
Design of Scalable Fuzzy Clustering
Algorithms and its Application to Huge

Genomics Data

Ph.D. Thesis

By

Preeti Jha

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

August 2021

Design of Scalable Fuzzy Clustering
Algorithms and its Application to Huge

Genomics Data

A THESIS

submitted to the

INDIAN INSTITUTE OF TECHNOLOGY INDORE

in partial fulfillment of the requirements for

the award of the degree

of

DOCTOR OF PHILOSOPHY

By

Preeti Jha

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

August 2021

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled Design

of Scalable Fuzzy Clustering Algorithms and its Application to Huge Genomics

Data in the partial fulfillment of the requirements for the award of the degree of Doctor of

Philosophy and submitted in the Department of Computer Science and Engineer-

ing, Indian Institute of Technology Indore, is an authentic record of my own work

carried out during the time period from December 2018 to June 2021 under the supervision

of Dr. Aruna Tiwari, Associate Professor, Indian Institute of Technology Indore, India, Dr.

Milind B. Ratnaparkhe, Senior Scientist (Biotechnology), ICAR-Indian Institute of Soybean

Research (ICAR-IISR), Indore, India, and Dr. Neha Bharill, Assistant Professor, Depart-

ment of Computer Science and Engineering, Mahindra University, Ecole Centrale School of

Engineering (MEC), Hyderabad, India.

The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other institute.

Signature of the Student with Date

(Preeti Jha)

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge.

Signature of Thesis Supervisor with Date

(Dr. Aruna Tiwari)

Signature of Thesis Supervisor with Date

(Dr. Milind Ratnaparkhe)

Signature of Thesis Supervisor with Date

(Dr. Neha Bharill)

Preeti Jha has successfully given her Ph.D. Oral Examination held on

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my heartfelt gratitude to a number

of persons who in one or the other way contributed by making this time as learnable,

enjoyable, and bearable. At first, I would like to thank my supervisors Dr. Aruna

Tiwari, Dr. Milind Ratnaparkhe, and Dr. Neha Bharill who was a constant

source of inspiration during my work. Without their constant guidance and research

directions, this research work could not be completed. Their continuous support and

encouragement has motivated me to remain streamlined in my research work.

I am thankful to Dr. Kapil Ahuja for all his extended help, support, and con-

structive feedback. I am thankful to Dr. Abhishek Srivastava and Dr. Trapti

Jain, my research committee member for taking out some valuable time to evaluate

my progress all these years. Their good comments and suggestions helped me to im-

prove my work at various stages. I am also grateful to Dr. Somnath Dey, HOD of

Computer Science and Engineering for his help and support.

My sincere acknowledgement and respect to Prof. Neelesh Kumar Jain , Direc-

tor, Indian Institute of Technology Indore for providing me the opportunity to explore

my research capabilities at Indian Institute of Technology Indore.

I extend my sincere thanks to the Council of Scientific and Industrial Re-

search (CSIR) for funding the PhD research. This work was supported by the CSIR

under Grant 22(0750)/17/EMR-II in collaboration with ICAR-Indian Institute Of

Soybean Research, Indore.

I would like to appreciate the fine company of my dearest colleagues and friends

especially, Chandan Gautam, Vikas Chauhan, Suchitra Agrawal, and Sonal Pandey. I

am thankful to undergraduate students (Mounika Mukkamalla and Neha Nagendra)

who have also supported me in my research work. I am also grateful to the institute

staffs for their unfailing support and assistance.

I would like to express my heartfelt respect to my parents for their love, care and

support they have provided to me throughout my life. Special thanks to my husband

(Bhavesh), my sister (Priyanka), my brother (Piyush), and friends as this thesis would

not have been possible without the help of their support and encouragements. I also

want to thank my in-laws for their support and blessings.

Finally, I am thankful to all who directly or indirectly contributed, helped and

supported me. To sign off, I write a quote by Albert Einstein:

“In the middle of difficulty lies opportunity.” –Albert Einstein

Preeti Jha

To my family and friends

Abstract

Clustering is one of the most popular methods used for exploratory data analysis.

The need for clustering arises in many real-life problems, such as gene analysis, image

processing, text organization, community detection, disease diagnosis, and protein

categorization. In the bioinformatics domain, an enormous amount of new genome

sequences are produced at a great pace. Hence, the clustering of genome sequencing

gives rise to this new era of Big Data in bioinformatics. Clustering genome sequences in

real life becomes a major challenge because sequences can belong to multiple clusters.

So, there is a need to apply a clustering algorithm that assigns a data sample to

more than one cluster. Fuzzy clustering is one of the most widely used methods to

handle such real-life problems. The principle advantage of fuzzy clustering is that

the membership degrees express how ambiguously a data sample should belong to a

cluster. However, there are many aspects of the design of fuzzy clustering that need to

be addressed for improving the overall performance of fuzzy clustering by preserving

the quality of clustering to handle Big Data.

This thesis mainly investigates to design and develop the fuzzy based scalable clus-

tering algorithms and feature extraction techniques for handling huge genome data us-

ing Apache Spark. To handle Big Data, novel scalable fuzzy clustering approaches are

designed. First, we have proposed scalable kernelized fuzzy clustering algorithms for

handling Big Data. These scalable kernelized fuzzy clustering algorithms are evolved

to deal with the non-linear separable problems by applying a kernel Radial Basis Func-

tions (RBF), which maps the input data space non-linearly into a high dimensional

feature space. The proposed scalable kernelized fuzzy clustering algorithms are be-

ing implemented on Apache Spark cluster to perform the efficient clustering of Big

Data due to its in-memory cluster computing technique. The proposed algorithms

remove the problem of loading the entire data in memory all at once. This results in

a significant reduction in run-time.

To further improve the cluster quality, we have proposed a novel scalable incremen-

tal fuzzy consensus clustering algorithm, which aims to find a single partition of data

i

that agrees as much as possible with existing basic partitions/segments. The scal-

able incremental fuzzy consensus clustering aims to identify a soft consensus partition

with overlapping clusters from a set of fuzzy partitions. It has been implemented on

Apache Spark cluster framework, a distributed data stream environment for handling

big data by considering the data as a set of subsets of data that are processed in-

crementally. The scalable incremental fuzzy consensus clustering facilitates efficient

Big Data clustering by improving the quality of clusters and thus performing storage

space optimization and significantly reducing time complexity. The scalable kernel-

ized fuzzy clustering and scalable fuzzy consensus clustering is applied to huge genome

data. Before clustering raw genome sequences, there is a need to develop a method

that can extract significant features from huge genome sequences.

To handle huge genome sequences, we have proposed novel scalable feature extrac-

tion techniques for preprocessing huge Single Nucleotide Polymorphism (SNP) and

protein sequences that extract fixed-length numerical feature vectors. The extracted

numerical feature vectors are then fed as an input to the developed scalable fuzzy clus-

tering algorithms to cluster huge SNP and protein datasets. Finally, we have investi-

gated massive protein data of the Severe Acute Respiratory Syndrome Coronavirus-2

(SARS-CoV-2) using our developed scalable feature extraction approach and scalable

fuzzy clustering algorithms. Therefore, the scalable algorithms presented in this thesis

are generalized to various genome datasets of any size (Big Data).

ii

List of Publications

A. Published

A1. In Refereed Journals

1. P. Jha, A. Tiwari, N. Bharill, M. Ratnaparkhe, M. Mounika, and N. Nagendra.

A Novel Scalable Kernelized Fuzzy Clustering Algorithms Based on In-Memory

Computation for Handling Big Data, IEEE Transactions on Emerging Topics in

Computational Intelligence, 2020, pp. 1-12, DOI= 10.1109/TETCI.2020.3016302.

2. P. Jha, A. Tiwari, N. Bharill, M. Ratnaparkhe, M. Mounika, and

N. Nagendra. Apache Spark based kernelized fuzzy clustering frame-

work for single nucleotide polymorphism sequence analysis, Computa-

tional Biology and Chemistry, vol. 92, pp. 107454, 2021 (Elsevier),

DOI=https://doi.org/10.1016/j.compbiolchem.2021.107454. (IF:2.877)

3. P. Jha, A. Tiwari, N. Bharill, M. Ratnaparkhe, N. Nagendra, and M. Mounika.

Scalable Incremental Fuzzy Consensus Clustering Algorithm for Handling Big

Data Soft Computing, vol. 25, pp. 8703–8719, 2021 (Springer), DOI=

https://doi.org/10.1007/s00500-021-05733-1. (IF:3.050)

A2. In Refereed Conferences

1. P. Jha, A. Tiwari, N. Bharill, M. Ratnaparkhe, N. Nagendra, and M. Mounika.

Fuzzy-Based Kernelized Clustering Algorithms for Handling Big Data Using Apache

Spark, In International Conference on Harmony Search Algorithm (Springer), Sin-

gapore, pp. 423-435, April 2020, DOI=https://doi.org/10.1007/978-981-15-8603-

3 37.

iii

B. Communicated

In Refereed Conferences

1. P. Jha, A. Tiwari, N. Bharill, M. Ratnaparkhe, O.P. Patel, N. Harshith, S. So-

lasa. COVID-19 Protein Sequences study with a Novel Scalable Feature Extraction

Approach and their Cluster Analysis with Kernelized Fuzzy Algorithm, 2022 IEEE

International Conference on Big Data and Smart Computing, January, 17-20, 2022.

(Accepted in Nov 22, 2021)

iv

Contents

Abstract i

List of Publications iii

List of Figures ix

List of Tables xi

List of Abbreviations and Acronyms xiii

1 Introduction 1

1.1 Motivation . 4

1.2 Objectives . 6

1.3 Thesis Contributions . 6

1.4 Organization of the Thesis . 9

2 Literature Survey and Research Methodology 13

2.1 Clustering and its type . 13

2.1.1 Consensus Clustering . 21

2.1.2 Fuzzy Consensus Clustering . 24

2.2 Big Data Frameworks . 28

2.3 Scalable Fuzzy Clustering Algorithms for Handling Big Data 35

2.3.1 Scalable Version of LFCM Algorithm 36

2.3.2 Scalable Version of Random Sampling with Iterative Optimiza-

tion Fuzzy C-Means Algorithm 37

2.4 Survey on Genome Sequences . 39

v

2.4.1 Methods for Single Nucleotide Polymorphisms (SNPs) Sequences 40

2.4.2 Methods for Protein Sequences 43

2.5 Performance Measures . 52

2.5.1 External Measures . 52

2.5.2 Internal Measures . 54

2.6 Real-life Genome Data . 55

2.6.1 Soybean and Rice SNP Dataset Description 57

2.6.2 Soybean Protein Dataset Description 58

2.6.3 SARS-CoV-2 Protein Dataset Description 59

3 Scalable Kernelized Fuzzy Clustering Algorithms for

Handling Big Data 61

3.1 Introduction . 61

3.2 Proposed Kernelized Scalable Fuzzy Clustering Algorithms for Handling

Big Data . 63

3.2.1 Kernelized Version of SLFCM Algorithm to Handle Big Data . . 64

3.2.2 Proposed Design of a Novel KSRSIO-FCM Algorithm to Handle

Big Data . 69

3.3 Complexity Analysis . 72

3.4 Experimental Evaluation . 74

3.4.1 Datasets and Experimental Settings 74

3.4.2 Experimental Environment . 75

3.4.3 Datasets Description . 75

3.4.4 Experimental Results and Discussion 76

3.5 Summary . 82

4 Scalable Incremental Fuzzy Consensus Clustering Algo-

rithms for Handling Big Data 85

4.1 Introduction . 85

4.2 Proposed Scalable Incremental Fuzzy Consensus Clustering Algorithms

for Handling Big Data . 86

vi

4.2.1 Scalable Version of Fuzzy Consensus Clustering 89

4.2.2 Proposed Design of a Novel SIFCC Algorithm to Handle Big Data 93

4.3 Complexity Analysis . 97

4.4 Experimental Evaluation . 99

4.4.1 Datasets and Experimental Settings 100

4.4.2 Experimental Results and Discussion 101

4.4.3 Performance Evaluation on Big Data 105

4.5 Summary . 106

5 Design of Novel Scalable Feature Extraction Algorithm

for Huge SNP Sequences with Application of Scalable

Fuzzy Clustering Algorithms 109

5.1 Proposed Scalable Algorithm for Preprocessing of Huge SNP Sequences 110

5.1.1 Step I: Calculation of length of sequence 112

5.1.2 Step II: Total distances of each nucleotide base to the first nu-

cleotide . 113

5.1.3 Step III: Variance of distance for each nucleic base 113

5.2 Experimental Evaluation on SNP Datasets 114

5.2.1 Datasets and Experimental Settings 114

5.2.2 Experimental Results and Discussion on Scalable Fuzzy Clus-

tering Algorithms . 114

5.2.3 Clustering Performance of Scalable Fuzzy Clustering Algorithms 117

5.2.4 Experimental Results and Discussion on Scalable Fuzzy Con-

sensus Clustering . 124

5.2.5 Clustering performance of Scalable Fuzzy Consensus Clustering

Algorithms . 125

5.3 Summary . 129

6 Design of a Novel Scalable Feature Extraction Algo-

rithms for Huge Protein Sequences with Application of

Scalable Fuzzy Clustering Algorithm 131

vii

6.1 60-dimensional Scalable Protein Feature Extraction (60d-SPF) Approach132

6.1.1 Stage I: Calculation of length of sequence 135

6.1.2 Stage II: Total distances of each amino acid to the first amino

acid . 136

6.1.3 Stage III: Variance of distance for each amino acid 136

6.2 6-dimensional Scalable Co-occurrence-based Probability-Specific Fea-

ture (6d-SCPSF) Extraction Approach 137

6.2.1 SPSE Algorithm . 138

6.2.2 GSM Algorithm . 139

6.2.3 SLSM Algorithm . 140

6.3 Experimental Evaluation on Protein Datasets 143

6.4 Summary . 147

7 Investigation of Massive SARS-CoV-2 Protein Datasets

on Developed Scalable Feature Extraction and Scalable

Fuzzy Clustering Algorithms 149

7.1 Introduction . 150

7.2 Preprocessing of SARS-CoV-2 Protein Datasets 151

7.3 Clustering of SARS-CoV-2 Protein Datasets 154

7.4 Experimental Analysis of SARS-CoV-2 Protein Datasets 155

7.4.1 Datasets Description . 156

7.4.2 Clustering Performance on huge SARS-CoV-2 protein datasets . 156

7.5 Summary . 158

8 Conclusions and Future Work 161

8.1 Summary of Research Achievements . 162

8.2 Future Research Directions . 165

Bibliography 167

viii

List of Figures

2.1 Taxonomy of clustering algorithms . 14

2.2 Visualization of data in lower and higher dimensions. 20

2.3 Architecture of Consensus Clustering 22

2.4 Apache Spark cluster stack. 31

2.5 Workflow of Apache Spark operation. 33

2.6 Apache Spark cluster Application. 34

2.7 The phenomenal growth of genome data in NCBI is challenging to man-

age, and continues unabated. 56

3.1 The figure describes repository space improvement by avoiding the stor-

age of membership matrix of subsets. 66

3.2 Workflow of KSRSIO-FCM algorithm. 71

3.3 Performance analysis in terms of the ratio of time taken by KSRSIO-

FCM with different chunk sizes of each dataset versus the time taken

by KSLFCM on the whole dataset. 81

4.1 Architecture of proposed work. 88

4.2 Methodology of SFCC. 91

4.3 Workflow of SIFCC. 96

4.4 Illustrative example of flame dataset. 101

5.1 Preprocessing result of SNP sequences present in Table 5.1 112

5.2 Workflow of KSRSIO-FCM and SIFCC algorithms with the preprocess-

ing steps of huge SNP sequences. 115

ix

5.3 Cluster formation of soybean 31 sequences for KSRSIO-FCM,

KSLFCM, SRSIO-FCM, and SLFCM with the number of clusters =

5 . 116

5.4 Cluster formation of soybean 31 sequences for KSRSIO-FCM,

KSLFCM, SRSIO-FCM, and SLFCM with the number of clusters =

10 . 116

5.5 Silhouette Index of SNP-seek rice dataset 118

5.6 Davies Bouldin Index of SNP-seek rice dataset 119

5.7 Silhouette Index of MAGIC-rice dataset 120

5.8 Davies Bouldin Index of MAGIC-rice dataset 121

5.9 Silhouette Index of 248Entries rice dataset 122

5.10 Davies Bouldin Index of 248Entries rice dataset 123

5.11 Cluster formation of soybean 31 sequences for SIFCC and SFCC with

the number of clusters = 5. 125

6.1 Workflow of 60d-SPF Architecture. 134

6.2 Example of protein sequences. 135

6.3 Preprocessed result using proposed 60d-SPF extraction method for the

protein sequences given in Figure 6.2. 135

6.4 6d-SCPSF Architecture embedded using SRSIO-FCM with Perfor-

mance Measure Evaluation. 138

7.1 Workflow of the preprocessing of SARS-CoV-2 protein sequence. 152

7.2 Five SARS-CoV-2 sequences from SARS dataset. 152

7.3 60-dimensional numerical feature vectors of Figure 7.2. 153

7.4 Workflow of the developed clustering algorithms applied to massive

SARS-CoV-2 protein data. 154

x

List of Tables

1.1 Huber’s description of dataset sizes . 2

2.1 Summarization of some features of Big Data frameworks. 29

2.2 Structure of five protein sequences. 47

2.3 Encoded positional representation of amino acids. 48

2.4 Global Similarity Measure of encoded protein sequences. 50

2.5 Representation of feature vector. 50

3.1 Main Math Symbols . 64

3.2 Complexity Analysis of Kernelized Algorithm. 73

3.3 Description of Datasets. 75

3.4 Results of KSRSIO-FCM, KSLFCM, SRSIO-FCM, and SLFCM with

varying chunk sizes on SUSY Dataset. 77

3.5 Results of KSRSIO-FCM, KSLFCM, SRSIO-FCM, and SLFCM with

varying chunk sizes on Monarch-Skin Dataset. 78

3.6 Results of KSRSIO-FCM, KSLFCM, SRSIO-FCM, and SLFCM with

varying chunk sizes on MNIST8m Dataset. 79

3.7 Results of KSRSIO-FCM, KSLFCM, SRSIO-FCM, and SLFCM with

varying chunk sizes on Reproduced-Dim32 Dataset. 80

4.1 Main Math Symbols . 89

4.2 Complexity Analysis . 97

4.3 Dataset Description . 100

4.4 Results of SRSIO-FCM, SFCC, and SIFCC on Wine Dataset. 103

4.5 Results of SRSIO-FCM, SFCC, and SIFCC on Breast Dataset. 104

xi

4.6 Results of SRSIO-FCM, SFCC, and SIFCC on G2 Dataset. 104

4.7 Results of SRSIO-FCM, SFCC, and SIFCC on SUSY Dataset. 105

4.8 Results of SRSIO-FCM, SFCC, and SIFCC on Reproduced-Dim32

Dataset. 106

5.1 Example of SNP sequences . 112

5.2 Run-time analysis (in seconds) of KSRSIO-FCM and KSLFCM algo-

rithms. 124

5.3 Values of the SI in the range of cluster = 2....12 for all the four SNP

datasets using the SIFCC and SFCC algorithm (Entries in boldface

indicate the optimal values for respective indices) 126

5.4 Values of the DBI in the range of cluster = 2....12 for all the four SNP

datasets using the SIFCC and SFCC algorithm (Entries in boldface

indicate the optimal values for respective indices) 128

6.1 Values of the SI for 6d-SCPSF and 60d-SPF on all the four protein

datasets using the SRSIO-FCM algorithm. 144

6.2 Values of the DBI for 6d-SCPSF and 60d-SPF on all the four protein

datasets using the SRSIO-FCM algorithm. 146

7.1 Description of SARS-CoV-2 protein Datasets. 156

7.2 Results of KSRSIO-FCM and KSLFCM in terms of SI for SARS, Coro-

naviridae, and P0DTD1 protein dataset. 157

7.3 Results of KSRSIO-FCM and KSLFCM in terms of DBI for SARS,

Coronaviridae, and P0DTD1 protein dataset. 158

xii

List of Abbreviations and Acronyms

FCM Fuzzy C-Means

LFCM Literal Fuzzy C-Means

SLFCM Scalable Literal Fuzzy C-Means

KSLFCM Kernelized Scalable Literal Fuzzy C-Means

RSIO-FCM Random Sampling Iterative Optimization Fuzzy C-Means

GB GigaByte

VL Very Large

ICAR Indian Council of Agricultural Research

IISR Indian Institute of Soybean Research

TBs TeraBytes

NMI Normalized Mutual Information

ARI Adjusted Rand Index

SRSIO Scalable Random Sampling with Iterative Optimization

KSRSIO Kernelized Scalable Random Sampling with Iterative Optimization

RAM Random Access Memory

GHZ GigaHertz

xiii

rseFCM random sampling plus extension Fuzzy C-Means

CPSF Co-occurrence based Probability Specific Feature

SCPSF Scalable Co-occurrence based Probability Specific Feature

HDFS Hadoop Distributed File System

RDD Resilient Distributed Datasets

RBF Radial Basis Function

DNA Deoxyribonucleic Acid

SNP Single Nucleotide Polymorphism

KFCM Kernel based Fuzzy C-Means

BSs Basic Segments

FKCM Fuzzy Kernel C-Means

COVID-19 Corona Virus Disease-19

SARS Severe Acute Respiratory Syndrome

IDC International Data Corporation

HPC High-Performance Computing

SI Silhouette Index

DBI Davies Bouldin Index

SEC Spectral Ensemble Clustering

KCC K-means Consensus Clustering

PSE Protein Sequence Encoding

GSM Global Similarity Measures

xiv

LSM Local Similarity Measures

DAG Directed Acyclic Graph

NCBI National Center for Biotechnology Information

PDB Protein Data Bank

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus-2

xv

Chapter 1

Introduction

Clustering is a form of exploratory data analysis in which data are separated into

groups or subsets such that the objects in each group share some similarity. Any field

that uses or analyzes data can utilize clustering; the problem domains and clustering

applications are innumerable. Clustering is used in various applications such as gene

analysis, image processing, community detection, scientific data exploration, informa-

tion retrieval, text mining, Web analysis, marketing, medical diagnostics, and many

others [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Clustering algorithms are mainly divided into

hierarchical clustering and partitioning clustering [11, 12]. The hierarchical clustering

algorithm creates a complete hierarchical structure by dividing the dataset into sev-

eral levels of nested parts (clusters) represented by a dendrogram (tree). At the same

time, the partitioning algorithm divides the dataset into a given number of groups

or clusters, usually by optimizing the objective function. Partition based clustering

algorithms are mainly divided into hard (or crisp) and fuzzy clustering [13]. The hard

clustering algorithm divides data samples into multiple disjoint groups or clusters, and

each data sample belongs to only one group. The main disadvantage of hard cluster-

ing is that it becomes unsuitable for real datasets with no defined boundaries between

groups. Therefore, people realized the need to deal with this situation, which led to

emerging algorithms based on the fuzzy set theory concept. According to Lotfi Zadeh

[14], the fuzzy theory deals with the problem of uncertain boundaries between clusters.

Therefore, a fuzzy clustering algorithm is evolved. Fuzzy clustering algorithm provide

1

Table 1.1: Huber’s description of dataset sizes

Bytes 102 104 106 108 1010 1012 10>12

Sizes tiny small medium large huge monster VL

fuzzy partitions to measure the uncertainty of data samples belonging to two or more

clusters with a varying degree of membership [15]. The main advantage of fuzzy clus-

tering is that the degree of membership indicates the degree of belongingness with

which the data sample can belong to multiple clusters. In addition, these membership

degrees allow to handle ambiguous data properly [15]. Therefore, fuzzy clustering can

deal with uncertainty and help to solve many complex problems in real-life [16].

Due to the increasing amount and ubiquity of Big Data in various fields such as

banking, agriculture, chemistry, data mining, cloud computing, finance, marketing,

stocks, and heath care, etc., many clustering algorithms are designed to handle such

massive datasets [17, 18, 19, 20]. Also, bioinformatics has produced an abundance

of exceedingly large genome datasets [21]. According to Huber statistics [22, 23], the

dataset is classified into different categories based on distinctive sizes, as given in Ta-

ble 1.1. Bezdek and Hathway [24] added the category of Very Large (VL) information

to this table. Different types of fuzzy-based clustering algorithms have been proposed

to cluster VL information [25, 26, 27, 28, 29, 30, 31, 32]. Literal strategies perform

clustering on the whole dataset [33]. In contrast, modified fuzzy clustering approaches

apply a clustering algorithm to test the complete dataset utilizing Literal Fuzzy C-

Means (LFCM) [33, 32]. In most cases, FCM is suitable for clustering of data having

linear data distribution in feature space [34]. For handling non-linear shape clusters

[35], Chen and Kong [36] introduced the concept of the kernel function. Zhang and

Chen [37] developed a Kernel Fuzzy C-Means (KFCM) algorithm by replacing the

Euclidean distance metric used in FCM algorithms with a kernel metric. The Fuzzy

Kernel C-Means (FKCM) algorithm was proposed by integrating FCM with a mer-

cer kernel function to handle the issues that arise with fuzzy clustering [38]. The

FKCM algorithm is suitable for clustering data that form a cluster with a linear and

non-linear distribution of data in feature space. Above mentioned fuzzy clustering

2

algorithms efficiently perform clustering of small data but cannot efficiently cluster

VL Data.

However, research along this line is still in progress with the fuzzy consensus clus-

tering algorithmic studies in fuzzy systems [39]. Finding a fuzzy consensus parti-

tion from multiple fuzzy basic partitions efficiently and robustly is still an exciting

open problem calling for further investigation. Consensus clustering is emerging as

a promising solution for multi-source and heterogeneous data clustering. It aims to

find a single partition that most agrees with multiple existing basic partitions [39].

Nevertheless, the relatively high time and space complexity preclude it from real-life

large-scale data clustering. It has been widely recognized that consensus clustering

can generate robust clustering results; find usual clusters, handle noise, outliers and

sample variations, and integrate solutions from multiple distributed sources of data or

attributes [40]. A recent study also gives rigorous proof of the robustness and gener-

alizability of consensus clustering, which lays a theoretical foundation for the success

of consensus clustering [39]. With the explosive growth of big online data in recent

years, researchers and practitioners realized that a single clustering might fail with

complex data, such as high dimensional genome data. Hence, the introduction of con-

sensus clustering to fuzzy clustering becomes natural, and Fuzzy Consensus Clustering

(FCC) thus emerges as a new research frontier. Despite of the rapid development of

the clustering algorithms aimed for handling large data, there is a lack of adoption of

these techniques in the wider data mining and other application communities for Big

Data problems [41, 42].

A likely reason for this is that these algorithms are not scalable to handle Big Data

[41, 42]. Genomics is a Big Data science and will get much bigger very soon, but it is

not known whether the needs of genomics will exceed other Big Data domains. Pro-

jecting to the year 2025, Stephens [43] compared genomics with three other significant

generators of Big Data: astronomy, YouTube, and Twitter. With the increasing vol-

ume (in order of petabytes) of genome data originated from thousands of sources, the

present Single Nucleotide Polymorphism (SNP), protein, and Deoxyribonucleic acid

(DNA) sequence analysis tools have been found inadequate. Since the bioinformatics

3

field of genomics entered into the clustering of the high-dimensional information, this

raises the prerequisite of creating scalable clustering algorithms to handle the high

dimensional genome data [44, 45, 46]. To cluster genome data using clustering algo-

rithms, there is a need to develop feature extraction methods for genome data to be

applied to clustering algorithms. Earlier research works have used various traditional

methods for feature extraction of SNP and protein data, but the efficiency is poor for

massive data [47]. Many researchers used machine learning methods to extract rele-

vant information from various genome datasets [48, 49]. Researchers also addressed

this issue by developing scalable feature extraction methods for genome data [50, 51].

Due to the massive generation of genome data day by day, there is a need to innovate

advancements in the present method/technology to handle such exponentially growing

data. Motivated by the success of Big Data frameworks, this thesis investigated scal-

able feature extraction techniques for genome data and clustering of genome sequences

by proposing various scalable fuzzy clustering models. However, the proposed scalable

clustering models are general purpose which can be applied to any problem.

1.1 Motivation

This dissertation is a study of the design and analysis of scalable fuzzy based

clustering algorithms for handling VL data and feature extraction techniques for huge

genome Data.

Within the past few decades, cluster analysis has played a crucial part in machine

learning, pattern recognition, data mining, and genome handling [21]. Recently, fuzzy

clustering algorithms are broadly acknowledged for organizing unstructured informa-

tion due to their capability to handle uncertainty. Clustering of genome sequences can

help to identify unique and new genes and provide better suggestions to find cluster

of disease. Despite of wide acceptance of fuzzy clustering, it suffers from scalability

issues. Consequently, there is a need to plan scalable clustering approaches for dealing

with VL and huge genomics problems. Big Data analytic frameworks are required to

implement scalable fuzzy clustering algorithms and feature extraction techniques for

4

huge genome data. Apache Spark is one of the most broadly utilized Big Data analytic

frameworks to design scalable clustering algorithms for handling huge genomics data

and VL data.

This thesis investigates scalable kernelized clustering algorithms to solve Big Data

problems. These kernelized clustering algorithms are evolved to deal with the non-

linear separable issues by applying a kernel Radial Basis Function (RBF), which maps

the input data space non-linearly into a high dimensional feature space. Also, the novel

scalable kernelized clustering algorithms are tested on various benchmark datasets in

terms of performance metrics for handling Big Data. The analytical study is also

performed for scalable clustering algorithms in terms of space and time complexity.

Additionally, we have investigated the consensus method in fuzzy clustering and de-

veloped a novel Scalable Incremental Fuzzy Consensus Clustering (SIFCC) algorithm

for handling Big Data to improve quality of cluster. Furthermore, to investigate the

performance of the scalable clustering algorithm on real-life genome data, massive

protein and SNP datasets of complex plant genomes collected from Indian Council

of Agricultural Research-Indian Institute of Soybean Research (ICAR-IISR), Indore,

India for the feature extraction and clustering of genome sequences. This clustering

helps ICAR-IISR scientists to efficiently characterize SNP and protein sequences of

different plant species. To preprocess huge SNP and protein sequences, we propose

novel scalable feature extraction approaches that extract fixed-length numeric feature

vectors for SNP and protein sequences. The proposed scalable algorithms are designed

to handle Big Data by utilizing the Apache Spark cluster computing framework. Ad-

ditionally, the performance of the scalable clustering algorithms is investigated on

a massive SNP and protein dataset in terms of validity measures for the quality of

clustering results. We have also investigated the performance of the proposed clus-

tering algorithms on the massive protein data of Coronavirus Disease-19 (COVID-19)

caused by the SARS-CoV-2 virus. Before applying SARS-CoV-2 data on clustering

algorithms, we have preprocessed the protein sequences of SARS-CoV-2 data using

our developed feature extraction techniques. Our approaches accomplish a significant

trade-off between clustering quality and the computational attempt required to lower

5

the run-time.

1.2 Objectives

In this thesis, we aim to achieve the following objectives:

(i) To develop scalable kernelized fuzzy-based iterative clustering algorithms for

handling Big Data that speed up the Big Data clustering process by reducing

the run-time and optimizing the storage space. Further, it is proposed to develop

an analytical formulation for space and time complexity.

(ii) To develop a method that can combine scalable fuzzy clustering and fuzzy con-

sensus clustering to improve the quality of clusters for Big Data using Apache

Spark cluster.

(iii) To develop a novel scalable feature extraction algorithm for huge SNP sequences,

which extracts 12-dimensional numeric feature vector. Further, it is used as input

to the proposed scalable clustering algorithms to cluster massive SNP data.

(iv) To develop novel scalable feature extraction algorithms for massive protein se-

quences, which extracts fixed-length numeric feature vectors of 60-dimensions

and 6-dimensions.

(v) To investigate massive SARS-CoV-2 protein datasets on developed scalable fea-

ture extraction and scalable kernelized clustering algorithms.

1.3 Thesis Contributions

The significant contributions of the work done in this field is to design and develop

the clustering and feature extraction techniques for huge genome data. These con-

tributions are divided into two broad categories. Firstly, the design of scalable fuzzy

clustering algorithms for handling VL data. These algorithms are further applied to

6

the clustering of genome data. Secondly, the design of scalable feature extraction tech-

niques for huge SNP and protein sequences using Apache Spark cluster. Additionally,

investigation of SARS-CoV-2 genome data has been performed using the proposed

scalable feature extraction technique and scalable clustering algorithms.

A brief overview of our research contributions is provided below, and more details

are available in the later chapters.

Contribution I:

To overcome the limitations of Scalable Random Sampling with Iterative Optimiza-

tion Fuzzy C-Means (SRSIO-FCM) [52], kernelized clustering algorithms are evolved

that deal with the non-linear separable problems by applying a kernel RBF which maps

the input data space non-linearly into a high dimensional feature space. The designed

kernelized clustering algorithm; Kernelized Scalable Random Sampling with Iterative

Optimization Fuzzy C-Means is named as KSRSIO-FCM. It processes the Big Data

by partitioning it into various subsets and performs parallel processing of each subset

using the Apache Spark Big Data processing framework. In the proposed approach, we

eliminate the need for storing the membership matrix, which makes the execution of

the proposed algorithm faster by reducing the run-time. In addition to this, we resolve

the problem of using the highly deviated cluster centers to cluster the current subset.

Thus, it provides faster convergence by taking fewer iterations during the clustering

of each subset. It leads to the significant improvement in run-time due to the reduced

space and time complexity. For a fair comparison of KSRSIO-FCM, we have also

designed a kernelized model of the existing Scalable Literal Fuzzy C-Means (SLFCM)

[52] named as KSLFCM algorithm. The performance of the proposed KSRSIO-FCM

is evaluated in comparison with KSLFCM. The proposed scalable kernelized cluster-

ing algorithms have been tested on standard benchmark datasets and replicated big

datasets. The results are compared with other scalable models. The performance on

various benchmark datasets is evaluated in terms of NMI, ARI, and F-score.

7

Contribution II:

We have further explored Fuzzy Consensus Clustering (FCC) [53] for the devel-

opment of a scalable model that can handle Big Data. The motivation of proposing

another scalable algorithm based on fuzzy consensus clustering is to improve the cluster

quality of Big Data. The proposed Scalable Incremental Fuzzy Consensus Clustering

(SIFCC) algorithm aims to find a single partition of data that agrees as much as

possible with existing basic segments. It has been implemented on an Apache Spark

cluster framework, a distributed data stream environment for handling Big Data by

considering the data as a set of incrementally processed subsets. For a fair comparison

of SIFCC, we have also designed a scalable model of the existing FCC algorithm, i.e.,

SFCC [53]. Thus, the proposed SIFCC algorithm is compared with the SFCC algo-

rithm by testing them on standard benchmark datasets and replicated big datasets.

The performance is then evaluated on various benchmark datasets in terms of NMI,

ARI, and F-score.

Contribution III:

Discovering clusters in the high-dimensional genomics data is exceptionally chal-

lenging for bioinformatics researchers for genome sequence analysis. We have devel-

oped a scalable preprocessing approach using Apache Spark cluster for generating

numerical feature vectors for massive SNP sequences. The real-world SNP datasets

consist of two different plant species, i.e., soybean [54], and rice [55, 56, 57]. These

are preprocessed using the proposed scalable SNP preprocessing approach. Further,

it is used as input to the proposed KSRSIO-FCM and SIFCC algorithms (discussed

in contributions I and II) to cluster huge SNP datasets, and, thus, the performance is

evaluated in terms of Silhouette Index (SI) and Davies Bouldin Index (DBI) measures.

Contribution IV:

We further develop scalable feature extraction techniques for preprocessing of huge

protein sequences using Apache Spark cluster. A 60-dimensional Scalable Protein Fea-

ture extraction approach (60d-SPF) and a 6-dimensional Scalable Co-occurrence-based

Probability-Specific Feature Extraction Approach (6d-SCPSF) has been developed.

Both the proposed 60d-SPF and 6d-SCPSF approaches capture the statistical prop-

8

erties of amino acids to create a fixed-length numeric feature vector representing each

protein sequence in terms of 60-dimensional and 6-dimensional features, respectively.

Since the proposed scalable feature extraction methods are implemented on Apache

Spark cluster, it performs efficient feature extraction of data due to its in-memory

cluster computing capability. Executing it in the Apache Spark cluster makes the

proposed feature extraction methods (60d-SPF and 6d-SCPSF) scalable, which are

further applied to a real-world huge protein dataset. Further, it is used as input to

the developed SRSIO-FCM algorithm to cluster huge protein datasets, and, thus, the

performance is evaluated in terms of SI and DBI measures.

Contribution V:

The research contributions discussed in III and IV are for plant genome datasets.

To investigate the SARS-CoV-2 protein data, we have applied the proposed scalable

protein feature extraction 60d-SPF technique (as discussed in Contribution IV) to

generate numerical feature vectors from huge SARS-CoV-2 genome datasets. Further,

it is used as input to the proposed KSRSIO-FCM method (as discussed in Contribution

I) to cluster huge SARS-CoV-2 data. Then, the performance is evaluated in terms of

SI and DBI measures.

1.4 Organization of the Thesis

This thesis is organized into eight chapters. A summary of each chapter is

provided below:

Chapter 1 (Introduction)

This chapter describes the background knowledge of clustering, the motivation of

our work, and the contribution of this thesis.

Chapter 2 (Literature Survey and Research Methodology)

This chapter provides a detailed literature survey and a summary of various

clustering techniques. After that, an overview of Big Data frameworks for scalable

algorithms is presented. A study of scalable fuzzy clustering for Big Data and the

feature extraction approaches designed for SNP and protein sequences of genome

9

sequences are also presented. It also provides evaluation metrics for performance

analysis. Finally, a brief overview of genome datasets used in the experimental study

is presented.

Chapter 3 (Scalable Kernelized Fuzzy Clustering Algorithms for Handling

Big Data)

In this chapter, we proposed a novel scalable kernelized clustering algorithm for

handling Big Data called the KSRSIO-FCM algorithm. The kernelized clustering

algorithms deal with the non-linear separable problems by applying a kernel RBF

which maps the input data space non-linearly into a high dimensional feature space.

It is implemented and tested using the Apache Spark cluster for handling Big Data.

This chapter presents how the proposed approach scales with the non-linear separable

problems for Big Data compared to other scalable linear separable algorithms. The

chapter finally reports the experimental evaluation that compares our proposed

KSRSIO-FCM algorithm with other proposed scalable models, i.e., KSLFCM,

SRSIO-FCM, and SLFCM, respectively.

Chapter 4 (Scalable Incremental Fuzzy Consensus Clustering Algorithms

for Handling Big Data)

In this chapter, we present scalable incremental fuzzy consensus clustering

algorithms using Apache Spark cluster. For developing a scalable incremental

fuzzy consensus clustering, SRSIO-FCM [52] shown in Chapter 2 is utilized for

finding concatenated basic segments, which is used as an input to the scalable

incremental fuzzy consensus clustering. This chapter presents how the proposed

approach performs better in comparison with the scalable fuzzy consensus clustering

algorithm. The chapter finally reports the experimental evaluation that compares our

proposed SIFCC algorithm with other proposed scalable models, i.e., the SFCC and

SRSIO-FCM.

Chapter 5 (Design of Novel Scalable Feature Extraction Algorithm for

Huge SNP Sequences with Application of Scalable Fuzzy Clustering

Algorithms:)

The methods proposed in Chapters 3 and 4 do not consider raw genome sequences

10

for clustering massive SNP sequences. For addressing this issue, this chapter includes

the proposal of scalable feature extraction approach for SNP sequences, which

extracts 12-dimensional numerical feature vectors from massive SNP sequences. After

that, extracted feature vectors from SNP sequences are applied to scalable clustering

algorithms for clustering of massive SNP data is presented.

Chapter 6 (Design of Novel Scalable Feature Extraction Algorithms for

Huge Protein Sequences with Application of Scalable Fuzzy Clustering

Algorithm)

For clustering of massive protein sequences, novel scalable feature extraction tech-

niques for protein sequences, a 60-dimensional Scalable Protein Feature (60d-SPF)

extraction approach and a 6-dimensional Scalable Co-occurrence-based Probability-

Specific Feature (6d-SCPSF) extraction approach are presented in this chapter.

Thereafter, the protein sequences are applied to a scalable clustering algorithm for

clustering.

Chapter 7 (Investigation of Massive SARS-CoV-2 Protein Datasets on

Developed Scalable Feature Extraction and Scalable Fuzzy Clustering

Algorithms)

Preprocessing and clustering of massive SARS-CoV-2 datasets are presented

in this chapter. The scalable feature extraction techniques presented in Chapter

6 is used to preprocess soybean protein sequences. This chapter briefly describes

preprocessing of raw SARS-CoV-2 protein datasets using the 60d-SPF method.

Further, it is applied to the developed scalable kernelized clustering algorithms

presented in Chapter 3 to find a cluster for massive SARS-CoV-2 protein sequences.

Chapter 8 (Conclusions and Future Work)

This chapter briefly describes the contribution of this thesis and the possible

future directions of our work.

11

Chapter 2

Literature Survey and Research

Methodology

This chapter discusses various clustering algorithms and issues related to those

clustering algorithms in Section 2.1. The study related to Big Data processing frame-

works is presented along with the parallel processing algorithms for handling Big Data

in Section 2.2. Further, a survey of scalable fuzzy clustering algorithms for processing

VL datasets is carried out in Section 2.3. Then, the focus of the discussion shifts to the

feature extraction algorithms for genome data and matters about genome clustering

in Section 2.4. Further, Section 2.5 discusses performance measures. The last section

(Section 2.6) presents the details of the real-life genome datasets used in this study.

2.1 Clustering and its type

Clustering [58] is a data mining strategy that is extensively taken into consideration

for mining significant information underlining unlabeled data. It is an unsupervised

learning approach applied on data to form groups such that data samples within a

group share a similarity, this results in finding patterns of datasets [59]. Clustering of

objects is required for different purposes in various fields of engineering [60, 61, 62],

science and technology [63], humanities [64, 65], bioinformatics [66], medical science

[67, 68], gene analysis [69, 70], indexing and compression [71], image analysis [72],

signal processing [73], text classification [74, 75], cyber security, and data mining [76].

13

Over the last five decades, numerous clustering algorithms [77, 78, 79, 80] have

been designed based on different hypotheses and applications. Scientific classification

of clustering algorithms was depicted by Fahad et al. [80]. An outline of the taxonomy

of clustering algorithms is displayed in Figure 2.1. Within the taxonomy of clustering

algorithms, numerous refinements of clustering algorithms are displayed, but our cen-

ter is on the refinement of partitional clustering algorithm [1, 11, 12]. A partitional

clustering strategy classifies the data into different groups based on the characteristics

and closeness of the information. It is the data investigators that decide the number

of clusters required to be created for the clustering strategies [59]. The partitional

clustering algorithms minimize a given clustering model by iteratively relocating data

samples between clusters until a (locally) ideal partition is accomplished [81]. Parti-

tional clustering is broadly divided into hard (or crisp) and soft. The subtle elements

of both these categories of algorithms are explained below. In hard clustering al-

gorithms, each data sample must belong to absolutely one cluster for the particular

dataset. Hard clustering strategies are based on the factor that the membership vec-

tor is represented in binary because either an item belongs to a cluster or it does not.

