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Abstract

After cancer, heart disorders are the second major cause of mortality and morbidity

around the globe. The heart valve disorders, septal defects and coronary artery disease are

the most commonly occurring heart disorders. Timely diagnosis of heart disorders is gen-

erally required for prevention and treatment of these disorders to ensure contented, happier

and longer life of patients.

The cardiac auscultation and electrocardiogram (ECG) are the important means of as-

sessing the activity of cardiovascular system. These procedures are commonly used for

reliable diagnosis of heart disorders. Heart disorders especially heart valves cause changes

or additional sounds to normal heart sounds that can be useful for diagnosis. These heart

sounds can be analysed non-invasively using traditional cardiac auscultation with conven-

tional stethoscope. However, analysing these heart sounds by listening, requires sophisticated

interpretive skills and expertise in diagnosis. Moreover, the heart sounds often last for a short

period of time and pathological splitting of the heart sound is difficult to judge because hu-

man ears lack desired sensitivity towards heart sounds and murmurs. The cardiac sound

signals represent digital recording of the heart sounds by placing an electronic stethoscope

at the appropriate location on the subject’s chest. These signals can be used to extract

valuable diagnostic features for diagnosis of the heart valve disorders.

Electrocardiography is also a non-invasive measure of the electrical activity of the heart

against time. It records electrical potentials of the contractile heart cells by placing electrodes

on the surface of the chest and on the limb. Generally, electrocardiography involves recording

of ECG waveform onto a graph paper that runs at a constant speed or visual display on a

screen. ECG waveform analysis is carried out by evaluating the morphological changes in

shape, amplitude, period, segments, and intervals. The subtle changes in these features of

ECG waveforms cannot be deciphered precisely on visual inspection. Moreover, the clinical

interpretations of ECG waveform are based on observation or experimental knowledge. On

the other hand, the digitally recorded ECG signals can provide valuable diagnostic features

for automatic diagnosis of the CAD.
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In recent years, with the development of many advanced signal processing and medical

artificial intelligence technologies, a huge potential exist for development of efficient, infor-

mative and accurate state of the art computer-aided diagnostic tool for heart valve and other

heart disorders. Therefore, cardiac signals based computer aided diagnosis can be a promis-

ing and cost effective technology for prompt, noninvasive, convenient and efficient diagnosis

of heart disorders.

The aim of this thesis work has been to develop advanced signal processing based meth-

ods for automatic diagnosis of heart disorders using cardiac sound signals and ECG signals.

Implementation of such diagnostic systems based on cardiac sound signals involves the pri-

mary stage of segmentation of cardiac sound signals into heart beat cycles. This is then

followed by analysis and extraction of suitable diagnostic features from the segmented heart

beat cycles for final development of pattern classification process to classify a set of cardiac

sound signals. In case of diagnostic systems based on ECG signals, pre-processing involving

removal of noises, artifacts like baseline wondering etc., feature extraction and classification

are general steps to implement.

The compression of cardiac sound signals can further help in data archiving and telemedicine

application for convenient diagnosis of heart disorders. The compression algorithm can re-

duce the power consumption in wireless sensor networks for better long term monitoring

intended for telemedicine applications.

In particular, the work in this thesis, focuses on development of advanced signal pro-

cessing based methodologies for segmentation and classification of cardiac sound signals to

automatically diagnose the heart valve and septal defects. The development of methodology

for automatic diagnosis of CAD using ECG based heart rate signals is the centre of inter-

est. Moreover, this work also focuses on the compression of cardiac sound signals for data

archiving and telemedicine application to improve the bandwidth and the storage efficiency

for convenient diagnosis of heart disorders. The details of these proposed methodologies in

this work can be described as follows:

The automatic segmentation of cardiac sound signals into heart beat cycles is generally
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required for the diagnosis of heart valve disorders. As the first main part of this thesis, the

segmentation of the cardiac sound signals using tunable-Q wavelet transform (TQWT) has

been performed as follows. The murmurs from cardiac sound signals have been removed

by suitably constraining TQWT based decomposition and reconstruction. The Q-factor,

redundancy parameter and number of stages of decomposition of the TQWT have been

adapted to the desired statistical properties of the murmur-free reconstructed cardiac sound

signals. The envelope based on cardiac sound characteristic waveform (CSCW) has been

extracted after the removal of low energy components from the reconstructed cardiac sound

signals. Then the heart beat cycles have been derived from the original cardiac sound signals

by mapping the required timing information of CSCW which is obtained using established

methods. The experimental results are included in order to show the effectiveness of the

proposed method for segmentation of cardiac sound signals in comparison with other existing

methods for various clinical cases.

The features extracted from the cardiac sound signals are commonly used for detection

and identification of heart valve disorders. As the second main part of this thesis, a new

method for classification of cardiac sound signals using constrained tunable-Q wavelet trans-

form (TQWT) has been proposed. The proposed method begins with a constrained TQWT

based segmentation of cardiac sound signals into heart beat cycles. The features obtained

from heart beat cycles of separately reconstructed heart sounds and murmur can better rep-

resent the various types of cardiac sound signals than that from containing both. Therefore,

heart sounds and murmur have been separated using constrained TQWT. Then the proposed

novel raw feature set has been created by the parameters that have been optimized while

constraining the output of TQWT and that of extracted by using time-domain representation

and Fourier-Bessel (FB) expansion of separated heart sounds and murmur. However, the

adaptively selected features have been used to obtain the final feature set for subsequent clas-

sification of cardiac sound signals using least squares support vector machine (LS-SVM) with

various kernel functions. The performance of the proposed method has been validated with

publicly available datasets and the results have been compared with the existing short-time
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Fourier transform (STFT) based method. The proposed method shows higher percentage

classification accuracy of 94.01 as compared to 93.53 of STFT based method. In comparison

with STFT based method, it is noteworthy that the proposed method uses well defined and

lower dimensionality of feature vector that can reduce the computational complexity.

In view of accurate and quick diagnosis of septal defects, automatic analyses of cardiac

sound signals can be performed by using advanced signal processing methods. Therefore, as

a third main part of this thesis, a new method for diagnosis of septal defects from cardiac

sound signals using TQWT based features has been proposed. To start with, the established

constrained TQWT based approach has been used in this study to derive the heart beat

cycles from cardiac sound signals. Then the TQWT based decomposition of segmented

heart beat cycles have been performed up to a certain level. The combinations of sub-

bands obtained during TQWT based decomposition can be used to extract the diagnostic

features. The correlation between sub-bands can characterize the various types of murmurs

in cardiac sound signals. Therefore, in order to represent the murmurs in cardiac sound

signals, proposed feature set was created with sum of average magnitude difference function

(SAMDF) that have been computed from reconstruction of decomposed sub-bands. In search

of effective feature set based on SAMDF, various decomposition levels have been examined

that could provide significant classification performance. Moreover, in order to establish

the usefulness of the proposed method for diagnosis of septal defects, besides cardiac sound

signals for septal defects and normal, this study covers signals to be detected for valvular

defects and other defects like ventricular hypertrophy, constrictive pericarditis etc as available

from publicly available datasets. The classification has been performed using LS-SVM with

different kernel functions. At each decomposition level under study, the effect of quality-

factor (Q) of the TQWT from 1 to 50 on classification performance has been evaluated. The

experimental results show that the proposed method has provided significant classification

performance with tenth levels of decomposition for all the values of Q in the given range

using Morlet wavelet kernel function. The test results demonstrate classification accuracy of

98.92% with sensitivity of 98.80% specificity of 99.29% and Matthews correlation coefficient
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of 0.9684 at tenth levels of decomposition for Q = 6. Moreover, in order to show the

effectiveness of the proposed method, results have been compared with existing method.

Analysis of ECG based heart rate signals using advanced signal processing methods

can lead to efficient automatic diagnosis of CAD. In view of this, the fourth main part

of this thesis present a new method for diagnosis of CAD using TQWT based features

from heart rate signals obtained from ECG signals. The time-frequency/scale domain can

provide more insightful view of the subtle changes in heart rate signals that are indicative

of any particular heart disorder. Hence, the heart rate signals have been decomposed into

various sub-bands using TQWT for better diagnostic feature extraction. The nonlinear and

nonstationary biomedical signals can be successfully analysed and classified using nonlinear

parameters. The correntropy is a nonlinear correlation function that can transforms the

sub-band signals into high dimensional space using kernel function in turn providing useful

feature space. Therefore, in order to represent the heart rate signals of normal and CAD

conditions, proposed raw feature set was created with centered correntropy (CCo) that

has been computed from particular decomposed detail sub-band. The principal component

analysis (PCA) has been applied to obtain the final feature set using the linear combination

of the raw features. This features set has been used to perform classification using LS-SVM

with different kernel functions. In search of effective feature set based on CCo, various

values of Q have been examined that could provide significant classification performance.

The experimental results demonstrate highest classification accuracy, sensitivity, specificity

and Matthews correlation coefficient for Q = 24 using Morlet wavelet kernel function with

optimized kernel and regularization parameters. In addition, the proposed methodology has

been found more suitable in classification of normal and CAD heart rate signals in comparison

to other previous methods.

As the last main part of this thesis, a new method for compression of cardiac sound signals

using TQWT to improve the bandwidth and the storage efficiency for convenient diagnosis

of heart disorders. In the proposed method, the cardiac sound signals have been compressed

using TQWT, linear quantization, Huffman and run length coding (RLC) techniques. As the
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compression depends on various parameters, therefore the optimal values of these parame-

ters have been found using genetic algorithm (GA) with a subset of dataset. The proposed

compression method has provided significant performance with lower distortion when evalu-

ated using a test set. Moreover, the obtained results have been found comparatively better

than that of an existing wavelet (WT) based method due to the properties of TQWT and

the resulting increased number of compression parameters for optimization. The proposed

algorithm can reduce the power consumption in wireless sensor networks for better long term

monitoring intended for telemedicine applications.
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Chapter 1

Introduction

The heart sounds and ECG are widely used for cardiac examination. The stethoscope has

been a symbol of medical profession for a long time since its invention in 1816 by René

Laennec, a French physician [2]. Physicians have relied on stethoscope based cardiac aus-

cultation as a non-invasive primary diagnostic procedure for detection and characterization

of heart disorders. However, the recent advances in cardiac imaging have led to the use of

sophisticated technologies like echocardiography, magnetic resonance imaging etc. for diag-

nosis of heart disorders. Irrespective of their higher cost, these modalities have become so

dominating in cardiac assessment that the use of traditional cardiac auscultation has shown

a marked declining trend because of the following aspects. Traditional cardiac auscultation

requires sophisticated skills and long-term experience. The human ear is far more sensitive

to the speech having frequencies in the range 1000-2000 Hz than to higher and lower frequen-

cies. It lacks desired sensitivity towards heart sounds and murmurs [3, 4, 5]. In addition, the

short period of heart sounds and pathological splitting of the heart sound make it difficult

to produce any decision on presence of heart disorders [6]. The poor auscultatory skills of

the primary care clinicians have been documented in the primary screen examination due to

lack of effective educational support [7]. Consequently, traditional cardiac auscultation is not

performed properly in the primary health care and all the subjects showing symptoms other

than normal auscultatory findings are sent to a cardiologist for further investigations [8, 9].
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ECG has become a common diagnostic procedure for heart disorder since the 1940s

[10]. It was first realised by an English physiologist August Waller in 1887. However,

it was W. Einthoven, who recorded the first ECG waveform with a string galvanometer

in 1902 [10]. There has been a significant development on ECG based diagnosis such as

exercise test ECG, Holter ECG, monitoring of patients in intensive care, high resolution

electrocardiography etc. The ECG based diagnosis is quite promising and requires minor

changes in the ECG recordings to detect specific heart disorders. However, in many cases,

visual analysis of ECG recordings for detecting CAD is not reliable because it is difficult

to notice the differences in recordings. The presence of noises and artifacts like baseline

wondering make it complex to accurately analyse the small morphological changes in the

ECG recordings due to heart disorders. While undergoing tread mill stress tests, patients

are at risk of developing tachycardia and eventual heart failure. The cardiac catheterization

is performed invasively and takes an average time of thirty minutes. However, overall time

including the preparation and recovery time amounts to several hours. This leads to almost

whole day for patients to do this test. Most of the imaging modalities can be operated only

by trained physicians or radiologists. Some of the above mentioned diagnostic tools are quite

expensive and their availability is limited to health care centers in urban areas.

In a world where modern health care is striving for cost effective point-of-care medical

technology, it is now time to upgrade the traditional cardiac auscultation and ECG inter-

pretation. Therefore, the automatic heart sound and ECG analysis using advanced signal

processing techniques based on digital acquisition of these signals has a lot of potential in

cardiac health care [11].

1.1 Background

1.1.1 The Nature of Cardiac Signals

The properties of nonlinear and non-stationary cardiac sound signals and ECG signals can

be described as follows:
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1.1.1.1 The Nature of Cardiac Sound Signals

The cardiac sound signals are the traditional biomedical signals that carry a lot of information

about the structure and functioning of cardiovascular system [12]. These signals are basically

caused by the contractile activity of the cardiohemic system that consists of the heart and

blood together [12, 13, 14, 15]. The recording of cardiac sound signals involves placement of

sensor on the chest that converts the heart sound into electronic signal. The cardiac sound

signals may consist of two types of components, the heart sounds and the murmur. The

heart sounds and murmur are low frequency and high frequency components respectively.

However, the intensity, frequency content and timings of the heart sounds and murmur

vary with affected type of heart valves and other parts of heart, type of defect, degree of

defect, heart rate and blood velocity. The heart beat cycles of normal cardiac sound signals

are mostly composed of two types of sound: S1 and S2 heart sounds which are referred

as primary heart sounds. The S1 and S2 heart sounds exhibit predominant frequencies in

the range 20-150 Hz [15]. The presences of other sounds that may be indicative of cardiac

pathology are murmurs, two feeble S3 and S4 heart sounds and other irregularities due to

different pathologies of the cardiovascular system. The average murmurs have frequencies

in the range 100-600 Hz [16]. The frequencies of S3 and S4 heart sounds lie in the range

20-70 Hz [15]. These heart sounds have comparatively lower amplitude to that of primary

heart sounds. The presence of S3 heart sound could be a sign of heart disorder. Generally,

S4 heart sound is always considered to be associated with cardiac abnormality.

In spite of the heart sounds and murmur, cardiac sound signals may contain the ambi-

ent noise, respiratory sounds, bowel sounds and other undesired noises such as rubbing of

stethoscope on the subjects chest surface, voices etc. These undesired components needs to

be dealt properly in carrying out accurate analysis of cardiac sound signals [17, 18, 19]. The

respiratory artifacts occupy frequencies less than 100 Hz to over 300 Hz [20].
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1.1.1.2 The Nature of ECG Signals

The ECG signal carries potential information about chemical, electrical and mechanical

events of the heart that generally occurs during pumping action of the heart. Many com-

monly occurring cardiovascular diseases manifest themselves in the altered shape of ECG

signal. The medical experts consider the diagnostic morphological features of the ECG signal

to assess the functioning of the heart and its muscles. The pumping action of the heart in

terms of beats per minute (bpm) can be measured by counting the easily identifiable repeat-

ing waves in ECG signals. Generally, the ECG based cardiovascular assessment is done in an

empirical manner based on the existing knowledge and acquired experience. Some defined

characteristic segments or waves, points, and parameters of the ECG signal are used for

diagnostic evaluation of the heart. In medical diagnostic decision making, the relationships

between morphological features of ECG signal and the functioning of the heart are often

expressed with some logical clinical terms or expressions. The terms such as “extended R

wave,” “shortened QT interval,” “unclear Q wave,” elevated ST segment,” “low T wave,”

etc. are very common. These terms can be used as fuzzy logics. For example, in myocardial

infarction, the QRS complexes and T wave change as heart muscle tissue progresses from

early to late infarction. In the beginning, ischemia is first reflected in ST segment depression.

The elevation of ST segment in ECG waveform is a sign of an early infarction. Late infarc-

tion causes to T wave inversion. The deep QRS complex is the evidence of an old resolved

infarction [21]. The analysis of ECG signals for diagnostic purpose generally lacks detailed

numeric relationships or formulas and it rather relies on these logical clinical terms. The

expert’s opinion depends on the cardiologist’s own model of the diagnostic process, which is

mainly described in a linguistic fashion based on the acquired knowledge and experience.

Registration, processing and analysis of ECG signals constitute the main steps of diagnos-

tic decision making. The ECG signals are due to nonlinear and nonstationary phenomena and

exhibit noise susceptibility together with variability among individuals. The main sources

of noise and artifacts in ECG signals include: low frequency interferences, muscle artifacts,

power-line interferences and impulsive electromagnetic interferences. The body-electrode
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impedance varies due to underlying physical and chemical processes at the site of contact

region as well as the movement of the subjects. These phenomena results into slow-varying

distortions in the form of baseline wandering effect in ECG signals [22, 23]. Respiratory

movements also change position of the electrodes relative to the heart in turn causing some

slow-changing disturbances in ECG recordings. The contraction of skeletal muscles due to

subjects body movement or unsuitable ambient temperature leads to muscle artifacts. The

muscle artifacts are very difficult to deal without affecting important diagnostic information

in ECG signals because they have broad frequency spectrum that overlaps with the frequen-

cies of the ECG signals [24]. Interference due to power sources are electromagnetic in nature

and are referred to as power-line interferences [25]. High power devices like diathermy cause

to impulsive electromagnetic interferences [26, 24].

Depending upon the type of the ECG test, the points of electrode placement for signal

acquisition vary in turn affecting the quality of ECG recordings. The ECG signals recorded

from various points exhibit diversity in amplitude with usually a very low signal-to-noise

ratio (SNR). Typically, the amplitudes of ECG signals measured non-invasively from the

body surface have amplitude in the range 10 µV to 5mV with normal peak reading of 1mV

[27]. The maximum bandwidth of ECG signals is up to 1 kHz. Higher signal amplitudes in

mV are mainly caused by the contraction and relaxation of ventricular muscles of the heart.

On the other hand, fetal ECG signals and heart micro potentials have amplitudes in the

range of µV accompanying highly undesirable SNR of about 20dB [28, 29, 30] .

1.1.2 The Anatomy and Physiology of Heart

The heart pumps to move the blood through the blood vessels. Anatomically, the heart

has two sides that serve as two separate pumps: the right side and the left side, which are

separated by a wall of tissue called the septum. Each side of the heart has two chambers: the

atrium and the ventricle. Atrium receives the blood and ventricle forces the blood away from

the heart. The right side of the heart pumps deoxygenated blood containing carbon dioxide

from the body to the lungs, and the left side receives oxygenated blood with its carbon
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dioxide being ventilated from the lungs to pumps it to the body. Related figure showing

the schematic representation of chambers, valves, major blood vessels and other connective

tissues of heart can be found in [31].

The blood vessels that circulates the blood to and from the lungs constitute the pul-

monary circulation, and those that circulates to and from the rest of the tissues in the body

constitute the systemic circulation as demonstrated in [31]. The blood vessels that move

blood away from the heart are called arteries and those that move blood toward the heart

are called veins. The only exceptions are the pulmonary artery and the pulmonary vein that

carry deoxygenated blood and oxygenated blood respectively.

There are four heart valves that lie between the atria and the ventricles, and between the

ventricles and the major arteries from the heart. The figure showing the anterior view of the

heart indicating the positions of four valves can be seen in [31]. These valves facilitate flow of

blood in one particular direction. These valves are the tricuspid valve, the mitral valve, the

pulmonic valve, and the aortic valve. The atrioventricular valves (AV) namely tricuspid and

mitral valves direct the flow of blood from the atria to the ventricles. The efficiency of these

valves depends on working of the valve leaflets, papillary muscles and chordae tendineae

that are strong tendons that connect the papillary muscles to these valves. The papillary

muscles are the finger-like projections of the muscle tissue from the endocardium of the

heart. The semilunar valves namely the aortic and the pulmonary valves are half-moon-

shaped structure that prevent the back flow of blood from the aorta or the pulmonary artery

into the ventricles. Blood supply to the myocardium of the heart is provided by the right

and left coronary arteries as demonstrated in [21]. If a branch of a coronary artery becomes

narrow or obstructed by an embolus (clot), the myocardial cells it supplies may deprive

of blood causing condition called ischemia. Angina pectoris or the chest pain accompanies

ischemia. Death of a portion of the heart muscle from ischemia is called myocardial infarction

(heart attack).

In general, the cardiac cycle consists of repeating actions of contraction (systole) and

relaxation (diastole) of the chambers of the heart as demonstrated in [31]. These activities
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are caused basically in response to an electrochemical stimulus by the group of cells present

as the sinoatrial node. In the beginning of a cardiac cycle, the atria contract to move the

blood into the ventricles. During this time, the atrioventricular valves get open to allow the

flow of blood into the ventricles. As soon as the atria begin to relax, the ventricles contract

to push the blood into the aorta and the pulmonary artery. Meanwhile, the semilunar valves

get open to allow the flow of blood out of the heart and the atrioventricular valves get close

thereby preventing backwards flow of blood from the ventricles to the atria. Subsequently,

the ventricular relaxation occurs after which both the atria and the ventricles remain relaxed

until atrial contraction occurs again at the onset of next cardiac cycle. During this stage,

the semilunar valves prevent blood from flowing back from the pulmonary artery and aorta

into the right and left ventricles, respectively. The figure showing the correlation of the four

heart sounds with the electrical and the mechanical events of the cardiac cycle can be seen

in [32]. It represents the left atrial, aortic, and left ventricular pressure pulses correlated

in time with aortic flow, ventricular volume, heart sounds, venous pulse, and ECG for one

complete cardiac cycle.

1.1.3 The Genesis of Cardiac Signals

The cardiac sound signals and ECG signals are produced by the rhythmic activity of the

heart. The generation of these signals can be described as follows:

1.1.3.1 The Genesis of Cardiac Sound Signals

The pressure gradients cause to the vibration of the cardiohemic system that consists of the

heart and blood together. These vibrations are externally recorded as cardiac sound signals.

The mechanism of generation of these signals is based on the fact that cardiohemic system

acts like fluid-filled balloon. This system, when simulated at any location, produces the

vibrations.

The underlying physiological causes for the generation of various heart sounds have been

well demonstrated in [31]. The generation of heart sounds and the murmur that are the
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main components of cardiac sound signals and can be described as follows [17, 33]:

The S1 heart sound : The S1 heart sound contains four components [34]. The first

component of S1 heart sound is caused by the onset of myocardial contraction in the ventricles

and is related to the closing of the AV valves. At this phase of systole, blood is forced to

move towards atria while sealing the AV valves. Abrupt tension of the AV valves causes

deceleration of the blood that in turn manifest as second component of S1 heart sound.

Subsequently, the semilunar valves namely the aortic and pulmonary valves get open and

blood is moved out of the ventricles. The oscillations of the blood between the root of the

aorta and the ventricle walls generate the third component of the S1 heart sound.

The turbulence caused by the ejected blood moving rapidly through the ascending aorta

and the pulmonary artery generates the fourth component of S1 heart sound. The S1 heart

sound is the loudest in intensity and persists for longest duration among all the heart sounds.

As it originates from mitral and tricuspid valve, it is best heard at the apex of the heart

[35]. The acoustic properties of components of S1 heart sound can reveal the strength of

the myocardial systole and the status of the functioning of tricuspid and mitral valves. The

two components (M1 and T1) of S1 heart sound corresponding to these valves are often

separated by a time delay of 20–30 ms [36]. This splitting of S1 heart sound carry significant

diagnostic information. An abnormally large splitting is often a sign of heart disorder. The

duration of S1 heart sound ranges from 100ms to 200ms [36]. The frequency spectrum of

the first heart sound has frequency components that lie in the range of 10–200 Hz [36].

The S2 heart sound: It is generated by the closure of the semilunar valves when the

interventricular pressure begins to drop. The primary vibrations associated with S2 heart

sound occur in the arteries due to deceleration of blood. The ventricles and atria also vibrate

due to transmission of vibrations through the blood and the valves. The S2 heart sound has

two components: one is related to the aortic valve (A2) and another one is related to closure

of pulmonary valve (P2).

Generally, since aortic valve closes before pulmonary valve, therefore A2 is ahead of P2

by a few milliseconds [34]. During expiration, the separation between A2 and P2 is small,
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generally, less than 30 ms. However, during inspiration, the splitting of the two components

is quite evident [36]. In pathological conditions, the duration between A2 and P2 may get

widen and order of occurrence of A2 and P2 may also get reverse. As compared to S1 heart

sound, the S2 heart sound has lower intensity and persists for shorter duration of about

110ms. The reason for the shorter duration is due to the fact that the semilunar valves are

much rigid than the AV valves and that makes them to close faster. As the S2 heart sound

originates from aortic and pulmonary valve, it is best heard at the base of the heart [35].

The S3 heart sound: This heart sound is also referred as the “ventricular gallop”. It

occurs just after S2 heart sound due to abrupt termination of the rapid-filling of blood in

ventricles. The spectrum of S3 heart sound consists of very low frequencies because it occurs

when the ventricles are filled with blood and the walls are relaxed. The S3 heart sound

is actually heard due to the large amount of blood striking a very compliant left ventricle.

The occupancy of S3 heart sound can be a normal auscultatory finding in children, pregnant

females, and well trained athletes. However, it can be an important sign of systolic heart

failure as the over compliant myocardium can result in a dilated left ventricle. The S3 heart

sound may be pathological if heard in over aged individuals.

The S4 heart sound: This heart sound is also known as the “atrial gallop”. The S4 heart

sound is heard just before the S1 heart sound and spectrum consists of lower frequencies. It

occurs in late diastolic phase when the atria contract to displace the blood into the distended

ventricles. The non-compliant left ventricle produces S4 heart sound. The left ventricular

hypertrophy causes impaired relaxation of the myocardium of left ventricle generating S4

heart sound. The presence of S4 heart sound is rarely a normal finding. The frequencies of

S3 and S4 heart sounds lie in the range 20 -70 Hz [15].

Murmurs: The murmurs are noise-like sounds that are audible during the systole and

diastole phases. They are caused due to various cardiovascular diseases and defects. The

spectrum of murmurs consists of high frequency components. The murmurs occur when

blood flows through irregularities such as leaking and narrowed or deformed valves. Typically,

they are produced by the turbulence due to the valvular stenosis and regurgitation. In case
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of valvular stenosis, valve leaflets becomes stiffer may be due to calcium deposition and

fails to open completely thereby hindering the flow of ejected blood. In case of valvular

regurgitation, valve can not close properly and cause to leakage of blood through narrow

opening. A dysfunction of the chordae tendineae and papillary muscles and stretching of

the leaflets of the valve in pathological conditions may cause regurgitation or leakage. The

murmurs may also arise due to high rate of blood flow that in turn cause turbulent flow

through a normal or defective valve and vibrations of loose structures within the heart. The

average murmurs have frequencies in the range 100-600 Hz [16].

In additions to the above mentioned sounds, ejection clicks and opening snaps occasion-

ally appear as auscultatory findings that can be briefly described as follows.

