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ABSTRACT 

Novel approaches to assess the occurrence, distribution, trend, concurrence, 

and evolution of major drought types are required to understand their 

implications on terrestrial ecosystems especially agricultural productivity. 

The complexity of the drought phenomenon, intricate ecosystem-drought 

interactions, and interdependence of the drought characteristics make the 

drought assessment a challenging task. In addition to traditional droughts, 

flash drought is a newly discovered extreme event that has rapid 

intensification without sufficient early warning. Such flash drought poses a 

great threat to terrestrial ecosystems. The ecosystem resistance and 

vegetation adaptation to flash droughts are significantly dependent upon the 

accurate estimation of flash drought events and their interaction with 

ecosystem metrics such as GPP, NPP, and LAI. Therefore, in context of 

climate change, a better understanding of the droughts in terms of their 

occurrence, trend, concurrence, evolution as well as joint dependence of 

drought characteristics is important to investigate the implications on 

terrestrial ecosystem. This thesis presents the study carried out to deliver a 

comprehensive assessment of drought conditions over India and their 

implications on the terrestrial ecosystem.  

The initial part of the thesis is devoted to explain the drought from multi-

perspectives such as severity, distribution, trends, concurrence, and 

evolution. The investigation is carried out using the most widely used 

drought indices (SPI, SRI, SSI, and VCI) to monitor different drought types 

over 24 major river basins of India. The results show that hydrological and 

soil moisture droughts were observed to be more influential as compared to 

the meteorological and vegetation droughts in most of the river basins of 

India. Further, approximately 82% of concurrent droughts include soil 

moisture drought. This suggests that the soil moisture is more influencing 

rather than precipitation in the study area. 
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The assessment of drought characteristics is approached from a joint 

dependence perspective in the second part. A copula based bivariate 

probabilistic analysis of drought characteristics across Indian river basins is 

carried out. It was observed that Southern Indian river basins have a higher 

exceedance probability and smaller joint return period compared to the 

Western river basins of India. This suggests that drought events in Western 

and Central India are more severe and longer whereas the ones in the south 

Indian river basins are more frequent but less severe. 

In the third part, flash drought identification and its impact on the regional 

terrestrial ecosystem was investigated. To account for terrestrial ecosystem, 

gross primary productivity (GPP) from MODIS was used to quantify the 

response of ecosystem to flash droughts in India. It was found that GPP 

responds to more than 95% of the flash droughts across India, with the 

highest response frequency occurring over Ganga basin and southern India 

while the lowest response across northeastern India. The discrepancies in 

the response frequency are majorly attributed to different vegetation 

resilience conditions across different parts of the country. 

The final part of the study is aimed to understand the impact of climate 

change on crop water requirement and productivity of major crops in 

Sikkim. The investigation is carried out using two crop models i.e., 

AquaCrop and CROPWAT in order to estimate crop yield and crop water 

requirement, respectively. From the investigation, an increase in the mean 

percentage change in the crop yield was observed over Sikkim during 2021 

2099. This can be attributed to the suitable temperature profile, increase in 

the CO2 concentration, high elevation of the study area. The CWR and CIR 

investigation also suggests an increase in the CWR towards the end of the 

twenty-first century for rice and wheat over West and South Sikkim with 

respect to the baseline period. 
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Chapter 1 

Introduction 

1.1 Climate change 

The climate is generally defined as the average weather conditions such as 

temperature, precipitation, or wind for a particular region and time, usually 

taken over 30-years. This particular period of time could range from months 

to hundreds, thousands, and millions of years. Broadly, the climate is the 

statistical accounting of the climate system. The climate system is an 

interactive system consisting of five major elements- the land, atmosphere, 

biosphere, cryosphere, and hydrosphere. This climate system is 

continuously changing due to various external and internal forcings. The 

direct impact of human induced activities on the climate system is 

considered an external forcing. Several chemical, physical and biological 

interaction processes occur among the several elements of the climate 

system, making the system very complex. Climate variability refers to the 

variations in the average state of climatic variables at various spatial and 

temporal scales. These variations are usually deviations from the average 

over a given scale of time (month, season, or year). Whereas, climate 

change is a statistically significant deviation from the average state over a 

more extended period, preferably decades.  

Climate forcing is the physical process of affecting the climate on the Earth 

through a number of forcing factors. These factors are specifically known 

as forcings because they drive the climate to change, and it is important to 

note that these forcings exist outside of the existing climate system. The 

climate system includes the hydrosphere, land surface, the cryosphere, 

the biosphere, and atmosphere. Examples of some of the most important 

types of forcings include: variations in solar radiation levels, volcanic 

eruptions, changing albedo, and changing levels of greenhouse gases in the 

atmosphere. Each of these are considered external forcings because these 

https://energyeducation.ca/encyclopedia/Climate
https://energyeducation.ca/encyclopedia/Climate_system
https://energyeducation.ca/encyclopedia/Hydrosphere
https://energyeducation.ca/encyclopedia/Cryosphere
https://energyeducation.ca/encyclopedia/Biosphere
https://energyeducation.ca/encyclopedia/Atmosphere
https://energyeducation.ca/encyclopedia/Solar_radiation
https://energyeducation.ca/encyclopedia/Albedo
https://energyeducation.ca/encyclopedia/Greenhouse_gases
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events change independently of the climate, perhaps as a result of changes 

in solar activity or human-caused fossil fuel combustion. The human and 

natural climatic forcings cause internal alterations in several components of 

the climate system of the Earth. The feedbacks which are generated by these 

are responsible, either for the intensifying or impairing the forcings. 

However, it is important to note that different components of the climate 

system respond differently to these forcings. This response time could range 

from hours to years for the different components such as ocean surface, 

atmosphere, land, ice, and vegetation. Likewise, the response time for the 

glaciers, ice sheets, and deep oceans to exhibit the changes due to forcings 

can be 100 to 1000 years (Trenberth et al., 1996). Hence, the Earth’s climate 

system can take hours to centuries to respond to external forcing’s. 

The major reason, as suggested by the Fifth assessment report (AR5) 

affecting the climate system, has been the increasing concentration of the 

greenhouse gases causing global warming (IPCC, 2014). The impacts of 

global warming can already be observed in the natural and human systems, 

which are of high interest. Climate change is generally defined as the 

alteration in the mean and/ or the variability in its properties for a long 

period of time (usually taken over 30-years). This change is mainly 

attributed to a number of natural and anthropogenic factors. The natural 

factors may include solar radiation variations, change in Earth’s orbit, ocean 

current changes, volcanic eruptions, and multiple internal variabilities. The 

major anthropogenic activity which defines the course of climate change 

has been burning of fossil fuels leading to an increase in greenhouse gas 

emissions. In this context, the IPCC’s AR5 stated that 1983 to 2012, was 

most likely, the warmest 30 years’ period over the last 1400 years, 

particularly in the Northern Hemisphere. On average, the study of global 

temperature data set reveals that Earth in 2012 is 0.85 ℃ warmer as 

compared to 1880 (IPCC, 2014). 

https://energyeducation.ca/encyclopedia/Fossil_fuel
https://energyeducation.ca/encyclopedia/Combustion
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1.2 Drought under changing climate 

Climate change has attracted much attention in the research community as 

changing climate conditions have led to changes in the frequency, duration, 

intensity, and severity of droughts. This changing climate can also alter 

atmospheric rivers, which in turn disrupt precipitation patterns. A 

combination of warmer temperatures and shifting atmospheric rivers can 

potentially devastate the water supply that may contribute to drought 

conditions. There are several other ways climate change may contribute to 

drought. For example, longer dry spells and warmer temperatures can 

contribute to drought conditions. Droughts are likely to be more severe, 

frequent, and longer lasting than they have been in recent decades under 

changing climate (Ault, 2020). The climate variability results in a period of 

precipitation deficit, which is generally driven by the natural climate cycles. 

If the precipitation deficit sustains for some time (over a scale of 

weeks/months depending on the climate), it leads to reduction in soil water 

content, streamflow, and reservoir storage. The water availability is also 

influenced by other climatic variables such as temperature and 

evapotranspiration. The reduced surface water and soil water adversely 

affect food production, hydropower generation, and industrial activities 

leading to socioeconomic droughts. The interactions between these 

variables in highly complicated because of the intricacies in land surface 

processes and human influences. Due to the complexity of the drought 

phenomenon, it is very difficult to define the onset and end of the drought 

which leads to poor estimation. It causes massive economical, 

environmental, and social consequences all over the world (Soľáková et al., 

2014).  In general, developing countries like India, where the agricultural 

sector provides livelihood to a large section of the population (Gadgil and 

Gadgil, 2006) are likely to suffer more economic losses due to such events 

(Russo et al., 2015). Countries with an increasing trend of drought events 

tend to be at a higher risk of damage. Proper assessment and estimation of 

drought events are necessary for policymakers and drought managers for 
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deciding risk reduction strategies. Therefore, it is very important to 

understand different drought types and their characteristics for drought 

assessment. 

1.2.1 Drought types 

Primarily, droughts are defined as a deficit of precipitation over a longer 

period of time (generally a season or more), resulting in water scarcity. 

Drought is usually defined as a “creeping phenomenon” as it slowly impacts 

several sectors of the economy and operates on different time scales. As a 

complicated phenomenon and slow developmental nature, drought has 

multiple manifestations and is commonly classified into several types: 

meteorological, agricultural, hydrological, and socioeconomic drought 

(Zhong et al., 2019). Details of meteorological, agricultural, hydrological, 

and socioeconomic drought are presented below: 

Meteorological Drought: The occurrence of any drought type is started with 

the severe persistence of rainfall shortage over a period of time say season 

or more (Mishra and Desai, 2005). Meteorological drought is defined based 

on precipitation deficit compared to normal conditions (Keyantash and 

Dracup, 2002) and it represents the period of lesser precipitation compared 

to long-term average (normal) precipitation at a place or region. 

Precipitation has been commonly used for meteorological drought analysis 

(Mishra and Singh, 2010). Definitions of meteorological drought should be 

region-specific, as the atmospheric situations that result in deficiencies of 

precipitation are highly region-specific. It is the simplest form of drought, 

however, it might be transformed to severe drought if the dry period extends 

for a longer period, as it is the initial stage of all other drought types. Hence, 

monitoring meteorological drought at an earlier stage could be used as early 

warning information for decision-makers and the community. 

Agricultural Drought: When meteorological drought continues for some 

period, particularly in the crop growing period, it may lead to agricultural 

drought. Agriculture drought is the condition of reduced moisture in the top 
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layers of soil to the level that it is not sufficient to support the crops. The 

water deficiency from meteorological or hydrological sources declines the 

water availability for crop production. In addition to precipitation deficit, 

soil moisture deficit also plays a very vital role in defining agricultural 

drought severity. Hence, agricultural drought indicates the period with 

decreasing soil moisture content and resulting to crop failure. Due to high 

water holding capacity, some crops are more resistant to such droughts, 

while others are not and become highly vulnerable to drought. 

Hydrological Drought: When meteorological drought continues for a 

longer period, resulting in streamflow and groundwater reduction, drying 

up of lakes, rivers, reservoirs (Hayes et al., 2012). Hydrological drought is 

often related to a period with insufficient subsurface and surface water 

resources for established water uses. Surface water availability is the 

important deciding factor in case of hydrological drought; hence, 

streamflow is globally employed to develop a hydrological drought index 

(Clausen and Pearson 1995). Also, it is important to note that hydrological 

measurements are not the first indicators of drought due to time lag among 

precipitation and water shortage in lakes, rivers, reservoirs, and streams.  

Socio-Economic Drought: Socio-economic drought is associated with the 

impact of drought events on socioeconomic activities instead of spatio-

temporal characteristics of drought (AMS, 2004). It is related to demand 

and supply of economic goods and it occurs when demand surpasses the 

supply of economic goods due to scarcity in water supply (Zhao et al., 

2019). This drought may occur either from meteorological, agricultural, or 

hydrological drought or their combined effects for an extended-term 

(Ziolkowska, 2016). This drought occurs when physical water storage 

affects individually or collectively. Hydropower deficit and water supply 

shortage are examples of such drought.   

Flash Drought: Flash drought is a recently identified extreme event 

characterized by its rapid intensification and sudden onset (Otkin et al., 
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2018). Flash droughts are strongly related to high evapotranspiration, low 

soil moisture content, and intense heat (Pendergrass et al., 2020). The 

sudden onset allows limited time for planning and preparation, causing 

destructive impacts on the terrestrial ecosystem and agriculture due to 

insufficient early warnings. Due to rapid intensification and high 

evapotranspiration (ET), flash drought causes quick soil moisture depletion, 

which results in vegetation stress (Otkin et al., 2018). 

In recent years, researchers have defined other classes of droughts such as 

ecological drought (Crausbay et al., 2017), groundwater drought (Pathak 

and Dodamani, 2019), or anthropogenic drought (AghaKouchak et al., 

2021). The ecological drought is characterized by the water stress across the 

ecosystems due to widespread water deficit. The groundwater drought is the 

period of fallen groundwater levels such that the fall in level causes 

substantial water availability issues. Each type of drought starts off with a 

persistent precipitation deficit and the responses of different elements of 

hydrologic cycles lead to propagation of droughts from one class to another.  

1.2.2 Drought characteristics 

Droughts have several characteristics, for example, drought frequency, 

duration, areal and temporal extent, concurrence, and its evolution. These 

characteristics are described below: 

Drought frequency: Drought frequency is defined as the number of drought 

events in a decade or given period.  

Drought mean duration: It is defined as the ratio of total drought duration 

to the total number of droughts. 

Spatial extent: The areal or spatial extent can be determined as the ratio of 

the number of grid cells experiencing drought to the total grid cell of the 

study area. 

Temporal extent: It denotes the count of years for which each grid cell faces 

drought conditions in the given period. 
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Drought concurrence: When two or more than two drought types occur 

simultaneously. 

Drought evolution: The drought evolution process indicates the evolution 

of one drought type into another drought type. 

1.3 Drought assessment 

As discussed, the drought-related risks posing potential loss of property and 

lives have increased over the past. Researchers and policymakers around 

the globe agree that current adaptation and mitigation policies might not be 

sufficient to deal with the implications of drought events. Therefore, a 

comprehensive drought assessment is required for minimizing the possible 

damage. In order to monitor drought conditions, past research suggested the 

use of drought indices as the simplest approach. Drought indices are 

quantitative measures based on physical and/or empirical approaches to 

investigate different drought properties either qualitatively or quantitatively 

(Hayes, 2006). Generally, drought indices integrate several meteorological 

and hydrological components like runoff, evapotranspiration, rainfall, 

temperature, and others into an individual number leading to a complete 

portrait of decision making. The drought indices are majorly categorized 

into four categories: meteorological, agricultural, hydrological drought 

indices, and remote sensing data-derived drought indices (Sumanta Das, 

2013). It is important to note that a single drought definition does not work 

in all conditions, and that’s the major reason why the resource planners, 

policymakers, and others have more difficulty in planning for drought than 

they do for other natural calamities. Nowadays, most of policymakers now 

rely on mathematic drought indices to decide when to start performing 

drought mitigation strategies.  

It should be also noted that most of the drought indices that had been 

developed were regionally based and some drought indices are better suited 

than others for specific uses (Redmond, 2002; Hayes, 2006; Mishra and 
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Singh, 2010). Therefore, a review of the existing drought indices is 

necessary before adopting any of the existing drought indices to use in 

areas/catchments outside those areas for which they were originally 

developed. At the same time, in order to quantify, characterize and monitor 

drought events each drought index has its own strength and weakness (Dai, 

2011; Jain et al., 2015; Mishra and Singh, 2010). In order to monitor drought 

condition, researchers used various drought indices, for example, an surface 

water supply index, SWSI (Shafer and Dezman, 1982); Palmer standardized 

precipitation index, SPI (McKee et al., 1993); standardized soil moisture 

index, SSI (Hao and AghaKouchak, 2013); vegetation condition index, VCI 

(Kogan, 1995). Details of some of the well-known drought indices which 

have been used in this thesis are presented below. 

Standardized Precipitation Index (SPI): Standard precipitation index (SPI) 

is a globally used index because it is very simple to calculate, requires 

modest data and is comparable over a range of climatic zones (McKee et 

al., 1993). SPI computation is dependent on one input i.e., precipitation 

accumulations, and hence it is easy to calculate as compared to other 

drought indices. It has greater spatial consistency, therefore, a more 

recommendable drought index as compared to other drought indices. In SPI 

computation, initially raw precipitation data is fitted into gamma type 

distribution and then further transformed to a standard normal distribution 

(Tsakiris and Pangalou, 2009). Usually, a negative SPI indicates the drought 

condition while a positive value indicates the end of the drought. Therefore, 

SPI has been chosen for the present study. 

The cumulative density function of Gamma distribution is 𝐺𝑥(𝑥) in Eq. 

(1.1): 

∫ 𝑔𝑥(𝑥)
𝑥

0
𝑑𝑥=

1

𝛽𝜀Ґ(ξ)
∫ 𝑥ξ̂−1𝑥

0
𝑒−𝑥/𝛽̂dx,                                                                     (1.1) 

where 𝑔𝑥(𝑥) is Gamma PDF, 𝛽 is the scale parameter and 𝛼 is a shape 

parameter of Gamma distribution. 
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 Ґ(ξ) is the Gamma function and given as  

Ґ(ξ) = ∫ 𝑡ξ−1𝑥

0
𝑒−t𝑑𝑡 for ξ>0. 

SPI index can be computed by Eq. (1.2) if the precipitation raw data is fitted 

into the log-normal distribution with variance 𝜎2
𝑦 and mean  𝜇𝑦 as: 

SPI = 
ln(x)− μy

 σy
                                                                                                            (1.2) 

where ln(x) is log-normal transformed precipitation series. 

Standardized Runoff Index (SRI): SRI is a hydrological drought index that 

was developed by Shukla and Wood (2008) using runoff data. For SRI 

computation, stream records of a specific region are fitted in appropriate 

distribution. After this, Probability Density Function and Cumulative 

Distribution Function are processed, and further, it is converted to a 

standardized normal deviate with zero mean and unit variance which finally 

results in Standardized Runoff Index. For SRI calculation, details can be 

obtained from (Hao et al., 2014; Shukla and Wood, 2008; Vicente-Serrano 

et al., 2012). 

Vegetation Condition Index (VCI): VCI is an index derived from remotely 

sensed information to represent agricultural drought. It compares the current 

Normalized Difference Vegetation Index (NDVI) to the range of values 

observed in the same period in former years. It is capable to separate short-

term weather-related fluctuations from long-term ecological changes. Bad 

and good vegetation situation is given by the low and high value of VCI, 

respectively. Drought severity classification is utilized to categorize 

droughts given by Kogan (1995).  

VCI can be calculated by applying the following Eq. (1.3): 

VCI = 
𝑁𝐷𝑉𝐼𝑖−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
× 100                                         (1.3) 

Where, 
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VCI = Vegetation Condition Index 

NDVIi = Index of the current month 

NDVImax and NDVImin = Maximum and minimum NDVI of every pixel for 

each month. 

Standardized Soil Moisture Index (SSI): SSI is an agricultural drought index 

that was developed by Bergman (1988) considering soil moisture data. For 

SSI computation, soil moisture data of a specific location is fitted in 

appropriate distribution. After this, Probability Density Function and 

Cumulative Distribution Function are computed, and it is converted to a 

standardized normal deviate with zero mean and unit variance which finally 

results in standardized soil moisture index. For SSI computation, details can 

be obtained from (Lloyd-Hughes and Saunders, 2002; Yao et al., 2018). 

1.4 Limitations and gaps in approaches for drought assessment  

An ideal comprehensive drought assessment approach must focus on all 

major drought types and their interaction. Moreover, it is essential to 

understand the drought from multi-perspectives such as severity, trends, 

distribution, duration as well as their complex interaction. However, most 

of the previous studies have focused on individual  drought types, for 

example, meteorological drought, especially in India. None of them 

underlines a systematic and comprehensive analysis of the occurrence, 

distribution, and trend of multiple drought types simultaneously. Moreover, 

the concurrence and evolution between meteorological, hydrological, and 

agricultural drought are still unclear over India. Importantly, drought is a 

multivariate phenomenon, hence, modeling the drought characteristics 

through multivariate technique is more suitable as significant correlation is 

not obtained during univariate analysis (Chen et al., 2013). In addition to 

traditional droughts, flash droughts are newly discovered extreme events 

that have quick onset and rapid intensification characteristics. The sudden 

onset of flash drought allows limited time for planning and preparation, 
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causing destructive impacts on the terrestrial ecosystem and agriculture due 

to insufficient early warnings (Gerken et al., 2018; Liu et al., 2020; Yuan et 

al., 2018). Due to rapid intensification and high evapotranspiration (ET), 

flash drought causes quick soil moisture depletion, which results in 

vegetation stress (Otkin et al., 2018). Such droughts are strongly related to 

high evapotranspiration, low soil moisture content, and intense heat 

(Pendergrass et al., 2020; Wang et al., 2016). Recently, flash droughts have 

occurred frequently, for example, northern USA in 2017 (Gerken et al., 

2018), southern Africa in 2015 (Yuan et al., 2018), southern China in 2013 

(Yuan et al., 2015), central USA in 2012 (Hoerling et al., 2014). Recently, 

a study by Yuan et al., (2019) found significant increasing trends flash 

drought frequency over China in the warming and changing climate. The 

increasing frequency may impose a higher risk on the ecosystem, crop 

production, water security, human mortality, vegetation health, and 

environmental sustainability (Vazifehkhah et al., 2019). Such events could 

hasten atmospheric carbon dioxide concentrations and reduce carbon 

uptake. However, how the regional terrestrial carbon dynamics respond to 

flash droughts is still unknown, especially in India. As we know that India 

is a very vast and climatologically diverse country having high spatio-

temporal variability, therefore, a comprehensive study is required to 

understand the significant relationship among multiple drought types. 

Therefore, in the context of climate change, a better understanding of the 

droughts in terms of their occurrence, trend, concurrence, evolution as well 

as joint dependence of drought characteristics is necessary. Moreover, flash 

drought identification and its impact on the terrestrial ecosystem are also 

important to understand. In light of the above discussion, the following 

research gaps were identified: 

• More comprehensive approach for the assessment of multiple 

drought types in the context of concurrence and evolution is 

required. 
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• Conventional analyses of the drought characteristics involve 

univariate approaches which are often inadequate to incorporate the 

complexity.  

• How the regional terrestrial ecosystems respond to flash droughts in 

India remains unknown.  

• Dearth of comprehensive approach for the assessment of crop yield 

and crop water requirement at the regional scale in the hilly terrain 

of Himalayas under climate change.  

1.5 Objectives of the study  

The objectives of the study are as follows: 

• Assessment of the distribution, trend, concurrence, and evolution of 

major drought types in India.  

• Probabilistic analysis of meteorological, hydrological, and 

agricultural drought characteristics across Indian river basins in 

India.  

• Terrestrial Ecosystem Response to Flash Droughts over India. 

• Understanding the impact of climate change on crop yield and crop 

water requirement of major crops in Sikkim, Himalayan region of 

northeast India. 

1.6 Organization of the thesis 

Literature relevant to various aspects of climate change, drought 

assessment, drought characteristics, the impact of flash drought on 

terrestrial ecosystem, and the impact of climate change on crop productivity 

and crop water requirements are concisely reviewed in Chapter 2. 

Chapter 3 discusses the detailed theory, methodology, results, and 

discussion obtained from the first objective, i.e., assessment of the 

distribution, trend, concurrence, and evolution of major drought types in 
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India. The study has been done by analyzing the major drought types for 24 

major river basins of India.  

Chapter 4 describes the copula based probabilistic analysis of 

meteorological, hydrological, and agricultural drought characteristics 

across Indian river basins. Exceedance probability and joint return period 

are estimated and characterized on the river basin scale. 

Chapter 5 presents the seasonal distribution of flash drought and the 

response of terrestrial ecosystem to flash droughts over India. The flash 

drought identification on monsoon and non-monsoon scale have been 

carried out. 

Chapter 6 describes the estimation of crop yield and crop water requirement 

under changing climate over the eastern Himalayan region of India. Further, 

uncertainty analysis and sensitivity analysis have been carried out.  

Chapter 7 summarizes the discussion and conclusion of the entire research 

work, limitations of the study and future scope of the research work. 
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Chapter 2 

Literature review 

2.1 Introduction 

Droughts are undoubtedly one of the most catastrophic hydroclimatic 

events that occur around the globe every year. The subsequent sections in 

the chapter explain the drought characterization from multi-perspectives, 

probabilistic analysis of drought characteristics, importance of flash 

drought identification and their impact on terrestrial ecosystem, and 

understanding the climate change implication on crop water requirement 

and crop productivity. The chapter concludes with an outlook that explains 

the outputs of literature review in the context of the thesis objectives.  

2.2 Drought characterization  

In general, drought is defined as an event of lesser availability of water 

resources to meet the environment, human or industrial demands over a 

significantly extended period, such as months, seasons, or longer (Wilhite, 

2000). There is a general perception that droughts occur only in the regions 

of low precipitation (i.e., arid climate); however, aridity (long term dryness) 

and droughts (short term dryness) are two different phenomena. Former is 

a permanent climatic characteristic of a place having less long-term rainfall, 

whereas the latter is a temporary condition of significantly low rainfall 

compared to normal. Therefore, droughts are not limited to arid climates but 

occur in all climates, including low and high rainfall receiving regions of 

the world. Nagarajan, (2003) observed drought as one of the complex 

natural hazards as it is very difficult to evaluate the onset and termination 

of drought event. Hagman et al., (1984) describe drought as the most 

unpredictable yet least understood natural calamity. Droughts are mostly 

defined as the inadequacy of rainfall (meteorological drought), streamflow 

(hydrological drought), vegetation, and soil moisture (agricultural drought),  
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individually or in combination (Dracup et al., 1980; Goyal et al., 2017; 

Hisdal and Tallaksen, 2000). The National Commission on Agriculture 

(1976) in India classified 3 types of droughts, specifically, meteorological, 

agricultural, and hydrological droughts. Meteorological, hydrological and 

agricultural droughts are defined in terms of the shortage of rainfall, 

streamflow, and soil moisture individually or together respectively 

(Bhuiyan et al., 2006; Goyal et al., 2017; Muhammad et al., 2020).  Recent 

literature shows that agricultural drought can be further classified into two 

droughts i.e., soil moisture and vegetation drought. The categorization is 

done because analyzing soil moisture and vegetation drought individually 

is better rather than a multi-variate drought index, because the former gives 

a more detailed view on changes in environment variables than the latter 

one. Moreover, both vegetation conditions (Kogan, 1995) and soil moisture 

(Yang et al., 2017) are closely linked to agricultural droughts and are widely 

used for agricultural drought characterization. This new approach provides 

a refined view of drought occurrence. Recently, a new drought called 

groundwater drought is added as a fourth category (Mishra and Singh 2010). 

Since, there is no single definition of drought (Hao and AghaKouchak, 

2013), however, the best means to examine the drought occurrence is by the 

use of drought indices (Stagge et al., 2015). Many researchers used several 

indices based on their applicability such as standardized precipitation index, 

SPI (McKee et al., 1993); surface water supply index, SWSI (Shafer and 

Dezman, 1982), standardized runoff index SRI (Shukla and Wood, 2008), 

Standardised Hydrological Index (SHI) (Panu and Sharma, 2009), 

vegetation condition index, VCI (Kogan, 1995) and standardized soil 

moisture index, SSI (Hao and AghaKouchak, 2013) to define droughts. 