Consequently, the groups in a hard clustering are disjoint. Due to disjoint clusters

Figure 2.1: Taxonomy of clustering algorithms

14

formed with the hard clustering, it may lose relevant information and be unable to

capture the structure of real datasets. There are no precise boundaries between the

clusters. Due to the loss of crucial details, hard clustering leads to meaningless clus-

tering [82]. One of the most commonly used hard clustering algorithms is K-means; a

distance-based partitioning algorithm [1]. The limitations of the K-means clustering

algorithm are as follows: 1) The K-means algorithm requires the number of clusters

to be known in advance, which implies it should initialize a set of cluster centers at

the beginning [1]. 2) K-means are unable to ideally cluster the data where clusters

are of varying sizes and density. 3) Although K-means clustering is quite efficient in

terms of computational time, it is susceptible to outliers [83].

Soft clustering is a grouping of the data samples such that a data sample can belong

to multiple clusters. For soft clustering algorithms, we need to compute a fuzziness

coefficient that controls the degree of fuzziness. Fuzzy C-Means (FCM) is a famous

soft clustering algorithm. This method (developed by Dunn in 1973 [84] and improved

by Bezdek in 1981 [85]) is frequently used in many applications. The FCM working is

such that data samples are assigned probabilities which are essentially expressing the

strength of belongingness of data samples to a cluster [86]. A membership value is

created during the FCM process which expresses the probability of the membership,

ranging from 0 to 1 that indicates how similar an item is to the mean of the cluster.

Fuzzy set theory is used in the clustering algorithm so that a data sample can belong

to multiple clusters [87]. A fuzzy clustering determines fuzzy partitions expressed by

the membership matrix, M of size n× c. The degree of membership of a data sample

i in cluster j is represented by mij. This is subjected to the following constraints

[85, 88]:

mij ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ j ≤ c (2.1)

c∑
j=1

mij = 1, 1 ≤ i ≤ n (2.2)

n∑
i=1

mij > 0, 1 ≤ j ≤ c (2.3)

The concept of fuzzy clustering analysis has been effectively incorporated into nu-

15

merous clustering algorithms [89, 90, 91, 92]. FCM is a method of clustering which

allows one piece of data to belong to two or more clusters. It is also known as Lit-

eral Fuzzy C-Means (LFCM) clustering [32]. LFCM partitions the n data samples

represented by xi, i = 1, ..., n into c clusters. LFCM executes iteratively until the

difference in the previous and current iteration cluster centers are less than the de-

fined termination criteria (ε) [88]. Algorithm 2.1, presents the steps of the LFCM

algorithm.

Algorithm 2.1 Literal Fuzzy C-Means (LFCM) to Iteratively Minimize Jp(M,V
′
)

Input: X, V , c, p, ε

Output: M,V
′

1: Randomly initialize cluster centers V = {v1, v2.., vc}.
2: Compute the membership matrix M using Eq. (2.4) such that∑c

j=1mij = 1.

mij =
‖ xi − vj ‖

−2
p−1∑c

k=1 ‖ xi − vk ‖
−2
p−1

,∀i, j (2.4)

3: Compute the cluster centers v
′
j for j = 1, 2, .., c.

v
′

j =

∑n
i=1[mij]

pxi∑n
i=1[mij]p

, ∀j ∈ [1, c] (2.5)

4: If ‖ V ′ − V ‖< ε, then stop;

5: Else : V = V ′ and go to Line 2.

6: Return M,V
′

The purpose is to minimize the objective function (Jp). In LFCM, the membership

degree mij can take any values between 0 and 1. The objective function of LFCM can

be formulated as follows:

Jp(M,V
′
) =

n∑
i=1

c∑
j=1

(mij)
p‖xi − v

′

j‖2 (2.6)

where V
′

denote the set of final cluster centers such that V
′

= {v′1, v
′
2, .., v

′
c}. The

parameter p represents the fuzziness parameter for each data sample. The LFCM

16

algorithm is based on the iterative optimization of the objective function given in

Eq. (2.6) by updating the membership matrix M and cluster centers to get a set V
′

of final cluster centers.

The run-time complexity of LFCM algorithm is O(ntdc2) [29]. Despite of the wide

acknowledgment of the LFCM algorithm, it endures few drawbacks. There are nu-

merous parameters in LFCM, which essentially influence the execution and outcomes

of fuzzy clustering. One of the major problems with the LFCM clustering approach is

the scalability, i.e., it’s very time-consuming when applied on large datasets. On huge

datasets, characterized as 1010 bytes concurring to Huber’s description [22], the time

taken by conventional clustering algorithms is too long. Subsequently, researchers

have disallowed the use of traditional algorithms and have developed new clustering

algorithms [27, 29, 30, 32, 93] that perform clustering by processing the data in subsets

[93]. Recently, Bharill [52] proposed a scalable model of the LFCM named SLFCM

algorithm for clustering of Big Data. The SLFCM performs clustering by processing

the data in subsets. The detailed description of SLFCM is presented in Section 2.3.1.

The limitations of the FCM clustering algorithm is as follows:

(i) The FCM algorithm requires long computational time [32].

(ii) FCM performs clustering on entire dataset and it does not work well for Big

Data [52].

(iii) Sensitivity to noise and low (or even no) membership degree for outliers (noisy

data samples) [94].

The FCM clustering algorithm adopts iterative optimization to minimize an

objective function using a similarity measure on feature space. In most cases, FCM is

suitable for clustering of the data having linear data distribution in feature space [34].

For handling non-linear shape clusters, the concept of kernel function is introduced

[35]. A detailed description of kernel based fuzzy clustering method is presented next.

17

Kernel based Fuzzy C-Means algorithm:

The main idea of the Kernel Fuzzy C-Means (KFCM) algorithm is described as

follows. The kernel method maps the input data space nonlinearly into a high

dimensional feature space. In analyzing past research work [95, 96, 97, 98, 99, 100],

the researcher demonstrated that the adaptation of kernel functions could improve

Euclidean distance measure over customary clustering algorithms. Many researchers

have worked on the clustering of non-linear data, which are discussed in detail as

follows: Huang [95] discussed the limitation of FCM by mapping non-linear data

into a feature space using the kernel tricks that extend the FCM method with

multiple learning. Baili [96] proposed the FCM with multiple kernels, which allows a

soft linear partitioning of the feature space. Timothy [97] compares the efficacy of

FCM algorithms and their kernelized version for the clustering of very large data.

In addition to this, Liu and Xu [98] built up a kernelized fuzzy attribute c-means

clustering algorithm that updates the distance by utilizing kernel-induced distance.

Graves and Pedrycz [99] set up a far-reaching investigation of kernel-based fuzzy

clustering. Tsai and Lin [100] proposed KFCM-σ, an extended version of KFCM

using a distance metric, which allows the grouping of non-linear separable data.

The main concept behind the kernel based algorithms is the kernel trick [97].

The kernel trick is an implicit non-linear map (φ) from the input space X to a high

dimensional feature space R [101].

φ : x→ φ(x) ∈ Rd (2.7)

where the data samples {x1, x2,, xn} ⊆ X. In this, an input data space with a lower

dimension is mapped to potentially much higher dimensional feature space (R) or inner

product [102]. The inner product operation in the kernel space can be expressed by a

mercer kernel [102] represented as a function K below:

K(xi, vj) = φ(xi)
>φ(vj) (2.8)

where xi, vj ∈ Rd such that i = 1, .., n and j = 1, ..., c. Thus, using this mapping φ,

18

the kernelized version of FCM [97] is represented as follows:

Jp(M, V ′) =
n∑
i=1

c∑
j=1

mp
ij‖φ(xi)− φ(v′j)‖2, p > 1 (2.9)

Like FCM, each data sample xi fulfills the constraint
∑c

j=1mij = 1. By the kernel

substitution, we have the following equation.

‖φ(xi)− φ(vj)‖2 = (φ(xi)− φ(vj))
>(φ(xi)− φ(vj))

= φ(xi)
>φ(xi)− φ(vj)

>φ(xi)− φ(xi)
>φ(vj) + φ(vj)

>φ(vj)

= K(xi, xi) +K(vj, vj)− 2K(xi, vj)

(2.10)

In this manner, a new class of non-Euclidean distance measures in the original

input space (additionally with a Euclidean distance in feature space) is achieved. Thus,

different kernels will generate different measures for the original space. In this work,

K(xi, vj) is the RBF kernel [103], which is a well-known kernel function represented

as follows:

K(xi, vj) = exp(−‖xi − vj‖2/σ2) (2.11)

Where, σ is denoted as the kernel parameter. The choice of kernel parameter is the

most critical task [103]. In this work, the kernel parameter is selected in the following

way:

σ =

√∑s
i=1(z − z̄)

n− 1
(2.12)

Where, zi = ‖xi − x̄‖ and z̄ is the average of all distances zi. In case of RBF kernel

(also called Gaussian Kernel), K(xi, xi) = 1 and K(vj, vj) = 1 [103]. Thus Eq. (2.10)

is simplified to

‖φ(xi)− φ(vj)‖2 = 2(1−K(xi − vj)) (2.13)

so, the Eq. (2.9) can be edited as:

Jp(M, V ′) = 2
s∑
i=1

c∑
j=1

mp
ij(1−K(xi, v

′
j)) (2.14)

19

(a) Lower Dimension.
(b) Data is projected into higher dimensions
by creating a new dimension by taking the
square of Feature 1 as the third dimension.

Figure 2.2: Visualization of data in lower and higher dimensions.

where, V ′ = {v′1, v′2,v′c}. To minimize the objective function, the membership ma-

trix mij and the updated cluster center v′j need to be computed.

mij =
(1−K(xi, vj))

1/(p−1)

c∑
j=1

(1−K(xi, vj))1/(p−1)
(2.15)

v′j =

s∑
i=1

mp
ijK(xi, vj)xi

s∑
i=1

mp
ijK(xi, vj)

(2.16)

We need to understand, what the kernel trick essentially does? It isn’t generally

conceivable to isolate the two classes from one another in the lower dimensional space

utilizing a hyperplane. Thus, information is projected into the higher dimensional

space so a hyperplane can easily separate it [104]. This can be visualized in Figure

2.2 where Figure 2.2(a) represents data in low dimension space, and it can be seen

that data is not linearly separable. After adding one more dimension, i.e., Feature

3= (Feature 1)2, data can be linearly separated by a hyperplane as shown in Figure

2.2(b).

The kernel based fuzzy clustering algorithm is explained in Algorithm 2.2. Dur-

20

ing the execution of Algorithm 2.2, the Eq. (2.16) is updated till there is no sig-

nificant change in the values of cluster centers, and then the algorithm terminates.

Algorithm 2.2 Kernel based Fuzzy Clustering Algorithm

Input: X, c, p, ε; X is an array of data samples such that X = {x1, x2, ...xn}.
Output: M,V

′

1: Randomly initialize V = {v1, v2,vc}.
2: Compute the membership matrix by using Eq. (2.15).

3: Compute the set of final cluster centers V ′ = {v′1, v′2,v′c} by using Eq. (2.16).

4: If ‖ V ′ − V ‖< ε then stop, otherwise continue with step 2.

5: Return M,V
′

There are a large number of methods available to perform clustering, but it is often

unclear which method is best suited to the data and how to quantify the quality of the

clustering produced. To develop a method for executing multi-algorithmic and multi-

condition clustering for improving the quality of clusters, we explored the consensus

clustering approach [105]. A consensus clustering plans to consolidate multiple clus-

tering to get better, gradually more robust clustering results, which has shown interest

in discovering unusual clusters, handling noise, and incorporating clustering arrange-

ments from various distributed sources [106, 107, 108]. The detailed description of

consensus clustering is explained in a subsequent section.

2.1.1 Consensus Clustering

Consensus clustering means finding different segments of the data sample in dif-

ferent existing Basic Segments (BSs). An ongoing report likewise establishes a hypo-

thetical framework for the achievement of consensus clustering, which gives thorough

verification of the stability and generalization of consensus clustering [39]. Many

researchers have worked on consensus clustering, which is discussed in detail as fol-

lows: Liu et al. [39] developed spectral ensemble clustering (SEC) based on the

co-association matrix, which is an effective contender to some best in class consen-

21

Figure 2.3: Architecture of Consensus Clustering

sus clustering techniques and is additionally appropriate for Big Data clustering. Wu

et al. [105] introduced the K-means consensus clustering (KCC) algorithm for han-

dling incomplete basic partitioning. Li and Liu [99] extended the work of Wu et al.

[105], where KCC suffers from initialization sensitivity. While greedy optimization of

KCC termed as GKCC intends to illuminate the affectability of K-means initializa-

tion, GKCC [109] consistently merges greedy K-means and KCC to accomplishes the

benefits acquired by GKCC. Liu et al. [110], extended the work of Liu et al. [39],

to address the difficulty emerging from incomplete basic partitions, in light of which

they proposed a row-segmentation scheme for Big Data clustering. Figure 2.3 shows

the architecture of consensus clustering.

Consensus clustering [106] is broadly divided into two parts, i.e., implicit or explicit

objective functions. The process of using implicit objective functions follows heuristic

functions to find output rather than directly establishing objective functions. Repre-

sentative processes include an association matrix based procedure [111], graph-based

algorithms [112], relabeling, and voting methods [113], kernel-based methods [114],

22

and genetic algorithm based methods [115]. The methods in explicit objective func-

tions have explicit global objective functions for consensus clustering. Representative

procedures consist of a K-means-like algorithm [116], the Expectation-Maximization

(EM) algorithm to extend consensus clustering [117], simulated annealing [112], and

the combination regularization [118]. Consensus clustering algorithms can be found in

the analysis presented by Liu et al. [119] and Huang et al. [120]. Considering the huge

number of consensus clustering strategies, the good survey on consensus clustering was

presented by Liu et al. [119]. Even though they plan to exhibit a complete prologue

to existing techniques, they may disregard a few key strategies and also disregard to

reveal the profound association among these strategies. Liu et al. [119] provided a

survey on consensus clustering from an embedded point of view. The embedded repre-

sentation is taken from the co-association matrix, followed by the classical clustering

algorithm to complete the consensus segment [119].

In these methodologies and throughout the discussion, we use the following con-

vention. For a d-dimensional real vector x ∈ Rd, ‖x‖ indicates the l − norm of x,

i.e., ‖x‖ = (
∑d

i=1 |xi|)1/,  > 1. x> means the transposition of x. The gradient of

the multivariate function f is expressed as 5f . The logarithm of base 2 is indicated

as a log. Let X= {x1, x2, . . . , xn} indicate a set of data samples. X is partitioned

into c clusters which are denoted as an accumulation of c clusters of data samples

in C = {Ck|k = 1, . . . , c}, with Ck

⋂
Ck′ = ∅;∀k 6= k′, and

⋃c
k=1Ck = X or as

a feature vector
∏

= (Lπ(x1), . . . , Lπ(xn))>, where Lπ maps xl to some feature in

{1, 2, . . . , c}, 1 ≤ l ≤ n. The issue of consensus clustering is commonly defined as

pursues.
∏

= {π1, π2, . . . πr} of X is a set of r BSs.

max
π

r∑
i=1

ωiU(π, πi) (2.17)

The aim is to find the consensus segment π so Eq. (2.17) is maximized where π denoted

as consensus segment, U : Zn
++×Zn

++ 7→ R is a utility function. The similarity between

π and πi, is evaluated by utility function and ωi ∈ [0, 1] is a user-defined value for

BS πi,
∑r

i=1 ωi = 1 [53]. The success of consensus clustering depends on the utility

23

function. Assume π and πi are two segments containing c and ci clusters, respectively.

n
(i)
kj means the quantity of data sample shared by a group C(i)

j (in πi) and group Ck (in

π). Accordingly, nk+ =
∑ci

j=1 n
(i)
kj denote the quantities of data sample in Ck and C(i)

j ,

respectively. Nearly all regularly utilized utility functions can be characterized by this

matrix. For example, let P(i)
k = (n

(i)
k1/nk+, . . . , n

(i)
kci
/nk+)>, then noticeable category

utility function [121] can be formulated as:

U(π, πi) ∝
c∑

k=1

nk+‖P(i)
k ‖

2
2. (2.18)

Utility functions [53] have different mathematical properties and also have different

degrees of computational difficulty for consensus clustering. The current strategy for

crisp consensus clustering is typically designed for one or more utility functions that

are less adaptable when applied with real Big Data from different application areas.

However, with the explosive growth of online Big Data in recent years, researchers

and practitioners have realized that a single fuzzy clustering might fail with complex

data, such as high dimensional genome data. Hence, the introduction of consensus

clustering to fuzzy clustering becomes natural. Thus Fuzzy Consensus Clustering

(FCC) emerges as a new research frontier. A detailed discussion of FCC is present in

the subsequent section.

2.1.2 Fuzzy Consensus Clustering

FCC focuses on fusing various existing clustering results and has a global objec-

tive function that guides the consensus clustering, which can be solved naturally via

a simple FCM-like iterative process. The FCC is explained with a couple of parti-

tioning algorithmic designs. For example, Mojarad et al. [122] proposed a robust

clustering ensemble based on sampling and cluster clustering (RCESCC) algorithm,

which initially creates a consensus of fuzzy clustering produced by the Fuzzy C-Means

(FCM) algorithm on sampled data. Then, a hierarchical clustering algorithm is used

for partitioning the clusters and finally assigning the data samples to combine clus-

ters. Zoghlami et al. [123] developed the merging based FCC algorithm in which

24

partitioned data are logically converged into groups through the worldwide collection.

Pedrycz and Hirota [124] proposed a consensus-driven fuzzy clustering based on the

FCM algorithm. In this, fuzzy sets are used for the allocation of patterns to clusters,

which is used to find good quality of clusters. Hidri et al. [125] extended the work of

Pedrycz and Hirota [124] by using consensus clustering to handle Big Data. Like the

KCC [105] system, Wu et al. [53] developed FCC utility functions by updating FCC

to a weighted piece-wise FCM clustering and thus proposed a new fuzzy contingency

matrix. A set of FCC utility functions can turn the FCC into a weighted piece-wise

FCM clustering problem. Finally, build the algorithmic framework for the FCC with

the custom decision of the utility function. To solve the problems associated with

analyzing large amounts of data, vertical and horizontal segmentation schemes are

used to parallelize FCC on the Apache Spark framework.

As the name suggests, FCC is the fuzzy concept used in consensus clustering [53].

Now defining FCC mathematically: The objective function, in this case, would be

the same as Eq. (2.17), with the incorporated fuzzy concept that uses fuzzification

parameter. As mentioned before, the final BS π was an integer vector in consensus

clustering. Still, in fuzzy case, a new variable µ is defined as (n × c) membership

matrix without changing the meaning. Similarly, πi would replace by µ(i), where µ(i)

is (n× ci) membership matrix; ci denotes the number of clusters in ith BS. The aim is

to find the fuzzy consensus segment µ for optimization of the following goal;

max
µ

r∑
i=1

ωiUf (µ,µ
(i); p) (2.19)

Where, Uf is the fuzzy utility function, p ∈ (1,+∞) is a user-defined fuzzification

parameter, ω = (ω1, ω2, ..., ωr)
> is the vector of user-defined weights for BSs, with∑r

i=1 ωi=1. The success of FCC depends on the utility function [53]. A fuzzy utility

function for the FCC is defined as follows:

Uf (µ,µ
(i); p) =

c∑
k=1

‖µp·k‖1Φ(v
(i)
k)−

n∑
l=1

‖µpl·‖1Φ(µ
(i)
l·) (2.20)

25

Where, Φ is a convex function (the second norm in our case), for example, Φ for

the utility function is the squared l2 − norm, which is an obvious convex function

for each component of a discrete distribution. Φ is a function defined on discrete

distributions. c is the number of clusters in FCC, µp·k = {µp1k, µ
p
2k,, µ

p
nk} represents

a kth column vector in µ, µpl· = {µpl1, µ
p
l2, ..., µ

p
lc}, represents a lth row vector in µ,

µ
(i)
l· = {µ(i)

l1 , µ
(i)
l2 , .., µ

(i)
lci
}, and µ

(i)
l· denotes lth row of ith BS. Let Y = {y1, y2, y3....yn} be

the concatenated basic segments, which is of dimension (n×
∑r

i=1 ci), and it is derived

from the set of BSs;
∏

= {µ(1), µ(2),, µ(r)}. yl corresponds to lth data sample in

Y , which shows the membership degrees of xl in a cluster of each BS. Thus, yl is a∑r
i=1 ci dimensional vector with ‖yl‖1 = r; ∀l.

yl = (µ
(1)
l· , . . . , µ

(i)
l· , . . . , µ

(r)
l·)>; ∀l (2.21)

Next, the cluster similarity matrix, V = {v1, v2, v3...vc}, is defined as using the below

mentioned equations.

vk = (v
(1)
k , . . . , v

(i)
k , . . . , v

(r)
k)> (2.22)

The vk is also a (
∑r

i=1 ci)- dimensional vector. Let µlk and µ
(i)
lj express the membership

degrees of yl to Ck and C(i)
j , respectively. After that, the membership degree matrices

are defined as follows: µ = [µlk]n×c and µ(i) = [µ
(i)
lj]n×ci . Let

µ·k = (µ1k, . . . , µlk, . . . , µnk)
> (2.23)

µ
(i)
·j =

(
µ
(i)
1j , . . . , µ

(i)
lj , . . . , µ

(i)
nj

)>
(2.24)

where, µ·k represents kth column vector in µ, and µ
(i)
·j represents a vector of membership

degree of data samples (1 to n) in jth cluster of ith BS. Now, to transform FCC into

FCM [53], following equations are defined as follows:

f(µ
(i)
l· , v

(i)
k) = Φ(µ

(i)
l·)− Φ(v

(i)
k)− (µ

(i)
l· − v

(i)
k)>∇Φ(v

(i)
k) (2.25)

26

Jpf (µ, V ;
∏

) =
K∑
k=1

n∑
l=1

(µlk)
p

(
r∑
i=1

ωif(µ
(i)
l· , v

(i)
k)

)
(2.26)

Where, µlk is the membership degree of lth data sample in kth cluster in final BS. The

task of FCC and FCC utility function is equivalent to the task of minimizing Jpf [53].

max
µ

r∑
i=1

ωiUf (µ,µ
(i); p)⇐⇒ min

µ,v
Jpf (µ, V ;

∏
). (2.27)

With the concatenated basic segments and cluster similarity matrix, to minimize Jpf

is to take a FCM clustering on concatenated basic segments Y , with the kth cluster

similarity matrix vk; ∀k, and the distance from yl to vk is defined as follows:

d(yl, vk) =
r∑
i=1

ωif(µ
(i)
l· , v

(i)
k); ∀ l, k (2.28)

Based on the above analysis, a FCM can formulate to minimize Jpf . Without loss of

generality, the µlk and v
(i)
k is defined as follows:

µlk =
d(yl, vk)

−1/(p−1)∑K
k′=1 d(yl, vk′)−1/(p−1)

; ∀ l, k (2.29)

and

v
(i)
k =

n∑
l=1

(µlk)
p

‖µp·k‖1
µ
(i)
l· ; ∀ k, i (2.30)

Algorithm 2.3 FCC

1: Create the concatenated basic segments Y from
∏

= {µ(1), ..., µ(r)};.
2: Set the weights {ωi}ri=1 and derive f using Eq. (2.25).

3: Call weighted piece-wise FCM algorithm.

Algorithm 2.3 and Algorithm 2.4 summarizes the steps of FCC and weighted

piece-wise FCM [53], where µ = [µlk]n×c = F (V) and V = {vk}ck=1 = H(µ), the F and

H are two mapping function defined by Eq. (2.29) and Eq. (2.30).

27

Algorithm 2.4 weighted piece-wise FCM

1: l← 0;

2: Initialize µ[l], and let v[l] = H(µ[l]);

3: repeat

4: l← l + 1.

5: Let µ[l] = F(v[l−1]) using Eq. (2.29).

6: Let v[l] = H(µ[l]) using Eq. (2.30).

7: Until some stopping criterion met.

To meet Big Data challenge, we further parallelize FCC on the Apache Spark

platform. For FCC, it is difficult to obtain BSs on large high-dimensional data, which

also brings great trouble to the subsequent consensus clustering. As mentioned in

the objectives, Section 1.2, it is proposed to design scalable clustering algorithms for

handling Big Data. A detailed description of Big Data frameworks is presented in the

next section.

2.2 Big Data Frameworks

As we enter into the information age, data are being generated by a variety of

sources other than people and servers, such as sensors embedded into phones and

wearable devices, video surveillance cameras, MRI scanners, and set-top boxes. IDC1

has released a report on the ever-growing datasphere and reported that it will grow

175 zettabytes (ZB) by 2025. Nearly 30% of the world’s data will need real-time

processing. The amount of data in the world was estimated to be 44 ZB at the dawn

of 2020 [126]. Google, Facebook, Microsoft, and Amazon store at least 1,200 petabytes

of information. The world spends almost $1 million per minute on commodities on

the Internet. Electronic Arts process roughly 50 terabytes of data every day. By

2025, there would be 75 billion Internet-of-Things (IoT) devices in the world. By

2030, nine out of every ten people aged six and above would be digitally active [127].

Nowadays, endless advanced information is gathered at an increasing rate in various

1https://www.idc.com/getdoc.jsp?containerId=prUS47560321

28

https://www.idc.com/getdoc.jsp?containerId=prUS47560321

fields [60, 67, 64, 69]. Due to the rising volume of Big Data from different sources,

there is a need of genuine research with a proper investigation in Big Data analytic to

pick up experiences from the valuable information in Big Data.

In the bioinformatics domain also the data is generated at a great pace. Big data

sources are no longer limited to particle physics experiments or search-engine logs and

indexes. With the digitization of all processes and high throughput devices at lower

costs, data volume is rising everywhere, including the bioinformatics domain. For in-

stance, the size of a single sequenced human genome is approximately 200 gigabytes.

Biologists no longer use traditional laboratories to discover a novel biomarker for dis-

ease, rather they rely on huge and continuously growing genomic data made available

by various research groups. Technologies for capturing biological data are becom-

ing cheaper and more effective, such as automated genome sequencers, clustering of

genome sequencing gives rise to this new era of Big Data in bioinformatics. Cluster-

ing is one of the most widely used data mining methods for bioinformatics genome

data investigation. In genome data investigation, the surging volume of genome data

has put colossal weight on clustering algorithms to scale beyond a single machine

due to both space and time bottlenecks. To scale the clustering algorithms for huge

genome data, there is a requirement for Big Data handling systems. Recently, incal-

culable handling frameworks have been designed precisely for the utilization of Big

Data [17, 18, 19, 20]. Table 2.1 shows the summarization of some features of Big Data

Table 2.1: Summarization of some features of Big Data frameworks.

Framework
Programming
Model

Data
Storage

Data
Type

Processing
Mode

Programming
Language

Hadoop Map-Reduce HDFS
Key-Value
Pair

Batch
C/C++/Java/
Python/Perl/Ruby

Spark
Transformation
and Action

HDFS/
DBMS

Key-Value
Pair/RDD

Batch/
Real-Time

Java/Python
/Scala/R

Flink Topology
HDFS/
Hbase

Key-Value
Pair

Batch/
Real-Time

Java/Python
/Scala/R

Storm Transformation
File/
Stream

Key-Value
Pair

Real-Time Java/Clojure

Samza Map-Reduce File Events Real-Time Java/Scala

29

frameworks. There are a wide variety of processing frameworks available for Big Data

such as Apache Hadoop [128], Map Reduce [129], Apache Flink [130], Apache Mahout

[131], Apache Haloop [132], Apache Storm [133], Apache Samza [134], and Apache

Spark [135, 136, 137].

Apache Spark is an outstanding, universally useful, distributed Big Data framework

that keeps the advantages of MapReduce scalable and making it more adaptable.

Veiga [138] directed an exploratory examination on Spark, Hadoop, and Flink. They

built up the asset usage for both MapReduce [139] and Spark. Also, they detailed

the fragment of execution of jobs. Even though it is adaptable to the non-critical

failure of MapReduce, it has a multistage in-memory programming model. With such

a propelled model, Apache Spark is a lot quicker and simpler to utilize. Spark is

built on Hadoop’s data volume model, i.e., Hadoop Distributed File System (HDFS).

Apache Spark is perfect for deploying an application with a MapReduce technique.

It was initially developed at the University of California in 2009. Spark performs

up to 100 times faster than Hadoop MapReduce and significantly faster than other

frameworks.

As mentioned in the objectives, Section 1.2, it is proposed to design the scalable

clustering algorithms and scalable feature extraction techniques for preprocessing of

SNP and protein sequences, which aim to utilize the Apache Spark framework for

the processing of Big Data. Therefore, a detailed description of the Apache Spark

framework is presented next.

Working of Apache Spark

Apache Spark is a scalable in-memory computation framework for Big Data pro-

cessing. It allows subsets of the dataset to be processed in parallel across a cluster.

Apache Spark is a high-speed cluster computing system with efficient and straight-

forward development APIs which allow worker nodes to access a dataset iteratively

and execute efficiently. The in-memory cluster computing technique of spark increases

the processing speed of an application by implementing a spark job on the Hadoop

framework to share a cluster and dataset while satisfying consistent levels of service

and response. Apache Spark works with Hadoop to access data from spark engines

30

Figure 2.4: Apache Spark cluster stack.

[140]. Spark builds with a stack of libraries, including SQL and Data Frames, MLlib,

GraphX, and Spark Streaming. MLlib is a library that provides a machine learning

algorithm for data science techniques. Figure 2.4 shows the Apache Spark cluster

stack used in our experiment and the details for the same are explained below.

• Spark core: The Spark core runs on different cluster managers and can access

data on any Hadoop data source. It provides a simple programming interface

for large-scale processing datasets, Resilient Distributed Dataset (RDD). Spark

core is embedded in Scala, but it comes with APIs in Scala, Java, Python,

and R (Python in our case). Besides, Spark core provides a key function for

in-memory cluster computing, including memory management, job scheduling,

data shuffling, and error recovery [141].

• Upper-level libraries: Spark SQL has been created to manage various workloads

on the Spark core.

• Cluster managers and data source: Cluster manager is used to obtain cluster

31

resources to run a job. Spark Engine works with the built-in Spark cluster

manager (i.e. standalone). Cluster manager manages resource sharing between

Spark applications. On the other hand, Spark can access data from the HDFS

[140].

• Resilient Distributed Datasets: Spark core is built on Resilient Distributed

Dataset (RDD) abstraction. Spark revolves around the concept of RDD, which

is a fault-tolerant collection of elements that can be operated in parallel. There

are two ways to create RDDs: parallelizing an existing collection in the driver

program or referencing a dataset in an external storage system, such as a shared

filesystem, HDFS, HBase, or any data source offering a Hadoop InputFormat

[135]. Parallelized collections are created by calling SparkContext’s parallelize

method on an existing iterable or collection in the driver program. The elements

of the collection are copied to form distributed dataset that can be operated in

parallel. PySpark can create distributed datasets from any storage source sup-

ported by Hadoop, including local file system, HDFS, Cassandra, HBase, Ama-

zon S3, etc. Spark supports text files, SequenceFiles, and any other Hadoop

InputFormat. Text file RDDs can be created using SparkContext’s textFile

method. This method takes a URI for the file (either a local path on the ma-

chine or a hdfs://, s3a://, etc URI) and reads it as a collection of lines.

Two types of operations that can be performed on an RDD:

1 Transformations: Transformations are operations on an RDD that result

into another RDD.

– Map: A map is a transformation operation in Apache Spark. It applies

to each element of RDD and returns the result as a new RDD. Spark

Map function takes one element as input and processes it according to

custom code (specified by the developer) and returns one element at a

time. Map transforms an RDD of length into another RDD of length.

The input and output RDDs will typically have the same number of

records.

32

Figure 2.5: Workflow of Apache Spark operation.

– Aggregations: A dataset with key-value sets needs to aggregate statis-

tics across all the elements with the same key. Spark encompasses a

set of operations that combines values with the same key by employing

a reduceByKey function. This work combines the values for each key

utilizing an affiliated decrease work. It works only for RDDs that con-

tain key and value pairs of elements (i.e. RDDs having tuple or Map

as a data element). One associative function is passed as a parameter,

which can be connected to the source RDD and will make a new RDD

with resulting values (i.e. key-value sets). This function produces the

same result when drearily utilized on the same set of RDD information

multiple partitions irrespective of elements order. Figure 2.5 shows

workflow of Apache Spark operation.

2 Actions: Returns a value to the driver program after running a computation

on the dataset. Reduce is an action that aggregates all the elements of the

33

RDD using some function and returns the final result to the driver program

(although there is also a parallel reduceByKey that returns a distributed

dataset).

Figure 2.6: Apache Spark cluster Application.

• Spark-application: The Spark application execution consists of five main units, a

controller program, a cluster administrator, workers, executors, and tasks. The

Apache Spark cluster application is shown in Figure 2.6. A driver program is

an application that uses Spark as a library and defines the high-level flow of

control for the target calculation. While a worker provides CPU, memory, and

storage resources to a Spark application, an executor is a JVM process that

Spark creates on each worker for that application. A job is a set of calculations

that the Spark controller performs on a cluster to get results in the program. A

Spark application can start multiple jobs. Spark divides the work into steps of a

Directed Acyclic Graph (DAG), where each phase is a collection of tasks. A task

is the smallest unit of work that a spark sends to an executor. The main entry

34

point for spark functions is a spark context through which the driver program

uses Spark. A Spark context represents a connection to a computing cluster.

With the new advancement of the Big Data environment, there is a need to scale

clustering algorithms on extensive data computing frameworks to accomplish high

performance without influencing clustering. Hence, we present the scalable fuzzy

clustering algorithms executed in the Apache Spark framework to handle Big Data. A

detailed description of scalable fuzzy clustering algorithms are presented in the next

section.

2.3 Scalable Fuzzy Clustering Algorithms for Han-

dling Big Data

Recently, a wide variety of algorithms [142, 143, 144, 145, 145] has been proposed

by researchers for processing Big Data using various frameworks. This is because the

enlarging volume of information emerging by the progress of technology makes the

clustering of Big Data a challenging task. Kwok et al. [146], proposed a parallel ver-

sion of the FCM algorithm for clustering. Beringer et al. [147], developed a scalable

online version of the Fuzzy C-Means algorithm. Zhao et al. [148], proposed a parallel

K-means clustering algorithm based on MapReduce, which is a simple yet powerful

parallel programming technique. Zhang et al. [142], proposed i2MapReduce, a novel

MapReduce-based framework for incremental Big Data processing. Due to the rapid

advancement of clustering algorithms, these techniques have received a lesser acknowl-

edgment in Big Data issues, and this is because these algorithms are not scalable [149].

This confines many clustering algorithms from being used at enormous information

scales. The Big Data frameworks [150] are needed to design scalable algorithms for

handling Big Data generated from various sources.

In this section, we are presenting a Scalable Random Sampling with Iterative

Optimization Fuzzy C-Means (SRSIO-FCM) algorithm. It is designed to deal with

the challenges associated with fuzzy clustering for handling Big Data. The SLFCM

35

is a scalable version of the LFCM implemented on the Apache Spark cluster. The

SLFCM is an integral part of the SRSIO-FCM algorithm. The details of the SLFCM

and SRSIO-FCM algorithms are presented next.

2.3.1 Scalable Version of LFCM Algorithm

The SLFCM clustering algorithm is executed on Apache Spark to handle Big Data.

In SLFCM [151], the computation of membership knowledge is evaluated in parallel

on slave nodes. Thus it overcomes time complexity as compared to linear execution of

an algorithm on a standalone machine. This process is continued until the difference

observed is not useful for the benefit of cluster centers. In this, each data sample is

reserved in the form of an array of features in RDDs [152], which is a data structure to

store objects precisely in memory. The run-time complexity of the SLFCM algorithm

is O(ncdt/w), where w is the number of slave nodes. Algorithm 2.5 summarizes the

steps of SLFCM.

Algorithm 2.5 SLFCM to Iteratively Minimize Jp(M,V ′)

Input: X, c, p, ε, (initial V); X is an array of data samples such that X =

{x1, x2, ...xn}.
Output: I ′, V ′

1: If V is not initialized, randomly initialize V = {v1, v2,vc}.
2: Compute membership knowledge.

3: I ′ = X.Map(V).ReduceByKey()

4: Compute cluster centers.

5: v′j =
∑s

i=1m
p
ijxi∑s

i=1m
p
ij
, ∀j.

6: If ‖ V ′ − V ‖< ε then stop, otherwise go to step 2.

7: Return I ′, V ′

In Algorithm 2.5, the membership degree of all the data samples is combined

at the master node, which is used in Line 3 of Algorithm 2.5 to update the cluster

center vj to evaluate the value of parameters present in the numerator and denominator

of vj. The SLFCM is an integral part of the SRSIO-FCM algorithm which is discussed

36

in the next section.

2.3.2 Scalable Version of Random Sampling with Iterative

Optimization Fuzzy C-Means Algorithm

The extension of FCM is a random sampling plus extension Fuzzy C-Means (rse-

FCM), that is used for handling Big Data [153], but the overlapping of the cluster is

the main issue in rseFCM. The overlapping is removed by Random Sampling Iterative

Optimization Fuzzy C-Means (RSIO-FCM) [154]. However, RSIO-FCM suffers from

a sudden rise in several iterations during clustering. To overcome the issues of RSIO-

FCM, a Scalable RSIO-FCM termed as SRSIO-FCM [151] has been developed, which

is an incremental fuzzy clustering approach. The SRSIO-FCM algorithm [151], is ex-

ecuted on Apache Spark. It divides the huge data into various subsets (or chunks).

Thus, SRSIO-FCM partitions the set X into s subsets such that X = {X1, X2, ..., Xs}

where X1 represents the first subset consists of random n/s samples. Algorithm 2.6

summarizes the steps of SRSIO-FCM.

Algorithm 2.6 SRSIO-FCM to Iteratively Minimize Jp(M,V
′
)

Input: X, c, p, ε; X is an array of data samples such that X = {x1, x2, ...xn}.
Output: I

′
, V

′
.

1: Partition set X into s subsets such that X = {X1, X2, ..., Xs}.
2: Randomly select X1 from X without replacement where X1 represents the first

subset consist of random n/s samples.

3: I
′
, V

′
= SLFCM(X1, c, p, ε)

4: for t = 2 to n do

5: I, V ′ = SLFCM(Xt, c, p, ε, V
′)

6: Merge the partition of all processed subsets

7: I ′ = I ′ ∪ I
8: Compute updated cluster center v′j using I ′

9: end for

10: Compute the objective function using Eq. (2.6).

11: Return I ′, V ′

37

The cluster centers and membership matrix of the first subset are obtained through

the usage of SLFCM. The cluster centers obtained from the first subset is fed to the

second subset for clustering. The membership matrices obtained from both subsets

are combined, and then the cluster centers are fed as input to the third subset. This

procedure is repeated for the clustering of all the subsequent subsets. The SRSIO-

FCM helps in reducing the run-time of a grouping of huge data without negotiating

the clustering quality. The SRSIO-FCM eliminates the need for storing the member-

ship matrix, which makes the execution of the SRSIO-FCM algorithm much faster by

decreasing the run-time. Since each subset is handled steadily, the time complexity

is O(ncdt/w) where w represents the number of slave nodes in a Spark cluster and

d represents the dimensions of data samples. While the space complexity remains

O(ncd/s) because data corresponding to one subset is not held in the memory while

processing the next subset. The SLFCM and SRSIO-FCM share the same time com-

plexity. This may lead one to think that both have the same run-time. However,

this is not the case. Since we divide the entire data into various subsets and perform

clustering over each subset in SRSIO-FCM. So, clustering performed by SRSIO-FCM

on each subset converges by taking the less number of iterations (t) for each subset.

So, SRSIO-FCM has lesser run-time, since it performs clustering on a lesser amount

of data as compared to SLFCM which performs clustering of the entire data.

The SRSIO-FCM improves the quality of the formed clusters over the RSIO-FCM

algorithm, but it is not used to cluster the data having non-linear separable data

distribution in the feature space. This means that it is not suitable for the clustering

of non-linear data. The reason is that the SRSIO-FCM algorithm was developed from

the RSIO-FCM algorithm, which is used to cluster linear separable data. Therefore,

the drawback still lies in the SRSIO-FCM algorithm. The focal point of the SRSIO-

FCM and SLFCM algorithm is promoting the clustering or centroid calculation of

data having linear separable data distribution. Thus, this algorithm does not focus

on the clustering of data with non-linear separable data distribution. Therefore, the

kernel function is applied to achieve better mapping for non-linear separable datasets.

The kernelized version of SLFCM and SRSIO-FCM is presented in Chapter 3.

38

Big Data is evolving in various domains in the current scenario, so it is essential

to investigate the applicability and performance of scalable Big Data algorithms on a

real-life problem. As discussed in the objectives Section 1.2, it is proposed to study

the applicability of scalable clustering algorithms on real-life genome data, i.e., the

massive SNP and protein sequences of soybean, rice, and SARS-CoV-2. Therefore,

there is a need to propose a scalable feature extraction approach for SNP and protein

sequence for handling huge genome data such that the features extracted from genome

data can be fed to scalable clustering algorithms for the analysis of huge genome data.

Thus, now a survey related to feature extraction approaches is presented next.

2.4 Survey on Genome Sequences

Bioinformatics has been an active area of research for the last three decades, and it

is continuously gaining careful attention from computer scientists and the biologist’s

research community. The objective of bioinformatics is to store and manage biologi-

cal data and to develop sophisticated computational tools that are helpful in analysis

and modeling [155]. Since the field of bioinformatics, i.e., genomics stepped into the

clustering of the high-dimensional data, this raises the requirement of developing the

machine learning algorithms to handle the genomics data [44, 45, 46]. With ongo-

ing advances in genomics, the clustering of high-dimensional genome sequences can

be noticed all over the place [156]. Yet, the developing requirement for storage and

handling massive genome data impose complex challenges to biologists [157]. Differ-

ent clustering algorithms have been designed to cluster similar genes more accurately,

as indicated by identical gene sequences [158]. Recently, genome sequences and SNP

datasets have become incredible both in volume and complexity [159]. Subsequently,

scalable clustering algorithms are expected to deal with them [160, 151]. The analytic

breakthroughs brought an impressive and remarkable generation of biological data,

which was a dream some years ago, which includes sequencing of Protein, DNA, and

SNP [161]. To analyze huge biological data, there is a need for efficient data storage,

searching, analysis, and feature extraction methods [150, 138]. Genome sequencing

39

projects currently produce an enormous amount of new sequences and cause the rapid

increase of genome sequences. This leads to several problems to cluster SNP and pro-

tein sequences using machine learning approaches. Accordingly, there is a need for

an efficient feature extraction approach that extracts significant features. However,

feature extraction of hundreds of millions of protein sequences is impractical using

current algorithms because they are not scalable. There are so many valuable pro-

cessing frameworks that have been designed for the use of huge data [138, 139, 162].

