temperature of the circuit which impacts on the leakage power and also impacts on

the cooling and packaging of the circuit. These algorithms can be integrated with existing

high level synthesis techniques for generation of optimized RTL circuits. This will allow

system architects to design systems based on performance-temperature trade-offs.

b) Another aspect of the design space exploration problem is, reducing the exploration time

for finding the final design architecture, and thereby accelerates the exploration process.

127

Further research can introduce another approach which required lesser evaluation of

architectural variants to be during the exploration process for searching a high quality

solution. Reducing the analysis of the architectural variants directly reduces the exploration

time which in turn impacts the design time and hence will help in faster designing without

compromising quality of the solution.

c) In order to improving quality of solution, further research on high level synthesis to

incorporate lower level information such as gate level or physical level information during

DSE for improving accuracy of evaluation models which directly effect on the quality of

solution.

128

References

[1] Coussy, P., & Morawiec, A. (2008). High-Level Synthesis: From Algorithm to Digital

Circuits. Springer, Berlin, Germany.

[2] Micheli, G. D. (1994). Synthesis and optimization of digital circuits. McGraw-Hill

Higher Education. New York.

[3] Dutt, N. D., Wu, A. C. H., & Lin, S. Y. L. (1992). High-level synthesis: introduction to

chip and system design, Kluwer Academic Publishers, Norwell, MA, USA.

[4] Weste, N., & Harris, D. (2010). CMOS VLSI Design: A Circuits And Systems

Perspective Author: Neil Weste, David Harris, Publisher: Addison We, pp. 1-5.

[5] Mohanty, S. P., Ranganathan, N., Kougianos, E., & Patra, P. (2008). Low-power high-

level synthesis for nanoscale CMOS circuits. Springer Science & Business Media.

[6] ITRS. International Technology Roadmap for Semiconductors, 2013.

http://www.itrs.net/Links/2013ITRS/Home2013.htm.

[7] Parker, A., Thomas, D., Siewiorek, D., Barbacci, M., Hafer, L., Leive, G., & Kim, J.

(1979, June). The CMU design automation system: An example of automated data path

design. In Proceedings of the 16th Design Automation Conference, pp. 73-80.

[8] Director, S. W., Parker, A. C., Siewiorek, D. P., & Thomas Jr, D. (1981). A design

methodology and computer aids for digital VLSI systems. IEEE Transactions on

Circuits and Systems, 28(7), pp. 634-645.

[9] Paulin, P. G., Knight, J. P., & Girczyc, E. F. (1986, July). HAL: a multi-paradigm

approach to automatic data path synthesis. In Proceedings of the 23rd ACM/IEEE

Design Automation Conference, pp. 263-270.

[10] De Micheli, G., & Ku, D. C. (1988, June). HERCULES-a system for high-level

synthesis. In Proceedings of the 25th ACM/IEEE Design Automation Conference, pp.

483-488.

[11] Yassa, F. F., Jasica, J. R., Hartley, R. I., & Noujaim, S. E. (1987). A silicon compiler

for digital signal processing: Methodology, implementation, and

applications. Proceedings of the IEEE, 75(9), pp. 1272-1282.

[12] Coussy, P., Gajski, D. D., Meredith, M., & Takach, A. (2009). An introduction to high-

level synthesis. IEEE Design & Test of Computers, (4), pp. 8-17.

http://www.itrs.net/Links/2013ITRS/Home2013.htm

129

[13] Parker, A. C., Pizarro, J. T., & Mlinar, M. (1986, July). MAHA: a program for datapath

synthesis. In Proceedings of the 23rd ACM/IEEE Design Automation Conference pp.

461-466.

[14] Paulin, P. G., & Knight, J. P. (1989). Force-directed scheduling for the behavioral

synthesis of ASICs. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 8(6), pp. 661-679.

[15] Knapp, D. W. (1996). Behavioral synthesis: digital system design using the synopsys

behavioral compiler. Prentice-Hall, Inc.

[16] Elliott, J. P. (1999). Understanding behavioral synthesis: A practical guide to high-level

design. Springer Science & Business Media.