Each drought index has its own merits and demerits. However, no single 

drought index can fully describe the drought distribution, intensity, severity, 

and complexity (Joshi et al., 2016). Over the last century, hydrologists 

around the world have put substantial efforts to improve the monitoring and 
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prediction of droughts through the development of new drought indices and 

prediction models. 

The outputs from the drought studies based on drought indices suggest that 

more than half of the earth’s land surface is susceptible to drought 

conditions (Mishra and Singh, 2010). Some of the long-term and highest-

impact droughts struck the Amazon Basin (2010), East Africa (2004 and 

2005), Australia (2002, and others) with adverse impacts (Sivakumar, 

2013). Mishra and Singh, (2010) stated that India has reported a drought 

event at least once in every three years in the last five decades. The spatial 

and temporal characteristics of droughts are preconditions and the basis for 

examining drought occurrence and its impact. Shah and Mishra, (2014) 

carried out an analysis regarding drought characteristics and found that the 

drought intensity, spatial extent, and frequency have increasing trend due to 

increase in air temperature and erratic summer monsoon. From the aspect 

of drought distribution and trend, Mallya et al., (2015) identified a robust 

trend of increasing drought severity and frequency over the Indian monsoon 

region during the period 1972–2004. Several past studies have witnessed 

variations in drought trends, spatiotemporal patterns, and frequencies in 

different parts of the World (Ganguli and Reddy, 2014; Goyal and Sharma, 

2016; Joshi et al., 2016; Kumar et al., 2021; Mishra et al., 2014; Thomas et 

al., 2015). To better understand drought concurrence, some studies have 

attracted more attention towards occurrence of two drought indices for 

characterizing the drought concurrence. Further, some studies have used 

various methods for investigating drought evolution process. These 

methods could be either linear regression or time lag correlation (Zhang et 

al., 2017).  Therefore, it is essential to understand the drought from multi-

perspectives such as severity, trends, distribution, duration as well as their 

complex interaction (Zhang et al., 2017). 

The previously mentioned studies discussed the trend of past drought 

occurrence. Understanding the evolution of future droughts in a changing 
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climate is of great importance in terms of risk assessment and 

implementation of efficient adaptation measures. The general circulation 

models (GCMs) are one of such sources which can be used to understand 

the future propagation of meteorological drought. It is considered that the 

arid regions will be more drier and wet will be more wetter in the changing 

climate. The uneven distribution of precipitation changes is expected to 

enhance the frequency and severity of drought in many regions. Several 

regional studies performed on various parts of the world invariably reported 

the increase drought events in changing climatic conditions (Chen and Sun, 

2017; Lee et al., 2018; Nam et al., 2015; Naumann et al., 2018; Spinoni et 

al., 2018; Trenberth et al., 2014). For example, Trenberth et al., (2014) 

reported that the rise in temperature due to global warming had led to 

alteration in characteristics of droughts such as frequency and intensity of 

droughts. Similarly, based on the projections of climate models, Dai, (2011) 

reported increase in aridity in various regions of the world over the 21st 

century. Thilakarathne and Sridhar, (2017) analyzed the drought over 

Lower Mekong Basin and found that more intense and severe droughts are 

prevalent in the changing climate. Tam et al., (2019) projected the 

meteorological droughts using 29 GCMs in Canada and observed increasing 

trend of drought frequency over Prairies, and South-west Canada. 

Moreover, Indian sub-continent also witness increase in drought frequency 

in the changing climate (Ahmed et al., 2018; Bisht et al., 2019). Thus, 

exploring drought characteristics is important for enhancing the level of 

drought alleviating and monitoring the effects of drought. 

2.3 Probabilistic assessment of drought characteristics 

The last section of the chapter discussed the univariate analysis of drought 

characteristics i.e., separate analysis of drought duration, and drought 

severity, etc. In this section, probabilistic assessment of drought 

characteristics has been discussed. Drought severity and duration are the 

two important characteristics used for drought characterization. Moreover, 
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Dracup et al., (1980) identified drought duration and severity as defining 

characteristics of a drought event. Here, drought duration indicates the 

period during which the rainfall deficit occurs whereas severity indicates 

the cumulative rainfall deficit below a particular threshold. There are 

several methods that allow us to estimate the probabilistic assessment of the 

drought characteristics, such as stochastic methods, parametric and non-

parametric approaches. The concept of the parametric method involves 

fitting specific distributions to given returns. This approach is also known 

as the percentile-based approach or the return period method (Hobaek et al., 

2015). The main disadvantage of this method is that the estimated returns 

are incapable of incorporating the tail behaviour, often asymptotic, and 

cannot be used to produce estimates beyond the sample range. Further, the 

stochastic approaches produce recurrent conditions which yield return 

periods based on the random traction from probabilistic projections 

(Goldstein et al., 2003). Also, these methods consider the Gaussian case; 

therefore, they do not accommodate the tail complexities. The EVT 

methods have been formulated particularly to incorporate the tail behaviour 

of the data (Naveau et al., 2005).  

Drought is a multi-variate phenomenon, therefore, modeling the drought 

characteristics through multivariate technique is more suitable. This is 

because several probabilistic methods have been developed in the past to 

examine drought properties, however, significant correlation is not obtained 

in univariate analysis. Therefore, it is better to adopt a multivariate approach 

and develop the joint dependence structure to describe the interconnection 

among drought characteristics. Most of the multivariate distributions are 

derived from univariate ones and involve several disadvantages (Salvadori 

and De Michele, 2004), such as marginal distribution needs to be the same. 

Additionally, complex mathematical derivations are essential for parameter 

estimations (Shiau, 2006) and based on assumption of stationarity (Das and 

Umamahesh, 2017). To overcome such limitations, Copula is a promising 

way to assess joint dependence between random variables (Sklar, 1959). 
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Copulas are advantageous in modeling joint dependence because they are 

independent of  equality of marginal distribution or normality of variables 

(Zhang and Singh, 2007). Copulas are widely used in various fields such as 

climate studies (Jhong and Tung, 2018; Yin et al., 2018), hydrology (Y. D. 

Chen et al., 2016; Zhang et al., 2012), medical (Emura and Chen, 2018; 

Winkelmann, 2012), signal processing (Iyengar et al., 2009), finance (Chiou 

and Tsay, 2008; Ning, 2010). In case of hydro-climatic events, copula 

provides a robust methodology, for example, soil moisture and precipitation 

(AghaKouchak, 2015), extreme events and vegetation drought (Jha et al., 

2019), groundwater and precipitation (Reddy and Ganguli, 2013), volume 

and peak flow (Favre et al., 2004). Firstly, Shiau, (2006) applied copula 

functions to bivariate frequency investigation of drought severity and 

duration. Further, Lee et al., (2013) explored the applicability of copula in 

drought characteristics (duration and severity) and found that the joint 

probabilistic approach offers greater versatility in the estimation of drought 

characteristics. The bivariate copula based approach accounts for the 

dependence  among drought severity and duration and allows their marginal 

distributions to belong to different families (Mishra and Singh, 2011). There 

are several other studies that incorporate the copula-based approach in 

hydrological studies (De Michele and Salvadori, 2003; Grimaldi and 

Serinaldi, 2006; Zhang et al., 2013; Gómez et al., 2017; Bracken et al., 

2018; Goswami et al., 2018; Ribeiro et al., 2020; Thilakarathne and Sridhar, 

2017; Vazifehkhah et al., 2019). Recently, the joint behavior of drought 

duration and severity was modelled using Copula approach, and it was 

concluded that the method is more suitable for quantifying the dependence 

between drought characteristics (Sahana et al., 2020). This multivariate 

investigation can help policymakers to incorporate effective drought risk 

management and drought mitigation plans. 
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2.4 Flash drought and its impact on terrestrial ecosystem 

The above two sections of the chapter discussed conventional droughts i.e., 

meteorological, hydrological, and agricultural droughts. Conventional 

droughts are generally defined as a slowly growing climate phenomenon, 

taking a few months or years to attain its spatial extent and maximum 

intensity (Otkin et al., 2013, 2021c; Yuan et al., 2017). In addition to these 

drought types, a new kind of rapidly growing drought termed as “flash 

drought” has come into the scientific dictionary in recent years. Therefore, 

in this section, flash droughts and their impact on the terrestrial ecosystem 

have been discussed. Flash drought is a recently recognized extreme event 

characterized by its sudden onset and rapid intensification (Yuan et al., 

2019). The sudden onset allows limited time for planning and preparation, 

causing destructive impacts on the terrestrial ecosystem and agriculture due 

to insufficient early warnings (Gerken et al., 2018; Liu et al., 2020; Yuan et 

al., 2018). Due to rapid intensification and high evapotranspiration (ET), 

flash drought causes quick soil moisture depletion, which results in 

vegetation stress (Otkin et al., 2018). Flash droughts are strongly related to 

high evapotranspiration, low soil moisture content, and intense heat 

(Pendergrass et al., 2020; Wang et al., 2016). However, flash droughts are 

hard to monitor and predict (Pendergrass et al., 2020). There are several 

methods available to investigate flash drought events. For instance, 

considering the precipitation-deficit-driven and heat wave-driven (Mo and 

Lettenmaier, 2016, 2015) which focuses the role of temperature anomalies, 

deriving flash drought events from the soil moisture percentile drop based 

approaches (Ford and Labosier, 2017) focuses on the rate of change in soil 

moisture, utilizing the standardized evaporative stress ratio (Basara et al., 

2019; Christian et al., 2020, 2019) or utilizing multivariate products like 

Quick Drought Response Index (QuickDRI) hybrid satellite-based maps 

(Chen et al., 2019) to estimate the flash drought events.  
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Recently, flash droughts have occurred frequently, for example, northern 

USA in 2017 (Gerken et al., 2018), southeastern United States in 2016 

(Otkin et al., 2018), southern Africa in 2015 (Yuan et al., 2018), southern 

China in 2013 (Yuan et al., 2015), central USA in 2012 (Hoerling et al., 

2014). During the year 2013, southern China experienced its most terrible 

drought and heatwave of the last century (Yuan et al., 2016). The rapid 

intensification of drought significantly minimized carbon uptake (> 100 Tg 

C) in China. The outputs from these studies suggest that it is very crucial to 

understand that how different ecosystems respond under flash drought 

conditions to predict the future atmospheric CO2 concentrations and 

terrestrial carbon sink, as well as to provide recommendations for drought 

mitigation and prevention policies. Moreover, understanding the future 

patterns of flash drought events is also important for proper risk estimation. 

In view of this, Yuan et al., (2019) estimated future flash drought events 

and found significant increasing trend of flash drought frequency over 

China in the warming and changing climate. Moreover, Mishra et al., (2021) 

carried out flash drought identification over India for the projected climate 

and found an increasing trend in the frequency of flash drought events. The 

increasing frequency may impose a higher risk on the ecosystem, crop 

production, water security, human mortality, vegetation health, and 

environmental sustainability (Vazifehkhah et al., 2019). 

Apart from the flash drought identification, understanding the impact of 

drought over productivity of the terrestrial ecosystem is also equally 

important because it influences food security and others (Jha et al., 2019; 

Thomey, M.L. et al., 2011). Drought also affects the carbon cycle by 

changing the physiological behavior comprising vegetation respiration and 

photosynthesis. Zhao and Running, (2010) showed that satellite images are 

widely used to examine the ecological influences of drought as it provides 

a local understanding of terrestrial vegetation conditions (Running et al., 

2004). High-resolution vegetation datasets obtained from MODIS are 
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extensively used to control the changes in vegetation characteristics 

(Sharma and Goyal, 2018a; Wolf et al., 2016). These products offer global 

gross primary productivity (GPP) (Running et al., 2004) and are widely 

used in several regional as well as global studies (Anav et al., 2015; Zhao 

and Running, 2010). Moreover, Flack-Prain et al. (2019) showed that 

vegetation productivity shows distinct responses to drought from vegetation 

structural and physiological viewpoints. GPP and NPP are effective 

indicators for carbon fluxes and ecosystem functioning from physiological 

and ecological processes (Cao and Woodward, 1998). Otkin et al., (2016) 

examined that how vegetation conditions and soil moisture evolve during 

the extreme flash drought event of 2012 across the U.S. and witnessed a 

significant response of vegetation conditions to the drought. In the summer 

of 2013, enormous carbon loss is observed through satellite observations 

and eddy covariance (Yuan et al., 2016).  

The previously mentioned studies discussed the response of the terrestrial 

ecosystem to flash drought events. Moreover, understanding the response 

of water use efficiency(WUE) to flash drought is also crucial. The 

ecosystem water use efficiency (WUE) is computed by dividing the carbon 

uptake by evapotranspiration (Cheng et al., 2017; Xiao et al., 2013), which 

controls vegetation productivity in a dry environment (Mu et al., 2011). The 

hydrometeorological parameters also play a crucial part in spatio-temporal 

variation in WUE via influencing carbon assimilation, transpiration, and 

evaporation (Sharma and Goyal, 2018a). The response of water use 

efficiency differs among different ecosystems (Gang et al., 2016; Guo et al., 

2019) and droughts with different severity and duration (Liu et al., 2015; 

Ma et al., 2019).  Guo et al., (2019) assessed the response of WUE to the 

flash drought conditions in China. They found that lower water use 

efficiency was observed in northwestern China during droughts, whereas 

WUE was increased over South China and Northeast China. Further, Zhang 

et al., (2020) suggest to assess the response of the terrestrial ecosystem to 
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flash droughts. Moreover, they also suggest to incorporate two important 

parameters i.e.,  response time and response frequency of flash drought due 

to their variability over different regions. Regarding the investigation of 

WUE during flash droughts, few global studies have been carried out across 

the world (Guo et al., 2019; Xie et al., 2016; Zhang and Yuan, 2020). 

2.5 Climate change impact on crop water requirement and crop 

productivity 

With the increase in greenhouse gas concentration, climate change has 

emerged as a paramount concern worldwide in the context of 

socioeconomic, environmental, and agricultural sustainability.  According 

to IPCC (2013), the increase in the global average temperature is recorded 

about 0.6oC, and based on the future projections under different scenarios it 

is likely to increase by 1 to 5oC by end of this century. Over long-term, the 

climate variability is likely to affect agriculture in various ways, including 

the crop productivity, crop water requirement, etc. (Todisco and Vergni, 

2008). With the twin pressure of climate change and population growth, the 

demand of crop commodities has increased substantially (Mall et al., 2017), 

and it is expected that the global agricultural productivity needs to be 

doubled by 2050 to fulfill the increasing demand (Ray et al., 2013). An 

estimate from FAO (2016) reports that to fulfil the demand of food in 2050, 

the annual production of crops and livestock will need to be increased by 

60% as compared to 2006 production globally. Moreover, the increase in 

the concentration of the CO2 and global warming are expected to alter the 

future global agricultural productivity by change in plant growth (Eyshi 

Rezaei et al., 2015), respiration (Peng et al., 2004), photosynthesis (Wang 

et al., 2011), and transpiration (Crawford et al., 2012). This, in turn, can 

increase water stress and consequently, food security (Tao et al., 2003). For 

instance, investigations have shown that crop yield at global scale is likely 

to be reduced (e.g., rice by 3.2%, wheat by 6.0%, soybean by 3.1%, maize 

by 7.4%) (Zhao et al., 2017). In this sense, agrarian countries are going to 
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be affected substantially due to the adverse consequences of climate change. 

Therefore, in the prevailing adverse consequences of climate change, 

impact assessment on agricultural productivity in changing climate has 

gained popularity. Hence, recent studies aim at the climate change impact 

assessment on crop productivity and crop water requirement. For example, 

Lin (2011) stated that due to the spatio-temporal variability of precipitation, 

and  accessibility of resources such as water, biodiversity, land, and 

terrestrial resources, climate change is likely to affect the agricultural 

productivity and food security. Hence, researchers from all corners of the 

globe have attempted to investigate the climate change impact using crop 

simulation models on different crops productivity.  

Past research indicates that crop models are widely used for crop 

simulations worldwide. Moreover, crop models enable to analyze and 

modify the crop growth effectively and subsequently, the yield under 

changing climate. Due to the projected climate change under various 

emission scenarios during the mid or late 21st century, it is going to affect 

productivity negatively over many regions, while individual locations may 

benefit. For instance, a study by Lobell et al. (2008) using 20 climate models 

under three different scenarios and climate projections for 2030 revealed 

negative impacts on several crops over South Asia and Southern Africa 

without proper adaptation priorities. Schlenker and Roberts (2009) 

estimated that yields are expected to decrease by 30–46% and 63-82% over 

U.S. before 2100 under the slowest (B1) scenario and the most rapid 

warming scenario (A1FI), respectively. Further, Oort and Zwart, (2018) 

also observed a decrease in crop (rice) yield i.e., 24% decrease under RCP 

8.5 scenario over Africa. However, Lobell and Gourdji (2012) stated that 

with the increase in the CO2 concentration the global yield is expected to 

increase roughly by 1.8% per decade, and simultaneously the crop yield 

may decrease without any effective adaptation roughly by 1.5% per decade. 

In addition to crop productivity, climate change also impacts crop water 
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requirement and irrigation requirement negatively as well as positively over 

many regions. Future quantification of spatio-temporal variability of crop 

water requirement (CWR) and irrigation requirement (IR) can improve 

water management efficiency. In an effort to analyse the future CWR and 

IR, limited studies have been carried out by the researchers from various 

parts of the world and the examples include but are not limited to, De Silva 

et al. (2007), Droogers (2004), Shen et al. (2013), Shrestha et al. (2013), 

Song et al. (2018), Tubiello et al. (2000), Zhou et al. (2017), among others. 

Apart from this, past research also indicates that the future projections of 

crop yield are simulated using the meteorological outputs from Global 

Climate Models (GCMs) under different emission scenarios. Das and 

Umamahesh (2018) suggest that it is essential to determine the uncertainty 

associated with the climate models and their scenarios while projecting for 

the future. The GCM uncertainty has been attributed to model structure, 

parameterization, resolution, model simulations, and initial conditions for 

different realizations (Clark et al., 2016). Höllermann and Evers (2017) 

suggest that it is important to account uncertainty information about 

foreseen climate scenarios for better adaptation measures. In this sense, past 

studies adopted different techniques namely, such as sensitivity analysis 

(Hofer, 1999), imprecise probability (Beer et al., 2013), Bayesian analysis 

(Das and Umamahesh, 2018), and others to assess the uncertainty in the 

climate change studies. Recent research widely adopted the possibility 

theory for uncertainty analysis via allocating possibility distribution to the 

GCMs and emission scenarios according to the ability in modeling the 

recent past under climate forcing. This method is inexpensive, simple, and 

assists in addressing partially information and knowledge (Mujumdar and 

Ghosh, 2008). 

2.6 Conclusions 
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An overview of drought characterization, probabilistic and multivariate 

approaches to investigate drought characteristics, the flash drought 

identification and its impact on terrestrial ecosystem, and climate change 

impact on crop production has been presented in this chapter. The 

discussions about drought characterization suggest that it is crucial to 

understand the drought from multi-perspectives such as severity, trends, 

distribution, duration as well as their complex interaction. Moreover, 

evolution and concurrence of meteorological, hydrological and agricultural 

droughts are of significant importance during drought analysis. Future 

studies suggest that droughts are likely to be more severe, frequent, and 

longer lasting than they have been in recent decades under changing 

climate. Further, the literature review discussed the advantages of Copula 

in modeling the drought characteristics. The studies suggest that Copula is 

one of the most reliable tool to model joint dependence between random 

variables. Further, the concept of flash drought and its impact in the context 

of terrestrial ecosystem was discussed in the third section. The literature 

review indicates that flash drought is a recently identified extreme event 

characterized by its rapid intensification and sudden onset. Due to rapid 

intensification and high evapotranspiration, flash drought causes quick soil 

moisture depletion, which results in vegetation stress and possess great 

threat to terrestrial ecosystem. Further, the climate change impact 

assessment in the context of crop productivity and crop water requirement 

was discussed in the last section. The literature review indicates that adverse 

impact of climate change is going to affect every aspect of the ecosystem in 

the hilly terrain of the Himalayan region. Moreover, uncertainty analysis is 

also crucial for analyzing the most possible GCM and scenario through 

possibilistic approach. Therefore, the thesis, addressing the gaps pointed out 

in the literature review, aims to assess the drought characteristics and flash 

drought identification using an advanced multivariate probabilistic 

approach and rapid intensification approach, respectively. 
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Chapter 3 

Occurrence, Concurrence, and Evolution of 

Meteorological, Hydrological and Agricultural 

Droughts over River Basins of India  

3.1 Introduction 

Drought is a large-scale and recurring phenomenon with random and 

unpredictable characteristics (X. C. Yuan et al., 2017; Zhang and Zhang, 

2016). It causes massive economical, environmental, and social 

consequences all over the world (Soľáková et al., 2014). In general, 

droughts are categorized into three categories i.e., meteorological, 

hydrological, and agricultural droughts (National Commission on 

Agriculture, 1976). The present study further classified the agricultural 

drought into soil moisture and vegetation drought. In order to monitor 

drought condition, researchers used various drought indices for example, 

standardized soil moisture index, SSI (Hao and AghaKouchak, 2013), 

standardized precipitation index, SPI (McKee et al., 1993), etc. Each 

drought index has its own merits and demerits.  

India has faced frequent and severe drought (once in every three years) in 

the last few decades and stands as one of the most vulnerable drought-prone 

countries in the world (Mishra and Singh, 2010). Several past studies have 

also witnessed variations in drought trends, spatiotemporal patterns, and 

frequencies in different parts of India (Goyal and Sharma, 2016; Thomas et 

al., 2015). Hence, it is crucial to recognize the drought from several 

perceptions such as severity, trends, distribution, duration as well as their 

complex interaction (Zhang et al. 2017).  

From the literature review, it was observed that most of the previous studies 

have focused on individual drought types, specifically meteorological 
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drought in India. None of them underlines a systematic and comprehensive 

investigation of the trends, distribution, severity, and durationof multiple 

drought types simultaneously, especially in India. Moreover, the 

concurrence and evolution between meteorological, hydrological, and 

agricultural drought are still unclear (Mallya et al., 2015; Yadav et al., 

2015). To bridge this knowledge gap, we provide a first comprehensive 

approach to investigate multiple droughts in terms of their occurrence, 

distribution, trend, concurrence, and evolution to evaluate the implications 

of droughts in India. The present analysis is performed using high-

resolution (0.50 ×0.50) precipitation, soil moisture, runoff, and vegetation 

data series over India. 

3.2 Data and methodology 

3.2.1 Study area and data 

Figure 3.1 describes the river basin ID, location, and nomenclature. Each 

river basin of India has different spatio-temporal variability in its rainfall 

pattern, for example, the lowest rainfall received by the western parts of 

India whereas the highest by northern parts. Therefore, all 25 major river 

basins of India were chosen as the study area. Due to the human interface, 

drought based on one input such as precipitation or soil moisture is not 

enough to accurately capture the drought condition. Therefore, the present 

study adopted a comprehensive approach to carry out this study in all river 

basins of India. 

In this study, monthly gridded datasets of precipitation, NDVI, soil 

moisture, and runoff during the period 1982-2013 were analyzed. The 

precipitation data is obtained at a spatial resolution (0.5°×0.5°) from the 

India Meteorological Department 4 (IMD-4) data set (Pai et al., 2014). IMD 

precipitation dataset is advised to use because it is capable to detect the 

Indian climatic conditions efficiently (Mishra et al., 2014).  
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Figure 3.1. Major river basins in India. Source: Watershed Atlas of 

India (India-WRIS 2012). The details of basin IDs are: 1-Indus, 2(a)-

Ganga, 2(b)-Brahmaputra, 2(c)-Barak, 3-Godavari, 4-Krishna, 5-

Cauvery, 6-Subernrekha, 7-Brahmani and Baitarani, 8 Mahanadi, 9-

Pennar, 10-Mahi, 11-Sabarmati, 12-Narmada, 13- Tapi, 15-East 

flowing rivers between Mahanadi and Godavari basins (EFRMGB), 

16- East flowing rivers between Godavari and Krishna basins 

(EFRGKB),17- East flowing rivers between Krishna and Pennar basins 

(EFRKPB),18- East flowing rivers between Pennar and Cauvery basins 

(EFRPCB), 19-East flowing rivers between Subernrekha and Cauvery 

basins (EFRSCB), 20-Luni, 21-Minor rivers flowing into Bangladesh 

(MRFB), 22- Minor rivers flowing into Myanmar (MRFM), 23- Area 

of North Ladakh not draining into Indus basin (ANLIB), 24- Western 

Ghats (WG). 
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Soil and runoff data are obtained from the reanalysis product i.e., MERRA-

2 for the 1982-2013 period. Mean monthly and time average soil moisture 

and runoff data series are available at a resolution of 1/20 to 2/30. The 

datasets can be accessed from 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/. MEERA-2 

dataset is recommended as more realistic datasets to detect soil moisture 

and runoff variability and can signify better interactions between various 

physical processes and surface landscape (Molod et al., 2015). It is assumed 

that the reanalysis dataset provides comparable results as these datasets are 

widely used for various hydrology and climate related investigations. 

However, these datasets have several uncertainties due to various data 

sources, data assimilation, and model’s simulation (Hodges et al., 2011). 

Thus, it is suggested to assess the data quality before investigating the 

climate of the study area (Lin et al., 2014). 

NDVI is deemed as a suitable and appropriate factor for investigating the 

vegetation drought (Zhao et al., 2018). NDVI dataset was obtained from the 

GIMMS-NDVI with a bi-weekly period and spatial resolution of 

1/12°×1/12° and can be accessed from 

https://nex.nasa.gov/nex/projects/1349. GIMMS-NDVI datasets were 

available on a 15 day temporal scale and hence, it is average to a monthly 

dataset. It is essential to note that the NDVI, soil moisture, runoff data are 

regridded with help of an inverse distance weighted (IDW) interpolation 

method to a 0.5°×0.5° resolution.  

3.2.2 Methods 

In the present investigation, standardized precipitation index (SPI), 

standardized soil moisture index (SSI), vegetation condition index (VCI), 

and standardized runoff index (SRI) indices were selected for monitoring 

all major drought types in our study area. The drought indices i.e., SPI, SRI, 

SSI, and VCI were computed using monthly data of precipitation, runoff, 

soil moisture, and NDVI datasets, respectively. Moreover, the study 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://nex.nasa.gov/nex/projects/1349
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investigates the spatio-temporal distribution of droughts, individually and 

concurrently. These concurrent droughts are computed by accounting 

drought indices values collectively. Further drought trend analysis is 

performed based on their mean duration, mean spatial extent, and 

frequency. Moreover, the evolutionary process which explains the evolution 

of one drought type into another type is also examined. Figure 3.2. shows 

the detailed methodology of the present study. 