Apache Spark is a unique, generally helpful, distributed enormous information system

that maintains the benefits of MapReduce versatile and making it more scalable [163].

Spark is built on top of the HDFS. Apache Spark is ideal for conveying an appli-

cation with a MapReduce method. With the fast improvement of Next-Generation

Sequencing (NGS) innovation, many genomic datasets have been created, representing

a significant challenge to customary bioinformatics tools [164].

An important issue in applying any algorithm to genome sequence clustering is to

represent the genome sequences in terms of feature vectors. The high dimensionality

of genome data creates several crucial problems for researchers during the implementa-

tion of machine learning algorithms [165]. A suitable input representation (extraction

of features) is necessary to categorize SNP and protein sequences correctly. This sec-

tion discusses a few methodologies that forms the basis for our proposed algorithms

and various steps involved in preprocessing SNP and protein sequences. The feature

extraction approaches for SNP and protein sequences are discussed in the subsequent

section.

2.4.1 Methods for Single Nucleotide Polymorphisms (SNPs)

Sequences

SNP represents change at a single position in a DNA sequence in the population

[166]. A DNA sequence is formed from A (adenine), T (thymine), G (guanine), and C

(cytosine) called a nucleotide [167]. For instance, an SNP may change the nucleotide

C with the nucleotide T in a DNA sequence. SNPs typically occur throughout a

40

person’s DNA. They appear almost once in every 1,000 nucleotides on average, which

means there are roughly 4 to 5 million SNPs in a person’s genome. These variations

may be unique or occur in many individuals; scientists have found more than 100

million SNPs in populations worldwide. Most commonly, these variations are found

in the DNA between genes. They can act as biological markers, helping scientists

locate genes that are associated with the disease. When SNPs occur within a gene

or in a regulatory region near a gene, they may play a more direct role in disease by

affecting its function. Each SNP sequence is a lengthy collection of nucleotides, which

can be challenging to work around [168, 169]. Hence, the aim is to reduce the length

of sequences and extract useful features in float values.

Liu et al. [170] developed an approach to extract a 12-dimensional numerical

feature vector from a DNA sequence. We have applied similar approach on SNP data

to extract a 12-dimensional numeric feature vector for each SNP sequence. In this

work, we have built an Apache Spark cluster over which the SNP feature extraction

approach is executed in parallel and gives 12 numeric features. The steps used for

preprocessing of SNP data is stated as follows:

(i) The nucleotide A, T,G, and C content from the SNP sequence are selected as

the first parameter in the feature vector extraction. The total length of A, T,G,

and C defined as `A, `T , `G, and `C . These four integers stand for the numbers

of nucleotide A, T,G, and C in the SNP sequence, respectively.

(ii) The second numerical parameter in the feature vector is the sum of distances of

each nucleotide base to the first nucleotide. The total distance Ti is defined as

follows:

Ti =

`i∑
j=1

tj (2.31)

where, i = A, T,G,C; tj is the distance from the first nucleotide to the jth

nucleotide of i in the SNP sequence. The other four feature vectors of the total

distances are denoted as TA, TT , TG, and TC .

(iii) The third parameter chosen for the feature vector extraction is the distribution

41

of each nucleotide along the SNP sequence. The variance of distance for each

nucleotide utilized to characterize the distribution is defined as follows:

Di =

`i∑
j=1

(tj − di)2

`i
(2.32)

where, i = A, T,G,C; tj is the distance from the first nucleotide to the jth

nucleotide of i in the SNP sequence and di = Ti
`i

. So, the feature vector, which

contains 12-dimensional data, is given as follows:

〈`A, TA, DA, `T , TT , DT , `G, TG, DG, `C , TC , DC〉

As mentioned in the objectives, Section 1.2, it is proposed to design the scal-

able SNP preprocessing for handling Big Data. The 12-dimensional numeric feature

vector of the SNP sequence can be made scalable using the Apache Spark frame-

work (as discussed in Section 2.2) for handling massive SNP data. The preprocessed

12-dimensional feature vectors can be used as input to the scalable fuzzy clustering

algorithms to cluster huge SNP data.

Discovering clusters in the high-dimensional genomics data is extremely challeng-

ing for bioinformatics researchers for genome analysis. The Micro-array datasets are

unpredictable and have inherent outliers or missing values [171]. The clustering of

soybean and rice genome data and their analyzed results will help in setting a strong

foundation for handling and analysis of subsequent large scale genome re-sequencing

efforts in the future. Large scale sequencing of genome data has generated huge ge-

nomic, omics, and protein data [172, 173, 174]. Similarly, SNP datasets are also

growing exponentially [159]. SNPs are becoming the most popular type of marker in

linkage and association studies to discover genes associated with various traits such as

diseases and drought resistance [166]. Therefore, faster methods for SNP clustering

are required so that accurate data analysis can be done for the identification of genes

associated with various traits.

Recently, fuzzy clustering approaches have been taken in consideration because of

their capability to assign one gene to more than one cluster, which may allow capturing

42

genes involved in multiple transcriptional programs and biological processes [175, 176].

It is often in the SNP sequences that the number of dimensions of feature is a lot higher

than the number of sequences [177, 178]. The fuzzy clustering algorithm divides the

data into subsets such that each subset deal with a small size of data and it takes

less number of iterations to converge faster and achieve good clustering quality results

while dealing with huge data sizes [179].

2.4.2 Methods for Protein Sequences

The building blocks of proteins are amino acids, which are small organic molecules

that consist of an alpha (central) carbon atom linked to an amino group, a carboxyl

group, a hydrogen atom, and a variable component called a side chain. Proteins are

built from a set of only twenty amino acids, each of which has a unique side chain [180].

The most important task while feeding a protein sequence in any machine learning

algorithm is to encode the protein sequence into a feature vector and then apply any

machine learning algorithm on the protein sequence [174]. A protein sequence contains

characters from the 20-letter amino acid alphabets
∑

={A, C, D, E, F, G, H, I, K,

L, M, N, P, Q, R, S, T, V, W, Y}. The protein sequences can be of any length,

and the amino acids present in a sequence are arranged in any order. There is a

substantial need for a machine-learning algorithm to analyze and model huge protein

sequences [181]. An important issue in applying any algorithm to protein sequences

is representing the protein sequences in feature vectors. The high dimensionality of

protein data creates several crucial problems for researchers during the implementation

of machine learning algorithms [165].

Wang [182], proposed a new technique for feature extraction, which tries to cap-

ture both the global similarity and local similarity of sequences. The global similarity

refers to the overall similarity among multiple sequences, whereas the local similar-

ity refers to frequently occurring sub-strings in the sequences. It considered that the

2-gram method computed the global similarity of sequences and adopted a 6-letter ex-

change group to represent a sequence [174, 183]. Then it uses a sequence mining tool

to compute the local similarity. Another feature extraction approach is proposed by

43

Bandyopadhyay [184] that uses a 1-gram technique for feature encoding. The feature

size comprises 20 amino acids. The extracted features are such that they take into con-

sideration the probabilities of occurrences of the amino acids in the different positions

of the sequences. Mansoori [185], proposed a new technique for feature extraction. To

extract the relevant features from protein sequences, the features are counted as the

occurrences of six exchange groups in each sequence [183]. Another feature extraction

approach for protein sequence is proposed by Mansoori [181]. This method uses 2-

grams and a 2-gram exchange group from the training and test data. In this approach,

the distance-based feature ranking method was utilized to select the best and most

appropriate features. Bharill [186] proposed a novel Co-occurrence based Probability

Specific Feature (CPSF) approach, which represents each variable-length protein se-

quence with a fixed-length numeric vector. It considers all possible position-specific

variations of amino acids in a protein sequence. Chou [187] suggested two types of

models commonly used to present protein models: sequential model and descriptive

model, but both the models have drawbacks. The sequential model fails to function

when the query protein has no significant sequence similarity with any characteristic-

known protein. The main drawback of the independent model is the missing effect of

sequential order. Therefore, a separate model is proposed by Chou [188], known as the

’pseudo-amino acid composition’ (PSeAAC) model. A suitable input representation

(extraction of features) is necessary for the proper clustering of protein sequences. A

detailed description of two methods for protein data preprocessing is discussed in this

section. First, we provide the PSeAAC, a 60-dimensional feature vector, and then the

CPSF, a 6-dimensional feature vector for protein sequences, is discussed.

Pseudo-Amino Acid Composition (PseAAC)

This section describes the detailed description of the 60-dimensional feature vector for

protein sequences via the general form of pseudo amino acid composition (PseAAC

model) [187, 189]. The general form of PseAAC for the P protein can be formulated

as follows:

[P = P1, P2,Pψ]> (2.33)

44

The transpose operator is >, and the subscript ψ is an integer, and its value and

components P1, P2... depends on how the desired information is extracted from the

amino acid sequence. The details of the collection of characteristics of the protein

sequence, a linear polymer of 20 amino acids, are described below.

The three parameters of each of these 20 amino acids contribute to the 60-

dimensional vector. The vector’s numerical construction is based on the following

points:

(i) The content of each of the 20 amino acids.

(ii) The distance of each amino acid in sequence from the first amino acid sequence.

(iii) The distribution of each amino acid with the protein sequence.

The mathematical properties of protein sequencing have been analyzed separately.

(i) Amino acid count: The twenty amino acids for protein sequences

are
∑

={A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y}. The total length of 20 amino acids defined as

`A, `C , `D, `E, `F , `G, `H , `I , `K , `L, `M , `N , `P , `Q, `R, `S, `T , `V , `W , `Y .

These twenty integers stand for the numbers of amino acids

A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y in the protein se-

quence, respectively. The length of the protein sequence is the count of all

the amino acids in the sequence. This parameter alone is not sufficient as the

sequences containing the same number of amino acids in different locations

are significantly different. Therefore, it contributes to the first 20 values in a

60-dimensional vector [189].

(ii) Total distance: The total distance is the summation of distances of each amino

acid from the first amino acid in the protein sequence. These 20 values contribute

to the other 20 values in the 60-dimensional vector. But this parameter will

sometimes look the same for similar protein sequences. The total distance of Ti
is defined as follows:

Ti =

`i∑
j=1

tj (2.34)

45

where, i = A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y ; tj is the dis-

tance from the first amino acid to the jth amino acid of i in the protein se-

quence. The other twenty feature vectors of the total distances are denoted as

TA, TC , TD, TE, TF , TG, TH , TI , TK , TL, TM , TN , TP , TQ, TR, TS, TT , TV , TW , TY .

(iii) Distribution: We have seen two parameters above that cannot distinguish the

similarity/dissimilarity of the two sequences correctly. Therefore, we have taken

into account the third parameter Di which represents the distribution of 20

amino acids throughout the protein sequence. The distribution of amino acids is

different for two protein sequences, even if they have the same content and total

spacing of 20 amino acids. Therefore, the 20 amino acid distribution contributes

to one-third of the 60-dimensional vector. The distribution of each amino acid

is calculated as follows:

Di =

`i∑
j=1

(tj − di)2

`i
(2.35)

where, i = A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y ; tj is the dis-

tance from the first amino acid to the jth amino acid of i in the protein sequence

and di = Ti
`i

. We can then say that all these three characteristics make up the 60-

dimensional vector that characterizes the protein sequence. We have explicitly

correlated the extracted features with the general form of Eq. (2.33) of PseAAC

as mentioned above. The 60-dimensional equal-length vectors were constructed

for unequal-length protein sequences. So, the feature vector, which contains

60-dimensional data is given as follows:

〈`A, `C , `D, `E, `F , `G, `H , `I , `K , ellL, `M , `N , `P , `Q, `R, `S, `T , `V , `W , `Y , TA, TC ,

TD, TE, TF , TG, TH , TI , TK , TL, TM , TN , TP , TQ, TR, TS, TT , TV , TW , TY , DA, DC , DD,

DE, DF , DG, DH , DI , DK , DL, DM , DN , DP , DQ, DR, DS, DT , DV , DW , DY 〉

A detailed description of preprocessing of protein sequences using the CPSF approach

is presented next.

Co-occurrence based Probability Specific Feature (CPSF) approach

This section contains a detailed description of the CPSF [186] approach. The

46

CPSF approach captures the protein sequence’s statistical properties and the amino

acid position information to generate a vector of fixed-length numerical features for

each protein sequence. The CPSF approach extracts features from the protein dataset

in three steps: Protein Sequence Encoding (PSE), Global Similarity Measures (GSM),

and Local Similarity Measures (LSM). The first step encodes protein sequences, rep-

resenting each protein sequence as exchange groups [183]. In the second stage, the

overall GSM is calculated, considering the probability that each amino acid appears

at a particular position concerning the total number of protein sequences present in a

specific species. In the third stage, the LSM calculates each amino acid’s weight con-

cerning each protein sequence, taking into account the GSM. In this way, the CPSF

approach represents each protein sequence by a fixed-length numeric feature vector

consisting of only six dimensions.

Table 2.2: Structure of five protein sequences.

sequence1 M D G N P L G N
sequence2 M E G N D L Q N
sequence3 T N Q D F V R L
sequence4 V D Q N P V E L
sequence5 T E G N P I R N

Stage One: PSE

In the first step of the CPSF approach [186], each protein sequence is encoded

and presented in terms of six exchange groups. According to Dayhoff and Schwartz

[183], the amino acids in the protein sequence belongs to six exchange groups. This

is because, within each exchange group, there is a high evolutionary similarity be-

tween these amino acids. Exchange groups are efficient amino acid equivalent classes,

formally represented by {e1, e2, e3, e4, e5, e6}, where e1={H,R,K}, e2={D,E,N,Q},

e3={C}, e4={S, T, P,A,G}, e5={M, I, L, V } and e6={F, Y,W} [182]. The protein

sequences belong to different species, and within each species, the protein sequences

share some structural similarities. An example of five protein sequences is presented

in Table 2.2.

The protein sequences are encoded into six exchange groups as follows: sequence1,

47

Table 2.3: Encoded positional representation of amino acids.

Sequence Positions
1 2 3 4 5 6 7 8

1 e5 e2 e4 e2 e4 e5 e4 e2
2 e5 e2 e4 e2 e2 e5 e2 e2
3 e4 e2 e2 e2 e6 e5 e1 e5
4 e5 e2 e2 e2 e4 e5 e2 e5
5 e4 e2 e4 e2 e4 e5 e1 e2

i.e. MDGNPLGN encoded as {M,L} ∈ e5, {D,N} ∈ e2, {P,G} ∈ e4. Similarly,

sequence2, i.e. MEGNDLQN is encoded as {M,L} ∈ e5, {D,E,N,Q} ∈ e2, {G} ∈ e4.

In the same way sequence3, i.e. TNQDFVRL is encoded as {R} ∈ e1, {N,Q,D} ∈ e2,

{T} ∈ e4, {V, L} ∈ e5, {F} ∈ e6. Similarly, sequence4, i.e, VDQNPVEL is encoded

as {D,Q,E,N} ∈ e2, {P} ∈ e4, {V, L} ∈ e5. In the same manner sequence5, i.e.

TEGNPIRN is encoded as {R} ∈ e1, {E,N} ∈ e2, {P, T,G} ∈ e4, {I} ∈ e5. Table 2.3

displays the encoded position information of all the protein sequences are given in the

structure data as shown in Table 2.2. Once the sequence of proteins is encoded by

the exchange groups (as shown in Table 2.3), the total similarity between the encoded

exchange groups is calculated. A detailed description of this subject is given next.

Stage Two: GSM

In the second step of the CPSF method, we calculate the GSM by estimating

the instance probability of all exchange groups at each position relative to the total

number of protein sequences in the species. The GSM is calculated as follows:

(Probability)ij = (Instance)ij/ρ (2.36)

Where (Probability)ij denotes the probability of instance of the ith exchange group

at jth position, (instance)ij represents the frequency at which the ith exchange group

appears at jth position and ρ represents the total number of sequences in a particular

species. The GSM is then calculated according to the exchange groups are shown

in Table 2.3. In this table, exchange group e5 appears in the first place three times

out of five sequences, so the (Probability)51=
3
5
. Similarly, the probability of other

48

exchange groups present in this table is also calculated. Thus, in Table 2.4, the values

obtained after estimating the overall GSM corresponding to all the encoded sequences

are presented in Table 2.3. After that, LSM is calculated, which determines the specific

weight at each exchange group’s position. A detailed description of LSM is given next.

Stage Three: LSM

In the third stage of the CPSF approach [186], the LSM is calculated, which

determines the location-specific weight of each exchange group within the sequence

considering the weight factors. These weight factors ultimately represent the numeric

feature vectors for each protein sequence. The weight of each exchange group is

calculated as follows:

(Weight)sequenceki =

j′∑
j=1

(Probability)ij × (PW)sequencekij (2.37)

where (Weight)sequenceki represents the weight of ith exchange group corresponding to

the kth protein sequence, (Probability)ij denotes the probability of occurrence of the ith

exchange group at jth position and (PW)sequencekij is the positional weight assign to the

ith exchange group based on the presence of kth protein sequence at jth position. The

weight of exchange groups, i.e., the first encoded protein sequence (e5e2e4e2e4e5e4e2)

present in Table 2.3 is calculated as follows:

(Weight)sequence1e2
= 1× 1 + 1× 1 + 0.6× 1 = 2.6

(Weight)sequence1e4
= 0.6× 1 + 0.6× 1 + 0.2× 1 = 1.4

(Weight)sequence1e5
= 0.6× 1 + 1× 1 = 1.6

The first encoded protein sequence present in Table 2.3 is composed of only three

exchange groups e2, e4, and e5, and the remaining exchange groups, i.e., e1, e3, and e6

are absent in the first sequence (sequence1). Due to the absence of exchange groups

e1, e3, and e6 in sequence1, the positional weight ((PW)sequenceoab) corresponding to

these exchange groups is zero. On the contrary, the exchange group e2 occurs three

times in sequence1 at positions 2, 4, and 8, respectively. Therefore, the positional

weight assigned to the exchange group e2 for each position is 1 which is multiplied by

49

Table 2.4: Global Similarity Measure of encoded protein sequences.

Exchange groups Positions
1 2 3 4 5 6 7 8

e1 0 0 0 0 0 0 0.4 0
e2 0 1 0.4 1 0.2 0 0.4 0.6
e3 0 0 0 0 0 0 0 0
e4 0.4 0 0.6 0 0.6 0 0.2 0
e5 0.6 0 0 0 0 1 0 0.4
e6 0 0 0 0 0.2 0 0 0

Table 2.5: Representation of feature vector.

Sequence e1 e2 e3 e4 e5 e6

1 0 2.6 0 1.4 1.6 0
2 0 3.2 0 0.6 1.6 0
3 0.4 2.4 0 0.4 1.4 0.2
4 0 2.8 0 0.6 2.0 0
5 0.4 2.6 0 1.6 1 0

the probability of occurrence of exchange group e2 on these positions, i.e., 1, 1, and

0.6 reported in Table 2.4. Thus, the final weight of exchange group e2 is determined

by adding the product of positional weight and probability of occurrence of exchange

group e2 based on the presence in sequence1. Similarly, the weight of exchange groups

e4 and e5 are computed. Finally, the feature vector for sequence1 is obtained as

{(e1, 0), (e2, 2.6), (e3, 0), (e4, 1.4), (e5, 1.6), (e6, 0)}. Similarly, by using three stages of

the CPSF approach, the feature vectors of all the protein sequences present in Table 2.2

are determined and reported in Table 2.5. The CPSF approach finally represent each

protein sequence with a feature vector consists of only six dimensions numeric features.

The PseAAC and CPSF extraction methods discussed in this section can not han-

dle huge protein sequences. Hence, the two approaches PseAAC and CPSF can be

made scalable using the Apache Spark framework (As mentioned in the objectives,

Section 1.2) for handling massive protein data. The obtained 60-dimensional and

6-dimensional numerical feature vectors are used as the input to the scalable fuzzy

clustering algorithms for clustering of huge protein data.

The clustering of protein sequences aims to provide meaningful partitioning from

50

a huge protein dataset [46]. The protein sequences are arranged into clusters based

on their similarity in protein sequences. During the most recent decade, expenses and

throughput of protein sequencing have dropped two-fold every year, twice quicker than

computational costs [190]. This tremendous advancement has brought about countless

protein sequences and several billions of putative genes. Clustering protein sequences

predicted from sequencing reads can impressively lessen the excess of sequence sets and

expenses of downstream analysis and storage [190]. Han and Baker [191] have utilized

the K-means clustering algorithm to investigate the protein sequence-to-structure re-

lationship. The high-quality sequence clusters have been created using the K-means

algorithm [191]. The K-means was utilized to understand how protein sequences corre-

spond to local 3D protein structures [192]. However, the K-means algorithm calculates

the distance between the data sample with exact precision. When this distance func-

tion is not well characterized, the K-means algorithm may not effectively reveal the

sequence-to-structure relationship [193, 194]. As a result, some of the clusters provide

a poor match between protein sequences.

Many researchers have worked with fuzzy clustering methods for protein sequence

clustering [195, 196, 197]. The fuzzy clustering method applies to the items that cannot

be completely divided into two different groups, and thus it is profoundly applicable

for the biological things that have a slow development relationship and can not be

partitioned into two particular clusters [198]. Zhang [195], developed Fuzzy C-Means

(FCM) based method for predicting the structural class of a protein from its amino

acid composition. Lu [196], applied the fuzzy clustering method to all plant cysteine-

rich polycomb-like protein transcription factors. The feature vector of each protein

sequence for the fuzzy clustering method is encoded by the short length peptides and

the combination of functional domain models. Farhangi [197], developed a protein

motif sequence clustering using the FCM algorithm based on the Hadoop framework.

Because of the quick progression of clustering algorithms, these approaches received

a lesser acknowledgment for handling Big Data issues. The reason behind this is that

these algorithms are not scalable [149]. The Big Data environments [150] are needed

to implement scalable algorithms for dealing with large information produced from

51

different sources.

The huge SNP and protein data are applied to the proposed scalable clustering

algorithms (as mentioned in the objectives Section 1.2) for their clustering. Further,

validation measures are used to evaluate the performance of scalable clustering algo-

rithms without any class information [199]. The validation measures include external

measures such as Normalized Mutual Information (NMI) [200], Adjusted Rand Index

(ARI) [201], F-score [193], and internal measures such as Silhouette Index [202], and

Davies-Bouldin Index (DBI) [203]. We have used SI and DBI for assessing the perfor-

mance of scalable clustering algorithms for SNP and protein sequences. The detail of

these measures is presented in the subsequent section.

2.5 Performance Measures

This section presents the different performance measures to evaluate the perfor-

mance of scalable clustering algorithms. There are various measures available for the

validation of clustering algorithms [199, 204, 205]. One option is to use external vali-

dation measures for which a priori knowledge of dataset information is required, but it

is hard to say if they can be used in real problems (usually, real problems do not have

prior information of the dataset in question). Another option is to use internal validity

measures, which do not require a priori information from the dataset. Hence, we can

use internal measures for the validation of genome data. The details of external and

internal measures used in our experimentation are presented next.

2.5.1 External Measures

Here, we discuss the measures used to evaluate the performance of the proposed

scalable fuzzy clustering algorithms on Big Data which are discussed as follows:

Normalized Mutual Information (NMI)

The NMI [200], is utilized for the assessment of clustering quality, which estimates the

proportion of the common data for the clustering, ground truth, and their harmonic

52

mean. The NMI is characterized as pursues:

NMI =

∑i
c=1

∑j
q=1 n

q
clog

(
n.nq

c

nc.nq

)√(∑i
c=1 nclog

(
nc

n

))(∑j
q=1 nqlog

(nq

n

)) (2.38)

Where, n denotes the total number of data samples, nc and nq are the data samples

in the cth cluster and the qth class, respectively, and nqc is the number of common data

samples in class q and cluster c.

Adjusted Rand Index (ARI)

The ARI [201], is utilized to discover the likeness between the clustering of two

datasets. It is the corrected-for-chance version of the Rand index, which evaluates

the similarity between two partitions. The ARI measure assumes that the clustering

is discrete, i.e., hard [206]. To compute the ARI, in the case of fuzzy clustering we

first harden the fuzzy partitions by setting the highest membership value of each data

sample to the cluster equal to 1, and all else to 0 [32]. We use ARI to compare the

clustering solutions with ground truth labels (when available), as well as it examines

the partition of an accelerated algorithm to that of the reference algorithm. The

formulation of ARI is defined as follows:

ARI =

∑
q,c

(
nqc

2

)
−
[∑

q

(
nq.

2

)∑
c

(
n.c

2

)]
/
(
n
2

)
1
2

[∑
q

(
nq.

2

)
+
∑

c

(
n.c

2

)]
−
[∑

q

(
nq.

2

)∑
c

(
n.c

2

)]
/
(
n
2

) (2.39)

F-score

F-score is used to calculate the accuracy of a clustering output [193]. The precision

and recall of the cluster for each given class are computed as follows:

Pqc =
nqc
nc
,Rqc =

nqc
nq

(2.40)

Where, nqc denotes the number of samples of class q that are also present in cluster

c, nq denotes the number of samples belonging to class q, and nc denotes the number

of samples belongs to cluster c. The F-score of cluster c and class q is represented as

53

follows:

ϕ(q, c) =
2 ∗ Pqc ∗ Rqc

Pqc +Rqc

(2.41)

The overall F-score is then defined as the weighted sum of the maximum F-scores for

each class and is given by the following:

F − score =
∑
q

nq
n
max{ϕ(q, c)} (2.42)

where, n is the total number of data samples. The higher value of the F-score indicates

better clustering results. The F-score value approaching 1 reflects that the attained

clustering results are similar to the ground truth value.

2.5.2 Internal Measures

In this section, we are discussing the measures most widely used in genomics.

We have used these measures to evaluate the performance of the proposed scalable

clustering algorithms on genome data.

Silhouette Index (SI)

This measure is useful for the validation of consistency within clusters of genome data.

SI [202] is a measure of how similar a data sample is to its cluster in comparison with

other clusters. Thus SI is characterized as:

SI =
a2(i)− a1(i)

max[a1(i), a2(i)]
(2.43)

Where a1(i) is the average distance between ith sample from all other data samples

within the same cluster, a2(i) is the lowest average distance of ith sample to all the

data samples in any other cluster, of which i is not a member. The Silhouette value is

bounded in a range of -1 to 1. A negative value indicates low clustering, and a positive

value indicates good clustering quality.

Davies Bouldin Index (DBI)

The DBI [203] is used for evaluating the performance of clustering. It consolidates a

single record in two measures, one identified with the scattering of individual clusters

54

and the other to the partition between various clusters.

DBI =
1

c

∑c

i=1
maxj 6=i

[
diam(ci) + diam(cj)

dist(ci, cj)

]
(2.44)

Where dist(ci, cj) correlates to the distance between the center of clusters ci and cj,

diam(ci) is the maximum distance between all the data samples of cluster ci, and c

is the number of clusters. The DBI is not limited inside a given range, and thus the

lower DBI indicates good clustering quality.

The SI and DBI measures evaluate the performance of scalable fuzzy clustering

algorithms on huge genome data. The details of genome datasets used in our experi-

mentation are presented in the next section.

2.6 Real-life Genome Data

Genomics is an interdisciplinary field of biology focusing on the structure, function,

evolution, mapping, and editing of genomes [207, 208, 209]. A genome is an organ-

ism’s complete set of genetic instructions. Each genome contains all of the information

needed to build that organism and allow it to grow and develop. The role of tech-

nology in genomics focuses on the massive growth in genome sequencing, which has a

development rate quicker than expected by Moore’s law [210]. Scientists are expecting

as many as 1 billion people to have their genomes sequenced by 2025. The amount of

data being produced in genomics is doubling every seven months, so within the next

decade, genomics is looking at generating somewhere between 2 and 40 exabytes a

year [43]. Computer databases are becoming popular for organizing the vast amounts

of biological data currently available and to make it easier for researchers to locate rel-

evant information [211]. The numerous existing databases [21, 212, 56, 166, 54] such

as National Center for Biotechnology Information (NCBI) [213], UniProtKB [214],

and Protein Data Bank (PDB) [215] plays a vital role in a research environment and

medical purposes. Genomic and proteomic databases such as NCBI and PDB are

beneficial to know research history about the genome of any organism, protein func-

55

(a) Exponential Growth of NCBI Genomes
[219].

(b) Growth statistics of organism [219]

.

Figure 2.7: The phenomenal growth of genome data in NCBI is challenging to manage,
and continues unabated.

tion, proteome nature, etc. The sheer volume of the raw sequence data present in

these repositories has led to an attempt to reorganize this information into various

kinds of smaller and specialized databases. Such databases include various genome

browsers, model organism databases, molecule or process-specific databases, and oth-

ers. To understand the growth of these resources, one needs to look at the annual

database issue of the journal Nucleic Acids Research. GenBank is described as one

of the first database issues, in which only a few dozen genomics databases are listed

[216]. In contrast, the latest database issue describes over 1,000 genomics databases

[217] and tools [218]. However, even this list of resources is only a part of the overall

picture. Today, it appears that there are upwards of 3,000 distinct genomic resources,

tools, and databases publicly available on the Internet. Figure 2.7(a) represents the

number of database resources that organize and displays the data are also increasing

rapidly. The rise is exponential in nature. The organism growth is represented using

Figure 2.7(b). There are >800 databases of human genetic variation, but only a few

central databases that are most widely used [220]. The largest database of common

genetic variation is the NCBI’s dbSNP2, created after the Human Genome Project

2https://www.ncbi.nlm.nih.gov/snp/

56

discovered a significant number of common variants. Moreover, Chen [221] discussed

many publicly available data repositories and resources for protein data.

We have performed comparative studies using whole genome re-sequence of soybean

genotype EC241780 to identify genomic variations between the rust-resistant line

EC241780 and susceptible cultivar JS335 and to develop suitable breeding strategies

to impart rust resistance in soybean. Recent rapid developments of high-throughput

sequencing technologies bring genome researchers to the age of Big Data, where the

research paradigm has shifted from hypothesis-driven to data-driven. Big Data opens

new avenues to study genomics and brings new challenges for bioinformatics to explore

ways to efficiently manage and analyze data and eventually turn data into usable and

actionable knowledge. The detailed description of the SNP and protein dataset used

in our experimental analysis are presented in the subsequent section.

2.6.1 Soybean and Rice SNP Dataset Description

Each SNP represents a difference in a single DNA building block called a nucleotide.

The detailed description of SNP is presented in Section 2.4.1. The SNP datasets used

for our experimental analysis are discussed next.

SoySNP50K Wm82.a1: The SoySNP50K3 iSelect BeadChip consists of 50,000

SNPs from soybean [222]. The subsequent size of the SoySNP50K Wm82.a1 data

set is 1.7 GB. The complete dataset contains 20,081 SNP sequences.

SNP-seek rice: The SNP-seek rice data contains rice chromosomes (ch1-12)4; we

have merged all the rice chromosomes from ch1-12 into a single file to perform clus-

tering on a huge SNP dataset. Mansueto et al. [57] discussed the SNP-seek rice data

in detail. The subsequent size of the dataset is 16.3 MB.

MAGIC-rice: The MAGIC-rice dataset5 consists of SNP sequences, 1,411 Samples

are divided into 12 files (for each chromosome). To perform clustering on a huge SNP

3https://www.soybase.org/snps/
4https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/osnp_legacy/

diversity_rice31.oryzasnp.hapmap.tar.gz
5https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/pub-data/

MAGIC-Raw-genotype-data-Raghavan-2017.zip

57

https://www.soybase.org/snps/
https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/osnp_legacy/diversity_rice31.oryzasnp.hapmap.tar.gz
https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/osnp_legacy/diversity_rice31.oryzasnp.hapmap.tar.gz
https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/pub-data/MAGIC-Raw-genotype-data-Raghavan-2017.zip
https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/pub-data/MAGIC-Raw-genotype-data-Raghavan-2017.zip

dataset, we have merged all the chromosomes from ch1-12 and formed the MAGIC-rice

dataset. Bandillo et al. [223] discussed the detailed descriptions of the population.

The subsequent size of the dataset is 1.05 GB.

248Entries rice: The 248Entries rice data6 contains a total of 248 samples composed

of indica and aus genotypes. Dilla-Ermita et al. [55] discussed the details of 248Entries

rice data. The subsequent size of the dataset is 30.8 MB. The complete dataset

contains 40,840 SNPs of rice data.

2.6.2 Soybean Protein Dataset Description

Proteins are the end products of the decoding process that starts with the infor-

mation in cellular DNA. Each gene in cellular DNA contains the code for a unique

protein structure. The detailed description of protein is presented in Section 2.4.2.

The protein datasets used for our experimental analysis are discussed next.

Lee: The Lee strain, which crosses between the Chinese lines CNS and S-100, is

widely used as a parent in many breeding projects in the southern United States and

Brazil. Diversity is characterized by resistance to bacteria from Phytophthora rot,

Peanut Mottle Virus, and bacterial pustule [224].

Williams82: Williams 82, a soybean cultivar used to generate the reference genomic

sequence. This was obtained from reverse mating of the Phytophthora root rot resis-

tance locus from the donor parent Kingwa to the recurrent Williams parent [225].

PI483463: Glycine Soja is the closest wild soybean of Glycine max. Species remain

interfertile, and specimens of G. soja are used in breeding projects to introduce traits

such as resistance to certain diseases or environmental stress. Glycine Soja accession

PI483463 have salt tolerance [226].

W05: Glycine Soja accession W05 is a salt tolerant wild soybean whose genome

sequenced and to serve as a reference genome assembly. W05 affiliation has been used

for genetic studies of various traits including uncertainty, seed size, number of pods

per plant, and seed color [227].

6https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/pub-data/

248Entries_40840SNPs_inorder_21May2015_v2.zip

58

https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/pub-data/248Entries_40840SNPs_inorder_21May2015_v2.zip
https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/pub-data/248Entries_40840SNPs_inorder_21May2015_v2.zip

The genome datasets discussed in this section are used for feature extraction and

clustering. Clustering plant genome sequences can help to identify unique and new

genes to improve crop production with higher yields, drought resistance, improved crop

quality, and provide better suggestions to find a cluster of diseases. Moreover, due to

the rapid spread of Coronavirus Disease-19 (COVID-19) caused by the Severe Acute

Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the genome sequences of SARS-

CoV-2 genome data are generated on a large scale, it is difficult for health professionals

to keep up with new information on the virus. Therefore, we have investigated the

SARS-CoV-2 data on the proposed scalable feature extraction technique, and then

clustering of SARS-CoV-2 data is performed using proposed scalable clustering meth-

ods. The detailed description of SARS-CoV-2 data used in our experimentation is

presented next.

2.6.3 SARS-CoV-2 Protein Dataset Description

COVID-19 presentation, which began with the reporting of unknown causes of

pneumonia in Wuhan, Hubei province of China on December 31, 2019, has rapidly

become a pandemic [228, 229, 230, 231]. The disease is named COVID-19, and the

virus is termed SARS-CoV-2. Severe acute respiratory syndrome (SARS) coronavirus

has caused severe respiratory disease and death in humans [232]. Nowadays, re-

searchers working on different disciplines in many countries deal with the COVİD-19

virus intensely. Coronaviruses belong to the subfamily Orthocoronavirinae in the

family Coronaviridae, Order Nidovirales. There are four genera within the subfamily

Orthocoronavirinae, namely alphacoronavirus, betacoronavirus, gammacoronavirus,

and deltacoronavirus. This section presents the description of SARS-CoV-2 protein

datasets used in our experimental analysis to cluster massive SARS-CoV-2 protein

sequences.

SARS: The SARS7 dataset is a severe acute respiratory syndrome-related coronavirus

obtained from NCBI. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-

2) is a single-stranded, enveloped RNA virus and the etiological agent of the current

59

coronavirus disease 2019 pandemic. Efficient replication of the virus relies on the

activity of nonstructural protein 1 (Nsp1), a major virulence factor shown to facilitate

suppression of host gene expression through the promotion of host mRNA degradation

and interaction with the 40S ribosomal subunit.

Coronaviridae: The Coronaviridae7 dataset is obtained from NCBI. The NCBI

Datasets Project has developed virus-specific genome and protein datasets, initially

limited to the Coronaviridae (NCBI Taxonomy ID: 11118) family of viruses, in re-

sponse to the COVID-19 pandemic. FASTA amino acid sequence file containing Ref-

Seq and GenBank protein sequences, including polyproteins, mature peptides pro-

cessed from polyproteins and other proteins.

P0DTD1: The P0DTD18 dataset is a multifunctional protein involved in the tran-

scription and replication of viral RNAs. It contains the proteinases responsible for

the cleavages of the polyprotein. Biological function: Methyltransferase that mediates

mRNA cap 2’-O-ribose methylation to the 5’-cap structure of viral mRNAs. N7-methyl

guanosine cap is a prerequisite for binding of nsp16. Therefore plays an essential role

in viral mRNAs cap methylation which is essential to evade the immune system.

7https://www.ncbi.nlm.nih.gov/datasetscoronavirus/genomes/
8https://www.ebi.ac.uk/pdbe/covid-19

60

https://www.ncbi.nlm.nih.gov/datasetscoronavirus/genomes/
https://www.ebi.ac.uk/pdbe/covid-19

Chapter 3

Scalable Kernelized Fuzzy Clustering

Algorithms for Handling Big Data

In this chapter, we present an Apache Spark cluster-based kernelized clustering

algorithm named Kernelized Scalable Random Sampling with Iterative Optimization

Fuzzy C-Means (KSRSIO-FCM). This is based on the Kernelized Scalable Literal

Fuzzy C-Means (KSLFCM) clustering algorithm, in which kernel function is used.

This proposed work is inspired by a Scalable Random Sampling with Iterative Opti-

mization Fuzzy C-Means (SRSIO-FCM) algorithm [52]. The SRSIO-FCM improves

the quality of the formed clusters over the RSIO-FCM algorithm, but it is unable to

cluster the data having non-linear separable data distribution in the feature space. To

tackle this issue, a novel algorithm KSRSIO-FCM is proposed. A kernel function is

applied to achieve better mapping for non-linear separable datasets. Data is projected

into the higher dimensional space so a hyperplane can easily separate it. Our pro-

posed KSRSIO-FCM algorithm can handle non-linear separable data using the Radial

Basis Function (RBF), which helps in improving clustering results. The details of the

proposed methods are discussed next.

3.1 Introduction

Data has become an integral part of our life. There are 2.5 quintillion bytes of data

at the current pace generated every day. Many types of software are being designed

61

to handle the voluminous data. Such an immense quantity of information containing

valuable data is called Big Data. It is becoming necessary to mine such Big Data

to gain insights into the valuable information that can be of great use in scientific

and business applications. Presently, there are several fuzzy clustering algorithms

such as the extension of FCM known as random sampling plus extension Fuzzy C-

Means (rseFCM) that are used for handling Big Data [153], but the overlapping of

the cluster is the main issue of rseFCM. The overlapping is removed by Random

Sampling with Iterative Optimization Fuzzy C-Means (RSIO-FCM) algorithm [154].

However, RSIO-FCM suffers from a sudden rise in several iterations during clustering.

To overcome the issues of RSIO-FCM, a Scalable RSIO-FCM termed as SRSIO-FCM

[151] has been developed, which is an incremental fuzzy clustering approach. The

SRSIO-FCM uses Scalable Literal Fuzzy C-Means (SLFCM) [151] algorithm for the

computation of membership knowledge and cluster centers for all subsets. The SRSIO-

FCM improves the quality of the formed clusters over the RSIO-FCM algorithm, but

it is not used to cluster the data having non-linear separable data distribution in the

feature space. The reason is that the SRSIO-FCM algorithm was developed from

the RSIO-FCM algorithm, which is used to cluster linear separable data. Therefore,

the drawback still lies in the SRSIO-FCM algorithm. The focal point of all these

algorithms is on promoting the clustering or centroid calculation of data having linear

separable data distribution. Thus, this algorithm does not focus on the clustering

of data with non-linear separable data distribution. Therefore, the kernel function is

applied to achieve better mapping for non-linear separable datasets. Our developed

KSRSIO-FCM algorithm aims to overcome this drawback by applying the RBF. The

RBF kernel is one of the most widely used kernels due to its similarity to the Gaussian

distribution [38]. Thus, it helps in enhancing the KSRSIO-FCM clustering results. For

this reason, we present the design of scalable kernelized fuzzy clustering algorithms

implemented in the Apache Spark framework for handling Big Data.

62

3.2 Proposed Kernelized Scalable Fuzzy Cluster-

ing Algorithms for Handling Big Data

The proposed novel KSRSIO-FCM algorithm is designed to deal with the challenges

associated with fuzzy clustering for handling Big Data and overcomes the drawbacks

of the SRSIO-FCM algorithm as mentioned in Section 2.3.2. The proposed KSRSIO-

FCM approach starts by randomly partitioning the data into various subsets. The

KSRSIO-FCM initialized the cluster centers randomly for clustering of the first sub-

set. After clustering the first subset, the cluster centers and membership knowledge

corresponding to the first subset is obtained. After clustering the first subset, the final

cluster centers are used as an input for clustering the second subset. After clustering of

the second subsets, the cluster centers, and membership knowledge is obtained. Then,

it combines the membership knowledge of the first and second subset to compute

the new cluster centers. These cluster centers are then fed as an input for cluster-

ing of the third subset. Thereafter, clustering of this subset, the cluster centers, and

membership knowledge corresponding to it is found. The same procedure is repeated

for the clustering of the rest of the subsets. Unlike SRSIO-FCM [151], the proposed

KSRSIO-FCM tackles linear and non-linear separable data by applying RBF kernel

function, which map the input data space non-linearly into a high dimensional feature

space. This is because, in KSRSIO-FCM, vector norm is used, which is defined in

terms of RBF function instead of Euclidean distance. For performance comparison

of this proposed algorithm, we have designed and implemented the kernelized version

of the existing clustering algorithm, i.e., SLFCM on the Apache Spark cluster. The

KSRSIO-FCM clustering algorithm is implemented with the help of an integrally pro-

posed Kernelized version of Scalable Literal Fuzzy C-Means [151] termed as KSLFCM,

to make the KSRSIO-FCM more efficient. The KSLFCM algorithm uses RBF kernel

function to optimize the objective function. We executed these algorithms on Apache

Spark to utilize its in-memory computation capability to overcome the difficulties that

arise in fuzzy clustering while dealing with Big Data. The KSRSIO-FCM divides the

data into subsets, and KSLFCM is performed on each subset sequentially, where the

63

Table 3.1: Main Math Symbols

Notation Description

X set of data samples
xi ith data sample
M membership matrix
V set of initial cluster centers
V ′ set of final cluster centers
v′j updated jth cluster center
n total number of data samples
s number of subsets
c number of clusters
Rd d dimensions of R feature space
vj jth initial cluster center
mij membership degree of a data sample xi to cluster vj
p fuzzification parameter
I membership knowledge
I ′ updated membership knowledge

input to each subset is a combination of the output of previous subsets. Before pre-

senting the details of the proposed KSRSIO-FCM algorithm, we present the working

of the KSLFCM algorithm. The details of the KSLFCM algorithm are presented in

the subsequent section and Table 3.1 presents the description of the symbols that we

are using throughout the discussion in this chapter.