[17] Kress, R., Pyttel, A., & Sedlmeier, A. (2000). FPGA-based prototyping for product

definition. In Field-Programmable Logic and Applications: The Roadmap to

Reconfigurable Computing, Springer Berlin Heidelberg, pp. 78-86.

[18] Gupta, S., Dutt, N., Gupta, R., & Nicolau, A. (2004, February). Loop shifting and

compaction for the high-level synthesis of designs with complex control flow.

In Proceedings of the Design, Automation and Test in Europe Conference and

Exhibition, 2004. pp. 114-119.

[19] Villarreal, J., Park, A., Najjar, W., & Halstead, R. (2010, May). Designing modular

hardware accelerators in C with ROCCC 2.0. In Proceedings of the 18th IEEE Annual

International Symposium on Field-Programmable Custom Computing Machines

(FCCM), pp. 127-134.

[20] Coussy, P., Chavet, C., Bomel, P., Heller, D., Senn, E., & Martin, E. (2008). GAUT: A

high-level synthesis tool for DSP applications. In High-Level Synthesis From

Algorithm to Digital Circuits, Springer Netherlands, pp. 147-169.

[21] Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A., Anderson, J. H., &

Czajkowski, T. (2011, February). LegUp: high-level synthesis for FPGA-based

processor/accelerator systems. In Proceedings of the 19th ACM/SIGDA international

symposium on Field programmable gate arrays, pp. 33-36.

[22] Pilato, C., Loiacono, D., Ferrandi, F., Lanzi, P. L., & Sciuto, D. (2008, June). High-

level synthesis with multi-objective genetic algorithm: A comparative encoding

analysis. In Proceedings of the IEEE World Congress on Computational Intelligence.

pp. 3334-3341.

130

[23] Ferrandi, F., Lanzi, P. L., Loiacono, D., Pilato, C., & Sciuto, D. (2008, April). A multi-

objective genetic algorithm for design space exploration in high-level synthesis.

In Proceedings of the IEEE Computer Society Annual Symposium on VLSI, 2008.

ISVLSI'08. pp. 417-422.

[24] Yang, H., Wang, C., & Du, N. (2012). High Level Synthesis using Learning Automata

Genetic Algorithm. Journal of Computers, 7(10), pp. 2534-2541.

[25] Torbey, E., & Knight, J. (1998, May). High-level synthesis of digital circuits using

genetic algorithms. In Proceedings of the IEEE International Conference

on Evolutionary Computation, IEEE World Congress on Computational Intelligence,

pp. 224-229.

[26] Torbey, E., & Knight, J. (1998, August). Performing scheduling and storage

optimization simultaneously using genetic algorithms. In Proceedings of the Midwest

Symposium on Circuits and Systems, pp. 284-287.

[27] Krishnan, V., & Katkoori, S. (2006). A genetic algorithm for the design space

exploration of datapaths during high-level synthesis. IEEE Transactions on

Evolutionary Computation,10(3), pp. 213-229.

[28] Mandal, C., Chakrabarti, P. P., & Ghose, S. (2000). GABIND: a GA approach to

allocation and binding for the high-level synthesis of data paths. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 8(6), pp. 747-750.

[29] Sengupta, A., Sedaghat, R., & Sarkar, P. (2012). A multi structure genetic algorithm for

integrated design space exploration of scheduling and allocation in high level synthesis

for DSP kernels, Swarm and Evolutionary Computation, 7, pp. 35-46.

[30] Palermo, G., Silvano, C., & Zaccaria, V. (2008, September). Discrete particle swarm

optimization for multi-objective design space exploration. In Proceedings of the 11th

EUROMICRO Conference on Digital System Design Architectures, Methods and

Tools, pp. 641-644.

[31] Ram, D. S., Bhuvaneswari, M. C., & Prabhu, S. S. (2012). A novel framework for

applying multi objective GA and PSO based approaches for simultaneous area, delay,

and power optimization in high level synthesis of datapaths. VLSI design, 2012, pages-

12.

[32] Sengupta, A., Sedaghat, R., & Zeng, Z. (2010). A high level synthesis design flow with

a novel approach for efficient design space exploration in case of multi-parametric

optimization objective. Microelectronics Reliability, 50(3), pp. 424-437.