Ejection clicks/sounds: They are basically high-pitched sounds that appear at the instant

of maximal opening of the aortic or pulmonary valves in pathological cases. They occur

shortly after the S1 heart sound. The sounds occur in the presence of a dilated aorta or

pulmonary artery or in the presence of a bicuspid or flexible stenotic aortic or pulmonary

valve.

Opening sounds: As compared to ejection click, opening snaps arise in diastolic phase

at the instant of maximal opening of a flexibly stenotic mitral or tricuspid valve. They

are most frequently caused by sudden pathological arrest of the opening of the mitral or

tricuspid valve. These sounds occur after the S2 heart sound in early diastole and represent

short high frequency sounds.

1.1.3.2 The Genesis of ECG Signals

The electrical system of the heart is the main source of rhythmic contractile activity of the

heart. The cells of myocardium and the SA node are the main component of the electrical

system of the heart. These cells produce co-ordinate electrical events and form a specialized

conduction system intrinsic and unique to the heart. The SA node is the natural cardiac

pacemaker that spontaneously generates the electrical activity in the form of action poten-

tials. This action potential of the SA node travel through the heart thereby causing heart
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to beat in a particular pattern of excitation, contraction and relaxation. The myocardium

contracts after stimulation. In response to the propagating action potentials, myocardium

gets stimulated that allows it to contract for pumping the blood throughout the body. The

occurrence of sequence of electrical events and the associated waves in a cardiac cycle of

ECG trace on the surface of the body has been shown in [37, 38]. It can be described as

follows [13]:

The SA node shoots the electrical impulses in the form of action potentials. The elec-

trical activity is propagated through the muscles of atria via the right atrium, and through

Bachmann’s bundle to the left atrium, triggering the myocardium of the atria to contract.

The conduction of the action potential throughout the atria is seen on the ECG waveform as

the P wave. The speed of propagation is relatively low causing slow depolarization (contrac-

tion) of the atria. The small size of atria and lower speed of propagation of action potentials

make the P wave lower in amplitude and slow wave. The P wave exhibit amplitude in the

range 0.1 - 0.2 mV with a time duration falling in the range 60 - 80 ms. Then the electrical

activity spreads from the SA node to the AV node via specialized pathways, known as intern-

odal tracts. At the AV node, there occurs a propagation delay in the electrical excitation,

which results in a normally iso-electric segment having time duration of about 60 - 80 ms.

This iso-electric segment (base line) appears after the P wave in the ECG recording as the

PQ segment. The delay helps in completion of the transfer of blood from the atria to the

ventricles in a proper way.

The bundle of His, the bundle branches, and the Purkinje system forms the specialized

conduction pathways that helps to propagate the electrical excitation to the ventricles at

a high rate. The Bundle of His splits into two branches, the left bundle branch and the

right bundle branch that in turn activates the left and the right ventricles respectively. The

left bundle branch is short and bifurcate into the left anterior fascicle and the left posterior

fascicle. The left posterior fascicle is relatively short and broad and it transmits impulses

to the papillary muscles leading to mitral valve closure prior to ventricular contraction by

longer right bundle branch. This creates pre-tension in the chordae tendinae for increased
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resistance to the blood flow through the mitral valve during systole. The left and right

bundle branches get thinner forming Purkinje fibers which stimulate individual groups of

muscle cells to contract. The action potential spreads rapidly from the apex of the heart

towards upward causing the ventricles to contract. This activity appears as QRS wave in

the ECG waveform which is a sharp biphasic or triphasic wave of about 1 mV in amplitude

and 80 ms in time duration. The ventricular muscle cells have comparatively long action

potential duration in the range 300 - 350 ms.

The last event of the cardiac cycle is the repolarization (relaxation) of the ventricles

that restores the resting state. In the ECG waveform, repolarization activity appears as

ST-segment and T wave [39]. After the QRS wave, iso-electric segment of about 100 - 120

ms occurs as the ST segment in ECG waveform. Generally, a slow T wave, having amplitude

of about 0.1 - 0.3 mV and time duration of 120 - 160 ms occurs during the repolarization of

the ventricles. The other rare waves in ECG waveforms associated with repolarization are J

wave and U waves [39].

1.1.4 The Recording of Cardiac Signals

The data acquisition procedure for cardiac sound and ECG signals can be described well

under the following subsection.

1.1.4.1 The Recording of Cardiac Sound Signals

The acoustical path of the heart sounds begins with the vibrating structures of cardiohemic

system which includes the heart and the blood. Then these vibrations propagate through

the body tissues along different paths toward the body surface. However, the energy of

heart sounds get heavily attenuated while they reaches the surface of body because of the

phenomena of spreading, absorption, scattering, reflection, and refraction. The compress-

ible tissues comprising the lung and the fat layers attenuate most of the transmitted heart

sounds. The components of heart sounds having low frequencies are relatively less attenuated

than that of high frequencies. Ipso facto, the consequences of the attenuation are complex
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to determine. Therefore, in order to reduce the effect of attenuations and clearly perceive

the heart sounds, certain areas on the chest surface have been defined to perform cardiac

auscultation as demonstrated in [40]. These locations have been determined such that tran-

sition of heart sound is through solid tissues or through a minimal thickness of interfering

tissues. The radiated sound intensity from each of the four heart valves is maximum at these

locations. Therefore, the auscultation of heart sounds is generally preferred on specific areas

on the chest surface namely aortic area, pulmonic area, tricuspid area and mitral area. The

corresponding valves are best heard at these locations [34].

• Mitral area: The cardiac apex.

• Tricuspid area: The fourth and fifth intercostal space along the left sternal border.

• Aortic area: The second intercostal space along the right sternal border.

• Pulmonic area: The second intercostal space along the left sternal border.

Moreover, the cardiac sound signals are recorded in a quiet environment to reduce inter-

ference from the ambient noise. The subject can be asked to perform various maneuvers in

different postures for improved auscultation. For example, generally the subject is asked to

be in supine position and completely relaxed. Holding breaths may reduce effect of noise

due to respiration and the baseline wandering caused by movement can be minimized.

Fig. 1.1 shows the schematic of the cardiac sound acquisition and analysis system which

can be used for automatic analysis of heart disorders. In order to record the cardiac sound

signals, the chestpiece has to be placed on to the four standard auscultatory locations on

the chest. The chestpiece and sensor together convert the acoustic waveforms into electrical

signals. These electrical signals can be processed for listening and transmission to computer

for automatic analysis using software based on advanced signal processing techniques.

1.1.4.2 The Recording of ECG Signals

The 12-lead scalar ECG is the most commonly used procedure in clinical practice. It is

obtained using four limb leads and chest leads in six positions [41, 13]. The lead attachment
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Figure 1.1. The schematic of the cardiac sound acquisition and analysis system for heart

disorders.

on right leg serves as one of the reference signal. The ECG recordings from leads I, II and

III are obtained using left arm, right arm, and left leg as demonstrated in [41, 13]. One

more reference is obtained by combining output from the lead attached to the left arm, right

arm, and left leg leads. This reference is termed as Wilsons central terminal and used as the

reference for ECG recordings from chest leads.

The aVR, aVL, and aVF limb leads form the augmented limb leads. Where, ‘a’ stands

for the augmented lead, R for the right arm, L for the left arm, and F for the left foot. The

augmented leads are recorded using the exploring limb leads as indicated by the lead name,

with the reference being Wilson’s central terminal. The aVR, aVL, and aVF leads can be

derived from lead I and II.

The directions of the axes of the six ECG leads formed by four limbs are depicted in [42].

The leads I, II and III can be hypothetically envisaged in the form of equilateral triangle

known as Einthoven ’s triangle. The center of this triangle is the reference or Wilson’s central

terminal. Thematically, the heart is assumed to be present at the center of the Einthoven ’s

triangle. The six leads project the electrical activity of the heart as three-dimensional (3D)

cardiac electrical vector as depicted in [42]. These six axes sample the 00 - 1800 range with

a resolution of nearly 300. This 3D cardiac electrical vector facilitates viewing and analysis
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of the electrical activity of the heart and from different angles in the frontal plane [34] .

The leads from V1 to V6 form the six precordial (chest) leads that are recorded from

six standardized positions on the surface of the chest as demonstrated in [13]. The Wilson’s

central terminal is used as the reference. The precordial leads help analysis of the heart’s

electrical activity from different orientations in the horizontal plane. The electrodes for V1

and V2 leads are placed at the fourth intercostal space just to the right and left of the

sternum, respectively. The lead V4 is attached at the fifth intercostal space at the left

midclavicular line on the chest. The V3 lead is mounted at the center of V2 and V4 leads.

The V5 and V6 leads are aligned at the same level as that of V4 lead. They are placed at the

anterior axillary line and the midaxillary line, respectively. The V1 and V2 leads lie directly

over the right ventricle and reflect its activity very well. The V3 and V4 leads lie directly over

the inter ventricular septum and depict the septa1 activity in a best manner. The V5 and V6

leads are most sensitive to left ventricular activity. Heart disorder, if any, can be localized by

analyzing the shapes of ECG wave in these six chest leads. However, clinical interpretation

of ECG recordings is commonly performed empirically with experimental knowledge.

Another compact and efficient ECG system commonly used is Vectorcardiography (VCG)

[43]. It involves recording the magnitude and direction of the 3D cardiac electrical vector

in the form of loops. This loops are plotted and analyzed using three mutually orthogonal

planes, namely, the frontal, horizontal, and sagittal planes, It uses three leads derived using

the basic leads I, II and III which are: right-left axis (X), head-to-feet axis (Y) and front-back

(anteroposterior) axis (Z).

Some of the main specifications of the standard clinical ECG include the following as-

pects: Normally, the ECG signal exhibit maximum amplitude of 1 mV. Therefore, graphical

recording on a paper is obtained by operating the stylus at a speed of 25 mm/s. This speed

results in a graphical scale of 0.04 s/mm. The amplitude and time calibration is achieved us-

ing a rectangular pulse of 1 mV amplitude and 200 ms of time duration. The corresponding

calibration pulse width on time axis and amplitude axis are 5 mm and 1 cm. The mor-

phological distortions in the calibration pulse are used to reset the ECG signal acquisition
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system for normal operation. The amplification of 1,000 is commonly applied. A bandwidth

of about 0.05 - 100 Hz, with a recommended sampling frequency of 500 Hz is generally

used for reduced noises and artifacts in Clinical ECG for diagnostic purpose. The long term

monitoring is prone to low frequency noises or artifacts, therefore a reduced bandwidth of

0.5 - 50 Hz is usually recommended for measuring heart rate in that scenario. For obtaining

high-resolution ECG a greater bandwidth of 0.05 - 500 Hz is generally used.

1.1.5 The Analysis of Cardiac Signals

The analysis of cardiac sound signals and ECG signals for clinical applications can be de-

scribed as follows:

1.1.5.1 The Analysis of Cardiac Sound Signals

The heart sounds contain useful diagnostic information about the status of cardiovascular

system. However, the components of the heart sounds have extremely small amplitudes and

therefore they are difficult to interpret by listening.

Moreover, the human ear is far more sensitive to the speech having frequencies in the

range 1000-2000 Hz than to higher and lower frequencies. It lacks desired sensitivity towards

heart sounds and murmurs [3, 3, 5] and most of the diagnostic information conveyed by the

heart sounds are too weak to be identified by the human ear. In addition, the heart sounds

often last for a short period of time and pathological splitting of the heart sound is also

short which is difficult to interpret to make any decision on presence of heart disorders [3].

From the above mentioned facts and the the figure as demonstrated in [44], it can be inferred

that an important part of the intensity and frequency distribution of the heart sounds and

murmurs is not properly audible to the human ear for diagnostic decision making.

The cardiac auscultation has been a traditional means of early diagnosis of cardiovascular

disorders. In recent years, with the development of new cardiac sound transducers or sen-

sors and many advanced signal processing and medical artificial intelligence technologies, it

is now possible to analyze cardiac sounds signals in the audible and inaudible ranges. These
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technologies are quite potential to pave the way for development of efficient, informative

and accurate state of the art computer-aided diagnostic tool for heart disorders. Much more

diagnostic information can be extracted from heart sounds than before using advanced signal

processing techniques that have helped us to gain new insight into normal and pathological

cardiac sound signals. Therefore, a cardiac sound signals based expert system can be envis-

aged as a promising and cost effective technology for prompt, noninvasive, convenient and

efficient diagnosis of heart disorders. Implementation of such systems involves analysis and

extraction of suitable diagnostic features from the cardiac sound signals for final development

of pattern classification process to classify a set of cardiac sounds signals.

After the stage of data acquisition, the application of cardiac sound signals for diagnosis

involves five basic stages [45, 33, 46]: (1) signal conditioning, (2) segmentation, (4) signal

analysis and feature extraction, and (5) classification. These steps can be briefly described

as follows:

The aim of data acquisition is to acquire the signal without losing information and encode

in a form suitable for computer based analysis. The stage of signal conditioning eliminates

or reduces extraneous components such as noise from the cardiac sound signals. The stage

of segmentation of cardiac sound signals aims to derive the heart beat cycles to facilitate

feature extraction. Even this stage can serve as the measures of heart rate. At the stage of

feature extraction, small number of parameters that could serve as diagnostic features are

identified and measured that can best represent the information of interest in the cardiac

sound signals. The last stage of cardiac sound signal processing is the decision making

that is particularly important in clinical applications where a course of action needs to be

performed. It aims at answering questions such as “Does the subject have a heart disorder

based on cardiac sound signal analysis ? ” or “Does patient show a specific heart disorder in

the heart based on cardiac sound signal analysis ?” This stage basically involves development

of pattern classification process to classify a set of cardiac sound signals. Specifically, the

work in this thesis, focuses on automatic diagnosis of the heart valve and septal defects. The

recorded heart sounds can be classified into different groups that represent different types of
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cardiovascular diseases.

1.1.5.2 The Analysis of ECG signals

ECG signals are the valuable source of diagnostic information in cardiology. ECG signals are

basically quasi-periodic signals having weak amplitude. They are often prone to contami-

nated by noise and artifacts. The ECG signal registration generally requires the amplification

and proper removal of noise and artifacts for effective diagnostic applications. The complete

ECG signal processing and analysis comprises the similar steps as that of cardiac sound

signals. The important steps include: signal amplification, A/C conversion, noise reduction,

data compression, feature selection, classification or interpretation. The details about these

steps can be found in [10].

1.1.6 Heart Valve Disorders

The mitral and aortic valves are more prone to disorders since the left side of the heart

confronts higher pressure gradients and greater workloads. Typically, there are two major

clinical issues with these valves: stenosis and insufficiency [17, 47, 48]. In case of valvular

stenosis, valve leaflets become stiffer may be due to calcium deposition and fails to open

completely thereby hindering the flow of ejected blood. Even thickened or fused valve leaflets

may reduce the opening through which the blood passes from one chamber to another. The

occluded flow of blood leads to an accumulation of blood in the chamber, compelling the

heart to work harder in order to pump the blood.

Murmurs: The murmurs are noise-like sounds that are audible during the systole and

diastole phases. They are caused due to various cardiovascular diseases and defects. The

spectrum of murmurs consists of high frequency components. The murmurs occur when

blood flows through irregularities such as leaking and narrowed or deformed valves. Typically,

they are produced by the turbulence due to the valvular stenosis and regurgitation. In case

of valvular stenosis, valve leaflets becomes stiffer may be due to calcium deposition and

fails to open completely thereby hindering the flow of ejected blood. In case of valvular
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regurgitation, valve can not close properly and cause to leakage of blood through narrow

opening. A dysfunction of the chordae tendineae and papillary muscles and stretching of

the leaflets of the valve in pathological conditions may cause regurgitation or leakage. The

murmurs may also arise due to high rate of blood flow that in turn cause turbulent flow

through a normal or defective valve and vibrations of loose structures within the heart.

In case of valvular regurgitation as demonstrated in [49], valve can not close properly and

cause to leakage of blood through narrow opening. A dysfunction of the chordae tendineae

and papillary muscles and stretching of the leaflets of the valve in pathological conditions

may cause regurgitation or leakage. The murmurs may also arise due to high rate of blood

flow that in sequence cause turbulent flow through a normal or defective valve and vibrations

of loose structures within the heart. Valvular stenosis and regurgitation cause to turbulent

flow of blood that may gradually wear out the heart tissues. In the beginning, it causes the

heart muscle to grow abnormally stronger and thicker which is called hypertrophy. It also

cause to unusual enlargement of heart ventricles which is called dilatation. The hypertrophy

and dilation try to compensate for the extra workload and allow the heart to supply an

adequate amount of blood to the body. However, over the period of time, the overdeveloped

heart muscle may wear out gradually leading to functional degradation and heart failure.

Aortic stenosis occurs between the left ventricle and the aorta. The obstruction of aortic

stenosis may be present in the valve as: above the valve and below the valve. It is mainly

caused by congenital abnormality, rheumatic fever, and calcific degeneration or deposits of

calcium on the valve. Due to the obstruction, the left ventricular pressure increases that

gradually develop into hypertrophy. The left ventricular hypertrophy increase resistance

to filling in turn elevating the preload with strong atrial contractions. Consequently, the

increased left atrial pressure may results into increased pressures in the right side of the

heart, increased systemic venous pressure and peripheral edema [48]. Pulmonary edema is

the pathological condition which refers to accumulation of fluid in the air spaces of lungs

and alveolar tissues. It causes to impaired gas exchange that may lead to respiratory failure.

Mitral regurgitation is an abnormal leaking of blood from the left ventricle into the
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left atrium of the heart through narrow opening. It is mainly caused due to myxomatous

degeneration of the valve which refers to the abnormal weakening of the connective tissues,

annulus dilatation, dysfunction of the papillary muscles and rupture of the chordae tendineae.

Figures showing the stretching or tearing of chordae tendineae or papillary muscles and

dilatation of the valve annulus respectively can be found at [49]. In order to compensate the

reduced supply of blood due to leakage, the heart rate increases and hypertrophy occurs.

The atrium increases its force of contraction in order to maintain ventricular filling. With

increase in atrial pressure, the left ventricle of the heart fails to adequately remove blood

from the pulmonary circulation that may lead to cardiogenic pulmonary edema.

Mitral valve stenosis is typically caused by rheumatic fever. It usually occurs during

childhood due to body’s immune response to an infection with the streptococcal bacteria.

The infection includes strep throat or scarlet fever. Besides heart, the most affected parts

of the body are the joints of the body that can lead to temporary and sometimes chronic

disability. In rare clinical cases, calcium deposition may cause narrowing of the mitral valve.

Other rare causes for mitral valve stenosis include: tumors (less commonly), blood clots,

radiation treatments and congenital heart defects.

Aortic regurgitation refers to the leaking of the aortic valve of the heart that causes back

flow of blood during ventricular diastole, from the aorta into the left ventricle. It may involve

the abnormalities of either the aortic valve or the aortic root. The rheumatic fever is the

common cause of this disorder. The other causes include: congenital valve defects, infections

of the heart tissue, high blood pressure, genetic conditions such as Marfan syndrome that

affects the connective tissues, untreated syphilis, systemic lupus erythematosus that is an

autoimmune disease, heart aneurysms, ankylosing spondylitis that is a form of inflammatory

arthritis.

Tricuspid or pulmonic stenosis and regurgitation constitute a small part of the heart valve

disorders. The abnormalities of the tricuspid valve are commonly caused by rheumatic fever

or metabolic abnormalities. The major symptoms of tricuspid valve dysfunction include

edema and fatigue. Pulmonary valve dysfunction is primarily caused due to congenital
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defects. Pulmonary stenosis is the second most common congenital heart disease.

In some clinical cases, it is difficult to find the cause of heart valve disorder. The main

causes of heart valve disorders may include but not limited to the following [50]:

Rheumatic Fever: It is basically an inflammatory condition that is mainly caused by

strep throat or scarlet fever. It involves autoimmune response in which the body starts

attacking its own tissues in response to infection with the strep throat bacteria. The acute

inflammation is hardly fatal but chronic and progressive inflammation may cause cardiac

disability or death many years after its inception.

Infective Endocarditis: It refers to an inflammation of the inner tissue of the heart caused

by infectious agents usually bacterial. However, it may be due to other microorganisms. The

heart valves lack dedicated blood supply, as a result of which defensive immune mechanisms

such as white blood cells do not have direct access to the valves. The microbial infection can

cause vegetation on the heart valves in turn weakening the host immune response. These

germs or microorganisms can enter the blood pathways during: dental procedures, surgery,

intravenous drug use and severe infections. In case of treatment, the lack of blood supply to

the valves also inhibits the flow of drugs to reach the infected valves.

Myxomatous degeneration: It refers to the pathological weakening of the connective

tissues, annulus dilatation, dysfunction of the papillary muscles or stretching or tearing of

the chordae tendineae. It commonly affects the mitral valve. It originates from a series of

metabolic changes that leads to reduced elasticity of the valvular tissue while becoming weak

and covered by deposits.

Congenital heart valve disorders: They refer to an abnormality of heart valves that

develops before birth. It may be pertaining to improper valve size, malformed leaflets,

septal defects and irregular attachment of leaflets. The condition mostly affects the aortic

or pulmonic valve. In most cases, bicuspid aortic valves develop two leaflets instead of three

as demonstrated in [49]. The cause of congenital heart valve disorders may be either genetic

or environmental, but is usually a combination of both.

Fibro-calcific degeneration: It mostly affects the aortic valve as demonstrated in [49].
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The condition predominantly occurs in adults over the age of 65. The heart valve leaflets

become fibrotic and calcified leading to thickening and hardening of underlying tissue. This

cause to narrowed valve opening of aortic valve. The risk factors for this type of valve disease

include: increased age, low body weight and high blood pressure.

Other causes of heart valve disorders include coronary artery disease or myocardial in-

farction. These diseases can cause damage to the papillary muscles that acts as support to

the valves, or annulus dilatation, so that the valve does not close properly.

1.1.7 Septal Defects

The most common pediatric cardiac disorders result from defects in the wall of tissue sep-

arating the right and left chambers of the human heart. The wall is termed as the septum

and the associated defects are referred to as septal defects. The wall of tissue between the

right and left atria is called the atrial septum and that of between the ventricles is called the

ventricular septum. The cardiac septal defects are generally fall into two groups: ventricular

septal defects (VSDs) and atrial septal defects (ASDs) as demonstrated in [49]. The septal

defects are congenital heart defects that can range from a small hole in the septum to a

significant portion of the septum actually being absent. These defects can cause to shunting

that enables undesired flow of blood between two compartments of the heart. Moreover, the

septal defects can be categorized with the help of defect diameter as small, medium and large

defects [51]. The early diagnosis of the septal defects is crucial to ensure sooner treatment

in turn saving many lives.

A VSD refers to a hole in the septum that separates ventricles. They usually occur by

themselves in absence of other birth defects of any kind. VSDs forms about 30 percent of

all congenital heart defects, occurring with a frequency of 1 out of every 500 babies [49].

The size of the defect determines its effects on the functioning of heart. When the defect

is large, oxygenated blood flows back into the right ventricle instead of moving out to the

body. From the right ventricle, this oxygenated blood is pumped back to the lungs. This

displaces the blood in the pulmonary circulation that needs oxygen. Consequently, in order
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to compensate this inefficient blood flow, the heart works harder. As a result of which the

heart becomes large and high blood pressure gets develop in the arteries of the lungs that

is called pulmonary hypertension. A subject with a large VSD may show the following

symptoms: shortness of breath, fatigue and weakness. In case of smaller defect, the only

symptom is often a loud murmur, caused by the blood flowing backwards into the right

ventricle [49].

An ASD represents the hole in the septum that separates atria. It occurs when part of

the atrial septum does not develop properly. They are classified by means of their place of

occurrence and size. The various types of ASD include: secundum ASD, patent foramen

ovale (PFO), sinus venosus, primum ASD etc. A secundum ASD is a hole in the middle of

the atrial septum and a PFO is a “flap” that is present when the atrial septum does not

close properly at birth. This PFO defects generally allow flow of blood only when there

is more pressure inside the chest, such as straining during a bowel movement, coughing or

sneezing. The sinus venosus and primum ASD refers to different parts of the septum and

also involve abnormal blood return from the lungs or heart valve abnormalities. They are

quite complicated in nature and are rare types of ASD. ASD is the third most common

type of disorder after mitral valve prolapse and bicuspid aortic valve [52] that forms about

7 percent of all congenital heart defects. They are most common in adults and are more

common among women than men.

1.1.8 Coronary Artery Disease

The coronary artery disease (CAD) is a common and the leading cause of death in the de-

veloped countries of the world [53]. The other commonly used term for CAD are atheroscle-

rotic heart disease, atherosclerotic cardiovascular disease, coronary heart disease or ischemic

heart disease (IHD) [54, 55, 56]. The CAD is a condition characterized by the deposition of

atherosclerotic plaques or fibro-fatty deposits within the inner wall of the coronary arteries

of the heart. The affected artery wall thickens as a result of invasion and accumulation of

white blood cells. The deposition of plaque can block the required flow of blood to the heart
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muscles [57]. In other words, the advanced plaque manifest into clinical symptoms. Under

the condition of increased amount of plaque deposition, the blood vessels become narrow

and allow lesser amount of blood supply to the heart muscle thereby making it deprived of

adequate nutrients and oxygen it requires to work properly. This condition becomes progres-

sively worse affecting the metabolic activity of the heart muscles. Over a period of time, the

heart muscles become weak that may lead to heart failure and arrhythmias [58]. Even more,

often the deposited plaques erode or rupture resulting into thrombus formation that can re-

stricts the flow of blood to the heart muscles causing sudden cardiac death. The four major

risk factors of CAD, in order of significance, are dyslipidemia, hypertension, tobacco smoking

[59] and increasing age. The other risk factors include obesity, family history of premature

CAD, physical inactivity and environmental pollution [60]. Depending on the symptoms and

risk of complications in CAD, the following treatments are usually prescribed: medication,

percutaneous coronary intervention (angioplasty) or coronary artery bypass surgery. Timely

diagnosis and treating of CAD is important to reduce the risk of occurrence of heart attack

or stroke and to save many lives.

The physicians often evaluate the presence and extent of CAD by observing common

symptoms, reviewing the medical history and risk factors, performing physical examination

and diagnostic laboratory tests, including blood tests, an ECG and tread mill stress tests

[61]. The diagnosis of CAD depends largely on the nature of the symptoms. Often the

first clinical investigation is an ECG test, both for stable angina and acute coronary syn-

drome. It usually follows an X-ray of the chest and blood tests. The imaging modalities

like echocardiogram, coronary computed tomography angiogram (CTA) and coronary an-

giography or cardiac catheterization are also used to detect the presence of CAD. The ECG

based diagnosis is quite promising and it requires minor changes in the ECG recordings to

be get detected that may be indicative of any specific heart disorders. However, in many

cases, visual analysis of ECG recordings for detecting CAD is not reliable because it is dif-

ficult to notice the differences in recordings [62]. The presence of noises and artifacts like

baseline wondering make it complex to accurately analyse the small morphological changes
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in the ECG recordings due to heart disorders. While undergoing tread mill stress tests,

patients are at risk of developing tachycardia and eventual heart failure [63]. The cardiac

catheterization is performed invasively and the average time it takes is about thirty minutes.