 

3.2.2.1 Computation of drought indices 

The SPI method is presented by McKee et al., (1993), which only requires 

precipitation data for estimation and can be used for both rainy and dry 

seasons. Typically, negative SPI indicates drought conditions whereas 

positive SPI refers to the ending of the drought. The raw rainfall data are 

consistently fitted to gamma or a Pearson Type III distribution and then 

changed to a normal distribution. SRI and SSI drought indices are used to 

estimate hydrological and soil moisture drought considering runoff and soil 

moisture data as input, respectively. For their computation, streamflow/soil 

 

Figure 3.2 Flow chart for the methodology of drought characterization. 
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moisture data of specific regions are fitted in an appropriate distribution. 

After that, the cumulative distribution function (CDF), as well as probability 

density function (PDF) is processed and changed to standardized normal 

deviation having unit variance and zero mean, and thus finally resulted in 

SRI/SSI.  For SRI calculation, details can be obtained from (Hao et al., 

2014; Shukla and Wood, 2008; Vicente-Serrano et al., 2012), and for SSI, 

details can be obtained from (Lloyd-Hughes and Saunders, 2002; Yao et al., 

2018). 

The cumulative density function of Gamma distribution is 𝐺𝑥(𝑥) in Eq. 

(3.1): 

∫ 𝑔𝑥(𝑥)
𝑥

0
𝑑𝑥=

1

𝛽𝜀Ґ(ξ)
∫ 𝑥ξ̂−1𝑥

0
𝑒−𝑥/𝛽̂dx,                                                                     (3.1) 

where 𝑔𝑥(𝑥) is Gamma PDF, 𝛽 is the scale parameter and 𝛼 is a shape 

parameter of Gamma distribution. 

 Ґ(ξ) is the Gamma function and given as  

Ґ(ξ) = ∫ 𝑡ξ−1𝑥

0
𝑒−t𝑑𝑡 for ξ>0. 

SPI index can be computed by Eq. (3.2) if the precipitation raw data is fitted 

into the log-normal distribution with variance 𝜎2
𝑦 and mean  𝜇𝑦 as: 

SPI = 
ln(x)− μy

 σy
                                                                                                            (3.2) 

where ln(x) is log-normal transformed precipitation series. 

VCI is used to characterize vegetation droughts using NDVI datasets. A 

higher value of the VCI index signifies good vegetation conditions and vice-

versa. VCI can be calculated by applying the following Eq. (3.3): 

VCI = 
𝑁𝐷𝑉𝐼𝑖−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
× 100                                         (3.3) 

Where, 

VCI = Vegetation Condition Index 
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NDVIi = Index of the current month 

NDVImax and NDVImin = Maximum and minimum NDVI of every pixel for 

each month. 

Since VCI is determined in %, therefore VCI lies between 50-100% shows 

better than average state of vegetation while VCI from 50 to 35% shows 

drought condition and VCI under 35% demonstrates severe drought 

condition (Kogan, 1995). Additionally, specific thresholds were defined to 

categorize drought severity (see Table 3.1). 

 

3.2.2.2 Temporal extent, duration, frequency, and areal extent of 

droughts 

In the preliminary stage, the occurrence of meteorological, vegetation, soil 

moisture, and hydrological droughts are computed through SPI, VCI, SSI, 

and SRI drought indices, respectively. Further, concurrent droughts are 

determined in the same month by considering drought indices value 

collectively. Moreover, the frequency of drought is termed as the number 

of drought events in a decade. However, in the present investigation, we 

have calculated frequency as the number of drought events in eleven years 

in order to divide the total time period (1982-2013) into three equal parts. 

Table 3.1 Drought severities as per different drought indices as defined 

in Svoboda et al., (2002). 

Drought Severity SPI, SRI, and SSI VCI Category 

Exceptional Drought -2.00 or Less 0.00 to 0.05 D4 

Extreme Drought -1.60 to -1.99 0.15 to 0.06 D3 

Severe Drought -1.30 to -1.59 0.25 to 0.16 D2 

Moderate Drought -0.80 to -1.29 0.35 to 0.26 D1 

Abnormally Dry -0.50 to -0.79 0.45 to 0.36 D0 
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The temporal extent denotes the count of years for which each grid cell faces 

drought conditions in the given period or month during 1982-2013. In case 

of concurrent drought, it can be determined by accounting for the multi-

drought occurrence within the same time, such as the temporal extent of 

meteorological and vegetation drought can be determined by counting the 

grids witnessed both droughts in the same month. Mean duration is defined 

as the ratio of total duration time to the number of drought concurrence 

during the given period. The areal or spatial extent can be determined as the 

ratio of the number of grid cells experiencing drought to the total grid cell 

of the study area. The areal extent denotes the study area (in %) under 

drought conditions.  

3.2.2.3 Drought evolution 

The drought evolution process indicates the evolution of one drought type 

into another drought type, for example, meteorological drought to 

hydrological drought, further leads to soil moisture drought, and lastly to 

vegetation drought (National Weather Service, 2006).  The drought 

evolution process plays a vital role to analyse the water shortage 

transformation in several drought studies. However, most of the research 

does not incorporate the drought evolution process. The present study 

adopted a linear regression approach to describe the relationship between 

the evolution process between all major drought types.  

3.3 Results and discussion 

3.3.1 Drought occurrence during 1982-2013 

The occurrence of historical droughts was computed using four major 

drought indices i.e., SPI, SRI, SSI, and VCI. In the initial analysis, the top 

droughts by the maximum areal extent and/or level of severity were shown 

for major drought types (Figure 3.3 (a &b) and 3.4 (a &b)).  

In case of drought severity, the soil moisture and hydrological droughts are 

usually observed to be more influential as compared to other drought types. 
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However, in the case of the Tapi and Mahi river basins, vegetation and soil 

moisture droughts are more extreme and influential as compared to 

meteorological and hydrological droughts.    
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Figure 3.3 (a) Top meteorological, hydrological, soil moisture and vegetation droughts based on spatial extent (%) for all basins of 

India for every month in 1982-2013. 
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Figure 3.3 (b) Top meteorological, hydrological, soil moisture and vegetation droughts based on spatial extent (%) for all basins of 

India for every month in 1982-2013. 
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Figure 3.4 (a) Top meteorological, hydrological, soil moisture and vegetation droughts based on severity estimated using domain 

mean drought indices for all basins of India for every month in 1982-2013. 
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Figure 3.4 (b) Top meteorological, hydrological, soil moisture and vegetation droughts based on severity estimated using domain 

mean drought indices for all basins of India for every month in 1982-2013. 
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In terms of the areal extent, similar results were observed in most of the 

river basins of the study area. Mahi, Sabarmati, and Luni basin have a high 

likelihood of vegetation drought in low moisture conditions (Jha et al., 

2019). Moreover, the investigation also suggests that meteorological 

droughts are majorly characterized by moderate and severe drought i.e., D1 

and D2 severity in the majority of the river basins of India. A similar finding 

was observed in Pai et al., (2017) where they found moderate and severe 

droughts in India during the period 1901-2010.  

3.3.2 Temporal extent of drought 

Figure 3.5 presents the temporal extent of drought given the severity≥ 𝐷1 

for each month for the period 1982-2013. Investigation suggests that 

meteorological droughts mostly occur from December to April in major of 

the river basins in India. This may be due to a rainfall deficit in the given 

period. Whereas the soil moisture and hydrological droughts show no or 

very less significant monthly variation in their temporal extent, ranges from 

5 to 8 drought years.  

Unlike the three droughts, the temporal extent of vegetation drought 

presents the heterogeneous distribution, similar was found in  Jha et al., 

(2019). Vegetation drought shows significant variation in their temporal 

extent, as averaged variation ranges from 9 to 19 drought years. 

Investigation demonstrates that vegetation droughts are mostly appeared 

from March to July and meteorological drought from December to April, 

whereas soil moisture and hydrological droughts present insignificant 

monthly differences in temporal extent. Further, April to July are perceived 

as drought-prone months and might not suitable for better crop production 

during these months.  
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  (a)        (b) 

                 (c)        (d) 

Figure 3.5 Temporal extent of all four drought types ((a) meteorological, (b) hydrological, (c) soil moisture and (d) vegetation) for 

the study area. 
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3.3.3 Drought trend analysis 

The drought trend is analyzed in terms of mean duration, frequency, and 

mean areal extent for three-time periods, i.e., 1982-1992, 1993-2003, and 

2004-2013 to detect the trend pattern on a decadal basis. However, in the 

present study, we have taken 11 year’s time windows instead of a decadal 

period.  

3.3.3.1 Drought mean duration 

In case of drought mean duration (Figure 3.6), the mean duration for 

meteorological drought shows longer drought duration i.e., from 2.2 months 

to 2.3 months per drought events from 1982-1992 to 2004-2013. Whereas 

soil moisture, hydrological and vegetation drought presents a decreasing 

trend of mean duration from 3 months to 1 month, 4 months to 2months, 

and 6 months to 4 months from 1982-1992 to 2004-2013, respectively. In 

terms of moisture drought, a 50% sharp decrease in mean drought duration 

was witnesses. Further, the MRMB and Cauveri basin witnesses the highest 

decreasing duration trend for soil moisture and hydrological drought 

respectively while the Mahi basin exhibit for vegetation and meteorological 

drought. Investigation suggests that the mean duration of vegetation drought 

varies from 1 to 4 months while for soil moisture, hydrological and 

meteorological droughts, it fluctuates from 1 to 2 months. Further, the 

overall mean duration results suggest that the study area witnesses more 

frequent “flash droughts” events rather than year-long droughts. 

Additionally, Eastern India, Mahanadi, the Northern part of India, 

Brahmani and Baitarani basin, and the Indo-Gangetic plains exhibit the 

upward drought duration trend of meteorological drought from 1982-1992 

to 2004-2013. Recent studies also observed similar results in terms of 

drought mean duration (Ganguli and Reddy, 2014). 
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Figure 3.6 Mean Duration (in months) of all four drought types calculated using drought indices during 1982-92, 1993-2003 and 

2004-2013. 
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3.3.3.2 Drought areal extent 

Regarding areal extent (see Figure 3.7), the area under meteorological 

drought shows an upward trend ranges from 3.2% to 4.14% whereas soil 

moisture, hydrological and vegetation drought presents downward trend 

ranges from 2.7% to 3.08%, 7.09% to 4.53%, and 10.22% to 7.75% during 

1982-1992 to 2004-2013 respectively. The areal extent of meteorological, 

vegetation, soil moisture, and hydrological drought varies from 0.19% to 

30%, 0.1% to 82%, 0.8% to 36.7%, and 1.3% to 25.6%, respectively. 

Moreover, the Ganga basin witnesses the highest decreasing trend in soil 

moisture and hydrological drought whereas the highest increasing trend for 

meteorological drought. The highest decreasing trend in vegetation and 

meteorological drought was observed for the Krishna river basin. Further, 

Eastern India, Cauveri, Western part, and Indo-Gangetic plains of India 

exhibits the upward trend in meteorological drought from 1982-1192 to 

2004-2013. Ganguli and Reddy, (2014) and Mallya et al., (2015) also found 

similar results in terms of drought duration and drought frequency.  

3.3.3.3 Drought frequency 

From the perception of the frequency, soil moisture, hydrological and 

vegetation droughts exhibit a decreasing trend while meteorological 

droughts show an increasing trend from 1982-1992 to 2004-2013 in all river 

basins of the study area. The frequency of meteorological drought 

increasing from 15 drought events (1982-92) to 19 drought events (1993-

2003) and then decreases to 15 drought events (2004-2013). While the 

frequency of vegetation, soil moisture, and hydrological droughts decreases 

from 59 to 38 drought events, 37 to 9 drought events, and 27 to 10 drought 

events during 1982-1992 to 2004-2013, respectively (Figure 3.8). Das et al., 

(2019) also observed similar results in terms of drought frequency. 

Investigation suggests an increase in rainfall anomaly with insignificant 

anomalies of vegetation, soil moisture, and runoff. 
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Figure 3.7 Mean Areal Extent (in %) of all four drought types calculated using of drought indices during 1982-92, 1993-2003 and 

2004-2013 respectively. 
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Figure 3.8 Frequency (no. of droughts per 11 years) of all four drought types calculated using domain averaged drought indices (SPI, 

SRI, SSI, and VCI) during 1982-92, 1993-2003 and 2004-2013 respectively. 
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Moreover, the highest decreasing trend of the frequency of vegetation 

drought is witnessed in the Mahi basin. Moreover, the Mahanadi, Northern 

part of India, Eastern India, Brahmani, and Baitarni basin and the Indo-

Gangetic plains show the increasing trend of frequency for meteorological 

drought during 1982-1992 to 2004-2013. Mishra et al., (2014) and Mallya 

et al., (2015) also found similar results in terms of drought frequency.  

Based on drought trend analysis in terms of mean duration, areal extent, and 

frequency, it was observed that nearly 10 river basins show continuous, 

larger area and frequent meteorological drought whereas vegetation, soil 

moisture, and hydrological droughts exhibited a smaller duration, areal 

extent, and frequency.  

3.3.4 Drought concurrence 

Further to individual drought examination, concurrent droughts are also 

examined in terms of their temporal distribution and types. Concurrent 

drought calculation is discussed and explained in the methodology section. 

Investigation suggests that at least 30 concurrent droughts occurred in all 

25 river basins of India during the 1982-2013 period (Table 3.2). 

Interestingly, it was observed that two-drought-based conjunctions range 

from 38% to 88% of concurrent droughts. Moreover, 82% of concurrent 

droughts are consists of soil moisture droughts in 16 basins of India. This 

suggests not only frequent soil moisture droughts but also shows the 

important role of soil moisture than precipitation in the study region. It 

suggests that the vegetation ecosystem faces a more frightening situation in 

near future in India. More than 85 concurrent droughts are witnessed by the 

Pennar, Indus, EFRKPB, and Subarnarekha basins in 26 to 29 years, as 

these river basins come into the category of water scarce. March, April, 

June, and July months are termed as multi-drought prone months with more 

than 40% of concurrent droughts. In November and December, the Ganga 

basin witnesses no concurrent drought while ANLIB basin observed no 

concurrent drought in January.  
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Table 3.2 Regional droughts for every month during 1982-2013 for all 

major river basins of India. 

Parameters 

No. of 

concurrent 

drought 

Two-

drought 

based 

conjuncti

ons (%) 

Parameters 

No. of 

concurrent 

drought 

Two-

drought 

based 

conjunctio

ns (%) 
Basins Basins 

Indus 
100 droughts 

in 26 years 
50 Narmada 

65 droughts in 

27 years 
72 

Ganga 
31 droughts in 

20 years 
71 Tapi 

74 droughts in 

24 years 
69 

Brahma. 
38 droughts in 

20 years 
82 EFRMGB 

78 droughts in 

28 years 
58 

Barak 
60 droughts in 

22 years 
87 EFRGKB 

80 droughts in 

28 years 
48 

Godavari 
52 droughts in 

22 years 
65 EFRKPB 

86 droughts in 

27 years 
48 

Krishna 
62 droughts in 

25 years 
63 EFRPCP 

81 droughts in 

27 years 
65 

Cauveri 
70 droughts in 

24 years 
68 EFRSCB 

82 droughts in 

26 years 
65 

Subarna. 
98 droughts in 

28 years 
56 Luni 

69 droughts in 

22 years 
67 

BB 
77 droughts in 

26 years 
48 MRBB 

65 droughts in 

21 years 
88 

Mahanadi 
69 droughts in 

25 years 
38 MRMB 

62 droughts in 

24 years 
65 

Pennar 
107 droughts 

in 29 years 
61 ANLIB 

37 droughts in 

13 years 
57 

Mahi 
80 droughts in 

26 years 
61 WG 

38 droughts in 

16 years 
86 

Sabarmati 
73 droughts in 

22 years 
58    
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    (a)        (b) 

                (c)       (d) 

Figure 3.9 Temporal extent of concurrent droughts (figure a to d) for every month during the period 1982-2013. 
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                            (e)      (f) 

                            (g)      (h) 

Figure 3.9 Temporal extent of concurrent droughts (figure e to h) for every month during the period 1982-2013. 
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                              (i)           (j) 

 (k) 

Figure 3.9 Temporal extent of concurrent droughts (figure i to k) for every month during the period 1982-2013. 
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Figure 3.9 presents the temporal extent of concurrent droughts, where it 

varies from one to twelve. Combinations such as vegetation- hydrological 

drought, soil moisture-vegetation drought, and hydrological-soil moisture 

drought were highly observed combinations. April, May, June, and July are 

perceived as the most significant months for drought concurrence. 

3.3.5 Drought evolution 

Figure 3.10 presents the relationship between domain-mean monthly 

drought indices. The R2 value demonstrates that 33% of soil moisture and 

23% of hydrological variability is due to precipitation anomalies. 

Interestingly, 50% of soil moisture variability is attributed to the runoff of 

the study region. Moreover, the Pennar, Subarnarekha, EFRSCB, Krishna, 

Ganga and Godavari basin illustrate a better coefficient of determination in 

comparison to other river basins. Additionally, the ANLIB and MRBB 

basins show a low R2 value which implies that the soil of the study area 

achieves maximum soil moisture through runoff only. In case of the Ganga 

basin, it was observed that there are 42 months of hydrological drought 

whereas only 20 months with hydrological combined with soil moisture 

droughts. This indicates that the occurrence of hydrological drought 

combined with soil moisture drought is about 110% less than the individual 

hydrological drought. Moreover, the Luni, Western Ghats, ANLIB, 

Brahmaputra, and Ganga basins observed that hydrological with soil 

moisture drought is at least 110% less than the hydrological drought. It 

means irrigation is widely practiced for agricultural activities in the study 

area. The Open Government Data, India claims that more than 40% of the 

irrigation rate is practiced in the Indo-Gangetic plane during 2009-2010. 

Moreover, Annual-Report, 2013-2014 claims that more than 89% of 

groundwater is used for irrigation purposes in India. Therefore, it is 

suggested to adopt rapid drought mitigation strategies and policies as soon 

as the occurrence of meteorological drought in the study area. 
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Figure 3.10 Relationship (coefficient of determination (R2)) between domain-mean monthly [SPI-SRI], [SPI-VCI], [SRI-SSI], [SPI-SSI], 

and [SSI-VCI]. 
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3.4 Conclusions 

Drought is a persistent and recurrent phenomenon that can cause large 

impacts on the economy, environment, and several important sectors of 

society. It is very important to understand the impact of all drought types at 

the regional and national scale and to figure out mitigation measures and 

adaptation strategies for droughts. Hence, the present study investigates the 

various drought characteristics occurring in different parts of the country. 

The main outcomes of present study can be summarized as: 

The preliminary examination suggests that hydrological and soil moisture 

drought severity reaches up to D3 and D4, while meteorological and 

vegetation drought reaches only up to D1 and S2 severity levels. This 

simply illustrates that soil moisture and hydrological droughts were more 

impactful and influential in terms of severity, moreover, similar was 

observed in terms of spatial extent. The drought trend analysis outcomes 

imply that meteorological drought has a shorter mean duration and low 

frequency but with a larger areal extent, which is consistent with past 

research (Mallya et al., 2015). These outcomes will lead to challenges to 

agricultural productivity in the arid regions and hence, irrigation is the only 

possible way to stabilize food production (Leng et al., 2015). Unlike 

meteorological drought, the other three droughts were relieved by shorter 

duration, smaller areal extent, and less frequency. Further, temporal extent 

investigation suggests that insignificant variation is observed for soil 

moisture and hydrological droughts. Heterogeneous distribution was 

observed in the temporal extent of vegetation drought in contrast to other 

drought types. Further, April to July are perceived as drought-prone months 

and might not suitable for better crop production during these months. 

Additionally, investigation of concurrent drought concludes that the 

majority of the concurrent droughts are made of two drought-based 

conjunctions. Moreover, it was observed that more than 82% of concurrent 

droughts are soil moisture drought. This shows the importance of soil 
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moisture more than precipitation in the study area. Results of temporal 

extent concurrent droughts suggest that concurrent drought years range 

from 1 to 12. Out of eleven kinds of conjunctions of concurrent droughts, 

only three conjunctions i.e., hydrological-soil moisture, vegetation-soil 

moisture, hydrological-vegetation droughts were observed as compared to 

others. Finally, the drought evolution process demonstrates 50% of soil 

moisture variability is due to the runoff of the study area. It means runoff is 

the main source of water for the soil in the study area. Intriguingly, the 

occurrence of hydrological drought combined with soil moisture drought is 

110% less than the individual hydrological drought indicates the role of 

irrigation and its practice in the study region.  

In this study, the hydrological and soil moisture drought is evaluated using 

reanalysis datasets. However, it is suggested to compare such datasets with 

observed datasets for exact physical behaviors and performance in drought 

characterization in the study region  (Lin et al., 2014). Moreover, the 

copula-based analysis may also be helpful to study the drought evolution 

process and the relationship among different droughts. The present study 

enables a new approach to investigate drought from several perspectives 

over India and provide information for drought mitigation and adaptation 

strategies. 
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Chapter 4 

Copula based analysis of drought 

characteristics over India  

4.1 Introduction 

Drought is a large-scale phenomenon due to prolonged deficiency in 

precipitation levels. Dracup et al., (1980) recognized drought severity and 

duration as crucial characteristics of a drought event. Here, drought duration 

indicates the time in which the rainfall deficit occurs whereas severity 

indicates the aggregate rainfall deficit below a particular threshold. Several 

probabilistic methods have been developed in the past to examine drought 

characteristics; however, a significant correlation is not obtained during 

univariate analysis (Chen et al., 2013). Therefore, it is better to implement 

a multivariate technique for investigating the joint dependence of drought 

characteristics and obtain the join probability to describe the duration-

severity interaction (Kao and Govindaraju, 2010). However, most of the 

multivariate techniques are derived from univariate approaches but offers 

several disadvantages (Michele and Salvadori, 2003), such as the same 

marginal distribution, complex mathematical derivations, etc. 

To overcome such limitations, Copula is a promising way to assess 

multivariable probability distribution (Sklar, 1959). Copulas are 

advantageous in modeling joint dependence because they are independent 

of  equality of marginal distribution or normality of variables (Zhang and 

Singh, 2007). The copula-based approach has been used widely for studying 

hydro-climatic events, for example, soil moisture and precipitation 

(AghaKouchak, 2015), extreme events and vegetation drought (Jha et al. 

2019), groundwater and precipitation (Reddy and Ganguli 2013), volume 

and peak flow (Favre et al., 2004), drought duration and severity (Nabaei et 

al., 2019).  



57 

 

In this study, we used a bivariate copula-based approach to understand the 

joint dependence of drought characteristics for meteorological, 

hydrological, and agricultural droughts. In this regard, three types of 

bivariate copulas (Gumbel, Frank, and Plackett) are estimated for modeling 

and the best fit copula is selected over 1162 grid points of India. Further, 

the joint dependence of drought characteristics are analyzed to infer 

important properties in terms of exceedance probability and return period. 

4.2 Data and methodology 

4.2.1 Study area and data 

In the present analysis, 24 major river basins (as per India-WRIS (2014) 

classification) of India are selected as a study area. Figure 4.1 describes the 

river basin ID, location, and nomenclature. India is a climatologically 

diverse country having high spatial and temporal variability in terms of 

precipitation and temperature, for example, the maximum precipitation is 

received by the northern part of the country whereas the lowest is received 

by the western part of the country. Therefore, all 24 major river basins are 

important for the drought investigation. 

In this study, monthly gridded datasets of precipitation, soil moisture, and 

runoff during the period 1982-2013 were analyzed. The precipitation data 

is obtained at a spatial resolution (0.5°×0.5°) from IMD-4 data set (Pai et 

al., 2014). These datasets were prepared with the use of daily precipitation 

records over India. IMD data is considered as more accurate dataset for 

drought analysis (Mishra et al., 2014) as it efficiently captures the temporal 

and spatial variability of precipitation in India.  
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 Runoff and soil moisture datasets were extracted from the MERRA-2 

developed by NASA (available at 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/). MERRA-

2 is the global reanalysis product to integrate observations of surface 

landscape and aerosols (Molod et al., 2015). Soil moisture and runoff 

datasets are extracted for the period 1982-2013 with spatial resolution 1/20 

to 2/30. Further, runoff and soil moisture datasets were regridded to 

0.5°×0.5° using Inverse-distance Weighting (IDW) method. IDW method 

is the most widely used method for the approximation of missing data in 

hydrology.  

 

Figure 4.1. Major river basins in India. Source: Watershed Atlas of 

India (India-WRIS 2012).  
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4.2.2 Methods 

Most widely drought indices i.e., standardized precipitation index (SPI), 

standardized runoff index (SRI) and standardized soil moisture index (SSI) 

were chosen for defining meteorological, hydrological and soil moisture 

drought, respectively. In this study, 12-month time scale drought indices are 

used. Since drought is a multivariate and complex phenomenon, therefore, 

more efficient techniques (e.g. copula) are required to understand the 

interrelationship between drought characteristics (Jha et al. 2019; Das et al. 

2020). Hence, a copula-based approach is used to perform bivariate 

distribution. Initially, trend analysis of the drought characteristics is carried 

out using the MK test at a 5% significance level during the period 1982-

2013. However, this trend investigation also recommends that a more 

effective approach is required to comprehend the drought situation in India. 

Hence, different copulas were used to build a joint dependence structure 

among drought characteristics using monthly precipitation 

(meteorological), runoff (hydrological), and soil moisture (agricultural) 

data at each grid point in India. Then, the best-fit copula function was 

selected using the log-likelihood method (Island, 2016). Further, the best 

copula parameter and best copula were selected based on AIC and BIC 

values (Cong and Brady, 2012). Finally, based on different copulas, some 

bivariate probabilistic approaches, for example, exceedance joint return 

period and probabilities were investigated. Moreover, the conditional 

approach is also applied to probability and return periods. The methodology 

of the study is described in Figure 4.2. 
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4.2.2.1 Drought characteristics 

From the literature review, various drought identification approaches are 

observed for example, percentile method, discrete Markov process, run 

analysis, and many more. However, the run theory is widely used in drought 

analysis and engineering practice (Yevjevich, 1969). Several recent studies 

have utilized run analysis approach in the evaluation of drought 

characteristics (Ganguli and Reddy, 2012; Mishra et al., 2009). Here, run 

analysis approach is used for the computation of the drought duration and 

severity. In the case of meteorological drought, drought duration (d) can be 

described as the number of consecutive months in which SPI is less than 

zero (Shiau, 2006). Within a drought duration (d), the severity (s) can be 

 

Figure 4.2 Methodological flowchart. 
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described as the cumulative summation of negative SPIs during the drought 

event, which can be expressed as Eq. (4.1): 

 𝑠𝑛 =  − ∑ 𝑆𝑃𝐼𝑛
𝑑
𝑛=1                                                                                                       (4.1) 

Additionally, in this study, SRI and SSI values are used instead of SPI in 

case of hydrological and soil moisture drought respectively. These two 

important drought parameters i.e., duration and severity (d & s) are strongly 

correlated and can be modeled using various distributions (Chang and 

Stenson, 1990). As different points in a single river basin might have 

different rainfall characteristics, hence, might follow different distributions.  

Figure 4.3 illustrates the drought characteristics using the SPI time-series 

and drought events. Interarrival time (L) indicates the time between the 

commencement of one drought to the commencement of the next drought 

event.   