3.2.1 Kernelized Version of SLFCM Algorithm to Handle Big

Data

To design the kernelized version of the SLFCM algorithm implemented on the

Apache Spark cluster, we first need to identify the computations in the SLFCM al-

gorithm, which could be executed in a parallel manner, and the computations that

could be executed only in a serial manner. As mentioned earlier, SLFCM can handle

linear relations. To handle non-linear relations, the concept of the kernel method is

introduced to extend SLFCM. The KSLFCM is implemented by applying the RBF

kernel function. The kernel RBF is characterized in Eq. (2.11), which maps the input

64

data space non-linearly into a high dimensional feature space. The membership de-

gree is calculated using data samples and cluster center values, as stated in Eq. (2.15).

Therefore, the calculation of the membership degree of particular data samples can

be performed in parallel on various slave nodes.

Algorithm 3.1 Algorithm for Kernelized Scalable Literal Fuzzy C-Means (KSLFCM)
to Iteratively Minimize Jp(M,V ′)

Input: X, c, p, ε, (initial V); X is an array of data samples such that X =

{x1, x2, ...xn}, V is the set of initial cluster centers represented as V =

{v1, v2, ...vc}, c denotes the number of clusters, and ε represents the termination

criteria.

Output: V
′
, I
′
;V

′
represents set of final cluster centers and I

′
represents the mem-

bership knowledge of all the data samples.

1: If V is not initialized, randomly initialize V = {v1, v2,vc}.
2: Compute membership knowledge by using Eq. (2.15).

I ′ = X.Map(V).ReduceByKey() (3.1)

3: Compute the set of final cluster centers V ′ = {v′1, v′2,v′c} by using Eq. (3.2).

v
′

j =
sum djx

sum dj
,∀j ∈ [1, c] (3.2)

4: If ‖ V ′ − V ‖< ε then stop, otherwise go to step 2.

5: Return I ′, V ′.

In Algorithm 3.1, the membership degree is calculated separately for each data

sample. In Line 2 of Algorithm 3.1, we have used the Map and ReduceByKey func-

tions to obtain the parallel computation of the membership knowledge of all the data

samples. Furthermore, Line 3 of Algorithm 3.1, is used to update the cluster center

values from membership degrees of all data samples. Thus, Line 3 of Algorithm 3.1

is executed after membership degrees of all locations have been computed. At the

master node, the membership degree of all the data samples is merged and saved as a

membership knowledge I ′, which is required in Eq. (2.16) to update the cluster center

65

Figure 3.1: The figure describes repository space improvement by avoiding the storage
of membership matrix of subsets.

vj. After that, we have calculated the difference between the old values of the initial-

ized cluster center and newly calculated cluster center values, and this is given in Line

4 of Algorithm 3.1. Repeat this procedure until no change in the values of cluster

centers is recognized. After that, all the iterations are executed sequentially since the

updated cluster centers are required as input for the next iteration.

In order to reduce the space requirements in the proposed KSLFCM algorithm, we

avoid storing the membership matrix of data samples. Figure 3.1 exhibits the whole

methodology of repository space improvement, demonstrates the entire procedure of

storage space optimization. For example: In Algorithm 3.1, the membership matrix

M is required to calculate the cluster centers (V ′) using Eq. (2.16). Rather than saving

the huge membership matrix, calculation of the estimation of the parameter present in

the numerator and denominator of Eq. (2.16), i.e., mp
ijK(xi, vj)xi, and mp

ijK(xi, vj),

where mp
ij is denoted as dij and K(xi, vj) denoted as kij. The membership matrix M is

expected to find cluster centers V ′ using Eq. (2.16) and for each sample xi and cluster

center vj, which is represented as dijkijxi and as dijkij, respectively. This avoids the

need of storing the huge membership matrix M . Then, we do the summation of all the

66

dijkijxi values and all the dijkij values of the data samples comparable to the cluster

center vj to calculate the numerator and denominator of Eq. (2.16) which represent

as sum djx and sum dj and reserved as membership knowledge in variable I ′. After

that, we access these values in Line 3 of Algorithm 3.1 to process the cluster centers

by utilizing Eq. (2.16), which is used for calculating the updated cluster centers. Due

to this, we save a significantly huge amount of space and computational time.

Map function

The map function works in the following manner. First, the entire data is split

into several chunks at the master node. The master node logically separates the data

and the slave nodes deal with chunks of the separated data. The membership degree

of a point is determined by utilizing the data sample itself and the cluster center

values. Thus, the computation of membership degrees of two data samples is inde-

pendent of each other. Hence, we have implemented this operation independently

for every data sample on a slave node and join the subsequent values on the master

node. This obtained result is the same as that of the result obtained by implement-

ing this operation for all data samples on a solitary machine. According to Line 2

of Algorithm 3.1, the Map function is executed in parallel on Apache Spark and

returns the results to RDD in terms of key/value pairs [135]. RDD is nothing but a

data structure used to store the samples efficiently in memory as already discussed in

Section 2.2. Here, a map function is created corresponding to each data sample, and

it gives as many outputs equal to the number of clusters as results in RDD in terms

of key-value pairs where each key represents a cluster number and a value contains

the result of an operation performed in a Map function. Thus, this makes the execu-

tion of the KSLFCM algorithm much faster by saving computational time [233]. The

Map function, characterized in Algorithm 3.2, computes the membership degree

of a data sample for each cluster center and returns every one of them exclusively.

Consequently, each Map function gives the same number of outcomes as the number

of clusters. Algorithm 3.2, depicts the arrangement of tasks performed during a

Map function to acquire mp
ijK(xi, vj)xi, and mp

ijK(xi, vj) for each point xi and cluster

center vj as discussed in Line 3 of Algorithm 3.1. In this algorithm, mp
ijK(xi, vj)xi,

67

Algorithm 3.2 Algorithm for Map Function (Map(x,V))

Input: xi, V .

Output: < j,< dijkijxi, dijkij >>

1: for each vj in V do

2: dijkij= dij (membership degree of xi concerning vj, kij (kernel value for an ith data

sample in the jth cluster).

3: dijkijxi = dijkij ∗ xi.
4: yield < j,< dijkijxi, dijkij >>.

5: end for

and mp
ijK(xi, vj) is denoted as dijkijxi and dijkij, respectively. The parameter xi rep-

resents the ith data sample, yield is used when a function has multiple return values,

and < j,< dijkijxi, dijkij >>; ∀j ∈ [1, c] represents key-value pairs as outputs of a

Map function.

ReduceByKey function

The Map function results in many key-value sets having a similar key value. Re-

duceByKey performs tasks on the key-value matches that have a similar key. To

rearrange things, here we depict the tasks that are performed on two such key-value

sets. Spark deals with similar tasks on all the key-value pairs and Map outputs. To

update the cluster center characteristics, we need to find the numerator and denom-

inator in Line 3 of Algorithm 3.1. Since we have determined, mp
ijK(xi, vj)xi, and

mp
ijK(xi, vj) as dijkijxi and dijkij, respectively, for each point xi and cluster center

vj. During the Map stage, we have to add every one of these values. This is done

using the ReduceByKey function which is described in Algorithm 3.3. This gives

us the numerator and denominator of Eq. (2.16) for each cluster center vj as sum djx

and sum dj, respectively. In Algorithm 3.3, a and b are the output of two Map

functions, concerning cluster center vj, (dijkijxi)a and (dijkijxi)b denotes the value

of dijkijxi corresponding to Map function outputs a and b respectively, (dijkij)a and

(dijkij)b denotes the value of dijkij corresponding to Map function outputs a and b re-

spectively. The output of the ReduceByKey function is used to calculate the updated

cluster center values using Eq. (2.16) on the master node.

68

Algorithm 3.3 Algorithm for ReduceByKey Function (ReduceByKey(a,b))

Input: a, b such that a =< j,< (dijkijxi)a, (dijkij)a >> b =< j,<

(dijkijxi)b, (dijkij)b >>.

Output: < j,< sum djx, sum dj >>

1: sum djx = (dijkijxi)a + (dijkijxi)b

2: sum dj = (dijkij)a + (dijkij)b

3: return:< j,< sum djx, sum dj >>

3.2.2 Proposed Design of a Novel KSRSIO-FCM Algorithm

to Handle Big Data

The KSRSIO-FCM algorithm starts by partitioning the entire data into various

subsets (chunks). These subsets are created by randomly selecting data samples from

the entire dataset by selecting 100% of the data without replacement for Big Data.

The data samples present in a subset are distinct from the data samples present in

other subsets. The clustering of each subset is done in parallel on the Apache Spark

cluster. Algorithm 3.4, summarizes the steps of KSRSIO-FCM. In this algorithm,

we compute cluster centers and membership knowledge for the first subset X1, denoted

as V
′
and I

′
, respectively in parallel by using Eqs. (3.2) and (3.1). Data samples in one

subset are different from other subsets. For the clustering of the first subset, the cluster

centers are initialized randomly. Then KSRSIO-FCM calculates the cluster centers and

membership knowledge for initial subset X1, represented by V ′ and I ′, respectively, by

applying KSLFCM. Then V ′ is fed as an input cluster center for clustering of second

subset X2 . The KSRSIO-FCM performs clustering of X2 by applying KSLFCM and

calculates the cluster centers and membership knowledge represented by I and V ′.

However, KSRSIO-FCM does not feed V ′ as an input for the clustering of the third

subset. This is because KSRSIO-FCM considers the reality that arbitrary partitioning

may bring about the two continuous subsets containing data samples of distinct classes.

Therefore, the cluster centers of these two subsets will be significantly different from

each other. So, to use a better approximation of cluster centers initialization for the

clustering of any subset KSRSIO-FCM avoids utilizing cluster centers of the previous

69

Algorithm 3.4 Algorithm for Scalable Random Sampling with Iterative Optimization
Fuzzy C-Means to Iteratively Minimize Jp(M,V

′
)

Input: X, c, p, ε; X is an array of data samples such that X = {x1, x2, ...xn}
Output: I

′
, V

′

1: Begin

2: Partition set X into s subsets such that X = {X1, X2,Xs}.
3: Randomly select X1 from X without replacement where X1 represents the first

subset consist of random n/s samples.

4: I
′
, V

′
= KSLFCM(X1, c, p, ε)

5: for t = 2 to s do

6: I, V ′ = KSLFCM(Xt, c, p, ε, V
′)

7: Merge the partition of all blocks of processed subsets

8: for j = 1 to c do

9: I
′
j =< j,< (sum djx)Ij ,+(sum djx)I′j

, (sum dj)Ij ,+ (sum dj)I′j
>>

10: end for

11: Compute updated cluster center v′j using:

12: < j,< sum djx, sum dj >> in I ′ by Eq. (2.16) ∀ ∈ [1, c]

13: end for

14: Return I ′, V ′

15: End

iteration as the initial cluster centers for the clustering of the current subset. Rather

it joins the membership knowledge of all the processed subsets. Thus, it merges the

membership knowledge of all the processed subsets, i.e., it combines I ′ and I, and the

updated cluster centers are evaluated using Eq. (2.16). These cluster centers are the

more prominent way of estimation of actual cluster centers since they are computed

with the combined membership knowledge of a larger number of data samples that

cover a wider sample space.

In Algorithm 3.1, updated membership knowledge I ′ gives the numerator and

denominator of V . Since membership values of one data sample are independent of

other data samples, combining membership matrices equivalently means union of the

first subset (I1) and the second subset (I2). Thus, instead of allotting a huge amount

70

of space in storing I, we can combine I1 and I2 without loss of any information. This

helps in optimizing space, this optimization analogy works for the remaining subsets,

i.e., for all s ∈ [3, s], where s is the number of subsets. Since the operations on

one subset are done serially, effectively only (1
s
)th times of the space will be used for

KSLFCM. Due to this, we save a significantly huge amount of space and computational

time.

Figure 3.2 demonstrates the workflow of KSRSIO-FCM, which makes use of

KSLFCM for computing membership knowledge and cluster centers of all subsets.

It demonstrates how the data sample is randomly distributed into various subsets and

how the underlying cluster centers are randomly chosen for the clustering of the initial

subset.

Figure 3.2: Workflow of KSRSIO-FCM algorithm.

71

3.3 Complexity Analysis

Many researchers used kernel based clustering algorithms with huge data where

the complexity of the distance equations is quadratic [97]. The complexity analysis of

our proposed KSLFCM and KSRSIO-FCM algorithm leads to the linear complexity

in terms of the input data sample. The space complexity is regarding the amount

of information held in RAM throughout the calculation. Table 3.2 demonstrates the

complexity analysis of the kernelized algorithms in terms of variables. Here, X repre-

sents the dataset that comprises of n number of data samples in the d high dimensional

space such that X = {x1, ..., xn}, xi ∈ Rd where c is the number of clusters, w is the

number of the slave nodes in Spark cluster, and X is randomly distributed into s

number of partitions delineated as X = {X1, X2,Xs} such that each subset con-

sists of random n/s samples. The number of iterations required for the termination

is denoted as t. However, this is not constant and may vary at different iterations.

Thus, for simplicity, we consider t as the maximum number of iterations for the exe-

cution of KSLFCM and KSRSIO-FCM. In these algorithms, we compute the expense

of membership degrees during the Map stage. Each Map task calculates the member-

ship degree of one data sample as to c cluster centers. Since each data sample has

d-dimensions, the computation of each membership degree takes O(d) time and O(d)

space. Each Map task takes O(cd) time and O(cd) space. The ReduceByKey task

linearly adds the estimations of all the Map operations, corresponds to one cluster

on each slave node, and joins the subsequent values on the master node. We have

assumed an equal distribution of jobs to the w slave nodes. Joining the outputs of

Reduce action takes O(cwd) time and O(cd) space.

KSLFCM executes Map and ReduceByKey tasks on the whole dataset. Every

slave node processes (n/w) data samples in parallel. In this way, the Map stage

takes an aggregate of O(nd/w) time and O(ncd) space for each iteration across all

slave nodes. Expecting that KSLFCM keeps running for t iterations, the total time

taken for a Map stage is O(ncdt/w). Since Map results have been held in memory

just for the term of one iteration of KSLFCM, hence the total space complexity for

72

Table 3.2: Complexity Analysis of Kernelized Algorithm.

Algorithm Time Complexity Space Complexity

KSLFCM O
(
ncdt/w

)
O
(
ncd
)

KSRSIO-FCM O
(
ncdt/w

)
O
(
ncd/s

)
the Map stage of KSLFCM is O(ncd). The ReduceByKey action linearly adds s/w

Map results, comparing to each cluster centers in parallel, on every slave node. This

takes O(nd/w) time and O(cd) space on a slave node. Since each slave node performs

tasks on n/w data in parallel on the same amount of time, the total required time

is O(nd/w). Every slave nodes give c outputs, which are accumulated on the master

node and added. This takes O(cd/w) time and O(cd/w) space. Along these lines, the

total time complexity for the ReduceByKey stage is O(ncdt/w) and space complexity

is O(cd/w). Accordingly, the time complexity of KSLFCM is O(ncdt/w) and space

complexity is O(ncd)) where n >> w, c.

KSRSIO-FCM partitions the whole dataset X into s equivalent subsets with the

end goal that X = {X1, X2,Xs}, where every subset is of size (n/s). It executes

KSLFCM over each one of these subsets sequentially. The time and space complexity

of performing KSLFCM over every subset is O(ncdt/sw) and O(ncd/s), respectively.

Since every one of the subsets is handled in a steady progression, the time complexity is

O(ncdt/w) while the space complexity remains O(ncd/s) because data corresponding

to one subset is not held in the memory while processing the next subset.

In Table 3.2, we have described that KSLFCM and KSRSIO-FCM share a similar

time complexity. Although, it appears that both have a similar run-time, but this is not

the case. Since we partitioned the whole dataset into various subsets and performed

clustering over each subset in KSRSIO-FCM. Due to this, clustering performed by

KSRSIO-FCM on each subset converges by taking the less number of iterations (t)

for each subset. Hence, KSRSIO-FCM has lesser run-time as it performs clustering

on a small chunk of data in each subset in comparison with KSLFCM that performs

clustering of the whole data. The performance analysis in terms of the ratio of time

taken by KSRSIO-FCM with different chunk sizes of each dataset versus the time taken

73

by KSLFCM on the whole dataset is shown in Figure 3.3 in a subsequent section.

3.4 Experimental Evaluation

In this section, we present the experiments of our proposed scalable kernelized clus-

tering algorithms on various Big Datasets. We analyze the performance of KSRSIO-

FCM in comparison with KSLFCM, SRSIO-FCM, and SLFCM by using different

measures such as NMI [200], ARI [201], and F-score [193], respectively. These three

measures (NMI, ARI, F-score) are briefly discussed in Section 2.5.1. Also, we have

done the performance analysis in terms of the ratio of time taken by KSRSIO-FCM

with different chunk sizes of each dataset versus the time taken by KSLFCM on the

whole dataset. All these approaches discussed above are executed on the Apache Spark

cluster.

3.4.1 Datasets and Experimental Settings

To demonstrate the efficacy of the proposed KSRSIO-FCM over the proposed

KSLFCM, we have created Big Datasets by taking data from various sources [234, 235,

236, 237] and evaluate the performance of these approaches on various Big Datasets,

i.e., SUSY, Monarch-Skin, Mnist8m, and Reproduced-Dim32. The details of these

datasets are presented in the subsequent section. To evaluate the performance of all

the approaches, we fix the value of fuzzifier p = 1.75 and termination criteria ε = 0.001

for these datasets used in the experimental study. Also, we have fixed the value of

number of clusters (c) for SUSY (c = 2), Monarch-Skin (c = 2), Mnist8m (c = 10),

and Reproduced-Dim32 (c = 16), respectively. After exhaustive experimentation, we

found that these values are more suitable for the datasets because on these values the

datasets achieve better performance. Also, these values are proven to work well for

most of the datasets [32, 238].

74

Table 3.3: Description of Datasets.

Datasets #instances #features Classes Dataset Size

SUSY 5,000,000 18 2 2.4 GB
Monarch-Skin 1,470,342,000 4 2 25.4 GB
MNIST8m 14,986,500 784 10 31 GB
Reproduced-Dim32 1,00,000 32 16 12.4 GB

3.4.2 Experimental Environment

The Apache Spark cluster is used to perform the experimental evaluation. The

spark cluster consists of five slave nodes and one master node. Each slave node has

the following configuration: Intel(R) Core(TM) i7-77000 CPU @ 3.60 GHz × 8, 16

GB RAM, 1TB storage, and the master node has 32 GB RAM, Intel(R) CPU E5-

1607 v3 @ 3.10 GHz × 4, 1TB storage. HDFS is used across the cluster for data

storage with spark standalone mode. The algorithms were implemented in Python

version 3.6.7, Apache Spark cluster 2.4.0 setup on Ubuntu 18.04 with Hadoop version

2.7.3. As discussed earlier in Section 2.2, Apache Spark requires a cluster manager

and a distributed storage system so here we used spark standalone [239] for cluster

management and HDFS [140] for storing data across the Spark Cluster.

3.4.3 Datasets Description

We utilize four real-world datasets for our experiments that are openly accessible.

We look at the execution of KSRSIO-FCM, KSLFCM, SRSIO-FCM, and SLFCM

algorithms on these datasets. Table 3.3 demonstrates a few characteristics of these

datasets used for the exploratory experimentation, and the depiction of these datasets

is displayed as follows:

SUSY Dataset: We have obtained this dataset from the UCI machine learning

repository [234]. The dataset size is 2.5 GB with 5,000,000 instances.

Monarch-Skin Dataset: We made the Cartesian result of Skin division data ac-

quired from UCI [234] with the monarch dataset [235] to examine our algorithm on

75

the massive size. Skin data comprises of the measurement 245057× 4, while monarch

data consist of one element. We utilized a 25.4 GB estimated subset of the Cartesian

product, with 1,470,342,000 occurrences for our tests.

MNIST8m Dataset: It contains dark scale pictures of hand-drawn digits, from

zero through nine [236]. Each picture is 28 pixels in height and 28 pixels in width for

784 pixels altogether. The following dataset is 31 GB in size and contains 14,986,500

occurrences separated into ten classes.

Reproduced-Dim32 Dataset: The Dim32 data collection consists of 1024 high-

dimensional informational indexes and 16 Gaussian clusters. All the clusters are iso-

lated even in the higher dimensions. To get a huge dataset, we replicated it multiple

times. The resulting dataset is 12.4 GB in size and contains 1,00,000 cases, referred

to as Reproduced-Dim32 dataset [237].

3.4.4 Experimental Results and Discussion

This section presents the discussion of the effectiveness of KSRSIO-FCM in com-

parison with KSLFCM, SRSIO-FCM, and SLFCM evaluated on four datasets as per

the various estimates, such as NMI, ARI, and F-score, respectively. For every dataset,

we have compared the performance of KSRSIO-FCM, KSLFCM, SRSIO-FCM, and

SLFCM by utilizing the parameters as portrayed previously. The estimations of NMI,

ARI, and F-score for KSRSIO-FCM and SRSIO-FCM on various chunk sizes of four

datasets in comparison with KSLFCM and SLFCM are shown in tables reported sub-

sequently. Additionally, it calculates the performance analysis in terms of the ratio

of time taken by KSRSIO-FCM with different chunk sizes of each dataset versus the

time taken by KSLFCM on the whole dataset.

Table 3.4 organizes the estimations of NMI, ARI, and F-score for the SUSY dataset.

NMI demonstrates the quality of clustering. The higher NMI value indicates good clus-

tering. While speaking about the difference in values of NMI among various chunk

sizes, the NMI value for 100% (KSLFCM) chunk size is comparatively smaller than

NMI values achieved with KSRSIO-FCM with different chunk sizes. Again, like NMI,

a higher ARI value represents better clustering. On comparing the values of ARI for

76

Table 3.4: Results of KSRSIO-FCM, KSLFCM, SRSIO-FCM, and SLFCM with vary-
ing chunk sizes on SUSY Dataset.

Algorithm
Chunk

Size
Measures

NMI ARI F-score

KSRSIO-FCM

1% 0.0638 0.0434 0.6387
2.5% 0.0631 0.0534 0.7372
5% 0.0700 0.0346 0.7463
10% 0.0836 0.1042 0.6383
20% 0.0731 0.0535 0.6830

KSLFCM 100% 0.0603 0.0415 0.6203

SRSIO-FCM

1% 0.0287 0.0428 0.6416
2.5% 0.0290 0.0431 0.6420
5% 0.0287 0.0427 0.6409
10% 0.0286 0.0430 0.6412
20% 0.0287 0.0428 0.6416

SLFCM 100% 0.0258 0.0380 0.6079

different chunk sizes, the ARI value for chunk size 100% (KSLFCM) is comparatively

lower than the values achieved by KSRSIO-FCM on different chunk sizes. Among

the different chunk sizes of SUSY data, the KSRSIO-FCM achieved the highest value

of ARI for a chunk size of 10%. Like NMI and ARI, F-Score also demonstrates the

quality of clustering. Thus, comparing values of F-score for different chunk sizes, we

analyze that the value of F-score is lower for KSLFCM compared to KSRSIO-FCM.

Besides this, the values of the F-score vary for different chunk sizes of KSRSIO-FCM,

and it achieves a remarkable value of F-score for chunk size 5%. Hence, we get superior

clustering results in terms of F-score when compared KSRSIO-FCM with KSLFCM.

Thus, comparing all the three measures, we conclude that KSRSIO-FCM performance

is much better than KSLFCM in terms of NMI, ARI, and F-score, respectively. Fur-

thermore, on comparing the values of NMI, ARI, and F-score for different chunk

sizes of the SUSY dataset, the KSRSIO-FCM performs better than SRSIO-FCM and

SLFCM.

In Table 3.5, we have reported the results on the Monarch-Skin dataset in terms

of NMI, ARI, and F-score, respectively. On comparing NMI, KSLFCM has attained

the lowest NMI value compared to the NMI values achieved on different chunk sizes of

KSRSIO-FCM. Similarly, for ARI, KSLFCM has obtained a lower value compared to

77

Table 3.5: Results of KSRSIO-FCM, KSLFCM, SRSIO-FCM, and SLFCM with vary-
ing chunk sizes on Monarch-Skin Dataset.

Algorithm
Chunk

Size
Measures

NMI ARI F-score

KSRSIO-FCM

1% 0.0237 0.0487 0.6685
2.5% 0.0250 0.0567 0.7068
5% 0.0389 0.0462 0.6987
10% 0.0439 0.0525 0.6387
20% 0.0217 0.0472 0.7287

KSLFCM 100% 0.0194 0.0444 0.5976

SRSIO-FCM

1% 0.0127 0.0358 0.6484
2.5% 0.0127 0.0358 0.6484
5% 0.0127 0.0358 0.6484
10% 0.0127 0.0358 0.6484
20% 0.0127 0.0358 0.6484

SLFCM 100% 0.0358 0.0444 0.6484

KSRSIO-FCM for different chunk sizes. Now, the F-score value achieved by KSRSIO-

FCM for all chunk sizes is comparatively much higher than the KSLFCM. Further-

more, KSRSIO-FCM achieves the remarkable value of F-score for a chunk size of

20%. Therefore, comparing all three measures, we conclude that KSRSIO-FCM per-

forms much better than KSLFCM in terms of NMI, ARI, and F-score, respectively.

Furthermore, on comparing the values of NMI, ARI, and F-score for different chunk

sizes of the Monarch-Skin dataset, the KSRSIO-FCM also performs much better than

SRSIO-FCM and SLFCM.

In Table 3.6, we have reported the results on the MNIST8m dataset in terms

of NMI, ARI, and F-score, respectively. Observing the values of NMI, KSLFCM

has obtained a very low value, whereas the KSRSIO-FCM achieved a much higher

value of NMI for the different chunk sizes of the MNIST8m dataset. Furthermore,

the KSRSIO-FCM achieved the highest value of NMI for a chunk size of 2.5%. In

the case of ARI, the value achieved by KSRSIO-FCM is much better than KSLFCM

on almost all the chunk sizes except for chunk size 1%. Furthermore, the best ARI

value attained by KSRSIO-FCM is for a chunk size of 5%. In the case of F-score,

we analyze that the F-score value obtained by both KSRSIO-FCM and KSLFCM,

which is almost similar. Therefore, comparing all three measures, we conclude that

78

Table 3.6: Results of KSRSIO-FCM, KSLFCM, SRSIO-FCM, and SLFCM with vary-
ing chunk sizes on MNIST8m Dataset.

Algorithm
Chunk

Size
Measures

NMI ARI F-score

KSRSIO-FCM

1% 0.42837 0.2377 0.0658
2.5% 0.47687 0.3188 0.0946
5% 0.45577 0.3347 0.0835
10% 0.41679 0.2745 0.1000
20% 0.39779 0.3233 0.1034

KSLFCM 100% 0.27879 0.2574 0.1099

SRSIO-FCM

1% 0.0022 0.0006 0.1018
2.5% 0.0014 0.0005 0.0928
5% 0.0016 0.0001 0.0922
10% 0.0016 0.0006 0.1066
20% 0.0021 0.0005 0.1016

SLFCM 100% 0.0043 0.0004 0.0962

KSLFCM performs approximately equally well as KSRSIO-FCM in terms of the F-

score. Moreover, KSRSIO-FCM performs better than KSLFCM in terms of ARI and

NMI measures. Furthermore, on comparing the values of NMI, ARI, and F-score

for different chunk sizes of the MNIST8m dataset, the KSRSIO-FCM performs much

better than SRSIO-FCM and SLFCM in the case of NMI and ARI. On the other hand,

in case of F-score, the value of F-score attained by KSRSIO-FCM for different chunk

sizes are almost close to the value of F-score attained by SLFCM and SRSIO-FCM

for different chunk sizes.

In Table 3.7, we have reported the results on the Reproduced-Dim32 dataset in

terms of NMI, ARI, and F-score, respectively. Observing the values of NMI, KSLFCM

obtained a very close result to that of KSRSIO-FCM for chunk size 10% and 1%. How-

ever, the KSRSIO-FCM for chunk size 20% achieves remarkable results in comparison

with KSLFCM. In the case of ARI, a similar analogy can be drawn. The reason for

a very close result is the replication of a dataset. The fraction of data samples that

belong to a specific class is very high than the data samples to other classes. As ex-

plained earlier, KSRSIO-FCM achieves the clustering of whole data by dividing it into

distinct subsets. Hence, this could be due to the randomly chosen subsets, which con-

tain more data samples belonging to the majority class. So, as a result, skewed cluster

79

Table 3.7: Results of KSRSIO-FCM, KSLFCM, SRSIO-FCM, and SLFCM with vary-
ing chunk sizes on Reproduced-Dim32 Dataset.

Algorithm
Chunk

Size
Measures

NMI ARI F-score

KSRSIO-FCM

1% 0.5772 0.2268 1
2.5% 0.6325 0.2046 1
5% 0.6123 0.2697 1
10% 0.5258 0.1601 1
20% 0.7962 0.3403 1

KSLFCM 100% 0.5646 0.1957 0.9998

SRSIO-FCM

1% 0.4218 0.0094 0.12878
2.5% 0.0357 0.0076 0.123
5% 0.4517 0.0008 0.1239
10% 0.4971 0.1198 0.125
20% 0.5268 0.1385 0.1875

SLFCM 100% 0.4869 0.1184 0.125

centers are generated in KSRSIO-FCM in comparison with KSLFCM. On the other

hand, in case of the F-score, we analyze that the F-score value achieved by KSRSIO-

FCM for different chunk sizes is almost the same, and a bit low for KSLFCM. In this

manner, randomly picked subsets may contain more data samples belonging to the ma-

jority class. Therefore, comparing all the three measures, we conclude that KSLFCM

performs approximately equally well as KSRSIO-FCM in terms of F-score. Further-

more, on comparing the values of NMI, ARI, and F-score for different chunk sizes of

the Reproduced-Dim32 dataset, the KSRSIO-FCM performs better than SRSIO-FCM

and SLFCM.

Figure 3.3 demonstrates the performance analysis in terms of the ratio of time

taken by KSRSIO-FCM with different chunk sizes of each dataset versus the time

taken by KSLFCM on the whole dataset. Depending upon the size of the datasets,

the ideal chunk size may change for various datasets. The performance analysis of

KSRSIO-FCM in comparison with KSLFCM is characterized as the proportion of

time taken by KSRSIO-FCM and that by KSLFCM, i.e., tKSRSIO−FCM/tKSLFCM . In

any case, the performance analysis of KSRSIO-FCM and KSLFCM would likewise rely

upon the number of iterations for which KSRSIO-FCM keeps running on each chunk

of data.

80

Figure 3.3: Performance analysis in terms of the ratio of time taken by KSRSIO-FCM
with different chunk sizes of each dataset versus the time taken by KSLFCM on the
whole dataset.

81

3.5 Summary

In this chapter, a novel scalable kernelized clustering algorithm is proposed, referred

to as the KSRSIO-FCM algorithm for handling non-linear Big Data. The KSRSIO-

FCM algorithm is designed by enhancing the SRSIO-FCM algorithm discussed earlier.

The KSRSIO-FCM partitioned the Big Data into various chunks and processed the

data samples present within the chunk in a parallel manner. One distinctive charac-

teristic of the KSRSIO-FCM is that due to the parallel processing of data samples

within the chunk, it significantly reduces run-time for the clustering of such a huge

amount of data without compromising the quality of clustering results. The other

important characteristic is that during the execution of the proposed algorithm, we

eliminate the need for storing the large membership matrix, which significantly re-

duces the run-time and storage space and thus makes the execution of the proposed

algorithm much faster. This is a good optimization strategy for clustering Big Data

since the membership matrix is too huge to be stored. The KSRSIO-FCM algorithm

is implemented using the Big Data processing framework called Apache Spark to deal

with the challenges associated with fuzzy clustering for handling Big Data.

To compare our proposed KSRSIO-FCM, SLFCM is enhanced to make a kernel-

ized SLFCM (KSLFCM) algorithm for handling Big Data. We have implemented the

KSLFCM on the Apache Spark cluster, which is an integral part of the algorithm.

Experimental results are evaluated on several Big Datasets in terms of various perfor-

mance measures such as NMI, ARI, F-score, respectively. Moreover, we have carried

out a performance analysis of KSRSIO-FCM versus KSLFCM. The efficacy of the

KSRSIO-FCM is analyzed in terms of space and time complexity. It is observed that

the space complexity of the KSRSIO-FCM is significantly less in comparison with the

KSLFCM. The KSLFCM and KSRSIO-FCM share the same time complexity, but the

run-time of KSRSIO-FCM is significantly lesser as compared to the KSLFCM. This

is because KSRSIO-FCM performs clustering on a lesser amount of data by dividing

the entire data into various subsets that lead to faster convergence by taking fewer

iterations than the KSLFCM, which performs clustering on the entire data. The same

82

can be verified with the experimental evaluations carried out on several Big Datasets.

The empirical evaluations show that the KSRSIO-FCM significantly outperformed the

KSLFCM by achieving higher or comparable clustering results in terms of NMI, ARI,

and F-score, respectively. Additionally, we also compared our proposed KSRSIO-FCM

algorithm with SRSIO-FCM. Furthermore, performance analysis of KSRSIO-FCM ver-

sus KSLFCM is carried out. The performance analysis is done in terms of the ratio of

time taken by KSRSIO-FCM with different chunk sizes of each dataset versus the time

taken by KSLFCM on the whole dataset. The results indicate that the KSRSIO-FCM

has great potential in Big Data clustering. The proposed KSRSIO-FCM is also applied

on real-life plant genome datasets, i.e., Single Nucleotide Polymorphisms (SNPs) se-

quences of soybean and rice plant species. The performance investigation of proposed

KSRSIO-FCM on plant genome datasets is reported in Chapter 5. Furthermore, the

proposed KSRSIO-FCM approach is also applied on SARS-CoV-2 protein datasets,

which is reported in Chapter 7.

83

Chapter 4

Scalable Incremental Fuzzy Consensus

Clustering Algorithms for Handling Big

Data

In the previous chapter, the fuzzy clustering-based proposed scalable kernelized

algorithm, KSRSIO-FCM, does not consider the set of partitions as input to find the

cluster. In this chapter, SRSIO-FCM [52] and Fuzzy Consensus Clustering (FCC) [53]

methods are combined to develop a Scalable Incremental Fuzzy Consensus Clustering

(SIFCC) algorithm using Apache Spark cluster. The SIFCC aims to identify a fuzzy

consensus partition with overlapping clusters from a set of fuzzy partitions to improve

the quality of clusters for Big Data. In this way, the proposed SIFCC method gets

benefited from both the approaches, which is discussed in detail in the Section 4.2.

4.1 Introduction

Data clustering is the key, but it is a highly challenging issue in the areas of data

mining and machine learning [240]. Because of the unstable development of huge data,

scientists and experts have come to understand that a single fuzzy clustering algorithm

cannot handle complex data. Henceforth, the FCC consequently develops as interest-

ing research headings. FCC focuses on fusing various existing clustering results and

has a global objective function that guides the consensus clustering. FCC expects

85

to find overlapping clusters from a set of crisp or fuzzy Basic Segments (BSs). In

FCC, the basic partitions/segments are combined to acquire a better solution capable

of managing all objectives of different partitions which sometimes are contradictory.

Presently, Wu et al. [53] proposed a FCC for the application of Big Data. This ap-

proach determines a group of utility functions for FCC and updates FCC to a weighted

piece-wise FCM, which increases high effectiveness using the FCM-like iterative pro-

cedure. When it comes to Big Data, FCC seems a good choice. This is mainly due

to the fact that BSs are taken into consideration, where the Big Data is split into

several small subsets to obtain BSs. Finally, consensus clustering is called to combine

these BSs. The FCC uses the FCM approach for generating BSs. As many researchers

have encountered the problem of cluster overlapping in FCM. To address the issues of

FCM, in the proposed SIFCC approach, SRSIO-FCM is used to generate BSs. The

SRSIO-FCM (discussed in Section 2.3.2) overcomes the sudden rise in several itera-

tions during clustering and also handles the Big Data difficulties [52]. The proposed

SIFCC is executed on an Apache Spark cluster with the objective that it can work effi-

ciently for Big Data. The experimental results demonstrate that the proposed SIFCC

approach is essentially superior to the other existing methodologies. To establish the

comparison, we have designed and implemented the scalable model of the existing FCC

[53] algorithm on Apache Spark cluster, named SFCC. The concepts of SRSIO-FCM,

FCC, and Apache Spark framework are combined to develop scalable fuzzy consensus

clustering algorithms, i.e., SIFCC and SFCC for clustering of Big Data.

4.2 Proposed Scalable Incremental Fuzzy Consen-

sus Clustering Algorithms for Handling Big

Data

In this section, we discuss the proposed Scalable Incremental Fuzzy Consensus

Clustering (SIFCC) algorithm. This is a scalable, incremental version of the existing

FCC [53] with the modifications needed to handle the challenges associated with fuzzy

86

clustering for Big Data. We worked in three stages to perform clustering of Big Data

using the proposed SIFCC approach which is summarized as follows:

(i) In the first stage, an SRSIO-FCM [52] algorithm takes the dataset as an input to

generate r BSs. For each dataset, we run the SRSIO-FCM algorithm r number

of times by varying the number of clusters starting from the actual number of

clusters, where r is different for each dataset. This leads us to have r BSs as

input.

(ii) In the second stage, the outputs obtained from the first stage is combined to

form concatenated basic segments. We concatenate the BSs, which are used as

an input for our proposed SIFCC and SFCC algorithms.

(iii) Finally, the proposed SIFCC and SFCC algorithm executed on Apache Spark

cluster for clustering of datasets to obtain final cluster centers.

The objective function of the SIFCC will be the same as that of the FCC. Now BSs

for SIFCC is obtained by the result of partitioning on datasets using the SRSIO-FCM

algorithm [241]. Initially, for the given dataset, SRSIO-FCM is applied r number of

times to get r BSs. Each BS can be represented as µ(i). The µ(i) is a membership

matrix of size n × ci where ci is a number of clusters for ith BS. The membership

vector for lth data sample is given as: µ
(i)
l· = [µ

(i)
lj]

n

j=1
where, l ∈ [1, n], n is a number

of data samples. Now, on concatenating r BSs concerning each data sample, we get a

concatenated basic segment, which is represented as Y . Moreover, the concatenated

membership vector for lth data sample, yl is defined as: yl = [µ
(1)
l· , µ

(2)
l· ,, µ

(r)
l·] and

hence, Y = [y1, y2,yn]>.

The algorithm begins by selecting 100% of the data without any replacement, and

then data is partitioned into various subsets. First, the cluster similarity matrix is

randomly initialized to cluster the first subset. After that, the cluster similarity matrix

and membership matrix of the first subset is calculated. The cluster similarity matrix

obtained after the first subset is used as input to cluster the second subset. It then

finds the cluster similarity matrix and the membership matrix for the next subset.

87

Figure 4.1: Architecture of proposed work.

Thereafter, the membership values of the first and second subsets are combined to

process the new cluster similarity matrix. The obtained cluster similarity matrix is

given as input to the third subset for clustering. This method is repeated to cluster all

successive subsets. The combined output of the first and second subsets is specified as

an input for the third subset. This is done so that the clustering in the third subset

converges quickly and reduces divergence between cluster similarity matrix and third

subset data, and this leads to less number of iterations (fast convergence). The gist

of combined output (membership values) is stored in a particular format, named as a

repository matrix (η). For the next subset, we calculate the membership value using η

as an input, merge this information with the previous η, update it, and proceed until

we reach the last subset. This makes it a SIFCC approach. Thus, the clustering results

achieved with this approach are of significantly better quality. SIFCC is applied to

the Apache Spark cluster, so it can work well for significantly larger datasets. Figure

4.1 depicts the architecture of the proposed work.

Since SIFCC is a scalable algorithm, to compare the performance of SIFCC with

FCC, we have designed and implemented the scalable FCC model. The SFCC algo-

rithm is implemented using Apache Spark cluster. The following subsections discuss

the design and implementation details of these algorithms. However, before the demon-

stration of the SIFCC algorithm, we will show the SFCC algorithm, which is used in

88

Table 4.1: Main Math Symbols

Notation Description

X set of data samples
xi ith data sample
M membership matrix
r basic segments (BSs)
V set of initial cluster similarity matrix
Vnew set of final cluster similarity matrix
vik the kth centroid for the ith BS in the proposed SIFCC/SFCC
n total number of data samples
s number of subsets
c number of clusters
ci the number of clusters for the ith BS
p fuzzification parameter
µ the membership value of all data samples
µi the fuzzy membership value for the ith BS
µnew the final membership values
Y concatenated basic segment
yl the lth data sample in Y
η repository matrix
ηnew updated repository matrix

the SIFCC algorithm for parallel computation of the degree of membership and the

cluster similarity matrix. Table 4.1 details the symbols we use during the discussion in

this chapter. The detailed description of these symbols is presented in Section 2.1.1.

4.2.1 Scalable Version of Fuzzy Consensus Clustering

The SFCC is a scalable version of the FCC [53] algorithm implemented using the

Apache Spark cluster. To design a SFCC, we must first, identify the calculations of the

algorithm that can be done in parallel and the calculations that can only be done in

series. The most computationally intensive part of the SFCC is the calculation of the

degree of membership of each data sample in relation to the entire cluster similarity

matrix. Only the data sample and cluster similarity metrics are required to calculate

the degree of membership. Algorithm 4.1 describes how the SFCC algorithm works.

89

Algorithm 4.1 SFCC to Iteratively Minimize Jp(µ, V)

Input: : Y , c, p, ε, (initial V); Y is an array of data samples such that Y =

{y1, y2, ...yn}.

Output: : Vnew, η; Vnew represents set of updated cluster similarity matrix Vnew =

{v1, v2, ..., vk new...., vK new} , η represents repository matrix.

1: Declare V randomly.

2: Calculate G using V , Y , and Map(V).

3: G = Y.Map(V)

4: Compute Vnew using G.

5: η = G.ReduceByKey()

6: for < k,< sum ky, sum k >> in η do

7: vk new = sum ky
sum k

8: end for

9: Calculate change in V .

10: εnew = ‖ Vnew − V ‖
11: if εnew > ε then

12: Repeat step 2 else stop.