131

[33] Liu, H. Y., & Carloni, L. P. (2013, May). On learning-based methods for design-space

exploration with high-level synthesis. In Proceedings of the 50th Annual Design

Automation Conference, pp. 1-7.

[34] McFarland, M. C. (1986, July). Using bottom-up design techniques in the synthesis of

digital hardware from abstract behavioral descriptions. In Proceedings of the 23rd

ACM/IEEE Design Automation Conference, pp. 474-480.

[35] Sengupta, A., Sedaghat, R., & Zeng, Z. (2011). Rapid design space exploration by

hybrid fuzzy search approach for optimal architecture determination of multi objective

computing systems. Microelectronics Reliability, 51(2), pp. 502-512.

[36] Haubelt, C., & Teich, J. (2003, January). Accelerating design space exploration using

pareto-front arithmetics. In Proceedings of the Asia and South Pacific Design

Automation Conference, pp. 525-531.

[37] Wang, G., Gong, W., DeRenzi, B., & Kastner, R. (2006, July). Design space

exploration using time and resource duality with the ant colony optimization. In

Proceedings of the 43rd annual Design Automation Conference, pp. 451-454.

[38] Schafer, B. C., & Wakabayashi, K. (2010). Design space exploration acceleration

through operation clustering. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 29(1), pp. 153-157.

[39] Holzer, M., Knerr, B., & Rupp, M. (2007, July). Design space exploration with

evolutionary multi-objective optimisation. In Proceedings of the International

Symposium on Industrial Embedded Systems, pp. 126-133.

[40] Zhang, Z., Fan, Y., Jiang, W., Han, G., Yang, C., & Cong, J. (2008). AutoPilot: A

platform-based ESL synthesis system. In High-Level Synthesis: From Algorithm to

Digital Circuits, Springer Netherlands, pp. 99-112.

[41] Haubelt, C., Schlichter, T., Keinert, J., & Meredith, M. (2008, June).

SystemCoDesigner: automatic design space exploration and rapid prototyping from

behavioral models. In Proceedings of the 45th annual Design Automation

Conference, pp. 580-585.

[42] Sengupta, A., & Sedaghat, R. (2011, March). Integrated scheduling, allocation and

binding in High Level Synthesis using multi structure genetic algorithm based design

space exploration. In Proceedings of the 12th International Symposium on Quality

Electronic Design (ISQED), pp. 1-9.

132

[43] Bollaert, T. (2008). Catapult synthesis: a practical introduction to interactive C

synthesis. In High-Level Synthesis: From Algorithm to Digital Circuits, Springer

Netherlands, pp. 29-52.

[44] Meredith, M. (2008). High-level SystemC synthesis with forte's cynthesizer. InHigh-

Level Synthesis: From Algorithm to Digital Circuits, Springer Netherlands, pp. 75-97.

[45] Wakabayashi, K., & Schafer, B. C. (2008). “All-in-C” Behavioral Synthesis and

Verification with CyberWorkBench. In High-Level Synthesis: From Algorithm to

Digital Circuits, Springer Netherlands, pp. 113-127.

[46] Feist, T. (2012). Vivado design suite. White Paper, Xilinx

[47] Cadence C-to-Silicon White Paper, 2008

http://www.cadence.com/rl/resources/technical_papers/c_to_silicon_tp.pdf

[48] Kennedy, J. (1995). Particle swarm optimization. In Proceedings of the IEEE

International Conference on Neural Networks, pp. 1942-1948.

[49] Engelbrecht A.P., (2005) “fundamental of computational swarm intelligence”, John

Wiley and sons limited, England.

[50] Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis

and parameter selection. Information processing letters, 85(6), pp. 317-325.

[51] Ratnaweera, A., Halgamuge, S., & Watson, H. C. (2004). Self-organizing hierarchical

particle swarm optimizer with time-varying acceleration coefficients. IEEE

Transactions on Evolutionary Computation, 8(3), pp. 240-255.

[52] Reynders, N., & Dehaene, W. (2011, November). A 190mV supply, 10MHz, 90nm

CMOS, pipelined sub-threshold adder using variation-resilient circuit techniques.

In Proceedings of the IEEE Asian Solid State Circuits Conference (A-SSCC), pp. 113-

116.