However, overall time including the preparation and recovery time amounts to several hours.

This leads to almost whole day for patients to do this test. Most of the imaging modalities

can be operated only by trained physicians or radiologist and they involve lot of experience,

time and effort. Some of the above mentioned diagnostic tools are quite expensive and their

availability is limited to health care centers in urban areas.

In many cases CAD remains asymptomatic, however it may cause to the following coro-

nary events: angina (stable or unstable), Acute myocardial infarction, silent ischemia (no

pain), arrhythmias, heart failure or left ventricular dysfunction, ischemic cardiomyopathy

(weakness of heart muscle) and sudden death. The two common types of clear symptoms of

CAD are stable and unstable angina or chest pain. In case of stable angina, the chest pain

occurs consistently with activity, after heavy meals, or at other predictable instances. The

stable angina is correlated to high degree of narrowing of the coronary arteries. The chest

pain that occurs at rest or minimal exertion lasting less than 20 minutes and occurring again

within a month with more intensity, prolonged, or increased frequency than previously is

termed as unstable angina. Unstable angina may be a sign of myocardial infarction.

In case of myocardial infarction, the QRS complexes and T wave change as heart muscle

tissue progresses from early to late infarction. In the beginning, ischemia is first reflected

in ST segment depression. The elevation of ST segment in ECG waveform is a sign of an

early infarction. Late infarction causes to T wave inversion. The deep QRS complex is the

evidence of an old resolved infarction [21].

1.2 Motivation

The heart disorders are the second leading cause of death and disability worldwide. They are

mostly predominant in the developing countries. The heart valve disorders, septal defects
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and coronary artery disease (CAD) are the most commonly occurring heart disorders. Early

diagnosis and immediate treatment of these heart disorders can ensure contented, happier

and longer life of patients. However, diagnosis at desired time is quite challenging because

of absence of experienced physicians and lack of affordable investigations.

Cardiac auscultation, phonocardiography and ECG are the traditional means of diagnosis

of the heart disorders. However, they depend on subjective assessment by the physicians

involving variability in the perception and interpretation of the heart sounds and ECG

waveforms respectively, thereby affecting the competence of diagnosis. The digital version

of these techniques provide cardiac signals: cardiac sound signals and ECG signals. Small

changes in the cardiac signals indicate a particular disease. It is very difficult to decipher

these minute changes in the cardiac signal, as it is prone to artifacts and noise. The manual

inspection of these cardiac signals is time consuming, taxing and prone to errors due to

fatigue. Hence, a decision support system independent of human intervention can yield

accurate repeatable results.

The recent advancement in the area of analog and digital electronics has paved the way for

the development of portable electronic ECG machines and other gadgets like mobile. These

instruments can facilitates the medical professional to apply auscultation, phonocardiography

and ECG more conveniently and in a more versatile way. Nevertheless, these devices have

also opened the possibilities for the application of advanced signal processing and medical

artificial intelligence technologies for the diagnosis of heart disorders. With this, the practice

of cardiac examination marks the beginning of a new era that will promote the development

of efficient, informative and accurate computer-aided diagnostic tool for heart disorders.

In fact, heart disorders cause changes or additional features to normal cardiac signals

and therefore they can be useful for diagnosis. These signals can be used to extract valuable

diagnostic features for diagnosis of the heart disorders. However, these cardiac Signals are

nonlinear and non-stationary signals and involve a great deal of complexity when intended to

be used for extracting diagnostic information. It is challenging to improve the performance

of the various stages of cardiac signal processing for diagnosis of heart disorders that involves:
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feature extraction, and classification based decision making with or without segmentation.

The heart beat cycles of cardiac sound signals can represent all the information about the

functioning of heart valves and hemodynamics. Therefore, segmentation of cardiac sound

signals into heart beat cycles is required for diagnosis. However, the automatic segmentation

of cardiac sound signals is a challenging task due to inconsistent lengths of the heart beat

cycles, variation of the number of heart sound components inside individual heart beat cycles,

the unpredictable existence of murmurs and the presence of various types of noises like lung

sounds, rubbing of stethoscope on the chest, etc. These constrains can cause to inaccurate

segmentation in turn limiting the performance of the next stages of algorithm for automatic

identification of heart disorders. In view of the above mentioned facts and limitations, a non-

stationary signal processing based accurate methodology for segmentation can be developed

for effective diagnosis of heart disorders.

The stage of feature extraction is intended to identify and measure optimal feature set

that can represent all the useful information in the raw cardiac signals thereby reducing

the dimensionality. The reduced feature set can avoid storage problem and improve com-

putational speed. In literature, much effort has been devoted in search of these effective

diagnostic feature set using time-domain, frequency-domain, and time–frequency or scale

domain. Recent research suggests that WT based features are quite effective for diagnosis of

heart disorders. It is noteworthy that the TQWT has been recently proposed as a powerful

technique for analysis and processing of oscillatory signals. As compared to other wavelet

architectures, the TQWT has the ability to tune itself with more input parameter according

to the behavior of the signal under study. In view of these, the feature based on TQWT can

be explored to represent the cardiac signals. These features can be used for classification

of cardiac signals for detection and identification of heart valve disorder, septal defects and

CAD.

Diagnosis of heart disorders can be performed remotely using telemedicine which basically

involves the use of telecommunication and information technologies. Telemedicine improves

access to medical services for distant rural communities and reduces the overall cost of
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medical care. It is also used to save lives in critical care and emergency situations. The

compression algorithm can reduce the power consumption in wireless sensor networks for

better long term monitoring intended for telemedicine applications. Therefore, advanced

signal processing based method can be developed for compression of cardiac sound signals

that can facilitate data archiving and telemedicine procedures for convenient diagnosis.

1.3 Objectives

The phonocardiography, cardiac auscultation and ECG are noninvasive, cost-effective, ac-

curate and convenient methods for diagnosis of heart disorders. However, diagnosis using

these methods needs experience and they suffer from various other limitations such as inter-

observer variation. The cardiac sound and ECG signals based methodologies can be used for

automatic diagnosis of heart disorders that surpass the limitations of the above mentioned

methods.

The advanced signal processing methods can be developed to detect signs of heart dis-

orders using cardiac sound and ECG signals in turn having a significant impact on cardiac

health care industry. Therefore, the primary aim of this work is therefore to develop meth-

ods that can facilitates analysis and diagnosis of heart disorders which hardly involve basic

professional medical assistance not necessarily from a cardiologist. More specifically, the

aims of this thesis work are as follows:

• To develop an advanced signal processing based new method for automatic envelop

based segmentation of cardiac sound signals into heart beat cycles by removing mur-

mur. The resulting segmented heart beat cycles of the original cardiac sound signals

or measured heart rates can be used for the diagnosis of heart disorders.

• To develop an advanced signal processing based new methodology for separation of

heart sounds and murmur from the heart beat cycles. The intended separation may

results into extraction of better and more diagnostic features with same parameters to

eventually classify the cardiac sound signals effectively.
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• To develop a new method for classification of cardiac sound signals to diagnose the

heart valve disorders by identifying and measuring non-stationary signal decomposition

based effective diagnostic features.

• To develop a new method to detect septal defects by identifying and measuring non-

stationary signal decomposition based effective diagnostic features from cardiac sound

signals.

• To develop a new method for diagnosis of CAD using non-stationary signal decompo-

sition based effective diagnostic features for classification of heart rate signals.

• To develop a novel methodology for compression of cardiac sound signals using ad-

vanced signal processing methods that can improve the bandwidth and the storage

efficiency for telemedicine based convenient diagnosis of heart disorders.

1.4 Research Contributions

The work in this thesis contributes in a number of ways to facilitate the diagnosis of heart

valves and other heart disorders using cardiac sound and ECG signals. The main contribu-

tions of this work are summarized as follows:

• A TQWT based method for automatic segmentation of cardiac sound signals has been

developed for the diagnosis of heart disorders. In order to accomplish this task effec-

tively, the murmurs from cardiac sound signals have been removed by suitably con-

straining TQWT based decomposition and reconstruction.

The envelope based on cardiac sound characteristic waveform (CSCW) has been ex-

tracted after the removal of low energy components from the murmur-free reconstructed

cardiac sound signals. Then the heart beat cycles have been derived from the original

cardiac sound signals. The proposed segmentation has achieved better segmentation

performance as compared with existing methods. The following two methodologies use

this method for segmentation of cardiac sound signals into heart beat cycles for feature

extraction.
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• A new method has been developed for diagnosis of heart valve disorders using con-

strained TQWT and FB expansion based features. The first main contribution of this

work is the extraction of features during the separation of heart sounds and murmur

from the segmented heart beat cycles. In fact, during separation optimized values

of TQWT parameters are obtained that vary with nature and severity of murmurs

in different clinical cases. Secondly, this separation has been intended for extracting

better and more diagnostic features with same parameters to eventually classify the

cardiac sound signals. Finally, as the FB expansion can model the perceptual hearing

analogous to auscultation and can prevent undesired effect of windowing, therefore the

features based on FB expansion are used to represent the spectral properties of cardiac

sound signals.

The novel raw feature set has been created by the parameters that has been optimized

during constraining the output of TQWT and that of extracted by using time-domain

representation and FB expansion of separately reconstructed heart sounds and mur-

mur. The adaptively selected features have been used for least squares support vector

machine (LS-SVM) based classification with various kernel functions. In comparison

to one recent similar method, the proposed diagnostic framework has provided higher

classification performance.

• A new method has been developed for diagnosis of septal defects by classification of

cardiac sound signals using TQWT based features. The main contribution of this

work was the extraction of sum of average magnitude difference function (SAMDF)

based features from TQWT based decomposition of segmented heart beat cycles. The

correlation between sub-bands can characterize the various types of murmurs in cardiac

sound signals. Therefore, the proposed feature set was created with SAMDF that have

been computed from reconstruction of decomposed sub-bands.

In search of effective feature set based on SAMDF, various decomposition levels have

been examined that could provide significant classification performance. The clas-

sification has been performed using LS-SVM with different kernel functions at ten
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decomposition levels for various values of quality- factor (Q) of the TQWT. The pro-

posed method has provided significant classification performance with tenth levels of

decomposition irrespective of the value of Q in the specified range using Morlet wavelet

kernel function.

• A novel method for detection of CAD using centered correntropy (CCo) based feature

set derived from TQWT has been developed. The correntropy can characterize the

heart rate signals by nonlinearly projecting the sub-band signals into high dimensional

space using kernel function. The projected feature space can provide useful diagnostic

features. Therefore, in this work, the proposed raw features are formed with CCo

that are computed from third level detail sub-band. The principal component analysis

(PCA) is applied to obtain the significant features.

The transformed features are used to classify heart rate signals of normal and CAD

subjects using LS-SVM with various kernel functions. The effect of Q on classification

performance is studied to find the optimal value of Q. The experimental results of

this work have provided higher classification performance using Morlet wavelet kernel

function as compared to existing methods.

• A new method for compression of cardiac sound signals using TQWT has been devel-

oped to improve the bandwidth and the storage efficiency for telemedicine based con-

venient diagnosis of heart disorders. The cardiac sound signals have been compressed

using TQWT, linear quantization, Huffman and run length coding (RLC) techniques.

As the compression depends on various parameters, therefore the optimal values of

these parameters have been found using genetic algorithm (GA) with a subset of

dataset. The experimental results of the proposed work demonstrate higher com-

pression performance as compared to one recent method.
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1.5 Outline of Thesis

In this thesis, we have developed advanced signal processing based methods to assist diagnosis

of heart disorders using cardiac signals namely cardiac sound signals and ECG signals. After

the stages of data acquisition and signal conditioning, the signal processing for diagnosis

may include the following basic stages: feature extraction, and classification based decision

making with or without segmentation. The aim of data acquisition is to acquire the signal

without losing information and encode in a form suitable for computer based analysis. The

stage of signal conditioning eliminates or reduces extraneous components such as noise from

the cardiac signals. The stage of segmentation aims to derive the heart beat cycles to

facilitate feature extraction. Even this stage can serve as the measures of heart rate. At

the stage of feature extraction, small number of parameters that could serve as diagnostic

features are identified and measured that best represent the information of interest in the

cardiac sound signals or ECG signals. The last stage of cardiac signal processing is the

decision making that is particularly important in clinical applications where a course of

action needs to be performed. It aims at answering questions such as “Does the subject have

a heart disorder based on cardiac sound signal analysis ?” or “Does patient show a specific

heart disorder in the heart based on cardiac sound signal analysis ?” This stage basically

involves development of pattern classification process to classify a set of cardiac signals.

Specifically, the work in this thesis, focuses on automatic diagnosis of the heart valve, septal

defects and CAD.

Diagnosis of heart disorders can be performed remotely using telemedicine which basically

involves the use of telecommunication and information technologies. Telemedicine improves

access to medical services for distant rural communities and reduces the overall cost of

medical care [64, 65, 66, 67]. It is also used to save lives in critical care and emergency

situations. The compression algorithm can reduce the power consumption in wireless sensor

networks for better long term monitoring intended for telemedicine applications. Therefore,

in this work, advanced signal processing based method for compression of cardiac sound

signals has been developed that can facilitate data archiving and telemedicine procedures
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for convenient diagnosis.

In this thesis, the mathematical background on TQWT has been presented in chapter 2.

The details of the proposed methodologies in this work have been described from chapter 3

to chapter 7 as follows:

In chapter 3, automatic segmentation of cardiac sound signals into heart beat cycles has

been proposed which is normally required for the diagnosis of heart disorders. The segmenta-

tion of the cardiac sound signals has been performed using TQWT as follows. The murmurs

from cardiac sound signals have been removed by suitably constraining TQWT based de-

composition and reconstruction. The Q-factor, redundancy parameter and number of stages

of decomposition of the TQWT have been adapted to the desired statistical properties of

the murmur-free reconstructed cardiac sound signals. The envelope based on CSCW has

been extracted after the removal of low energy components from the reconstructed cardiac

sound signals. Then the heart beat cycles have been derived from the original cardiac sound

signals by mapping the required timing information of CSCW which is obtained using es-

tablished methods. The experimental results are included in order to show the effectiveness

of the proposed method for segmentation of cardiac sound signals in comparison with other

existing methods for various clinical cases.

The chapter 4 of this thesis presents a newly proposed method for classification of cardiac

sound signals using constrained TQWT. The proposed method begins with a constrained

TQWT based segmentation of cardiac sound signals into heart beat cycles. The features

obtained from heart beat cycles of separately reconstructed heart sounds and murmur can

better represent the various types of cardiac sound signals than that from containing both.

Therefore, heart sounds and murmur have been separated using constrained TQWT. Then

the proposed novel raw feature set has been created by the parameters that have been opti-

mized while constraining the output of TQWT and that of extracted by using time-domain

representation and Fourier–Bessel (FB) expansion of separated heart sounds and murmur.

However, the adaptively selected features have been used to obtain the final feature set for

subsequent classification of cardiac sound signals using LS-SVM with various kernel func-
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tions. The performance of the proposed method has been validated with publicly available

datasets and the results have been compared with the existing short-time Fourier transform

(STFT) based method.

The chapter 5 presents a new method for accurate and quick diagnosis of septal defects

by automatic analysis of cardiac sound signals using TQWT based features. To start with,

the established constrained TQWT based approach has been used in this study to derive

the heart beat cycles from cardiac sound signals. Then the TQWT based decomposition of

segmented heart beat cycles have been performed up to certain level. The combinations of

sub-bands obtained during TQWT based decomposition has been used to extract the time-

frequency domain based proposed features. The combinations of sub-bands obtained during

TQWT based decomposition can be used to extract the diagnostic features. The correlation

between sub-bands can characterize the various types of murmurs in cardiac sound signals.

Therefore, in order to represent the murmurs in cardiac sound signals, proposed feature set

was created with SAMDF that have been computed from reconstruction of decomposed sub-

bands. In search of effective feature set based on SAMDF, various decomposition levels have

been examined that could provide significant classification performance. Moreover, in order

to establish the usefulness of the proposed method for diagnosis of septal defects, besides

cardiac sound signals for septal defects and normal, this study covers signals to be detected

for valvular defects and other defects like ventricular hypertrophy, constrictive pericarditis

etc. as available from publicly available datasets. The classification has been performed

using LS-SVM with different kernel functions. At each decomposition level under study,

the effect of quality- factor (Q) of the TQWT from 1 to 50 on classification performance

has been evaluated. The experimental results show that the proposed method has provided

significant classification performance with tenth levels of decomposition for all the values of

Q in the given range using Morlet wavelet kernel function. The test results demonstrate clas-

sification accuracy of 98.92% with sensitivity of 98.80% specificity of 99.29% and Matthews

correlation coefficient of 0.9684 at tenth levels of decomposition for Q = 6. Moreover, in

order to show the effectiveness of the proposed method, results have been compared with
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existing method. The chapter 6 describes a new method for diagnosis of CAD using TQWT

based features extracted from heart rate signals. The heart rate signals are decomposed into

various sub-bands using TQWT for better diagnostic feature extraction. The nonlinear fea-

ture called centered correntropy (CCo) is computed on decomposed detail sub-band. Then

the principal component analysis (PCA) is applied on these CCo to transform the num-

ber of features. These features are subjected to LS-SVM with different kernel functions for

automated diagnosis. The experimental results demonstrate highest classification accuracy,

sensitivity, specificity and Matthews correlation coefficient for Q=24 using Morlet wavelet

kernel function with optimized kernel and regularization parameters. The proposed method-

ology is more suitable in classification of normal and CAD heart rate signals and aids the

clinicians while screening the CAD patients.

The chapter 7 covers a new method for compression of cardiac sound signals using TQWT

to improve the bandwidth and the storage efficiency for convenient diagnosis of heart disor-

ders. In the proposed method, the cardiac sound signals have been compressed using TQWT,

linear quantization, Huffman and RLC techniques. As the compression depends on various

parameters, therefore the optimal values of these parameters have been found using GA with

a subset of dataset. The proposed algorithm can reduce the power consumption in wireless

sensor networks for better long term monitoring intended for telemedicine applications.

Chapter 8 concludes the work in this thesis and it discusses the possible future work.
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Chapter 2

Mathematical Background Related to

TQWT

2.1 Introduction

In the areas of applied mathematics, statistics, science, and engineering, the time-frequency

methods or transforms are commonly applied to design specialized algorithms for processing,

analyzing, and storing signals and image. Most of the signals under study belong to biomedi-

cal, speech, radar, sonar and telecommunications that exhibit non-stationary in nature. The

short-time Fourier transform (STFT) and wavelet based methods such as discrete wavelet

transform (DWT), continuous wavelet transform (CWT), Rational- dilation Wavelet Trans-

form (RDWT), and Wavelet Packet transform (WPT) are the widely used time-frequency

methods that are suitable for the analysis of nonstationary signals. The most appropriate

time-frequency methods to apply depend on the type of signal being processed. The STFT

is one of the first time-frequency methods used for the analysis of nonstationary signals.

The STFT provides fixed resolution. The width of the windowing function used in STFT

determines the time and frequency resolution. The choice of wider window provides better

frequency resolution but poor time resolution. The selection of narrower window provides

good time resolution but poor frequency resolution [68]. As compared to STFT, the wavelet
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transforms can provide good time resolution for high-frequency events and good frequency

resolution for low-frequency events, the joint property requisite for many real signals.

Recently, the TQWT has been proposed as a powerful transform for the analysis of os-

cillatory signals [1]. Most of the wavelet transforms other than CWT exhibit little ability

to tune Q-factor. The CWT involves continuous time wavelet which cause to higher com-

putational cost and it approximately satisfy reconstruction property. However, TQWT is

quite flexible and efficient to use for desired analysis of signal under study by adjusting its

input parameters like Q-factor. The TQWT is based on real valued scaling factors and

the main input parameters of TQWT that are easily specified are Q-factor denoted as Q,

total over-sampling rate or redundancy denoted as r and number of levels of decomposition

denoted as j. The parameter Q controls the number of oscillations of the wavelet and the

parameter r controls the undesired excessive ringing in order to localize the wavelet in time

without affecting its shape. With increased value of Q, each frequency response becomes

narrower resulting into more levels of decompositions to span the same frequency range. For

fixed Q, increasing the value of r leads to increase in overlap between adjacent frequency

responses resulting into more levels of decomposition to cover the same frequency range.

The filters of TQWT are non-rational transfer functions which are conceptually easier to

implement in frequency domain. In addition, the TQWT inherits the perfect reconstruction

property of wavelet transform. The two forms of TQWT have been defined one for discrete

time signal and other for finite length discrete time signal. The later is meant for efficient

implementation using radix-2 FFT based structure of DWT.

2.2 TQWT based Decomposition and Reconstruction

The implementation of jth level TQWT based decomposition is achieved by iteratively ap-

plying two channel filters banks to the low-pass sub-band signal as shown in Fig. 2.1. At

each stage of TQWT based decomposition, the input signal s[n] with sampling rate fs is

decomposed into low-pass sub-band signal c0[n] and high-pass sub-band signal d1[n] having
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Figure 2.1. TQWT based J-level decomposition.

Figure 2.2. The single level TQWT based decomposition filter bank.

sampling frequencies αfs and βfs respectively as illustrated in Fig. 2.2. The generation

of low-pass sub-band c0[n] uses low-pass filter Ho(ω) followed by low-pass scaling which

is denoted as LP scaling α, and similarly the generation of high-pass sub-band d1[n] uses

H1(ω) and HP scaling β. The low-pass scaling preserves the low-frequency components of

the signal and it depends on scaling parameter α. Similarly, the high-pass scaling preserves

the high-frequency components of the signal and it depends on scaling parameter β. It has

been shown that for perfect reconstruction α + β > 1. In case if α + β = 1, then the filter

bank of TQWT is critically sampled with zero transition width and the H0(ω) and H1(ω)

becomes ideal filter. The time-domain responses of these filters then changes to sampled sinc

functions which are poorly localized and this is not the sought behavior. In order to prevent

excessive redundancy 0 < α < 1 and 0 < β ≤ 1 [1]. The original signal can be reconstructed

using the synthesis filter banks as illustrated in Fig. 2.3.

2.3 Scaling Functions

For 0 < α ≤ 1, low-pass scaling which is denoted as LP scaling α is defined as [1]:
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Figure 2.3. The single level TQWT based decomposition filter bank.

Y (ω) = S(αω), |ω| ≤ π, (2.1)

For 0 < β ≤ 1, high-pass scaling which is denoted as HP scaling β is defined as [1]:

Y (ω) =

 S(βω + (1− β)π), 0 < ω < π

S(βω − (1− β)π),−π < ω < 0,
(2.2)

where S(ω) and Y (ω) are the discrete-time Fourier transforms of input signal s[n] and output

signal y[n] respectively.

2.4 Non-rational Filter Banks

Figure 2.4. The equivalent system for jth level TQWT based decomposition of input signal

s[n] to generate (a) the low-pass sub-band signal cj[n] and (b) the high-pass sub-band signal

dj[n] [1].

The equivalent system for jth level TQWT based decomposition of input signal s[n] to

generate the low-pass sub-band signal cj[n] and the high-pass sub-band signal dj[n] is shown

in Fig. 2.4. The equivalent frequency response for low-pass and high pass sub-band signals
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generated after j level is given by H(j)
o (ω) and H

(j)
1 (ω) respectively which are defined as[1]:

H(j)
o (ω) :=


j−1∏
m=0

Ho(ω/α
m), |ω| ≤ αjπ

0, αjπ < |ω| ≤ π,

(2.3)

H
(j)
1 (ω) :=



H1(ω/α
j−1)

j−2∏
m=0

Ho(ω/α
m),

for (1− β)αj−1π ≤ |ω| ≤ αj−1π

0, for other ω ∈ [−π, π].

(2.4)

where,

H0(ω) = θ

(
ω + (β − 1)π

α + β − 1

)
, (2.5)

H1(ω) = θ

(
απ − ω
α + β − 1

)
, (2.6)

It is to be noted that θ(ω) is the frequency response of the Daubechies filter having two

vanishing moments. θ(ω) can be defined as follows:

θ(ω) = 0.5(1 + cos(ω))
√

2− cos(ω), |ω| ≤ π (2.7)

2.5 Parameters of TQWT

The TQWT facilitates analysis of oscillatory signals with easily adjustable parameters [1].

The three input parameters of TQWT can be briefly described as follows.

For analysis of oscillatory signals, the value of Q is specified higher such that the un-

derlying wavelets consist of more oscillations with narrower frequency responses relative to

their center frequencies. Therefore, it requires more levels of decompositions to cover the

spectrum of the signal under study. The property of high Q makes TQWT suitable for

effective sparse representation and processing of oscillatory signals. For analysis of piecewise

smooth signals like transients, Q is specified lower such that the underlying wavelets consist

of fewer oscillations with wider frequency responses relative to their center frequencies that
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necessitate relatively fewer levels to cover the spectral content of the signal under study. The

property of low value of Q makes TQWT more suitable for the extraction of the transient

components. At some level of decomposition, say j, the Q of TQWT can be defined in terms

of center frequency and bandwidth as follows:

Q =
fc(j)

BW (j)
(2.8)

where, fc(j) and BW (j) represent the center frequency and bandwidth respectively and,

fc(j) = αj
2− β

4α
, j = 1, 2, ..., J. (2.9)

BW (j) =
1

2
βαj−1π, j = 1, 2, ..., J. (2.10)

The parameter r helps localize the wavelet in time without affecting its shape. As shown

in equations (2.9) and (2.10), for a certain Q, with increase in j, the value of fc(j) decreases

and the associated BW also get reduces. Moreover, the time-domain duration of the wavelets

becomes wider as shown in Fig. 2.5. With increased value of Q, each frequency response

becomes narrower resulting into more levels of decomposition to span the same frequency

range as shown in Fig. 2.6. For fixed Q, increasing the value of r leads to increase the

overlap between adjacent frequency responses resulting into more levels of decomposition to

cover the same frequency range as shown in Fig. 2.7.

The values of r and Q can be expressed in terms of filter bank parameters α and β as

follows [1]:

r =
β

1− α
, Q =

2− β
β

. (2.11)

Considering the J-stage TQWT based decomposition, J+1 sub-band signals are obtained.

These sub-band signals can be arranged in a cell array C as follows [1]:

C = {w1, w2, w3, ..., wJ , wJ+1}, (2.12)

where, wJ+1 is the sub-band signal having lowest frequency and the sub-band signals from w1

to wJ are high frequency signals. The number of samples in each of these sub-band signals
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Figure 2.5. The effect of TQWT parameter J on normalized frequency responses (a, c) and

sub-bands (b, d) : (a, b) for Q=2 and J=3 with r=3 and (c, d) for Q=2 and J=6 with r=3.
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Figure 2.6. The effect of TQWT parameter Q on normalized frequency responses (a, c) and

sub-bands (b, d) : (a, b) for Q=1 and J=3 with r=3 and (c, d) for Q=3 and J=5 with r=3.
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Figure 2.7. The effect of TQWT parameter r on normalized frequency responses (a, c) and

sub-bands (b, d) : (a, b) for Q=2 and J=6 with r=3 and (c, d) for Q=2 and J=6 with r=8.

can be obtained using the values of scaling parameters as follows [1]:

Cl = [βfsN,αβfsN,α
2βfsN, ..., α

J−1βfsN,α
JfsN ], (2.13)

where, N is the number of samples in s[n].