62 

 

 

 

Figure 4.3 Definition of drought characteristics. 
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4.2.2.2 Trend analysis of drought characteristics 

In the present investigation, the trend analysis is performed for the drought 

severity and drought duration for all three drought types using the MK test 

at a 5% significance level during the period 1982-2013. The outcomes of 

MK test were categorized based on Z statistics: significantly increasing ( 

when Z ≥1.96), increasing (1.96 < Z>0), no trend (Z=0), decreasing (0 < Z> 

-1.96), and significantly decreasing trend (Z ≤ (-1.96)) (Dai, 2013; Mallya 

et al., 2015). The MK test is very useful in trend analysis as it shows 

accurate results especially in hydrologic and climatic data (Mann, 1945; 

Mishra and Cherkauer, 2010).  

4.2.2.3 Copula based bivariate probabilistic model 

Bivariate analysis is incorporated in the present study to determine the joint 

dependence among drought characteristics. The copula-based technique is 

used which provides a robust way to formulate a bivariate distribution. 

Sklar’s Theorem states that a multivariate distribution 𝐹(𝑥1, 𝑥2 … 𝑥𝑛) can 

be expressed by a Copula as Eq. 4.2: 

𝐹(𝑥1, 𝑥2, … . 𝑥𝑛) = 𝐶[𝐹𝑋1
(𝑥1), 𝐹𝑋2

(𝑥2) … 𝐹𝑋𝑛
(𝑥𝑛)] = 𝐶(𝑢1, 𝑢2 … 𝑢𝑛)           (4.2)   

Where 𝐹𝑥𝑖
 (𝑥𝑖), denoted by 𝑢𝑖 in the copula-definition represents the CDF 

of 𝑖𝑡ℎ variable. Elliptical copulas such as 𝑡  and Gaussian have various 

properties of the multivariate Gaussian distribution (Renard and Lang, 

2007; Sraj et al., 2015). Another widely used copula families are the 

Archimedean copulas (Frank, Clayton, Gumbel) which offer great 

flexibility in data modeling with inconsistent dependencies (Grimaldi and 

Serinaldi, 2006). 

In the present analysis, three copulas i.e., Gumbel, Frank, and Plackett 

copula are selected. Gumbel and Frank copula are the most extensively 

applied copula because they provide more flexibility in data modeling. The 

above-mentioned copulas offer several benefits. Firstly, they provide more 

flexibility in developing the joint dependence structure of data. Secondly, 
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these single parameter copulas enable flexible as well as straightforward 

modelling of the dependence between variables (Ganguli and Reddy 2014). 

Thirdly, they are capable of modeling positively and negatively correlated 

random variables (Uttarwar et al., 2020). 

Importantly, it is important to initially find the appropriate marginal 

distribution of data before proceeding to model the joint distributions. In 

this study, the drought characteristics were fit with five marginal 

distributions (normal, log-normal, exponential, gamma and Weibull 

distributions), then the best fit distribution was obtained employing K-S (the 

Kolmogorov-Smirnov test). Once the best fit marginals were estimated, the 

copula parameters for the three copula types were obtained. Further, these 

three copulas (Gumbel, Frank, and Plackett) were tested and the best copula 

parameters and copula were selected based on two model performance 

indices, Bayesian Information Criterion and Akaike Information Criterion. 

The BIC and AIC are widely used in quantifying the  comparative 

performance of models (Jha et al. 2019; Das et al. 2020). Eventually, the 

joint behavior of different sets of drought characteristics was analyzed to 

infer important properties in terms of exceedance probability and return 

periods.  

The parameters and structure of the above-mentioned copulas are presented 

concisely in Eqs. 4.3, 4.4 and 4.5. Please refer Sadegh et al. (2017) for more 

details. 

Gumbel Copula: 

CG (u, v) = exp {-[(−ln(u))θ  +  (−ln(u))θ]1/θ}                            (4.3) 

 

Plackett Copula: 

CP (u, v) = 
1+(θ−1)(u+v)−√[1+(θ−1)(u+v)]2−4θ(θ−1)uv

2(θ−1)
                                (4.4) 

Frank Copula: 
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CF (u, v) = −
1

θ
 ln [1+ 

(exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1
]                             (4.5) 

Where 𝜃 is copula parameter and parameter range of Gumbel, Plackett and 

Frank copulas are [1,∞), θ ϵ (0, ∞), and 𝜃 ∈ R 0, respectively (Das et al., 

2020a). Figure 4.4 gives the overview of the copula methodology. The 

Copula based analysis was done by developing code in MATLAB and the 

plots were prepared using R studio. 

 

4.2.2.4 Probabilistic analysis 

The copula-based joint dependence of drought characteristics is very 

helpful to derive some significant information about drought management. 

For example, the probability that both the drought characteristics i.e., 

 

Figure 4.4 Flow chart of the copula-based methodology. 
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severity and duration concurrently exceed specific thresholds is considered 

a crucial situation for a water distribution systems. In this study, the 

exceedance probability is computed which can be described as the 

probability where both drought duration as well as severity surpass a 

particular threshold. In the current analysis, exceedance probability is 

computed at the thresholds of 25𝑡ℎ,50𝑡ℎ,75𝑡ℎ and 95𝑡ℎ percentile values of 

drought variables for all 24 major river basins of India. 

The exceedance probability cannot be achieved through a separate analysis 

of drought characteristics; however, it can be easily obtained through 

copulas (Eq. 4.6). 

P(D≥d, S≥s) = 1- 𝐹𝐷(𝑑) - 𝐹𝑆(𝑠) + C(𝐹𝐷(𝑑) , 𝐹𝑆(𝑠))                             (4.6)                             

Similarly, computation of conditional probabilities can be done using 

bivariate drought distribution.  This is crucial to estimate the probability of 

drought duration provided that the drought severity passing a certain 

threshold 𝑠′. The equation for conditional drought duration distribution can 

be expressed as Eq. 4.7 (Shiau, 2006):   

P (D≤d | S≥ 𝑠′ ) = 
P( D≥d,   S≤𝑠′ ) 

P (S≥𝑠′ ) 
 = 

𝐹𝐷(𝑑)− 𝐹𝐷,𝑆(𝑑,𝑠′ ) 

1− 𝐹𝑆(𝑠′)
 

= 
𝐹𝐷(𝑑)− C(𝐹𝐷(𝑑) ,𝐹𝑆(𝑠′))

1− 𝐹𝑆(𝑠′)
                                                                            (4.7) 

Similarly, Eq. 4.8 presents the equation for conditional drought severity 

distribution provided the duration exceeding a specific threshold 𝑑′. 

P(S≤s | D≥ 𝑑′ )  = 
𝐹𝑆(𝑠)− C(𝐹𝐷(𝑑′),𝐹𝑆(𝑠))

1− 𝐹𝐷(𝑑′)
                                                                   (4.8)                                                                                                                      

These conditional probabilities were computed for drought characteristics 

in the present analysis. 
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4.2.2.5 Return period analysis 

Evaluation of the return period plays a crucial role in water management. 

Eq. 4.9 represents the univariate return period as derived by Shiau and Shen, 

(2001) as: 

𝑇𝐷 = 
𝐸(𝐿)

(1− 𝐹𝐷(𝑑))
                                                                                                                      (4.9) 

where E (L) is the expected drought interarrival time. Similarly, in case of 

drought severity, it can be expressed as Eq. (4.10): 

𝑇𝑆 = 
𝐸(𝐿)

(1− 𝐹𝑆(𝑠))
                                                                                                                    (4.10) 

where 𝑇𝐷 and  𝑇𝑠 are the expected return period of duration and severity 

respectively.    

In the present analysis, the bivariate return period is also computed for two 

conditions: (a) AND return period where both drought severity as well as 

duration exceed a certain value (S ≥ s and D ≥ d) (Eq. 4.11); (b) OR return 

period where either severity and duration exceeding a specific value (S ≥ s 

or D ≥ d) (Eq. 4.12). Both are expressed below as (Shiau, 2006): 

TDS =
E(L)

P(D≥d,   S≥s)
 = 

E(L)

1− FD(d) − FS(s) + C(FD(d) ,FS(s))
                                            (4.11)                                                                                                               

TDS
′ =

E(L)

P(D≥d,or  S≥s)
=

E(L)

1− C(FD(d) ,FS(s))
                                                                         (4.12)     

Where 𝑇𝐷𝑆 and 𝑇𝐷𝑆
′  represents the AND & OR joint return period, 

respectively. 

Moreover, the joint return periods may also be expressed for conditional 

situations. The joint return period of drought duration provided drought 

severity exceeding a specific threshold and vice-versa as defined in Eqs. 

4.13 and 4.14, respectively. 

TD|S≥s =
TS

P(D≥d,   S≥s)
 = 

E(L)

1−  FS(s)
×

1

1− FD(d) − FS(s) + FDs(d,s)
                                                       

= 
1

[1−  FS(s)]×[1− FD(d)− FS(s)+ C(FD(d) ,FS(s))]
                                                       (4.13)           
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TS|D≥d =
TD

P(D≥d,   S≥s)
=

E(L)

1−  FD(d)
×

1

1− FD(d) − FS(s) + FDs(d,s)
 

= 
1

[1−  FD(d)]×[1− FD(d)− FS(s)+ C(FD(d) ,FS(s))]
                                                         (4.14)                                                                                                                                                                                                                 

where 𝑇𝑆|𝐷≥𝑑 and 𝑇𝐷|𝑆≥𝑆 represents the conditional return period for S 

(given 𝐷 ≥ 𝑑) and D (given 𝑆 ≥ 𝑠), respectively.  These conditional return 

periods were also computed for drought characteristics in the present 

analysis. 

4.3 Results and discussion 

4.3.1 Identification of drought characteristics and their trend analysis 

Before progressing to the probabilistic modelling, we computed the mean 

drought characteristics i.e., mean drought duration and mean drought 

severity from observed meteorological, hydrological, and soil moisture 

droughts defined by SPI, SRI, and SSI respectively (Figure 4.5 (a&b)). 

From the investigation, it was found that the mean severity and mean 

duration of soil moisture and hydrological drought are higher in the western 

river basins and some parts of the Brahmaputra basin. Reduction in light 

precipitation days made western river basins more vulnerable to drought 

conditions because these reductions were more severe in north-eastern and 

western parts of India (Mishra, A. & Liu, 2014). Mundetia and Sharma, 

(2014) also suggest that the Western part of India particularly Rajasthan has 

high rainfall variability and thus, vulnerable to drought. However, the mean 

severity and mean duration of meteorological drought are higher in the 

eastern part of the country. In this regard, Mishra and Liu, (2014) have 

suggested that the northeastern part of India observed an increase in 

prolonged droughts per decade. The preliminary investigation suggests that 

the separate analysis of drought severity and duration provides a limited 

assessment of drought characteristics; therefore, it is better to adopt a 

multivariate approach and develop the joint dependence structure to 

describe the interconnection among drought characteristics.  
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Trend analysis is carried out for the drought characteristics of all three 

drought types using a non-parametric Mann Kendall (MK) test. The 

outcomes of the MK test were categorized based on Z statistics: 

significantly increasing (when Z ≥1.96), increasing (1.96 < Z>0), no trend 

(Z=0), decreasing (0 < Z> -1.96), and significantly decreasing trend (Z ≤ (-

1.96)). The duration and severity trend results imply no significant decrease 

or increase in the majority of the study area for all three drought types 

(Figure 4.5(c)). This random variability of drought properties (duration and 

severity) makes it difficult to interpret their joint dependence in the trend 

analysis. Hence, the trend analysis outcomes recommend that a more 

effective approach is required to comprehend the drought situation in India. 

 

Figure 4.5 Basin wise mean (a) drought duration and (b) drought 

severity during the period 1982-2013. 
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4.3.2 Bivariate analysis of exceedance probability  

In the present analysis, we have used several types of distribution, out of 

which the best one is chosen. Past investigations have used several 

statistical tests such as KS test, chi-squared test, and many more. However, 

in the present analysis, AIC is selected as it avoids model overfitting. 

Further, marginal distributions are determined for both drought duration and 

severity during 1982-2013. As the best fit marginal distribution is selected, 

the next step is the selection of the best copula function through maximum 

likelihood function. Further, the best copula and best copula parameters are 

computed based on AIC and BIC values. The computation of the best 

copula, as well as its parameter, plays a vital role in the computation of joint 

return period and exceedance probability in the present analysis. 

Once the joint probabilities are obtained, the exceedance probability is 

computed (using Eq. 4.6) for different thresholds of drought characteristics 

 

Figure 4.5 (c) Trend analysis of drought duration and severity during 

the period 1982-2013. 
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at each grid point in India. Figure 4.6a shows exceedance probability for 

meteorological, hydrological, and soil moisture drought characteristics, 

where drought duration and drought severity simultaneously exceed 50𝑡ℎ 

percentile values (See Figure 4.6b for 25𝑡ℎ, 75𝑡ℎ and 95𝑡ℎ percentile). To 

understand the drought occurrence, here, the 50𝑡ℎ percentile value results 

are discussed as they can provide better information. Results show that most 

of the basins in the country were susceptible to meteorological drought 

conditions (Figure 4.6a).  

 

A high likelihood of meteorological drought indicates that precipitation 

shortage is the major risk to the river basins of India. An almost complete 

study area demonstrated excessive chances of meteorological drought in 

case of lower exceedance probability scenarios (25𝑡ℎ percentile). This 

might be due to significant decreasing trends of seasonal and annual rainfall 

while increasing trends of average temperature (Pingale et al., 2014). 

Kumar et al., (2013) also suggest a general increase in the moderate 

meteorological droughts during the recent decades. 

 

Figure 4.6 (a) Spatial exceedance probability at drought duration and 

severity exceeding their 50𝑡ℎpercentile value for meteorological (SPI-12), 

hydrological (SRI-12) and soil moisture drought (SSI-12). 
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Moreover, in the case of hydrological drought, Eastern India, some parts of 

the Western region of India, and the Southern part including EFRKPB, 

EFRPCB, and Pennar river basins are found to be more vulnerable. During 

the higher exceedance probability scenario (i.e., 75𝑡ℎ percentile), 

Subernrekha, Mahanadi, Krishna, and Brahmani & Baitarani river basins 

are found to be more susceptible to both hydrological and soil moisture 

droughts which is unclear from the univariate analysis. The prolonged 

precipitation deficit and high temperature would result in soil moisture 

depletion leading to soil moisture droughts in the Southern part of India and 

the Western region and similar was found in Pingale et al., (2014). Mishra 

et al., (2014)  also suggested that the majority of the above-mentioned 

regions of India have chances of increased soil moisture-based droughts 

during 1980-2008. Hence, results of exceeding probabilities (multivariate 

analysis) illustrate that the river basins in Central India (Tapi, Narmada) and 

Southern India (Cauveri, Pennar, EFRSCB, EFRPCB) are witnessing 

drought persistence. The occurrence of persistent droughts is common in 

the southern region of India (Amrit et al., 2018). Regions like Central 

Maharashtra and Southern coast of India are also highlighted for witnessing 

regional droughts during recent decades (Mallya et al., 2015). Results 

obtained from simultaneous exceedance of a certain threshold of drought 

characteristics are much useful and important as compared to the separate 

investigation of drought severity and duration. 
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4.3.3 Conditional probability of drought characteristics 

The conditional probabilities can be easily computed using Eq. 4.7 and 4.8 

at 25𝑡ℎ,50𝑡ℎ and 75𝑡ℎ percentile values of drought duration and severity at 

each grid points in India. Figure 4.7a presents conditional probability at 

50𝑡ℎ percentile of drought duration where drought severity exceeding 

thresholds of 50𝑡ℎ percentile values respectively. However, the conditional 

probability at 25𝑡ℎ, 50𝑡ℎand 75𝑡ℎ percentile of drought duration where 

severity exceeding several thresholds of 25𝑡ℎ,50𝑡ℎ and 75𝑡ℎ percentile 

values are shown in Figure 4.7 (b), (c), and (d), respectively. In case of 

 

Figure 4.6 (b) Exceedance probabilities 25𝑡ℎ, 75𝑡ℎ and 95𝑡ℎ  percentile 

values for meteorological (SPI-12), hydrological (SRI-12) and soil 

moisture drought (SSI-12). 
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meteorological drought (Figure 4.7a), river basins like Tapi, Godavari, and 

Western region (Luni and Sabarmati basins) of India show higher 

conditional probability at 50𝑡ℎ percentile. High rainfall variability and 

severe reduction in light precipitation days made western India vulnerable 

to drought events (Mishra, A. & Liu, 2014; Mundetia and Sharma, 2014). 

Similarly, in terms of hydrological drought, river basins of Sothern India 

including Krishna, BB, EFRMGB, EFRGKB, EFRKPB, and Mahanadi 

river basins are found to be more susceptible to drought conditions at 50𝑡ℎ 

percentile. However, for the same duration, increase in severity (75𝑡ℎ 

percentile) showed very low likelihood of hydrological drought to all river 

basins of India except southern India. This suggests that hydrological 

drought is not severe over India except southern India. In case of soil 

moisture drought, Southern India (Pennar, EFRGKB, EFRKPB), 

Subarnarekha and the Western Ghats are more susceptible for drought 

conditions at 50𝑡ℎ percentile. Recently, Jha et al., (2019) also suggest that 

more than 50% of 16 river basins of India have low soil moisture and can 

be affected by droughts easily. The results from the present analysis indicate 

that for all drought types, the river basins in Southern India (Cauveri, 

Pennar, EFRSCB, EFRPCB) and Western part (Luni and Sabarmati) of 

India are showing high conditional probability and hence, more susceptible 

to drought, similar was found in Mallya et al., (2015) and Amrit et al., 

(2018).  Results of conditional probabilities using bivariate drought 

distribution provide a deep understanding of the drought in India for given 

thresholds of drought duration and severity rather than univariate analysis.  

However, the conditional probability at 25𝑡ℎ, 50𝑡ℎand 75𝑡ℎ percentile of 

drought severity where duration exceeding several thresholds of 25𝑡ℎ,50𝑡ℎ 

and 75𝑡ℎ percentile values are shown in Figure 4.7 (e-g), respectively. 
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Figure 4.7 (a) Conditional probability at 50𝑡ℎ percentile of drought duration 

where drought severity passing a particular threshold of 50𝑡ℎ percentile value 

for meteorological (SPI-12), hydrological (SRI-12) and soil moisture drought 

(SSI-12).  
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Figure 4.7 (b-d) Conditional probability at 25𝑡ℎ, 50𝑡ℎ and 75𝑡ℎ percentile of drought duration where drought severity passing a particular 

threshold of 25𝑡ℎ,50𝑡ℎ and 75𝑡ℎ percentile values for meteorological (SPI-12), hydrological (SRI-12) and soil moisture drought (SSI-12).   
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Figure 4.7 (e-g) Conditional probability at 25𝑡ℎ , 50𝑡ℎ and 75𝑡ℎ percentile of drought severity where drought duration passing a particular 

threshold of 25𝑡ℎ,50𝑡ℎ and 75𝑡ℎ percentile values for meteorological (SPI-12), hydrological (SRI-12) and soil moisture drought (SSI-12). 
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4.3.4 Joint return period 

This segment deals with the computation of the return period using the 

‘AND’ and ‘OR’ criteria. Figure 4.8a presents the AND joint return period 

at 50𝑡ℎ thresholds of severity and duration. Figure 4.8b presents the AND 

joint return period at various thresholds (25𝑡ℎ, 75𝑡ℎ and 95𝑡ℎ percentile 

values) of severity and duration. Whereas OR return period is shown in 

Figure 4.8c. Results indicate that Eastern India (Brahmaputra, Barak, 

MRBB) and Western regions of India such as Tapi, Sabarmati, Mahi, Luni 

demonstrate the maximum return period in case of all percentile values for 

meteorological, hydrological, and soil moisture drought. However, in the 

case of meteorological drought, Indus, Narmada, and the Western Ghats 

also show the highest return period. A longer return period prevails in the 

Western Ghats because it receives the highest rainfall, one of the 

ecologically rich regions, and presence of evergreen forest. Moreover, this 

region is known to be resilient to hydroclimatic disturbances (Sharma and 

Goyal 2018b; Jha et al. 2019). Whereas the southern river basins of the 

country (Cauveri, EFRPCB, Krishna), Sabarmati, BB basins show smaller 

joint return periods in case of meteorological drought. This indicates that 

droughts are very common in southern India but with a lower return period. 

Moreover, hydrological and soil moisture droughts also show a smaller 

return period in southern river basins such as EFRGKB, EFRKPB, 

EFRPCB, EFRSCB, Pennar, Cauveri.  The shorter return period in Southern 

India is also validated by Amrit et al., (2018), where they conclude frequent 

drought occurrence once in every 5-6 years in a larger part of Southern 

India. Outcomes of the joint return period will enable the stakeholders and 

policymakers to formulate better guidelines related to drought management 

and also helpful in managing and designing the water resource systems in 

drought conditions, especially in drought-prone areas. 
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Figure 4.8a AND return period of drought characteristics exceeding their 50𝑡ℎ 

percentile value for meteorological (SPI-12), hydrological (SRI-12) and soil moisture 

drought (SSI-12). 
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Figure 4.8b AND return period of drought characteristics surpassing their 

25𝑡ℎ, 75𝑡ℎ and 95𝑡ℎ percentile values for meteorological (SPI-12), 

hydrological (SRI-12) and soil moisture drought (SSI-12). 

 



81 

 

 

 

Figure 4.8c OR return period of drought characteristics passing their 25𝑡ℎ, 50𝑡ℎ, 75𝑡ℎ and 95𝑡ℎ percentile values for meteorological 

(SPI-12), hydrological (SRI-12) and soil moisture drought (SSI-12). 
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4.3.5 Conditional joint return period 

Finally, the conditional return period of drought duration with a threshold 

at 25𝑡ℎ, 50𝑡ℎ and 75𝑡ℎ percentile was evaluated at each grid point using Eq. 

4.13 where the severity exceeding several thresholds (25𝑡ℎ, 50𝑡ℎ and 75𝑡ℎ 

percentile). Figure 4.9a illustrates the conditional return period at 50𝑡ℎ 

percentile of drought duration where drought severity exceeding thresholds 

of 50𝑡ℎ percentile values respectively. However, the conditional return 

period at 25𝑡ℎ, 50𝑡ℎand 75𝑡ℎ percentile of drought duration where severity 

exceeding several thresholds of 25𝑡ℎ,50𝑡ℎ and 75𝑡ℎ percentile values are 

shown in Figure 4.9(b-d), respectively. In the case of meteorological 

droughts (Figure 4.9a), almost all the river basins in India showed a lower 

conditional return period i.e., frequent occurrence of meteorological 

droughts at a threshold of 50𝑡ℎ percentile. Mallya et al., (2015) also suggest 

an increasing trend of drought frequency during recent decades. However, 

in the case of hydrological and soil moisture droughts, southern India such 

as Krishna, Cauveri, EFRPCB, and BB basins showed smaller conditional 

return periods. Moreover, the western part of the country (Luni, Mahi, 

Sabarmati), Eastern India, and Central India like Tapi river basin   in 

southern India such as Krishna, Cauveri, EFRPCB, and BB basins show 

smaller conditional return periods in case of meteorological drought 

whereas EFRKPB, EFRPCB, EFRSCB, EFRGKB, Cauveri, and Pennar 

river basins show smaller conditional return periods in case of hydrological 

and soil moisture drought. The shorter return period in the southern region 

for all drought types might be due to their geographical location as well as 

less rainfall. These results clearly indicate that drought events are frequent 

in Southern river basins of India but with a  lower return period as compared 

to other parts of India. Similar results were found in Amrit et al., (2018), 

where they conclude frequent droughts occurrence once in every 5-6 years 

in a larger part of Southern India.  
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Results of conditional return period using bivariate drought distribution 

provide a deep understanding of the drought persistence in India for given 

thresholds of drought duration and severity rather than univariate analysis. 

However, the conditional probability at 25𝑡ℎ, 50𝑡ℎand 75𝑡ℎ percentile of 

drought severity where duration exceeding several thresholds of 25𝑡ℎ,50𝑡ℎ 

and 75𝑡ℎ percentile values are shown in Figure 4.9 (e-g), respectively. 

 

 

 

 

 

 

 

Figure 4.9 (a) Conditional joint return period at 50𝑡ℎ percentile of drought 

duration where drought severity passing a particular threshold of 50𝑡ℎ 

percentile value for meteorological (SPI-12), hydrological (SRI-12) and soil 

moisture drought (SSI-12). 

 



84 

 

 

 

 

 

Figure 4.9(b-d) Conditional return period at 25𝑡ℎ, 50𝑡ℎ and 75𝑡ℎ percentile of drought duration where drought severity passing a particular 

threshold of 25𝑡ℎ,50𝑡ℎ and 75𝑡ℎ percentile values for meteorological (SPI-12), hydrological (SRI-12) and soil moisture drought (SSI-12). 
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Figure 4.9(e-g) Conditional return period at 25𝑡ℎ, 50𝑡ℎ and 75𝑡ℎ percentile of drought severity where drought duration passing a 

particular threshold of 25𝑡ℎ,50𝑡ℎ and 75𝑡ℎ percentile values for meteorological (SPI-12), hydrological (SRI-12) and soil moisture drought 

(SSI-12).  
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4.4 Conclusions 

The present study is carried out to determine the joint dependence of 

drought characteristics (at the river basin scale) using the copula-based 

approach. For this purpose, different copulas are used to determine the 

dependence structure between drought characteristics using the goodness of 

fit tests. Based on the joint probability distribution, joint return period and 

exceedance probability were computed at various thresholds of drought 

characteristics (25𝑡ℎ, 50𝑡ℎ, 75𝑡ℎ and 95𝑡ℎ percentile values) over 24 major 

river basins of India. Exceedance probability and return period analysis can 

provide a better idea regarding drought existence.  Further, the conditional 

approach is also used to compute conditional probability and conditional 

return period at three thresholds of drought characteristics (25𝑡ℎ, 50𝑡ℎ, and 

75𝑡ℎ percentile values). Initially, it was observed that severity and duration 

need to be modeled for each grid point of different river basins with 

different distributions. Moreover, a single copula is unable to model the 

joint probability at bigger scales. Therefore, three different copulas were 

selected to construct a joint dependence structure among drought 

characteristics over 1162 grid points in India.  

From the results, it was found that Southern India has a higher lower return 

period and higher exceedance probability as compared to Western river 

basins of India. Moreover, similar results were also obtained for the 

conditional return periods and conditional probability. Such results 

indicates that the drought events in Western and Central India are longer 

and more severe while the drought events in the southern river basins of the 

country are more frequent but less severe.  

Arid regions of India, for example, EFRKPB, mahi, Luni, Sabarmati 

witness high severe droughts. This is supported by the fact that these arid 

regions of India receive the minimum annual mean precipitation (Subash 

and Sikka, 2014). This might be due to the inability of the river basins to 

attain the required soil moisture conditions for vegetation re-expansion, 
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similar was found by Jha et al., (2019).  Moreover, arid areas of southern 

river basins are as also witnessing frequent droughts. In the concluding 

remark, we can say that there is a remarkable impact of drought in India, 

especially over Southern as well as Western regions of the country.  