[53] University of California, Santa Barbara, Express Benchmarks:

http://express.ece.ucsb.edu/benchmark/.

[54] Kumar, A. K., Somasundareswari, D., Duraisamy, V., & Pradeepkumar, M. (2010).

Low power multiplier design using complementary pass-transistor asynchronous

adiabatic logic. International Journal on Computer Science and Engineering, 2(07), pp.

2291-2297.

[55] Texas Instruments: ’Benchmarks - C674x Low Power DSP - TI.Com’, Aug 2014,

http://www.ti.com/lsds/ti/dsp/c6000dsp/c674x/benchmarks.page.

[56] Namballa, R. K. (2003). CHESS: A tool for CDFG extraction and high-level synthesis

of VLSI systems (Doctoral dissertation, University of South Florida).

133

[57] Elgamel, M., & Bayoumi, M. A. (2002). On low power high level synthesis using

genetic algorithms. In Proceedings of the 9th International Conference on Electronics,

Circuits and Systems, pp. 725-728.

[58] Nikara, J., Takola, J., Akopian, D., & Saarinen, J. (2001, May). Pipeline architecture

for DCT/IDCT. In Proceedings of the IEEE International Symposium on Circuits and

Systems, pp. 902-905.

[59] Sengupta, A., Sedaghat, R., Sarkar, P., & Sehgal, S. (2011, May). Integrated

scheduling, allocation and binding in High Level Synthesis for performance-area

tradeoff of digital media applications. In Proceedings of the 24th Canadian Conference

on Electrical and Computer Engineering (CCECE), pp. 533-537.

[60] Pilato, C., Loiacono, D., Ferrandi, F., Lanzi, P. L., & Sciuto, D. (2008, June). High-

level synthesis with multi-objective genetic algorithm: A comparative encoding

analysis. In Proceedings of the IEEE Congress on Evolutionary Computation, IEEE

World Congress on Computational Intelligence. pp. 3334-3341.

[61] Chang, Jui-Ming, and Massoud P. (1997) Energy minimization using multiple supply

voltages, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 5(4), pp.

436-443.

[62] Lee, Y.T.; Park, I.C.; Kyung, C.M., (April 1993) Design of compact static CMOS carry

look-ahead adder using recursive output property, Electronics Letters, 29(9), pp.794-

796.

[63] Salman, A., Ahmad I., and Sabah Al-Madani. (2002) Particle swarm optimization for

task assignment problem. Microprocessors and Microsystems, 26(8), pp. 363-371.

[64] Tasgetiren, M. Fatih, Yun-Chia Liang, Mehmet Sevkli, and Gunes Gencyilmaz. (2007)

A particle swarm optimization algorithm for make span and total flow time

minimization in the permutation flow shop sequencing problem." European Journal of

Operational Research 177(3) pp. 1930-1947.

[65] Goldberg, David E., and Robert Lingle. (1985) Alleles, loci, and the traveling salesman

problem, In Proceedings of the first international conference on genetic algorithms and

their applications, pp. 154-159.

[66] Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies.

Journal of statistical physics, 34(5-6), pp. 975-986.

[67] Boeringer, D. W., & Werner, D. H. (2004). Particle swarm optimization versus genetic

algorithms for phased array synthesis. IEEE Transactions on Antennas and

Propagation, 52(3), pp. 771-779.

134

[68] Jarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm

optimization for solving multi-mode resource-constrained project scheduling problems.

Applied Mathematics and Computation, 195(1), pp. 299-308.

[69] Zheng, Y. L., Ma, L. H., Zhang, L. Y., & Qian, J. X. (2003, November). On the

convergence analysis and parameter selection in particle swarm optimization. In

Proceeding of the IEEE International Conference on Machine Learning and

Cybernetics, pp. 1802-1807.

[70] Wang, J., and Su, B. (1998, May). Software pipelining of nested loops for real-time

DSP applications. In Proceedings of the Acoustics, Speech and Signal Processing, pp.

3065-3068.

[71] High-Level Synthesis Benchmark Circuits :

https://filebox.ece.vt.edu/~mhsiao/hlsyn.html

[72] Sengupta, A., and Bhadauria, S. (2014). Exploration of multi-objective tradeoff during

high level synthesis using bacterial chemotaxis and dispersal. Procedia Computer

Science, 35, pp. 63-72.