In the conventional TQWT, it is difficult to automatically change the values of the input

parameters depending upon the input signal for obtaining the desired signal component in the

output reconstructed signal. Therefore, in this work, constrained TQWT has been proposed

that can adaptively choose the input parameter such that required signal component of

interest appear in the reconstructed output. The proposed system uses the relative knowledge

of the signal components, one that needs to be retained and other that needs to be removed,

known in advance to constrain the output. The more details about this method are described

in section 3.3.3.
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Chapter 3

Segmentation of Cardiac Sound

Signals using Constrained TQWT

3.1 Introduction

All the cardiac events take place during a heart beat cycle of cardiac sound signal and it can

provide the information about the functioning of heart valves and hemodynamics. Therefore

segmentation of cardiac sound signals into heart beat cycles is required for diagnosis. The

normal heart beat cycles contain the S1 and S2 heart sounds which are referred to as primary

heart sounds. However, the abnormal heart beat cycles may contain murmurs, S3 and

S4 heart sounds, and other aberrations due to different pathologies of the cardiovascular

system [12]. The automatic segmentation of cardiac sound signals is a challenging task due

to inconsistent lengths of the heart beat cycles, variation of the number of heart sound

components inside individual heart beat cycles, the unpredictable existence of murmurs and

the presence of various types of noises like lung sounds, rubbing of stethoscope on the chest

etc. These constrains can cause to inaccurate segmentation in turn limiting the performance

of the next stages of algorithm for automatic identification of heart valve disorders [45, 69,

70, 71, 72].

The automatic segmentation of cardiac sound signals can be achieved either by using
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reference signal or without using any reference signal. The subsequent discussed methods

use ECG signal as a reference signal for segmentation. Instantaneous energy of the ECG

signal has been used to segment the cardiac sound signals in [73]. Segmentation based on

the time-domain and frequency-domain characteristics of the components of the heart beat

cycles have been proposed in [74, 75] and [76] respectively. These methods can achieve high

performance but diagnostic procedure may become cumbersome for patient and even for

a medical expert at massive medical camps as attaching and removing ECG electrodes to

the patient may take long time. Therefore, recent segmentation algorithms use only cardiac

sound signals for convenient diagnosis [77, 78].

The method for segmentation using the envelope of cardiac sound signal has been de-

veloped in [79]. Energy and simplicity-based segmentation with wavelet decomposition co-

efficients has been proposed in [80]. The segmentation based on wavelet transform (WT)

involving the extraction of CSCW is provided in [81]. Due to inherent limitations these

methods are incapable of significantly removing murmurs in turn affecting the efficacy of seg-

mentation. Moreover, these methods require evaluation of the segmentation performance for

exhaustive number of clinical cases. The segmentation algorithm employing high frequency

signatures is provided in [82]. However, some murmurs having high frequency signatures may

affect the results. Information regarding the popular envelope based segmentation methods

along with their relative comparison has been presented in [83]. The method for detecting

boundaries of primary heart sounds for available heart beat cycles has been used in [77, 84].

The ergodic hidden Markov model (HMM) for classification of a cardiac sound signals

into four components: S1 heart sound, systolic phase, S2 heart sound, diastolic phase has

been proposed in [85]. In several HMM based methods there is no user input requirement

and the training process is required for system development [86, 87]. The moment-based

algorithm has been presented to be simpler and faster than conventional WT based method

[88]. However, the algorithm assumes cardiac sound signals to be approximate cyclical

signals and it is not easy to vary the value of the used scale parameter in different clinical

cases. The performance of the autocorrelation and instantaneous cycle frequency based
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segmentation [89, 45] depends largely on variability of heart rate as these methods assume

the cardiac sound signals to be stationary. The homomorphic envelogram and self-organizing

probabilistic model have been applied for detection and identification of heart sounds in [90].

Recently, adaptive singular spectrum (SSA) analysis to detect murmur or primary heart

sounds has been proposed in [91].

In this chapter, we present a new method for removing murmurs based on TQWT for

efficient envelope based segmentation of cardiac sound signals. The TQWT is powerful

technique for analysis and processing of oscillatory signals [1]. The method is based on

constraining TQWT based decomposition and reconstruction with adaptive selection of its

input variables. The experimental results of the proposed method for removal of murmurs can

provide better results because by varying the Q-factor the shape of wavelet can be matched

with primary heart sounds and redundancy parameter can reduce the ringing effects in turn

improving the localization of primary heart sounds with respect to overlapping murmurs.

Furthermore, the proposed method incorporates the advantage of CSCW extraction in order

to improve the performance of the overall segmentation of cardiac sound signals. The rest of

the chapter is organized as follows: The decimation and amplitude normalization, the con-

strained TQWT based decomposition and reconstruction for removing murmurs, low energy

component removal, the extraction of CSCW, peak detection and boundary estimation of

the methodology are presented in section 3.2. The experimental results and comparative

study of the proposed method are given in section 3.3 and section 3.4 respectively. Finally,

section 3.5 summarises the chapter.

3.2 Methodology

The subsections of the proposed method for segmentation of the cardiac sound signals into

heart beat cycles are depicted in Fig. 3.1. The subsections include: decimation and ampli-

tude normalization, constrained TQWT based decomposition and reconstruction, low energy

component removal, CSCW extraction, peak detection and boundary estimation. The details
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of each subsection are described as follows:

Cardiac Sound Signal

Decimation &
Amplitude Normalization

Constrained TQWT based
Decomposition & Reconstruction

Low Energy
Component Removal

Extraction of CSCW

Peak Detection &
Boundary Estimation

Heart Beat Cycles

Figure 3.1. The signal processing flow of the proposed method for segmentation of the

cardiac sound signals into heart beat cycles.

3.2.1 Decimation and Amplitude Normalization

In order to reduce the time of execution of the algorithm, the input signal is decimated by

a factor of 32 from sampling frequency of 44.100 kHz to sampling frequency of 1378.125 Hz

[45, 92]. This process may not significantly affect the primary heart sounds containing low

frequency components. Even the diagnostic murmurs containing high frequency components

may not be get affected significantly because the average murmurs have frequency range

between 100 Hz to 600 Hz [16]. The decimation is followed by amplitude normalization

which takes into account the variations in the recordings due to changes in pressure applied

on the chest surface and the amplifier setting.
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3.2.2 Constrained TQWT based Decomposition and Reconstruc-

tion

Generally, the primary heart sounds are limited in time duration and have relatively larger

magnitude as compared to murmurs. Therefore, the distribution of primary heart sounds

is super-Gaussian having sharper peak and often skewed toward left with relatively larger

value of the kurtosis as compared to murmurs. On the other hand, the distribution is

nearly Gaussian or sub-Gaussian for the murmurs [91]. This knowledge about statistical

properties of primary heart sounds and murmurs can be used to constrain the TQWT during

decomposition stages such that the reconstructed signal contains only the desired signal

component of interest.

In order to remove murmurs, the input parameters of TQWT based decomposition are

adaptively selected such that primary heart sounds having maximum kurtosis are obtained in

the reconstructed signal. The primary heart sounds are low frequency component therefore

the low pass sub-band at last output stage of TQWT based decomposition is used for signal

reconstruction. The constrained TQWT based decomposition and reconstruction is effective

in enhancing primary heart sounds because by varying the Q-factor the shape of wavelet can

be matched with primary heart sounds and redundancy parameter can reduce the ringing

effects in turn improving the localization of primary heart sounds with respect to overlapping

murmurs.

During constraining the TQWT based decomposition and reconstruction, the input pa-

rameters can be adapted by using any suitable optimization method. Many optimization

methods have been proposed in the literature but genetic algorithms are found to be more

effective in global optimization [93]. Therefore, in this study genetic algorithm has been

used to optimize the TQWT based decomposition for maximizing information of the desired

signal component in the reconstructed signal.
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3.2.3 Low Energy Component Removal

The signal processing at this stage involves the removal of low energy components from

the reconstructed cardiac signal xr[n]. The presence of these components may affect the

performance of the peak detection stage for determining the heart beat cycles. The extent of

removal of these low amplitude components in the noise attenuated signal x[n] can be decided

by analyzing the histogram h(i) and cumulative histogram c(i) which can be obtained as

follows [45]:

h(i) =
∑
n

d(xr[n], i); d(k1, k2) =

 1, k1 = k2

0, k1 6= k2
, 0 ≤ i ≤ A, (3.1)

c(i) =
i∑

xr=0

h(xr), 0 ≤ i ≤ A, (3.2)

where A denotes the maximum amplitude of the signal xr[n]. The threshold for removing

low energy components can be decided by using the parameter λ which is obtained by

c(j) = c(A) × λ. For current experimental analysis λ is set to 0.93, which is found to

be effective for removing the low energy components. The noise attenuated signal can be

obtained as:

x[n] =

 xr[n], |xr[n]| ≥ j

0, otherwise.
(3.3)

3.2.4 Extraction of CSCW

An analytical model based on single-degree-of-freedom (SDOF) system can be used for ex-

tracting CSCW of the cardiac sound signals [83, 81]. The model assumes the presence of the

mass, spring, and the damper to represent the phenomena. The relationship between the

input signal X(t) = |xnorm(t)| and the output response Y (t) of this system can be expressed

as [94]:

MŸ (t) +DẎ (t) +KY (t) = X(t), (3.4)
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where M , K, and D represent the mass, the spring coefficient, and the damping coefficient

respectively. The above equation can also be expressed as:

Ÿ (t) + 2ωζẎ (t) + ω2Y (t) = X̄(t), (3.5)

where X̄(t) = ±|X(t)/M |, resonant angular frequency is ω =
√
K/M rad/s and the damping

parameter is ζ = D/2
√
MK × 100 %. The default values of ω and ζ used in this analysis

are set to 62.832 rad/s and 70.7 % respectively. In order to compensate for time delay

between input signal X(t) and above obtained waveform Y (t) the cross correlation XC[i] is

used which is calculated as follows [83, 81]:

XC[i] =

N−1∑
n=0

(X[n]− µX) (Y [n− i]− µY )√√√√N−1∑
n=0

(X[n]− µX)2

√√√√N−1∑
n=0

(Y [n− i]− µY )2
, (3.6)

where delay i = 1, 2, ..., N . N is the number of samples, and µX and µY are the average

values of X[n] and Y [n] respectively. Finally, the CSCW which is represented as W [n] can

be obtained by using peak location (XCp) of the cross correlation curve with the following

formula:

W [n] = Y
[
n+

∣∣∣∣XCp − N

2

∣∣∣∣] . (3.7)

3.2.5 Peak Detection and Boundary Estimation

The peak detection method includes the picking up of the required peaks of primary heart

sounds and rejecting the extra peaks as described in [79]. In order to separate the peaks of

primary heart sounds from the background proper threshold can be applied either manually

or automatically by fuzzy c-means clustering as suggested in [83, 81, 79, 95, 96, 97]. The

more details about clustering of primary heart sounds can be obtained from [89, 98, 99].

The peak identification method facilitates the recognition of S1 and S2 heart sound based

on the general fact that the diastolic interval is greater than the systolic interval. Moreover,

the systolic interval is relatively constant as compared with diastolic interval. A segmented
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heart beat cycle begins and ends with either S1 heart sound or S2 heart sound of the two

consecutive heart beat cycles. Therefore, after the identification of peaks of primary heart

sounds, the approximate boundaries of either S1 heart sound or S2 heart sound can be used

to extract the timing information of the heart beat cycles as described in [79, 76]. Finally,

the heart beat cycles can be derived by mapping this timing information of CSCW to the

original cardiac sound signals.
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Figure 3.2. An example of cardiac sound signal processing using proposed method: (a)

original tricuspid regurgitation signal, (b) the decimated signal, (c) reconstructed signal,

(d) the noise attenuated signal, (e) CSCW based envelope showing detected primary heart

sounds which can be used to derive the heart beat cycles.

3.3 Experimental Results

The dataset used in this work is the heart sounds pod cast series (2011) produced by the

Robert J. Hall Heart Sounds Laboratory of Texas Heart Institute at St. Luke’s Episcopal

Hospital. The dataset contains 50 abnormal cardiac sound signals acquired from variety
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of subjects with relevant chest positions with different patient maneuver. The sampling

frequency of most of the data is 44.100 kHz except for few cases. Some of the recordings

in the dataset were corrupted by the human voice, rubbing sound due to stethoscope and

other lung sounds. Also, the duration of the heart beat cycles are inconsistent. For more

information regarding the dataset, this series is available at [100].

An example of the proposed method is shown for two heart beat cycles of tricuspid

regurgitation in Fig. 3.2. The reconstructed signal is obtained after adaptively selecting

following values of the parameters r = 11 and j = 11 at Q = 1. The example demonstrates

the output at main stages of the proposed method for segmentation of cardiac sound signals

using constrained TQWT based removal of murmurs.

In order to remove murmurs, the input parameters of TQWT based decomposition are

adaptively changed such that primary heart sounds having maximum kurtosis are obtained

in the reconstructed signal. The primary heart sounds are low frequency component there-

fore the low pass sub-band at last output stage of TQWT based decomposition is used for

signal reconstruction. The silent feature of constraining TQWT based decomposition and

reconstruction is that it not only helps in identifying primary heart sounds with low Q but

facilitates in localizing primary heart sounds with respect to overlapping murmur with high

value of r. The experiment has been conducted with all possible values of Q and obtained

results are found to be better when its value is one which is accompanied usually with high

value of r. One possible reason for this could be that the wavelet at this Q better matches

with primary heart sounds. Obviously the significant contribution of the proposed method

is that it automatically adjusts to the severity of the murmurs. When murmurs are severe

the required levels of the TQWT based decomposition (j) would be more and if they overlap

with primary heart sounds the required redundancy would be more so that the primary heart

sounds are well localized in time. The method is found very efficient in extracting primary

heart sounds overlapping with murmur. Moreover, it performs well even when amplitude of

murmur is comparable to primary heart sounds.

During constraining, the optimized values of r and j are adaptively selected using genetic
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algorithm with following settings. The range of values of r and j are set to integer with

stall generations=5, generation=10 and population=10 for reducing the time of execution of

the algorithm. Moreover, by using trial and error approach it has been found that suitable

bound for r is from 12 to 18 and for j is from 1 to 20.

In order to evaluate the performance of the proposed method in removing murmur the cor-

rect segmentation has been defined in terms of segmentation rate (denoted as SR) as the

ratio of correctly segmented heart beat cycles (SB) to the actual total number of heart beat

cycles (TB). Moreover, the method has been tested for a variety of clinical cases which are

comprised in the dataset. Table 3.1 depicts the statistics concerning the effectiveness of seg-

mentation achieved by our method. In this study, automatic threshold using fuzzy c-means

clustering is used as described in [83, 81]. The duration between peaks and width of peaks

obtained in sequence after applying threshold are used as input to the fuzzy c-means clus-

tering to determine the clusters. The minimum value of objective function used for fuzzy

c-means clustering with variable threshold corresponds to the required threshold. In order

to reduce the time of execution, the required threshold (THV) is determined by varying the

threshold in steps of 5 percent of the range of amplitude of the extracted CSCW based enve-

lope. The results are discouraging in case of Austin flint rumble due to presence of multiple

peaks corresponding to third heart sound and severe murmur with rumble. Moreover, in

this case manual setting of parameters is required for constrained TQWT based murmur

removal and segmentation. For other cases, the adjustments are automatic. For reference,

the actual number of heart beat cycles comprised in each clinical case of the tabulated results

is manually labeled by an experienced cardiologist.

3.4 Comparison with other Existing Methods

In this section, the results of murmur removal for segmentation of cardiac sound signals using

the proposed method with constrained TQWT based decomposition and reconstruction are

compared to two other popular methods based on conventional WT and adaptive SSA. In
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Figure 3.3. Comparison of results of proposed method with other methods in removing

murmur for (a)-(d): Midsystolic click, Mitral regurgitation, Aortic stenosis and Tricuspid

insufficiency. The numbers 1-3 represent the TQWT, WT, SSA based method respectively.

The lower-case Roman numbers (i) and (ii) represent the reconstructed signal and its CSCW

based envelope respectively.
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the WT based method Daubechies-10 wavelet has been used to decompose input cardiac

sound signals. The envelope is then extracted using CSCW after the reconstruction of the

cardiac sound signals retaining the second level decomposed approximation coefficients. The

details of the method are described in [83, 81]. The main limitation of the method is that the

both the mother wavelet and number of levels of decomposition are kept fixed. Moreover,

employing WT in the current proposed framework would not be as versatile as TQWT.

This is due to the fact that WT cannot offer flexibility in varying sufficient number of input

variables with respect to desired characteristics of reconstructed signal. On the other hand,

constraining TQWT based decomposition and reconstruction provides effective enhancement

of primary heart sounds because by varying the Q-factor the shape of wavelet can be matched

with primary heart sounds and redundancy parameter can reduce the ringing effects in turn

improving the localization of primary heart sounds with respect to murmurs. The adaptive

SSA method is similar to the proposed method regarding adapting itself to the prior known

statistical properties of the desired component in the reconstructed signal. In this method

the sub-space size of the murmur free reconstructed cardiac sound signal is optimized using

maximum kurtosis of the same as a constraint [91]. Even though the method uses statistical

parameter to maximize the information regarding the primary heart sounds, it still lacks the

parameter concerning its shape. Thus the main limitation of this method is that it does not

take into account the shape of primary heart sounds and therefore it is unable to extract

and localize primary heart sounds with respect to the overlapping murmurs as shown in

Fig. 3.3. Another important fact is that both of these above methods lack exclusive study

which considers more number of clinical cases. The constrained TQWT based decomposition

and reconstruction on the other hand is found robust in removing all types of murmurs. It

facilitates the integration of the main morphological characteristics of primary heart sounds

along with statistical properties by varying its three input variables namely Q-factor which

controls the shape of wavelet, redundancy which localizes the required information (or event)

and the number of level of TQWT based decomposition which controls the frequency content.

Altogether by adapting these input parameters, efficient extraction of the primary heart
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sounds can be done from overlapping murmur even when the amplitude of the murmur is

comparable to primary heart sounds. Table 3.1 shows the comparative study of the proposed

method and methods based on adaptive SSA and conventional WT. In order to demonstrate

the efficacy of the proposed method in removing murmur as compared with other popular

methods, the four representative clinical cases which have been considered as examples are

mid systolic click, mitral regurgitation, aortic stenosis and tricuspid insufficiency. For better

comparison, the reconstructed signal and its CSCW based envelope of each approach are

considered in the displayed results in Fig. 3.3. The examples are briefly described as follows:

I. Midsystolic Click

In midsystolic click, click may occur any time during systole. In general the click is high

frequency sound with perceptible loudness. The proposed method with constrained TQWT

based decomposition and reconstruction has been found to suppress this high frequency

click more significantly than the other two popular methods as shown in Fig. 3.3 (a). The

reconstructed signal is achieved with adaptively selected following values of parameter r = 17

and j = 11 at Q = 1. The suppression of click may help in reducing the interference of the

click during establishing threshold and peak processing step thus giving better segmentation

rate. This case is exceptional due to sampling frequency of 22.050 kHz therefore in order

to obtain the desired sampling frequency of 1378.125 Hz the input signal is decimated by a

factor of 16.

II. Mitral Regurgitation

The mitral regurgitation contains the holosystolic murmurs. The murmur goes into and

obscures the S2 heart sound. The murmur is usually flat in intensity and blowing in pitch

or timbre. When the regurgitation is of large magnitude, diastolic blood returns from the

atrium to the ventricle producing a S3 heart sound and a diastolic flow rumble (FR). All of

these features can be easily seen in the signal in Fig. 3.3 (b). In this case, the conventional

WT and adaptive SSA based method are unable to discriminate between the primary heart

sounds with overlapping murmurs. On the other hand, in spite of the flat nature of the

murmur, it can be observed that the proposed method clearly identifies the primary heart
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sounds and attenuates the murmurs which are of comparable in loudness to that of the

primary heart sounds. The reconstructed signal is achieved with adaptively obtained r = 17

and j = 19 at Q = 1.

III. Aortic Stenosis

The cardiac sound signal associated with aortic stenosis contains consistent diastolic

murmurs that have a diamond or kite like shape and they are referred to as crescendo-

decrescendo murmurs. In this case, the performance of proposed method in suppressing the

complex diastolic murmurs is encouraging. The other two compared methods are not able

to separate S1 heart sound from overlapping murmurs. Moreover, the performance these

methods in enhancing S2 heart sound, to ease its detection, are unsatisfactory. This can be

judged by observing the differences in the envelope curves as shown in Fig. 3.3 (c). The

reconstructed signal is achieved with adaptively selected r = 14 and j = 18 at Q = 1.

IV. Tricuspid Insufficiency

The soft holosystolic murmur characterizes the heart sounds of tricuspid insufficiency.

The murmur may be high pitched in case if the regurgitation is trivial and it may be medium

pitched if the regurgitation is severe. These murmurs are attenuated effectively by using the

proposed method based on constrained TQWT based decomposition and reconstruction as

shown in Fig. 3.3 (d). As with aortic stenosis case, in this case also, the other two methods

are unsuccessful in identifying the primary heart sounds from the background murmurs. The

reconstructed signal is achieved with automatically estimated r = 12 and j = 20 at Q = 1.
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Table 3.1. The statistics of segmentation of the cardiac sound signals using constrained TQWT

in comparison with other methods.

TQWT SSA WT

Method/Disease based based based

THV SB/TB SR (%) THV SB/TB SR (%) THV SB/TB SR (%)

Hypertrophic

obstructive

cardiomyopathy

case 1 75 10/10 100 20 8/10 80.00 15 8/10 80.00

case 2 35 35/39 89.74 40 18/39 46.15 35 21/39 53.84

case 3 15 40/46 86.96 30 28/46 60.86 20 32/46 69.56

Opening snap of

mitral stenosis

case 1 15 11/11 100 50 10/11 90.90 25 9/11 81.82

case 2 25 15/15 100 60 15/15 100 70 15/15 100

case 3 20 14/14 100 25 12/14 85.71 15 12/14 85.71

Aortic regurgitation

case 1 20 29/31 93.55 25 22/31 70.96 35 20/31 64.51

case 2 20 27/32 84.38 30 15/31 48.39 35 20/32 62.50

Aortic valve

ejection sound

case 1a 35 9/9 100 45 8/9 88.89 35 7/9 77.78

case 1b 30 9/9 100 50 6/9 66.67 35 8/9 88.89

case 1c 25 10/13 76.92 60 10/13 76.92 55 10/13 76.92

case 2a 25 10/16 62.50 50 10/16 62.50 70 10/16 62.50

Mitral valve stenosis

case 1 35 15/16 93.75 50 12/16 75.00 75 14/16 87.50

case 2 30 14/14 100 15 11/14 78.57 25 13/14 92.86

case 3 15 9/12 75.00 45 9/12 75.00 65 12/12 100

case 4 15 11/12 91.67 15 10/12 83.34 15 11/12 91.67

Midsystolic click

case 1a 20 17/17 100 15 13/17 76.47 20 16/17 94.11

Continued on next page
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Table 3.1 Continued

TQWT SSA WT

Method/Disease based based based

THV SB/TB SR (%) THV SB/TB SR (%) THV SB/TB SR (%)

case 1b 20 6/6 100 15 3/6 50.00 25 5/6 83.34

case 2a 35 68/68 100 30 51/68 75.00 40 65/68 95.59

case 2b 15 34/35 97.14 20 26/35 74.29 40 34/35 97.14

case 3a 15 43/43 100 35 39/43 90.70 30 37/43 86.04

case 3b 15 27/27 100 35 23/27 85.19 35 21/27 77.78

case 3c 15 19/19 100 25 19/19 100 50 19/19 100

case 3d 15 27/27 100 50 24/27 88.89 30 21/27 77.78

case 3e 30 16/20 80.00 25 14/20 70.00 40 16/20 80.00

Mitral regurgitation

case 1 15 16/18 88.88 50 9/18 50.00 60 12/18 66.67

case 2a 30 8/9 88.88 40 4/9 44.45 65 1/9 11.11

case 2b 35 13/16 72.23 50 13/16 81.25 45 5/16 31.25

Aortic stenosis

case 1 15 21/25 84.00 55 21/25 84.00 75 21/25 84.00

case 2 15 40/46 86.96 20 40/46 86.96 40 40/46 86.96

Third heart sound

case 1 30 10/11 90.90 35 9/11 81.82 30 10/11 90.90

case 2 30 29/30 96.66 20 13/30 43.34 20 10/30 33.33

Fourth heart sound

case 1 45 29/29 100 50 24/29 82.76 35 18/29 62.07

case 2 45 30/30 100 50 24/30 80.00 35 18/30 60.00

Tricuspid valve

insufficiency 25 26/27 96.29 40 2/27 7.40 20 19/27 70.37

Paradoxical split S2

20 39/41 95.12 25 25/41 60.98 30 27/41 65.85

Tumor plop

40 20/20 100 15 8/20 40.00 55 20/20 100

Pericardial knock

Continued on next page
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Table 3.1 Continued

TQWT SSA WT

Method/Disease based based based

THV SB/TB SR (%) THV SB/TB SR (%) THV SB/TB SR (%)

30 18/18 100 15 9/18 50.00 30 18/18 100

Fixed splitting

of S2 25 27/31 87.10 30 17/31 54.84 15 16/31 51.61

Wide splitting of S2

20 21/21 100 25 18/21 85.71 35 21/21 100

Flail mitral

regurgitation

case 1 20 13/13 100 25 2/13 15.38 65 13/13 100

case 2 20 12/12 100 20 8/12 75.00 25 4/12 75.00

Physiologic

split of S2

case 1 20 21/23 91.30 25 8/23 34.78 20 19/23 82.61

case 2 20 21/23 91.30 15 14/23 60.87 25 19/23 82.61

Austin flint rumble

case 1 15 24/36 66.66 30 18/36 50.00 30 18/36 50.00

case 2 30 11/16 68.75 30 5/16 31.25 30 5/16 31.25

Pulmonary valve

ejection sound

case 1 15 15/16 93.75 40 12/16 75.00 45 14/16 87.50

case 2 15 26/28 92.86 35 22/28 78.57 30 26/28 92.86

Total 92.15 67.81 76.75

The computational complexity of the algorithms can be compared in terms of time com-

plexity. In this study, the proposed method has been compared to other aforementioned

methods with respect to the time complexity involved for murmur-free reconstruction of

aortic stenosis signal having significant murmur. We have implemented all the main func-

tions in Matlab using mfiles. The functions of the TQWT toolbox and genetic algorithm &
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Table 3.2. The comparison of total execution time and speed up of proposed method with

other existing methods for aortic stenosis signal.