However, the present analysis has been carried out at a 12-month time scale 

with a zero-threshold value of drought index for recognizing drought 

events. The change in the threshold value for the different river basins will 

result in a more rigorous analysis. Further, this can improve the joint return 

period values and be helpful in comparing the probabilities of different 

drought classes such as moderate, severe, extreme, and exceptional 

droughts. With the limited dataset, the copula-based methodology results in 

remarkable outcomes. Additionally, the analysis of hydrological and 

agricultural drought is carried out using reanalysis datasets. It should be 

noted that for understanding the exact physical behavior of the above-

mentioned droughts, one should consider comparing the results with 

observational data sets. In this context, although reanalysis datasets have 

been utilized for a variety of climate studies, there might be minor 

inconsistencies in representing the drought indices if compared to 

observational data indices (Lin et al., 2014). Such comparisons for different 

regions could help in understanding the variability arising due to data 

sources and can be pursued in future studies. Additionally, the present 

analysis employs bivariate methodology among drought characteristics 

which may be insufficient in incorporating interaction among all drought 

characteristics. Therefore, it is suggested that the trivariate copula technique 

may perform better in future studies (Xu et al., 2015). The present study 

provides valuable information regarding the severe and longer drought 

events for risk management at a national scale and thus helpful to develop 

drought mitigation policies at a larger scale.  
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Chapter 5 

Terrestrial ecosystem response to flash 

droughts over India 

5.1 Introduction 

Conventional drought is defined as a slowly growing climate phenomenon, 

taking few months or more to attain its spatial extent and maximum 

intensity (Otkin et al. 2013; Yuan et al. 2017a). However, recent findings 

have revealed a new kind of rapidly growing drought termed as “flash 

drought”. It is a recently identified extreme event characterized by its rapid 

intensification and sudden onset (Otkin et al., 2018). Due to rapid 

intensification and high evapotranspiration (ET), flash drought causes quick 

soil moisture depletion, which results in vegetation stress (Otkin et al., 

2018). Recently, flash droughts have occurred frequently, for example, 

northern USA in 2017 (Gerken et al., 2018), southern Africa in 2015 (Yuan 

et al., 2018), southern China in 2013 (Yuan et al., 2015), central USA in 

2012 (Hoerling et al., 2014), etc. Moreover, a study by Yuan et al., (2019) 

also found significant increasing trends of flash droughts over China in the 

warming and changing climate. The increasing frequency may impose a 

higher risk on the ecosystem, crop production, water security, and 

environmental sustainability (Vazifehkhah et al., 2019).  

Therefore, it is the need of the hour to understand that how ecosystem 

indicators (GPP, WUE, uWUE) respond to flash drought. In this regard, few 

studies have been carried out across the world (Guo et al., 2019; Xie et al., 

2016; Zhang and Yuan, 2020), however, how the regional terrestrial carbon 

dynamics respond to flash droughts in India remains unknown. As we know 

that, India is a developing country, where agricultural sector provides 

livelihood to a large section of the population (Gadgil and Gadgil, 2006). 

Therefore, it is important to examine the flash drought and its impact on the 
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ecosystem over India. Moreover, understanding the seasonal variability of 

flash drought occurrence is also important, especially in the rainfed-based 

agricultural regions of India (Asoka et al., 2017). 

In this work, we present a novel approach, integrating remote sensing 

observations (GPP, WUE, uWUE) and climate data to quantify the 

ecosystem response to flash droughts in a finer and systematic view over 

India. The objectives of this study can be summarized as follows: (i) to 

perform Triple Collocation (TC) technique to assess the accuracy of soil 

moisture datasets; (ii) investigate the seasonal distribution of flash droughts 

and the associated hydrometeorological characteristics during different 

stages of flash droughts; (iii) investigate the seasonal response of ecosystem 

indicators (GPP, WUE, uWUE) to flash droughts over India. The present 

analysis is performed using high-resolution (0.250 ×0.250) precipitation, 

temperature, soil moisture datasets over 24 major river basins of India. 

Moreover, satellite dataset i.e., terrestrial GPP product (MOD17A2) from 

the MODIS is used for spatiotemporal assessment of WUE and uWUE from 

2000 to 2014. 

5.2 Data and methodology 

5.2.1 Study area 

India is the 7th largest country across the world covering an area of 

approximately 3.28 million sq. km. According to India-WRIS [2014] 

classification, India is divided into 24 major river basins based on different 

climatic variability. For the present analysis, 24 major river basins of India 

(as per India-WRIS (2014) classification) are selected as study area to 

quantify the occurrence of flash droughts. Figure 5.1 describes the river 

basin ID, location, and nomenclature. In India, precipitation and 

temperature conditions substantially varies on spatio-temporal scale, 

therefore, all 24 major river basins are important for the flash drought 

investigation. For example, the western part of the country receives very 
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less precipitation (<500 mm/year), whereas the Western Ghats and the 

northeastern part of India receive high precipitation (>2000 mm/year).  

 

5.2.2 Meteorological data 

For the present study, daily gridded precipitation dataset was obtained from 

IMD during 1981-2014 at a grid resolution of 0.25o Latitude × 0.25o 

Longitude. The IMD precipitation dataset is available from 1901 to 2015, 

and the readers are suggested to refer Pai et al., (2014) for more details. 

IMD datasets are realistic in nature and utilized in several studies (Shivam 

et al. 2019). The mean annual precipitation (mm/year) was computed from 

daily precipitation values. Temperature data from 1981 to 2014 was also 

acquired from IMD at a grid resolution of 1o Latitude ×1o Longitude. The 

relative humidity data was downloaded from the NCEP/NCAR re-analysis 

dataset and the wind speed datasets are derived from the Terrestrial 

 

Figure 5.1. Major river basins in India. Source: Watershed Atlas of 

India (India-WRIS 2012).  
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Hydrology Research Group, Princeton University (0.50 × 0.50). The 

evapotranspiration (ET) was computed using FAO Penman-Monteith 

equation (Liu and Yang, 2010). Further, vapour pressure deficit (VPD) is 

computed as the difference between saturated and actual vapour pressures. 

Further, the temperature, wind speed, and relative humidity datasets are 

regridded to 0.250 × 0.250 resolution using bilinear interpolation approach. 

5.2.3 Soil moisture data  

The soil moisture datasets used are: (i) European Space Agency’s soil 

moisture dataset (ESA CCI_SM; https://www.esa-soilmoisture-cci.org/, 

accessed on 10th May 2021), (ii) European Centre for Medium-Range 

Weather Forecasts (ECMWF) interim reanalysis (ERA_SM; 

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/, 

accessed on 10th May 2021), (iii) Modern-Era Retrospective analysis for 

Research and Applications-2 soil moisture (MERRA-2-SM; 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/, accessed 

on 10th May 2021), (iv) Global Land Data Assimilation System version 2 

Noah soil moisture (GLDAS-2/Noah-SM; https://ldas.gsfc.nasa.gov/gldas/, 

accessed on 10th May 2021), and (v)  Indian Monsoon Data Assimilation 

and Analysis reanalysis soil moisture dataset (IMDAA-SM; 

https://rds.ncmrwf.gov.in/, accessed on 10th May 2021). Soil moisture 

datasets are regridded to 0.25-degree resolution (if required) using the 

bilinear interpolation approach. Moreover, 8-day soil moisture datasets 

were computed from daily soil moisture datasets. 

5.2.4 MODIS GPP 

We used the global 8-day GPP dataset derived from MODIS (MOD17A2 

product) starting from 2000 to 2014 at a spatial resolution of 500 m. The 

global annual GPP dataset is derived from MODIS (MOD17A3 product) 

from 2000 to 2014. These datasets were obtained from the NASA-EOS 

program. These products have been utilized in several past studies (Huang 

https://rds.ncmrwf.gov.in/


92 

 

et al., 2017; Reichstein et al., 2007; Zhang and Yuan, 2020). The GPP 

dataset is finally aggregated to 0.250 × 0.250 resolution.  

5.2.5 Triple Collocation 

Availability of in situ based soil moisture data is scarce and application of 

satellite or model-based products requires large scale validation. 

Considering the high uncertainty associated with soil moisture products and 

unavailability of in situ information, various available products were 

evaluated against unknown truth based on triple collocation on all the 

possible triplets. The triplets were derived by arbitrarily selecting three 

products from a collection of 5 soil moisture datasets (IMDAA SM, 

GLDAS-2Noah SM, MERRA-2 SM, ERA-Interim SM, and ESA CCI SM). 

All the available products were firstly pre-processed by resampling to 0.25° 

grids and converting them into 8-day products (this was done to remove the 

influence of missing days) and then various triplets were derived to obtain 

correlation and RMSE values. Triple collocation was first developed to 

obtain error variance of wind dataset (Stoffelen, 1998) which was later 

applied to soil moisture (F. Chen et al., 2016; Gruber et al., 2016) and 

precipitation. The equations used to derive the correlation and RMSE values 

from triple collocation can be obtained from McColl et al., 2014. 

5.2.6 Flash drought identification 

Initially, daily gridded datasets (soil moisture, precipitation, temperature) 

were converted to 8-days called octads. Daily precipitation was added for 

the eight days while daily temperature and soil moisture were averaged for 

the eight days. Hence, a total of 46 octads were achieved for each year, 

where 16 octads represent the monsoon season (i.e., 19th to 34th octads in a 

year) while the remaining octads represent the non-monsoon season(from 

1st to 18th and 35th to 46th octads). In the present analysis, soil moisture 

octads were used to identify flash droughts and their characteristics 

(frequency and duration). Flash drought occurs due to a quick reduction in 

soil moisture caused by either increased temperature or rainfall scarcity or 
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both (Ford and Labosier, 2017). Flash drought was defined when the 8-day 

mean soil moisture percentile reduces to 20th  (or less) percentile from above 

40th percentile, with a mean rate of decline no less than 5 percentile per 8-

day period (for example, June 21–July 15 in Figure 5.2), which is termed as 

the “onset” stage. The reduction from 40th percentile to 20th percentile 

indicates the development of flash drought. Once the soil moisture starts to 

either decrease slowly or increase, then the recovery stage of flash drought 

was considered. Once the soil moisture percentile rises to 20 (or more) 

percentile again, then the drought ends (e.g., July 31 in Figure 5.2). 

Moreover, the minimum duration of 24 days was considered for flash 

droughts in order to avoid short dry spells that have a small impact on the 

ecosystem. The 20th  percentile was considered as the drought threshold to 

avoid persistent long-term (traditional) droughts (Yuan et al., 2019). Hence, 

flash droughts that transformed into traditional droughts were eliminated 

from the investigation. Readers are suggested to refer Figure 5.2 for more 

details. 

 

 

Figure 5.2 Schematic description of flash drought identification. 
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5.2.7 Ecosystem response to flash drought 

It is important to note that droughts have great impact on ecosystem 

productivity by changing ecosystem respiration and plant photosynthesis 

(Stocker et al., 2018). GPP is the total photosynthetic CO2 fixation at the 

ecosystem level and impacts all of the carbon cycle variables (Beer et al., 

2010). Photosynthetic CO2 assimilation is affected by leaf area index, 

rubisco activity, and stomatal conductance (Grossiord et al., 2020). The 

negative anomalies of ecological metric i.e., GPP indicates the 

commencement of ecological response. The standardized anomalies are 

computed as: 

𝐺𝑃𝑃𝑆𝐴 =
𝐺𝑃𝑃− 𝜇𝐺𝑃𝑃

𝜎𝐺𝑃𝑃
                                                                                                          (5.1) 

Where 𝐺𝑃𝑃𝑆𝐴 are standardized anomalies of GPP, 𝜎𝐺𝑃𝑃 and 𝜇𝐺𝑃𝑃 are 

standard deviation and mean of GPP time series. For example, all Jan 1-8 

during 2000-2014 would have a 𝜇𝐺𝑃𝑃 and 𝜎𝐺𝑃𝑃, and Jan 9-16 would have 

another 𝜇𝐺𝑃𝑃 and 𝜎𝐺𝑃𝑃, and so on. In this study, response time index and 

response frequency are used to examine the interaction between ecological 

response and flash drought (Niu et al., 2018). For each grid, response 

frequency was obtained by dividing the flash drought events with negative 

𝐺𝑃𝑃𝑆𝐴 by the total number of flash droughts. A lower response frequency 

indicates lower risk to the ecosystem and vice-versa. The response time 

index is described as the count of the positive standardized anomaly 

(𝐺𝑃𝑃𝑆𝐴) till the occurrence of first negative value during flash droughts. 

WUE is computed as the ratio of GPP to evapotranspiration (Song et al., 

2017). In the present analysis, daily potential evapotranspiration (mm/day) 

is computed using FAO Penman-Monteith equation (Eq. 5.2) which is 

described as: 

𝐸𝑇𝑜 =
0.408𝛥(𝑅𝑛−𝐺)+𝛾×

900

𝑇+273
×𝑈2(𝑉𝑃𝐷)

𝛥+𝛾(1+0.34𝑈2)
                                                                       (5.2) 
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where, Δ is the slope of vapour pressure curve (Kpa/oC); G is ground heat 

flux (MJ/m2/day); Rn is the net radiation at the surface (MJ/m2/day); γ is 

psychrometric constant (KPa/oC); VPD is vapour pressure deficit, which is 

computed as the difference between saturated and actual vapour pressures; 

U2 is the wind speed at 2-m height (m/sec). 

The carbon cycle and water are linked via stomata, and the vegetation will 

adopt some mitigation measures to deal with drought conditions, for 

example, increasing its water use efficiency (Xu et al., 2019). Besides 

drought, WUE is also sensitive to the vapour pressure deficit (VPD). 

Therefore, underlying water use efficiency (uWUE) proposed by Zhou et 

al., (2014) would be a better alternative as it incorporates the effects of 

VPD. Underlying water use efficiencies are computed as ratio of the (GPP× 

√𝑉𝑃𝐷) to the ET, in order to reflect the non-linear interaction between ET, 

VPD, and GPP. The variations of underlying water use efficiency are 

supposed to be strongly associated with drought conditions. The average 

annual WUE (g C m-2 mm-1 yr-1) and uWUE (g C Pa0.5 m-2 mm-1 yr-1) were 

computed from daily WUE and uWUE values. The standardized anomalies 

of WUE as well as uWUE are computed using Eq. (5.1).  

5.3 Results 

5.3.1 Triple Collocation 

Figure 5.3 (a & b) represents the correlation coefficient values and figure 

5.3 (c & d) represent the RMSE values obtained for various products by the 

application of triple collocation. Each row in these figure represent a triplet 

which was used to assess the performance of these products against the 

unknown truth (Gruber et al., 2016; McColl et al., 2014; Stoffelen, 1998), 

these figures suggest that GLDAS-2/Noah SM and ERA-interim SM 

outperformed the other products, whereas the performance of these two 

products were similar. Zonal statistics of different river basins suggested 

that GLDAS-2/Noah SM was slightly better than ERA-interim SM and 
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therefore the data obtained from the GLDAS-2/Noah SM was further used 

for the analysis of flash drought.   

5.3.2 Meteorological and ecological conditions over India 

Figure 5.4 presents the annual mean climatological and ecological 

characteristics over India based on 2000-2014 datasets. The annual mean 

precipitation showed significant spatial variations over India, ranges from 

less than 100 mm/yr to 4000 mm/yr (Figure 5.4a). The western part of the 

country receives the lowest precipitation (<500 mm/year), whereas the 

Western Ghats and the northeastern parts of India receive the highest 

precipitation (>2000 mm/year). The mean annual soil moisture also showed 

considerable variation across the country (Figure 5.4b), with very dry soil 

characteristics over western India. Besides accumulated precipitation, soil 

moisture is also related to the changes in evapotranspiration. Similarly, the 

mean annual MODIS GPP also shows significant spatial variation over 

India (Figure 5.4c), with maximum GPP spread across the Western Ghats 

and Northeastern regions (>1400 g C/m2), whereas the minimum GPP 

distributed across the arid regions of Western India (<400 g C/m2). One-

fourth of the forest area of the country lies in Northeastern India, whereas 

western India consists of grasslands with comparatively low vegetation 

productivity. Like precipitation and GPP, mean annual WUE and uWUE 

also varies significantly over India (Figure 5.4 (d & e)) due to different soil, 

climate, and vegetation types. WUE is higher for northeastern parts of the 

country followed by eastern, northern, and southern regions, respectively. 

Whereas lower WUE is observed over western parts of the country due to 

low vegetation productivity. The spatial variation in WUE is strongly 

associated with the variations in the mean annual precipitation and GPP. 
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Figure 5.3a Correlation coefficient obtained for various products by 

applying triple collocation on different triplets (represented by datasets 

on various rows). The datasets used to derive these triplets include 

IMDAA SM, GLDAS-2Noah SM, MERRA-2 SM, ERA-Interim SM 

and ESA CCI SM. 
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Figure 5.3b Correlation coefficient obtained for various products by 

applying triple collocation on different triplets (represented by datasets on 

various rows). The datasets used to derive these triplets include IMDAA 

SM, GLDAS-2Noah SM, MERRA-2 SM, ERA-Interim SM and ESA CCI 

SM.  
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Figure 5.3c RMSE obtained for various products by applying triple 

collocation on different triplets (represented by datasets on various 

rows). The datasets used to derive these triplets include IMDAA SM, 

GLDAS-2Noah SM, MERRA-2 SM, ERA-Interim SM and ESA CCI 

SM. 
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Figure 5.3d RMSE obtained for various products by applying triple 

collocation on different triplets (represented by datasets on various 

rows). The datasets used to derive these triplets include IMDAA SM, 

GLDAS-2Noah SM, MERRA-2 SM, ERA-Interim SM and ESA CCI 

SM. 

 



101 

 

 

5.3.3 Flash drought and associated hydrometeorological characteristics 

across India 

The computation of flash drought duration and frequency are the same as 

those of traditional droughts (Mo, 2011), however, computed at a higher 

temporal scale. The mean duration was computed by dividing the total flash 

drought duration by the total number of flash droughts and the frequency 

was defined as the total number of flash drought events per decade (or any 

specific time period). Initially, we investigate the seasonal distribution of 

flash droughts based on the frequency and mean duration that occurred 

during the 1981-2014 period in India (Figure 5.5). In case of monsoon 

season, the mean frequency averaged over India is 2.6 events for 34 years 

(1981-2014), including some hotspots over Northwestern India (Figure 

5.5a). Moreover, the mean duration of flash drought events is 37 days across 

 

Figure 5.4 Mean annual (a) precipitation, (b) soil moisture, (c) GPP, (d) 

WUE, and (e) uWUE over India during 2000-2014. 
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all of India, with the longest mean durations detected over western and 

northern parts of the country (Figure 5.5c). Particularly, the Luni river basin 

experience frequent flash drought events with longer durations. This might 

be due to the minimum annual mean precipitation over Luni river basin 

(Subash and Sikka, 2014). Regions in the country like the Western Ghats, 

Northeast showed low likelihood of drought events in monsoon season. This 

suggests that vegetation cover of such river basins can tolerate extreme 

changes in soil moisture conditions in monsoon. 

 

 

Figure 5.5 Mean duration and frequency of flash drought events for 

monsoon and non-monsoon seasons during 1981-2014 across India. 
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However, in the non-monsoon season, the majority of river basins of the 

country experience frequent and longer flash droughts during 1981-2014 

(Figure 5.5 (b & d)). Long dry spells with negative precipitation anomalies 

in the non-monsoon rapidly reduce soil moisture which triggers flash 

droughts. The mean frequency averaged over India is 5.3 events for 34 years 

whereas, the mean duration is 54 days across all of India during the non-

monsoon season. Particularly, southern and northeastern India were found 

to be more susceptible to flash droughts with high frequency and longer 

durations. Interestingly, arid or semi-arid parts of western India which were 

mostly suffer from drought risks experienced the lowest frequency and 

duration of flash droughts during non-monsoon season. This suggests that 

these regions are more susceptible to seasonal or long-term droughts rather 

than flash droughts in the non-monsoon. 

Further, we determined the seasonal distribution of mean duration of onset 

and recovery stages of flash drought events that occurred during 1981-2014 

across India (Figure 5.6). During the monsoon season, onset duration shows 

no substantial variation for distinct climate regions, though the duration 

changes significantly at different grids in some regions (i.e., ranges from 

zero to above 35) (Figure 5.6a). However, the recovery duration is slightly 

longer in some parts of the country (Figure 5.6c). Interestingly, it was 

observed that at least two-third area of the Ganga basin is witnessing zero 

onset duration, however, the recovery duration is longer (more than 30 days) 

due to lowered soil moisture level. The mean duration of the onset as well 

as recovery stages are 19.9 days and 27.7 days, respectively. During the 

non-monsoon season, northeastern India, southern India, and some parts of 

the Ganga basin were witnessing longer onset as well as recovery duration 

during 1981-2014 (Figure 5.6 (b & d)). This is primarily due to the 

precipitation deficit over a longer period. The mean duration of the onset as 

well as recovery stages are 24.7 days and 29.2 days, respectively. 
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Figure 5.7 describes the soil moisture percentiles and associated 

meteorological conditions throughout different stages of flash drought in 

the non-monsoon season. Only the pixels with at least three drought events 

detected are shown during the 1981-2014 period. Before the onset of 

drought, the soil moisture percentile is close to 45 percentiles across all of 

the selected grid points (Figure 5.7a). However, during the onset of flash 

drought, the soil moisture percentile falls from above 40 percentiles to 32 

 

Figure 5.6 Seasonal distribution of mean duration of onset as well as 

recovery stages of flash droughts occurred during 1981-2014 across 

India. 
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percentiles (Figure 5.7b). As soon as the flash drought enters into the 

recovery stage, there is a quick transition from high soil moisture condition 

to much drier condition (approximately 15 percentile) (Figure 5.7c). 

Further, the soil moisture recovers quickly to 41 percentiles after the 

termination of flash drought (Figure 5.7d). Regarding the onset stage, the 

standardized negative anomaly of precipitation and positive anomalies of 

temperature, and VPD suggest that flash drought events are characterized 

by elevated evaporative demand and precipitation deficit (Figure 5.7(e-p)). 

The quick-drying of soil moisture is usually related to anomalously high 

temperature, large rainfall deficits, and high VPD (Wang et al., 2016), which 

continue till the recovery stage of drought. The decrease in VPD and 

increased rainfall relieves the soil moisture once the drought terminates. 

Readers are suggested to refer Figure 5.8 for soil moisture percentiles and 

associated meteorological conditions during different stages of flash 

drought in the monsoon season. 
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Figure 5.7 Hydrometeorological characteristics during different stages of flash drought in non-monsoon season. 
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Figure 5.8 Hydrometeorological characteristics during different stages of flash drought in monsoon season. 

 

 



108 

 

5.3.4 Response of GPP to flash droughts across India 

Figure 5.9 shows the response frequency and response time of gross primary 

productivity (GPP) to flash drought events during monsoon and non-

monsoon seasons across India. In case of response frequency, no substantial 

discrepancy was observed across different climate regions of the country 

during monsoon as well as non-monsoon seasons (Figure 5.9 (a & b)). The 

mean response frequency is around 97% averaged over India during both 

seasons. In case of monsoon season, response time also shows no 

substantial difference (approximately 8 days or less) for different climate 

regions, however, some regions of the Brahmaputra, Godavari, and Krishna 

river basins exhibit longer response time (more than 20 days) (Figure 5.9c) 

which is primarily due to the presence of forests in these basins. In case of 

non-monsoon season, a longer response time is observed, especially in the 

Indo-Gangetic plain, northeastern India, and some parts of southern India 

(Figure 5.9d). A longer response time in Northeastern India and Indo-

Gangetic plain indicates lower risk to the ecosystem (GPP). Moreover, the 

mean response time is about 10 days and 19 days averaged over India for 

monsoon and non-monsoon, respectively. 

5.3.5 Response of WUE and uWUE to flash droughts across India 

The positive standardized anomalies of underlying WUE are higher as 

compared to WUE over the onset as well as recovery stages of flash drought 

for both monsoon and non-monsoon seasons (Figure 5.10). This is majorly 

attributed to the influence of elevated vapour pressure deficit as higher VPD 

could rise evapotranspiration which in turn increases water loss. During the 

onset stage, the negative anomalies of WUE and uWUE indicate the non-

resilient vegetation to flash droughts (Figure 5.10 (a-d)), however, this is 

further decreased during recovery stages (Figure 5.10 (e-h)). This reduction 

suggests that the vegetation adaptation to flash drought declines with the 

increasing drought duration. In terms of WUE and uWUE, the Ganga basin 

was observed to be the most badly affected river basin to flash droughts, 
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especially in the monsoon season. This might be due to deforestation in the 

Ganga basin, which reduces 1-2 mm rainfall per day during the monsoon 

season (Paul et al., 2016). As we know that the recycled component is very 

high in the Ganga basin, therefore, a small change in vegetation cover may 

cause a significant change in precipitation which further result in drought 

conditions. Higher positive anomalies of WUE and uWUE were observed 

in non-monsoon season which suggests that GPP responds quicker to flash 

drought events in monsoon season as compared to non-monsoon season.  

 

 

Figure 5.9 Response frequency and response time of gross primary 

productivity (GPP) to flash droughts across India. 
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5.4 Discussions 

Despite growing concerns and challenges to flash droughts, their occurrence 

and impact on the terrestrial ecosystem are least addressed at the pan-India 

scale. It was observed that the quick transition of soil moisture is caused by 

large rainfall deficits and high vapour pressure deficit (VPD). The sudden 

onset of flash drought gives limited time for planning and preparation and 

poses a great challenge for early warning (Gerken et al., 2018; Otkin et al., 

2015). As we know that plants rely mainly on soil moisture to extract water, 

which further regulates the transpiration losses, stomatal control, and stem-

water dynamics (Daly et al., 2004).  The decline in soil moisture would 

reduce stomatal conductance in order to prevent extra water loss. Moreover, 

the deficit in atmospheric humidity further decreases stomatal conductance. 

Meanwhile, the diffusion of carbon dioxide into the plant’s leaf is also 

decreased. During droughts, the combined soil moisture and atmospheric 

conditions have synergistic impacts on transpiration and photosynthesis 

processes, and hence changing the coupling among water and carbon fluxes. 

 

Figure 5.10 Seasonal distribution of standardized anomalies of WUE and 

uWUE. 
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In addition to soil moisture droughts, the response of ecosystem respiration 

is also sensitive to higher temperatures (Johnston et al., 2021). 

The ecosystem response of GPP occurs over 95% of identified flash 

droughts, which indicates that GPP is highly sensitive to flash droughts 

across the country. For Ganga and southern river basins of India, GPP 

response occurs during 97% of drought events, which was significantly 

higher than 75% for northeastern river basins of the country. This was 

mainly attributed to different vegetation resilience conditions across 

different parts of the country. Jha et al., (2019) suggest that southern river 

basins of the country were observed to be susceptible and non-resilient to 

droughts. The non-resilient vegetation characteristics of these basins 

basically show their incompetence to attain the required soil moisture 

conditions for vegetation redevelopment once the dry period ends. 

However, Northeastern India and Indo-Gangetic plain show less ecological 

response to flash droughts as they were considered as one of the most 

ecological rich regions of the country (Sankarganesh et al., 2017) where 

vegetation can tolerate extreme deviations in soil moisture conditions. A 

lower response frequency in Northeastern India and Indo-Gangetic plain 

indicates a lower risk to the ecosystem (GPP). 