[73] K. M. Passino,(2002) Biomimicry of Bacterial Foraging for Distributed Optimization

and Control, IEEE Control Systems Magazine, pp. 52-67.

[74] Lee, Y. T., Park, I. C., & Kyung, C. M. (1993). Design of compact static CMOS carry

look-ahead adder using recursive output property. Electronics Letters, 29(9), pp. 794-

796.

[75] Paulin, P.G., Knight, J.P. (1989) Force directed scheduling for the behavioral synthesis

of ASICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 8(6), pp.661–679.

[76] Paulin, P.G., Knight, J.P. (1999) Algorithms for high-level synthesis. IEEE Design and

Test of Computers 6(6), pp.18–31.

[77] Papachristou, C.A., Konuk, H. (1990) A linear program driven scheduling and

allocation method.In: Proceedings of the 27th ACM/IEEE Design Automation

Conference, pp. 77–83.

[78] Kollig, P., Al-Hashimi, B.M. (1997) Simultaneous scheduling, allocation and binding

in high level synthesis. IEE Electronics Letters 33(18), pp.1516–1518.

[79] Kopuri, S., Mansouri, N. (2004) Enhancing scheduling solutions through ant colony

optimization. In: Proceedings of the International Symposium on Circuits and Systems

(ISCAS), pp. 257–260.

https://filebox.ece.vt.edu/~mhsiao/hlsyn.html

135

[80] Walker, R.A., Chaudhuri, S. (1995) Introduction to the scheduling problems. IEEE

Design and Test of Computers 12(2), pp.60–69.

[81] Heijligers, M.J.M., Cluitmans, L.J.M., Jess, J.A.G. (1991) High-level synthesis

scheduling and allocation using genetic algorithms. In: Proceedings of the 28th Design

Automation Conference, pp. 61–66.

[82] Mohanty, S.P. (2003) Energy and Transient Power Minimization During Behavioral

Synthesis. Ph.D. thesis, University of South Florida.

[83] Mohanty, S.P., Rangnathan, N., Chappidi, S.K. (2003) An ILP-based scheduling

scheme for energy efficient high performance datapath synthesis. In: Proceedings of the

International Symposium on Circuits and Systems (ISCAS), pp. 313–316.

[84] Abdel-Kader, R.F. (2005) Resource-constrained loop scheduling in high-level

synthesis. In: Proceedings of the 43rd ACM Annual Southeast Regional Conference,

pp. 195–200.

[85] Narasimhan, M., Ramanujam, J. (2000) On lower bounds for scheduling problems in

high-level synthesis. In: Proceedings of the Design Automation Conference (DAC), pp.

546–551.

[86] Gerez, S.H. (2004) Algorithms for VLSI Design Automation. Wiley

[87] Springer, D.L., Thomas, D.E. (1994) Exploiting the special structure of conflict and

compatibility graphs in high-level synthesis. IEEE Transactions on CAD of Integrated

Circuits and Systems 13(7), pp.843–856.

[88] Paulin, P.G., Knight, J.P. (1989) Scheduling and binding algorithms for high-level

synthesis. In: Proceedings of the 26th ACM/IEEE Design Automation Conference, pp.

1–6.

[89] Raje, S., Bergamaschi, R.A. (1997) Generalized resource sharing. In: Proceedings of

the Design Automation Conference (DAC), pp. 326–332.

[90] Mohanty, S.P., Velagapudi, R., Kougianos, E. (2006) Physical-aware simulated

annealing optimization of gate leakage in nanoscale datapath circuits. In: Proceedings

of the Conference on Design, Automation and Test in Europe (DATE), pp. 1191–1196.

[91] Al-Mouhamed, M., & Al-Massarani, A. (2000). Scheduling optimization through

iterative refinement. Journal of systems architecture, 46(10), pp. 851-871.

[92] Crop, J., Fairbanks, S., Pawlowski, R., & Chiang, P. (2010, April). 150mV sub-

threshold Asynchronous multiplier for low-power sensor applications. In Proceeding of

the IEEE International Symposium on VLSI Design Automation and Test (VLSI-

DAT), pp. 254-257.