13: end if

In Line 5 of Algorithm 2.4, the membership degree calculated is independent of

the other data samples. Therefore, the membership degree of different data samples

can be calculated in parallel on different machines. So, in Line 2 of Algorithm 4.1,

we present the parallel computation of the membership value of all the data samples

using the Map function. Moreover, in Line 6 of Algorithm 2.4, membership degrees

of all data samples are needed to update the cluster similarity matrix. Thus, Line 6 of

Algorithm 2.4 must be executed after the membership degrees of all samples have

been determined. So, according to this, in Line 2 of Algorithm 4.1, we calculate

G using V , Y , and Map function. The Map function is called for each data sample

present in Y denoted as yl, and then it calculates µlk using Eq. (2.29). Thus, it yields

yl ∗ µlk, µplk for each k. In Line 5 of Algorithm 4.1, η is computed using G and

ReduceByKey function. Thereafter, the cluster similarity matrix is updated using

90

Figure 4.2: Methodology of SFCC.

vk new, where the summation of all the µplkyl values is denoted as sum ky, and all

the µplk values are denoted as sum k of the data samples corresponding to kth cluster

in G. The difference between the previously initialized cluster similarity matrix and

currently updated cluster similarity matrix value is then calculated using Line 10 of

Algorithm 4.1, and the value of the cluster similarity matrix changes significantly.

Repeat this process until no changes are seen, according to Line 12 of Algorithm 4.1.

Here, ε is the stopping criteria. The updated cluster similarity matrix is then needed

as input for the next iteration, so all iterations run in succession. When the stopping

criteria are met, we obtain the final cluster similarity matrix, and from there, we

obtain the membership value used for most calculations. Figure 4.2 exhibits the whole

methodology of the SFCC algorithm. In this figure, Y = {y1, y2...yn}, V represents

the initial set of cluster similarity matrices, and µ represents the membership value of

all data samples.

91

Map Function for SFCC

The slave node handles a small block of data that is organized by logically separat-

ing the data on the master. The degree of membership of a point is determined using

the data sample itself and the values of the cluster similarity matrix. Therefore, the

calculation of the degrees of membership of one data sample is not associated with

the calculation of the degrees of membership of some other data sample. In accor-

dance with these principles, we freely implement this action for each data sample in

the slave node and merge the subsequent values in the master node. This produces a

result similar to the result obtained by performing this step for all data samples on a

single machine.

The Map function depicted in Algorithm 4.1 calculates the membership degree

of a data sample for each cluster and returns the two values, i.e., membership degree

multiplied with yl and membership degree, independently. As a result, each Map

function returns the same result as the number of clusters. Algorithm 4.2 shows

the arrangement of tasks to be performed during the Map function to set µplkyl, and

µplk for each point yl and kth to hold the row of the cluster similarity matrix, i.e., vk

using Line 6 of Algorithm 2.4.

Algorithm 4.2 Map(yl,V)

Input: yl, V

Output: < k,< µplkyl, µ
p
lk >>

1: for vk in V do

2: k=index of cluster similarity matrix V .

3: µplk= membership degree of yl w.r.t vk.

4: µplkyl = µplk ∗ yl
5: yield < k,< µplkyl, µ

p
lk >>

6: end for

ReduceByKey Function

The Map function returns many sets of key-values with a similar key value. The

ReduceByKey performs tasks on the key-value matches that have a similar key. To

rearrange things, here we describe the tasks that are performed on two of these key-

92

value sets. Spark handles similar tasks on all key-value pairs and outputs on the

Map function. To update the characteristics of the cluster similarity matrix, we need

to provide the numerator and denominator in Line 2 of Algorithm 4.1. As we

have determined, µplkyl, and µplk as sum ky and sum k, respectively for each point yl

and cluster similarity matrix vk. During the Map step, we must add each of these

values. This is completed using the ReduceByKey function, which is described in

Algorithm 4.3. This gives us the numerator and denominator of Eq. (2.30) for each

cluster similarity matrix vk as sum ky and sum k, respectively.

Algorithm 4.3 ReduceByKey(a, b)

Input: a, b such that a =< k,< (µplkyl)a, (µ
p
lk)a >> b =< k,< (µplkyl)b, (µ

p
lk)b >>.

Output: < k, sum ky, sum k >>

1: sum ky=(µplkyl)a +(µplkyl)b

2: sum k = (µplk)a, (µ
p
lk)b >>

3: Return: < k,< sum ky, sum k >>

Where a and b are the result of two Map functions, corresponding to the kth cluster,

(µplkyl)a and (µplkyl)b signifies the estimation of µplkyl comparing to Map function yields

a and b separately, (µplk)a and (µplk)b signifies the estimation of µplk relating to Map

function yields a and b individually. The yield of the ReduceByKey function is utilized

to calculate the new cluster similarity matrix using Eq. (2.30) on the master node.

4.2.2 Proposed Design of a Novel SIFCC Algorithm to Han-

dle Big Data

The SFCC algorithm, as discussed above, can be improved in terms of cluster

quality, space-time complexity, and space optimization. We propose SIFCC algorithm

to do this. The SIFCC algorithm is implemented on Apache Spark cluster. Algo-

rithm 4.4 describes the working of the SIFCC Algorithm. The critical task here is

to find the cluster similarity matrix. To do this, we first need to find a membership

degree of all data samples corresponding to each cluster center, which is represented as

a membership matrix. For the computation of the membership matrix in the SIFCC

93

algorithm, the input data sample and cluster similarity matrix are required. Input

for the SIFCC algorithm will be the same as SFCC, which is a concatenated basic

segment (obtained by the column-wise union of various BSs). The SIFCC adds a step

by dividing the input into subsets, and they are generated by random row sampling

on the input. All subsets obtained are almost of the same size. These subsets are

processed sequentially, and thus the quality of the cluster increases with each subset.

Algorithm 4.4 discusses the steps involved in SIFCC.

Algorithm 4.4 SIFCC to Iteratively Minimize Jp(µ, V)

Input: Y, c, p, ε; Y is an array of data samples such that Y = {y1, y2, ...yn}.

Output: µnew; µnew is the final membership values.

1: Divide Y into s number of subsets.

2: Initialize V randomly.

3: η, Vnew = SFCC(V, subset1, c, p, ε)

4: for << subset in(2, number of subsets)>> do

5: ηnew, Vnew = SFCC(Vnew, subsets, K, p, ε)

6: η = η ∪ ηnew
7: η = η.ReduceByKey()

8: for < k,< sum ky, sum k >> in η do

9: vk new = sum ky
sum k

10: end for

11: end for

12: µnew = Y.Map(V).

For the clustering of the first subset, the cluster similarity matrix (V) is randomly

initialized. SIFCC computes updated cluster similarity matrix (Vnew) and repository

matrix (η) for the first subset Y1 by applying SFCC. It then uses Vnew as the initial

cluster similarity matrix, i.e., Vnew is used as V for the clustering of the second subset.

The repository matrix and cluster similarity matrix are computed for the second subset

Y2 by applying SFCC and are denoted as ηnew and Vnew, respectively. It does not

use the updated cluster similarity matrix Vnew of the second subset, as the initial

cluster similarity matrix for clustering of the third subset. This is because the SIFCC

94

takes into account the fact that random partitioning can result in subsets containing

samples of different classes of data. Consequently, the cluster similarity matrix of

these two subsets might be significantly different from each other. SIFCC avoids

using such a cluster similarity matrix as the initial cluster similarity matrix. Instead,

it combines the repository matrix of all the processed subsets. The repository matrix

of the first two processed subsets are denoted as η and ηnew. Now, these two, η′s

are combined (union of rows), then η is computed using the ReduceByKey function

(discussed in Section 4.2.1). Here, η is the reduced form of the membership matrix

µ. So, η = η ∪ ηnew gives the gist of the union of membership matrix of the previous

subset and present subset. The Line 6 and Line 7 added in between ensures that

the cluster similarity matrix does not diverge too much from the data and makes the

algorithm incremental. Then the new cluster similarity matrix is evaluated using Line

8 of Algorithm 4.4. This low computation intensive extra step guarantees good

clustering quality. In Line 12 of Algorithm 4.4, the Map function calculates µnew,

which is the final membership value, computed using the Map function discussed in

Algorithm 4.5.

In Algorithm 4.4, we need V for the third subset, which should be obtained from

the combined membership matrices of the first and second subsets. In Algorithm 4.1,

G gives numerator and denominator of V . Since the membership value of a data sample

is independent of the other data samples, merging the membership matrix is the same

as combining G of the first subset and G of the second subset. Instead of allocating

a lot of space for G1 ∪ G2, we can combine η1 and η2 without losing any information.

This helps in space optimization. This optimization analogy works for the remaining

subset, i.e., for all s ∈ [3, s], where s is the number of subsets. Only the storage time

(1
s
)th is effectively used for SFCC because the operations on the subset are performed

one after another. In this way, we save a lot of space. Figure 4.3 shows a SIFCC

workflow that uses SFCC to calculate all subsets of repository matrix (η) and cluster

similarity matrix (Vnew) of all subsets. It shows how the data sample is subdivided into

different subdivisions and how the base cluster similarity matrix is randomly selected

to cluster the Y1. In addition, it demonstrates how to find cluster similarity matrix and

95

Figure 4.3: Workflow of SIFCC.

repository matrix for subset Y1 using SFCC. Moreover, it additionally demonstrates

how the cluster similarity matrix obtained from a subset Y1 is utilized as the underlying

cluster similarity matrix for the clustering of a subset Y2 by utilizing SFCC. At this

point, the cluster similarity matrix and repository matrix of the subsequent subsets

are acquired by utilizing SFCC. Furthermore, the workflow demonstrates how the

repository matrix of a subset Y1 and a subset Y2 are consolidated to process the new

cluster similarity matrix. The new cluster similarity matrix is utilized as the initial

cluster similarity matrix for the clustering of a subset Y3. The same method is repeated

to cluster the remaining subsets. These cluster similarity matrices are then fed as an

input to the clustering of the third subset. The equivalent strategy is repeated for

the clustering of all the consecutive subsets. The SIFCC works by partitioning the

whole data, and the algorithm works until the clustering is performed on each and

every subset. Thus, it ensures that it covers the entire object space represented by

the whole dataset incrementally. Consequently, the outcomes created by SIFCC are

equal to those delivered by performing the clustering over the whole data samples.

96

Map Function for SIFCC

The Map function for SIFCC presented in Algorithm 4.5, calculates the mem-

bership degree of the data sample for each cluster and returns each independently.

As a result, each Map function gives the same number of outcomes as the number of

clusters. Algorithm 4.5 shows the alignment of the tasks performed during the Map

function to obtain µlk for each point yl and cluster similarity matrix vk using Line 6

of Algorithm 2.4.

Algorithm 4.5 Map(yl,V)

Input: yl, V

Output: < k,< µlk >>

1: for vk in V do

2: k=index of cluster similarity matrix V .

3: µlk= membership degree of yl w.r.t vk.

4: yield < k,< µlk >>

5: end for

4.3 Complexity Analysis

We figured out that the complexity analysis of our proposed SFCC and SIFCC

algorithm is linear concerning space and time complexity in terms of the input data

sample. The complexity of space is related to the amount of information stored in

RAM throughout the calculation. Table 4.2 shows the complexity analysis of scalable

fuzzy consensus clustering algorithms that are evolving in terms of variables.

Table 4.2: Complexity Analysis

Algorithm Time Complexity Space Complexity

SRSIO-FCM O(ncdt/w) O(ncd/s)
SFCC O(ncdt/w) O(ncd)
SIFCC O(ncdt/w) O(ncd/s)

97

Y is a concatenated basic segment with n number of data samples in the d dimen-

sional space represented as
∑r

i=1 ci dimensional space and Y is randomly distributed

into s number of partitions delineated as Y = {Y1, Y2, . . . , Ys}. c is the number of

clusters, w is the number of slave nodes in Spark cluster. Each partition has (n/s)

data samples. The number of iterations required for the termination is denoted as

t. It may change, thus, for straightforwardness and clarity t represent the maximum

number of iterations for one execution of SFCC and SIFCC. In these algorithms, we

calculate the cost of membership degree during the Map stage. Each Map function

calculates the membership degree of one data sample as to c cluster centers. Since

each data sample has d-dimensions, the computation of each membership degree takes

O(d) time and O(d) space. Each Map function takes O(cd) time and O(cd) space.

The ReduceByKey function linearly adds the estimations of all the Map operations,

corresponds to one cluster on each slave node, and joins the subsequent values on the

master node. Every slave node takes O(n′cd) time and O(n′cd) space, where n′ is the

number of data samples fed as input to one slave node. We have assumed an equal

distribution of jobs to the w slave nodes. Joining the outputs of Reduce action takes

O(cwd) time and O(cd) space.

SRSIO-FCM partitions the dataset X into s equivalent subset delineated as

X = {X1, X2, . . . , Xs} with n number of data samples, where every subset is of size

(n/s). Since each subset is handled steadily, the time complexity is O(ncdt/w) where

w represents the number of slave nodes in a Spark cluster and d represents the di-

mensions of data samples. While the space complexity remains O(ncd/s) because

data corresponding to one subset is not held in the memory while processing the next

subset.

SFCC executes Map and ReduceByKey tasks on the whole dataset. Every slave

node processes the data samples by (n/w) in parallel. In this way, the Map stage takes

an aggregate of O(ncd/w) time and O(ncd) space for every iteration on all the slave

nodes. Expecting that SFCC keeps running for t iterations, the total time taken for the

Map stage is O(ncdt/w). Since Map results have been held in memory just for the term

of one iteration of SFCC, hence the total space complexity for the Map stage of SFCC

98

is O(ncd). The ReduceByKey action linearly adds (n/w) Map results, comparing to

each cluster center in parallel, on every slave node. This takes O(nd/w) time and

O(cd) space on a slave node. Since each slave node performs tasks on n/w data in the

same amount of time and in parallel, thus the total required time is O(nd/w). Each

slave nodes give c outputs, each of dimension d, which are aggregated on the master

node and added. This takes O(cdw) time and O(cdw) space. Along these lines, the

total time complexity for the ReduceByKey stage is O(ncdt/w) and space complexity

is O(ncdt/w). Accordingly, the time complexity of SFCC is O(ncdt/w) and space

complexity is O(ncd) where n >> w, c.

SIFCC partitions the concatenated basic segment Y into s equivalent subsets with

the end goal that Y = {Y1, Y2, . . . , Ys}, where every subset is of size (n/s). It executes

SFCC over each one of these subsets sequentially. The time and space complexity of

performing SFCC over every subset is O(ncdt/sw) and O(ncd/s), respectively. Since

every one of the subsets is handled in a steady progression, the time complexity is

O(ncdt/w) while the space complexity remains O(ncd/s) because data corresponding

to one subset is not held in the memory while processing the next subset.

Table 4.2 demonstrates that SRSIO-FCM and SIFCC share similar time and space

complexity. Nevertheless, this is not the situation. Since the time and space complex-

ity for generating Y can be ignored, SIFCC has relatively low computational complex-

ity similar to the SRSIO-FCM. Additionally, SFCC and SIFCC share a similar time

complexity. This may look like both have similar run-time, but this is not the case.

In SIFCC, we partition the whole dataset into various subsets. It performs clustering

on every subset in a parallel manner and takes the lesser number of iterations. In

contrast, SFCC performs clustering on whole data and not on the subsets.

4.4 Experimental Evaluation

The experiment compares the performance of the proposed SIFCC with SFCC and

SRSIO-FCM algorithms in different datasets. Table 4.3, provides a detailed descrip-

tion of the dataset used in the experimental study.

99

Table 4.3: Dataset Description

Parameters
Datasets

Wine G2 Breast SUSY Reproduced-Dim32

#instances 178 2048 699 5,000,000 1,00,000
#features 13 16 9 18 32
#classes 3 2 2 2 16
Dataset Size 10.8 KB 135.2 KB 19.9 KB 2.4 GB 12.4 GB

4.4.1 Datasets and Experimental Settings

We have utilized three real-world datasets, and two big datasets openly accessible

in our experiments. We have performed the execution of SIFCC, SFCC, and

SRSIO-FCM algorithms on the following datasets. Table 4.3 demonstrates some of

the features of these datasets for experimental analysis.

Wine: This data is a result of a chemical analysis of wines grown in the same

region of Italy but from three different varieties. The analysis measures the amount

of 13 ingredients contained in each of the three types of wine. There are 13 features

for each data sample [242].

Breast: This breast cancer database was retrieved from the UCI machine

learning repository. Instances range from 2 to 10. Each data sample is described with

nine features [243].

G2: These are Gaussian cluster datasets with different cluster overlap and

dimensions [244].

The SUSY and Reproduced-Dim32 datasets are explained in Section 3.4.3. For

the dataset used in the experimental study, we set the fuzzification parameter values

p = 1.75 and the stopping criteria ε = 0.001. However, these values have proven to

be effective for most datasets [245]. Table 4.3 shows the number of classes in the

dataset. The proposed SIFCC and SFCC algorithms are implemented using Apache

100

(a) Flame Real (b) Flame SRSIO-FCM

(c) Flame SFCC (d) Flame SIFCC

Figure 4.4: Illustrative example of flame dataset.

Spark cluster, where HDFS is used as data storage. A detailed description of the

experimental environment is presented in Section 3.4.2.

4.4.2 Experimental Results and Discussion

This section shows an example of a flame dataset to evaluate the performance of the

proposed algorithms. We then discuss the performance assessment of SIFCC versus

SRSIO-FCM and SFCC on three actual datasets and two large replicated datasets in

terms of various metrics such as NMI, ARI, and F-score, respectively.

Illustrative Example

To illustrate the effectiveness of this algorithm, we presented a graph showing how

the algorithm formed clusters from the flame dataset (as shown in Figure 4.4). A

101

synthetic dataset flame is used, which contains two types of two-dimensional data

samples [175]. Figure 4.4(a), Figure 4.4(b), Figure 4.4(c), and Figure 4.4(d) show how

the results of SIFCC are far better than those of SRSIO-FCM, SFCC, and closest to

the ground truth. Note that these two classes are very close to each other and linearly

inseparable, which poses challenges for clustering. Figure 4.4(a) shows how the data

is divided into two classes in reality and reflects the ground truth. Figure 4.4(b)

indicates how SRSIO-FCM performs with a number of clusters = 2. Because of the

unusual shape of the data and the high proximity of the two classes, some yellow dots

are incorrectly classified as violet dots. Figure 4.4(c) indicates how SFCC performs

with number of subsets = 1 and the number of clusters = 2, very few violet dots are

incorrectly classified as yellow dots. Figure 4.4(d) indicates how SIFCC performs with

a number of subsets = 3 and the number of clusters = 2. We run the SRSIO-FCM

algorithm ten times to obtain BSs by varying the number of clusters ranging from 2 to

11. Thereafter, these BSs are concatenated, which is used as input to SFCC/SIFCC

algorithm. As we can see, SIFCC performs almost perfectly on the flame dataset,

which shows the advantage of fuzzy consensus clustering over single clustering.

Evaluation of Clustering Performances

We evaluate the SIFCC, SFCC, and SRSIO-FCM algorithms on the three measures

such as NMI, ARI, and F-score (discussed in Section 2.5.1). The number of subsets to

perform clustering using SRSIO-FCM is 3 for Wine, Breast, and G2 datasets, 15 for

SUSY, and 5 for Reproduced-Dim32 dataset. For each dataset, we run the SRSIO-

FCM algorithm r number of times by varying the number of clusters starting from

the actual number of clusters, where r is different for each dataset. This leads us to

have r BSs as input. We concatenate the BSs to have the Y matrix, which is used as

input for the SIFCC/SFCC algorithm. The number of subsets into which Y is divided

is 3 for Wine and Breast datasets, 4 for G2, 15 for the SUSY dataset, and 5 for the

Reproduced-Dim32 dataset. On the other hand, SFCC performs clustering on the

whole dataset, i.e., considering complete datasets as 1 subset. A detailed discussion

of the Wine, Breast, and G2 datasets is present in the subsequent section.

Wine: The number of BS here is 13, with the number of clusters ranging from 3 to

102

Table 4.4: Results of SRSIO-FCM, SFCC, and SIFCC on Wine Dataset.

Algorithm
Measures

NMI ARI F-score
SRSIO-FCM 0.4287 0.3711 0.7022
SFCC 0.4340 0.3906 0.7191
SIFCC 0.4375 0.3952 0.7247

15. The number of subsets in which Y was divided to perform SIFCC is 3 here. In

Table 4.4, we have reported the results on the Wine dataset in terms of NMI, ARI,

and F-score, respectively. Comparing the value of NMI for SIFCC, SFCC, and SRSIO-

FCM, we analyze that NMI for SRSIO-FCM is low as compared to SFCC and SIFCC.

The SIFCC performs better than SFCC and SRSIO-FCM. Now, on comparing ARI,

we observe the same pattern, and it is significantly low for SRSIO-FCM and SFCC.

While comparing the values of F-score it is significantly lower for SRSIO-FCM and

SFCC than SIFCC. Therefore, when comparing the three measures, we concluded that

SIFCC performs better than SFCC and SRSIO-FCM.

Breast: The number of basic segments here is 14, with the number of clusters ranging

from 2 to 15. The number of subsets in which Y was divided to perform SIFCC is

3 here. In Table 4.5, we have reported the results on the Breast dataset in terms of

NMI, ARI, and F-score, respectively. Comparing the value of NMI for SIFCC, SFCC,

and SRSIO-FCM, we analyze that NMI for SRSIO-FCM is low as compared to SFCC

and SIFCC. The SIFCC performs much better than SFCC and SRSIO-FCM. Now, on

comparing ARI, we observe the same pattern, and it is significantly low for SRSIO-

FCM and SFCC. While comparing the values of F-score, we found that the F-score is

significantly lower for SRSIO-FCM and has almost equal values for SFCC and SIFCC.

Therefore, when comparing the three measures, we concluded that SIFCC performs

much better than SRSIO-FCM and SFCC in terms of NMI and ARI. Moreover, SIFCC

and SFCC perform equally well but better than SRSIO-FCM in terms of F-score.

G2: The number of BSs here is 14, with the number of clusters ranging from 2 to 15.

The number of subsets in which Y was divided to perform SIFCC is 4 here. In Table

4.6, we have reported the results on the G2 dataset in terms of NMI, ARI, F-score,

103

Table 4.5: Results of SRSIO-FCM, SFCC, and SIFCC on Breast Dataset.

Algorithm
Measures

NMI ARI F-score

SRSIO-FCM 0.7106 0.8178 0.9644
SFCC 0.7983 0.8823 0.9768
SIFCC 0.8007 0.8824 0.9767

Table 4.6: Results of SRSIO-FCM, SFCC, and SIFCC on G2 Dataset.

Algorithm
Measures

NMI ARI F-score

SRSIO-FCM 0.8397 0.9084 0.9765
SFCC 0.8482 0.9139 0.9779
SIFCC 0.8510 0.9158 0.9784

respectively. Comparing the value of NMI for SIFCC, SFCC, and SRSIO-FCM, we

analyze that NMI for SRSIO-FCM is low as compared to SFCC and SIFCC. The

SIFCC performs better than SFCC and SRSIO-FCM. Now, on comparing ARI, we

observe the same pattern, and it is significantly low for SRSIO-FCM and SFCC. While

comparing the values of F-score, we found that the F-score is significantly lower for

SRSIO-FCM and SFCC. Therefore, when comparing the three measures, we concluded

that SIFCC performs much better than SFCC and SRSIO-FCM in terms of NMI and

ARI. Moreover, SIFCC performs better than SRSIO-FCM and SFCC in terms of F-

score. Tables 4.4-4.6 prove how the SIFCC algorithm is better than SRSIO-FCM and

SFCC. There may not be a great difference in the results of the datasets mentioned

above, one reason being a very small size of data. The number of data samples is very

small, so the improvement by SIFCC over SFCC does not get highlighted. When tested

on Big Data, we will be able to see how the algorithm outperforms the SRSIO-FCM

and SFCC.

104

Table 4.7: Results of SRSIO-FCM, SFCC, and SIFCC on SUSY Dataset.

Algorithm
Measures

NMI ARI F-score

SRSIO-FCM 0.0285 0.0423 0.6030
SFCC 0.0307 0.0437 0.6189
SIFCC 0.0310 0.0543 0.6208

4.4.3 Performance Evaluation on Big Data

The effectiveness of this algorithm is verified by testing it on Big Data. Any

algorithm will be compelling to utilize, taking everything into account, in case it can

manage huge amount of data. The ease of use and adaptability of an algorithm can be

demonstrated when the algorithm is tested on Big Data. For that purpose, we have

tested our proposed algorithms on two big datasets and the detailed descriptions of

these datasets are presented next.

SUSY: In Table 4.7, we have reported the results on the SUSY dataset in terms of

NMI, ARI, and F-score. The number of subsets used for the SRSIO-FCM and SIFCC

algorithm is 15, and the number of BS here is 14 with the number of clusters ranging

from 2 to 15. Comparing the value of NMI for SIFCC, SFCC, and SRSIO-FCM, we

analyze that NMI for SRSIO-FCM is low as compared to SFCC and SIFCC. The

SIFCC performs better than SFCC and SRSIO-FCM. Now, on comparing ARI, we

observe the same pattern, and it is significantly low for SRSIO-FCM and SFCC. While

comparing the values of F-score, we found that the F-score is significantly lower for

SRSIO-FCM and SFCC than SIFCC.

Therefore, when comparing the three measures, we concluded that SIFCC per-

forms much better than SFCC and SRSIO-FCM in terms of NMI and ARI. Moreover,

SIFCC performs better than SRSIO-FCM and SFCC in terms of F-score. The SIFCC

performs much better than the SFCC algorithm. Thus, the quality of the clusters

obtained is high.

Reproduced-Dim32: In Table 4.8, we have presented the results for the Reproduced-

Dim32 dataset in terms of NMI, ARI, and F-score. The number of subsets used for

105

Table 4.8: Results of SRSIO-FCM, SFCC, and SIFCC on Reproduced-Dim32 Dataset.

Algorithm
Measures

NMI ARI F-score

SRSIO-FCM 0.5268 0.1385 0.1875
SFCC 0.7019 0.2944 0.3127
SIFCC 0.8387 0.5791 0.5546

the SRSIO-FCM and SIFCC algorithms is 5, and the number of BS here is 10, with

the number of clusters ranging from 16 to 25. Comparing the NMI value for SIFCC,

SFCC, and SRSIO-FCM, we analyze that the NMI value for SRSIO-FCM is lower as

compared to SFCC and SIFCC. Also, the NMI value of SFCC is lower than SIFCC.

Now, on comparing ARI, we observe the same pattern, and it is lower for SRSIO-FCM

as compared to SFCC and SIFCC. Moreover, the ARI value of SFCC is significantly

lower than SIFCC. While comparing the values of F-score, we found that the F-score

is significantly lower for SRSIO-FCM and SFCC than SIFCC.

Therefore, when comparing the three measures, we concluded SIFCC performs

much better than SFCC and SRSIO-FCM in terms of NMI and ARI. Moreover, SIFCC

achieves a better result than SRSIO-FCM and SFCC in terms of NMI. Thus, the

quality of the clusters obtained is very high.

4.5 Summary

This chapter has proposed a SIFCC to address the challenges of the fuzzy cluster

for processing large amounts of data. The SIFCC aims to identify a fuzzy consensus

partition with overlapping clusters from a set of fuzzy partitions. The SIFCC uses

SRSIO-FCM to generate BSs. SIFCC takes multiple BSs as input and executes SFCC

with space optimization. Thus, the clustering results achieved with this approach

are of significantly better quality. One of the key features of SIFCC is that it allows

massive data to be clustered accurately without affecting the nature of the cluster-

ing results. Another important feature is that during the execution of the proposed

106

algorithm, it is unnecessary to store the membership matrix, which speeds up the

execution of the proposed algorithm by reducing the execution time. This strategy

improves the performance of Big Data clustering because the membership matrix is

too large to even think about storing. Exact assessments on a massive dataset exhib-

ited that SIFCC significantly outperformed the previously proposed FCC algorithm.

The benefits that appeared in the tests demonstrate that SIFCC has incredible po-

tential for use in massive data clustering. The proposed SIFCC is then investigated

on real-life genome datasets, i.e., Single Nucleotide Polymorphisms (SNPs) sequences

of soybean and rice plant species in Chapter 5.

107

Chapter 5

Design of Novel Scalable Feature

Extraction Algorithm for Huge SNP

Sequences with Application of Scalable

Fuzzy Clustering Algorithms

In the previous Chapters 3 and 4, proposed scalable fuzzy clustering-based al-

gorithms KSRSIO-FCM and SIFCC are tested on huge benchmark datasets which

utilize the Apache Spark framework. Here, in this chapter, massive SNP data have

been used to perform clustering using KSRSIO-FCM and SIFCC algorithms. The

soybean SNP dataset was obtained from SoyBase1 and rice datasets from SNP-Seek2

database. Before clustering raw SNP sequences, there is a need to develop a method

that can extract significant features from huge SNP sequences, which are used as input

to the developed KSRSIO-FCM and SIFCC algorithms. Therefore, in this chapter, we

have proposed a scalable SNP preprocessing approach for handling complex real-life,

massive SNP data, which is discussed in detail in the subsequent section.

1https://soybase.org/
2https://snp-seek.irri.org/

109

5.1 Proposed Scalable Algorithm for Preprocess-

ing of Huge SNP Sequences

This section describes the proposed scalable algorithm for preprocessing of huge

SNP sequences. To propose a scalable SNP preprocessing algorithm, we followed the

DNA approach discussed in [170] and applied this approach to huge SNP data to

extract 12-dimensional numeric feature vectors. To make SNP preprocessing algo-

rithm a scalable algorithm, we executed it on Apache Spark cluster and termed it

as a scalable SNP preprocessing algorithm. The output obtained from scalable SNP

preprocessing algorithm is used as input to the developed KSRSIO-FCM, KSLFCM,

SRSIO-FCM, and SLFCM algorithms. Furthermore, extracted 12-dimensional nu-

meric feature vectors are applied to SIFCC and SFCC algorithms to cluster huge SNP

sequences. Algorithm 5.1 summarizes steps of scalable SNP preprocessing approach

using the Apache Spark framework.

Algorithm 5.1 Scalable SNP Preprocessing Algorithm

Input: raw SNP data : raw snp.txt

Output: processed snp data : proc snp.txt

1: y1 = SparkContext.textF ile(raw snp.txt).map(lambda z : numpy.array(z)).

2: y1=rddTranspose(y1).

3: y1= y1.map(lambda z : SNP Preprocess(z))

4: y1.saveAsTextF ile(proc snp.txt)

The input given is a raw SNP dataset containing nucleotides A,G, T, C. The

output is a feature vector of the given input dataset that is a file containing 12-

dimensional numeric feature vectors. In Line 1 of Algorithm 5.1, the data is read

into a resilient distributed dataset (RDD) from the Hadoop using pyspark class, i.e.,

SparkContext.textFile (discussed in Section 2.2). The obtained RDD is transposed

using the rddTranspose function in Line 2. Then a map function is used to accomplish

the preprocessing task. In Line 3 of Algorithm 5.1, the map function allows call-

ing the SNP Preprocess function to each row of the transposed RDD. Finally, the

110

obtained RDD after the map function is saved using Line 4 of Algorithm 5.1.

The proposed scalable SNP preprocessing approach extracts features of SNP se-

quences in three sets of numerical parameters: the first parameter is a calculation of

the length of sequences, the second parameter is the total distances of each nucleotide

base to the first nucleotide, and the third parameter is the variance of distance for

each nucleic base [170]. Each set of a numerical parameter is not sufficient to denote a

specific SNP sequence. Thus, the combination of all of the three sets of the numerical

parameter, which contains 12-dimensional numeric feature vectors is used to charac-

terize similarities between SNP sequences. The details of SNP feature extraction are

given in Algorithm 5.2 discusses the SNP Preprocess algorithm, which is called

by Scalable SNP Preprocessing Algorithm (given in Algorithm 5.1).

Algorithm 5.2 SNP Preprocess

Input: z; z is a numpy array.

Output: numpy.array[`A, TA, DA, `G, TG, DG, `T , TT , DT , `C , TC , DC].

1: Let i denote nucleotide A,G, T, C.

2: for x in z do

3: if x is i then

4: Increase the count of nucleotide i i.e., `i + +

5: end if

6: end for

7: Calculate total distance Ti using Eq. (2.31).

8: Calculate the variance of distance Di using Eq. (2.32).

After this, extracted 12-dimensional numeric feature vectors are passed as an in-

put to the developed algorithms, i.e., KSRSIO-FCM, KSLFCM, SRSIO-FCM, and

SLFCM algorithms. Furthermore, it is applied to the developed scalable fuzzy con-

sensus based SIFCC and SFCC algorithm to cluster huge SNP data. The working

of the SNP Preprocess algorithm is shown in terms of various steps by using an

example given in the subsequent subsection.

111

Sequences Positions
1 2 3 4 5 6 7 8 9

Sequence1 G A A T G C T G G
Sequence2 T G C T G T T A A
Sequence3 T A C T G A T C G
Sequence4 G C G A T A T G T
Sequence5 T T A C G G A T G

Table 5.1: Example of SNP sequences

5.1.1 Step I: Calculation of length of sequence

The total numbers of A, T,G, and C are calculated for each sequence, represented

as `A, `T , `G, and `C . The SNP Preprocess algorithm (given in Algorithm 5.2)

working is being described using a very first step in which the length of the sequence

of each nucleotide is calculated. Here an illustration is presented by considering an

example of five sequences shown in Table 5.1. The output obtained after preprocessing

of these five sequences are shown in Figure 5.1, where the first column represents the

sequence number, and the numbers present in the rest of the columns represent the 12-

dimensional numeric feature vectors 〈`A, TA, DA, `G, TG, DG, `T , TT , DT , `C , TC , DC〉.

The total number of A,G, T , and C i.e., `A, `G, `T , and `C present in sequence1 〈G A

A T G C T G G〉 are 2, 4, 2, and 1, respectively. Likewise, the value of `A, `G, `T , and

`C for the other four sequences are shown in Figure 5.1. After calculating the total

number of nucleotides (A,G, T , and C) in each sequence, the total distances of each

nucleotide base to the first nucleotide is calculated, which is presented next.

Figure 5.1: Preprocessing result of SNP sequences present in Table 5.1

112

5.1.2 Step II: Total distances of each nucleotide base to the

first nucleotide

The second numerical parameter, i.e., the total distance of each nucleotide base to

the first nucleotide Ti is calculated using Eq. (2.31). Then, add the position values

corresponding to each nucleotide as shown in Table 5.1, as nucleotide G appears at 1,

5, 8, and 9. So, the value of TG is calculated as follows:

TG= 1 + 5 + 8 + 9 = 23

Likewise, the value of TA, TT , and TC for sequence1 and the total distance of each

nucleotide base to the first nucleotide for all other four sequences is shown in Figure

5.1. After calculating the total distances of each nucleotide base to the first nucleotide,

the variance of distance for each nucleic base is calculated, which is presented next.

5.1.3 Step III: Variance of distance for each nucleic base

The third numerical parameter is the variance of distance for each nucleic base Di

is calculated using Eq. (2.32). The first step is to compute di using di = Ti
`i

. The value

of dG in sequence1 is calculated as follows:

dG = TG
`G

= 23
4

=5.75

The second step is to compute the variance of distance for each nucleic base, i.e., Di,

for example, the value of DG in sequence1 is 9.67, calculations of DG is as follows:

DG = [(1−5.75)+(5−5.75)+(8−5.75)+(9−5.75)]
4

= 9.67

Hence, the result obtained from sequence1 which contains a 12-dimensional numeric

feature vector is shown below:

〈2, 5, 0.25, 4, 23, 9.67, 2, 11, 2.25, 1, 6, 0〉

The results of all the other four sequences are shown in Figure 5.1. The significant

characteristic of the proposed scalable SNP preprocessing algorithm is that it takes

raw SNP sequences as input and produces 12-dimensional numeric feature vectors as

output.

113

5.2 Experimental Evaluation on SNP Datasets

In this section, we present the experimental results on various SNP datasets applied

to developed scalable fuzzy clustering algorithms. First, we have evaluated the perfor-

mance of developed scalable fuzzy based KSRSIO-FCM, KSLFCM, SRSIO-FCM, and

SLFCM algorithms on SNP datasets. Second, we have tested the results of SNP data

on developed scalable fuzzy consensus-based SIFCC and SFCC algorithms. These

clustering methods take the preprocessed 12-dimensional numeric feature vectors of

huge SNP sequences as input and produce output in terms of clusters. Figure 5.2

summarizes the preprocessing and clustering of SNP sequences diagrammatically. It

shows how KSRSIO-FCM/SIFCC takes 12-dimensional numeric feature vectors as in-

put and then huge SNP sequences are partitioned randomly across various nodes using

Apache Spark cluster.

5.2.1 Datasets and Experimental Settings

In this section, we have analyzed the exhibition of KSRSIO-FCM, KSLFCM,

SRSIO-FCM, and SLFCM algorithm on SNP-seek, MAGIC-rice, and 248Entries of

SNP datasets. A detailed description of all datasets is presented in Section 2.6.1.

The experimental evaluation is performed on Apache Spark cluster. The detailed de-

scription of Apache Spark setup is presented in Section 3.4.2. The High-Performance

Computing (HPC) server machine is added in a cluster to preprocess genome data

with the following configuration; A total number of cores: 32, Total memory: 187 GB,

Total disk: 12 TB.

5.2.2 Experimental Results and Discussion on Scalable Fuzzy

Clustering Algorithms

In this section, we discuss the effectiveness of KSRSIO-FCM in comparison with

KSLFCM, SRSIO-FCM, and SLFCM evaluated on SNP data in terms of the Silhouette

Index (SI) and Davies Bouldin Index (DBI). The detailed description of SI and DBI

114

Figure 5.2: Workflow of KSRSIO-FCM and SIFCC algorithms with the preprocessing
steps of huge SNP sequences.

is presented in Section 2.5.2. The KSRSIO-FCM and KSLFCM algorithms take 12-

dimensional numeric feature vectors extracted after preprocessing of the huge SNP

sequences as input and then both the algorithms cluster huge SNP sequences at high

speed with high accuracy. A detailed description of KSRSIO-FCM and KSLFCM

algorithms are already presented in Chapter 3.

To show the effectiveness of the KSRSIO-FCM algorithm in comparison with

KSLFCM, SRSIO-FCM, and SLFCM, we have presented the diagrammatic repre-

sentation, which shows how the algorithm creates clusters out of the SNP data of

soybean 31 sequences. These soybean 31 sequences3 of SNP data contains 6,289,747

SNPs [178]. A soybean dataset consisting of 31 sequences is used, which includes

samples of two categories, i.e., wild and cultivated [246]. The comparison between

3http://chibba.pgml.uga.edu/snphylo/

115

the four algorithms are depicted in Figure 5.3 and Figure 5.4, which clearly show how

the results of KSRSIO-FCM are better than those of KSLFCM, SRSIO-FCM, and

SLFCM, respectively.

Figure 5.3: Cluster formation of soybean 31 sequences for KSRSIO-FCM, KSLFCM,
SRSIO-FCM, and SLFCM with the number of clusters = 5

Figure 5.4: Cluster formation of soybean 31 sequences for KSRSIO-FCM, KSLFCM,
SRSIO-FCM, and SLFCM with the number of clusters = 10

From Figure 5.3, we can infer that the clusters formed by KSRSIO-FCM, KSLFCM,

SRSIO-FCM, and SLFCM are well separated into five respective groups (i.e., different

colors represent different clusters). But, the clusters formed by KSLFCM, SRSIO-

FCM, and SLFCM creates three overlapped clusters consists of wild and cultivated

data samples. The number of data samples of wild and cultivated categories is perfectly

clustered by KSLFCM, SRSIO-FCM, and SLFCM are 9, 9, and 7, respectively. On the

other hand, KSRSIO-FCM only creates two overlapped clusters and 15 data samples

of wild and cultivated categories are perfectly clustered. Likewise, from Figure 5.4, we

can infer that the KSRSIO-FCM formed a total of ten clusters. Out of ten clusters,

two clusters are overlapping and 8 clusters are perfectly formed consist of 22 data

samples of wild and cultivated categories. On the other hand, KSLFCM generates

three overlapped clusters out of a total of 10 clusters and SRSIO-FCM forms a total

of 8 clusters with 3 overlapped clusters, and SLFCM forms a total of 7 clusters out of

which 5 clusters are overlapped consist of wild and cultivated data samples. Hence,

we can conclude that the KSRSIO-FCM outperforms KSLFCM, SRSIO-FCM, and

SLFCM, respectively. The effectiveness of our proposed algorithm can be proved by

116

testing it on huge SNP data. For that purpose, we have tested our proposed algorithms

on a huge SNP dataset in the subsequent subsection.

5.2.3 Clustering Performance of Scalable Fuzzy Clustering

Algorithms

This section presents the discussion of the effectiveness of KSRSIO-FCM in com-

parison with KSLFCM, SRSIO-FCM, and SLFCM evaluated on three SNP datasets

as per the estimates, such as SI and DBI, respectively. We perform clustering with

the number of subsets 5 and 3, where the subset means the entire data is data divided

into chunks. The clustering is performed on the number of clusters 5, 10, 15, 20, 25,

and 30, respectively. In this section, subset5 and subset3 depict the number of subsets

equal to 5 and 3, respectively. Likewise, the cluster5, cluster10, cluster15, cluster20,

cluster25, and cluster30 depicts the number of clusters equal to 5, 10, 15, 20, 25, and

30, respectively. Subset5 and subset3 indicate that the entire dataset is divided into 5

chunks and 3 chunks, respectively, using KSRSIO-FCM and SRSIO-FCM algorithms.

On the contrary, the KSLFCM and SLFCM perform the clustering on whole data. We

have compared the performance of kernelized scalable algorithms, i.e., KSRSIO-FCM

with SRSIO-FCM, KSLFCM, and SLFCM.

Clustering performances on the SNP-seek rice dataset:

Figure 5.5 highlights the results of the SNP-seek rice dataset in terms of SI that

demonstrates the quality of clustering. Subsequently, a superior clustering would bring

about higher SI. Observing the values of SI, SRSIO-FCM has obtained a lower value,

whereas the KSRSIO-FCM achieved a higher value for subset5. Also, the KSRSIO-

FCM achieved the highest value of SI for cluster5 of subset5. Also, we analyzed

that SI obtained by KSRSIO-FCM for subset3 is higher for clusters 20, 25, and 30 in

comparison with SRSIO-FCM. The figure shows that the estimation of SI for KSLFCM

is higher for all the clusters except cluster15 in comparison with SLFCM for the SNP-

seek rice dataset. While the SI value is essentially lower for KSLFCM and SLFCM

when compared with KSRSIO-FCM in most of the clusters. Along these lines, we

117

Figure 5.5: Silhouette Index of SNP-seek rice dataset

can conclude that KSRSIO-FCM performs better than KSLFCM, SRSIO-FCM, and

SLFCM in terms of SI values for the SNP-seek rice dataset.