Run-times (seconds) Speed up

Signal TQWT based SSA based WT based TQWT WT vs

length (N) method method method vs SSA TQWT

44100 0.303831 3.705798 0.004793 12.20 63.39

88200 0.525625 7.009681 0.003339 13.34 157.42

176400 1.032956 14.061908 0.007810 13.61 132.26

352800 1.364058 27.970593 0.010920 20.51 124.91

705600 3.299968 56.173435 0.012764 17.02 258.32

1411200 5.559958 112.418065 0.030618 20.21 181.59

2822400 13.398961 225.619284 0.046962 16.84 285.32

5644800 27.908387 451.378124 0.105820 16.17 263.73

11289600 31.208611 917.718216 0.203534 29.41 153.34
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Figure 3.4. Run-times of murmur-free reconstruction of aortic stenosis signal for methods

based on TQWT, SSA and WT. In case of proposed method, the timings are performed with

adaptive values of parameter r and j at Q = 1.

direct search toolbox of Matlab have been used for implementing the proposed method. The

Matlab software for TQWT toolbox is available at http://eeweb.poly.edu/iselesni/ TQWT/.

The timings have been performed on a Dell personal computer with single CPU dedicated to

Matlab version 7.7.0 (R2008b). The configuration of the computer which has been used for

implementation is PCWIN with Intel (R) core (TM) i7 2600 CPU @3.40 GHz and system

type 64 bit Windows 7 Professional operating system and 8.00 GB installed memory (RAM).

The analysis for run-times and speed up is depicted in the Table 3.2 accompanied with a

graph in Fig. 3.4. The speed up varies with signal length. For signal length, N ≤11289600

or 128 seconds the TQWT based method can run at most 20 times faster than SSA based

method. For similar signal length, the WT based method is undoubtedly faster than the

proposed method but it has its own limitations as described earlier in this chapter.
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3.5 Summary

The TQWT is a useful and powerful transform for envelope based segmentation of oscillatory

cardiac sound signals into heart beat cycles. The proposed method based on constrained

TQWT based decomposition and reconstruction captures the required information in the

reconstructed signal using sufficient number of adaptable input parameters of the TQWT.

The experimental results reflect the capability of constrained TQWT based decomposition

and reconstruction in perfectly identifying the primary heart sounds form the overlapping

murmurs even when with they have comparable magnitude. A comparison of the proposed

method in removing murmurs with other popular methods is also presented for various

clinical cases. In comparison to these methods, the proposed method has been found to

provide promising results. The future scope of work includes classification of heart valve

disorders using the proposed segmentation method. The development of suitable features,

the features selection process, and the classifier can further improve classification accuracy.

The murmurs which are extracted by using constrained TQWT based decomposition and

reconstruction can provide better classification of heart valve disorders with suitable features.

Moreover, the murmurs which are extracted using constrained TQWT based decomposition

and reconstruction can provide more insight into the modelling aspects of cardiovascular

system. Finally, in order to establish the clinical use of the proposed method, it is necessary

to test it on out-of-sample dataset.
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Chapter 4

Diagnosis of Heart Valve Disorders

using TQWT based Classification of

Cardiac Sound Signals

4.1 Introduction

Heart disorders are the second major cause of mortality and morbidity worldwide, of which

heart valve disorders are the most common in developing countries [101, 45]. Heart valve

disorders cover a wide range of disorders including aortic stenosis, aortic regurgitation, mitral

stenosis and mitral regurgitation and others [45]. Timely diagnosis of heart valve disorders

is an important step in prevention, treatment and eradication of heart valve disorders. The

cardiac sound signals can be used for the diagnosis of heart valve disorders. These signals are

being produced by the mechanical action of the heart and can provide diagnostic information

about the functioning of the cardiovascular system. The cardiac sound signals may consist

of two types of components, the heart sounds and the murmur, which are low frequency and

high frequency components respectively [12]. The heart beat cycles of the normal cardiac

sound signals contain the S1 and S2 heart sounds which are referred to as primary heart

sounds. On the other hand, the heart beat cycles of abnormal cardiac sound signals may
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contain: murmur, S3 and S4 heart sounds, and other abnormalities associated with different

pathologies of the cardiovascular system [12]. Thus, parameters extracted from cardiac sound

signals can serve as valuable diagnostic features for detection and identification of the heart

valve disorders [102, 8, 92, 103, 104].

In recent years, with the development of many advanced signal processing and medical

artificial intelligence technologies, a huge potential exist for development of efficient, infor-

mative and accurate state of the art computer-aided diagnostic tool for heart valve disorders.

Therefore, cardiac sound signals based expert system can be envisaged as a promising and

cost effective technology for prompt, noninvasive, convenient and efficient diagnosis of heart

valve disorders. Implementation of such systems involves analysis and extraction of suitable

diagnostic features from the cardiac sound signals for final development of pattern classifica-

tion process to classify a set of heart valve disorders. Moreover, for effective classification, the

extracted features should represent similarity within the class along with differences among

the classes [105].

In literature, a large number of studies have been focused on extracting effective diagnos-

tic features for classification of cardiac sound signals using time-domain, frequency-domain,

and time-frequency or scale domain. It is worth to note that the time-domain based anal-

ysis can discriminate between the normal and abnormal cardiac sound signals. However, it

has shown difficulty in determining the type of murmur in cardiac sound signals [16, 106].

Therefore, in recent studies, a number of features have been defined in frequency-domain

and time-frequency or scale domain to classify different types of cardiac sound signals. The

automatic segmentation and support vector machine (SVM) based classification of cardiac

sound signals using STFT and discrete cosine transform based features have been proposed

in [45]. However, the method has shown lower classification accuracy in case of splitting of

S2 heart sound. In [16], HMM based classification with the three feature extraction methods

namely time-domain, STFT and Mel-frequency cepstral coefficient (MFCC) have been com-

pared. The results show effective classification performance but inaccurate segmentation,

in case of murmurs having large energy, may affect the diagnosis of heart valve disorders.
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The maximum peak of the normalized autoregressive power spectral density curve and the

frequency width between its crossed points on a selected threshold value have been used as

features to represent the morphological characteristics of cardiac sound signals in frequency-

domain in [106]. Then, SVM based classification of seven types of cardiac sound signals

has been achieved with significant accuracies. However, in case of mitral regurgitation and

splitting of S2 heart sound, the method has produced lower sensitivity.

In [107], the features based on singular value decomposition (SVD) and QR decomposi-

tion of the continuous wavelet transform (CWT) coefficient matrix have been extracted to

classify innocent murmurs from pathological murmurs with classification and regression tree.

However, this method has distinguished only innocent murmurs from pathological murmurs

with manual segmentation. In order to characterize the cardiac murmur by their acoustic

qualities, the acoustic properties of murmur have been analyzed in time-domain, frequency-

domain as well as time-frequency domain in [108]. The features namely intensity, pitch,

bandwidth, and signal structural simplicity have been used as input to k-nearest neighbors

(KNN) classifier to classify the murmurs as music, blowing, coarse and non-coarse. However,

this study was limited to the still’s murmur and it needs further inclusion of pathological

murmurs. The methodology in [109] describes artificial neural network (ANN) based clas-

sification of five different heart disorders with features based on a seven level of wavelet

decomposition using Coifman fourth order wavelet. However, the study lacks automatic

segmentation and broader range of clinical case under study. Daubechies (db)-2 wavelet

detail coefficients at the second decomposition level have been used as feature vectors for

ANN based classification of cardiac sound signals of type: normal, systolic murmur and

diastolic murmur in [95]. The features obtained with detailed coefficients at sixth level of

decomposition using db-2 wavelet have been used to classify seven types of cardiac sound

signals in [110]. ANN based classification of cardiac sound signals using wavelet features that

have been obtained as power of detail coefficients in all five sub-bands was performed for

fourteen categories of heart disorders in [78]. The SVM based classification of five different

pathological cases using wavelet features similar to [95] has been performed in [111].
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The features based on envelope that is the number of peaks, the average distance in

samples between consecutive peaks, the signal energy of the cardiac sound segment and that

of wavelet coefficients have been used for detection of heart valve disorder in [69]. However,

the method has not considered classification of murmurs. The features extracted using db-4

wavelet with five decomposition levels have been used for ANN based classification of three

pathological and normal cardiac sound signals in [112]. The SVM based classification of four

most usual heart disorders have been performed using wavelet based features in [113]. The

four features namely, the maximum peak frequency, the position index of the wavelet packet

coefficients corresponding to the maximum peak frequency, and the ratios of the wavelet

energy and entropy information have been used for detection of regurgitation in [114]. The

mean and standard deviation of wavelet packet energy has been used to classify normal and

abnormal cardiac sound signals in [115]. The entropy of wavelet packet coefficients has been

used in SVM based classification of normal, aortic stenosis, mitral regurgitation, and aortic

regurgitation cardiac sound signals in [116, 117].

Recently, the TQWT has been proposed as a powerful technique for analysis and pro-

cessing of oscillatory signals [1]. As compared to other wavelet architectures, the TQWT has

the ability to tune itself with more input parameter according to the behavior of the signal

under study. It can be concluded from the literature review that the capability of TQWT

and Fourier-Bessel (FB) expansion in representing the cardiac sound signals has yet to be

explored. In this article, we present a new method for classification of cardiac sound signals

using feature based on time-domain representation, TQWT and FB expansion. In our pre-

vious study [118], constrained TQWT based removal of murmur for efficient segmentation

of cardiac sound signals has been proposed.

In this work, the first main contribution is extraction of features during the separation of

heart sounds and murmur from the segmented heart beat cycles. In fact, during separation

optimized values of TQWT parameters are obtained that vary with nature and severity of

murmurs in different clinical cases. These parameters are useful for representation of cardiac

sound signals. Secondly, separation of heart sounds and murmur has been intended for ex-
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tracting better and more diagnostic features with same parameters to eventually classify the

cardiac sound signals. Finally, the features based on FB expansion can represent the spectral

properties of segmented cardiac sound signals thus preventing undesired effect of windowing

[119]. The features based on FB expansion can even model the perceptual hearing [120].

Therefore, the novel raw feature set has been created by the parameters that has been opti-

mized during constraining the output of TQWT and that of extracted by using time-domain

representation and FB expansion of separately reconstructed heart sounds and murmur. In

order to improve classification accuracy, the adaptively selected features are then used for

subsequent classification using LS-SVM with various kernel functions. The performance of

the proposed method is validated with publicly available datasets and results have been

compared with existing STFT based method. It is noteworthy that the proposed method

uses well defined and lower dimensionality of feature vector that can reduce computational

complexity as compared to STFT based method.

The rest of the chapter is being organized as follows: FB expansion is described in

section 4.2. Section 4.3 presents the following subsections of the proposed methodology:

Segmentation, constrained TQWT based reconstruction of heart sounds and murmur, feature

extraction, adaptive feature selection and classification. Section 4.4 describes experimental

results and comparison of proposed method with existing STFT based method. Finally,

section 4.5 summarises the chapter.

4.2 Background

4.2.1 Fourier-Bessel Expansion

A continuous-time signal s(t), over an arbitrary interval (0, a), can be expressed with zero-

order Bessel functions as basis functions in the form of Fourier-Bessel (FB) expansion as

[119, 121]:

s(t) =
M∑
i=1

CiJ0

(
λi
a
t

)
(4.1)
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where, Ci are the FB coefficients which can be computed by using following equation:

Ci =
2
∫ a
0 ts(t)J0(

λi
a
t)dt

a2[J1(λi)]
2 (4.2)

where, J0(·) and J1(·) are the zero-order and first-order Bessel functions respectively. For

i = 1, 2, ...,M , the values of λi are M ascending order positive roots of J0(λ) = 0. The

roots of the Bessel function J0(λ) = 0 can be obtained using the Newton-Raphson method

[122, 123, 124]. These roots are computed in successive iteration. The iterations are stopped

when the values of the roots no longer changes significantly. The FB coefficients Ci are

unique for a given signal. The property of decaying of Bessel functions with respect to time

makes the FB expansion of non-stationary signals like speech, electroencephalogram (EEG)

signals, etc. suitable for analysis [26, 28-31][119, 121, 125, 126]. Generally, the order M is

being kept same as the length of the signal so that the entire range of frequencies present in

the given signal can be spanned. Here, throughout this study, the order M is set as length

of the signal under study.

4.3 Methodology

The subsections of the proposed method for classification of cardiac sound signals are de-

picted in Fig. 4.1. The subsections include: segmentation, constrained TQWT based re-

construction of heart sounds and murmur, feature extraction, adaptive feature selection and

classification. The details of each subsection are described as follows:

4.3.1 Segmentation

The automatic segmentation of cardiac sound signals into heart beat cycles can be performed

by using constrained TQWT based method as presented in chapter 3. In this method, the

parameters of the TQWT are adapted such that reconstruction occurs predominantly with

heart sounds having relatively high kurtosis value as compared to that of murmur. As the

heart sounds are low frequency component therefore murmur-free reconstructed signal is
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Cardiac Sound Signal

Segmentation

Constrained TQWT based
Decomposition & Reconstruction

Murmur Heart Sounds

Feature Extraction

Adaptive Feature
Selection

Classification

Type of Heart Valve Disorder

Figure 4.1. The schematic diagram of the proposed method for classification of the cardiac

sound signals.

71



obtained by considering last stage low-pass sub-band signal of TQWT based decomposition.

The envelope based on CSCW [81] is extracted after the removal of low energy components

from murmur-free reconstructed cardiac sound signals. Finally, with the known clinical

knowledge [79], the S1 and S2 heart sounds are identified and the timing information of the

CSCW based envelope is used to derive the heart beat cycles of the original cardiac sound

signals.

(a)

(b)

Figure 4.2. The block diagram of (a) TQWT and (b) the constrained TQWT with two

adaptive parameters r and j, and a fixed value of Q.

4.3.2 Constrained TQWT based Reconstruction of Heart Sounds

and Murmur

The amplitude distribution of primary heart sounds is super-Gaussian having sharper peak

and often skewed toward left with relatively larger value of the kurtosis as compared to mur-

murs [91]. On the other hand, the amplitude distribution of murmurs is nearly Gaussian or

sub-Gaussian. This knowledge about the statistical properties of primary heart sounds and

murmurs can be used to constrain the output of the TQWT for separately reconstructing

the heart sounds and murmur as follows. The block diagram of TQWT and constrained

TQWT with two adaptive parameters r and j, and a fixed value of Q can be conceived as
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shown in Fig. 4.2 (a) and 4.2 (b) respectively. The working of constrained TQWT based

decomposition and reconstruction can be envisaged as working of TQWT with feedback

mechanism involving optimizer or optimization method. The difference between the uncon-

strained and the constrained TQWT is that the later constrains the output of TQWT to be

of certain desired statistical characteristics known a priory by optimally tuning the chosen

input parameters during decomposition.

In order to separate the heart sounds, the input parameters of TQWT based decompo-

sition have been adaptively selected such that the primary heart sounds having maximum

kurtosis are obtained in the reconstructed signal. The heart sounds are low frequency com-

ponent therefore the low-pass sub-band at last output stage of TQWT based decomposition

has been used for signal reconstruction. It should be noted that while reconstruction with

low-pass sub-band, other heart sounds also appear along with reconstructed primary heart

sounds. For separation of murmur, only the high-pass sub-bands of each output stage of

TQWT based decomposition have been considered during reconstruction. In order to con-

strain the output of the TQWT, the input parameters of TQWT can be adapted by using

any suitable optimization method. As the genetic algorithms are more versatile in global

optimization [93], therefore, in this study, genetic algorithm has been used as an optimiza-

tion method. The kurtosis of the high-pass sub-band signal at the output stage of TQWT

based decomposition has been minimized as an objective function.

From the previous experimental analysis, it has been found that Q close to unity provides

better separation of heart sounds and murmur [118]. By considering a training set having five

heart beat cycles of each clinical case in the dataset, the possible bounds of the parameters

to be optimized have been obtained such that adaptive selection of these parameters results

into adequate separation of heart sounds and murmurs. The murmurs exhibit relatively

higher oscillations as compared to heart sounds. Therefore, low value of Q has been found

to adequately enhance and localize the heart sounds from overlapping murmur for murmur-

free reconstruction of heart sounds. Fig. 4.3(a) and 4.3(b) show the effect of increasing Q

on constrained TQWT based reconstruction of heart sounds for two heart beat cycles of two
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representative examples: aortic stenosis and tricuspid insufficiency respectively. However,

these results have been accompanied usually with high value of r. It is evident from Fig. 4.3

that Q equals to unity provides better separation of heart sounds and murmur as compared

to other higher values of Q. Another reason for this could be that the wavelet at this Q

better matches with heart sounds. In Fig. 4.3, it should be noted that original signals have

been decimated and normalized before constraining the output of TQWT.
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Figure 4.3. The effect of increasing Q on constrained TQWT based reconstruction of heart

sounds for: (a) aortic stenosis and (b) tricuspid insufficiency. The number (1)-(5) represent

the reconstructed heart sounds corresponding to different values of Q.

4.3.3 Feature Extraction

Feature extraction plays a vital role in detection and identification of heart valve disorders

by deriving useful information accurately from the raw cardiac sound signals thereby re-

ducing the dimensionality. The reduced feature set can avoid storage problem and improve

computational speed. From the proposed experimental analysis, it has been observed that

the optimized values of input parameters obtained while constraining output of TQWT vary
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with nature and severity of murmurs in different clinical cases. Nevertheless, the distribution

of FB coefficients with order of separately reconstructed heart sounds and murmur is also

found to vary with the type of heart valve disorder. Therefore, in order to achieve better rep-

resentation of various types of cardiac sound signals, the proposed novel raw feature set has

been obtained by the parameters that has been optimized while constraining the output of

TQWT and that of extracted by using time-domain representation and FB expansion of sep-

arately reconstructed heart sounds and murmur as described in Table 4.1. The expressions

for CC, RMSC and RV C have been derived from [127] to use with FB coefficients.

The feature namely Enheart sounds has been computed for that of separated heart sounds.

The values of the parameters: Eleft, Eright, and Enmurmur have been computed for that of

separated murmurs. The Enheart sounds and Enmurmur have been measured with respect to

total energy of corresponding segmented heart beat cycle. All other features were computed

for both separated heart sounds and murmur to form a feature set containing twenty two

features. In order to normalize the raw feature set for SVM based classification, the procedure

of subtracting mean and dividing by its standard deviation has been applied for each feature.

4.3.4 Adaptive Feature Selection

The adaptive feature selection aims to obtain the final feature set of reduced dimension by

selecting significant features that can corresponds to higher classification accuracy. In this

study, Fisher’s discriminant ratio (4.3) has been used to identify features that can provide

the maximum contribution in discriminating the two classes as described in [45]. The feature

selection procedure is adaptive because, for each hyperplane, the elements of final feature set

depend on Fisher’s discriminant ratio and classification accuracy as obtained using training

and validation set. The procedure iteratively searches and adds the features in order of their

significance to constitute final feature set that monotonously improves the classification

accuracy between two classes during training. For a hyperplane Ωa,b, the elements of the

raw feature set can be sorted by Fisher’s discriminant ratio as follows. The training set

containing n samples of considered two classes are created as Ca = {fa,1, fa,2, fa,3, ..., fa,n}
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Table 4.1. The details of the proposed features for classification of cardiac sound signals.

Features Expressions/definations

Optimal redundancy ro: It is obtained during constraining output of TQWT

Optimal decomposition levels jo: It is obtained during constraining output of TQWT

Center of FB coefficients CC =
N∑
k=2

˙|Ck||Ck|
/ N∑

k=1

C2
k ,

where ˙|C| = |Ck| − |Ck−1|

Root mean square variance of coefficients RMSC =

√√√√ N∑
k=2

Ċ2
k

/ N∑
k=1

C2
k

Root variance of coefficients RV C =
√
RMSC2 − CC2

Order of the maximum peak value of coefficients OCmax

The maximum peak value of coefficients Cmax

Band width obtained using coefficients BWC: It is the range of order of coefficients

that covers 95% of total signal energy (E)

Signal energy to the left of maximum of coefficients Eleft

Signal energy to the right of maximum of coefficients Eright, where E =
M∑
i=1

C2
i

a2

2
[J1(λi)]

2

Kurtosis k = E(x−µ)4
σ4 , where, µ and σ are the mean and

standard deviation of x respectively

Skewness s = E(x−µ)3
σ3 , and E(y) represents the expected

value of the quantity y

Relative energy of separated heart sounds Enheart sounds: It is measured from separated heart sounds

Relative energy of separated murmur Enmurmur: It is measured from separated murmur
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and Cb = {fb,1, fb,2, fb,3, ..., fb,n} respectively. Initially, each sample vector fi,j contains 22

features which can be represented as fi,j = [fi,j,1, fi,j,2, ..., fi,j,22]. Then, for this hyperplane,

the discriminant ratios of all features are calculated by using the following equation [45]:

Ia,b,k =
(µa,k − µb,k)2

σ2
a,k + σ2

b,k

(4.3)

where, µi,k and σi,k denote the mean and standard deviation values of the kth feature for all

n samples in class i. The discriminant ratios obtained from (4.3) are arranged in an array

as Ia,b = [Ia,b,1, Ia,b,2, ..., Ia,b,22]. The elements in this array are first sorted in the descending

order to form the array Isa,b = [Isa,b,1, I
s
a,b,2, ..., I

s
a,b,22] and the corresponding set of sorted

features is obtained as As = [u1, u2, ..., u22], where, u1 feature is the best feature selected for

this hyperplane using (4.3). Then the classification procedure can be performed for selecting

first k features of As, 1 ≤ k ≤ 22 that provides the best classification accuracy between

considered two classes.

4.3.5 Classification

SVMs are basically generalized linear classifiers that use supervised learning models for

classification and regression analysis. However, they can be efficiently used for non-linear

classification by using kernel functions that implicitly map the inputs into high-dimensional

feature spaces. A SVM constructs a hyperplane in a input feature space, which can be used

for classification. For better separation between involved two classes, the hyperplane that

has the largest distance to the nearest training data samples is selected which is termed

as functional margin. It is to be noted that, in general, larger the margin the lower the

generalization error of the classifier. As the SVM works on the principle of structural risk

minimization, it provides better generalization ability than that of traditional methods that

use empirical risk minimization [128]. In [129], Suykens et al. have presented LS-SVM that

uses a set of linear equations instead of quadratic programming to achieve faster and better

classification performance.

The multi-class classification of cardiac sound signals can be efficiently performed by
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using LS-SVM classifiers with one-against-one (OAO) approach [106]. The OAO approach

achieves multi-class classification with two class LS-SVM classifiers such that the hyperplane

of each of which discriminate between considered two-classes only. Therefore, for s classes,

the total hyperplane being considered can be obtained as Cs
2 = s(s − 1)/2. However, the

final decision is based on the principle of maximum likelihood of a class with majority votes

among all these hyperplane as described in [45]. For a hyperplane, the LS-SVM classifier

can be obtained as [129]:

y(x) = sign

{
N∑
i=1

yiαiK(x, xi) + b

}
(4.4)

where, K(x, xi) is the kernel function, xi is the ith input feature vector of d-dimension, yi is

the class label of xi, which is either +1 or −1, b is the bias term, N represents the number

of training input and output pairs and αi denotes the Lagrange multipliers. The detail

derivation of the LS-SVM is available in [129]. In this work the comparative performance of

three kernel functions namely radial basis function (RBF), Mexican hat wavelet and Morlet

wavelet kernel have been investigated. The RBF kernel can be defined as [130]:

K(x, xi) = exp

[
−‖x− xi‖2

2σ2

]
(4.5)

The Mexican hat wavelet kernel can be expressed as [131, 132]:

K(x, xi) =
d∏

k=1

[
1− (xk − xki )2

a2

]
exp

[
−‖xk − xki ‖2

2a2

]
(4.6)

The kernel function which is obtained by using Morlet wavelet can be expressed as [131, 132]:

K(x, xi) =
d∏

k=1

cos

[
ω0

(xk − xki )
a

]
exp

[
−‖xk − xki ‖2

2a2

]
(4.7)

where, in (4.5-4.7), xki is the kth element of the ith training set. The kernel parameter σ

controls the width of RBF kernel function and ω0 controls the oscillations of Morlet wavelet

function. Furthermore, a is the scaling parameter of the wavelet and d is the dimension of

the feature set.
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4.4 Experimental Results

The effectiveness of the proposed method for classification of cardiac sound signals has been

validated with two online available datasets one of which can be freely downloaded as the

heart sounds pod cast series (2011). This dataset has been produced by the Robert J. Hall

Heart Sounds Laboratory of Texas Heart Institute at St. Luke’s Episcopal Hospital. The

dataset comprises of real clinical cases with 50 abnormal cardiac sound signals acquired

from variety of subjects with relevant chest positions and patient maneuver. The sampling

frequency of most of the data is 44.100 kHz except for few cases. For more information

regarding the dataset, this series is available at [100]. The normal cardiac sound signals

with sampling frequency of 44.100 kHz have been obtained from another dataset available

at [133].

The proposed method has been implemented using Matlab. The cardiac sound signals

have been segmented into heart beat cycles by using constrained TQWT based method. As

shown in Table 4.2, the segmentation procedure has successfully segmented 1095 heart beat

cycles out of 1180 heart beat cycles, yielding segmentation rate of 92.79%. In Table 4.2, TB

represents the actual number of heart beat cycles. However, all the segmented beats have

been used in the following part of the methodology. It should be noted that the reference

actual number of heart beat cycles present in the dataset were manually annotated by an

experienced cardiologist. The annotation procedure was carried out by combined audio and

visual interpretation of the dataset.

Most of the murmurs exhibit higher frequency components in the range of 100 to 600 Hz

[16]. Therefore, in order to reduce the time of execution of constrained TQWT, the decima-

tion has been carried out before constrained TQWT based separation of heart sounds and

murmur by a factor of 32 considering Nyquist-Shannon sampling theorem that provides high-

est expected frequency without affecting the murmurs. The decimation resamples the heart

beat cycles from sampling frequency of 44.100 kHz to that of 1378.125 Hz. The separation of

heart sounds and murmur has been achieved using constrained TQWT based approach. In

order to highlight the significance of the proposed features based on FB coefficients in repre-
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senting various abnormal clinical cases, four representative clinical cases namely midsystolic

click, mitral regurgitation, aortic stenosis and tricuspid insufficiency have been described as

follows:

4.4.1 Midsystolic Click

In case of midsystolic click, high frequency click may occur any time between S1 and S2

heart sounds. In general, the click is of perceptible loudness. The proposed method with

constrained TQWT has been found effective in separating click and heart sounds as shown

in Fig. 4.4.1 (b) and Fig. 4.4.1 (d). The reconstructed click and heart sounds have been

obtained with adaptively selected following values of parameter: r=17 and j=11 at Q=1.

This clinical case is exceptional because it has been recorded at sampling frequency of 22.050

kHz. Therefore, in order to obtain the desired sampling frequency of 1378.125 Hz, the input

signal has been decimated by a factor of 16. The FB coefficients of separated click and

heart sounds obtained using proposed method are shown in Fig. 4.4.1 (c) and Fig. 4.4.1 (e)

respectively. As we know, the order is proportionally related to the frequency content of the

signal. Therefore, the FB coefficients of click are clearly seen to be distributed across the

whole range of order with maximum around the order of 250. However, the FB coefficients

of heart sounds are dominating around lower range of order.