The mean response time is about 10 days and 19 days averaged across India 

for monsoon and non-monsoon, respectively. In case of monsoon season, 

the ecological response of GPP occurs only within 8 days for more than 

50% of flash drought events in Ganga and Indus river basin, which was too 

prior to those for northeastern India. The quicker response time indicates 

that the vegetation cover of these river basins cannot tolerate extreme 

changes in soil moisture for a longer duration. In terms of vegetation 

drought, Indus and Ganga basins are found to be non-adaptable river basins 

(Jha et al. 2019). The response of GPP increases rapidly during 17 to 32 

days of drought event for northeastern river basins of India, which suggests 

that vegetation adaptation would decrease with increasing drought duration. 
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The seasonal dependency was also observed in the time response. We found 

that vegetation cover of the Ganga basin experienced quicker time response 

to flash droughts in monsoon season however, it increases in case of non-

monsoon season. The longer response time in Northeastern India and Indo-

Gangetic plain indicates lower risk to the ecosystem (GPP) in non-

monsoon. Therefore, it is important to examine flash drought 

characteristics, for example, drought duration and severity as they play a 

crucial role in influencing the ecosystem (Wu et al., 2016; Zhao et al., 

2020). For example, longer and severe flash droughts could cause high 

carbon loss in terrestrial ecology.  

Higher WUE and uWUE during drought events indicate the ecosystem's 

resilience to flash drought. Our results showed that the Brahmaputra and 

Godavari river basins have the maximum WUE and uWUE in both seasons, 

which can mainly be attributed to the presence of forests in these basins, as 

the forest land cover has higher WUE as compared to others (Sharma and 

Goyal, 2018a). Northeastern river basins have the largest forest cover 

among all river basins over India. In contrast, the Mahi and Sabarmati 

basins have the least WUE among all river basins, which is primarily due 

to the absence of forest areas (Sharma and Goyal, 2018b). It is interesting 

to note that the Mahi basin receives the lowest annual mean rainfall, 

whereas the Brahmaputra basin receives the highest annual mean rainfall 

(Figure 5.4a), which indicates the dependence of water use efficiency over 

precipitation. Moreover, the Ganga basin also experienced the least water 

use efficiency. Due to lowered soil moisture, about 2/3rd area of the Ganga 

basin comes under least water use efficiency. However, the WUE and 

uWUE are further decreased in the recovery stage with the increasing 

drought duration. This reduction suggests that the vegetation adaptation to 

flash drought declines with the increasing drought duration (Kapoor et al., 

2020). The standardized anomalies of underlying WUE are higher as 

compared to WUE over the onset as well as recovery stages of flash 
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drought. This is majorly attributed to the influence of elevated vapour 

pressure deficit as higher VPD could rise evapotranspiration which in turn 

increases water loss (Massmann et al., 2019). Regarding the recovery stage, 

no substantial difference in WUE and underlying WUE was observed across 

the study areas, especially in the Ganga, and Mahanadi river basins of India, 

signifying a more vulnerable grassland ecosystem in Ganga and Mahanadi 

river basin than forests in northeastern India.  

5.5  Conclusions 

The present analysis is carried out to demonstrates the quick response of 

terrestrial ecosystems to flash drought events using gross primary 

productivity (GPP). Our results showed that GPP was highly sensitive to 

the flash drought occurrence, especially over Ganga river basin and 

southern India containing semiarid climate rather than northeastern India 

i.e., humid part of the country. The results of the present analysis are 

fascinating as it highlights that ecosystems in majority of the river basins 

are non-resilient to flash droughts, as observed through the non-resilient 

nature of most of the basins to vegetation drought over India (Jha et al. 

2019). The incompetence of ecosystems to tolerate the flash drought events 

may cause severe challenges in terms of food security, food production, and 

carbon sequestration. As we know that India is a developing country, where 

agricultural sector provides livelihood to a large section of the population, 

therefore, flash drought risk is frightening situation for the nation. To the 

best of the author’s knowledge, this study is the first to relate the response 

of ecosystem metrics (GPP, WUE, and uWUE) to flash droughts in India. 

Moreover, our results provide information about the hotspots for drought 

management and ecosystem policymaking. However, the present study used 

satellite-based soil moisture datasets which may be insufficient in 

incorporating real-time conditions, therefore, it is suggested to perform 

hydrological modeling to simulate soil moisture datasets in order to obtain 

better results in future studies. 
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Chapter 6 

Impact of climate change on crop water 

requirements and productivity of major crop 

in Sikkim, Himalayan region of northeast 

India  

6.1 Introduction 

It is well established that the adverse impact of climate change is going to 

affect every aspect of the ecosystem in the hilly terrain of the Himalayan 

region. According to FAO (2008), it is expected that global agricultural 

production is likely to decrease with an annual rate of 1.5% by 2030 and an 

additional reduction of 0.9% till 2050 as compared to the growth rate since 

1961. Hence, researchers from all corners of the globe have attempted to 

investigate the climate change impact using crop simulation models on 

different crop productivity and irrigation requirement. However, there 

exists substantial debate in the recent literature that climate change and 

global warming both have some negative and positive effects on agricultural 

crops in different regions of the world. For instance, Lobell and Gourdji, 

(2012) stated that with the increase in the CO2 concentration, the global 

yield is expected to increase roughly by 1.8% per decade, and 

simultaneously, the crop yield may decrease without any effective 

adaptation roughly by 1.5% per decade. These conflicting conclusions 

about linkage of climate change and agricultural crops in current research 

point out the necessity of a comprehensive understanding of climate change 

and its impact on crop yield, crop water requirement (CWR), and crop 

irrigation requirement (CIR), especially at a regional scale.  

To overcome the conflicting conclusion, the present study tries to 

understand the linkage amid climate change and crop water requirement as 
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well as crop yield using crop models (CROPWAT and AquaCrop) along 

with the uncertainty analysis based on the recently developed representative 

concentration pathways (RCP) scenarios of three major crops (maize, 

wheat, and rice). Daily climatic datasets such as maximum temperature, 

minimum temperature, rainfall, wind speed, sunshine hours, and relative 

humidity are used for this analysis along with crop and soil data. For future 

period (2021-2099), climatic datasets are collected from the four climate 

models (ACCESS1-0, CCSM4, CNRM-CM5, and MPI-ESM-LR) of 

CORDEX under two different scenarios RCP 4.5 and 8.5. This study 

facilitates the water and agricultural manager for considering proper and 

robust adaptation measures to ensure sustainability. 

6.2 Data and methodology 

6.2.1 Study area 

The selected study site, Sikkim (Figure 6.1), lies in the northeast part of 

Himalaya which is landlocked by Bhutan, Nepal, and China. The study is 

conducted on three major areas in Sikkim namely, Gangtok (East Sikkim), 

Geyzing (West Sikkim), and Namchi (South Sikkim). The location map of 

Sikkim and digital elevation map of Sikkim is shown in figure 6.1(a), & 

6.1(c). Figure 6.1(b) represents three chosen reference locations of east, 

west and south Sikkim, respectively. Geographical latitudes of the study 

area are 27˚07’N and 28˚13’ N and longitudes 88˚01’E and 88˚92’ E. The 

altitude of Sikkim ranges from 192 m and 7403 m above mean sea level 

(msl). Rainfall mainly occurs in monsoon season (May-September) with 

average annual rainfall of 3300-3600 mm. Absolute maximum temperature 

(Tmax) and minimum temperature (Tmin) ranges from 17–24°C and 9–13 

°C, respectively (Deb et al., 2015). 

The undulated geology and rough, rock-bounded topography of Sikkim 

make it difficult for agricultural practice. Yet, in spite of such impediments, 

farming practices are done by changing rocky and undulated topography to 

agrarian land by means of terraces. Major crops grown in Sikkim are maize, 



116 

 

rice, and wheat. Although Sikkim’s economy is largely dependent on 

agriculture, most of cultivation is rainfed with traditional system and low-

level inputs. Due to lack of adequate harnessing techniques, the total area 

under agriculture is not more than 11% in Sikkim. However, about 70 % of 

Sikkim’s population depends on agricultural activity for their income. 

 

6.2.2 Meteorological data (historical and future) 

High resolution (0.5°x0.5°) gridded precipitation and temperature data were 

obtained from India Meteorological Department (IMD). The wind speed 

data were obtained from the Terrestrial Hydrology Research Group, 

Princeton University website and were available at 0.5°x 0.5° resolution and 

the relative humidity data were obtained from the National Center for 

 

Figure 6.1 (a) Location map of Sikkim over India (red box); (b) map of 

Sikkim with selected locations; (c) digital elevation map (DEM) of 

Sikkim and elevation of the selected locations. 
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Environmental Prediction/ National Center for Atmospheric Research 

(NCEP/ NCAR) re-analysis dataset. All the datasets were obtained for three 

different locations. The high-resolution future projection datasets were 

obtained from CORDEX under RCP4.5 and 8.5 scenarios. Under the 

CORDEX experiment, the coarser-resolution outputs from the Global 

Climate Models (GCMs) were downscaled to the finer resolution (0.5° x 

0.5°) dynamically. To incorporate ensemble projections of GCMs, we have 

considered outputs from the four different climate models, namely, 

Australian Community Climate and Earth-System Simulator version 1.0 

(ACCESS1.0), Community Climate System Model, version 4 (CCSM4), 

Centre National de Recherches Météorologiques Coupled Global Climate 

Model, version 5 (CNRM-CM5), Max Planck Institute for Meteorology 

Earth System Model LR (MPI-ESM-LR). It should be noted that the 

historical datasets were obtained for the period 1970-2005, and the future 

projected datasets were downloaded during 2006-2099 under different 

scenarios. The overlapping period during 1970-2005 was considered to 

perform the bias correction in the GCM simulated climate data with respect 

to measured data. 

6.2.3 Crop, soil and management data 

Three major crops such as (rice, wheat, and maize) were chosen to 

investigate the climate change impact on crop productivity under different 

climate scenarios. In case of rice, dry and wet field seeding methods were 

adopted; however, commonly the watered field direct seeding method was 

adopted to transplant the paddy seedlings. Hence, the total rice yield is 

assumed to come from the wetland rice grown area. Hence, the historical 

yields of these crops were obtained for east, south, and west Sikkim. The 

historical yields for different crops under different regions were collected 

during 1998-2015 and plotted as boxplot in Figure 6.2. The crop data was 

collected from https://data.gov.in/resources/district-wise-season-wise-

crop-production-statistics-1997 (accessed on 5th May 2018). The datasets 

https://data.gov.in/resources/district-wise-season-wise-crop-production-statistics-1997
https://data.gov.in/resources/district-wise-season-wise-crop-production-statistics-1997
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were provided by the Ministry of Agriculture and Farmers Welfare and 

Department of Agriculture, Cooperation and Farmers Welfare Directorate 

of Economics and Statistics under National Data Sharing and Accessibility 

Policy. The datasets were meant to use to study and analyse the crop 

production, crop growing pattern and diversification, performance 

according to agro-climatic zone, etc. The annual yield datasets for different 

crops were provided according to district-wise across India. 

 

The black square in Figure 6.2 denotes the mean yield value during 1998-

2015. It is shown by Figure 6.2 that the variability in the yield of wheat for 

all regions and maize for the east region is highest. There is no substantial 

change in the mean yield between rice and maize for all the regions during 

1998-2015. However, the mean yield of wheat in east Sikkim was higher 

than the south and west Sikkim. The sowing dates for maize (pre-kharif), 

rice (Kharif), and wheat (rabi) were considered from April-May, June-July, 

and November-December, respectively. The length of the crop development 

stage (in days) for maize, rice, and wheat were taken as 35, 40 and 25 days, 

respectively. The typical local growing seasons for different crops were 

chosen based on the previous relevant literature (Basnet et al., 2003; Deb et 

al., 2015; Government of Sikkim, 2013). The cropping pattern over Sikkim 

varies with altitudes (above 1200m, between 800 to 1200m, and below 

800m). As a main crop, for rice irrigation is mostly required. The tank 

irrigation system helps in collecting and conserving the water and using the 

 

Figure 6.2 Boxplot of crop yield for different crops and regions during 

1998-2015. 
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sprinkler irrigation system the irrigation is performed from the water tank 

using networks of pipes under high pressure and is forced through nozzles 

of small diameter. The farm mechanization is almost nonexistent due to 

very steep slopes. The soil type is mostly loamy based on the FAO soil 

classification. 

6.2.4 Methods 

6.2.4.1 Bias correction 

The outputs from the GCMs are generally biased and are rarely used 

directly. In particular, spatial averaging, imperfect conceptualization, and 

discretization within the grids can be attributed as the reasons for inherent 

biases in the outputs (Teutschbein and Seibert, 2012). Therefore, it is 

essential to bias-correct the GCM outputs so that it effectively denotes the 

real patterns. In the present analysis, distribution mapping is used as a bias-

correction technique for precipitation and temperature profile. The motive 

of the method is to correct the probability distribution function of the model 

simulated series to match the distribution of the observed series. This 

method is also known as quantile-quantile mapping (Johnson and Sharma, 

2011), histogram equalization (Rojas et al., 2011), probability mapping 

(Block et al., 2009). Generally, gamma and gaussian distributions are used 

in case of precipitation and temperature profiles, respectively. The readers 

are advised to follow Teutschbein and Seibert (2012) for the detailed 

explanation of the bias-correction methodology. The equations used to 

correct precipitation and temperature series are presented in Eqs. 6.1 and 

6.2. Based on these corrections, the future projected datasets of multiple 

GCMs are corrected before analyzing the impact of climate change on crop 

water requirement and irrigation requirement (Teutschbein and Seibert, 

2012). 

𝑃𝑐𝑜𝑛
∗(𝑑) = 𝐹𝛾

−1(𝐹𝛾(𝑃𝑐𝑜𝑛(𝑑)|𝛼𝑐𝑜𝑛,𝑚, 𝛽𝑐𝑜𝑛,𝑚)|𝛼𝑜𝑏𝑠,𝑚, 𝛽𝑜𝑏𝑠,𝑚) 

𝑃𝑓𝑢𝑡
∗(𝑑) = 𝐹𝛾

−1(𝐹𝛾(𝑃𝑓𝑢𝑡(𝑑)|𝛼𝑐𝑜𝑛,𝑚, 𝛽𝑐𝑜𝑛,𝑚)|𝛼𝑜𝑏𝑠,𝑚, 𝛽𝑜𝑏𝑠,𝑚)                      (6.1) 
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𝑇𝑐𝑜𝑛
∗(𝑑) = 𝐹𝑁

−1(𝐹𝑁(𝑃𝑐𝑜𝑛(𝑑)|𝜇𝑐𝑜𝑛,𝑚, 𝜎𝑐𝑜𝑛,𝑚
2 )|𝜇𝑜𝑏𝑠,𝑚, 𝜎2

𝑜𝑏𝑠,𝑚) 

𝑇𝑓𝑢𝑡
∗(𝑑) = 𝐹𝑁

−1(𝐹𝑁(𝑃𝑓𝑢𝑡(𝑑)|𝜇𝑐𝑜𝑛,𝑚, 𝜎𝑐𝑜𝑛,𝑚
2 )|𝜇𝑜𝑏𝑠,𝑚, 𝜎2

𝑜𝑏𝑠,𝑚)                          (6.2) 

Different symbols and notation used in Eqs. 6.1 & 6.2: con- control period 

(GCM simulated under baseline period i.e., 1970-2005); fut- future; obs- 

observed; (d)- daily; m- monthly interval; P- precipitation; T- temperature; 

γ - Gamma distribution; N- Normal distribution;  α and β - shape and scale 

parameter of the Gamma distribution; μ and σ - location and scale 

parameters of the Gaussian distribution; * - denotes bias-corrected. In this 

study, the 1970-2005 period is selected as observed reference period, and 

the bias correction is carried out up to the end of the twenty-first century for 

all the GCMs under both RCP 4.5 and 8.5 scenarios. For example, before 

and after bias correction of precipitation, maximum and minimum 

temperature during the baseline period for the reference location over South 

Sikkim (Namchi) is presented in Figure 6.3 as quantile-quantile plot for 

MPI-ESM-LR model. In can be noted from the figure that different 

meteorological series has been significantly improved as compared to the 

observed dataset after removal of the bias. 

 

 

Figure 6.3 Before and after bias-correction of precipitation, maximum 

and minimum temperature over South Sikkim for MPI-ESM-LR. 
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6.2.4.2 Crop modelling using AquaCrop model 

AquaCrop is a user-friendly model developed by the Food and Agriculture 

Organizations (FAO). It incorporates several modules viz., atmosphere, 

crop, soil, management practices to simulate the yield of major herbaceous 

crops. The model involves a lesser number of input datasets in comparison 

to the radiation-driven and carbon-driven models and has been proven its 

applicability to simulate the crop yield with reasonably good accuracy over 

the globe. AquaCrop considers water as a key limiting factor for crop 

production, where evapotranspiration (ET) is essential for computing the 

yield (Y). AquaCrop divides ET into two components, namely, crop 

transpiration (Tr) and soil evaporation (E). Based on separated Tr value, it 

develops a easy canopy growth model. AquaCrop computes the above-

ground biomass (B) as a product of normalized water productivity (WP*) 

and the ratio of crop transpiration and reference evapotranspiration (ETo). 

The weather input variables for example, reference evapotranspiration 

(ETo) and precipitation are responsible for the water balance in the soil root 

zone, temperature plays an essential role in phenology, and water 

productivity (WP) and leaf growth are controlled by the CO2 concentration 

(Steduto et al., 2009). The stepwise procedures of crop yield simulation by 

AquaCrop are as follows: 

I. Simulation of crop development: The green canopy cover is 

expressed by the fraction of soil covered by the canopy and can be 

varied between 0 (before emergence) and 100% (maximum CC) 

depending on the planting density and crop type. The canopy’s 

expansion, ageing, conductance, and senescence determine the 

amount of water transmitted and subsequently control the biomass 

productivity (Steduto et al., 2009).  

II. Modelling of crop transpiration (Tr): The Tr is computed by 

multiplying the ETo with the crop coefficient KcTr. The ETo is 

calculated by means of Penman-Monteith equation (Fooladmand 
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and Ahmadi, 2009). The shortage of water and logging of water 

cause stomatal closure, and under such conditions, the Tr is 

simulated with Ks as Kssto for shortage and Ks as Ksaer for logging. 

III. Computation of above-ground biomass production (B): AquaCrop 

accumulates daily biomass production by means of Tr, ETo and 

WP*. The WP* includes two environmental parameters such as ETo 

and CO2 concentration. The normalization of WP as WP* increases 

its applicability to diverse locations and seasons. It is found through 

the experiment that the lower temperature has decremental effect on 

the WP*. A stress indicator of cold temperature for biomass (Ksb) 

with GDD is used to decrease biomass production. Therefore, the 

above-ground biomass production (B) can be defined as: 

𝐵 = 𝐾𝑠𝑏𝑊𝑃∗ ∑ (
𝑇𝑟

𝐸𝑇𝑜
)                                                                                    (6.3) 

IV. Crop yield (Y) simulation: The crop yield (Y) is computed by 

multiplying B with the harvest index (HI). The actual HI is evaluated 

by modifying reference harvest index (HIo) with an adjustment 

factor (fHI) for stress effects. Thus, Y is computed as: 

𝑌 = 𝑓𝐻𝐼𝐻𝐼𝑜𝐵                                                                                                      (6.4) 

For more details on AquaCrop, readers are advised to follow Raes et al. 

(2009), Steduto et al. (2009). For the successful running of the model, 

AquaCrop needs climate, soil, irrigation, field management, and crop 

development data.  

AquaCrop model parameters: In general, to establish the relationship 

among the environmental conditions, including different management 

practices and crop growth, models are used as suitable tools. However, the 

mathematical representation of actual natural processes leads to 

parameterization, which inevitably entails simplifications and assumptions 

and hence imposes uncertainty and inaccuracy (Saltelli et al., 2000). 
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Therefore, sensitivity analysis of the model parameters is inevitable to 

quantify the influence of the parameters on the model output (Confalonieri 

et al., 2010). In this sense, Vanuytrecht et al. (2014b) conducted a global 

sensitivity analysis of the AquaCrop parameters through multi-crop 

simulation under various environmental conditions. Also, they examined 

the crop and soil parameters for maize, rice, and wheat under various 

meteorological conditions. Based on the sensitivity analysis by Vanuytrecht 

et al. (2014b) and from the literature review of other research papers, the 

selected crop and soil parameters are presented in Table 6.1. It should be 

noted that only the sensitive parameters for crop modelling were considered 

from the study by Vanuytrecht et al. (2014b). However, the optimum 

parameters values were obtained based on the calibration and validation 

processes in the present study.  

Calibration and Validation of AquaCrop: The calibration of the AquaCrop 

model is carried out by changing the sensitive parameters to simulate the 

crop yield for the historical period, i.e., 1998-2007. The whole period 

(1998-2015) is divided into calibration (1998-2007) and the validation 

period (2008-2015). In other words, first 10 years were considered as 

calibration and the remaining 8 years as validation of the crop model. Due 

to a smaller number of datasets, the datasets were divided keeping in mind 

to minimize the chance of getting overfitted or underfitted. Statistically, the 

average yield during the calibration period is slightly lower than the 

validation period in case of maize and rice over different regions. 

Conversely, for wheat the mean yield during validation period is slightly 

more than calibration period. The optimum parameter set was obtained 

through the trial-and-error method for all the crops over different districts. 

In trial and error, one parameter is taken as reference parameter at a time 

and arrange other parameters that affect the reference parameter as most. 

This method is done until the closest match between observed and predicted 

yield achieved. To evaluate the efficiency of the model, the Mean Bias Error 
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(MBE), Root Mean Square Error (RMSE), and coefficient of determination 

(R2) are used as evaluation criteria. The evaluation criteria are calculated as 

in Eqs. 6.6, 6.7, and 6.8. 

𝑅2 =
∑ 𝑌𝑆(𝑖)×𝑌𝑂(𝑖)−∑ 𝑌𝑆(𝑖)×∑ 𝑌𝑂(𝑖)

√∑ 𝑌𝑆(𝑖)
2 −(∑ 𝑌𝑆(𝑖))2×√∑ 𝑌𝑂(𝑖)

2 −(∑ 𝑌𝑂(𝑖))2

                                                                (6.6) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑆(𝑖)−𝑌𝑂(𝑖))2𝑛

𝑖=1

𝑛
×

100

𝑌̄𝑜
                                                                            (6.7) 

𝑀𝐵𝐸 =
1

𝑛
∑ (𝑌𝑆(𝑖) −𝑛

𝑖=1 𝑌𝑂(𝑖))                                                                                      (6.8) 

where YS(i) refers to the model simulated yield during ith period, YO(i) denotes 

to the observed yield during ith period, 𝑌̄𝑜represents the mean observed 

yield. As proposed by Jamieson et al. (1991) and adopted by Andarzian et 

al. (2015), based on the RMSE value the model accuracy can be categorized 

into different groups viz., poor (>30%), fair (20-30%), good (10-20%), and 

excellent (< 10%). The calibrated parameters and the model efficiency 

values for different crops and different regions are presented under the 

results and discussion section. 
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Weather data inputs for AquaCrop: The details of the daily climatic data 

such as precipitation, temperature (maximum and minimum), wind speed 

are presented under Section 6.2.2. The ETo is computed using the inbuilt 

ETo calculator through the Penman-Monteith equation. The mean CO2 

concentration measured at Mauna Loa at Hawaii is considered for the 

observed period, and the future CO2 concentration opts under RCP4.5 and 

8.5 scenarios. It should be noted that the CO2 concentration for the observed 

as well as the future scenarios (RCP4.5 and 8.5) are obtained from the 

AquaCrop model itself. Under the RCP4.5 scenario, the radiative forcing is 

stabilized before 2100 with the equivalent CO2 concentration of ~ 650 ppm 

Table 6.1 The selected crop parameters used in AquaCrop model. 

CROP PARAMETERS Units 

Time from sowing to emergence  Days 

Maximum effective rooting depth  M 

Time from sowing to start senescence Days 

Time from sowing to maximum rooting depth Days 

Time from sowing to maturity Days 

Length of the flowering stage Days 

Time from sowing to flowering Days 

Building up of the Harvest index Days 

Reference Harvest Index % 

Soil surface covered by an individual seedling cm2/plant 

Number of plants per hectare -- 

Canopy growth coefficient  % /day 

Maximum canopy cover  % 

Canopy decline coefficient  %/day 

Shape factor for water stress limiting stomatal conductance -- 

Shape factor describing root zone expansion -- 

Upper threshold of soil water depletion inducing early canopy 

senescence   
Fraction TAW 

SOIL PARAMETERS   

Number of soil layers, their texture and thickness --, --, m 

Soil water retention in the fine soil fraction in % (PWP, FC) % vol 

Hydraulic conductivity, root zoon expansion rate, gravel mass mm/day, %, % 

Curve number and readily evaporable water --, mm 
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(Thomson et al., 2011). However, RCP85 is characterized by an increase in 

the CO2 concentration of ~ 1370 ppm by 2100 (Riahi et al., 2011). 

Crop data inputs for AquaCrop: The crop data for different districts of 

Sikkim were described in Section 6.2.3. Here, the crop characteristics and 

development stage for rice, maize, and wheat are presented in a tabular form 

(Table 6.2). In addition, 17 different crop parameters were used in 

AquaCrop model. However, the critical parameters namely, reference 

harvest index (HIo), maximum effective rooting depth, CGC, CDC, 

maximum canopy cover, time from sowing to flowering and sowing to 

maturity are identified during the model calibration for all the selected 

crops. CGC determines the time required to reach the maximum canopy and 

CDC presents the declination rate of green canopy in late season. The HIo 

denotes the ratio between dry yield mass to the total dry above ground 

biomass at maturity under non-stressed conditions. The minimum and 

maximum temperatures at which pollination starts to fail are known as cold 

stress and heat stress, respectively. For rice, maize and wheat the cold and 

heat stress temperature were found to be 8 oC and 35 oC, 10 oC and 40 oC, 

and 5 oC and 35 oC, respectively. Table 6.3 presents the different parameters 

and their associated values over different districts. 
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Table 6.2 Different crops and their development stages. 

Crop & it’s Characteristics Initial Crop Development Mid-Season Late Total Sowing Date 

Maize 

Stage length days 20 35 40 30 125 

April-May 
Crop Coefficient 0.4 -- 1.2 0.5 -- 

Root depth 0.3 >> >> 1  

Yield Response factor 0.4 0.4 1.3 0.5 1.25 

Rice 

Stage length days 30 40 35 20 125 

June-July 

Root depth 0.1 >> >> 0.6 
 

Crop Coefficient wet 1.7 -- 1.7 0.4 -- 

Crop Coefficient dry 0.5 -- 1.05 0.7 -- 

Yield Response factor 1 1.09 1.32 0.5 1.1 

Wheat 

Stage length days 15 25 50 30 120 

Nov-Dec 

Crop Coefficient 0.3 -- 1.15 0.4 -- 

Root depth 0.3 >> >> 1.2  

Yield Response factor 0.2 0.65 0.55 0.1 1.05 

 



128 

 

Table 6.3 Calibrated parameters of different crops over different districts. 