Conversely to the SI, the DBI is not bounded within a given range. As a general

rule, the lower the DBI value is, the better the clustering result will be. In Figure

5.6, we have reported the results on the SNP-seek rice dataset in terms of DBI. The

value achieved by KSRSIO-FCM is much better than SRSIO-FCM on almost all the

clusters for subset5. Moreover, KSRSIO-FCM attained a very low value on all the

clusters for subset3. Additionally, KSRSIO-FCM achieves the remarkable value of

DBI for cluster5 of subset3. On comparing KSLFCM with SLFCM, the DBI values

for most of the clusters are lower for KSLFCM. Therefore, comparing DBI, we conclude

that KSRSIO-FCM performs much better than KSLFCM, SRSIO-FCM, and SLFCM

in terms of SI for subset5 and DBI for subset3. Overall, we can say that KSRSIO-FCM

118

Figure 5.6: Davies Bouldin Index of SNP-seek rice dataset

for subset3 or subset5 for each cluster performs better than KSLFCM. As depicted in

the figure, the estimation of DBI for KSRSIO-FCM is significantly better than SRSIO-

FCM and SLFCM. In this way, we can conclude that KSRSIO-FCM performs better

than KSLFCM, SRSIO-FCM, and SLFCM in terms of DBI values for the SNP-seek

rice dataset.

Clustering performances on the MAGIC-rice dataset:

Figure 5.7 shows the results of the MAGIC-rice dataset in terms of SI. On com-

paring SI, SRSIO-FCM has attained the lowest SI value on all the clusters compared

to the SI values achieved on KSRSIO-FCM for subset5 and subset3. Besides this, the

SI of KSRSIO-FCM achieves a higher value for cluster15 of subset5. Furthermore,

the figure shows that the estimation of SI for KSLFCM and SLFCM is close for var-

ious clusters. While the SI value is essentially lower for KSLFCM and SLFCM when

119

Figure 5.7: Silhouette Index of MAGIC-rice dataset

120

compared with KSRSIO-FCM. Along these lines, we can conclude that KSRSIO-FCM

performs better than KSLFCM, SRSIO-FCM, and SLFCM in terms of SI values for

the MAGIC-rice dataset.

Figure 5.8: Davies Bouldin Index of MAGIC-rice dataset

Similarly, for DBI, as shown in Figure 5.8, SRSIO-FCM has obtained a higher

value compared to KSRSIO-FCM on subset5 and subset3 for the different number of

clusters. Additionally, KSRSIO-FCM achieves the remarkable value of DBI for cluster5

of subset5. Therefore, we conclude that KSRSIO-FCM performs much better than

SRSIO-FCM. Furthermore, the figure shows that the estimation of DBI for KSLFCM

is significantly better than SLFCM. In this way, we can conclude that KSRSIO-FCM

performs much better than KSLFCM, SRSIO-FCM, and SLFCM in terms of DBI

values for the MAGIC-rice dataset.

121

Clustering performances on the 248Entries rice dataset:

Figure 5.9 shows the results of the 248Entries rice dataset in terms of SI.

Figure 5.9: Silhouette Index of 248Entries rice dataset

On comparing SI, SRSIO-FCM has attained the lowest SI values on most of the

clusters corresponded to the SI values achieved by KSRSIO-FCM for subset5 and sub-

set3. Besides this, KSRSIO-FCM attains the higher value of SI for cluster20 of subset5.

The SI value of KSLFCM is better than SLFCM except for cluster15. The estimation

of SI for various subsets of KSRSIO-FCM is better than SLFCM. Furthermore, the

figure shows that the SI values obtained by SRSIO-FCM and SLFCM are close for the

248Entries dataset. Additionally, the estimation of SI for different subsets of KSRSIO-

FCM is better than KSLFCM. While speaking about the difference in SI values among

various clusters, SI for KSLFCM (100% data) is comparatively smaller than SI values

achieved with KSRSIO-FCM on subset3 and subset5 with varying number of clusters.

122

Moreover, we observed that KSRSIO-FCM has attained positive SI for each cluster,

whereas KSLFCM obtained negative SI values for cluster25. Along these lines, we

can conclude that KSRSIO-FCM performs better than KSLFCM, SRSIO-FCM, and

SLFCM in terms of SI values for the 248Entries rice dataset.

Figure 5.10: Davies Bouldin Index of 248Entries rice dataset

Similarly, for DBI, as shown in Figure 5.10, SRSIO has obtained a higher value

compared to KSRSIO-FCM on each cluster except cluster5 of subset3. While speak-

ing about the difference in DBI values among various clusters of subset5 and subset3,

DBI for KSLFCM (100% data) is comparatively higher than DBI values achieved with

KSRSIO-FCM. Furthermore, KSRSIO-FCM achieves the remarkable value of DBI for

subset5 and subset3. Moreover, KSLFCM has attained lower DBI values than SLFCM.

Though the DBI is essentially lower for SLFCM for some of the clusters when com-

pared with KSLFCM, the estimation of DBI for different subsets of KSRSIO-FCM are

123

Table 5.2: Run-time analysis (in seconds) of KSRSIO-FCM and KSLFCM algorithms.

Datasets
SNP-seek rice MAGIC-rice 248Entries rice

c
Subset5 Subset3

100%
data

Subset5 Subset3
100%
data

Subset5 Subset3
100%
data

5 80 76 96 120 120 300 74 56 76
10 72 70 120 900 720 960 68 76 80
15 220 190 310 960 1680 1980 207 160 260
20 240 200 340 1268 1140 1560 196 114 182
25 260 275 365 2460 2400 3615 154 178 192
30 300 310 390 2340 6300 6600 120 277 290

better than SLFCM. In this way, we can conclude that KSRSIO-FCM performs better

than KSLFCM, SRSIO-FCM, and SLFCM in terms of DBI values for the 248Entries

dataset.

Table 5.2 tabulates the run-time analysis of KSRSIO-FCM and KSLFCM al-

gorithms. In this table, c represents the number of clusters. The KSRSIO-FCM

algorithm is performed on subset5 and subset3, whereas KSLFCM works on the

whole dataset (100% data). In any case, the run-time analysis of KSRSIO-FCM

and KSLFCM would likewise rely upon the total number of nodes and their config-

uration. Here, the total number of nodes is 6 and cores are 52. According to the

run-time analysis given in Table 5.2, the KSRSIO-FCM takes less time in comparison

with KSLFCM for computation. We have also tested proposed SIFCC and SFCC

algorithms for the clustering of massive SNP datasets. The experimental analysis of

SNP datasets applied on SIFCC and SFCC is presented in a subsequent section.

5.2.4 Experimental Results and Discussion on Scalable Fuzzy

Consensus Clustering

In the experiments, we analyze the performance of SIFCC and SFCC using the SI

and DBI indexes. A detailed description of SIFCC and SFCC algorithms is already

presented in Chapter 4. We analyze the exhibition of SIFCC and SFCC algorithms

on SNP50K Wm82.a1, SNP-seek, MAGIC-rice, and 248Entries of SNP datasets. A

detailed description of all datasets is presented in Section 2.6.1. Figure 5.2 summarizes

124

the preprocessing and clustering of SNP sequences diagrammatically. It shows how

SIFCC takes 12-dimensional numeric feature vectors as input and then huge SNP

sequences are partitioned randomly across various nodes using Apache Spark cluster.

To show the effectiveness of the SIFCC algorithm, we present the diagrammatic

representation that shows how the algorithm creates clusters out of the SNP dataset of

soybean 31 sequences. For the experimental study, we have used soybean 31 sequences4

of SNP data that consists of samples from two categories, i.e., wild and cultivated

[246, 178]. Figure 5.11 indicates how SIFCC performs better than SFCC with 5

clusters. As depicted in this figure, SIFCC formed five clusters efficiently with less

overlapping of wild and cultivated data samples, i.e., out of five clusters only in two

clusters the overlapping among data samples exists, whereas SFCC formed five clusters

out of which data samples in three clusters are overlapping. Therefore, on comparing

both the algorithms, we conclude that the clustering results obtained from SIFCC are

better than the SFCC. The effectiveness of our proposed algorithm can be proved by

testing it on huge SNP data. For that purpose, we have tested our proposed algorithms

on a huge SNP dataset in the subsequent subsection.

Figure 5.11: Cluster formation of soybean 31 sequences for SIFCC and SFCC with
the number of clusters = 5.

5.2.5 Clustering performance of Scalable Fuzzy Consensus

Clustering Algorithms

This section presents the discussion of the effectiveness of SIFCC in comparison

with SFCC evaluated on four SNP datasets (soybean and rice) as per the estimates,

such as SI and DBI, respectively. The estimations of SI and DBI for SIFCC, on

various subsets of three SNP datasets in comparison with SFCC, are shown in tables.

4http://chibba.pgml.uga.edu/snphylo/

125

Table 5.3: Values of the SI in the range of cluster = 2....12 for all the four SNP datasets
using the SIFCC and SFCC algorithm (Entries in boldface indicate the optimal values
for respective indices)

Cluster

Datasets

SoySNP50k
Wm82.a1

SNP-
seek
rice

MAGIC-
rice

248Entries rice

SIFCC SFCC SIFCC SFCC SIFCC SFCC SIFCC SFCC

2 0.3444 0.3434 0.2090 0.2090 0.0860 0.0860 0.1253 0.1253

3 0.2079 0.2078 0.3577 0.3577 0.3121 0.3074 0.0438 0.0348

4 0.2784 0.1211 0.3186 0.3100 0.6484 0.6477 0.0910 0.0910

5 0.1755 0.1725 0.4293 0.4059 0.5814 0.5447 0.0782 0.0799

6 0.1845 0.1827 0.5565 0.5465 0.4795 0.4790 0.0137 -0.0109

7 0.1440 0.1205 0.4485 0.4270 0.4332 0.4231 0.0137 -0.0109

8 0.1445 0.1370 0.4874 0.4197 0.4301 0.4205 0.0034 -0.0179

9 0.2325 0.1706 0.4881 0.3999 0.4053 0.4001 0.0151 -0.0374

10 0.1667 0.1660 0.3973 0.3899 0.4045 0.4006 0.0428 0.0346

11 0.1937 0.1496 0.3662 0.3293 0.3805 0.3674 0.0868 -0.0748

12 0.1412 0.1334 0.3636 0.3329 0.3639 0.3621 0.0900 0.0600

In this section, the clusters = 2, 3,....., and 12 depicts the number of clusters equal

to 2, 3,....., and 12, respectively. We evaluate both algorithms on the two measures

mentioned above. For each SNP dataset, we run the SRSIO-FCM [241] algorithm ten

times by varying the number of cluster centers from 4 to 13. This leads us to have BSs

as input to SIFCC and SFCC. We concatenate the BSs to have the Y matrix, which

is used as input for the SIFCC/SFCC algorithm. The number of subsets into which

Y is divided is 3. The SIFCC partitions the data into three subsets in comparison

126

with the SFCC (100% data) that performs the clustering on whole data. A detailed

discussion of the SNP datasets is present in the subsequent section.

In Table 5.3, we have reported the results on the SoySNP50K Wm82.a1, SNP-seek

rice, MAGIC-rice, and 248Entries rice datasets in terms of SI. This index demonstrates

the quality of clustering, a negative value indicates poor clustering, and a positive value

indicates good clustering quality. Subsequently, a superior clustering would bring

about higher SI. The table shows that the value of SI for SFCC and SIFCC are very

close for the SoySNP50K Wm82.a1 dataset. Besides this, SIFCC attains a higher value

of SI for cluster2. Observing the values of SI for the SNP-seek rice dataset, SIFCC has

obtained a remarkable value than SFCC. Furthermore, the SIFCC achieved the highest

value of SI for cluster6. Observing the values of SI for the MAGIC-rice dataset, SIFCC

has obtained a higher value than SFCC. Additionally, the SIFCC achieved the highest

value of SI for cluster4. Moreover, comparing the values of SI for the 248Entries rice

dataset, we observed that SIFCC has attained positive SI for each cluster, whereas

SFCC obtained negative SI values for most of the clusters as shown in the table. The

experimental analysis shows that SIFCC performs good clustering quality than SFCC

for the 248Entries rice dataset. While speaking about the difference in values of SI

among various clusters, SI for SFCC (100% data) is comparatively smaller than the

SI values achieved with SIFCC.

In Table 5.4, we have reported the results on the SoySNP50K Wm82.a1, SNP-

seek rice, MAGIC-rice, and 248Entries rice datasets in terms of DBI. The DBI is

not limited inside a given range, and thus the lower DBI indicates good clustering

quality. The table shows that the value of DBI for SFCC is higher than SIFCC for

the SoySNP50K Wm82.a1 dataset. Besides this, SIFCC attains a lower value of DBI

for cluster9. Observing the values of DBI for the SNP-seek rice dataset, SIFCC has

obtained a remarkable value than SFCC. Furthermore, the SIFCC achieved a lower

value of DBI for cluster11. Observing the values of DBI for the MAGIC-rice dataset,

SIFCC has obtained a lower value than SFCC. Additionally, the SIFCC achieved

a lower value of DBI for cluster4. Moreover, comparing the values of DBI for the

248Entries rice dataset, we observed that SIFCC has attained lower DBI values than

127

Table 5.4: Values of the DBI in the range of cluster = 2....12 for all the four SNP
datasets using the SIFCC and SFCC algorithm (Entries in boldface indicate the opti-
mal values for respective indices)

Cluster

Datasets

SoySNP50k
Wm82.a1

SNP-
seek
rice

MAGIC-
rice

248Entries rice

SIFCC SFCC SIFCC SFCC SIFCC SFCC SIFCC SFCC

2 3.1509 3.1382 0.7799 0.7799 1.9884 1.9884 1.0876 1.0876

3 1.8902 1.8787 0.7393 0.7393 1.7028 1.8698 1.1904 1.1960

4 1.5664 2.1276 2.4978 2.5817 0.4321 0.4336 1.3015 1.3015

5 7.4855 11.7560 0.9276 0.9975 0.6585 0.7285 1.3665 1.4064

6 2.0356 2.8473 0.6844 0.6944 0.8601 0.8602 1.4498 3.2431

7 1.5318 5.2681 0.7226 0.7355 0.8639 0.8663 1.5255 2.9410

8 5.6977 6.3448 1.6441 1.9869 1.3664 1.3726 1.9973 5.5571

9 1.3152 1.5507 1.7945 1.9901 1.5923 1.5988 1.7689 2.2174

10 2.5039 3.5427 1.1522 1.9901 2.1753 2.9134 2.6644 2.7330

11 2.4282 2.6192 1.1222 1.9586 2.0708 2.5117 1.7728 2.4235

12 2.5039 2.8085 2.0500 2.8695 1.9660 1.9821 1.6618 1.9300

SFCC from cluster3 onward. Besides this, the value of DBI for SFCC and SIFCC

is almost similar for cluster2 and the lowest one in comparison with other clusters.

While speaking about the difference in values of DBI among various clusters, DBI for

SFCC (100% data) is comparatively higher than the DBI values achieved with SIFCC.

Thus, comparing both the measures, we conclude that SIFCC performs better than

the SFCC.

128

5.3 Summary

In this chapter, a scalable preprocessing approach is proposed for the huge SNP

data which is obtained from sequenced plant genomes. The proposed SNP preprocess-

ing method provides 12-dimensional numeric feature vectors from huge SNP sequences

using the Apache Spark cluster. The preprocessed SNP sequences are further used

as an input to the earlier proposed scalable fuzzy clustering algorithms (presented

in Chapters 3 and 4) for clustering massive SNP sequences. First, we directed the

exact evaluation of the proposed KSRSIO-FCM on the different SNP datasets. This

exhibited potential advantages for utilizing our methodology for clustering of SNP

sequences and compared it with other scalable fuzzy clustering approaches. Addition-

ally, the KSRSIO-FCM performed clustering of preprocessed SNP sequences in lesser

time than the KSLFCM algorithm. Second, we used both the proposed approaches,

i.e, SIFCC and SFCC to efficiently cluster SNP sequences at high speed and high

accuracy. Then, the accurate assessments of SIFCC on the various SNP datasets are

conducted, which demonstrated potential benefits for using our approach for clustering

of SNP sequences. The significant characteristic of the proposed SNP preprocessing

approach is that it takes raw SNP sequences as input and distributes the dataset into

various slave nodes and produces a 12-dimensional numerical feature vector as output.

At this point in this thesis, we have developed preprocessing approach for huge

SNP data. The next chapter is focused on preprocessing methods for massive protein

sequences using Apache Spark cluster.

129

Chapter 6

Design of a Novel Scalable Feature

Extraction Algorithms for Huge Protein

Sequences with Application of Scalable

Fuzzy Clustering Algorithm

In this chapter, we have proposed scalable feature extraction algorithms for pre-

processing of massive protein sequences using Apache Spark cluster. The protein

datasets are obtained from SoyBase database1. The proposed two scalable preprocess-

ing methods for massive protein sequences are 60-dimensional Scalable Protein Feature

(60d-SPF) and 6-dimensional Scalable Co-occurrence-based Probability-Specific Fea-

ture (6d-SCPSF) extraction approach. The high dimensionality of protein data creates

several crucial problems for researchers during the implementation of machine learning

algorithms. A good input representation (extraction of features) is necessary for the

proper clustering of protein sequences. The feature extraction techniques [186, 189]

have been introduced in the past, but, none of them is scalable. There is a need for

a scalable method that can select statistically significant features from a huge pro-

tein sequence. Neha et al. [186] developed an approach to extract a six-dimensional

numerical feature vector from a protein sequence. Gupta et al. [189] developed an

alignment-free method to find the similarity among protein sequences via the general

1https://soybase.org/

131

form of pseudo amino acid composition [187], which is a sixty-dimensional numerical

feature vector of the protein sequence. Despite the wide popularity and the existence

of many feature extraction approaches, there is a still need to develop a highly accu-

rate and efficient feature extraction approach for the interpretation of a huge volume

of variable length protein sequences.

This section describes the scalable feature extraction methods for massive protein

sequences implemented on Apache Spark cluster. To propose a scalable protein pre-

processing algorithm, we followed the PseAAC approach discussed in [189] named

60d-SPF and applied this approach to huge protein data to extract 60-dimensional

numeric feature vectors. Additionally, we have proposed 6d-SCPSF by making the

CPSF approach [186] scalable. To make preprocessing algorithm for protein sequence

a scalable algorithm, we executed it on Apache Spark cluster. The results obtained

from the proposed scalable feature extraction techniques are used as input to the well-

known SRSIO-FCM [52] for clustering of protein sequences. A detailed description of

the SRSIO-FCM algorithm is discussed in Section 2.3.2. The proposed approaches are

discussed in the subsequent section.

6.1 60-dimensional Scalable Protein Feature Ex-

traction (60d-SPF) Approach

The proposed scalable 60d-SPF a protein preprocessing approach is being imple-

mented using Apache Spark framework to represent all the protein sequences in terms

of 60-dimensional numeric feature vectors. Algorithm 6.1 summarizes the steps of

60d-SPF using the Apache Spark framework. The input given to the 60d-SPF ap-

proach is a raw protein dataset containing 20 amino acids
∑

={A, C, D, E, F, G,

H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. The output generated by the 60d-SPF

approach is a feature vector of the given input dataset, which is a file containing

60-dimensional numeric feature vectors. In Line 1 of Algorithm 6.1, the data is

read into a RDD from the Hadoop using the pyspark class, i.e., SparkContext.textFile.

132

Then a map function is used to accomplish the preprocessing task. In Line 2 of Algo-

rithm 6.1, the map function allows calling the Protein Preprocess function to each

RDD row. Finally, the obtained RDD after the map function is saved using Line 3 of

Algorithm 6.1.

Algorithm 6.1 60d-SPF

Input: raw protein data : raw Protein.txt

Output: processed protein data : proc Protein.txt

1: y1 = SparkContext.textFile(raw Protein.txt).map(lambda z : numpy.array(z))

2: y1= y1.map(lambda z : Protein Preprocess(z))

3: y1.saveAsTextF ile(proc Protein.txt)

Algorithm 6.2 Protein Preprocess

Input: z; z is a numpy array

Output: numpy.array[A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y].

1: Let i denote amino
∑

={A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,

Y}.
2: for x in z do

3: if x is i then

4: Increase the count of amino i i.e., `i + +.

5: end if

6: end for

7: Calculate the total distance Ti using Eq. (2.34).

8: Calculate the variance of distance Di using Eq. (2.35).

The proposed scalable protein preprocessing approach extracts features of protein

sequences in three sets of the numerical parameter. The first parameter is a calcula-

tion of the length of sequences. The second parameter is the total distances of each

amino base to the first amino acid. The third parameter is the variance of distance

for each amino acid [189]. Each set of a numerical parameter is not sufficient to de-

note a specific protein sequence. Thus, the combination of all of the three sets of

the numerical parameter, which contains 60-dimensional numeric feature vectors is

133

Figure 6.1: Workflow of 60d-SPF Architecture.

used to characterize similarities between protein sequences. The details of the pro-

tein feature extraction approach are given in Algorithm 6.2. In this algorithm, we

discuss the Protein Preprocess algorithm, which is called by 60d-SPF given in Algo-

rithm 6.1. The working of the Protein Preprocess algorithm is shown in terms of

various steps by using an example given in the subsequent subsection. The proposed

scalable protein preprocessing algorithm takes raw protein sequences as input and

produces 60-dimensional numeric feature vectors as an output using Apache Spark

framework. The architecture of the proposed 60d-SPF extraction approach is shown

in Figure 6.1. The SRSIO-FCM algorithm takes the preprocessed 60-dimensional nu-

meric feature vectors of huge protein sequences as input and produces output in terms

of clusters. The working of the Protein Preprocess algorithm is shown in terms of

various steps by using an example given in the subsequent subsection.

134

6.1.1 Stage I: Calculation of length of sequence

The Protein Preprocess algorithm (given in Algorithm 6.2) working is being

described using a first step in which the length of each amino acid sequence is

calculated. Here an illustration is presented by considering an example of five

sequences as shown in Figure 6.2. The output obtained after preprocessing of these

five sequences are shown in Figure 6.3, where the first column represents the sequence

number and the other columns present the 60-dimensional numeric feature vector.

〈`A, `C , `D, `E, `F , `G, `H , `I , `K , `L, `M , `N , `P , `Q, `R, `S, `T , `V , `W , `Y , TA, TC , TD, TE,

TF , TG, TH , TI , TK , TL, TM , TN , TP , TQ, TR, TS, TT , TV , TW , TY , DA, DC , DD, DE, DF , DG,

DH , DI , DK , DL, DM , DN , DP , DQ, DR, DS, DT , DV , DW , DY 〉.

The total number of a particular amino acid∑
={`A, `C , `D, `E, `F , `G, `H , `I , `K , `L, `M , `N , `P , `Q, `R, `S, `T , `V , `W , `Y } is present

in sequence1: 〈TAKHTGPGKV IV NTTHGPIDV ELWPKEAPKSV RNFV QCL

CL〉 are [2, 2, 1, 2, 1, 3, 2, 2, 2, 4, 3, 0, 2, 4, 1, 1, 1, 4, 4, 4, 1, 0], respectively. Likewise, we

calculate the value of the other four sequences as shown in Figure 6.3. After

calculating the total number of amino acids in each sequence, the total distances of

each amino acid to the first amino acid is calculated, which is presented next.

Figure 6.2: Example of protein sequences.

Figure 6.3: Preprocessed result using proposed 60d-SPF extraction method for the
protein sequences given in Figure 6.2.

135

6.1.2 Stage II: Total distances of each amino acid to the first

amino acid

The second numerical parameter, i.e., the total distances of each amino acid-base

to the first amino acid Ti, is calculated using Eq. (2.34). Then the position values

corresponding to each amino acid are added as shown in Figure 6.2. Like, amino acid

G appears at 5, 7, and 16 (index starts from 0). So, the value of TG is calculated as

follows:

TG= 5 + 7 + 16 = 28

Likewise, we calculate the value of TA, TC , TD, TE, TF , TG, TH , TI , TK , TL, TM , TN , TP , TQ,

TR, TS, TT , TV , TW , TY for sequence1 and thus the total distances of each amino acid

to the first amino acid for all other four sequences is shown in Figure 6.3. After

calculating the total distances of each amino acid to the first amino acid, the variance

of distance for each amino acid is calculated, which is presented next.

6.1.3 Stage III: Variance of distance for each amino acid

The third numerical parameter Di represents the variance of distance for each

amino acid, which is calculated using Eq. (2.35). The first step is to compute di using

di = Ti
`i

. The value of dG in sequence1 is calculated as follows:

dG = TG
`G

= 31
3

=10.33

The second step computes the variance of distance for each amino acid-base, i.e., Di,

for example, the value of DG in sequence1 is 22.88, which is calculated as follows:

DG = [(6−10.33)2+(8−10.33)2+(17−10.33)2]
3

= 22.88

Hence, the result obtained from sequence1, which contains 60-dimensional numeric

feature vector as follows: [2, 28, 169.0, 2, 76, 1.0, 1, 19, 0.0, 2, 47, 6.25, 1, 34, 0.0, 3, 28,

22.8, 2, 18, 36.0, 2, 28, 16.0, 4, 64, 127.5, 3, 100, 64.8, 0, 0, 0, 2, 45, 110.25, 4, 75, 69.6, 1, 36,

0.0, 1, 32, 0.0, 1, 30, 0.0, 4, 31, 35.1, 5, 106, 108.2, 1, 23, 0.0, 0, 0, 0]

136

The results of all the other four sequences are shown in Figure 6.3. The proposed

scalable protein preprocessing algorithm (60d-SPF) has the significant characteristic

that it takes raw protein sequences as input and produces 60-dimensional numeric

feature vectors as output. The SRSIO-FCM algorithm takes the preprocessed 60-

dimensional numeric feature vectors of massive protein sequences as input and pro-

duces output in the form of a cluster belonging to each data sample. Additionally, we

have proposed scalable 6-dimensional feature vectors (6d-SCPSF) for preprocessing of

massive protein sequences as presented in the subsequent section.

6.2 6-dimensional Scalable Co-occurrence-based

Probability-Specific Feature (6d-SCPSF) Ex-

traction Approach

The proposed scalable 6d-SCPSF a protein preprocessing approach is being im-

plemented using Apache Spark framework to represent all the protein sequences in

6-dimensional numeric feature vectors. The architecture of the proposed 6d-SCPSF

extraction approach is shown in Figure 6.4. Algorithm 6.3 summarizes steps of scal-

able 6d-SCPSF protein preprocessing technique using the Apache Spark framework.

The proposed 6d-SCPSF approach takes input a raw protein dataset containing 20

amino acids
∑

={A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. Then

in output, it generates a feature vector of the given input dataset, a file containing

6-dimensional numeric feature vector. Line 1 of Algorithm 6.3, calls the Scalable

Protein Sequence Encoding (SPSE) algorithm (Algorithm 6.4), which distributes

raw Protein.txt protein dataset on Apache Spark cluster. The encoding of protein

amino acid is performed using stage one technique, i.e., PSE, as explained in Section

2.4.2. In Line 2, the Global Similarity Measures (GSM) algorithm (Algorithm 6.5)

is called, which calculates the probability matrix of the sequences on a master machine

without distributing the dataset in spark clusters. The GSM approach is explained in

Section 2.4.2. The output obtained from the SPSE algorithm is used as an input to

137

Figure 6.4: 6d-SCPSF Architecture embedded using SRSIO-FCM with Performance
Measure Evaluation.

the GSM algorithm. In Line 3, the Scalable Local Similarity Measures (SLSM) algo-

rithm (Algorithm 6.6) is called, which again distributes the output obtained from

the GSM algorithm using Apache Spark cluster to find LSM as explained in 2.4.2.

Finally, the 6-dimensional numerical feature vectors are saved in a file using Line 4.

The subsequent section explains the SPSE, GSM, and SLSM algorithms.

6.2.1 SPSE Algorithm

The PSE algorithm encodes each amino acid into particular encoding groups, as

discussed in Section 2.4.2. This section presents the scalable version of PSE (SPSE).

Algorithm 6.4 shows the steps of the SPSE approach. The data is read into a

resilient distributed dataset (RDD) from the Hadoop in Line 1. In Line 2, the file

138

Algorithm 6.3 6d-SCPSF algorithm

Input: raw protein data : raw Protein.txt

Output: preprocessed protein data : pre Protein.txt

1: Call Scalable Protein Sequence Encoding (SPSE) algorithm.

2: Call Global Similarity Matrix (GSM) algorithm.

3: Call Scalable Local Similarity Measures (SLSM) algorithm.

4: saveAsTextF ile(Feature V ectors.txt)

(raw Protein.txt) is pass to the Encode function and store as the return values in

other Spark RDD. Then the map function distributes Encode() method to every worker

node for parallel execution of the task in Line 3. Save the data of encoded RDD to

the text file in Line 4. From Line 5-12, the working of Encode() function is given. The

encoding of sequences is exchanged with the values from Line 7-12. The DataFrame

is used to store the computation of each step. In Spark, a DataFrame is a distributed

collection of data organized into named columns. Section 2.4.2 discusses the steps used

to perform protein sequence encoding. In Line 13, the output of the SPSE algorithm

is saved in the enc Protein.txt file. After that, the enc Protein.txt file is taken as

input to the GSM algorithm, which is presented next.

6.2.2 GSM Algorithm

The GSM is used to calculate the instance probability of all exchange groups at each

position relative to the total number of protein sequences. Algorithm 6.5 discusses

the steps of the GSM approach. The input of this algorithm is enc Protein.txt, which

is obtained from Algorithm 6.4. Line 1 reads the data from a file and saves it

to a DataFrame. Line 2 finds the number of columns of DataFrame, and Line 3

locates the number of rows of DataFrame. An empty DataFrame is created for the

estimation of the probability DataFrame of sequences in Line 4. Then, calculate the

occurrence of the exchange group for each column and add this to the DataFrame in

Line 8. In Line 9, the value of the probability of exchange group is computed using

Eq. (2.36). Line 10, add the probability to the list. In Line 12, a list is added as a new

139

Algorithm 6.4 Scalable Protein Sequence Encoding (SPSE)

Input: raw protein sequence: raw Protein.txt

Output: encoded protein sequence: enc Protein.txt

1: Read the protein sequences from the file and parallelize them with the help of

Spark RDD.

2: Pass the file (raw Protein.txt) to Encode function and store the return values

in other Spark RDD.

3: y1 = y1 : map(lambda z : Encode(z))

4: Save data of encoded RDD to textFile.

5: Function Encode(z){
6: Store the data in the DataFrame and split each letter in the sequence to different

columns.

7: Replace the ′H ′,′R′,′K ′ with e1.

8: Replace the ′D′,′E ′,′N ′,′Q′ with e2.

9: Replace the ′C ′ with e3.

10: Replace the ′S ′,′ T ′,′ P ′,′A′,′G′ with e4.

11: Replace the ′M ′,′ I ′,′ L′,′ V ′ with e5.

12: Replace the ′F ′,′ Y ′,′W ′ with e6.

13: Returns the encoded protein sequence: enc Protein.txt }

column in the probability DataFrame. Line 14 saves the result to prob Protein.txt

file that is used as input to the SLSM algorithm. Section 2.4.2 discusses the steps

used to find global similarity measures of the protein-encoding sequence. After that,

enc Protein.txt and prob Protein.txt files are taken as input to the next stage in the

SLSM algorithm, which is presented next.

6.2.3 SLSM Algorithm

This section presents the scalable version of LSM (SLSM). The SLSM deter-

mines the location-specific weight of each exchange group within the sequence and

produces the weight factors. These weight factors ultimately represent the numeric

feature vectors for each protein sequence. Algorithm 6.6 discusses the steps of

140

Algorithm 6.5 Global Similarity Measures (GSM)

Input: encoded protein sequences: enc Protein.txt

Output: probability DataFrame of sequences: prob Protein.txt

1: Read the encoded sequences data from the file and store it in the DataFrame.

2: Find the number of columns of the DataFrame(col).

3: Find the number of rows of the DataFrame(row).

4: Create an empty probability DataFrame with index names e1, e2, e3, e4, e5, e6.

5: for each column in range 0 to col do

6: Create an empty list.

7: for each exchange group do

8: Get the occurrence of exchange group in that column.

9: Get the probability of the exchange group using Eq. (2.36).

10: Add probability to the list.

11: end for

12: Add list as a new column in the probability DataFrame.

13: end for

14: Save probability DataFrame as textFile(prob Protein.txt).

the SLSM approach. This algorithm takes input two files, i.e., enc Protein.txt and

prob Protein.txt, which are obtained from Algorithm 6.4 and Algorithm 6.5, re-

spectively. The data (enc Protein.txt) is read into an RDD from the Hadoop in Line

1. Then, the data from the file (prob Protein.txt) is accessed and stored in DataFrame

(probability) in Line 2. The map function distributes FeatureVector() method to ev-

ery worker node for parallel execution of the task in Line 3. Line 4 saves the data

obtained from featureVector RDD to textFile. From Line 5-15, the working of Fea-

tureVector() function is given, where the DataFrame is used to store the computation

of each step. An empty DataFrame is created with given column names in Line 6.

Then, a DataFrame is created using the data in Line 7. Line 8 finds the number of

cols, and Line 9 locates the number of rows of the DataFrame. The exchange group

of rows and columns from DataFrame is acquired in line 13. In Line 14, modify the

key value of the exchange group from featureVector by adding previous value with the

141

Algorithm 6.6 Scalable Local Similarity Measures (SLSM)

Input: Probability matrix of sequences: prob Protein.txt, encoded protein sequences:

enc Protein.txt

Output: Feature Vectors: Feature V ectors.txt

1: Read the sequences from the file (enc Protein.txt) and parallelize using Spark

RDD.

2: Read the data from the prob Protein.txt and store it in DataFrame (probability).

3: y2 = y2 : map(lambda y3 : FeatureV ector(y3 : probProtein.txt))

4: Save data of FeatureVector RDD to textFile.

5: Function FeatureVector(probability, data)

6: Create an empty featureVector DataFrame with column names as

e1, e2, e3, e4, e5, e6.

7: Create DataFrame using data.

8: Find the number of columns of the DataFrame(cols).

9: Find the number of rows of the DataFrame(rows).

10: for row in range of 0 to rows do

11: Create a dictionary in as featureVector=′e′1 : 0,′ e′2 : 0,′ e′3 : 0,′ e′4 : 0,′ e′5 : 0,′ e′6 : 0.

12: for col in range of 0 to cols do

13: Get the exchange group from the position of rows and cols in DataFrame.

14: Modify the key value of the exchange group from featureVector by adding

previous value with the value of probability at the position of exchange group and

cols from probability DataFrame.

15: end for

16: Add the featureVector to the featureVector DataFrame.

17: end for

18: Save the featureVector DataFrame to textFile (Feature V ectors.txt).

value of probability at the position of the exchange group and columns from probabil-

ity DataFrame. Line 10-17 is computed using Eq. (2.37). Section 2.4.2 discusses the

steps used to find local similarity measures of the protein-encoding sequence. Finally,

the results are saved in the Feature V ectors.txt file in Line 18.

The proposed scalable protein preprocessing algorithm (6d-SCPSF) has the sig-

142

nificant characteristics that it takes raw protein sequences as input and produces

6-dimensional numeric feature as an output. In Section 6.3, we present the experi-

mental results applied to various protein datasets. The SRSIO-FCM algorithm takes

the preprocessed 6-dimensional numeric feature vectors of huge protein sequences as

input and produces output in terms of clusters.

6.3 Experimental Evaluation on Protein Datasets

In this section, we present the experimental results on various protein datasets

applied to scalable fuzzy clustering algorithm. We have analyzed the SRSIO-FCM

algorithms [52] exhibition, where the input data is represented as the numerical fea-

ture vectors which is preprocessed using proposed 60d-SPF and 6d-SCPSF extraction

methods on the Lee, Williams82, PI483463, and W05 protein datasets2. A detailed

description of all these datasets is presented in Section 2.6.2. The experimental evalu-

ation is performed on Apache Spark cluster. The detailed description of Apache Spark

cluster setup is presented in Section 3.4.2. In the experiments, we have analyzed the

performance of the proposed 60d-SPF and 6d-SCPSF extraction method applied to

the SRSIO-FCM algorithm using the Silhouette Index (SI) and Davies Bouldin Index

(DBI) on Apache Spark cluster. The experimental results and discussion is presented

next.

Comparative Analysis of 60d-SPF and 6d-SCPSF applied to SRSIO-FCM

Algorithm in terms of SI and DBI measures

We have done the comparative analysis of proposed 60d-SPF and 6d-SCPSF ex-

traction methods applied to the SRSIO-FCM algorithm. The input data fed to the

SRSIO-FCM approach is the output obtained from proposed 60d-SPF and 6d-SCPSF

extraction methods. We have performed clustering with the number of subsets 3,

where the subsets represent the chunks of the entire data. In this section, subset3

depicts the number of subsets equal to 3. The SRSIO-FCM algorithm partitions the

dataset into three subsets. The clustering is performed on the number of clusters 5, 10,

2https://soybase.org/

143

Table 6.1: Values of the SI for 6d-SCPSF and 60d-SPF on all the four protein datasets
using the SRSIO-FCM algorithm.

Cluster

Datasets

Lee Williams82 PI48346 W05

6d-
SCPSF

60d-SPF 6d-
SCPSF

60d-SPF 6d-
SCPSF

60d-SPF 6d-
SCPSF

60d-SPF

5 0.4501 0.6678 0.4607 0.6672 0.4492 0.6329 0.4526 0.6505

10 0.3361 0.4826 0.3391 0.5055 0.3358 0.478 0.3341 0.4895

15 0.2721 0.3922 0.2706 0.4174 0.2533 0.3894 0.2732 0.4063

20 0.2511 0.3522 0.2538 0.3918 0.24 0.3471 0.2494 0.3636

25 0.2303 0.3074 0.2252 0.331 0.2244 0.3063 0.2358 0.3087

30 0.199 0.2131 0.2201 0.2868 0.2013 0.2699 0.217 0.2719

15, 20, 25, and 30, respectively. Likewise, the cluster5, cluster10, cluster15, cluster20,

cluster25, and cluster30 depicts the number of clusters equal to 5, 10, 15, 20, 25, and

30, respectively.

(i) SI values for all four protein datasets applied on SRSIO-FCM using

60d-SPF and 6d-SCPSF extraction method:

Table 6.1 highlights SI values for the Lee, Williams82, PI483463, and W05 Soy-

bean protein datasets. SI demonstrates the quality of clustering. Subsequently, a

superior clustering would bring about higher SI. Observing the SI values for the

Lee dataset, the SRSIO-FCM algorithm has obtained a lower value for the 6d-

SCPSF extraction method than the 60d-SPF extraction method. On the other

hand, the SRSIO-FCM achieved a higher value on cluster5 for the 60d-SPF ap-

proach. Along these lines, we can conclude that 60d-SPF performs better than

6d-SCPSF when applied on the SRSIO-FCM algorithm in terms of SI values for

the Lee protein dataset.

Observing the SI values for Williams82, the SRSIO-FCM algorithm has obtained

a lower value for the 6d-SCPSF extraction method than for the 60d-SPF extrac-

144

tion method. On the other hand, the SRSIO-FCM achieved a higher value on

cluster5 for 60d-SPF. Along these lines, we can conclude that 60d-SPF performs

better than 6d-SCPSF when applied on the SRSIO-FCM algorithm in terms of

SI values for the Williams82 protein dataset.

Observing the SI values for the PI483463 dataset, the SRSIO-FCM algorithm has

obtained a higher value for the 60d-SPF extraction method than the 6d-SCPSF

extraction method. On the other hand, the SRSIO-FCM achieved a higher value

for cluster5 for 60d-SPF. Along these lines, we can conclude that 60d-SPF per-

forms better than 6d-SCPSF when applied on the SRSIO-FCM algorithm in

terms of SI values for the PI483463 protein dataset.

Observing the SI values for the W05 dataset, the SRSIO-FCM algorithm has

obtained a higher value for the 60d-SPF extraction method than the 6d-SCPSF

extraction method. On the other hand, the SRSIO-FCM achieved a higher value

for cluster5 for 60d-SPF. Along these lines, we can conclude that 60d-SPF per-

forms better than 6d-SCPSF when applied on the SRSIO-FCM algorithm in

terms of SI values for the W05 protein dataset.

(ii) DBI values for all four protein datasets applied on SRSIO-FCM using

60d-SPF and 6d-SCPSF extraction method:

Table 6.2 highlights DBI values for Lee, Williams82, PI483463, and W05 Soybean

protein datasets. Conversely to the SI, the DBI is not bounded within a given

range. As a general rule, the lower the DBI value better the clustering result.

Observing the DBI values for the Lee dataset, the value achieved by SRSIO-FCM

is much better for the 60d-SPF than 6d-SCPSF. As we can see, for 60d-SPF,

the DBI values are lower than 6d-SCPSF when clustered using SRSIO-FCM on

almost all the clusters. Moreover, SRSIO-FCM attained a very low value on

cluster5. In this way, we can conclude that 60d-SPF performs better than 6d-

SCPSF when applied on the SRSIO-FCM algorithm in terms of DBI values for

the Lee protein dataset.

Observing the DBI values for the Williams82 dataset, the value achieved by

145

Table 6.2: Values of the DBI for 6d-SCPSF and 60d-SPF on all the four protein
datasets using the SRSIO-FCM algorithm.

Cluster

Datasets

Lee Williams82 PI48346 W05

6d-
SCPSF

60d-SPF 6d-
SCPSF

60d-SPF 6d-
SCPSF

60d-SPF 6d-
SCPSF

60d-SPF

5 0.7227 0.6654 0.7409 0.603 0.7243 0.6434 0.7259 0.6563

10 0.9299 0.8207 1.0339 0.7689 0.9302 0.8636 1.0193 0.8644

15 1.1504 1.1391 1.2841 1.0555 1.2587 1.137 1.1937 1.0727

20 1.1829 1.1382 1.2863 1.1908 1.2611 1.153 1.2546 1.2559

25 1.1861 1.1725 1.2663 1.1741 1.244 1.176 1.1998 1.1767

30 1.2772 1.2456 1.3602 1.629 1.3 1.1778 1.2694 1.2058

SRSIO-FCM is much better for the 60d-SPF than 6d-SCPSF. As we can see, for

6d-SCPSF DBI values are higher than 60d-SPF when clustered using SRSIO-

FCM on all the clusters except cluster30. Moreover, SRSIO-FCM attained a

low value on cluster5 for 60d-SPF. In this way, we can conclude that 60d-SPF

performs better than 6d-SCPSF when applied on the SRSIO-FCM algorithm in

terms of DBI values for the Williams82 protein dataset.

Observing the DBI values for the PI483463 dataset, the value achieved by SRSIO-

FCM is much better for the 60d-SPF than 6d-SCPSF. As we can see, for 6d-

SCPSF DBI values are higher than 60d-SPF when clustered using SRSIO-FCM

on almost all the clusters. Moreover, SRSIO-FCM attained a low value on clus-

ter5 for 60d-SPF. In this way, we can conclude that 60d-SPF performs better

than 6d-SCPSF when applied on SRSIO-FCM algorithm in terms of DBI values

for the PI483463 protein dataset.