136

[93] Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: developments,

applications and resources. In Evolutionary Computation, 2001. Proceedings of the

2001 Congress on Vol. 1, pp. 81-86.

[94] J.H. Holland (1975), Adaptation in Natural and Artificial Systems, Univ. of Michigan

Press, Ann Arbor, Mich.

[95] Bäck, T., & Schwefel, H. P. (1993). An overview of evolutionary algorithms for

parameter optimization. Evolutionary computation, 1(1), pp.1-23.

[96] Hassan, R., Cohanim, B., De Weck, O., & Venter, G. (2005). A comparison of particle

swarm optimization and the genetic algorithm. InProceedings of the 1st AIAA

multidisciplinary design optimization specialist conference pp. 1-13.

[97] Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary

algorithms: Empirical results. Evolutionary computation, 8(2), pp. 173-195.

[98] Eglese, R. W. (1990): "Simulated annealing: a tool for operational research." European

journal of operational research 46.3 pp. 271-281.

[99] E. Aarts, J. Korst (1989), Simulated annealing and boltzmann machines: A stochastic

approach to combinatorial optimization and neural computing, Wiley, Chichester

[100] S. Kirkpatrick Jr., C.D. Gelatt, M.P. Vecchi (1983), Optimization by simulated

annealing, Science, 220 pp. 671–680

[101] P.J.M. Laarhoven, E.H.L. Aarts (1987) Simulated annealing: Theory and applications

Reidel, Dordrecht

[102] Dorigo, M., & Birattari, M. (2010). Ant colony optimization. In Encyclopedia of

machine learning, Springer US. pp. 36-39.

[103] Dorigo, M., Birattari, M., & Stützle, T. (2006). Ant colony optimization:

Computational Intelligence Magazine, IEEE, 1(4), pp. 28-39.

[104] Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey: Theoretical

computer science, 344(2), pp. 243-278.

[105] Kennedy, J., Kennedy, J. F., Eberhart, R. C., & Shi, Y. (2001). Swarm intelligence.

Morgan Kaufmann.

[106] Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors in

particle swarm optimization. In Evolutionary Computation, 2000. Proceedings of the

2000 Congress on (Vol. 1, pp. 84-88). IEEE.

137

[107] Eberhart, R. C., & Shi, Y. (1998). Comparison between genetic algorithms and particle

swarm optimization. In Evolutionary Programming VII (pp. 611-616). Springer Berlin

Heidelberg.

138

139

Appendix A

Schematic view of the designed MESA Horner in Xilinx ISE tool

Simulation result of MESA Horner

140

RTL design of IIR Butterworth in Xilinx ISE tool

Simulation result of IIR Butterworth

141

Data path circuit for scheduled CDFG1 with 1(*), 1(+), 1(<) resource configuration

presented in chapter 3 Figure 3.9

RD
MUX

MUX

Latch Strobe C1

Selector C1

Enable C1

OutputStrobe C1
MUX

MUX

COM

(C1)

LATCH

LATCH

LATCH

RE

MUX
Enable M1 Latch Strobe M1

Selector M1

OutputStrobe M1

De-selector M1

MUX

MUX

MUL

(M1)
DEM-

UX

LATCH

LATCH

LATCH

Reg P1

Reg P2

Reg P3

Reg P4

MUX

Reg Y MUX

Selector En A1

Latch Strobe A1
Selector A1

Enable A1

Output Strobe A1

De-selector A1

MUX

ADD/S

UB

(A1)

DEM-

UX

LATCH

LATCH

LATCH

RB

Reg p2

RC

RA

Reg p1

A1out

M1out

Reg p1

Selector En M1

142

RTL Diagram of the CDFG1 presented in chapter 3 (datapath given in previous figure)

Simulation result of CDFG1

143

CDFG of Testcase used in Chapter 4 and Chapter 5

Detail of Testcase used in the thesis

For(i=0; i<36; i++) {

 P = P * (Ai + Bi)

q = q + (Ai * Bi)

}

(a) ‘C’ code of original loop

(b) Control and data flow graph of Testcase

+

(1) (2)

(3) (4)

(6)

(9)

(10)

p

p

q

q

1

14

550

564

+

+

<

Ai Bi

36

*

*

i 1