4.4.2 Mitral Regurgitation

The mitral regurgitation murmur is holosystolic in nature with flat intensity and obscured

S2 heart sound. In case of severe mitral regurgitation, the murmur is accompanied with a

S3 heart sound and a diastolic flow rumble. In spite of the flat nature of the murmur and

loudness of murmur comparable with heart sounds, it can be observed that the proposed

method has effectively separated the murmur and the heart sounds as shown in Fig. 4.4.2

(b) and Fig. 4.4.2 (d). The separation has been obtained with adaptively selected following

values of TQWT parameters: r = 17 and j = 19 at Q= 1. As with mid systolic click, for
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Figure 4.4. The FB coefficients of constrained TQWT based separated heart sounds and

murmur of (1) midsystolic click, (2) mitral regurgitation, (3) aortic stenosis and (4) tricuspid

insufficiency: (a) segmented heart beat cycle, (b) & (d) reconstructed murmur and heart

sounds, (c) & (e) FB coefficients of murmur and heart sounds.
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this case also, the information regarding the heart sounds are contained in the lower range

of FB coefficients order. On the other hand, the scenario is significantly different for FB

coefficients of separated murmur. In present case, non-zero range of the FB coefficients of

separated murmurs exhibit narrower range and maximum at around the order of 150.

4.4.3 Aortic Stenosis

The cardiac sound signal associated with aortic stenosis contains regular diastolic, diamond

or kite like shaped crescendo-decrescendo murmur. In this case, the performance of proposed

method in separating the complex diastolic murmur and obscured heart sounds is encour-

aging. The method is capable to separate S1 from overlapping murmur. Moreover, the

performance of the proposed method in enhancing S2 is also satisfactory as can be seen in

Fig. 4.4.3 (d). The separately reconstructed murmur and heart sounds have been achieved

with adaptively selected following values of parameters: r=14 and j=18 at Q=1.

4.4.4 Tricuspid Insufficiency

The soft holosystolic murmur features the cardiac sound signal associated with tricuspid

insufficiency.

The murmurs and heart sounds have been effectively separated by using the proposed

method based on constrained TQWT as shown in Fig. 4.4.4 (b) and Fig. 4.4.4 (d). As with

aortic stenosis, in this case also, the proposed methods has been successful in identifying the

heart sounds from the background murmur. The separation of heart sounds and murmur

have been achieved with automatically estimated following TQWT parameters: r= 12 and

j = 20 at Q = 1. The FB coefficients of murmur are clearly seen to be distributed widely

around upper range of order with maximum around the order of 300. However, the FB

coefficients of heart sounds are around lower range of order.

After separation of heart sounds and murmur, the proposed novel raw features have been

extracted for adaptive feature selection and LS-SVM based classification. For classification,
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the dataset has been approximately partitioned into training, validation and testing set

containing 60%, 20% and 20% of data respectively. The classification results are based on

OAO approach employing 21 classes with 210 hyperplanes. For each hyperplane, a LS-SVM

model has been created by adaptive feature selection along with classification using the

training and validation set as follows. To begin with, the first feature subset corresponding

to k = 1 has been created using sorted feature set As as obtained using equation(4.3).

The regularization and kernel parameters were tuned by minimizing a cross-validation score

function using procedure that combines coupled simulated annealing and a simplex method

as described in [134]. The LS-SVM model corresponding to this hyperplane has been trained

and validated. In search of feature subset that yields the highest overall accuracy, the above

procedure is repeated sequentially for incremental values of k. Finally, the LS-SVM model

for this hyperplane has been saved for the final feature subset that provided highest overall

accuracy. The above procedure has been applied to all other hyperplanes till all the LS-SVM

models were constructed. Eventually, these LS-SVM models were used for classification of

cardiac sound signals using test set. It is noteworthy that the process of adaptive feature

selection performs reordering and screening of the raw features by virtue of their significance.

Table 4.2 shows the statistics related to the performance of LS-SVM based classification of

the cardiac sound signals using different kernel functions. The classification performance of

the proposed method has been determined by: computing classification accuracy (Acc) in

percentage and the effective number of features (ENF) used. The parameter k indicates the

first k significant features of the considered hyperplane. However, the ENF represents the

average value of k of all the hyperplanes. It is noteworthy that for every hyperplane, final

feature set was composed of finite integer number of elements k. But averaging the k for

all the involved hyperplanes may lead to a non-integer value of ENF. In Table 4.2, Tr and

Ts represent the training and testing accuracies respectively. From the experimental results,

it was observed that the RBF kernel of LS-SVM classifier provides a better classification

accuracy of 94.01% with effective number of features approximately 18. The experimental

results show that the features based on time-frequency properties of constrained TQWT and
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spectral properties of FB expansion are quite effective to represent the behavior of cardiac

sound signals giving higher classification performance. In case of FB expansion, the decaying

property of Bessel functions with respect to time makes it suitable for the analysis of non-

stationary signals like cardiac sound signals. The subsequent part of this section describes

the comparison of the proposed method with existing STFT based method.

Recently, Kao and Wei have presented automatic cardiac sound signal analysis for de-

tecting heart valve disorders [45]. The procedure has been briefly described as follows. The

method begins with preprocessing of cardiac sound signals that includes down sampling and

histogram analysis based noise removal. The heart beat cycles were derived by using auto-

correlation followed by energy analysis based timing offset adjustment. From each segmented

heart beat cycles, time-frequency characteristics were extracted as raw features with STFT

and two-dimensional discrete cosine transform (2D-DCT). The final feature set was formed

by adaptively selected features. The final feature set serves as an input to SVM based clas-

sification using RBF kernel function with γ = 1/9. In comparison to STFT based method

applied on same dataset, the proposed method was found to be more efficient in the following

aspects. Firstly, the proposed constrained TQWT based method provides a well defined set

of raw features containing 22 features. On the other hand, the STFT based method relies on

whole values of coefficients of 2D-DCT. Due to high dimensionality of raw feature vectors, it

is obvious that STFT based method needs more computational time as compared to the pro-

posed method. Secondly, the proposed method has provided overall classification accuracy

of 94.01% against 93.53% of STFT based method. In addition, the proposed method anal-

yses LS-SVM based classification with robust data partitioning and three different kernels.

The proposed method performs well for a wide range of clinical cases ranging in severity of

murmur from moderate to extreme as comprised in the dataset. However, the segmentation

of cardiac sound signals associated with Austin flint rumble poses serious restrictions on

the performance of the proposed method as described in [118]. The other limitation of the

proposed method is that it lacks the required number of patients for proper stratification of

cross-validation procedure by patients. Before applying the proposed work for clinical use,
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the performance of the method needs to be evaluated with out-of-sample data from adequate

number of patients of each known clinical case of heart valve disorders.

4.5 Summary

In this chapter, we have proposed the representation of cardiac sound signals based on

novel raw feature set. This feature set has been obtained by the parameters based on the

constrained TQWT, time-domain representation, and FB expansion of cardiac sound signals.

This work has suggested the extraction of features during the separation of heart sounds and

murmur using the segmented heart beat cycles. It is noteworthy that the separation provides

the optimized values of TQWT parameters that vary with nature and severity of murmurs

in different cardiac sound signals. Moreover, the separation of heart sounds and murmur

has been used for obtaining more diagnostic information with same features to successfully

classify cardiac sound signals. Finally, the features based on FB expansion have been used

to represent the spectral properties of segmented cardiac sound signals. The experimental

results have shown that the proposed novel features are effective for classification of cardiac

sound signals. The suggested feature set as an input to the LS-SVM classifier together with

RBF kernel function has provided significant classification accuracy of 94.01%. The proposed

classification method in this chapter requires less number of effective features that can lead to

reduce computation complexity. This feature of the proposed method makes suitable for real

time implementation of expert system for classification of heart valve disorders. Auscultation

with an electronic stethoscope integrated with the proposed classification technique can be

used as an expert system. This expert system may be helpful for clinicians to carry out

investigations in the clinic, hospital and even at home.

In future, the research can be carried out for judicious choice and development of new

time-domain and FB expansion based features which can further improve the classification

accuracy for classification of cardiac sound signals in order to diagnose heart valve disorders.

In this work, we have described the variation of the proposed features with respect to four
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Table 4.2. The statistics of LS-SVM based classification of cardiac sound signals.

Method TQWT STFT

Type of disease TB Acc (%) Acc (%)

Tr/Ts Tr/Ts

Mexican hat Morlet RBF RBF

(σ = 2.121)

Hypertrophic

cardiomyopathy 95 80.66/80.76 81.72/80.81 100/83.33 93.75/80.71

Opening snap

mitral stenosis 40 94.73/94.11 93.75/87.5 100/85.71 80/84.86

Aortic regurgitation 63 100/100 88.23/69.56 100/100 100/90.91

Aortic valve

ejection sound 47 85.71/85 85/93.75 100/85.29 100/88

Mitral valve stenosis 54 88.89/80 92.30/78.57 100/85 80/80

Mid systolic click 262 95/85 86.47/78.46 85/83.33 100/83.97

Mitral regurgitation 43 100/85 100/86.10 100/100 100/96.77

Aortic stenosis 71 90.48/90.48 94.12/100 100/83.33 97.69/90.91

Third heart sound 41 100/94.74 100/100 100/100 100/100

Fourth heart sound 59 95.24/85 100/90.48 100/100 100/100

Tricuspid valve

insufficiency 27 95/90 95/85 100/100 100/100

Paradoxical split S2 41 100/100 100/100 100/100 100/100

Tumor plop 20 100/100 100/100 100/100 100/100

Pericardial knock 18 100/100 100/100 100/100 100/100

Fixed splitting of S2 31 100/100 100/100 100/96 100/80

Wide splitting of S2 21 100/100 100/100 100/100 100/100

Flail mitral

regurgitation 25 100/100 100/100 100/100 100/100

Physiological

splitting of S2 46 100/97 94.12/99 100/100 100/100

Austin flint rumble 52 95/92.86 98/92.86 100/83.33 98.99/98

Pulmonary valve

ejection sound 44 95/82.61 98/97 100/88.89 100/87

Normal sound 80 99/98 100/98 100/100 100/97

Total/Average 1180 95.94/92.40 95.56/92.24 99.28/94.01 97.64/93.53

ENF 11 12.31 17.97 65.92
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representative cases namely midsystolic click, mitral regurgitation, aortic stenosis and tri-

cuspid insufficiency. More rigorous quantitative and qualitative study can be performed with

more cases to investigate the relationship between the proposed features and the underlying

pathology which can help development of new diagnostic features. It would be of interest

to investigate the effect of noise on the proposed methodology. In this work, categories of

cardiac sound signals under study have been expanded to cover a broader range of diseases.

However, future work is required to validate the proposed method with more number of

patients for proper stratification of cross-validation procedure by patients. The k-fold cross-

validation procedure can produce more effective classification performance for detection and

identification of heart valve disorders. It might be interesting to find a best kernel function

between every hyperplane instead of using one for all hyperplanes. In addition, the proposed

methodology should be applied on out-of-sample data for its possible application in health

care clinics. In order to measure reliable performance of proposed classification technique for

diagnosis of heart valve disorders, more classification performance measures can be included.

Moreover, the expert system based on the proposed framework can be further extended for

detection and identification of cardiac devices especially the artificial heart valves in routine

emergency check-ups at hospitals. Finally, it would be of great interest to study the expert

system based on the proposed classification technique using features derived simultaneously

from time-domain, TQWT and FB expansion as input to LS-SVM classifier for classification

of other biomedical signals like EEG, ECG, electromyogram (EMG) signals corresponding

to normal and abnormal conditions.
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Chapter 5

Diagnosis of Septal Defects using

TQWT based Classification of

Cardiac Sound Signals

5.1 Introduction

The most common cardiac disorders result from defects in the wall of tissue separating the

right and left chambers of the human heart. The wall is termed as the septum and the

associated defects are referred to as septal defects. The wall of tissue between the right

and left atria is called the atrial septum and that of between the ventricles is called the

ventricular septum. Generally, the cardiac septal defects fall into two groups: ventricular

septal defects (VSDs) and atrial septal defects (ASDs). The septal defects are congenital

heart defects that can range from a small hole in the septum to a significant portion of the

septum actually being absent. These defects can cause to shunting that enables undesired

flow of blood between two compartments of the heart. Moreover, the septal defects can be

categorized with the help of defect diameter as small, medium and large defects [51]. The

early diagnosis of the septal defects is crucial to ensure sooner treatment in turn saving

many lives. The septum defects can be easily diagnosed by prompt, accurate, convenient
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and affordable medical diagnostic procedure based on analysis of cardiac sounds [12, 8]. The

septal defects manifest themselves in the cardiac sounds with presence of murmurs that can

be recognized by cardiac auscultation. Even features can be determined to characterize these

murmurs in cardiac sound signals that are easily acquired using electronic stethoscope for

computer-aided diagnosis [51, 102].

Septal defects, valvular defects and other defects like ventricular hypertrophy, constrictive

pericarditis etc. can be analyzed with interpretations based on cardiac auscultation and

that of phonocardiogram [135]. However, the auscultation and phonocardiography have not

been widely recognized due to their limitations. Consequently, these non-invasive and cost

effective investigations have been gradually superseded by other sophisticated modalities like

echocardiography. Nevertheless, diagnosis with echocardiography is quite expensive and its

presence is limited to health care centers in urban areas [107].

The recent advancement in the area of analog and digital electronics has paved the way

for the development of effective portable medical devices like electronic stethoscope. The

electronic stethoscope can facilitate the medical professional to apply both auscultation and

phonocardiography more conveniently and in a more versatile way. Nevertheless, it has

also opened the possibilities for the application of advanced signal processing and medical

artificial intelligence technologies for convenient automatic diagnosis of cardiac disorders. In

view of these, advanced signal processing techniques can be developed to use with electronic

stethoscope or mobile technology for convenient computer-aided diagnosis of septal defects

using cardiac sound signals.

The basic steps for diagnosis of cardiac abnormality using cardiac sound signals generally

comprises the following process: segmentation, feature extraction and classification [136, 118,

137]. As the cardiac sound signals are non-stationary signals, therefore it is challenging to

achieve the desired performance at each of these steps [79, 76, 69]. The inconsistent duration

of the heart beat cycles, variation of the number of heart sounds, presence of various types of

murmurs and the other noises can cause to inaccurate segmentation of cardiac sound signals

[45, 92]. In need of successful segmentation, we have recently proposed constrained TQWT
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based removal of murmur for easier automatic segmentation of cardiac sound signals [118].

In this approach, segmentation using time information from cardiac sound characteristic

waveform (CSCW)[81] based envelope has been performed to achieve better segmentation

performance. Recently, detection and boundary identification of S1, S2, S3 and S4 heart

sounds in cardiac sound sounds using an expert frequency-energy based metric has been

proposed in [138]. The segmentation of cardiac sound signals using moving window Hilbert

transform (MWHT) has also been found to yield better segmentation performance [51].

A automatic method for cardiac sound moment segmentation using Viola integral based

envelopes and detection of peak location of S1/S2 heart sounds using short-time modified

Hilbert transform have been proposed for cardiac sound signals [139].

The process of feature extraction transforms the original cardiac sound signals into set

of diagnostic features for analysis of cardiac abnormality. These features can be determined

from time-domain, frequency-domain and time-frequency or scale domain. In time-domain,

parameters related to the duration of the systole and diastole and the presence of murmurs in

these durations have been used for detecting cardiac abnormality [81, 51, 108, 83]. In order

to classify innocent and pathological murmurs, different spectral characteristics of murmurs

in cardiac sound signals have been proposed in [106, 16]. The discrete energy spectrum based

feature set has been used with the neural network for classification of innocent and patholog-

ical heart murmurs of VSD in [140]. With this method, the discrimination between innocent

and VSD murmurs has achieved sensitivity of 93% and specificity of 90% with accuracy of

92.85%. In [141], VSDs were incorrectly classified as aortic stenosis/aortic regurgitation with

a three-layered artificial neural network. One recent study has proposed diagnosis of three

types of VSDs based on combination of features obtained from time-domain and frequency-

domain envelope of segmented heart beat cycles [51]. In time-domain, the time intervals

between primary heart sounds derived using envelope computed from Viola integral method

have been extracted as features. Envelope based on MWHT has been used to extract feature

in frequency-domain.

A new cardiac spectral segmentation method based on multi-Gaussian fitting was devel-
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oped for discriminating between cardiac sound signals of normal and heart valvular diseases

in [142]. The method considers clinical representative cases of aortic and mitral regurgitation

murmurs. It uses five Gaussian profiles of multiple Gaussian peaks with spectral autoregres-

sive power spectral density curve of preprocessed cardiac sound signals. This study has

suggested that spectral parameters of these peaks were found suitable for diagnosis of heart

valve disorders. In [143], a method for automated screening of congenital heart diseases in

children has been developed using cardiac sound signals. The pathological murmurs have

been identified by the cardiac sound energy over specific frequency bands named Arash-

bands that provide the lowest error while clustering the two classes. The energy content

of the Arash-bands has been used as feature for classification using a neural network. The

results show more than 94% of correct identification of children with congenital heart dis-

eases. The time growing neural network (TGNN) has been proposed for classification of

short-duration heart sounds or clicks in [144]. The spectral power in adjacent frequency

bands as computed in time windows of growing length have been used as input features for

classification. The performance of the TGNN is compared to that of a time delay neural

network and a multi-layer perceptron. The results show that the TGNN performs better

than other compared method when frequency band power is used as classifier input with

classification accuracy and sensitivity of 97.0% and 98.1% respectively.

In order to detect and identify cardiac abnormality using cardiac sound signals, vari-

ous methods based on the short-time Fourier transform (STFT), wavelet transform (WT),

wavelet packet decomposition and TQWT have been presented in [137, 92, 145, 95, 115, 111,

146, 147]. The S-transform based classification of S1 and S2 heart sounds has been presented

in [147]. Recently, optimum multi-scale wavelet packet decomposition (OMS-WPD) based

wavelet-time entropy was applied to extract features for classification of the normal and ab-

normal cardiac sound signals using support vector machines (SVM) [148]. The normal and

five types of abnormal cardiac sounds were considered for this work. Moreover, the results

were compared with methods based on STFT, wavelet packet transform, Hilbert Huang

transform, and spectrogram, respectively. In this study, an accuracy of 88.98%, a sensitivity
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of 85.29% and a specificity of 94% have been demonstrated. The work in [149] represents

automatic detection of mitral valve prolapse based on a multifractal analysis. Several fea-

tures including width and area under the curve, location of maxima etc. have been used

for discriminating between subjects of the normal and mitral valve prolapse. This method

achieves high accuracy of 96.91% in detecting the mitral valve prolapse. This method can

also be used to indicate signal irregularities to users of electronic stethoscopes for apprentice

avoiding the misinterpretation of cardiac sounds. The hidden Markov models have been

used for classification of cardiac sound signals in [85]. The features based on empirical mode

decomposition have been proposed for classification of cardiac abnormality in [150].

The classification is an important step for detection and identification of cardiac ab-

normality using cardiac sound signals. The detection of septal defect can be based on

classification between four classes: one includes the septal defects and others include nor-

mal, valvular defects and other disorders. The classifiers which have been popularly and

efficiently used for cardiac sound signals are neural network [95, 151, 78, 109, 152] and SVM

[51, 45, 106, 113, 36].

The TQWT is a recently developed wavelet transform for analysis of oscillatory signals [1].

The cardiac sound signals are oscillatory signals and thus can be analyzed using TQWT.

In our previous studies, the TQWT has been successfully deployed for segmentation and

diagnosis of heart valve disorders in [118, 153]. The TQWT based fluctuation indices have

been proposed for diagnosis of septal defects from cardiac sound signals in [146]. In this

present work, we propose a new set of diagnostic features based on sum of average magnitude

difference function (SAMDF) which can better represent the cardiac sound signals providing

higher classification performance for the considered range of Q from 1 to 50 at certain level

of decomposition.

The first main contribution of this work includes the use of SAMDF based feature set

derived with TQWT. In fact, the correlation between sub-bands can characterize the various

types of murmurs in cardiac sound signals associated with different clinical cases. Therefore,

in order to represent the murmurs in cardiac sound signals, proposed feature set was created
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with SAMDF that have been computed from reconstruction of decomposed sub-bands. It

is noteworthy that the features are extracted after the process of segmentation that has

been performed using the established constrained TQWT based approach. The feature set

containing SAMDF as features has been used to classify cardiac sound signals for diagnosis of

septal defects. Secondly, in search of effective feature set based on SAMDF that could provide

significant classification performance, various decomposition levels have been examined. The

classification has been performed using least squares support vector machine (LS-SVM) with

various kernel functions namely, radial basis (RBF) kernel function, Morlet wavelet kernel

function and Mexican wavelet kernel function. Finally, at each decomposition level under

study, the effect of quality- factor (Q) of the TQWT from 1 to 50 on classification accuracy

has been evaluated.

This chapter has been organized in five sections. Segmentation, TQWT, feature ex-

traction, and LS-SVM based classification steps of the methodology have been described in

section 5.2. Section 5.3 describes the experimental results and discussion on the proposed

method. Comparison with other existing method is described in Section 5.4. Finally, Section

5.5 summarises the chapter.

5.2 Methodology

Fig. 5.1 presents the subsections of the proposed methodology for diagnosis of septal defects

using cardiac sound signals. In Fig. 5.1., wJ+1 represent the sub-band signal having low-

est frequency and the sub-band signals from w1 to wJ are high frequency signals obtained

with TQWT based decomposition as described in section 2.3. The subsections of the pro-

posed methodology include: segmentation, TQWT, feature extraction and LS-SVM based

classification. The details of each subsection are described as follows.
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Figure 5.1. The proposed TQWT based automatic diagnosis of septal defects from cardiac

sound signals.

5.2.1 Segmentation

The heart beat cycles forms the basic repeating segments of the cardiac sound signals. The

heart beat cycles can provide stable features for revealing clinical information rather than

that of any other arbitrary length of cardiac sound signals. Therefore, for accurate diagnosis,

features need to be extracted from segmented cardiac sound signals. In view of this, the heart

beat cycles can be obtained using the TQWT based segmentation procedure as described

in chapter 3 [118]. After specified preprocessing, the TQWT based segmentation can be

achieved with following main steps. In order to obtain the heart sounds in the output

reconstructed cardiac sound signal, the parameters of the TQWT are adapted such that

reconstruction occurs predominantly with heart sounds having relatively higher kurtosis

value as compared with murmur. As the heart sounds are low -frequency components,

therefore murmur-free reconstructed signal is obtained by considering last stage low-pass

sub-band signal of TQWT based decomposition. The envelope based on CSCW is extracted

after the removal of low energy components from these reconstructed cardiac sound signals.

Subsequently, the S1 and S2 heart sounds are recognized and the timing information of the
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CSCW based envelope is used to obtain the heart beat cycles from the original cardiac sound

signals.

5.2.2 Feature extraction

The features can be extracted from segmented heart beat cycles of cardiac sound signals

such that the obtained diagnostic features retain the similarities within the classes while

reflecting differences among the classes. If raw cardiac sound signals are used directly as

features then it may lead to storage problem and computational complexity. On the other

hand, the reduced feature set containing significant diagnostic features can avoid the storage

problem and can enhance the computational speed.

The cardiac sound signals are non-stationary in nature. Moreover, time-frequency or

scale representation based methods like wavelet transform have been found to be suitable for

analysing non-stationary cardiac sound signals [36, 107]. The correlation between sub-bands

may contain significant information about the different types of murmur in various clinical

cases. SAMDF can be used to measure the murmur induced changes in the cardiac sound

signals. Therefore, in this study, we propose a novel feature set based on SAMDF derived

using TQWT. The SAMDF can be computed from the reconstructed sub-bands of TQWT

based decompositions as follows:

Considering the J-stage TQWT based decomposition, J+1 sub-band signals are obtained.

These sub-band signals can be arranged in a cell array C as follows [1]:

C = {w1, w2, w3, ..., wJ , wJ+1}, (5.1)

where, wJ+1 is the sub-band signal having lowest frequency and the sub-band signals from w1

to wJ are signals having high frequencies. The number of samples in each of these sub-band

signals depends upon the scaling parameters and can be arranged in the cell array Cl as

follows [1]:

Cl = [βfsN,αβfsN,α
2βfsN, ..., α

J−1βfsN,α
JfsN ], (5.2)

where, N is the number of samples in s[n].
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For any pair of reconstructed sub-bands as obtained from TQWT based decomposition,

say wri and wrj, the SAMDF ϕwri,wrj can be measured using the following expression [154]:

ϕwri,wrj =
1

M

M−1∑
τ=0

l−τ−1∑
k=0

|wri[k]− wrj[k + τ ]|, (5.3)

where, wrm represent the reconstructed signals of sample length M for wm with 1 ≤ m ≤

J + 1. 1 ≤ i ≤ J , 2 ≤ j ≤ J + 1 and τ is the lag number. The expression (5.3) has

been derived from [154] to use in the present context. In case, if wri[k] and wrj[k + τ ] are

similar then the value of ϕwri,wrj would be lower. In [36], at the most, the sixth levels of WT

based decomposition has been found useful for extraction of wavelet decomposition based

features. In this study, in order to obtain the levels of TQWT based decomposition that can

be useful for SAMDF based feature extraction for diagnosis of septal defects, various levels

have been examined from 2 to 10. The pair-wise combinations of sub-bands can provide a

set of SAMDF to form the proposed feature set to classify cardiac sound signals for diagnosis

of septal defects. The Table 5.1 shows the summary of extracted features at various levels.

For example, the sixth levels of TQWT based decomposition provides seven sub-bands that

result into 21 pair-wise combinations or features.