Observing the DBI values for the W05 dataset, the value achieved by SRSIO-

FCM is much better for the 60d-SPF than 6d-SCPSF. As we can see, with the

6d-SCPSF approach the DBI values are higher than 60d-SPF when clustered

146

using SRSIO-FCM on almost all the clusters. Moreover, SRSIO-FCM attained

a low value on cluster5 for 60d-SPF. In this way, we can conclude that 60d-SPF

performs better than 6d-SCPSF when applied to the SRSIO-FCM algorithm in

terms of DBI values for the W05 protein dataset.

6.4 Summary

In this chapter, two approaches 60d-SPF and 6d-SCPSF have been proposed to

extract numerical feature vectors from huge protein sequences using Apache Spark

cluster. These preprocessed numerical feature vectors are applied to the developed

scalable fuzzy clustering algorithm. Here, we have used the SRSIO-FCM algorithm

to cluster huge soybean protein sequences. The preprocessed feature vectors of pro-

tein sequences obtained from 60d-SPF and 6d-SCPSF are used as an input to the

SRSIO-FCM algorithm. Our proposed 6d-SCPSF and 60d-SPF approaches are used

to efficiently extract feature vectors from protein sequences. Thus, both the algo-

rithms are scalable and can handle a huge amount of protein sequences. We have

directed the exact evaluation of both the algorithms applied to SRSIO-FCM using

different soybean protein datasets, which exhibited potential advantages for utilizing

our methodology for clustering protein sequences.

At this point in this thesis, we have developed preprocessing approach for huge

SNP and protein data. Then, we have applied proposed scalable fuzzy clustering

algorithms for the clustering of massive SNP and protein data. In the next chapter,

we focus on preprocessing and clustering of massive SARS-CoV-2 protein sequences

using proposed approaches.

147

Chapter 7

Investigation of Massive SARS-CoV-2

Protein Datasets on Developed Scalable

Feature Extraction and Scalable Fuzzy

Clustering Algorithms

In the previous chapters (Chapter 5 and 6), all proposed scalable algorithms were

applied for clustering of SNPs and proteins from plant genome sequences. In this

chapter, we propose to investigate the preprocessing and clustering of massive pro-

tein sequences of Coronavirus Disease-19 (COVID-19) caused by the Severe Acute

Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus using these scalable algo-

rithms. We have used 60-dimensional Scalable Feature (60d-SPF) extraction method

(discussed in Chapter 6) to preprocess SARS-CoV-2 protein sequences. Furthermore,

we have applied the preprocessed SARS-CoV-2 protein data to the developed scalable

kernelized clustering algorithms (discussed in Chapter 3). The preprocessing and clus-

tering of massive SARS-CoV-2 protein data are discussed in detail in the subsequent

section.

149

7.1 Introduction

COVID-19 is a disease caused by the SARS-CoV-2 virus which has been declared

a pandemic by the World Health Organization on March 11, 2020. COVID-19 has

placed immense stress on the world’s healthcare system. The amount of COVID-

19 data generated by next generation sequencing technologies are increasingly huge

[247, 248, 249]. As the amount of techniques used in data collection keeps expanding,

the amount of observations that could be used as training data also keeps increasing.

The problem becomes more rigid and more significant when each of these data samples

contains multiple features or attributes [250]. The innovative COVID-19 analysis

technologies need to be developed, which can significantly reduce the time and cost of

clustering of SARS-CoV-2 genomes [251]. Since April 2020, a lot of research [252, 190,

253] is going on and a wide range of applications and methods of machine learning

has been identified to overcome medical challenges and to predict the outbreak of the

COVID-19 pandemic.

The SARS-CoV-2 genome data is growing faster than the rate at which it can

be analyzed [232, 231]. It is becoming increasingly popular to investigate valuable

information from huge SARS-CoV-2 data to interpret data practically and timely. To

extract useful information from huge genomics data such as protein, DNA, and RNA

sequences, many machine learning approaches are widely applied, such as clustering,

classification, and neural network, etc [254]. There are several approaches applied for

clustering of SARS-CoV-2 data [255, 256, 257], but the application of SARS-CoV-2

sequencing using clustering is rare [258]. These techniques do not receive a great ac-

knowledgment for huge SARS-CoV-2 genome data as they remained non-scalable while

there have been rapid advancements in clustering algorithms. The non-scalability has

led to the confinement usage of many clustering algorithms at enormous information

scales. Hence, there is a great need to design scalable clustering algorithms to handle

massive SARS-CoV-2 genome data continuously generated from various sources. We

have developed scalable kernelized fuzzy clustering algorithms (discussed in Chapter

3), which can deal with massive SARS-CoV-2 genome data. The KSRSIO-FCM per-

150

forms better than KSLFCM for handling Big Data (discussed in Chapter 3). A good

representation is necessary for the proper clustering of genome data using the de-

veloped clustering methods. Hence, we have developed feature extraction approaches

(discussed in Chapters 5 and 6) to preprocess huge genome data. The 60d-SPF method

exhibited potential advantages for preprocessing massive protein sequences presented

in Chapter 6. This chapter presents the preprocessing of massive SARS-CoV-2 pro-

tein data using developed 60d-SPF approach (discussed in Section 6.1). Thereafter,

clustering of preprocessed SARS-CoV-2 data is performed using developed scalable

kernelized fuzzy clustering methods; KSRSIO-FCM and KSLFCM. Further, the ef-

fectiveness of KSRSIO-FCM and KSLFCM on the SARS-CoV-2 dataset is performed

in terms of SI and DBI measures. The preprocessing of SARS-CoV-2 protein data is

presented in the subsequent section.

7.2 Preprocessing of SARS-CoV-2 Protein

Datasets

In this section, the preprocessing of SARS-CoV-2 protein data is performed using

the 60d-SPF method. The developed scalable protein preprocessing approach is being

implemented using the Apache Spark framework and thus produces 60-dimensional

numeric feature vectors. The workflow of preprocessing of the SARS-CoV-2 protein

sequence using the 60d-SPF extraction approach is shown in Figure 7.1. We can see

in Figure 7.1 that first raw SARS-CoV-2 protein data is used as input to the 60d-SPF

method for feature extraction. Then the 60d-SPF method produces 60-dimensional

numeric feature vectors as output. The preprocessing steps of SARS-CoV-2 protein

data using an illustrative example are presented next.

Illustrative Example:

We have taken five SARS-CoV-2 sequences from SARS dataset1. The detailed

description is presented in Section 2.6.3. In Figure 7.2, we represent five sequences

of SARS-CoV-2 protein data taken from the SARS dataset. To show the steps of

1https://www.ncbi.nlm.nih.gov/datasets/coronavirus/genomes/

151

Figure 7.1: Workflow of the preprocessing of SARS-CoV-2 protein sequence.

Figure 7.2: Five SARS-CoV-2 sequences from SARS dataset.

SARS-CoV-2 protein preprocessing, we have applied these sequences to the 60d-SPF

extraction method. The 60d-SPF works in three stages; the first stage calculates

the amino acid length for each sequence. The second stage counts the total distance

of each amino acid to the first, and the third stage calculates the variance of the

distance of each amino acid. For example, twenty amino acids will generate a feature

vector consist of twenty numeric values after calculating the length of each amino

acid. Likewise, we get twenty amino acids for the second and third stages. Hence,

we have obtained 60-dimensional numeric feature vectors corresponding to SARS-

152

Figure 7.3: 60-dimensional numerical feature vectors of Figure 7.2.

153

Figure 7.4: Workflow of the developed clustering algorithms applied to massive SARS-
CoV-2 protein data.

CoV-2 protein sequences after all three stages of the 60d-SPF method. A detailed

description of all three stages is presented in Section 6.1. Figure 7.3 represents 60-

dimensional numerical feature vectors of Figure 7.2 obtained after applying the 60d-

SPF method. The 60-dimensional numerical feature vectors are used as input to the

developed scalable kernelized fuzzy clustering algorithm, which is presented next.

7.3 Clustering of SARS-CoV-2 Protein Datasets

In this section, we have used KSRSIO-FCM and KSLFCM methods to cluster

SARS-CoV-2 protein datasets. The workflow of clustering of SARS-CoV-2 protein

sequences using the KSRSIO-FCM and KSLFCM approaches is shown in Figure 7.4.

First, we provide 60-dimensional numeric feature vectors as input to the KSRSIO-FCM

and KSLFCM algorithms. The developed KSRSIO-FCM and KSLFCM approach

starts by randomly partitioning the data into various subsets. Here, we have divided

the SARS-CoV-2 protein sequences into three subsets. In this method, for clustering

of the first subset, cluster centers are initialized randomly. After clustering the first

subset, the cluster centers and membership values corresponding to the first subset

154

is obtained. After clustering the first subset, the final cluster centers are used as an

input for clustering the second subset. After clustering of the second subset, the cluster

centers, and membership value is obtained. After that, it combines the membership

value of the first and second subset to compute the new cluster centers. These cluster

centers are then fed as an input for clustering of the third subset. Then, after clustering

of this subset, the final cluster centers, and final membership value is obtained. The

developed KSRSIO-FCM and KSLFCM approach is being implemented using Apache

Spark framework, which produces clusters consists of SARS-CoV-2 protein sequences.

A detailed description of KSRSIO-FCM and KSLFCM algorithms is presented in

Chapter 3. To evaluate the performance of KSRSIO-FCM and KSLFCM approaches

on SARS-CoV-2 protein datasets, we fix the value of fuzzification parameter p = 1.75

and termination criteria ε = 0.01 used in the experimental study. The performance

analysis of scalable kernelized fuzzy clustering algorithms on SARS-CoV-2 protein

datasets is presented next.

7.4 Experimental Analysis of SARS-CoV-2 Pro-

tein Datasets

To investigates the SARS-CoV-2 protein datasets, we have collected them from

multiple sources23. In this section, we present the experimental results on various

SARS-CoV-2 protein datasets which are applied to our developed scalable kernelized

fuzzy clustering algorithms. The developed KSRSIO-FCM and KSLFCM algorithms

take the preprocessed numeric feature vectors of SARS-CoV-2 protein sequences as

input and produce output in the form of clusters. The efficacy of KSRSIO-FCM

and KSLFCM algorithms is tested with various benchmark datasets, including Big

Data. These are also tested with real-life SNP data, i.e., plant genome data. In

this chapter, these proposed algorithms are tested with SARS-CoV-2 datasets. The

experimental results were conducted to demonstrate the effectiveness of KSRSIO-FCM

2https://www.ebi.ac.uk/pdbe/covid-19
3https://www.ncbi.nlm.nih.gov/datasetscoronavirus/genomes/

155

in comparison with KSLFCM on SARS-CoV-2 protein datasets in terms of SI and DBI

measures (discussed in Section 2.5.2). The detailed description of the SARS-CoV-2

datasets used in the experimental study is discussed in the subsequent section.

7.4.1 Datasets Description

The detailed description of the SARS-CoV-2 datasets are used in the experimenta-

tion is given in Section 2.6.3 and their characterization for the experimental analysis

is presented in Table 7.1.

Table 7.1: Description of SARS-CoV-2 protein Datasets.

Parameters
Datasets

SARS Coronaviridae P0DTD1

sequences 93274 96596 1348
size 2.7GB 2.8 GB 367 KB

We have used two variants of Coronavirus genomes taken from NCBI and their

clustering is performed using proposed kernelized clustering algorithms (KSRSIO-

FCM and KSLFCM). The SARS and Coronaviridae are massive SARS-CoV-2 genome

data (in GBs). We have performed preprocessing using developed 60d-SPF (discussed

in Section 6.1) and then performed clustering using developed KSRSIO-FCM. The

proposed 60d-SPF; a preprocessing and KSRSIO-FCM; a clustering algorithm is also

tested on another SARS-CoV-2 P0DTD1 in Kilobytes (KBs), showing that proposed

algorithms for preprocessing and clustering can be applicable for any size of SARS-

CoV-2 protein data.

7.4.2 Clustering Performance on huge SARS-CoV-2 protein

datasets

We perform clustering with KSRSIO-FCM by dividing the entire data into three

subsets represented by subsets3 where KSLFCM is applied on the whole data (100%

156

data). The clustering is performed by taking the different number of clusters, i.e., 2,

3, 4, and 5 represented as cluster2, cluster3, cluster4, and cluster5, respectively.

Table 7.2: Results of KSRSIO-FCM and KSLFCM in terms of SI for SARS, Coron-
aviridae, and P0DTD1 protein dataset.

7.2(a) Results of SARS

Cluster KSRSIO-FCM KSLFCM

2 0.8175 -0.19304

3 0.0955 -0.2003

4 0.1038 -0.1976

5 0.3299 -0.2062

7.2(b) Results of Coronaviridae

Cluster KSRSIO-FCM KSLFCM

2 0.857 0.00651

3 0.0851 -0.0007

4 0.2187 -0.0232

5 0.0907 -0.0685

7.2(c) Results of P0DTD1

Cluster KSRSIO-FCM KSLFCM

2 0.3456 -0.19304

3 0.4348 -0.2003

4 0.3313 -0.1976

5 0.4198 -0.2062

Table 7.2 shows the results of KSRSIO-FCM and KSLFCM in terms of SI for SARS,

Coronaviridae, and the P0DTD1 protein dataset. The SI demonstrates the quality of

clustering. Subsequently, a superior clustering would bring about higher SI. Observing

the SI values for SARS, Coronaviridae, and P0DTD1 datasets, respectively, presented

in Table 7.2(a), 7.2(b), and 7.2(c), the KSRSIO-FCM algorithm has obtained positive

values for almost all the clusters as compared to the KSLFCM algorithm. On the

other hand, the KSRSIO-FCM achieved a higher value for cluster2 for SARS and

Coronaviridae. For P0DTD1, KSRSIO-FCM achieved a higher value for cluster3.

Along these lines, we can conclude that the proposed KSRSIO-FCM performs better

than KSLFCM in terms of SI values for all three SARS-CoV-2 protein datasets.

Conversely to the SI, the DBI is not bounded within a given range. As a general

rule, the lower the DBI value better the clustering result. Table 7.3 shows the re-

sult of KSRSIO-FCM and KSLFCM in terms of DBI for SARS, Coronaviridae, and

the P0DTD1 protein dataset. The DBI demonstrates the quality of clustering. Sub-

157

Table 7.3: Results of KSRSIO-FCM and KSLFCM in terms of DBI for SARS, Coro-
naviridae, and P0DTD1 protein dataset.

7.3(a) Results of SARS

cluster KSRSIO-FCM KSLFCM

2 0.8809 8.9042

3 2.3923 15.964

4 1.5848 20.2402

5 3.1483 25.491

7.3(b) Results of Coronaviridae

cluster KSRSIO-FCM KSLFCM

2 0.9714 25.271

3 2.4082 46.831

4 3.5031 55.3994

5 2.7414 57.218

7.3(c) Results of P0DTD1

cluster KSRSIO-FCM KSLFCM

2 1.6699 8.9042

3 1.5233 15.964

4 2.8153 20.2402

5 1.5756 25.491

sequently, a superior clustering would bring about lower DBI. Observing the DBI

values for SARS, Coronaviridae, and P0DTD1 datasets, respectively, presented in Ta-

ble 7.3(a), 7.3(b), and 7.3(c), the KSRSIO-FCM algorithm has obtained lower values

for almost all the clusters as compared to the KSLFCM algorithm. On the other

hand, the KSRSIO-FCM achieved a lower value for cluster2 for SARS and Coronaviri-

dae dataset. For P0DTD1, KSRSIO-FCM achieved a lower value for cluster3. Along

these lines, we can conclude that the proposed KSRSIO-FCM performs better than

KSLFCM in terms of DBI values for all three SARS-CoV-2 protein datasets.

7.5 Summary

In this chapter, massive protein sequences of COVID-19 caused by the SARS-

CoV-2 virus are investigated using newly developed scalable algorithms. The scalable

60d-SPF, feature extraction technique and clustering; KSRSIO-FCM/KSLFCM are

applied on massive SARS-CoV-2 protein datasets. First, a scalable feature extraction

technique (60-SPF) is applied on massive SARS-CoV-2 protein datasets to extract the

158

60-dimensional numeric vectors for each protein sequence. After that, the preprocessed

feature vectors of protein sequences obtained from the 60d-SPF method are used

as input to the KSRSIO-FCM and KSLFCM algorithms. We have performed the

investigation on various SARS-CoV-2 protein datasets using the 60d-SPF extraction

method applied to the KSRSIO-FCM/KSLFCM algorithm in terms of SI and DBI

measures. The efficacy of KSRSIO-FCM and KSLFCM algorithms is tested with

various benchmark datasets, including Big Data. These are also tested with real-

life SNP data, i.e., plant genome data. In this chapter, these proposed algorithms

are tested with SARS-CoV-2 datasets. However, in this chapter, these developed

algorithms are applied to massive SARS-CoV-2 protein datasets. It is found that

KSRSIO-FCM performs better than KSLFCM. Hence, it is observed that our proposed

algorithm can handle any kind of genome data of any size (Big Data).

159

Chapter 8

Conclusions and Future Work

This thesis primarily investigates the scalable fuzzy clustering algorithms for clus-

tering of Big Data, and these developed algorithms are applied on the massive genome

sequences. In particular, we have developed scalable kernelized fuzzy clustering algo-

rithms and scalable incremental fuzzy consensus clustering algorithms using Apache

Spark cluster. First, we have developed a scalable kernelized clustering algorithm

named Kernelized Scalable Random Sampling with Iterative Optimization Fuzzy C-

Means (KSRSIO-FCM). This is based on the Kernelized Scalable Literal Fuzzy C-

Means (KSLFCM) clustering algorithm, in which kernel function (RBF) is used. Fur-

ther, a Scalable Incremental Fuzzy Consensus Clustering (SIFCC) algorithm using

Apache Spark cluster is developed to improve the quality of clusters for Big Data. This

method combines SRSIO-FCM and Scalable Fuzzy Consensus Clustering (SFCC) al-

gorithms, in which SRSIO-FCM is used to generate Basic Segments (BSs), and SFCC

is an integral part of SIFCC. These proposed algorithms have been tested on various

benchmark datasets and compared results with various scalable fuzzy clustering al-

gorithms. Results analysis exhibits that the proposed algorithms have outperformed

existing scalable fuzzy clustering algorithms in terms of NMI, ARI, and F-score, re-

spectively. In order to test the proposed scalable fuzzy clustering algorithms on real-

life, massive genome data, we have designed a feature extraction technique for the

genome dataset. First, we have developed a scalable preprocessing feature extraction

approach for huge SNP sequences, producing a 12-dimensional numeric feature vector

161

that is used as an input to the proposed KSRSIO-FCM and SIFCC algorithms. Then,

scalable feature extraction techniques for huge protein sequences are developed, i.e.,

60d-SPF and 6d-SCPSF, producing 60-dimensional and 6-dimensional numeric fea-

ture vectors. Finally, to tackle massive SARS-CoV-2 protein data challenges, we have

applied developed scalable feature extraction and clustering algorithms on massive

SARS-CoV-2 data. These proposed feature extraction methods have been tested on

various genome datasets and compared results with various scalable fuzzy clustering

algorithms. Results analysis exhibits that the proposed algorithms have outperformed

existing scalable fuzzy clustering algorithms in terms of SI and DBI measures. The

proposed scalable fuzzy clustering algorithms are general-purpose which can be ap-

plied to any problem. Also, the developed scalable feature extraction techniques are

the generalized approaches that can be applied to any SNP (nucleotide form) and

protein (amino acid form) sequences.

8.1 Summary of Research Achievements

The objectives specified in Section 1.2 have been successfully fulfilled by the fol-

lowing main contributions:

(i) Scalable Kernelized Fuzzy Clustering Algorithms for Handling Big

Data:

We have proposed a Kernelized Scalable Random Sampling with Iterative Op-

timization Fuzzy C-Means (KSRSIO-FCM), which is based on the Kernelized

Scalable Literal Fuzzy C-Means (KSLFCM) clustering algorithm. The scalable

kernelized clustering algorithms are evolved to deal with the non-linear separable

problems by applying a kernel Radial Basis Functions (RBF), which maps the in-

put data space non-linearly into a high dimensional feature space. The proposed

scalable kernelized fuzzy clustering algorithms for handling Big Data reduces the

run-time and optimizes the storage space. Further, an analytical formulation

for space and time complexity is developed for KSRSIO-FCM and KSLFCM.

162

The performance of KSRSIO-FCM is compared with KSLFCM, SRSIO-FCM,

and SLFCM algorithms. We have performed experimentation on four replicated

benchmark datasets to test the performance of the KSRSIO-FCM. The KSRSIO-

FCM exhibited better performance than KSLFCM, SRSIO-FCM, and SLFCM

algorithms in terms of NMI, ARI, and F-score, respectively. The scalable fuzzy

clustering algorithm is further improved by combining consensus clustering using

Apache Spark to enhance the quality of clusters.

(ii) Scalable Incremental Fuzzy Consensus Clustering Algorithms for Han-

dling Big Data:

We have also designed a Scalable Incremental Fuzzy Consensus Clustering

(SIFCC) algorithm using Apache Spark cluster, which is based on the Scalable

Fuzzy Consensus Clustering (SFCC) algorithm. The scalable fuzzy consensus

clustering algorithms consider the set of partitions as input to find the cluster.

For this purpose, data is to be clustered using SRSIO-FCM r number of times

to obtain r BSs by varying the number of clusters. Hence, the SIFCC improves

the quality of clusters for handling Big Data. Further, an analytical formulation

for space and time complexity is developed for SIFCC and SFCC algorithms.

The performance of SIFCC is compared with SFCC and SRSIO-FCM. We have

performed experimentation on three benchmark datasets and two Big Data to

test the performance of the SIFCC. The SIFCC exhibited better performance

than SFCC and SRSIO-FCM algorithms in terms of NMI, ARI, and F-score,

respectively.

(iii) Design of Novel Scalable Feature Extraction Algorithm for Huge SNP

Sequences with Application of Scalable Fuzzy Clustering Algorithms:

To handle huge SNP data, which is generally available in nucleotide form, we

have preprocessed SNP sequences using the feature extraction technique with the

Apache Spark cluster. For this purpose, we have developed a scalable feature

extraction method for huge SNP sequences, which extracts a 12-dimensional

numeric feature vector. Further, these 12-dimensional numeric feature vectors are

163

used to input the proposed scalable clustering algorithms to cluster massive SNP

data. We have performed experimentation on four SNP datasets (1 soybean and 3

rice), and the same SNP data is tested with the scalable version of KSRSIO-FCM,

KSLFCM, SRSIO-FCM, and SLFCM algorithms for the sake of comparison. We

have also tested the results of SNP data on developed scalable fuzzy consensus-

based SIFCC and SFCC algorithms in terms of SI and DBI measures.

(iv) Design of Novel Scalable Feature Extraction Algorithms for Huge Pro-

tein Sequences with Application of Scalable Fuzzy Clustering Algo-

rithm:

To handle huge protein data, which is generally available in amino acid form,

we have preprocessed protein sequences using 60-dimensions and 6-dimensions

feature extraction techniques executed on the Apache Spark cluster. In this

way, we have developed two novel scalable feature extraction algorithms named

60d-SPF and 6d-SCPSF for massive protein sequences, which extracts numeric

feature vectors of 60-dimensions and 6-dimensions fixed-length. Further, this

60-dimensional and 6-dimensional numeric feature vectors are used as input to

the SRSIO-FCM algorithm to cluster massive protein data. We have performed

experimentation with four soybean datasets to test the performance of both

algorithms using the SRSIO-FCM in terms of SI and DBI measures.

(v) Investigation of Massive SARS-CoV-2 Protein Datasets on Devel-

oped Scalable Feature Extraction and Scalable Fuzzy Clustering Al-

gorithms:

The proposed scalable fuzzy clustering algorithms are tested with various bench-

mark datasets, including Big Data. These are also tested with real-life SNP

data, i.e., plant genome data. Like plant genome sequences available in abun-

dant amounts, SARS-CoV-2 genome sequences are also available massively for

a clinical study. Therefore, we have investigated massive SARS-CoV-2 protein

datasets using proposed scalable feature extraction and scalable kernelized fuzzy

clustering algorithms. First, we have performed the preprocessing of various

164

SARS-CoV-2 protein datasets using our developed 60d-SPF extraction method

(given in Section 6.1), which generates a 60-dimensional numeric feature vector.

Then, these feature vectors are used as input to the developed KSRSIO-FCM and

KSLFCM algorithms (given in Chapter 3) for clustering of SARS-CoV-2 protein

datasets. We have performed experimentation on three SARS-CoV-2 protein

datasets to test the efficacy of KSRSIO-FCM and KSLFCM applied to SARS-

CoV-2 protein datasets. The experimental analysis shows that KSRSIO-FCM

performs better than KSLFCM for massive SARS-CoV-2 datasets. Hence, we

can conclude that our proposed scalable feature extraction techniques and scal-

able fuzzy clustering algorithms can handle massive genome data of any type.

Thus these algorithms can be integrated to develop a complete tool for a specific

bioinformatics problem.

8.2 Future Research Directions

Despite significant progress in the topic of scalable fuzzy clustering for massive

genome data, it can be explored in several interesting future directions as follows:

(i) Data Stream Online Fuzzy Clustering based on Kernelized Scal-

able Random Sampling Iterative Optimization for handling massive

Genome Data:

All developed fuzzy-based scalable clustering algorithms are only suitable for

stationary datasets, unable to handle non-stationary and streaming datasets.

These types of data can be handled by online learning. In recent years, analysis

of the concept drift problem by using fuzzy clustering approaches are developed

[259, 260, 261]. These methods are not suitable for Big Data due to the high

time and memory requirements. Our proposed scalable KSRSIO-FCM algorithm

can be extended for online learning for Big Data.

(ii) Scalable Deep Fuzzy Clustering Algorithms for handling massive

Genome Data:

165

The developed fuzzy clustering can be improved by handling high-dimensional

data with a complex latent distribution. A deep fuzzy clustering method is

developed by Feng [262], which represents the data in a feature space produced

by the deep neural network. Both concepts can be combined using Apache Spark

cluster for improving the performance in terms of NMI, ARI, and F-score. This

combined architecture can be further applied to huge genome data for DNA,

RNA, SNP, and protein sequence analysis, which can result in better-integrated

tools for bioinformaticians.

166

Bibliography

[1] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a

review. ACM Computing Surveys (CSUR), 31(3):264–323, 1999.

[2] Vladimir Estivill Castro. Why so many clustering algorithms: a position paper.

ACM SIGKDD Explorations Newsletter, 4(1):65–75, 2002.

[3] Joshua Zhexue Huang, Michael K Ng, Hongqiang Rong, and Zichen Li. Au-

tomated variable weighting in k-means type clustering. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 27(5):657–668, 2005.

[4] Jia Li, Dongsheng Li, and Yiming Zhang. Efficient distributed data clustering

on spark. In 2015 IEEE International Conference on Cluster Computing, pages

504–505. IEEE, 2015.

[5] Giovanna Castellano, Anna M Fanelli, and Corrado Mencar. A fuzzy clustering

approach for mining diagnostic rules. In Proc. of 2003 IEEE International Con-

ference on Systems, Man and Cybernetics, pages 2007–2012. IEEE, Washington,

D.C., USA, October, 2003.

[6] Hong Bin Shen, Jie Yang, Xiao Jun Liu, and Kuo Chen Chou. Using supervised

fuzzy clustering to predict protein structural classes. Biochemical and Biophys-

ical Research Communications, 334(2):577–581, 2005.

[7] Liping Jing, Michael K Ng, and Joshua Zhexue Huang. An entropy weighting k-

means algorithm for subspace clustering of high-dimensional sparse data. IEEE

Transactions on Knowledge and Data Engineering, 19(8):1026–1041, 2007.

167

[8] Zhaohong Deng, Kup Sze Choi, Fu Lai Chung, and Shitong Wang. Enhanced soft

subspace clustering integrating within-cluster and between-cluster information.

Pattern Recognition, 43(3):767–781, 2010.

[9] Manju Sardana and RK Agrawal. A comparative study of clustering methods

for relevant gene selection in microarray data. In Proc. of Second International

Conference on Computer Science, Engineering and Applications, Advances in

Computer Science, Engineering and Applications, volume 166 of Advances in

Intelligent and Soft Computing, pages 789–797. Springer Berlin Heidelberg, 2012.

[10] Lei Tang, Huan Liu, and Jianping Zhang. Identifying evolving groups in dynamic

multimode networks. IEEE Transactions on Knowledge and Data Engineering,

24(1):72–85, 2012.

[11] Hichem Frigui and Raghu Krishnapuram. A robust competitive clustering al-

gorithm with applications in computer vision. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 21(5):450–465, 1999.

[12] Yee Leung, Jiang She Zhang, and Zong Ben Xu. Clustering by scale-space

filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(12):1396–1410, 2000.

[13] Richard O Duda, Peter E Hart, et al. Pattern classification and scene analysis,

volume 3. Wiley Interscience New York, 1973.

[14] Richard Bellman, Robert Kalaba, and L Zadeh. Abstraction and pattern clas-

sification. Journal of Mathematical Analysis and Applications, 13(1):1–7, 1966.

[15] KaiLe Zhou, Chao Fu, and ShanLin Yang. Fuzziness parameter selection in

fuzzy c-means: the perspective of cluster validation. Science China Information

Sciences, 57(11):1–8, 2014.

[16] Soumadip Ghosh, Sushanta Biswas, Debasree Sarkar, and Partha Pratim Sarkar.

A novel neuro-fuzzy classification technique for data mining. Egyptian Informat-

ics Journal, 15(3):129–147, 2014.

168

[17] Firat Tekiner and John A Keane. Big data framework. In 2013 IEEE inter-

national conference on systems, man, and cybernetics, pages 1494–1499. IEEE,

2013.

[18] Azlinah Mohamed, Maryam Khanian Najafabadi, Yap Bee Wah, Ezzatul Ak-

mal Kamaru Zaman, and Ruhaila Maskat. The state of the art and taxonomy

of big data analytics: view from new big data framework. Artificial Intelligence

Review, 53(2):989–1037, 2020.

[19] Yinan Xu, Hui Liu, and Zhihao Long. A distributed computing framework for

wind speed big data forecasting on apache spark. Sustainable Energy Technolo-

gies and Assessments, 37:100582, 2020.

[20] Panos Louridas and Christof Ebert. Embedded analytics and statistics for big

data. IEEE software, 30(6):33–39, 2013.

[21] Jeyachandran Sivakamavalli, Kiyun Park, and Ihn-Sil Kwak. Genome databases,

types and applications: An overview. 2020.

[22] Peter J Huber. Massive data sets workshop: the morning after. In Proc.

of a Workshop Massive Data Sets, pages 169–184. Washington, DC: National

Academy Press, 1997.

[23] Peter J Huber. Huge data sets. In Compstat, pages 3–13. Springer, 1994.

[24] Timothy C Havens, James C Bezdek, Christopher Leckie, Lawrence O Hall, and

Marimuthu Palaniswami. Fuzzy c-means algorithms for very large data. IEEE

Transactions on Fuzzy Systems, 20(6):1130–1146, 2012.

[25] Tai Wai Cheng, Dmitry B Goldgof, and Lawrence O Hall. Fast fuzzy clustering.

Fuzzy Sets and Systems, 93(1):49–56, 1998.

[26] Ming Chuan Hung and Don Lin Yang. An efficient fuzzy c-means clustering

algorithm. In Proc. of 2001 IEEE International Conference on Data Mining,

pages 225–232. IEEE, San Jose, California, USA, December, 2001.

169

[27] Nikhil R Pal and James C Bezdek. Complexity reduction for large image process-

ing. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

32(5):598–611, 2002.

[28] Richard J Hathaway and James C Bezdek. Extending fuzzy and probabilistic

clustering to very large data sets. Computational Statistics and Data Analysis,

51(1):215–234, 2006.

[29] Prodip Hore, Lawrence O Hall, and Dmitry B Goldgof. Single pass fuzzy c

means. In Proc. of 2007 IEEE International on Fuzzy Systems Conference,

pages 1–7. IEEE, London, United Kingdom, July, 2007.

[30] Liang Wang, James C Bezdek, Christopher Leckie, and Ramamohanarao Ko-

tagiri. Selective sampling for approximate clustering of very large data sets.

International Journal of Intelligent Systems, 23(3):313–331, 2008.

[31] Prodip Hore, Lawrence O Hall, Dmitry B Goldgof, Yuhua Gu, Andrew A Maud-

sley, and Ammar Darkazanli. A scalable framework for segmenting magnetic

resonance images. Journal of Signal Processing Systems, 54(1-3):183–203, 2009.

[32] Timothy C Havens, James C Bezdek, Christopher Leckie, Lawrence O Hall, and

Marimuthu Palaniswami. Fuzzy c-means algorithms for very large data. IEEE

Transactions on Fuzzy Systems, 20(6):1130–1146, 2012.

[33] James C Bezdek. Pattern recognition with fuzzy objective function algorithms.

Springer Science and Business Media, 2013.

[34] Neha Bharill, Aruna Tiwari, Aayushi Malviya, Om Prakash Patel, Akahansh

Gupta, Deepak Puthal, Amit Saxena, and Mukesh Prasad. Fuzzy knowledge

based performance analysis on big data. Neurocomputing, 389:218–228, 2020.

[35] Yin-Ping Zhao, Long Chen, and CL Philip Chen. Multiple kernel shadowed

clustering in approximated feature space. In International Conference on Data

Mining and Big Data, pages 265–275. Springer, 2018.

170

[36] Long Chen and Lingning Kong. Fuzzy clustering in high-dimensional approxi-

mated feature space. In 2016 International Conference on Fuzzy Theory and Its

Applications (iFuzzy), pages 1–6. IEEE, 2016.

[37] Dao-Qiang Zhang and Song-Can Chen. Clustering incomplete data using kernel-

based fuzzy c-means algorithm. Neural processing letters, 18(3):155–162, 2003.

[38] Mark Girolami. Mercer kernel-based clustering in feature space. IEEE Trans-

actions on Neural Networks, 13(3):780–784, 2002.

[39] Hongfu Liu, Tongliang Liu, Junjie Wu, Dacheng Tao, and Yun Fu. Spectral

ensemble clustering. In Proceedings of the 21th ACM SIGKDD international

conference on knowledge discovery and data mining, pages 715–724. ACM, 2015.

[40] Nam Nguyen and Rich Caruana. Consensus clusterings. In Seventh IEEE inter-

national conference on data mining (ICDM 2007), pages 607–612. IEEE, 2007.

[41] Yiteng Zhai, Yew Soon Ong, and Ivor W Tsang. The emerging big dimension-

ality. IEEE Computational Intelligence Magazine, 9(3):14–26, 2014.

[42] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee,

Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: a new

platform for distributed machine learning on big data. IEEE Transactions on

Big Data, 1(2):49–67, 2015.

[43] Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxi-

ang Zhai, Miles J Efron, Ravishankar Iyer, Michael C Schatz, Saurabh Sinha,

and Gene E Robinson. Big data: astronomical or genomical? PLoS biology,

13(7):e1002195, 2015.

[44] Behrooz Hosseini and Kourosh Kiani. A big data driven distributed density

based hesitant fuzzy clustering using apache spark with application to gene ex-

pression microarray. Engineering Applications of Artificial Intelligence, 79:100–

113, 2019.

171

[45] Behrooz Hosseini and Kourosh Kiani. A robust distributed big data clustering-

based on adaptive density partitioning using apache spark. Symmetry, 10(8):342,

2018.

[46] Daxin Jiang, Chun Tang, and Aidong Zhang. Cluster analysis for gene expres-

sion data: a survey. IEEE Transactions on Knowledge & Data Engineering,

(11):1370–1386, 2004.

[47] Ge Wang, Pengbo Pu, and Tingyan Shen. An efficient gene bigdata anal-

ysis using machine learning algorithms. Multimedia Tools and Applications,

79(15):9847–9870, 2020.

[48] Claire Nédellec. Machine learning for information extraction in genomics—state

of the art and perspectives. In Text Mining and its Applications, pages 99–118.

Springer, 2004.

[49] Razvan Bunescu, Ruifang Ge, Rohit J Kate, Edward M Marcotte, Raymond J

Mooney, Arun K Ramani, and Yuk Wah Wong. Comparative experiments on

learning information extractors for proteins and their interactions. Artificial

intelligence in medicine, 33(2):139–155, 2005.

[50] Goo Jun, Mary Kate Wing, Gonçalo R Abecasis, and Hyun Min Kang. An

efficient and scalable analysis framework for variant extraction and refinement

from population-scale dna sequence data. Genome research, 25(6):918–925, 2015.

[51] Mehrdad J Gangeh, Hadi Zarkoob, and Ali Ghodsi. Fast and scalable fea-

ture selection for gene expression data using hilbert-schmidt independence cri-

terion. IEEE/ACM transactions on computational biology and bioinformatics,

14(1):167–181, 2017.

[52] Neha Bharill, Aruna Tiwari, and Aayushi Malviya. Fuzzy based scalable clus-

tering algorithms for handling big data using apache spark. IEEE Transactions

on Big Data, 2(4):339–352, 2016.

172

[53] Junjie Wu, Zhiang Wu, Jie Cao, Hongfu Liu, Guoqing Chen, and Yanchun

Zhang. Fuzzy consensus clustering with applications on big data. IEEE Trans-

actions on Fuzzy Systems, 25(6):1430–1445, 2017.

[54] David Grant, Rex T Nelson, Steven B Cannon, and Randy C Shoemaker. Soy-

base, the usda-ars soybean genetics and genomics database. Nucleic acids re-

search, 38(suppl 1):D843–D846, 2010.

[55] Christine Jade Dilla-Ermita, Erwin Tandayu, Venice Margarette Juanillas, Jef-

frey Detras, Dennis Nicuh Lozada, Maria Stefanie Dwiyanti, Casiana Vera Cruz,

Edwige Gaby Nkouaya Mbanjo, Edna Ardales, Maria Genaleen Diaz, et al.

Genome-wide association analysis tracks bacterial leaf blight resistance loci in

rice diverse germplasm. Rice, 10(1):1–17, 2017.

[56] 000 Rice Genomes Project 3. The 3,000 rice genomes project. GigaScience,

3(1):2047–217X, 2014.

[57] Locedie Mansueto, Roven Rommel Fuentes, Frances Nikki Borja, Jeffery Detras,

Juan Miguel Abriol-Santos, Dmytro Chebotarov, Millicent Sanciangco, Kevin

Palis, Dario Copetti, Alexandre Poliakov, et al. Rice snp-seek database update:

new snps, indels, and queries. Nucleic acids research, 45(D1):D1075–D1081,

2017.

[58] Olfa Nasraoui and Chiheb-Eddine Ben N’Cir. Clustering Methods for Big Data

Analytics: Techniques, Toolboxes and Applications. Springer, 2018.

[59] Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharill, Om Prakash

Patel, Aruna Tiwari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin. A review

of clustering techniques and developments. Neurocomputing, 267:664–681, 2017.

[60] Doug Fisher, Ling Xu, James R Carnes, Yoram Reich, J Fenves, Jason Chen,

Richard Shiavi, Gautam Biswas, and Jerry Weinberg. Applying ai clustering to

engineering tasks. IEEE Expert, 8(6):51–60, 1993.

173

[61] Yu Kun and Wang Ling. Construction of university network ideology manage-

ment platform based on constrained clustering algorithm. Design Engineering,

pages 269–278, 2021.

[62] Qusay Alsarhan, Bestoun S Ahmed, Miroslav Bures, and Kamal Zuhairi Zamli.

Software module clustering: An in-depth literature analysis. IEEE Transactions

on Software Engineering, 2020.

[63] Guo Pu, Lijuan Wang, Jun Shen, and Fang Dong. A hybrid unsupervised

clustering-based anomaly detection method. Tsinghua Science and Technology,

26(2):146–153, 2020.

[64] Johanna Barzen and Frank Leymann. Quantum humanities: A first use case for

quantum-ml in media. Digitale Welt, 4:102–103, 2020.

[65] Mehmet Efe Biresselioglu, Muhittin Hakan Demir, Berfu Solak, Altan Kayacan,

and Sebnem Altinci. Investigating the trends in arctic research: the increas-

ing role of social sciences and humanities. Science of The Total Environment,

729:139027, 2020.

[66] Quan Zou, Gang Lin, Xingpeng Jiang, Xiangrong Liu, and Xiangxiang Zeng.

Sequence clustering in bioinformatics: an empirical study. Briefings in bioinfor-

matics, 21(1):1–10, 2020.

[67] Aldo Faisal, Erwann Le Lannou, Benjamin Post, Shlomi Haar, Stephen Brett,

and Balasundaram Kadirvelu. Clustering of patient comorbidities within elec-

tronic medical records enables high-precision covid-19 mortality prediction.

2021.

[68] Kaijian Xia, Xiaoqing Gu, and Yudong Zhang. Oriented grouping-constrained

spectral clustering for medical imaging segmentation. Multimedia Systems,

26(1):27–36, 2020.

174

[69] Yu Tian, Ruiqing Zheng, Zhenlan Liang, Suning Li, Fang-Xiang Wu, and Min Li.

A data-driven clustering recommendation method for single-cell rna-sequencing

data. Tsinghua Science and Technology, 26(5):772–789, 2021.

[70] Salim Khan, Gang Situ, Keith Decker, and Carl J Schmidt. Gofigure: Auto-

mated gene ontology™ annotation. Bioinformatics, 19(18):2484–2485, 2003.

[71] Stephan Gunnemann, Hardy Kremer, Dominik Lenhard, and Thomas Seidl.

Subspace clustering for indexing high dimensional data: a main memory in-

dex based on local reductions and individual multi-representations. In Proc. of

14th International Conference on Extending Database Technology, pages 237–

248. ACM, Uppsala, Sweden, March, 2011.

[72] Aurélien Ducournau, Alain Bretto, Soufiane Rital, and Bernard Laget. A reduc-

tive approach to hypergraph clustering: an application to image segmentation.

Pattern Recognition, 45(7):2788–2803, 2012.

[73] Theam Foo Ng, Tuan D Pham, and Xiuping Jia. Feature interaction in subspace

clustering using the choquet integral. Pattern Recognition, 45(7):2645–2660,

2012.

[74] Jung Yi Jiang, Ren Jia Liou, and Shie Jue Lee. A fuzzy self-constructing feature

clustering algorithm for text classification. IEEE Transactions on Knowledge

and Data Engineering, 23(3):335–349, 2011.

[75] Jan Feyereisl and Uwe Aickelin. Privileged information for data clustering. In-

formation Sciences, 194:4–23, 2012.

[76] Saeid Soheily-Khah, Ahlame Douzal-Chouakria, and Eric Gaussier. Generalized

k-means-based clustering for temporal data under weighted and kernel time

warp. Pattern Recognition Letters, 75:63–69, 2016.