Parameters Unit 
Rice Maize Wheat 

ES* WS* SS* ES WS SS ES WS SS 

Canopy Growth Coefficient (CGC) Per day 0.11 0.1 0.1 0.11 0.11 0.09 0.11 0.1 0.1 

Canopy Decline Coefficient (CDC) Per day 0.09 0.1 0.1 0.09 0.08 0.08 0.09 0.1 0.1 

Reference Harvest Index (%) % 43 41 42 39 38 36 43 41 42 

Maximum Effective Rooting Depth M 0.68 0.7 0.7 0.91 0.9 0.87 0.68 0.7 0.7 

Maximum Canopy Cover (CCx) % 0.95 0.9 1 0.94 0.91 0.89 0.95 0.9 1 

Time from Sowing to Flowering Calendar day 61 59 60 68 63 63 61 59 60 

Time from Sowing to Maturity Calendar day 111 110 111 113 109 107 111 110 111 

Air Temperature Stress (cold stress) in degree Celsius 8 10 5 

Air Temperature Stress (hot stress) in degree Celsius 35 40 35 

* ES-East Sikkim, WS-West Sikkim, SS- South Sikkim 
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Soil data inputs used for AquaCrop: AquaCrop needs a number of inputs 

such as number of soil horizon, and their respective thickness (m), saturated 

hydraulic conductivity (mm/day), field capacity (% vol), bulk density 

(gm/cc), total available water (mm/m), permanent wilting point (% vol) and 

curve number. These inputs are used by AquaCrop to project water content 

in the root zone of the crop. Curve number helps in the estimation of surface 

runoff occurred on the site. In general, the present study area is dominated 

by loamy soil. The type of soil was extracted from FAO soil map (raster 

image) by superimposing the boundary file of Sikkim. For loamy soil the 

saturated hydraulic conductivity (Ksat) was considered between 100 to 750 

mm/day. The soil water content (%) at permanent wilting point, field 

capacity, and saturation 6-20%, 23-42%, and 42-55%, respectively. The 

curve number was considered based on the Ksat of type of soil of the top 

horizon. Hence, considering loamy soil as topsoil with Ksat > 250, the curve 

number value was considered as 65. The maximum effective rooting depth 

for rice, maize and wheat was obtained in the range of 0.68-0.7m, 0.87-

0.91m, and 0.68-0.7m, respectively across different districts. These values 

are presented in Table 6.3. In the present study, four soil horizons were 

selected and different soil characteristics for each horizon are shown in 

Table 6.4. 

 

Crop management inputs used for AquaCrop: The management inputs for 

the AquaCrop modelling incorporates irrigation and field management files. 

However, due to the unavailability of the field management data, the field 

Table 6.4 Different soil properties at different soil depth/horizon. 

Parameters 
Soil Depth (cm) 

0-20 21-60 61-76 77-120 

FC (%) 39 46 52 42 

PWP (%) 24 15 18 16 

SAT (%) 45 50 55 52 

K (mm/day) 15 2 2.4 3 

Bulk density (g cm-3) 1.36 1.24 1.22 1.09 
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management was not considered. In the present study, the irrigation 

scheduling (i.e., irrigation timing and net application depth) was computed 

using Cropwat software using climate, crop, and soil data for the rice crop 

only and provided as an input to AquaCrop as an irrigation management 

file. The percentage of soil surface wetted by the irrigation was considered 

as 100%. For maize and wheat rainfed irrigation technique was used.  

To accomplish the AquaCrop modelling, the methodology is summarized 

in the form of a flowchart and presented in Figure 6.4. 

 

6.2.4.3 CROPWAT modelling 

The crop water requirement varies extensively and is affected by types of 

crops, properties of soil, weather conditions, etc. The amount of water lost 

by the crop represents by the crop evapotranspiration (ETc) and CWR 

 

Figure 6.4 Flow chart of the AquaCrop methodology. 
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represents the extra amount of water that has to be supplied for growth of 

crop. In the present study, CROPWAT model is used to compute the CWR 

for different major crops over Sikkim. According to Smith et al. (2002), the 

model requires less number of input datasets as compared to the other 

models. The model uses Penman-Monteith method (Eq. 6.9) to compute 

ETo, crop evapotranspiration and irrigation requirement (Allen et al., 1998; 

Smith, 1991). At present, there are different methods are being used to 

compute the CWR in water resources research. For instance, the Blaney-

Criddle, Penman-Monteith, radiation, and pan evaporation methods are 

commonly used to compute CWR for different crops. Moreover, the choice 

of methods is based on the precision required to compute the water needs 

and availability of climatic datasets. Due to the excellent performance and 

inclusion of physical theory in computation, Penman-Monteith method is 

widely used (Pereira et al., 2015). In addition, this method offers minimum 

percentage of error as compared to the other method, i.e. ±10% in summer 

and up to 20% under low evaporative condition (Doorenbos and Pruitt, 

1977). Therefore, we have used Penman-Monteith method to analyse 

spatio-temporal variability of CWR for different major crops. To do so, 

CROPWAT, which has been highly recommended by FAO to better 

estimate of CWR under different climate change scenarios (Smith, 1992), 

is used.  

𝐸𝑇𝑜 (
𝑚𝑚

𝑑𝑎𝑦
) =

0.408𝛥(𝑅𝑛−𝐺)+𝛾×
900

𝑇+273
×𝑈2(𝑒𝑠−𝑒𝑎)

𝛥+𝛾(1+0.34𝑈2)
                                               (6.9) 

where, Δ is the slope of the saturation vapor pressure temperature 

relationship (KPa/oC); Rn is the net radiation at the crop surface 

(MJ/m2/day); G is soil heat flux density (MJ/m2/day); γ is psychrometric 

constant (KPa/oC), U2 is the measured wind speed at 2-meter height (m/sec); 

es and ea are saturation and actual vapor pressure in KPa, respectively; T is 

the mean daily air temperature (in oC).  
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The model requires different input data modules, namely, climate data, crop 

data, soil data, and crop pattern data. The climate data includes 

precipitation, temperature (minimum and maximum), windspeed, relative 

humidity, sunshine hours, etc. Similar to the climate data, the crop data such 

as maximum rooting depth, crop description, crop factor, rooting depth, 

growing days, etc. are needed. The crop development stages with different 

crop properties are mentioned in Table 6.2. The soil properties, namely, soil 

moisture availability, initial soil moisture depletion, maximum rooting 

depth, and maximum infiltration rate are given as inputs to CROPWAT 

model. Loamy soil is more dominated in the study area. The soil and crop 

data are collected from the literature (Deb et al., 2015; Dubey and Sharma, 

2018) and (Allen et al., 1998). The CWR is computed using Eq. 6.10. 

𝐸𝑇𝑐 = 𝐾𝑐 × 𝐸𝑇𝑜                                                                                                              (6.10) 

where, Kc is the crop coefficient that depends on various factors like soil, 

crop height, albedo, wind speed and its direction, etc. Moreover, Kc varies 

for the types of crop and growing stages of crop. 

To compute the crop irrigation requirement (CIR), effective rainfall 

(Peffective) is computed based on the fixed percentage method. In Indian 

condition, it is advised to consider 50-80% of the total rainfall as effective 

(Dastane, 1974). In the present study, we have chosen 65% as effective 

precipitation considering the undulated topography of the study area. The 

amount of irrigation requirement is calculated by subtracting estimated 

effective rainfall from calculated crop water requirement (Eq. 6.11). 

𝐶𝐼𝑅 = 𝐶𝑊𝑅 − 𝑃𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒                                                                                          (6.11) 

To accomplish the CROPWAT modelling, the methodology is summarized 

in the form of a flowchart and shown in Figure 6.5.  
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6.2.4.4 Linear trend analysis 

To identify the linear trend in the CWR and CIR time series, we have used 

a non-parametric method named as Sen’s slope estimator proposed by Sen 

(1968). Sen’s slope method computes the slope of the trend and the 

corresponding intercept of the time series. The slope of the time series is 

computed by using Eq. 6.12. 

𝑆 =
𝑦𝑗−𝑦𝑘

𝑗−𝑘
, for 𝑗 = 1, . . . . . . , 𝑛 − 1, 𝑛;  𝑘 = 1, . . . . . . , 𝑗 − 1                        (6.12) 

where, S is the slope, yj and yk are the data points at time j and k where 

(j>k). With total number of data points n, the possible slope estimates can 

be n(n-1)/2 (Zaifoğlu et al., 2017). After computing all the possible slope 

values, the values of S are ranked in an increasing order. If the total count 

of slope is an odd number, then the middle value of will be the median of 

slope otherwise the median value will be the mean of the two values at the 

center. 

 

Figure 6.5 Flow chart of the CROPWAT methodology. 
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6.2.4.5 Uncertainty analysis using possibility theory 

As we know that outputs from the GCMs under the possible future scenarios 

are associated with the large uncertainties. In the context of agricultural 

practices and its management, it is indispensable to assess the uncertainties 

for effective planning and adaptation strategies. Moreover, the assumption 

of giving equal weight to all the projections from GCMs under different 

scenarios will induce more uncertainties and difficulties in agricultural 

management. In this sense, it is necessary to examine which scenario and 

GCM represent the current climate situation. Therefore, possibility theory 

is used to analyze the emission scenario and GCM uncertainty through 

possibilistic analysis concerning the capability in simulating the present 

climate conditions. Zadeh (1999) used the possibility theory to ascertain 

uncertainty due to incomplete or partial knowledge. For instance, the theory 

of probability can be applied to a dataset with complete information. 

However, the applicability of probabilistic theory for the dataset with partial 

knowledge is not possible. In the present situation, outputs from the GCMs 

and future climate scenarios can be considered as the dataset with partial 

information. In such cases, possibility theory can be assigned and the 

mathematical expression as in Eq. 6.11.  

∏𝑋(𝑥): 𝛺 → [0,1]                                                                                                          (6.11) 

Where x is the degree of possibility that X can be assigned. Therefore, x=0 

denotes that X=x is not possible, and x=1 denotes X=x is possible without 

any constraint. According to the property of normalization in possibilistic 

approach, there must be one 𝑥̃ such that ∏𝑋(𝑥̃) = 1(Spott, 1999). For 

details of the possibility theory, readers are advised to follow Das et al. 

(2018). The hypothesis to perform the uncertainty analysis is as follows: 

Step 1: It is assumed that during the early historical period (1998-2005) 

climate change forcing is lower than for the later period of 2006-2015. 

Hence a possibility approach is applied to assess for the second period the 
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fit of the selected climate scenarios. It should be noticed that the period for 

the possibility analysis is purely based on the available dataset. 

Step2: In this step, the climate scenario based simulated crop yields are 

compared with the observed yields for the period 2006-2015 in order to 

estimate the simulation performance, the performance index (C) evaluates 

the deviation of the simulated yield or CWR or CIR from the observed yield 

or CWR or CIR as presented in Eq. 6.12. 

𝐶 = 1 −
∑ (𝑋𝑜𝑏𝑠(𝑡)−𝑋𝑠𝑖𝑚(𝑡))2

𝑡

∑ (𝑋𝑜𝑏𝑠(𝑡)−𝑋̄𝑜𝑏𝑠)2
𝑡

                    (6.12) 

Where, 𝑋𝑜𝑏𝑠(𝑡) and 𝑋𝑠𝑖𝑚(𝑡)refer to the observed and crop model simulated 

yield or CWR or CIR for the particular year (t) respectively and 𝑋̄𝑜𝑏𝑠denotes 

the mean observed yield or CWR or CIR. 

Step 3: Based on the normalization property, the computed C values from a 

particular emission scenario and GCM is divided by the largest value of C 

of that climate scenario and the computed GCM and the computed value is 

treated as the possibility value.  

6.3 Results and discussion 

6.3.1 Future projection of precipitation and temperature 

As discussed in the methodology section, distribution mapping is carried 

out to minimize the inherent bias in the meteorological outputs from the 

GCMs and significant improvement in the outcomes is noticed after the 

bias-correction. The annual variation in the precipitation, maximum and 

minimum temperature for east, south, and west Sikkim is presented in a 

graphical form (Figure 6.6). 

The red and blue shadows denote the ensemble projection of all the GCMs 

under RCP8.5 and 4.5 respectively. The solid red and blue line presents the 

ensemble mean. It can be noted from the figure that there is an increasing 

trend in the minimum and maximum temperature under both the scenarios 
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and the change is significantly higher in the case of RCP8.5 than 4.5. The 

highest variation in the maximum temperature is noticed over South 

Sikkim, whereas minimum variation is observed over East Sikkim. 

However, the variability in the increase in minimum temperature has no 

significant difference with respect to the baseline period temperature for the 

different regions. In line with the present study, other studies also reported 

an increase in warming trends over Sikkim (Deb et al., 2015; Goswami et 

al., 2018a; Telwala et al., 2013). The annual precipitation pattern is likely 

to decrease over South and West Sikkim, while there is no significant 

change in the annual precipitation over East Sikkim under both the climate 

forcing scenarios. 

6.3.2 AQUACROP results 

6.3.2.1 Evaluation of model performance 

The calibration and validation of the AquaCrop model was carried out using 

the observed yield data during 1998-2015. Based on the model performance 

results, the best fit model is used to project the crop yield for future 

scenarios. It should be noted that the model parameters were used to 

simulate the yield for the future period while changing the meteorological 

parameters. AquaCrop was calibrated for rice, maize, and wheat for three 

different districts of Sikkim. The calibrated parameters for rice, wheat, and 

maize are presented as the tabular form in Table 6.3 (section 6.2.4.2). 

Moreover, the calibration and validation plots for different crops are 

presented in Figure 6.7(a & b), respectively. Table 6.5 presents the model 

evaluation criteria for different crops for the different regions. Based on the 

classification of RSME (as discussed in section 6.2.4.2), the model accuracy 

during calibration and validation resulted in excellent and good categories 

in simulating the maize, rice, and wheat. Moreover, in most of the cases, 

AquaCrop is capable of capturing more than 70% of the variance of the 

observed yield during the calibration and validation period.  
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Figure 6.6 Annual variability of meteorological data for different districts of Sikkim. 
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Figure 6.7a Calibration results of three major crops over three different districts. 
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Figure 6.7b Validation results of three major crops over three different districts. 
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Table 6.5 Computed model efficiency for the calibration and validation period of different crops over different regions. 

Period Stations 

Maize Rice Wheat 

R2 

RMSE 

(kg/ha) 

MBE 

(kg/ha) R2 

RMSE 

(kg/ha) 

MBE 

(kg/ha) R2 

RMSE 

(kg/ha) 

MBE 

(kg/ha) 

Calibration 

East Sikkim 0.75 10.56 109.10 0.81 5.35 62.50 0.76 17.20 -159.80 

West Sikkim 0.86 5.04 -51.30 0.73 4.77 22.68 0.76 10.72 -62.96 

South Sikkim 0.73 7.01 50.13 0.93 7.32 98.40 0.71 14.33 -66.77 

Validation 

East Sikkim 0.71 2.81 -45.50 0.86 3.82 -70.30 0.72 5.56 53.94 

West Sikkim 0.83 1.04 -9.90 0.76 1.64 7.57 0.68 19.38 182.60 

South Sikkim 0.76 2.41 16.36 0.86 1.42 3.36 0.67 9.44 79.62 
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6.3.2.2 Future projection of yield from all the GCMs 

For the future projection of yield, the two emission scenarios, namely, 

RCP4.5 and 8.5, are used to predict the yields of rice, maize, and wheat over 

three districts of Sikkim. For analysis the future period, i.e. 2021-2099 is 

divided into 4 divisions (2021-2040, 2041-2060, 2061-2080, and 2081-

2099). The outcomes are presented as boxplot (Figure 6.8a for Maize, 

Figure 6.8b for Rice, Figure 6.8c for wheat). It can be noted from Figure 

6.8a that there is a significant increase in the maize yield for all the models 

under both the scenarios. Additionally, the yield variability is reduced 

significantly as compared to the historical period. The future rice yield (i.e., 

Figure 6.8b) projections show similar outcomes as maize. However, the 

variability in most of the projections especially over South and West Sikkim 

is higher in comparison with the observed period. Similarly, the projection 

of mean yield for wheat (Figure 6.8c) indicates an overall increase for the 

three districts. It has to be mentioned that the uncertainty analysis of GCM 

and emission scenarios was not carried out for the future projection of yield. 

The future projection with uncertainty analysis is discussed in the next 

section. 

6.3.2.3 Future projection of yield after uncertainty analysis 

The assumption, which is considered to perform the possibility theory-

based uncertainty analysis, is that climate change has minimal impact on 

the baseline period. Incorporating the possibility theory, possible value for 

different GCMs and scenarios are calculated. For instance, from a group of 

GCMs (G1, G2, …..., Gn) and scenarios (S1, S2, …..., Sn) it is required to 

compute the possibility value for G1 and S1. Subsequently, according to the 

possibility distribution, the possibility values of G1 and S1 are provided in 

Eq. 6.13 and 6.14. 

∏(𝐺1) = ∏((𝐺1, 𝑆1) ∪ ∏(𝐺1, 𝑆2) ∪. . . . . . . . .∪ ∏(𝐺1, 𝑆𝑛)) = 

𝑠𝑢𝑝( ∏(𝐺1, 𝑆1), ∏(𝐺1, 𝑆2), . . . . . . . . , ∏(𝐺1, 𝑆𝑛))                                       (6.13) 
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∏(𝑆1) = ∏((𝐺1, 𝑆1) ∪ ∏(𝐺2, 𝑆1) ∪. . . . . . . . .∪ ∏(𝐺𝑛, 𝑆1)) = 

𝑠𝑢𝑝( ∏(𝐺1, 𝑆1), ∏(𝐺2, 𝑆1), . . . . . . . . , ∏(𝐺𝑛, 𝑆1))                                       (6.14) 

The ‘sup’ operator symbolizes maximum. In order to analyse the associated 

uncertainty, it has to be checked whether the observed trend of crop yield 

over the years were due to the improvements in production technology 

and/or due to the climatic influence. Therefore, the yield over the observed 

period 2006-2015 was simulated using the calibrated model and observed 

weather data. Then the comparison between the observed and simulated 

yield time series was carried out to check whether the trendlines were 

similar or different. In the case of dissimilarity, the uncertainty analysis 

should be carried out after de-trend the observed yield during 2006-2015. 

Conversely, it can be assumed that the yield trend was due to the influence 

of climatic factor and can be used directly in the uncertainty analysis. In the 

present study, the dissimilarity of temporal trend was not observed for all 

the crops and hence, the observed yield was directly used to assess the 

uncertainty. To evaluate the possibility value, performance index (C) is 

calculated and presented in Table 6.6a based on Eq. 6.11. The C value was 

computed for the duration between 2006 and 2015 for the GCM and 

emission scenarios in comparison to the observed yields for that period. The 

maximum C values for different crops over different districts for all the 

GCMs and scenarios are estimated and marked as superscripted star mark 

in the Table 6.6a. Based on the normalization property, the maximum C 

value is divided with other C values for a particular crop under a particular 

district. The possibility values are presented under Table 6.6b. 
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Figure 6.8a Future projection of Maize yield from all the GCMs and their scenarios. 
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Figure 6.8b Future projection of Rice yield from all the selected GCMs and their scenarios. 
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Figure 6.8c Future projection of Wheat yield from all the selected GCMs and their scenarios. 
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Table 6.6a The computed C values for different crops under different GCMs and scenarios during 2006-2015 

Crop GCM/ 

Scenarios 

ACCESS1.0 CCSM4 CNRM-CM5 MPI-ESM-LR 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Maize 

East Sikkim 0.39 0.37 0.49* 0.40 0.44 0.48 0.45 0.43 

West Sikkim 0.77* 0.70 0.56 0.29 0.50 0.31 0.37 0.37 

South Sikkim 0.65 0.70* 0.69 0.69 0.65 0.69 0.63 0.68 

Rice 

East Sikkim 0.65 0.54 0.38 0.57 0.69 0.53 0.68 0.87* 

West Sikkim 0.92* 0.66 0.73 0.63 0.72 0.73 0.70 0.62 

South Sikkim 0.66* 0.52 0.59 0.39 0.61 0.42 0.49 0.39 

Wheat 

East Sikkim 0.31 0.37 0.32 0.35 0.31 0.41* 0.39 0.39 

West Sikkim 0.80 0.57 0.81* 0.52 0.80 0.60 0.78 0.57 

South Sikkim 0.38 0.31 0.39 0.32 0.41 0.33 0.42* 0.41 

Table 6.6b Possibility value for different crops under different GCMs and scenarios during 2006-2015. 

Crop GCM/ 

Scenarios 

ACCESS1.0 CCSM4 CNRM-CM5 MPI-ESM-LR 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Maize 

East Sikkim 0.79 0.75 1.00 0.82 0.89 0.98 0.92 0.87 

West Sikkim 1.00 0.91 0.73 0.37 0.65 0.40 0.48 0.48 

South Sikkim 0.93 1.00 0.98 0.98 0.93 0.98 0.90 0.96 

Rice 

East Sikkim 0.75 0.62 0.43 0.66 0.80 0.61 0.78 1.00 

West Sikkim 1.00 0.71 0.79 0.68 0.78 0.80 0.76 0.68 

South Sikkim 1.00 0.79 0.90 0.60 0.92 0.63 0.73 0.59 

Wheat 

East Sikkim 0.77 0.91 0.79 0.87 0.76 1.00 0.96 0.97 

West Sikkim 0.98 0.70 1.00 0.64 0.98 0.74 0.96 0.70 

South Sikkim 0.89 0.74 0.91 0.76 0.96 0.79 1.00 0.98 
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It can be noted from Table 6.6b that 6 out of 9 cases the highest possibility 

is given to the RCP4.5 scenarios, which signifies that climate forcings over 

the study area follow the stabilized scenario pathways than high emission 

pathways. It should be noted that the possibility values are given concerning 

the climate change impact during the recent past. Moreover, the present 

climate forcings will continue to impact the climate of the study area for the 

next few decades. In this sense, this may be the possible reason that the 

difference between the possibility values of RCP4.5 and 8.5 are not 

significant. However, considering the long-run impact of climate change 

with prominent climate forcings, the significance of possibility theory will 

increase. It is important to note that any GCM and scenario with one value 

is not imply that the particular GCM and scenario capture the climate of the 

recent past over the region and that local climate drivers can change in the 

future. Though, it infers that nonexistence of ant other better GCM and 

scenario to represent the recent past climate of the study area. Figure 6.9 

presents the future projection of major crops yield over the different district 

in Sikkim for the most possible GCM as well as scenario. 

The mean percentage yield increase in the future projection of maize over 

East Sikkim varies from 11% to 25%; West Sikkim varies from 10% to 

21%, and over South Sikkim varies from 12% to 24% during 2021-2099 as 

compared to the historical yield. Similarly, the mean future yield of rice is 

likely to increase between 11% and 20% over East Sikkim, over West 

Sikkim it varies from 5% to 17%, and 0.5% to 14% increase over South 

Sikkim during 2021-2099. The increase in the mean wheat yield in future 

varies from 2% to 5% over East Sikkim, 21% to 41% over West Sikkim, 

and 26% to 44% over South Sikkim during 2021-2099.  
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Figure 6.9 Future (2021-2099) projected crop yield for different crops after the uncertainty analysis.  
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6.3.2.4 Crop yield response to the weather variability 

In this investigation, the growing periods/seasons for rice (July to 

November), wheat (September to December), and maize (April to July) are 

considered. As discussed, the crop yield is projected based on the change in 

the weather parameters only; thus, it is important to understand relationship 

between the weather/meteorological variability during the growing seasons 

of different crops and their yield. In addition, cultivar and fertilization 

effects, irrigation options, and other changes in future production 

technologies were not considered in the present study.   

The weather variability during the growing seasons for rice, wheat, and 

maize is presented in Figure 6.10 a, b, and c, respectively. The future 

average yield of rice (Figure 6.9), after uncertainty analysis, has shown an 

increment during 2021-2099. From the previous studies, it is known that the 

impact on the local yield is affected mainly by the temperature conditions 

rather than precipitation (Bhatt et al., 2014; Lobell et al., 2011). The reason 

may be due to the temporal variability of temperature and precipitation. It 

can be seen from Figure 6.10a, b, and c that the temperature (maximum and 

minimum) variability is larger than the precipitation variability. In case of 

rice, through various experiments, the temperature threshold for rice yield 

is found to be 29oC for maximum, and 19oC for minimum temperature 

(Baker and Allen, 1993; Boote et al., 2005).  From Figure 6.10a, it can be 

noted that the daily average precipitation during 2021-2099 doesn’t show 

any significant change with respect to the observed period. However, the 

temperature (maximum and minimum) profile exhibits an increasing trend. 

Moreover, the warming trend at high-elevation area may have positive 

impact on the crop yields provided other conditions like soil fertility, water 

availability, etc., are favorable (Bhatt et al., 2014) as temperature controls 

the rate of photosynthesis, grain filling, and respiration (Lobell and Gourdji 

2012). Similarly, the elevated CO2 concentration tends to rise the growth 

and yield through enhanced photosynthesis (Kimball, 1983; Tubiello and 
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Ewert, 2002). Therefore, temperature reaching to the favourable 

temperature threshold, elevated CO2 concentration, and the high elevation 

of the study area, are responsible for the increase in the mean rice yield over 

different parts of the Sikkim.  

In case of wheat, the favourable temperature threshold is around 24o for 

maximum, 19o for minimum temperature (Bhatt et al., 2014; Prasad et al., 

2008) and optimum mean temperature in the range of 17-23oC (Porter and 

Gawith, 1999). It can be noted from Figure 6.10b that the maximum 

temperature in case of East Sikkim is quite high as compared to the observed 

period (nearly 4oC increase towards the end of the twenty-first century). 

However, the maximum temperature over South and West Sikkim 

approaches the favourable threshold during 2021-2099. With the projected 

minimum and maximum temperature, the mean temperature during the 

growing periods of wheat over South and West Sikkim is likely to fall in 

the optimum range. Therefore, the average yield of the wheat over South 

and West is going to be increased during 2021-2099. Similarly, in case of 

maize, the optimum mean temperature for maize yield is recorded as 27-

33oC (Sánchez et al., 2014). The strong increase of maize yields under 

climate change scenarios only by the much higher temperature optimum for 

maize than wheat (and rice is between). Moreover, the daily average 

precipitation shows no significant change as compared to the observed. 

Therefore, under the favourable climatic conditions, the average yield of 

maize has shown an incremental trend. 

Moreover, in order to analyze the crop yield response to the water and 

temperature stress, the normalized water productivity (WP*) for the best 

possible scenario and GCM was computed and presented Table 6.7. The 

WP* has the applicability to the diver locations, seasons, and even future 

climates (Steduto et al., 2009). The water stress has minimal effect on the 

WP* and therefore, the impact of biomass (B) is completely controlled by 

means of Tr. From Eqs. 6.4 and 6.5, it can be noted that the WP* is directly 
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proportional to the B and B is directly proportional to crop yield. The WP* 

varies with crop type. The cold temperature stress has minimal effect on the 

crop yield. However, in the present study such condition is not observed 

with respect to the cold stress temperature of different crops. From the Table 

6.7 it can be noted that WP* increases with increasing in time as compared 

to the baseline period and possibly the increase in the WP* resulted in 

increasing crop yield. 