5.2.3 LS-SVM based Classification

The diagnosis of septal defects can be considered as a multi-class problem which in turn

can be formulated in terms of two class LS-SVM classifiers. In order to reduce the single

multi-class classification problem into multiple binary classification problems, the two most

common approaches that can be used are one-against-all (OAA) approach and one-against-

one (OAO) approach [106]. In this study, the multi-class classification has been performed

with OAO approach. The RBF, Morlet wavelet and Mexican hat wavelet kernel function

have been used in this work as explained earlier in chapter 4.
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5.2.3.1 Performance Evaluation Parameters

The classification performance of the LS-SVM based classification of cardiac sound signals

can be evaluated by computing the sensitivity (Sen), specificity (Spe), accuracy (Acc) and

Matthews correlation coefficient (Mcc). Sensitivity measures the proportion of actual posi-

tives which have been correctly identified as such. For example, the percentage of diseased

people who have been correctly identified as having the disease. Specificity measures the

proportion of negatives which have been correctly identified as such. For example, the per-

centage of healthy people who have been correctly identified as not having the disease. A

perfect classifier would exhibit 100% sensitivity by detecting all diseased people as having

diseased. Moreover, it would show 100% specificity by not claiming anyone from the healthy

group as diseased. The Matthews correlation coefficient is basically a correlation coefficient

between the actual and predicted outcomes. Its value lies between +1 and -1, where +1

represents a perfect prediction, 0 represents not better than random prediction and -1 in-

dicates total disagreement between predicted and actual outcomes. These above mentioned

classification parameters can be defined as [155, 156, 157, 158]:

Sen =
TP

TP + FN
× 100 (5.4)

Spe =
TN

TN + FP
× 100 (5.5)

Acc =
TP + TN

TP + TN + FP + FN
× 100 (5.6)

Mcc =
TP × TN − FP × FN√

(TP + FN)(TP + FP )(TN + FN)(TN + FP )
(5.7)

where, TP and TN represent the total number of correctly detected true positive patterns

and true negative patterns, respectively. The FP and FN represent the total number of

erroneously positive patterns and erroneously negative patterns, respectively.
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Along with the above mentioned classification evaluation parameters, the receiver oper-

ating characteristics (ROC) graphs are also commonly used in medical decision making for

classifiers in order to visualize their performance [159]. ROC graphs are two-dimensional

graphs that show relative tradeoffs between true positives rates (benefits) and false positives

rates (costs). In case of multi-class classification problem having S classes, S different ROC

graphs can be produced for each class [160, 161]. The ROC graph i shows the classification

performance using class si as the positive class (P ) and all other classes as the negative class

(N) as [159]:

Pi = si (5.8)

Ni =
⋃
j 6=i

sj ∈ S (5.9)

5.3 Experimental Results

A realistic cardiac sound signal classifier should learn about the similarity within the classes

and differences among the classes mainly due to involved physiology or pathology irrespective

of various other factors like (a) subjects of various ages (b) signal acquisition with various

types of sensors/stethoscopes in tern having various components like filters, (c) in various

modes covering bell, diaphragm and extended mode, (d) with various subjects posture and

maneuver (e) different chest positions. In view of these, a more general heart sounds dataset

has been formed with cardiac sound signals from five different heart sound sources [100,

162, 163, 164, 165] similar to as described in [113]. This dataset considers cardiac sound

signals acquired under various conditions as described above. Some of the recordings in the

dataset were corrupted by the human voice, rubbing sound due to stethoscope and other

lung sounds. Also, the duration of the heart beat cycles are inconsistent. The sampling

frequency of most of the data is 44.100 kHz with 16 bits except for few cases of mid systolic

cases in [100].

In order to validate the usefulness of the proposed method for diagnosis of septal defects,
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in spite of cardiac sound signals for septal defects and normal, signals to be detected for

valvular defects and other defects like ventricular hypertrophy, constrictive pericarditis etc.

have also been considered. Therefore, it results into four classes of cardiac sound signals for

Figure 5.2. Illustrations of cardiac sound signals for (a) VSD, (b) ASD, (c) normal, (d)

valvular defects (mitral regurgitation) and (e) other defect (pericardial knock).

evaluating the performance of the proposed method involving segmentation and classification

of cardiac sound signals. Fig. 5.2. shows examples of cardiac sound signals corresponding

to these clinical cases. Overall 163 cardiac sound signals with 4628 heart beat cycles have

been used in this work. There are 15, 17, 101 and 30 cardiac sound signals of septal de-

fects and normal, valvular defects and other defects respectively. The corresponding heart

beat cycles are 444, 626, 2771 and 787 respectively. The cardiac sound signals have been

segmented into heart beat cycles by using constrained TQWT based method. The TQWT

based segmentation procedure has successfully segmented 4460 heart beat cycles out of 4628

heart beat cycles to provide segmentation rate of 96.37%. However, all the segmented heart

beat cycles have been employed in the next stages of the methodology. The reference actual

number of heart beat cycles present in the dataset has been pointed out by an experienced
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cardiologist. The annotation procedure has been performed by combined audio and visual

interpretation of the dataset.

Nyquist-Shannon sampling theorem can provide highest expected frequency without af-

fecting the murmurs. In fact, the frequencies of most of the murmurs fall in the range of

100 to 600 Hz [16]. Therefore, in order to speed up the algorithm, the decimation of each

segmented heart beat cycles has been performed before applying TQWT by a factor of 32

considering Nyquist-Shannon sampling. The decimation re-samples the heart beat cycles

from sampling frequency of 44.100 kHz to that of 1378.125 Hz. The normalization is done

to compensate amplitude variation among the heart beat cycles.

After decimation and normalization, the proposed novel feature set based on SAMDF

derived from TQWT has been extracted. Each segmented heart beat cycles has been decom-

posed up to certain level using TQWT and SAMDF have been computed from reconstructed

decomposed sub-bands to form the proposed feature set. The value of redundancy parame-

ter of TQWT has been recommended to be higher than or equal to 3 [1]. Therefore, it has

been set to 8 throughout this analysis. Then, this feature set has been used for LS-SVM

based classification of cardiac sound signals for diagnosis of septal defects. For classification,

randomly selected 926 (20%) heart beat cycles constitute the test set and rest of that forms

the training and validation sets. In case of test set, there are 89, 125, 554 and 158 heart

beat cycles of septal defects and normal, valvular defects and other defects respectively.

The classification results are based on OAO approach employing 4 classes with 6 hy-

perplanes resulting into six LS-SVM models. In this work, the three kernel functions have

been used as mentioned previously. The regularization and kernel parameters were tuned by

minimizing a cross-validation score function using procedure that combines coupled simu-

lated annealing and a simplex method as described in [134]. For each hyperplane, a LS-SVM

model has been created by proposed feature set with classification using the training and val-

idation set. The above procedure of feature extraction and classification has been repeated

sequentially for incremental values of Q from 1 to 50 in step of one. Moreover, each level

from 2 to 10 has been examined for better classification performance. Finally, the LS-SVM
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Figure 5.3. An illustration of the results obtained using proposed method with varying values

of Q (a)-(c): accuracy as a function of Q, sensitivity as a function of Q and specificity as a

function of Q respectively.
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models that provide highest overall accuracy have been saved for the final test. Fig. 5.3

shows an example that depicts the effect of variation of Q on classification performance. The

experimental results have been presented in Tables 5.1 to 5.4. In Tables 5.1 to 5.3, max,

µ, and σ represent the maximum, mean, and standard deviation of the measured quantity

for considered values of Q. The Qb represents the value of Q corresponding to maximum

value of accuracy. Table 5.2 shows that the proposed method has provided significant clas-

sification performance with tenth levels of decomposition for all the value of Q in the given

range using Morlet wavelet kernel function. During training and validation at this level,

the results as shown in Table 5.2 demonstrate classification accuracy of 99.03± 0.29% with

sensitivity of 99.03±0.29%, specificity of 99.68±0.10% and Matthews correlation coefficient

of 0.9875 ± 0.0036 covering all the considered values of Q. Fig. 5.4 shows the ROC graphs

of the four considered classes with following positive classes (a)-(d): septal, normal, valvular

and others respectively. The corresponding area under ROC graphs are as follows: 0.99962,

1, 0.99689 and 0.99981 respectively. The ROC graphs depict significant classification per-

formance. In Fig. 5.4, the results have been obtained for Morlet wavelet with optimized

kernel and regularization parameters with test set. From the experimental results in Table

5.4 with test data, classification accuracy of 98.92% with sensitivity of 98.80%, specificity

of 99.29% and Matthews correlation coefficient of 0.9684 have been obtained at tenth level

of decomposition for Q = 6. The experimental results shows that features based on time-

frequency properties of TQWT and SAMDF are quite effective to represent the behavior of

cardiac sound signals giving higher classification performance.

The advantages of our proposed method can be stated as follows: Obtained the significant

classification performance using a single type of feature. The overall diagnostic framework

is automatic and therefore it can prevent inter/intra observer variability. This system can

be used practically at manageable cost. The limitation of our work includes: Use of small

dataset and therefore the system validation lacks rigorous k-fold cross validation for training

and testing. Limited signals have been employed for this study. The system is digital

therefore it cause to increased space complexity. The use of automation may weaken the
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diagnostic skills of the medical professionals.

Table 5.1. Classification performance analysis of cardiac sound signals using training and

validation set for RBF kernel function

J F Qb Acc Sen Spe Mcc

max µ σ max µ σ max µ σ max µ σ

2 3 1.00 78.03 39.67 5.91 78.03 39.67 5.91 92.68 79.89 1.97 0.7090 0.2017 0.0815

3 6 1.00 94.85 65.48 5.41 94.85 65.48 5.41 98.28 88.49 1.80 0.9331 0.5433 0.0713

4 10 1.00 98.30 89.49 2.33 98.30 89.49 2.33 99.43 96.50 0.78 0.9779 0.8612 0.0308

5 15 1.00 99.26 96.60 1.25 99.26 96.60 1.25 99.75 98.87 0.42 0.9902 0.9551 0.0165

6 21 3.00 99.59 97.84 1.09 99.59 97.84 1.09 99.86 99.28 0.36 0.9946 0.9715 0.0144

7 28 1.00 99.49 98.23 0.81 99.49 98.23 0.81 99.83 99.41 0.27 0.9933 0.9766 0.0108

8 36 18.00 99.77 98.60 0.67 99.77 98.60 0.67 99.92 99.53 0.22 0.9969 0.9816 0.0089

9 45 6.00 99.68 98.84 0.47 99.68 98.84 0.47 99.89 99.61 0.16 0.9958 0.9849 0.0061

10 55 18.00 99.68 98.97 0.29 99.68 98.97 0.29 99.89 99.66 0.10 0.9958 0.9865 0.0038

5.4 Comparison with other Existing Methodology

In this section, the performance of the proposed method has been compared with one re-

cently presented fluctuation indices based method as described in [146]. This method uses

the datasets and classes same as in the proposed method. The main steps of the compared

method include segmentation followed by TQWT of heart beat cycles for subsequent feature

extraction and LS-SVM based classification with RBF kernel. The TQWT based decompo-

sition was performed up to sixth levels. The fluctuation indices were computed as features

from reconstruction of decomposed sub-bands. Then, this feature set containing twenty one

features was used to classify cardiac sound signals for detection of septal defects. In order

to tune the Q of the TQWT to provide highest classification accuracy, the experiment was

conducted with varying value of Q. The method has shown provided better classification
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Table 5.2. Classification performance analysis of cardiac sound signals using training and

validation set for Morlet wavelet kernel function

J F Qb Acc Sen Spe Mcc

max µ σ max µ σ max µ σ max µ σ

2 3 1.00 87.96 44.26 7.15 87.96 44.26 7.15 95.99 81.42 2.38 0.8396 0.2617 0.0970

3 6 1.00 99.63 91.98 2.40 99.63 91.98 2.40 99.88 97.33 0.80 0.8396 0.2617 0.0970

4 10 1.00 99.63 98.83 0.47 87.96 44.26 7.15 99.88 99.61 0.16 0.9951 0.9848 0.0060

5 15 41.00 99.72 98.96 0.43 99.72 98.96 0.43 95.99 81.42 2.38 0.9963 0.9866 0.0053

6 21 6.00 99.54 99.03 0.28 99.54 99.03 0.28 99.85 99.68 0.09 0.9940 0.9876 0.0035

7 28 41.00 99.86 98.96 0.44 99.86 98.96 0.44 99.95 99.65 0.15 0.9982 0.9867 0.0054

8 36 18.00 99.59 98.85 0.42 99.59 98.85 0.42 99.86 99.62 0.14 0.9946 0.9853 0.0051

9 45 32.00 99.72 98.99 0.42 99.72 98.99 0.42 99.91 99.66 0.14 0.9964 0.9871 0.0052

10 55 6.00 99.54 99.03 0.29 99.54 99.03 0.29 99.85 99.68 0.10 0.9940 0.9875 0.0036

Table 5.3. Classification performance analysis of cardiac sound signals using training and

validation set for Mexican hat wavelet kernel function

J F Qb Acc Sen Spe Mcc

max µ σ max µ σ max µ σ max µ σ

2 3 1.00 70.82 38.67 5.04 70.82 38.67 5.04 90.27 79.56 1.68 0.6170 0.1938 0.0719

3 6 1.00 90.30 58.95 5.53 90.30 58.95 5.53 96.77 86.32 1.84 0.8711 0.4608 0.0710

4 10 1.00 96.05 79.46 3.75 96.05 79.46 3.75 98.68 93.15 1.25 0.9480 0.7273 0.0486

5 15 1.00 97.84 68.76 7.95 97.84 68.76 7.95 99.28 89.59 2.65 0.9715 0.5899 0.1029

6 21 1.00 98.58 67.75 8.50 98.58 67.75 8.50 99.53 89.25 2.83 0.9813 0.5749 0.1094

7 28 1.00 98.48 68.80 8.51 98.48 68.80 8.51 99.49 89.60 2.84 0.9800 0.5885 0.1117

8 36 1.00 98.76 83.36 6.70 98.76 83.36 6.70 99.59 94.45 2.23 0.9838 0.7867 0.0886

9 45 2.00 94.16 77.05 7.22 94.16 77.05 7.22 98.05 92.35 2.41 0.9246 0.7072 0.0912

10 55 1.00 95.96 86.11 7.21 95.96 86.11 7.21 98.65 95.37 2.40 0.9491 0.8292 0.0866
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Figure 5.4. ROC graphs showing classification performance of the proposed method with

following positive classes (a)-(d): septal, normal, valvular and others respectively.
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Table 5.4. The confusion matrix showing classification performance using Morlet wavelet

kernel function for test set

Predicted classes

Normal Valvular defects Other defects Septal defects

Normal 121 4 0 0

Actual Valvular defects 2 552 0 0

classes Other defects 0 14 144 0

Septal defects 0 0 0 89

Acc 99.35 97.84 98.49 100

Sen 98.37 96.84 100 100

Spe 99.50 99.44 98.21 100

Mcc 0.9721 0.9554 0.9460 1

performance at Q = 2 during the training and validation. The classification accuracy of

96.78% with sensitivity of 96.78% and specificity of 98.93% was obtained at Q=2.

As compared to fluctuation indices based method, the proposed method introduces new

set of diagnostic features based on SAMDF that can better represent the considered classes

of cardiac sound signals with following aspects. As shown in Table 5.1, significant results

are obtained at sixth levels of TQWT based decomposition. At this levels, the classification

accuracy of 99.59% with sensitivity of 99.59% and specificity of 99.86% was obtained for

Q = 3. These results are better than fluctuation indices based method. Moreover, the

proposed study explores more levels of decomposition form 2 to 10 with three different types

of kernel functions. As described in earlier section, the salient feature of the proposed method

is that its classification performance has been found to be higher and almost consistent for

all the values of Q at tenth levels of decomposition.
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5.5 Summary

In this work, we have presented the characterization of cardiac sound signals for diagnosis

of septal defects based on novel raw feature set. This feature set has been obtained by

the TQWT based SAMDF of segmented heart beat cycles derived from cardiac sound sig-

nals. The SAMDF based features can reveal information about different types of murmurs

in cardiac sound signals considered in this study. Therefore, TQWT based SAMDF have

been used as features to represent the time-frequency properties of murmurs in segmented

cardiac sound signals. In order to show the effectiveness of the proposed method, cardiac

sound signals for valvular defects and other defects have been considered for classification

in addition to that of septal defects and normal. In search of appropriate level of TQWT

based decomposition that can provide efficient features, the suggested feature sets have been

formed and used to classify cardiac sound signals for different levels. The proposed features

have been used as an input to the LS-SVM classifier together with different kernel functions.

The experimental results have been found promising that reveals the capabilities of proposed

feature set in characterization of different types of cardiac sounds signals for diagnosis of sep-

tal defects. The salient feature of the proposed method is that its classification performance

has been found to be higher for all the values of Q at tenth level of decomposition. It has

been found from this study that the proposed features at tenth level of decomposition with

Q = 6 have provided significant classification accuracy of 98.92% with sensitivity of 98.80%

specificity of 99.29% and Matthews correlation coefficient of 0.9684 using Morlet wavelet

kernel function. The proposed method can be implemented as an expert system for classifi-

cation of cardiac sound signals to diagnose septal defects. The computer-aided auscultation

using electronic stethoscope or mobile technology with the proposed classification technique

based on TQWT derived SAMDF can be used as an intelligent and affordable expert system

that can automatically detect the septal defects. This expert system can reduce the health

care expenses and avoid the challenges of mastering cardiac auscultation thereby helping the

physicians to diagnose the septal defects in the clinic, hospital and even at home.

In our previous work [153] as presented in chapter 4, constrained TQWT, time-domain
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representation and FB expansion based feature set have been proposed for classification of

cardiac sound signals in a pursuit to detect and identify heart valve disorders. However,

the current work is different in the sense that it explores the capability of a single type of

feature namely SAMDF for less complex four class classification scheme dedicated to detect

septal defects. It can be used to detect heart valve disorders but may not be quite helpful

for identifying the types of the heart valve disorders. The work in [45, 36, 115, 81], also

primarily aims to achieve detection of heart valve disorders. Moreover, the study in [51] can

be used to detect and identify VSDs.

There are few aspects of this research that could be improved further or extended in

nearest future. The performance of the proposed method can be evaluated using more clinical

cases as out-of-sample data. In this study, integer values ofQ have been considered. However,

the real value of Q can be considered that can provide even better classification performance.

It is to be noteworthy that inclusion of more clinical cases may affect the desired obtained

value of Q. The effect of J have already been examined in this work. However, effect of r on

classification performance is still needs to be addresses for further development of the feature

extraction process. It would be of interest to compare the proposed methodology with other

time-frequency methods to establish the significance of the proposed diagnostic framework.

This methodology can be extended for identification of type and degree of septal defects.

Moreover, in future, the research can be carried out for screening of features that can

reduce the computational burden of the algorithm with further improvement in the clas-

sification accuracy to diagnose septal defects. The study can be performed to reveal the

relationship between the proposed features and the underlying pathology which can pro-

vide the basic understanding of the proposed TQWT based features. It can eventually help

development of new diagnostic features.

Furthermore, the effect of noise on the proposed methodology is a topic of interest. In this

work, cardiac sound signals associated with broader range of diseases have been used during

classification. However, for practical implementation, future work is required to evaluate

the usefulness of the proposed method with more number of patients. The classification
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procedure should address proper stratification of cross-validation procedure by patients.

The k-fold cross-validation procedure can produce more effective classification performance

for diagnosis of septal defects. It would be of interest to search for a best kernel function

between every hyperplane instead of using one for all hyperplanes.

Moreover, it would be of great interest to study the proposed classification technique using

features derived from TQWT and SAMDF for classification of other biomedical signals like

EEG, electrocardiogram (ECG), electromyogram (EMG) signals corresponding to normal

and abnormal conditions. Finally, the proposed expert system can be further extended for

detection and identification of cardiac devices especially the artificial heart valves in routine

emergency check-ups at hospitals.
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Chapter 6

Diagnosis of Coronary Artery Disease

using TQWT of Heart Rate Signals

6.1 Introduction

In 2008, heart disorders were the leading cause of death around the globe causing about 17

million deaths or 48% of noncommunicable diseases (NCD) based deaths [166]. Most of the

commonly occurring heart disorders result from coronary artery disease (CAD)[167]. It is

mainly caused due to deposition of cholesterol and fatty deposits called plaque within the

inner wall of the arteries, blocking the required flow of blood to the heart muscles [57]. Due to

increased plaque deposition, the blood vessels become narrow and causing decreased amount

of blood supply to the heart muscle thereby depriving adequate nutrients and oxygen. This

condition becomes progressively worse affecting the metabolic activity of the heart muscles.

Over a period of time, the heart muscles become weak and may lead to heart failure and

arrhythmias [58]. Even more, often the deposited plaques erode or rupture resulting into

thrombus formation that can restricts the flow of blood to the heart muscles causing sudden

cardiac death. The other major causes of CAD but not limited to includes: tobacco smoking

[59] and environmental pollution [60]. Timely diagnosis and treating of CAD is important

to reduce the risk of occurrence of heart attack or stroke and save lives.
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The physicians often evaluate the presence and extent of CAD by observing common

symptoms, reviewing the medical history and risk factors, performing physical examina-

tion and diagnostic laboratory tests, including blood tests, an ECG and tread mill stress

tests [61]. The imaging modalities like echocardiogram, coronary computed tomography

angiogram (CTA) and coronary angiography or cardiac catheterization are also used to de-

tect the presence of CAD. The ECG based diagnosis is quite promising and requires minor

changes in the ECG recordings to detect specific heart disorders. However, in many cases,

visual analysis of ECG recordings for detecting CAD is not reliable because it is difficult to

notice the differences in recordings [62]. The presence of noises and artifacts like baseline

wondering make it complex to accurately analyse the small morphological changes in the

ECG recordings due to heart disorders. While undergoing tread mill stress tests, patients

are at risk of developing tachycardia and eventual heart failure [63]. The cardiac catheteri-

zation is performed invasively and takes an average time of thirty minutes. However, overall

time including the preparation and recovery time amounts to several hours. This leads to

almost whole day for patients to do this test. Most of the imaging modalities can be operated

only by trained physicians or radiologists. Some of the above mentioned diagnostic tools are

quite expensive and their availability is limited to health care centers in urban areas.

Heart rate signals are nonlinear and non-stationary heart signals that carry a lot of in-

formation about the homeostasis of the human body [168, 169]. Other than heart disorders,

the heart rate signals can be used for diagnosis of diseases like diabetic neuropathies, de-

pression etc. [168, 170, 171, 172, 173]. They are cheap and readily acquirable signals from

ECG signals. The CAD manifests in the heart rate signals in the form of subtle informa-

tion that is difficult to notice by visual interpretation. The recent advancement in the field

of signal processing, high performance computing and data mining techniques has helped

the clinicians in their quality of diagnosis. It is tedious and time consuming to detect the

minute changes in the ECG or heart rate by naked eye for the clinicians. Also, it is prone to

inter/intra observer variability. Hence, a computer aided decision support system which is

independent of human intervention can significantly improve the quality of decision making
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[174]. Novel algorithms in the time, frequency and non-linear domain can be applied on the

heart rate signals to decipher the subtle signatures of the diseases.

It is observed that value of power spectral density (PSD) of CAD heart rate signals

is nearly half for very low frequency (VLF) and low frequency (LF) regions compared to

normal group indicating lower thermoregulatory and sympathetic activities [175]. The PSD

is similar in both groups in HF region indicating no change in parasympathetic activity

[175]. Moreover, the reduction in low-frequency power with respect to severity of CAD is

reported in [176]. While analyzing the heart rate signals in [177, 178], it is observed that

CAD-affected subjects show lower circadian rhythm than normal subjects. The lower time

and frequency domain parameters are shown for CAD patients in [179]. The statistical time-

domain and frequency-domain based parameters do not perform well in the presence of noise

[180]. Therefore, time-domain and frequency-domain based features are not appropriate for

analysis of CAD [175]. The time-scale domain based method like WT outperforms these

techniques in analyzing and deriving useful information about the structural changes in the

heart rate signals for diagnosis of CAD [61, 181].

Due to non-linear nature of biomedical signals and physiological systems, non-linear

methods are suitable for analysis [180, 182, 183, 153, 184, 137]. In recent past, many nonlinear

methods such as Lyapunov exponents [168, 180], correlation dimension (D2) [168, 185, 186],

fractal dimension [187, 188, 189, 190, 191], 1/f slope [192], approximate entropy [168], de-

trended fluctuation analysis (DFA) [193, 194], Poincare geometry [195, 196, 197], recurrence

quantification analysis (RQA)[198, 199, 200, 201], higher order spectrum (HOS) [202] are

studied for diagnosis of CAD. In [194], it is shown that DFA and fractal dimension features

exhibit lower values for CAD compared to normal heart rate signals. The poincare geometry

based short and long term variability measures are also found to be lower for CAD patients.

Reduced variation in CAD heart rate signals is indicated by higher values of RQA based four

parameters [175]. Reduced value of entropy based parameters is registered for CAD cases.

The value of correlation dimension is lower for CAD patients [175]. All the HOS parameters,

except phase entropy decreases for CAD subjects as compared to normal group [175].
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In this chapter, we have proposed a novel method for detection of CAD using centered

correntropy (CCo) based feature set derived from TQWT. In recent years, the TQWT is

proposed and successfully applied for analysis and processing of oscillatory signals in several

problems [1, 118]. The TQWT can be used to extract the dynamical changes in the abnormal

heart rate signals with respect to that of normal. The correntropy is proposed as a nonlinear

parameter that measures the pairwise correlation of the feature vectors that are separated

by a certain time delay in input space [203]. Moreover, it can measure the shape and size

of the group of points in the feature space [203, 184]. The correntropy can characterize the

heart rate signals by nonlinearly projecting the sub-band signals into high dimensional space

using kernel function. The projected feature space can provide useful diagnostic features.

Therefore, in this work, the proposed raw features are formed with CCo that are computed

from particular decomposed detail sub-band. The principal component analysis (PCA) is

applied to obtain the significant features. The transformed features are used to classify heart

rate signals of normal and CAD subjects. The classification is performed using LS-SVM with

various kernel functions namely RBF, Morlet and Mexican hat wavelet kernel functions. The

effect of Q-factor (Q) on classification performance is studied to find the optimal value of

Q. The proposed features at third level of decomposition for Q from 24 to 30 have provided

significant classification performance using Morlet wavelet kernel function with optimized

kernel and regularization parameters. The experimental results of this work has provided

highest classification accuracy, sensitivity, specificity and Matthews correlation coefficient

for Q = 24 using Morlet wavelet kernel function.

This chapter is organized in six sections. The dataset used in this work is described

in Section 6.2. Pre-processing, feature extraction, PCA based feature selection, and LS-

SVM based classification steps of the methodology are described in Section 6.3. Section

6.4 describes the experimental results of the proposed method. Discussion on the results is

presented in Section 6.5 and finally chapter is summarised in Section 6.6.
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6.2 Dataset

In this study, the heart rate signals were derived using ECG signals of twenty subjects.

The ECG signals from CAD-affected subjects were obtained from Iqraa Hospital, Calicut,

Kerela, India [175]. An experienced cardiologist assisted the screening of subjects and data

acquisition procedure. The equal number (ten) of CAD patients and normal subjects had

voluntarily contributed to the data acquisition. The participants aged in the range 40 to 70

years, (mean age of 55 years) participated in the study. The subjects having normal blood

pressure, glucose level and ECG are considered as healthy volunteers. Only the CAD patients

with similar medications were considered in this work. The subjects of this study were not

suffering from any other diseases including left and right bundle branch block, ventricular

hypertrophy, myopathy, congestive heart failure and atrial fibrilation. The ECG signals are

acquired using BiopacTM equipment with sampling frequency of 500 Hz as described at

[204]. Overall, 143 ECG signals were obtained containing 61 from normal subjects and 82

from CAD patients. Each of these ECG signals have 1000 samples collected for 15 minutes

recording interval.

6.3 Methodology

The proposed methodology for diagnosis of CAD using heart rate signals has been presented

in Fig. 6.1. The heart rate signals can be obtained from raw ECG signals by adequate pre-

processing which can be described as follows. The stage of pre-processing involves removal

of low frequency baseline wander, unwanted high frequency noise and 50 Hz power line

interference. In order to remove the baseline wander and unwanted high frequency noise,

a band pass filter with lower and higher cut-off frequencies of 0.3 and 50 Hz is used. The

notch filter is used to eliminate the power line interference. The Pan and Tompkins method

is used to detect the R peaks in ECG signals [205, 206]. The RR peaks intervals (tRR)

between successive QRS complexes are computed to obtain RR-interval signals in seconds.