[77] Stuart P Lloyd. Least squares quantization in pcm. IEEE Transactions on

Information Theory, 28(2):129–137, 1982.

175

[78] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an intro-

duction to cluster analysis, volume 344. John Wiley and Sons, 2009.

[79] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition

letters, 31(8):651–666, 2010.

[80] Adil Fahad, Najlaa Alshatri, Zahir Tari, Atif Alamri, Issa Khalil, Albert Y

Zomaya, Sebti Foufou, and Abdelaziz Bouras. A survey of clustering algorithms

for big data: taxonomy and empirical analysis. IEEE Transactions on Emerging

Topics in Computing, 2(3):267–279, 2014.

[81] Erzhou Zhu and Ruhui Ma. An effective partitional clustering algorithm based

on new clustering validity index. Applied soft computing, 71:608–621, 2018.

[82] Ahmad Taher Azar, Shaimaa Ahmed El-Said, and Aboul Ella Hassanien. Fuzzy

and hard clustering analysis for thyroid disease. Computer methods and programs

in biomedicine, 111(1):1–16, 2013.

[83] Christopher D Manning, Prabhakar Raghavan, Hinrich Schutze, et al. Introduc-

tion to information retrieval, volume 1. Cambridge University Press Cambridge,

2008.

[84] Joseph C Dunn. A fuzzy relative of the ISODATA process and its use in detecting

compact well-separated clusters. Taylor and Francis, 1973.

[85] James C Bezdek. Pattern recognition with fuzzy objective function algorithms.

Kluwer Academic Publishers, 1981.

[86] Abraham Kandel and William J Byatt. Fuzzy sets, fuzzy algebra, and fuzzy

statistics. Proceedings of the IEEE, 66(12):1619–1639, 1978.

[87] Jonathon K Parker, Lawrence O Hall, and Abraham Kandel. Scalable fuzzy

neighborhood dbscan. In Proc. of 2010 IEEE International Conference on Fuzzy

Systems, pages 1–8. IEEE, Barcelona, Spain, July, 2010.

176

[88] Jonathon K Parker, Lawrence O Hall, and James C Bezdek. Comparison of scal-

able fuzzy clustering methods. In Proc. of 2012 IEEE International Conference

on Fuzzy Systems, pages 1–9. IEEE, Brisbane, Australia, June, 2012.

[89] Francisco De AT De Carvalho and Camilo P Tenorio. Fuzzy k-means clustering

algorithms for interval-valued data based on adaptive quadratic distances. Fuzzy

Sets and Systems, 161(23):2978–2999, 2010.

[90] Mika Sato-Ilic. Symbolic clustering with interval-valued data. Procedia Com-

puter Science, 6:358–363, 2011.

[91] Hua Zhao, Zeshui Xu, Shousheng Liu, and Zhong Wang. Intuitionistic fuzzy mst

clustering algorithms. Computers and Industrial Engineering, 62(4):1130–1140,

2012.

[92] Carlos WD De Almeida, Renata MCR De Souza, and Ana LB Candeias. Fuzzy

kohonen clustering networks for interval data. Neurocomputing, 99:65–75, 2013.

[93] Jonathon K Parker and Lawrence O Hall. Accelerating fuzzy-c means using an

estimated subsample size. IEEE Transactions on Fuzzy Systems,, 22(5):1229–

1244, 2014.

[94] James C Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-means

clustering algorithm. Computers & Geosciences, 10(2-3):191–203, 1984.

[95] Hsin-Chien Huang, Yung-Yu Chuang, and Chu-Song Chen. Multiple kernel fuzzy

clustering. IEEE Transactions on Fuzzy Systems, 20(1):120–134, 2011.

[96] Naouel Baili and Hichem Frigui. Fuzzy clustering with multiple kernels in feature

space. In 2012 IEEE International Conference on Fuzzy Systems, pages 1–8.

IEEE, 2012.

[97] Timothy C Havens, James C Bezdek, Christopher Leckie, Lawrence O Hall, and

Marimuthu Palaniswami. Fuzzy c-means algorithms for very large data. IEEE

Transactions on Fuzzy Systems, 20(6):1130–1146, 2012.

177

[98] Jingwei Liu and Meizhi Xu. Kernelized fuzzy attribute c-means clustering algo-

rithm. Fuzzy sets and systems, 159(18):2428–2445, 2008.

[99] Daniel Graves and Witold Pedrycz. Kernel-based fuzzy clustering and fuzzy clus-

tering: A comparative experimental study. Fuzzy sets and systems, 161(4):522–

543, 2010.

[100] Du-Ming Tsai and Chung-Chan Lin. Fuzzy c-means based clustering for linearly

and nonlinearly separable data. Pattern recognition, 44(8):1750–1760, 2011.

[101] Tianhao Li, Liyong Zhang, Wei Lu, Hui Hou, Xiaodong Liu, Witold Pedrycz,

and Chongquan Zhong. Interval kernel fuzzy c-means clustering of incomplete

data. Neurocomputing, 237:316–331, 2017.

[102] Thomas M Cover. Geometrical and statistical properties of systems of linear

inequalities with applications in pattern recognition. IEEE transactions on elec-

tronic computers, (3):326–334, 1965.

[103] Weiling Cai, Songcan Chen, and Daoqiang Zhang. Robust fuzzy relational classi-

fier incorporating the soft class labels. Pattern Recognition Letters, 28(16):2250–

2263, 2007.

[104] Chandan Gautam, Aruna Tiwari, Sundaram Suresh, and Kapil Ahuja. Adap-

tive online learning with regularized kernel for one-class classification. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 2019.

[105] Junjie Wu, Hongfu Liu, Hui Xiong, Jie Cao, and Jian Chen. K-means-based

consensus clustering: A unified view. IEEE transactions on knowledge and data

engineering, 27(1):155–169, 2014.

[106] Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a knowledge reuse

framework for combining multiple partitions. Journal of machine learning re-

search, 3(Dec):583–617, 2002.

178

[107] Witold Pedrycz and Partab Rai. Collaborative clustering with the use of fuzzy

c-means and its quantification. Fuzzy Sets and Systems, 159(18):2399–2427,

2008.

[108] Kunal Punera and Joydeep Ghosh. Consensus-based ensembles of soft cluster-

ings. Applied Artificial Intelligence, 22(7-8):780–810, 2008.

[109] Xue Li and Hongfu Liu. Greedy optimization for k-means-based consensus clus-

tering. Tsinghua Science and Technology, 23(2):184–194, 2018.

[110] Hongfu Liu, Junjie Wu, Tongliang Liu, Dacheng Tao, and Yun Fu. Spectral

ensemble clustering via weighted k-means: Theoretical and practical evidence.

IEEE transactions on knowledge and data engineering, 29(5):1129–1143, 2017.

[111] Ana LN Fred and Anil K Jain. Combining multiple clusterings using evidence

accumulation. IEEE transactions on pattern analysis and machine intelligence,

27(6):835–850, 2005.

[112] Zhiwu Lu, Yuxin Peng, and Jianguo Xiao. From comparing clusterings to com-

bining clusterings. In AAAI, pages 665–670, 2008.

[113] Hanan G Ayad and Mohamed S Kamel. On voting-based consensus of cluster

ensembles. Pattern Recognition, 43(5):1943–1953, 2010.

[114] Sandro Vega-Pons, Jyrko Correa-Morris, and José Ruiz-Shulcloper. Weighted

partition consensus via kernels. Pattern Recognition, 43(8):2712–2724, 2010.

[115] Hye-Sung Yoon, Sun-Young Ahn, Sang-Ho Lee, Sung-Bum Cho, and Ju Han

Kim. Heterogeneous clustering ensemble method for combining different cluster

results. In International Workshop on Data Mining for Biomedical Applications,

pages 82–92. Springer, 2006.

[116] Alexander Topchy, Anil K Jain, and William Punch. Combining multiple weak

clusterings. In Third IEEE International Conference on Data Mining, pages

331–338. IEEE, 2003.

179

[117] Alexander Topchy, Anil K Jain, and William Punch. A mixture model for

clustering ensembles. In Proceedings of the 2004 SIAM international conference

on data mining, pages 379–390. SIAM, 2004.

[118] Sihong Xie, Jing Gao, Wei Fan, Deepak Turaga, and Philip S Yu. Class-

distribution regularized consensus maximization for alleviating overfitting in

model combination. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 303–312. ACM, 2014.

[119] Hongfu Liu, Zhiqiang Tao, and Zhengming Ding. Consensus clustering: An

embedding perspective, extension and beyond. arXiv preprint arXiv:1906.00120,

2019.

[120] Dong Huang, Jian-Huang Lai, and Chang-Dong Wang. Robust ensemble clus-

tering using probability trajectories. IEEE transactions on knowledge and data

engineering, 28(5):1312–1326, 2015.

[121] Boris Mirkin. Reinterpreting the category utility function. Machine Learning,

45(2):219–228, 2001.

[122] Musa Mojarad, Samad Nejatian, Hamid Parvin, and Majid Mohammadpoor. A

fuzzy clustering ensemble based on cluster clustering and iterative fusion of base

clusters. Applied Intelligence, 49(7):2567–2581, 2019.

[123] Mohamed Ali Zoghlami, Minyar Sassi Hidri, and Rahma Ben Ayed. A merging-

based consensus-driven fuzzy clustering of distributed data. In 2015 IEEE In-

ternational Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–6. IEEE, 2015.

[124] Witold Pedrycz and Kaoru Hirota. A consensus-driven fuzzy clustering. Pattern

Recognition Letters, 29(9):1333–1343, 2008.

[125] Minyar Sassi Hidri, Mohamed Ali Zoghlami, and Rahma Ben Ayed. Speeding

up the large-scale consensus fuzzy clustering for handling big data. Fuzzy Sets

and Systems, 348:50–74, 2018.

180

[126] Vernon Turner, John F Gantz, David Reinsel, and Stephen Minton. The digital

universe of opportunities: Rich data and the increasing value of the internet of

things. IDC Analyze the Future, 16:13–19, 2014.

[127] William Yu Chung Wang and Yichuan Wang. Analytics in the era of big data:

the digital transformations and value creation in industrial marketing, 2020.

[128] Apache Hadoop. Apache hadoop. URL http://hadoop. apache. org, 2011.

[129] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[130] Peter Mika. Flink: Semantic web technology for the extraction and analysis of

social networks. Web Semantics: Science, Services and Agents on the World

Wide Web, 3(2):211–223, 2005.

[131] A. M. Team. Apache mahout: Scalable machine-learning and data-mining li-

brary, 2011.

[132] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. Haloop:

efficient iterative data processing on large clusters. Proceedings of the VLDB

Endowment, 3(1-2):285–296, 2010.

[133] Jielong Xu, Zhenhua Chen, Jian Tang, and Sen Su. T-storm: traffic-aware

online scheduling in storm. In Proc. of IEEE 34th International Conference

on Distributed Computing Systems, pages 535–544. IEEE, Madrid, Spain, June

30-July 3, 2014.

[134] Thomas A Runkler and Helmut Krcmar. Stream processing on demand for

lambda architectures. In Proc. of 12th European Workshop on Computer Perfor-

mance Engineering, Computer Performance Engineering, volume 9272 of Lecture

Notes in Computer Science, pages 243–257. 2015.

[135] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient

181

distributed datasets: A fault-tolerant abstraction for in-memory cluster com-

puting. In Proc. of 9th USENIX Conference on Networked Systems Design and

Implementation, pages 2–2. USENIX Association, San Jose, CA, April, 2012.

[136] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and

Ion Stoica. Spark: cluster computing with working sets. HotCloud, 10:10–10,

2010.

[137] Apache Spark. Apache spark. Retrieved January, 17:2018, 2018.

[138] Jorge Veiga, Roberto R Expósito, Xoán C Pardo, Guillermo L Taboada, and

Juan Tourifio. Performance evaluation of big data frameworks for large-scale

data analytics. In 2016 IEEE International Conference on Big Data (Big Data),

pages 424–431. IEEE, 2016.

[139] Ren Li, Haibo Hu, Heng Li, Yunsong Wu, and Jianxi Yang. Mapreduce parallel

programming model: a state-of-the-art survey. International Journal of Parallel

Programming, 44(4):832–866, 2016.

[140] Dhruba Borthakur et al. Hdfs architecture guide. Hadoop Apache Project, 53(1-

13):2, 2008.

[141] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng, and

Joshua Zhexue Huang. Big data analytics on apache spark. International Journal

of Data Science and Analytics, 1(3-4):145–164, 2016.

[142] Yanfeng Zhang, Shimin Chen, Qiang Wang, and Ge Yu. i2mapreduce: Incremen-

tal mapreduce for mining evolving big data. IEEE Transactions on Knowledge

and Data Engineering, 27(7):1906–1919, 2015.

[143] Yanfeng Zhang, Shimin Cheen, Qiang Wang, and Ge Yu. i2mapreduce:

Incremental mapreduce for mining evolving big data. arXiv preprint

arXiv:1501.04854.

182

[144] Behrooz Hosseini and Kourosh Kiani. A big data driven distributed density

based hesitant fuzzy clustering using apache spark with application to gene ex-

pression microarray. Engineering Applications of Artificial Intelligence, 79:100–

113, 2019.

[145] Minyar Sassi Hidri, Mohamed Ali Zoghlami, and Rahma Ben Ayed. Speeding

up the large-scale consensus fuzzy clustering for handling big data. Fuzzy Sets

and Systems, 348:50–74, 2018.

[146] Terence Kwok, Kate Smith, Sebastian Lozano, and David Taniar. Parallel fuzzy

c-means clustering for large data sets. In Proc. of European Conference on Par-

allel Processing, Euro-Par 2002 Parallel Processing, Lecture Notes in Computer

Science, pages 365–374. Springer Berlin Heidelberg, 2002.

[147] Jurgen Beringer and Eyke Hullermeier. Fuzzy clustering of parallel data streams.

Advances in Fuzzy Clustering and Its Application, pages 333–352, 2007.

[148] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering based on

mapreduce. In Proc. of IEEE International Conference on Cloud Computing,

Cloud Computing, volume 5931 of Lecture Notes in Computer Science, pages

674–679. Springer Berlin Heidelberg, 2009.

[149] Raghavendra K Chunduri and Aswani Kumar Cherukuri. Scalable formal con-

cept analysis algorithms for large datasets using spark. Journal of Ambient

Intelligence and Humanized Computing, pages 1–21, 2018.

[150] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and Samir

Belfkih. Big data technologies: A survey. Journal of King Saud University-

Computer and Information Sciences, 30(4):431–448, 2018.

[151] Neha Bharill, Aruna Tiwari, and Aayushi Malviya. Fuzzy based scalable clus-

tering algorithms for handling big data using apache spark. IEEE Transactions

on Big Data, 2(4):339–352, 2016.

183

[152] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster com-

puting. In Proceedings of the 9th USENIX conference on Networked Systems

Design and Implementation, pages 2–2. USENIX Association, 2012.

[153] Timothy C Havens, James C Bezdek, and Marimuthu Palaniswami. Incremental

kernel fuzzy c-means. In Computational Intelligence, pages 3–18. Springer, 2012.

[154] Neha Bharill and Aruna Tiwari. Handling big data with fuzzy based classification

approach. In Advance Trends in Soft Computing, pages 219–227. Springer, 2014.

[155] Nicholas M Luscombe, Dov Greenbaum, Mark Gerstein, et al. What is bioinfor-

matics? a proposed definition and overview of the field. Methods of Information

in Medicine, 40(4):346–358, 2001.

[156] José A Castellanos-GarzóN, Carlos Armando GarćıA, Paulo Novais, and Fer-

nando Dı́Az. A visual analytics framework for cluster analysis of dna microarray

data. Expert Systems with Applications, 40(2):758–774, 2013.

[157] Ka-Chun Wong. Computational biology and bioinformatics: Gene regulation.

CRC Press, 2016.

[158] Grainne Kerr, Heather J Ruskin, Martin Crane, and Padraig Doolan. Tech-

niques for clustering gene expression data. Computers in biology and medicine,

38(3):283–293, 2008.

[159] Xiuwen Zheng, David Levine, Jess Shen, Stephanie M Gogarten, Cathy Laurie,

and Bruce S Weir. A high-performance computing toolset for relatedness and

principal component analysis of snp data. Bioinformatics, 28(24):3326–3328,

2012.

[160] Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and Amparo Alonso-Betanzos.

Recent advances and emerging challenges of feature selection in the context of

big data. Knowledge-Based Systems, 86:33–45, 2015.

184

[161] Guoguang Zhao, Cheng Ling, and Donghong Sun. Sparksw: scalable distributed

computing system for large-scale biological sequence alignment. In 2015 15th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

pages 845–852. IEEE, 2015.

[162] Yanfeng Zhang, Shimin Chen, Qiang Wang, and Ge Yu. i 2̂ mapreduce: Incre-

mental mapreduce for mining evolving big data. IEEE transactions on knowledge

and data engineering, 27(7):1906–1919, 2015.

[163] Shanjiang Tang, Bingsheng He, Ce Yu, Yusen Li, and Kun Li. A survey on spark

ecosystem for big data processing. arXiv preprint arXiv:1811.08834, 2018.

[164] Runxin Guo, Yi Zhao, Quan Zou, Xiaodong Fang, and Shaoliang Peng. Bioin-

formatics applications on apache spark. GigaScience, 7(8):giy098, 2018.

[165] Swati Vipsita and Santanu Ku Rath. Two-stage approach for protein superfamily

classification. Computational Biology Journal, 2013, 2013.

[166] Nickolai Alexandrov, Shuaishuai Tai, Wensheng Wang, Locedie Mansueto, Kevin

Palis, Roven Rommel Fuentes, Victor Jun Ulat, Dmytro Chebotarov, Gengyun

Zhang, Zhikang Li, et al. Snp-seek database of snps derived from 3000 rice

genomes. Nucleic acids research, 43(D1):D1023–D1027, 2015.

[167] Tae-Ho Lee, Hui Guo, Xiyin Wang, Changsoo Kim, and Andrew H Paterson.

Snphylo: a pipeline to construct a phylogenetic tree from huge snp data. BMC

genomics, 15(1):162, 2014.

[168] Ann-Christine Syvänen. Toward genome-wide snp genotyping. Nature genetics,

37(6):S5–S10, 2005.

[169] Robert J Henry. Plant genotyping II: SNP technology. CABI, 2008.

[170] Libin Liu, Yee-kin Ho, and Stephen Yau. Clustering dna sequences by feature

vectors. Molecular phylogenetics and evolution, 41(1):64–69, 2006.

185

[171] Kohbalan Moorthy, Mohd Saberi Mohamad, and Safaai Deris. A review on miss-

ing value imputation algorithms for microarray gene expression data. Current

Bioinformatics, 9(1):18–22, 2014.

[172] Nomin Batnyam, Ariundelger Gantulga, and Sejong Oh. An efficient classi-

fication for single nucleotide polymorphism (snp) dataset. In Computer and

Information Science, pages 171–185. Springer, 2013.

[173] Qijian Song, David L Hyten, Gaofeng Jia, Charles V Quigley, Edward W Fickus,

Randall L Nelson, and Perry B Cregan. Fingerprinting soybean germplasm and

its utility in genomic research. G3: Genes, Genomes, Genetics, 5(10):1999–2006,

2015.

[174] Cathy Wu, George Whitson, Jerry McLarty, Adisorn Ermongkonchai, and

Tzu Chung Chang. Protein classification artificial neural system. Protein Sci-

ence, 1(5):667–677, 1992.

[175] Limin Fu and Enzo Medico. Flame, a novel fuzzy clustering method for the

analysis of dna microarray data. BMC bioinformatics, 8(1):3, 2007.

[176] Mihail Popescu, James C Bezdek, and James M Keller. eccv: A new fuzzy

cluster validity measure for large relational bioinformatics datasets. In 2009

IEEE International Conference on Fuzzy Systems, pages 1003–1008. IEEE, 2009.

[177] Zhong-dong Wu, Wei-xin Xie, and Jian-ping Yu. Fuzzy c-means clustering algo-

rithm based on kernel method. In Proceedings Fifth International Conference on

Computational Intelligence and Multimedia Applications. ICCIMA 2003, pages

49–54. IEEE, 2003.

[178] Tae-Ho Lee, Hui Guo, Xiyin Wang, Changsoo Kim, and Andrew H Paterson.

Snphylo: a pipeline to construct a phylogenetic tree from huge snp data. BMC

genomics, 15(1):162, 2014.

[179] Alessandro G Di Nuovo and Vincenzo Catania. An evolutionary fuzzy c-means

approach for clustering of bio-informatics databases. In 2008 IEEE Interna-

186

tional Conference on Fuzzy Systems (IEEE World Congress on Computational

Intelligence), pages 2077–2082. IEEE, 2008.

[180] Clare M O’Connor, Jill U Adams, and Jennifer Fairman. Essentials of cell

biology. Cambridge, MA: NPG Education, 1:54, 2010.

[181] Eghbal G Mansoori, Mansoor J Zolghadri, and Seraj D Katebi. Protein su-

perfamily classification using fuzzy rule-based classifier. IEEE Transactions on

NanoBioscience, 8(1):92–99, 2009.

[182] Jason Tsong Li Wang, Qicheng Ma, Dennis Shasha, and Cathy H. Wu. New

techniques for extracting features from protein sequences. IBM Systems Journal,

40(2):426–441, 2001.

[183] MO Dayhoff, RM Schwartz, and BC Orcutt. 22 a model of evolutionary change

in proteins. In Atlas of Protein Sequence and Structure, volume 5, pages 345–352.

National Biomedical Research Foundation Silver Spring, MD, 1978.

[184] Sanghamitra Bandyopadhyay. An efficient technique for superfamily classifica-

tion of amino acid sequences: feature extraction, fuzzy clustering and prototype

selection. Fuzzy Sets and Systems, 152(1):5–16, 2005.

[185] Eghbal G Mansoori, Mansoori J Zolghadri, Seraj D Katebi, Hassan Mohabatkar,

Reza Boostani, and Mohammad H Sadreddini. Generating fuzzy rules for protein

classification. Iranian Journal of Fuzzy Systems, 5(2):21–33, 2008.

[186] Neha Bharill, Aruna Tiwari, and Anshul Rawat. A novel technique of feature

extraction with dual similarity measures for protein sequence classification. Pro-

cedia Computer Science, 48:795–801, 2015.

[187] Kuo-Chen Chou. Some remarks on protein attribute prediction and pseudo

amino acid composition. Journal of theoretical biology, 273(1):236–247, 2011.

[188] Kuo-Chen Chou. Using amphiphilic pseudo amino acid composition to predict

enzyme subfamily classes. Bioinformatics, 21(1):10–19, 2005.

187

[189] MK Gupta, R Niyogi, and M Misra. An alignment-free method to find similar-

ity among protein sequences via the general form of chou’s pseudo amino acid

composition. SAR and QSAR in Environmental Research, 24(7):597–609, 2013.

[190] Martin Steinegger and Johannes Söding. Clustering huge protein sequence sets

in linear time. Nature communications, 9(1):1–8, 2018.

[191] Karen F Han and David Baker. Recurring local sequence motifs in proteins.

Journal of molecular biology, 251(1):176–187, 1995.

[192] Christopher Bystroff, Vesteinn Thorsson, and David Baker. Hmmstr: a hidden

markov model for local sequence-structure correlations in proteins. Journal of

molecular biology, 301(1):173–190, 2000.

[193] Hui Xiong, Junjie Wu, and Jian Chen. K-means clustering versus validation

measures: a data-distribution perspective. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 39(2):318–331, 2008.

[194] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median

clustering. In Proceedings of the thirty-sixth annual ACM symposium on Theory

of computing, pages 291–300. ACM, 2004.

[195] Chun-Ting Zhang, Kuo-Chen Chou, and GM Maggiora. Predicting protein

structural classes from amino acid composition: application of fuzzy clustering.

Protein Engineering, Design and Selection, 8(5):425–435, 1995.

[196] Tao Lu, Yongchao Dou, and Chi Zhang. Fuzzy clustering of cpp family in plants

with evolution and interaction analyses. BMC bioinformatics, 14(S13):S10, 2013.

[197] Erfan Farhangi, Nasser Ghadiri, Mahsa Asadi, Mohammad Amin Nikbakht,

and Sylvain Pitre. Fast and scalable protein motif sequence clustering based

on hadoop framework. In 2017 3th International Conference on Web Research

(ICWR), pages 24–31. IEEE, 2017.

188

[198] Quang-Thinh Bui, Bay Vo, Vaclav Snasel, Witold Pedrycz, Tzung-Pei Hong,

Ngoc-Thanh Nguyen, and Mu-Yen Chen. Sfcm: A fuzzy clustering algorithm of

extracting the shape information of data. IEEE Transactions on Fuzzy Systems,

2020.

[199] Eréndira Rendón, Itzel Abundez, Alejandra Arizmendi, and Elvia M Quiroz. In-

ternal versus external cluster validation indexes. International Journal of com-

puters and communications, 5(1):27–34, 2011.

[200] Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a knowledge reuse

framework for combining multiple partitions. Journal of machine learning re-

search, 3(Dec):583–617, 2002.

[201] Ka Yee Yeung and Walter L Ruzzo. Details of the adjusted rand index and

clustering algorithms, supplement to the paper an empirical study on princi-

pal component analysis for clustering gene expression data. Bioinformatics,

17(9):763–774, 2001.

[202] Nadia Bolshakova and Francisco Azuaje. Cluster validation techniques for

genome expression data. Signal processing, 83(4):825–833, 2003.

[203] Guilherme P Coelho, Celso C Barbante, Levy Boccato, Romis RF Attux, José R

Oliveira, and Fernando J Von Zuben. Automatic feature selection for bci: an

analysis using the davies-bouldin index and extreme learning machines. In The

2012 international joint conference on neural networks (IJCNN), pages 1–8.

IEEE, 2012.

[204] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. Under-

standing of internal clustering validation measures. In 2010 IEEE international

conference on data mining, pages 911–916. IEEE, 2010.

[205] José Maŕıa Luna-Romera, Maŕıa Mart́ınez-Ballesteros, Jorge Garćıa-Gutiérrez,

and José C Riquelme. External clustering validity index based on chi-squared

statistical test. Information Sciences, 487:1–17, 2019.

189

[206] William M Rand. Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical Association, 66(336):846–850, 1971.

[207] Verena Zuber, A Pedro Duarte Silva, and Korbinian Strimmer. A novel algo-

rithm for simultaneous snp selection in high-dimensional genome-wide associa-

tion studies. BMC bioinformatics, 13(1):1–8, 2012.

[208] Jiming Jiang, Cong Li, Debashis Paul, Can Yang, Hongyu Zhao, et al. On

high-dimensional misspecified mixed model analysis in genome-wide association

study. The Annals of Statistics, 44(5):2127–2160, 2016.

[209] Mingshun Yuan, Zijiang Yang, Guangzao Huang, and Guoli Ji. Feature selection

by maximizing correlation information for integrated high-dimensional protein

data. Pattern Recognition Letters, 92:17–24, 2017.

[210] Chandra Shekhar Pareek, Rafal Smoczynski, and Andrzej Tretyn. Sequencing

technologies and genome sequencing. Journal of applied genetics, 52(4):413–435,

2011.

[211] W Lathe, J Williams, M Mangan, and D Karolchik. Genomic data resources:

challenges and promises. Nature Education, 1(3):2, 2008.

[212] David Grant, Marce Imsande, and Randy Shoemaker. Soybase, a soybean

genome database. Technical report, 1996.

[213] Tanya Barrett, Dennis B Troup, Stephen E Wilhite, Pierre Ledoux, Dmitry

Rudnev, Carlos Evangelista, Irene F Kim, Alexandra Soboleva, Maxim Toma-

shevsky, and Ron Edgar. Ncbi geo: mining tens of millions of expression pro-

files—database and tools update. Nucleic acids research, 35(suppl 1):D760–

D765, 2007.

[214] UniProt Consortium. Uniprot: a hub for protein information. Nucleic acids

research, 43(D1):D204–D212, 2015.

190

[215] Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N

Bhat, Helge Weissig, Ilya N Shindyalov, and Philip E Bourne. The protein data

bank. Nucleic acids research, 28(1):235–242, 2000.

[216] Howard S Bilofsky and Burks Christian. The genbank® genetic sequence data

bank. Nucleic acids research, 16(5):1861–1863, 1988.

[217] Nayanah Siva. 1000 genomes project, 2008.

[218] Michael Y Galperin. The molecular biology database collection: 2008 update.

Nucleic acids research, 36(suppl 1):D2–D4, 2008.

[219] Eric W Sayers, Richa Agarwala, Evan E Bolton, J Rodney Brister, Kathi Canese,

Karen Clark, Ryan Connor, Nicolas Fiorini, Kathryn Funk, Timothy Hefferon,

et al. Database resources of the national center for biotechnology information.

Nucleic acids research, 47(Database issue):D23, 2019.

[220] Stephen T Sherry, M-H Ward, M Kholodov, J Baker, Lon Phan, Elizabeth M

Smigielski, and Karl Sirotkin. dbsnp: the ncbi database of genetic variation.

Nucleic acids research, 29(1):308–311, 2001.

[221] Chuming Chen, Hongzhan Huang, and Cathy H Wu. Protein bioinformatics

databases and resources. Protein Bioinformatics, pages 3–39, 2017.

[222] Qijian Song, David L Hyten, Gaofeng Jia, Charles V Quigley, Edward W

Fickus, Randall L Nelson, and Perry B Cregan. Development and evaluation of

soysnp50k, a high-density genotyping array for soybean. PloS one, 8(1):e54985,

2013.

[223] Nonoy Bandillo, Chitra Raghavan, Pauline Andrea Muyco, Ma Anna Lynn

Sevilla, Irish T Lobina, Christine Jade Dilla-Ermita, Chih-Wei Tung, Susan

McCouch, Michael Thomson, Ramil Mauleon, et al. Multi-parent advanced

generation inter-cross (magic) populations in rice: progress and potential for

genetics research and breeding. Rice, 6(1):11, 2013.

191

[224] Philip Traldi Wysmierski and Natal Antonio Vello. The genetic base of brazilian

soybean cultivars: evolution over time and breeding implications. Genetics and

molecular Biology, 36(4):547–555, 2013.

[225] Eric J Sedivy, Faqiang Wu, and Yoshie Hanzawa. Soybean domestication: the

origin, genetic architecture and molecular bases. New Phytologist, 214(2):539–

553, 2017.

[226] Jeong-Dong Lee, J Grover Shannon, Tri D Vuong, and Henry T Nguyen. Inher-

itance of salt tolerance in wild soybean (glycine soja sieb. and zucc.) accession

pi483463. Journal of Heredity, 100(6):798–801, 2009.

[227] Min Xie, Claire Yik-Lok Chung, Man-Wah Li, Fuk-Ling Wong, Xin Wang, Ailin

Liu, Zhili Wang, Alden King-Yung Leung, Tin-Hang Wong, Suk-Wah Tong,

et al. A reference-grade wild soybean genome. Nature communications, 10(1):1–

12, 2019.

[228] Fan Wu, Su Zhao, Bin Yu, Yan-Mei Chen, Wen Wang, Zhi-Gang Song, Yi Hu,

Zhao-Wu Tao, Jun-Hua Tian, Yuan-Yuan Pei, et al. A new coronavirus as-

sociated with human respiratory disease in china. Nature, 579(7798):265–269,

2020.

[229] Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu,

Li Zhang, Guohui Fan, Jiuyang Xu, Xiaoying Gu, et al. Clinical features of

patients infected with 2019 novel coronavirus in wuhan, china. The lancet,

395(10223):497–506, 2020.

[230] A Mishal, R Saravanan, S Sakthi Atchitha, K Santhiya, M Rithika, S Sanju

Menaka, and T Thiruvalluvan. A review of corona virus disease-2019. History,

4:07, 2020.

[231] Zi Yue Zu, Meng Di Jiang, Peng Peng Xu, Wen Chen, Qian Qian Ni, Guang Ming

Lu, and Long Jiang Zhang. Coronavirus disease 2019 (covid-19): a perspective

from china. Radiology, 296(2):E15–E25, 2020.

192

[232] Heng Li, Shang-Ming Liu, Xiao-Hua Yu, Shi-Lin Tang, and Chao-Ke Tang.

Coronavirus disease 2019 (covid-19): current status and future perspectives.

International journal of antimicrobial agents, 55(5):105951, 2020.

[233] John F Kolen and Tim Hutcheson. Reducing the time complexity of the fuzzy

c-means algorithm. IEEE Transactions on Fuzzy Systems, 10(2):263–267, 2002.

[234] Moshe Lichman et al. Uci machine learning repository, 2013.

[235] Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data

streams. In Proceedings of the thirty-seventh annual ACM symposium on Theory

of computing, pages 209–217. ACM, 2005.

[236] Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant support

vector machines using selective sampling. Large scale kernel machines, 2, 2007.

[237] P. Fränti, O. Virmajoki, and V. Hautamäki. Fast agglomerative clustering using

a k-nearest neighbor graph. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 28(11):1875–1881, 2006.

[238] Yangtao Wang, Lihui Chen, and Jian Ping Mei. Incremental fuzzy clustering

with multiple medoids for large data. IEEE Transactions on Fuzzy Systems,

22(6):1557–1568, 2014.

[239] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal,

Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Sid-

dharth Seth, et al. Apache hadoop yarn: Yet another resource negotiator. In

Proc. of 4th Annual Symposium on Cloud Computing, page 5. ACM, Santa Clara,

CA, USA, October, 2013.

[240] Enrique H Ruspini, James C Bezdek, and James M Keller. Fuzzy clustering: A

historical perspective. IEEE Computational Intelligence Magazine, 14(1):45–55,

2019.

193

[241] Neha Bharill, Aruna Tiwari, and Aayushi Malviya. Fuzzy based scalable clus-

tering algorithms for handling big data using apache spark. IEEE Transactions

on Big Data, 2(4):339–352, 2016.

[242] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[243] Olvi L Mangasarian and William H Wolberg. Cancer diagnosis via linear pro-

gramming. Technical report, University of Wisconsin-Madison Department of

Computer Sciences, 1990.

[244] P. Fränti R. Mariescu-Istodor and C. Zhong. Xnn graph. LNCS 10029:207–217,

2016.

[245] Veit Schwämmle and Ole Nørregaard Jensen. A simple and fast method to

determine the parameters for fuzzy c–means cluster analysis. Bioinformatics,

26(22):2841–2848, 2010.

[246] Hon-Ming Lam, Xun Xu, Xin Liu, Wenbin Chen, Guohua Yang, Fuk-Ling Wong,

Man-Wah Li, Weiming He, Nan Qin, Bo Wang, et al. Resequencing of 31

wild and cultivated soybean genomes identifies patterns of genetic diversity and

selection. Nature genetics, 42(12):1053, 2010.

[247] Andrea Remuzzi and Giuseppe Remuzzi. Covid-19 and italy: what next? The

lancet, 395(10231):1225–1228, 2020.

[248] Carlos Padilla-Rojas, Priscila Lope-Pari, Karolyn Vega-Chozo, Johanna

Balbuena-Torres, Omar Caceres-Rey, Henri Bailon-Calderon, Maribel Huaringa-

Nuñez, and Nancy Rojas-Serrano. Near-complete genome sequence of a 2019

novel coronavirus (sars-cov-2) strain causing a covid-19 case in perú. Microbiol-

ogy resource announcements, 9(19), 2020.

[249] Marco Ciotti, Silvia Angeletti, Marilena Minieri, Marta Giovannetti, Domenico

Benvenuto, Stefano Pascarella, Caterina Sagnelli, Martina Bianchi, Sergio

Bernardini, and Massimo Ciccozzi. Covid-19 outbreak: an overview. Chemother-

apy, 64(5-6):215–223, 2019.

194

[250] Siham Tabik, Anabel Gómez-Rı́os, José Luis Mart́ın-Rodŕıguez, Iván Sevillano-

Garćıa, Manuel Rey-Area, David Charte, Emilio Guirado, Juan Luis Suárez,

Julián Luengo, MA Valero-González, et al. Covidgr dataset and covid-sdnet

methodology for predicting covid-19 based on chest x-ray images. IEEE journal

of biomedical and health informatics, 24(12):3595–3605, 2020.

[251] AS Albahri, Rula A Hamid, Jwan K Alwan, ZT Al-Qays, AA Zaidan, BB Zaidan,

AOS Albahri, AH AlAmoodi, Jamal Mawlood Khlaf, EM Almahdi, et al. Role

of biological data mining and machine learning techniques in detecting and diag-

nosing the novel coronavirus (covid-19): a systematic review. Journal of medical

systems, 44:1–11, 2020.

[252] Antje Krause, Jens Stoye, and Martin Vingron. Large scale hierarchical cluster-

ing of protein sequences. BMC bioinformatics, 6(1):15, 2005.

[253] Thanh Thi Nguyen. Artificial intelligence in the battle against coron-

avirus (covid-19): a survey and future research directions. arXiv preprint

arXiv:2008.07343, 2020.

[254] Mohammad Reza Mahmoudi, Dumitru Baleanu, Zulkefli Mansor, Bui Anh Tuan,

and Kim-Hung Pho. Fuzzy clustering method to compare the spread rate of

covid-19 in the high risks countries. Chaos, Solitons & Fractals, 140:110230,

2020.

[255] Aymeric Silvin, Nicolas Chapuis, Garett Dunsmore, Anne-Gaëlle Goubet,

Agathe Dubuisson, Lisa Derosa, Carole Almire, Clémence Hénon, Olivier Kos-

mider, Nathalie Droin, et al. Elevated calprotectin and abnormal myeloid cell

subsets discriminate severe from mild covid-19. Cell, 182(6):1401–1418, 2020.

[256] Untari N Wisesty and Tati Rajab Mengko. Comparison of dimensionality re-

duction and clustering methods for sars-cov-2 genome. Bulletin of Electrical

Engineering and Informatics, 10(4):2170–2180, 2021.

195

[257] Halat Ahmed Hussein and Adnan Mohsin Abdulazeez. Covid-19 pandemic

datasets based on machine learning clustering algorithms: A review. PalArch’s

Journal of Archaeology of Egypt/Egyptology, 18(4):2672–2700, 2021.

[258] Bo Wang and Lin Jiang. Principal component analysis applications in covid-19

genome sequence studies. Cognitive computation, pages 1–12, 2021.

[259] Yiliao Song, Jie Lu, Haiyan Lu, and Guangquan Zhang. Fuzzy clustering-based

adaptive regression for drifting data streams. IEEE Transactions on Fuzzy Sys-

tems, 28(3):544–557, 2019.

[260] Anjin Liu, Jie Lu, and Guangquan Zhang. Concept drift detection via equal

intensity k-means space partitioning. IEEE transactions on cybernetics, 2020.

[261] Anjin Liu, Jie Lu, and Guangquan Zhang. Concept drift detection: Dealing

with missing values via fuzzy distance estimations. IEEE Transactions on Fuzzy

Systems, 2020.

[262] Qiying Feng, Long Chen, CL Philip Chen, and Li Guo. Deep fuzzy cluster-

ing—a representation learning approach. IEEE Transactions on Fuzzy Systems,

28(7):1420–1433, 2020.

196

	 Abstract
	 List of Publications
	 List of Figures
	 List of Tables
	 List of Abbreviations and Acronyms
	Introduction
	Motivation
	Objectives
	Thesis Contributions
	Organization of the Thesis

	Literature Survey and Research Methodology
	Clustering and its type
	Consensus Clustering
	Fuzzy Consensus Clustering

	Big Data Frameworks
	Scalable Fuzzy Clustering Algorithms for Handling Big Data
	Scalable Version of LFCM Algorithm
	Scalable Version of Random Sampling with Iterative Optimization Fuzzy C-Means Algorithm

	Survey on Genome Sequences
	Methods for Single Nucleotide Polymorphisms (SNPs) Sequences
	Methods for Protein Sequences

	Performance Measures
	External Measures
	Internal Measures

	Real-life Genome Data
	Soybean and Rice SNP Dataset Description
	Soybean Protein Dataset Description
	SARS-CoV-2 Protein Dataset Description

	Scalable Kernelized Fuzzy Clustering Algorithms for Handling Big Data
	Introduction
	Proposed Kernelized Scalable Fuzzy Clustering Algorithms for Handling Big Data
	Kernelized Version of SLFCM Algorithm to Handle Big Data
	Proposed Design of a Novel KSRSIO-FCM Algorithm to Handle Big Data

	Complexity Analysis
	Experimental Evaluation
	Datasets and Experimental Settings
	Experimental Environment
	Datasets Description
	Experimental Results and Discussion

	Summary

	Scalable Incremental Fuzzy Consensus Clustering Algorithms for Handling Big Data
	Introduction
	Proposed Scalable Incremental Fuzzy Consensus Clustering Algorithms for Handling Big Data
	Scalable Version of Fuzzy Consensus Clustering
	Proposed Design of a Novel SIFCC Algorithm to Handle Big Data

	Complexity Analysis
	Experimental Evaluation
	Datasets and Experimental Settings
	Experimental Results and Discussion
	Performance Evaluation on Big Data

	Summary

	Design of Novel Scalable Feature Extraction Algorithm for Huge SNP Sequences with Application of Scalable Fuzzy Clustering Algorithms
	Proposed Scalable Algorithm for Preprocessing of Huge SNP Sequences
	Step I: Calculation of length of sequence
	Step II: Total distances of each nucleotide base to the first nucleotide
	Step III: Variance of distance for each nucleic base

	Experimental Evaluation on SNP Datasets
	Datasets and Experimental Settings
	Experimental Results and Discussion on Scalable Fuzzy Clustering Algorithms
	Clustering Performance of Scalable Fuzzy Clustering Algorithms
	Experimental Results and Discussion on Scalable Fuzzy Consensus Clustering
	Clustering performance of Scalable Fuzzy Consensus Clustering Algorithms

	Summary

	Design of a Novel Scalable Feature Extraction Algorithms for Huge Protein Sequences with Application of Scalable Fuzzy Clustering Algorithm
	60-dimensional Scalable Protein Feature Extraction (60d-SPF) Approach
	Stage I: Calculation of length of sequence
	Stage II: Total distances of each amino acid to the first amino acid
	Stage III: Variance of distance for each amino acid

	6-dimensional Scalable Co-occurrence-based Probability-Specific Feature (6d-SCPSF) Extraction Approach
	SPSE Algorithm
	GSM Algorithm
	SLSM Algorithm

	Experimental Evaluation on Protein Datasets
	Summary

	Investigation of Massive SARS-CoV-2 Protein Datasets on Developed Scalable Feature Extraction and Scalable Fuzzy Clustering Algorithms
	Introduction
	Preprocessing of SARS-CoV-2 Protein Datasets
	Clustering of SARS-CoV-2 Protein Datasets
	Experimental Analysis of SARS-CoV-2 Protein Datasets
	Datasets Description
	Clustering Performance on huge SARS-CoV-2 protein datasets

	Summary

	Conclusions and Future Work
	Summary of Research Achievements
	Future Research Directions

	Bibliography