Using only one crop model is one of the major limitations of the present 

investigation and hence, the uncertainty stemmed from the crop models is 

ignored in the present study. On the other hand, the present study simulates 

future yield projection of rice, maize, and wheat over three different districts 

over Sikkim encompassing the GCM and scenario uncertainty. However, 

encompassing crop management practices viz., cropping pattern, changing 

the fertilizer doses, changing the irrigation depths and methods, altering the 

planting dates, and change in the cultivar in the crop modelling will provide 

future direction to pursue the study in the context of climate change.  
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Table 6.7 The normalised WP for different crops and different time 

periods after the uncertainty analysis. 

MAIZE: WP* (g/m2) 

 

East West South 

Observed 32.3 31.8 32.2 

2020-40 33.6 33.7 33.7 

2041-60 34.5 34.7 34.7 

2061-80 35.2 34.8 35.2 

2081-99 35.7 35.7 35.4 

WHEAT: WP* (g/m2) 

 

East West South 

Observed 16.5 16.8 15.7 

2020-40 17.1 18.5 18.2 

2041-60 17.4 19.0 18.6 

2061-80 17.5 19.1 18.6 

2081-99 17.7 20.5 20.1 

RICE: WP* (g/m2) 

 

East West South 

Observed 16.4 17.2 17.4 

2020-40 17.7 17.7 17.1 

2041-60 18.5 19.0 18.4 

2061-80 19.3 19.2 18.8 

2081-99 19.2 19.5 18.2 
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Figure 6.10a Precipitation, and temperature variability during the growing period of rice during historical and future projections for 

East, South, and West Sikkim. 
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Figure 6.10b Precipitation, and temperature variability during the growing period of wheat during historical and future projections 

for East, South, and West Sikkim. 
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Figure 6.10c Precipitation, and temperature variability during the growing period of maize during historical and future projections 

for East, South, and West Sikkim. 

.  
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6.3.3 CROPWAT results 

6.3.3.1 Past and future trend of CWR 

This section deals with the CWR of three major crops, namely, maize, 

wheat, and rice over three different locations of Sikkim. The historical CWR 

is computed based on the observed meteorological datasets and the future 

projections are obtained using the bias corrected outputs from the four 

selected GCMs under RCP 4.5 and 8.5 scenarios. The CWR of maize, 

wheat, and rice during their growth period for the baseline and future 

projected period for all three parts of Sikkim is presented in Figure 6.11a 

for Maize, 6.11b for Wheat and 6.11c for Rice. Moreover, the linear trend 

magnitude obtained from Sen’s slope analysis of CWR of different crops is 

depicted in Figure 6.12.  

An increasing trend of CWR for maize from 1998-2015 is observed for all 

the three parts of Sikkim and can be noted from Figure 6.11a. Further, the 

findings can be supported by the positive linear magnitude of slope in 

Figure 6.12a. In future projection, a significant decreasing trend is observed 

for all the models under both scenarios. However, a higher decreasing trend 

(-0.19 to -0.35 mm/year) is observed in case of RCP 4.5 than 8.5. More 

interestingly, the CWR trend is likely to increase under both the scenarios 

for all the models over West (0.29 to 0.5 mm/year for RCP 4.5) and South 

(0.32 to 0.61 mm/year for RCP 4.5) Sikkim. In case of RCP 8.5 scenario, 

the highest change in the CWR is observed in CNRM-CM5 (1.52 mm/year) 

over West Sikkim and in MPI-ESM-LR (1.96 mm/year) over South Sikkim. 

The decrease in CWR over East Sikkim can be attributed to the future 

changes in the precipitation and temperature. Over East Sikkim, there is no 

significant change in the precipitation from the historical period as 

compared to the West and South. Furthermore, the temperature has not 

significantly increased under the climate change scenarios with respect to 

the past records and as compared to the other two locations.  
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Figure 6.11a CWRs in the total growth stages of Maize for historical (1998-2015) and the ones future projected (2021-2100) by multiple 

GCMs under two scenarios in East, West, and South Sikkim, respectively. 

.  
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Figure 6.11b CWRs in the total growth stages of Wheat for historical (1998-2015) and the ones future projected (2021-2100) by 

multiple GCMs under two scenarios in East, West, and South Sikkim, respectively. 

 

.  
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Figure 6.11c CWRs in the total growth stages of Rice for historical (1998-2015) and the ones future projected (2021-2100) by 

multiple GCMs under two scenarios in East, West, and South Sikkim, respectively. 

.  
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Figure 6.12 Sen’s slope of CWRs in the total growth stages of maize, wheat and rice for historical (1998-2015) and future projected 

(2021-2100) by multiple GCMs under two scenarios in East, West and South Sikkim. 

.  
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Therefore, the ETo is not going to increase more significantly over East 

Sikkim resulting in less CWR. 

In case of Wheat, a significant decreasing trend is noticed over West and 

South Sikkim for the baseline period. However, an insignificant increasing 

trend is observed over East Sikkim. In most of the cases, the future 

projections of CWR have shown an increasing trend under both the 

scenarios with maximum increase in case of RCP 8.5. The highest 

increasing rates are 0.78, 1.61, and 1.35 mm/year for East, West and South 

Sikkim, respectively. All the above-said results can be noticed under the 

Figure 6.11b and Figure 6.12b. It can be noted from Figure 6.11c and 6.12c 

that there is an increase in the CWR of rice during the baseline period. 

Similar to the wheat, the CWR of rice during the 2021-2099 has increased 

under both the scenarios for most of the cases. The highest increasing rates 

are 0.63, 1.54, and 3.69 mm/year for East, West and South Sikkim, 

respectively. 

6.3.3.2 Past and future trend of CIR 

The CIR of wheat and rice during the baseline and future period over three 

regions of Sikkim are shown in Figure 6.13a for wheat and 6.13b for rice. 

The Sen Slope results of a crop irrigation requirement are also shown in 

Figure 6.14. It should be noted that maize crop is considered as rainfed and 

hence CIR is not computed for the same. 

Figure 6.13a demonstrates the decreasing trend in CIR for wheat crop 

during 1998-2015 in West and South Sikkim while the increasing trend is 

observed over East Sikkim. A similar trend can also be observed in Fig 

6.14(a). An increasing trend is observed for East and West Sikkim under 

RCP 4.5 and 8.5 scenarios for most of the GCMs. On the other hand, in 

South Sikkim although the CIR is likely to increase in future, there is no 

visible difference observed between RCP 4.5 and 8.5 for all GCMs except 

MPI-ESM-LR. The highest increasing rates are notices as 0.77, 1.51, and 

0.74 mm/year for East, West and South Sikkim, respectively.  
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The future projection and its linear trend are presented in Figure 6.13b and 

6.14b. An increasing trend with magnitude 0.35 to 1.54 mm/year and 0.73 

to 1.84 mm/year is observed over West and South Sikkim, respectively 

under both scenarios. However, an insignificant linear trend of -0.06 to 0.15 

mm/year is noticed over East Sikkim under RCP 4.5 and 0.42 to 0.85 under 

RCP 8.5. The highest positive rates are obtained from ACCESS-1.0, 

CNRM-CM5, and MPI-ESM-LR models for East, West and South Sikkim, 

respectively. The decrease in CIR over East Sikkim can be attributed to the 

insignificant changes in the future CWR. Over East Sikkim, there is no 

significant change in the CWR of Rice as compared to the West and South. 

Therefore, the CWR is not going to increase more significantly over East 

Sikkim resulting in less CIR. 

6.3.3.3 Uncertainty analysis of future CWR & CIR 

Results discussed in Sections 6.3.3.1 and 6.3.3.2 are not analysed for the 

uncertainty. As uncertainty analysis in the climate change impact study is 

essential to minimize the errors, in the present section we are presenting the 

future outcomes of CWR and CIR after the uncertainty analysis using 

possibilistic approach. 

The performance measure C is calculated for multiple GCMs under both 

scenarios based on their simulation during 2006 to 2015. Table 6.8a 

presents the unnormalized C value to assess both GCM and scenario 

uncertainty. The highest C values are marked as bold in Table 6.8a for three 

major crops and districts of Sikkim. The possibility value after 

normalization for both scenario and GCM uncertainty is presented in Table 

6.8b.  

It can be found from Table 6.8b that the RCP 4.5 scenario exhibits the 

highest possibility value (11 out of 15 cases) which implies that stabilized 

scenario pathway is identified as the most possible scenario for regional 

climate change impact assessment in our study areas for CWR and CIR.
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Figure 6.13a CIRs in the total growth stages of Wheat for historical (1998-2015) and the ones future projected (2021-2100) by multiple 

GCMs under two scenarios in East, West, and South Sikkim, respectively. 
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Figure 6.13b CIRs in the total growth stages of Rice for historical (1998-2015) and the ones future projected (2021-2100) by multiple 

GCMs under two scenarios in East, West and South Sikkim, respectively. 
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Figure 6.14 Sen’s slope of CIRs in the total growth stages of maize, wheat and rice for historical (1998-2015) and future projected 

(2021-2100) by multiple GCMs under two scenarios in East, West and South Sikkim. 
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 Table 6.8a Performance measure C for maize, wheat and rice for multiple GCMs and two scenarios during 2006-2015 (Maximum 

value is marked in bold). 

Crop GCM/ ACCESS1.0 CCSM4 CNRM-CM5 MPI-ESM-LR 

Scenarios RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Maize East Sikkim 0.42 0.29 0.23 0.44 0.27 0.43 0.50 0.31 

West Sikkim 0.59 0.31 0.40 0.38 0.65 0.42 0.68 0.49 

South Sikkim 0.72 0.36 0.59 0.65 0.70 0.54 0.34 0.52 

Rice East Sikkim 0.38 0.43 0.35 0.27 0.51 0.42 0.39 0.24 

West Sikkim 0.30 0.53 0.33 0.34 0.23 0.29 0.29 0.24 

South Sikkim 0.32 0.40 0.50 0.54 0.43 0.29 0.30 0.26 

Wheat East Sikkim 0.42 0.25 0.30 0.29 0.36 0.34 0.26 0.27 

West Sikkim 0.58 0.41 0.53 0.42 0.76 0.43 0.51 0.39 

South Sikkim 0.22 0.33 0.39 0.27 0.40 0.20 0.39 0.28 

Rice CIR East Sikkim 0.71 0.38 0.68 0.65 0.52 0.50 0.69 0.48 

West Sikkim 0.51 0.61 0.38 0.55 0.49 0.38 0.36 0.34 

South Sikkim 0.65 0.49 0.67 0.48 0.43 0.46 0.38 0.35 

Wheat 

CIR 

East Sikkim 0.28 0.21 0.24 0.14 0.23 0.27 0.25 0.20 

West Sikkim 0.36 0.59 0.35 0.47 0.50 0.34 0.54 0.64 

South Sikkim 0.71 0.42 0.52 0.58 0.52 0.44 0.41 0.39 
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Table 6.8b Possibility values after normalization for different crops over different regions. 

Crop 
GCM/ ACCESS1.0 CCSM4 CNRM-CM5 MPI-ESM-LR 

Scenarios RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Maize 

East Sikkim 0.86 0.59 0.47 0.89 0.55 0.89 1.00 0.63 

West Sikkim 0.87 0.46 0.59 0.56 0.96 0.62 1.00 0.73 

South Sikkim 1.00 0.50 0.81 0.90 0.97 0.75 0.46 0.72 

Rice 

East Sikkim 0.75 0.85 0.69 0.54 1.00 0.83 0.77 0.48 

West Sikkim 0.56 1.00 0.62 0.65 0.43 0.56 0.55 0.45 

South Sikkim 0.58 0.73 0.92 1.00 0.78 0.53 0.56 0.47 

Wheat 

East Sikkim 1.00 0.62 0.72 0.69 0.87 0.82 0.63 0.64 

West Sikkim 0.77 0.54 0.70 0.55 1.00 0.57 0.67 0.51 

South Sikkim 0.54 0.83 0.98 0.67 1.00 0.49 0.98 0.70 

Rice CIR 

East Sikkim 1.00 0.54 0.96 0.92 0.73 0.72 0.97 0.68 

West Sikkim 0.84 1.00 0.62 0.90 0.80 0.62 0.59 0.55 

South Sikkim 0.95 0.73 1.00 0.72 0.64 0.69 0.58 0.52 

Wheat 

CIR 

East Sikkim 1.00 0.75 0.86 0.51 0.83 0.96 0.88 0.71 

West Sikkim 0.53 0.92 0.55 0.73 0.78 0.53 0.84 1.00 

South Sikkim 1.00 0.58 0.73 0.82 0.73 0.62 0.58 0.55 
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It is important to note that for other agro-meteorological variables except 

CWR and CIR, the possibility distribution can be different for the same 

region. Since the climate forcing is not very significant during the recent 

past (2006-2015) and therefore significant difference in GCMs output is not 

found between RCP 4.5 & 8.5 scenarios. However, with the available GCM 

and scenario projections the particular selected GCM under the scenario is 

likely to prevail in the selected study area.  

6.3.3.4 Future projection of CWR & CIR with uncertainty analysis 

Future projection of CWR and CIR of different crops among three districts 

of Sikkim with best possible GCM and scenario is presented in Figure 6.15a 

& b, respectively. 

The percentage change in CWR of wheat crop in the future increases from 

32% to 39% and 23% to 37% over West and South Sikkim, respectively as 

compared to the baseline period. Whereas the percentage change is likely 

to decrease from -11% to -6% over East Sikkim during 2021-2099. In the 

case of maize, the CWR change is likely to decline between -15% to -9%, -

8% to -4% and -5% to 3% over East, West and South Sikkim, respectively. 

Similarly, the percentage increase in the projected CIR ranges from 24% to 

58% and 20% to 27% over West and South Sikkim while decreasing trend 

from -12% to -5% is observed over East Sikkim during 2021-2099. On the 

other hand, the percentage change in the CWR of rice ranges from -6% to -

3%, -2% to 8%, and -0.5% to 11%   over East, West, and South Sikkim, 

respectively. However, CIR of rice crop has shown an increasing trend 

among the three districts of Sikkim ranges from 4% to 25%, 2% to 35% and 

2% to 36% over East, West and South Sikkim, respectively. 
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Figure 6.15a Observed and future projections of CWR for different crops over East, West, and South Sikkim after GCM and scenario 

uncertainty analysis. 
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Figure 6.15b Observed and future projections of CIR for wheat and rice over East, West, and South Sikkim after GCM and scenario 

uncertainty analysis 
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6.3.3.5 Sensitivity analysis 

With increasing in greenhouse gas emission and climate change forcings, it 

is necessary to find out the way for the opportunity to decrease CWR in 

terms of water conservation. Therefore, we have carried out sensitivity 

analysis through altering the growth period of different crops over three 

different districts of Sikkim. In Sikkim, the growing period of maize starts 

from April till the mid of June following earlier studies. A total of five 

additional scenarios were depicted based on the growth period of the crop 

are proposed such as Case I (30 March), Case II (30-April), Case III (15 

May), Case IV (30 May) and Case V (15 June), i.e. growing period of maize 

is shifted from April to mid-June. Case I to Case IV is practiced in some 

parts of Sikkim, however, Case V is not practically practiced in Sikkim. For 

Case I, maize has shown an increasing trend in CWR whereas for other 

cases such as Case II to Case V, CWR is likely to decrease, under both RCP 

4.5 and 8.5 scenarios for all 3 parts of Sikkim (Figure 6.16a, b, & c). A 

significant amount of water conservation is noticed from case II to case V 

whereas no conservation is observed in case I. Case V projects the lowest 

CWR and hence identified as highest level of water conservation. The 

growing seasons of Maize are shifted from April to June, indicating 

conservation of 10 to 60, 12 to 86, and 12 to 108 mm/year under both 

scenarios for East, West, and South Sikkim, respectively.  

Also, the growing seasons of Wheat (Figure 6.17a) are shifted from 20 

October to 5 December, i.e. Case I (5 October), Case II (20 October), Case 

III (5 November), Case IV (20 November) and Case V (5 December).  For 

East and South Sikkim, case I, II & V clearly indicate increasing trend of 

CWR while a decrease is observed over case III & IV. However, for West 

Sikkim, CWR decreases over Case III, IV, & V. This clearly indicates that 

the wheat growth period is suitable to shift from 5th to 20th day of November 

from the current scenarios or else no water conservation is possible. The 

growing seasons of wheat are shifted from Oct to November, indicating 
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conservation of 1 to 11, 18 to 29, and 3 to 95 mm/year for East, West, and 

South Sikkim, respectively.  

Similarly, for the rice crop (see Figure 6.17b), in addition to current 

condition i.e., 1st week of July, 5 newly added growing periods are 

proposed viz., Case I (15 June), Case II (15 July), Case III (30 July), Case 

IV (15 August) and Case V (30 August). From Case II to Case V, CWR of 

rice shows a decreasing trend both scenarios over all three parts of Sikkim. 

After adopting the newly developed growing period from July to August, 

water conservation of 13 to 102, 4 to 102 and 11 to 88 mm/year under both 

RCP 4.5 & 8.5 scenarios for East, West and South Sikkim, respectively. 

 

 

 

 

 

Figure 6.16a Sensitivity analysis on crop water requirement for different 

growing periods of Maize in East Sikkim. 
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Figure 6.16b Sensitivity analysis on crop water requirement for different growing periods of Maize in West Sikkim. 
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Figure 6.16c Sensitivity analysis on crop water requirement for different growing periods of Maize in South Sikkim. 
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Figure 6.17a Sensitivity analysis on crop water requirement for different growing period of Wheat. 

 

 

 

 

 



176 

 

 

Figure 6.17b Sensitivity analysis on crop water requirement for different growing period of Rice. 
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6.4 Conclusion 

The present study investigates the climate change implications on crop 

yield, CWR and CIR in three districts of Sikkim, namely East, West, and 

South Sikkim. Additionally, uncertainty analysis of both GCM as well as 

scenario is also carried by applying the possibility approach. The outcomes 

of the study are as follows: 

• Significant increase in the crop yield for all the major crops for 

future scenarios. 

• The reasons of the increase in the different crop yield can be 

attributed to the suitable temperature profile, increase in the CO2 

concentration, high elevation of the study area, and no significant 

water stress during the growing seasons of different crops. 

• The future projection of regional CWR in the total growth stage of 

maize, wheat, and rice is likely to decrease over East Sikkim. On the 

other hand, CWR (except for maize in West Sikkim) over West and 

South Sikkim has shown an increasing trend during 2021-2099. 

• The future trend of CIR of wheat and rice show a significant 

increasing trend in West and South Sikkim, whereas, over East 

Sikkim CIR is likely to decrease for wheat and increase for rice. 

•  It is noted that shifting growth period may reduce CWR in the study 

region. 

• The uncertainty analysis reveals that the stabilized scenario 

pathway, i.e., RCP 4.5, is identified as the most possible scenario 

for the regional climate change impact assessment on CWR and CIR 

in our study area. 

The outcomes from the study will provide a framework for the agricultural 

and water engineering over Sikkim for effective management of water 
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resources for sustainable agriculture. Adaptation of different cropping 

pattern is necessary to combat climate change.  
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Chapter 7 

Conclusions and scope for future work 

7.1 Summary  

The present study has been performed to deliver a comprehensive 

assessment of meteorological, hydrological, and agricultural drought 

conditions over India.  In India, drought risk is greater due to unusually high 

temperatures, unfavorable meteorological conditions, and unfortunate 

monsoon. The complexity of the drought phenomenon, intricate ecosystem-

drought interactions, and interdependence of the drought characteristics 

make the drought assessment a challenging task. In addition to traditional 

droughts, flash droughts are newly discovered extreme events that have 

rapid intensification without sufficient early warning. Such flash droughts 

pose a great threat to terrestrial ecosystems. The ecosystem resistance and 

adaptation to flash drought are significantly dependent upon the accurate 

estimation of flash drought events and their interaction with ecosystem 

metrics. Therefore, in context of climate change, a better understanding of 

the droughts in terms of their occurrence, trend, concurrence, evolution as 

well as joint dependence of drought characteristics is necessary to further 

evaluate the implications for the terrestrial ecosystem. The following 

paragraphs give a summary and conclusions of the study presented in the 

thesis. 

Drought is a slowly growing, multivariate and complex phenomenon; 

therefore, it is important to recognize the drought from several perceptions 

such as severity, trends, distribution, duration as well as their complex 

interaction. In general, droughts are categorized into three categories i.e., 

meteorological, hydrological, and agricultural droughts. The present study 

further classified the agricultural drought into soil moisture drought and 

vegetation drought. The categorization is done because analyzing soil 

moisture and vegetation drought individually is better rather than a multi-
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variate drought index, because the former gives a more detailed view on 

changes in environment variables than the latter one. The characterization 

of meteorological, hydrological, soil moisture, and vegetation droughts over 

different river basins of India using multi-perspectives such as occurrence, 

distribution, trend, concurrence, and evolution is investigated. The 

investigation is carried out using most widely used drought indices to 

monitor different drought types. The results show that hydrological and soil 

moisture droughts were observed to be more influential as compared to the 

meteorological and vegetation droughts in most of the river basins of India. 

Further, approximately 82% of concurrent droughts include soil moisture 

drought. This suggests that the soil moisture is more influencing rather than 

precipitation in the study area. This study facilitates to examine drought 

from various perspectives over all major river basins of India, and provides 

crucial inputs for local developing drought mitigation strategies and 

measures. 

The above paragraph represents the outputs of the investigation based on 

univariate analysis of drought characteristics. As discussed in Chapter 4, the 

joint dependence of drought characteristics might not be suitably 

determined using the existing univariate approaches. Drought is a 

multivariate phenomenon, therefore, modeling the drought characteristics 

such as duration and severity through multivariate technique is more 

suitable. However, most of the multivariate techniques are derived from 

univariate ones and suffer from several disadvantages. To overcome such 

limitations, Copula is a useful tool to model multivariate distribution among 

random variables. In view of this, we used a bivariate copula-based 

approach to understand the joint dependence of drought characteristics for 

meteorological, hydrological, and agricultural droughts. It was observed 

that Southern India has a higher lower return period and higher exceedance 

probability as compared to Western river basins of India. Such results 

indicates that the drought events in Western and Central India are longer 
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and more severe while the drought events in the southern river basins of the 

country are more frequent but less severe. This study provides information 

about the severe and longer drought event hotspots all over the study area 

and thus helpful for the policymakers in developing effective drought 

prevention and mitigation strategies. 

The above two paragraphs present the outputs of the investigations based 

on conventional/traditional drought analysis. However, recent findings have 

revealed a new kind of rapidly growing drought termed as “flash drought”. 

It is a recently identified extreme event characterized by its sudden onset 

and rapid intensification. Due to rapid intensification and high 

evapotranspiration (ET), flash drought causes quick soil moisture depletion 

and poses a great threat to the terrestrial ecosystem. In view of this, the rapid 

intensification approach is employed to quantify the impact of flash 

droughts over terrestrial ecosystem in all 24 major river basins of India. 

Gross primary productivity (GPP) from MODIS was used to quantify the 

response of the ecosystem to flash droughts. It was observed that GPP 

responds to more than 95% of the flash droughts across India, with the 

highest response frequency occurring over Ganga basin and southern India 

while the lowest response across northeastern India. The discrepancies in 

the response frequency are majorly attributed to different vegetation 

resilience conditions across different parts of the country. Severe reduction 

in water use efficiency (WUE) was observed for the Ganga river basin and 

some parts of southern India, which highlighted the non-resilient nature of 

ecosystem towards rapid soil moisture variations. This study facilitates the 

identification of flash drought hotspots in the country and the ability of 

ecosystem to withstand such drastic conditions. These findings highlight the 

need to adopt essential drought mitigation measures to safeguard the 

sustainability of ecosystems. 

Due to the climate change, the agricultural and socio-economical 

development over eastern Himalayan region of India is greatly affected. In 
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view of this, the last chapter of the thesis presents a case study quantifying 

the impact of climate change on crop productivity and crop water 

requirement (CWR). Food and Agriculture Organization (FAO) developed 

Aquacrop model and Cropwat software are employed to investigate the 

climate change impact on regional crop yield, crop water requirement 

(CWR), and crop irrigation requirement (CIR) of major crops (maize, 

wheat, and rice) over a Himalayan state, i.e., Sikkim. The future projections 

of different crop yields and CWR are obtained by using bias-corrected 

climate scenarios from four different Global Climate Models (GCMs) under 

two different emission scenarios RCP 4.5 and RCP 8.5. From the 

investigation, an increase in the mean percentage change in the crop yield 

was observed over Sikkim during 2021 2099. This can be attributed to the 

suitable temperature profile, increase in the CO2 concentration, high 

elevation of the study area. The CWR and CIR investigation suggests an 

increase in the CWR towards the end of the twenty-first century for rice and 

wheat over West and South Sikkim with respect to the baseline period. This 

study facilitates the water and agricultural manager for considering suitable 

and robust adaptation measures to ensure sustainability. 

7.2 Limitations of the study  

The limitations of the study are as follows: 

• The current study performed the characterization of major drought 

types, however, there is a lack of integration with crop production, 

which could be crucial for the food security of the country. 

• Instead of the availability of multivariate copulas, the present study 

uses only bivariate copulas to estimate the joint dependence of 

drought characteristics. However, in the present analysis, we have 

considered only two major drought characteristics, which can be 

increased in future analysis, for example, drought frequency.  

• Flash drought analysis is carried out using only soil moisture 

percentile datasets, however, evapotranspiration anomalies and 
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temperature anomalies datasets could also be crucial for 

comparative analysis. 

• However, the present study used satellite-based soil moisture 

datasets which may be insufficient in incorporating real-time 

conditions, therefore, it is suggested to perform hydrological 

modeling to simulate soil moisture datasets in order to obtain better 

results in future studies. 

• Also, the role of human influences such as changing cropping 

patterns, irrigation, and management activities has not been 

considered which can be incorporated. 

7.3 Future scope of work  

As discussed earlier, the present research is devoted to occurrence, 

distribution, concurrence, and evolution of droughts over India. However, 

there are many challenges that still exist in the field of drought assessment. 

Hence, the following would be possible future works.  

• The drought evolution analysis is done to identify evolution of 

drought from one type to another type. A more comprehensive 

analysis of drought evolution may be carried out using the cross-

correlation technique and find out the time lag in drought 

transformation. Further, it is suggested to use weekly or bi-weekly 

datasets instead of monthly datasets to have comprehensive view on 

drought evolution. 

• The dependence structure of drought characteristics is estimated 

using bivariate Copula models. Instead of using bivariate, other 

multivariate Copulas may be utilised in future studies to model the 

joint dependence of more than two drought characteristics.  

• Flash drought identification and its impact on the terrestrial 

ecosystems is investigated using gross primary productivity (GPP) 

as a terrestrial ecosystem indicator. However, the future study can 
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use net primary productivity (NPP) and leaf area index (LAI) along 

with GPP for comparative analysis. Moreover, the future study can 

investigate flash drought risk and its underlying drivers in a 

changing climate. 

• The simulation of crop yield is carried out using only changes in the 

climatic data and CO2 concentration. Future studies can incorporate 

local experimental field data for more accurate yield simulations. 
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