The heart rate signals in beats per minute can be derived from RR-interval signals by using
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the following expression:

HRate =
60

tRR
(bpm) (6.1)

After pre-processing the obtained heart rate signals are used for automatic diagnosis of

CAD. The typical RR-interval signals and their corresponding heart rate signals for normal

and CAD patient are shown in Figs. 6.2 and 6.3 respectively. The main subsections of

the proposed methodology include: TQWT based decomposition, feature extraction, feature

transformation and LS-SVM based classification. The details of each subsection are described

as follows.

Figure 6.1. The proposed system.

6.3.1 Feature extraction

The effective diagnostic features can be extracted from heart rate signals such that the ob-

tained diagnostic features retain the similarities within the classes while reflecting differences

among the classes. If raw heart rate signals are used directly as features then they may lead

to space and computational complexity. While the features containing definite significant
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Figure 6.2. Typical RR-interval signals: (a) normal, (b) CAD subject.
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diagnostic information can avoid the storage problem and can enhance the computational

speed.

The heart rate signals are non-stationary in nature. In literature, time-frequency or scale

representation methods like wavelet transform are found to be appropriate for analysing

nonstationary signals [61]. The correntropy based nonlinear features can be used to measure

the CAD induced changes in the heart rate signals. Therefore, in this study, we propose a

novel feature set based on correntropy derived using TQWT. These features are computed

from the considered sub-band of TQWT based decompositions.

The correntropy measures the correlation in nonlinear-domain for multiple delayed sam-

ples of the signal [203]. It uses the information theoretic learning in combination with kernel

methods to capture the information in higher order moments [207]. It is sensitive to the

time structure of the time-series/signals [203]. In feature space, it exhibits a lot of properties

that can quantify the data probability density function directly [208]. It can be used to

detect nonlinearities. In discrete-time domain, correntropy (V [l]) can be defined as follows

[203, 208]:

V [l] =
1

N − l + 1

N∑
n=l

κ(x[n]− x[n− l]) (6.2)

V̂ =
1

N2

N∑
l=1

N∑
n=l

κ(x[n]− x[n− l]) (6.3)

Where, l represents the lag, V̂ is the mean correntropy and {x[1], x[2], ..., x[N ]} represent

one realization of random process. In order to reduce the effect of DC bias, the mean value

V̂ of the correntropy can be subtracted from the V [l] to obtain the centered correntropy

(Vc[l]) as:

Vc[l] = V [l]− V̂ (6.4)

In this study, Gaussian kernel function κ(x[n], x[n− l]) has been applied for computing Vc[l].

It can be defined as follows:

κ(x[n], x[n− l]) =
1√
2πσ

e

{
− (x[n]−x[n−l])2

2σ2

}
(6.5)
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Where, σ is the Gaussian kernel parameter that controls the width. The matlab code for

computing CCo [209, 210] is available in the form of ITL Toolbox at [211].

6.3.2 Feature Transformation

In this study, feature transformation is accomplished by PCA. PCA is a linear dimensional re-

duction technique that transforms the original features into features having more descriptive

power. It replaces a group of features with a new feature vectors called principal compo-

nents computed by linear combination of the original features. The principal components

are orthogonal to each other therefore they do not contain any redundant information. The

feature transformation using PCA involves calculating the covariance matrix of the raw

features. Then matrix containing eigenvectors and eigenvalues of the obtained covariance

matrix is obtained. The eigenvectors are arranged in the descending order of eigenvalues.

The raw features are projected into the direction of sorted eigenvectors to obtain the trans-

formed features. Finally, the first few significant features are selected for subsequent study.

More in depth information about PCA can be obtained from [212, 213].

6.3.3 LS-SVM based classification

Recent advancements in the statistical learning theory has led to the development of SVMs.

They are new generation machine learning and data mining systems based on supervised

learning models that have successfully used in various real-world applications such as biomed-

ical signal classification, image classification, text categorisation, hand-written character

recognition, bioinformatics etc. The SVM is based on structural risk minimization there-

fore it renders more generalization than that of other traditional learning systems involving

empirical risk minimization [129]. In recent years, LS-SVM has been proposed that solves

linear equations instead of quadratic programming to get faster and better performance in

machine learning and data mining tasks.

In this work, CAD and normal heart rate signals have been classified using the LS-
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SVM classifier with the RBF, Morlet wavelet and Mexican hat wavelet kernel functions as

described in chapter 4.

6.3.3.1 Classification performance measures

The classification performance of the LS-SVM based classification of heart rate signals of

CAD and normal subjects can be analyzed by computing the following parameters [156,

157, 159]: sensitivity (Sen), specificity (Spec), accuracy (Acc) and Matthews correlation

coefficient (Mcc). Sensitivity determines the probability of actual positives which have been

correctly produced as such when used on the CAD affected population. In this work, it is

the percentage of CAD-affected people who have been correctly diagnosed with the disease.

Specificity measures the probability of negatives which have been correctly produced as such

when used on the normal subjects. Here, it is the percentage of normal subjects who have

been correctly identified as not having the CAD. A perfect classifier would exhibit 100%

sensitivity by detecting all CAD patients as having disease. Moreover, it would show 100%

specificity by not claiming anyone from the healthy group as CAD patient. The Matthews

correlation coefficient (Mcc) measures correlation between the actual and predicted outcomes

of the classifier. Its value fall in the range from +1 to -1. In case of perfect prediction, its

value comes out to be +1. The value of Mcc is 0 for random prediction and -1 for total

disagreement between predicted and actual outcomes. In order to generalize the results of

proposed classification technique in terms of above parameters, three fold cross validation

approach is used for classification of normal and CAD heart rate signals.

6.3.3.2 CAD index

The values of multiple significant features can be used and expressed in a single index for

biomedical applications as suggested in [214, 215, 216, 217, 218, 219]. Such index can clearly

depicts the difference between the consider classes. This kind of integrated index can be

used for setting appropriate threshold to ease detection of events of interest. Here, in this

work we propose CAD index that combines the significant features illustrated in Table 6.1
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to form the mathematical expression as follows:

CADIndex = α(PC1 + β)− PC2 (6.6)

Where, PC1 and PC2 are the obtained principal components of the correntropy based two

features. In order to generalize the above expression, we have used Genetic algorithm for

optimizing the values of α and β. Their values are obtained as 0.1 and 55.

6.4 Results

The propose methodology for automated diagnosis of CAD by classification of heart rate

signals of normal and CAD subjects is implemented in Matlab. The functions of the TQWT

toolbox of Matlab and ITL toolbox are used. The Matlab software for TQWT toolbox is

available at [220]. The Matlab codes for ITL toolbox are used from [211]. The pre-processing

as described in Section 6.3 is applied on ECG signals to obtained the heart rate signals. The

third level of wavelet decomposition are found to yield significant statistical difference be-

tween the features for normal and CAD heart rate signals [61]. Hence, the same level is

considered in this study to decomposed the heart rate signals into sub-bands. It is note-

worthy that unwanted excessive ringing of wavelets need to be prevented while performing

TQWT by appropriately choosing the value of r greater than or equal to 3 [1]. Therefore, r

is set to 8 throughout this analysis. The values of CCo are computed from third level detail

wavelet coefficients to extract the proposed raw feature set. Fig. 6.3 shows the third level of

TQWT based decomposition of heart rate signals for normal and CAD subjects with Q=30.

The value of lag is empirically selected as two while computing the CCo, therefore two fea-

tures are obtained for each detailed sub-band signal. The PCA is used to transform these

two features. Table 6.1 shows the mean and standard deviation of the significant features

obtained after PCA for normal and CAD heart rate signals. The transformed features are

used as input feature set to perform classification using LS-SVM with three different kernel

functions namely RBF, Morlet and Mexican hat wavelet. The regularization and kernel
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Figure 6.3. Third level of TQWT based decomposition of heart rate signals: (a) normal and

(b) CAD subject.
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parameters are tuned by minimizing a cross-validation score function using procedure that

combines coupled simulated annealing and a simplex method as described at [134]. The

training and testing of the proposed classification is done using three-fold cross validation

approach. In all, 143 heart rate signals containing 61 from normal subjects and 82 from

CAD patients are used for three-fold cross validation. Each of these heart rate signals have

1000 samples covering 15 minutes recording interval. The above mentioned procedure in-

volving TQWT based decomposition, feature extraction, feature reduction and classification

is repeated sequentially for incremental values of Q from 1 to 50 in step of one. For improved

classification performance, best Q or underlying wavelets are sought at third level by con-

ducting the experiment with various values of Q for the considered kernel functions. Figs.

6.4 shows the variation of performance of LS-SVM classifier for (a) RBF, (b) Morlet, and

(c) Maxican hat wavelet kernel functions versus Q. It can be observed from Fig. 6.4 that,

LS-SVM classifier kernels work better for Q from 24 to 30. Table 6.2 shows the LS-SVM clas-

sification results for Q from 24 to 30. It can be seen in Table 6.2 that the proposed method

obtained a that the proposed method obtained a classification accuracy of 99.72 ± 0.27%,

sensitivity of 99.63±0.39%, specificity of 99.81±0.32% and Matthews correlation coefficient

of 0.9956± 0.0050 in the specified range of Q using Morlet kernel function. Moreover, Table

3 presents the maximum classification performance obtained for the kernel under study for

a single selected value of Q. It is noteworthy that higher classification accuracy, sensitivity,

specificity and Matthews correlation coefficient are obtained for Q = 27, 24 and 30 using

RBF, Morlet, and Maxican hat wavelet kernel functions respectively. It should also be noted

that three-fold cross validation is repeated ten times to produce the consistency in results

shown in Fig. 6.4. and Table 6.2.

The experimental results shows that features based on time-frequency/scale properties

of TQWT and CCo are quite effective to represent the behavior of heart rate signals for

normal and CAD subjects giving higher classification performance for Q from 24 to 30.

Fig. 6.5 shows the distribution of CAD index that is measured for normal (7.2039 ±

0.5319) and CAD (5.0103 ± 0.3389) heart rate signals. The p-value is nearly zero for both

123



1 5 10 15 20 25 30 35 40 45 50

0.75

0.8

0.85

0.9

0.95

1

Q

Va
lu

es

 

 

Acc
Sen
Spec
Mcc

(a)

1 5 10 15 20 25 30 35 40 45 50

0.75

0.8

0.85

0.9

0.95

1

Q

Va
lue

s

 

 

Acc
Sen
Spec
Mcc

(b)

1 5 10 15 20 25 30 35 40 45 50

0.5

0.6

0.7

0.8

0.9

1

Q

Va
lu

es

 

 

Acc
Sen
Spec
Mcc

(c)

Figure 6.4. Variation of performance of LS-SVM classifier for (a) RBF, (b) Morlet, and (c)

Maxican hat wavelet kernel functions versus Q.
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Table 6.1. Results of principal components analysis (Mean± SD) for normal and CAD

subjects after taking logarithm of absolute values of principal components.

Feature Normal CAD p-value

µ ± σ µ ± σ

PC1 -3.7708 ± 1.003 -2.7814 ± 0.8023 7.4213 ×10−11

PC2 -6.6915 ± 1.0920 -4.488 ± 0.8969 0

Table 6.2. Classification results for various kernel functions of LS-SVM classifier with respect

to variation of Q between 24 to 30.

Kernel Acc (%) Sen (%) Spec (%) Mcc

function

max µ σ max µ σ max µ σ max µ σ

Morlet 100 99.72 0.27 100 99.63 0.40 100 99.81 0.32 1 0.9956 0.0051

Kernel

RBF 99.88 99.69 0.16 99.76 99.49 0.34 100 99.88 0.22 0.9988 0.9959 0.0027

Mexican 99.76 97.09 2.73 99.88 96.83 3.03 99.64 97.35 2.56 0.9942 0.9455 0.0535

hat Kernel
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Table 6.3. Summary of the performance of the various automated methods used for diagnosis

of CAD.

Authors Features/Method Classifiers Acc (%)

Arafat et al. [221], 2005 ECG stress signals and Fuzzy Interference Systems 80

Probabilistic Neural Networks

Karimi et al. [181], 2005 DWT and cardiac sounds Neural Networks 85

Kim et al. [222], 2007 Multiple Discriminant Analysis Different classifiers 72.5-84.6

Lee et al. [223], 2007 Linear and nonlinear features SVM 90

Lee et al. [224], 2008 Carotid arterial wall thickness CPAR and SVM 85-90

Zhao and Ma [225], 2008 EMD-Teager Energy Operator BPNN 85

Babaoglu et al. [226], 2010 BPSO with GA SVM 81.46

Babaoglu et al. [227], 2010 PCA SVM 79.71

Dua et al. [228], 2012 Linear and nonlinear features MLP 89.5

Giri et al. [61] , 2013 Heart rate signals and ICA GMM 96.8

The proposed work TQWT and Correntropy LS-SVM 99.72
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the classes that reflects different ranges of this index for these two classes. The Fig. 6.5

clearly depicts that the CAD index is significantly different for the normal and CAD heart

rate signals in turn can be effectively used for diagnosis of CAD subjects using a threshold.

As compared to published work in [61], the main contribution of this work is the de-

velopment of new methodology that can provide highest possible classification accuracy in

diagnosis of CAD. The proposed methodology suggests the use of just two features based

on TQWT and correntropy that can provide significant differences between the considered

two classes. It is noteworthy that after PCA based feature transformation, the CAD in-

dex has been measured by combining the values of both the principle components that is

significantly different for normal and CAD with p-values nearly zero. Moreover, this study

uses more classification performance parameters than that of earlier methods for detection of

CAD. This work obtained the average classification accuracy of 99.7%, sensitivity of 99.6%,

specificity of 99.8%, and Matthews correlation coefficient of 99.5% for Q varying between 24

to 30 using Morlet wavelet kernel function.

On the other hand, the method reported in [61] relies on ten features obtained from DWT

coefficients using feature reduction techniques. The highest classification accuracy obtained

using that method was 96.8% with sensitivity and specificity of 100% and 93.7%.

6.5 Discussion

Table 6.3 shows the summary of performance of the various methods used to automated di-

agnosis of CAD subjects using heart rate signals. In [181], DWT and wavelet packet decom-

position (WPD) methods are applied on heart sound signals to diagnose the CAD. They have

obtained an accuracy of 85% and 90% for DWT and WPD respectively using neural network

classifier. Arafat et al. have compared the applicability of combined uncertainty model with

fuzzy or probabilistic uncertainty model in computerised diagnosis of CAD using ECG stress

signals [221]. The combined uncertainty model has provided better detection performance of

CAD with an accuracy of 80%. Many linear and non-linear parameters have been extracted
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Figure 6.5. The ranges of CAD index for normal and CAD heart rate signals.

using heart rate signals to use as diagnostic features for classification intended to predict the

subjects with CAD in [223]. Their experimental results show that classification using SVM

performed better than other classifiers yielding the highest accuracy of 90%. Again in [224],

the same features along with carotid arterial wall thickness are used for diagnosis of CAD.

They have found that the classification using SVM and predictive association rules (CPAR)

has provided better accuracies between 85% to 90%. Diagnosis of CAD using Empirical

mode decomposition (EMD) and Teager energy operator based estimation of instantaneous

frequency of diastolic murmurs have been performed in [225]. Their method yielded the

diagnostic accuracy of 85% using back propagation neural network (BPNN). Various linear

and nonlinear measures of heart rate signals are used for classification of control, angina

pectoris and acute coronary syndrome in [222]. Multiple discriminant analysis coupled with

the features yielded a classification accuracy of 75.0 % to classify three classes. The method

demonstrated a sensitivity of 72.5% and specificity of 81.8% in the classification of angina

pectoris, and sensitivity and specificity of 84.6 % and 91.5 %, respectively to detect acute

coronary syndrome. The binary particle swarm optimization (BPSO) and genetic algorithm
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(GA) techniques are used as feature selection models on exercise stress test data [226]. The

eleven features coupled with SVM gave an accuracy of 81.46%. The effectiveness of PCA on

the assessment of exercise stress test for SVM based diagnosis of CAD is studied in [227].

Their work obtained an accuracy of 79.71% using 18 principal components. In [228], the

nonlinear features from the heart rate signals are extracted using recurrence plots, Poincare

plots, DFA, Shannon entropy, approximation entropy, and sample entropy to automatically

detect CAD patients. These features are fed to PCA. Their method yielded a classification

accuracy of 89.5% using multilayer perceptron (MLP) classifier and eight principal compo-

nents. In [61], the heart rate signals are decomposed by DWT upto third level. The detailed

coefficients of DWT are reduced into lower dimensional feature set using PCA, independent

component analysis (ICA) and linear discriminant analysis (LDA). The ICA coupled with

gaussian mixture model (GMM) provided highest accuracy of 96.8%.

In this work, features were extracted from heart rate signals instead of ECG signals

and cardiac sound signals. A new transform that is TQWT has been used for obtaining

the desired sub-band signal for subsequent feature extraction. In fact, after TQWT based

decomposition, we have extracted the correntropy based two features and applied PCA on

the extracted features for transformation that can yield more discriminatory power to the

input features. The transformed features were fed to the LS-SVM classifier that resulted in

the highest classification performance for detecting CAD. It is worth to note that after PCA

based feature transformation, both the principle components were used to measure CAD

index for discriminating the normal and CAD subjects with p-values nearly zero. It can also

be inferred that the CAD index derived using correntropy based features and TQWT exhibit

relatively lower range for CAD subjects than that of normal. This inference has never been

drawn in the literature and it reflects the novelty of this work. Moreover, this study uses

more classification performance parameters than that of earlier methods for detection of

CAD. This work obtained the average classification accuracy of 99.7%, sensitivity of 99.6%,

specificity of 99.8%, and Matthews correlation coefficient of 99.5% for Q varying between

24 to 30 using Morlet wavelet kernel function. The proposed diagnostic frame work yield
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significant classification performance than that of the previously published studies. However,

we believe that the performance of our technique can be further evaluated and improved by

considering more heart rate data. In a nut shell, the advantages and the disadvantages of

our work can be summarized as described next.

The advantages of our proposed method are as follows:

(i) Obtained the highest performance using just two features.

(ii) There is no inter/intra observer variability as the system is completely automatic.

(iii) The cost of the system is only software. Hence can used installed in all hospitals and

polyclinics for an affordable price.

(iv) System is more robust as we used ten times three-fold cross validation while training

and testing.

The limitation of our work is as follows:

(i) We have used only ten normal and ten CAD subjects for this study.

(ii) System is completely digital. Hence may require more storage space.

(iii) Relying too much on the computer may bring down the discriminatory ability of the

clinicians.

6.6 Summary

Accurate and early diagnosis of CAD can save the human life. In this paper, we have

proposed a novel method based on TQWT and correntropy to detect CAD subjects using

heart rate signals. Our method is able to capture the minute changes in the heart rate

signals effectively using merely two correntropy based features extracted with TQWT to

obtain the highest possible classification accuracy in diagnosis of CAD. In this work, we have

defined CAD index that combines the significant features into a single-valued formulation
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that can be used for deciding threshold to automatically detect CAD subjects using heart

rate signals. It has been observed that this CAD index is significantly different for normal

and CAD heart rate signals having relatively lower ranges for CAD. We have obtained

the average classification accuracy of 99.7%, sensitivity of 99.6%, specificity of 99.8%, and

Matthews correlation coefficient of 99.5% forQ varying between 24 to 30 using Morlet wavelet

kernel function. Although the proposed diagnostic frame work yield significant classification

performance, we believe that, as the future scope of this work, the performance of our work

needs to be evaluated using proper stratification of cross-validation procedure by patients

considering more heart rate data. The use of the CAD index needs to undergo rigorous

clinical testing with adequate data in order to establish its efficient use for determining a

stable threshold. After such successful validation with sufficient data, the proposed method

can be used for mass screening of CAD patients accurately. This system is easy to use and

can be installed in hospitals and polyclinics. This technique can be used to diagnose other

healthcare applications.
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Chapter 7

TQWT based Optimal Compression

of Cardiac Sound Signals

7.1 Introduction

Heart disorders are the major cause of death worldwide. These cardiac abnormalities can

be easily monitored, detected and identified by means of simpler and affordable diagnostic

procedure based on acquiring cardiac sound signals using electronic stethoscope [12]. The

compression of cardiac sound signals can improve the storage efficiency and the bandwidth

for convenient diagnosis. Thus, compression and decompression methods for cardiac sound

signals plays important role in data archiving and telemedicine.

The better compression is aimed at reducing the size of data while preserving the main

morphological characteristics of signal after decompression [229, 230, 231]. The commonly

used compression algorithm for biomedical signals are either lossy or lossless or combination

of both. Generally, the compression using transform based methods such as WT leads to

loss of information. The linear quantization can also cause to loss of original information.

The Huffman and run length coding (RLC) have been used as traditional lossless techniques

for compression.

The common transform based compression techniques use Fourier transform, Karhunen-
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Loeve transform, Fast Walsh transform, Discrete cosine transform and WT. The WT based

compression techniques such as embedded zero-trees wavelet, the set partitioning in hierar-

chical trees and the set partitioning embedded block have been found to provide promising

compression performance [232, 233, 234, 235]. The first ever cardiac sound signal compression

method using WT and WPT, together with Huffman coding and RLC has been proposed

in [229]. Moreover, WT and WPT based compression algorithms similar to [236, 237, 238]

have also been proposed for cardiac sound signals in [239, 240]. This compression algorithm

has been found to yield better results for compression of cardiac sound signals than other

existing standard audio compression techniques for music or speech like OGG Vorbis. The

cardiac sound signals compression using this method depends on various parameters thus

the optimization of these parameters have been carried out using GA as proposed in [241].

In order to encode the binary sequences resulting from WT, efficient and low-complexity

compression technique has been presented in [242]. A quality driven cardiac sound signal

coding for wireless cardiac patient monitoring has been developed in [243].

In this article, we present a new method for compression cardiac sound signals using

TQWT having more parameters. Recently, the TQWT [1] has been found flexibly useful

for analysis and processing of cardiac sound signals [118]. In the proposed method, the

cardiac sound signals have been compressed using TQWT, linear quantization, Huffman

coding and RLC. The proposed method decomposes the cardiac sound signals using TQWT

and a dynamic threshold has been applied on the obtained wavelet coefficients to achieve

target distortion error. On the one hand, the wavelet coefficients above the threshold have

been compressed by steps involving zero removal, linear quantization and Huffman coding.

On the other hand, the binary significant map of wavelet coefficients obtained after applying

threshold have been compressed using last zero’s block removal, RLC and Huffman coding.

The optimized values of main compression parameters have been found using GA with a

subset of dataset. The performance of these optimized values of compression parameters have

been evaluated using a test set. The compression of cardiac sound signals by using proposed

method have provided significant compression performance with lower distortion for various
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clinical cases as comprised in the publicly available dataset. Moreover, the obtained results

have been compared with other recent wavelet based method [241]. The comparative study

shows better compression performance of the proposed method which can be attributed to

the properties of TQWT and employment of more compression parameters for optimization.

In addition, the effect of proposed compression/decompression on the diagnostic quality of

signal for segmentation of cardiac sound signals into heart beat cycles has been studied. And

it has been found that despite compression based malformations of cardiac sound signals,

there occurs considerably lower distortion of cardiac sound signals for segmentation which

is useful in performing diagnosis.

The rest of the chapter is organized as follows: The methodology for TQWT based com-

pression of cardiac sound signals covering TQWT based compression, linear quantization,

Huffman coding and RLC based additional compression, compression parameters and ge-

netic algorithm (GA) based optimization of compression parameters have been presented in

section 7.2. Section 7.3 describes the experimental results of the proposed method along

with comparison of proposed method with one recent WT based method. Finally, section

7.4 summarises the chapter.

7.2 Methodology

The flowchart of the proposed method for compression of normal and abnormal cardiac sound

signals has been presented in Fig. 7.1. The main steps involve: tunable-Q wavelet transform

based decomposition (TQWD), application of threshold, zero removal, linear quantization

/ RLC and Huffman coding. The subsections of the proposed method can be described as

follows.

7.2.1 TQWT based Compression

To begin with, the cardiac sound signals can be segmented into non-overlapping blocks

containing N samples. Then, each of these segments can be decomposed into various sub-
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Figure 7.1. Flowchart of the proposed TQWT based compression of cardiac sound signals.

band signals by using TQWT. For a segment, J+1 sub-band signals are obtained considering

J-levels of decomposition. The cell array containing these sub-band signals can be defined

as [1]:

CTQWD = {w1, w2, w3, ..., wJ , wJ+1}, (7.1)

where, wJ+1 is the lowest frequency sub-band signal and from w1 to wJ are the other high-

pass sub-band signals. The number of samples in each of these sub-band signals can be

obtained using the values of α and β as follows:

Cl = [βfsN,αβfsN,α
2βfsN, ..., α

J−1βfsN,α
JfsN ], (7.2)

The order of the above obtained sub-band signals can be reversed for better screening before

applying the threshold. The dynamic threshold can be computed to achieve the target

distortion error of the original signal using percentage root mean square difference (PRD) as

described in [244, 245]. After applying the threshold, two vectors can be formed such that

one of these contains the thresholded wavelet coefficients (CT ) and other with significance

map (SM). The later vector is a binary vector reflecting one’s for nonzero wavelet coefficients.

Then, nonzero thresholded coefficients (CTNZ) and nonzero significance map without last

block of zero’s (SMTNZ) can be derived using CT and SM respectively.
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7.2.2 Linear Quantization, Huffman and RLC based Compression

In order to perform the first stage of compression of CTNZ, it can be linearly quantized in

the range [0, 2b − 1] as follows [229]:

CTNZQ =
2b
[
CTNZ −min(CTNZ)

]
max(CTNZ)−min(CTNZ)

, (7.3)

where, CTNZQ is the linearly quantized wavelet coefficient vector. The min(CTNZ) and

max(CTNZ) are the minimum and maximum values of CTNZ respectively.

7.2.3 Compression Parameters

The performance of the compression of cardiac sound signals can be measured in terms of

compression rate (Crate) and PRD by using following expressions [229, 245]:

Crate =
Lns
Lnc

, (7.4)

PRD =

√√√√√√√√√√
N∑
n=1

(s[n]− ŝ[n])2

N∑
n=1

(s[n]− µs)2
× 100, (7.5)

where, Lns is the length of original signal s[n] in bits having mean µs and Lnc is the length of

compressed signal formed with CH and SMH . The ŝ[n] represents the reconstructed signal.

7.2.4 GA based Optimization of Compression Parameters

The TQWT based compression of cardiac sound signals depends on many parameters. In

this study, the compression performance depends on the type of mother wavelet or Q, J ,

the number of bits utilized for linear quantization (b), r, way of application of threshold.

For each clinical case, the optimized value of these parameters can be found using GA by

optimization of a objective function. The GA has been found to be versatile for solving both

constrained and unconstrained optimization problems based on a natural selection process
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Table 7.1. The optimized values of TQWT based cardiac sound signal compression param-

eters as obtained with GA

Method TQWT

Type of disease

Q level (J) r b N Mean Crate

Mitral regurgitation 4 22 4 7 8192 26.3421

Aortic stenosis 5 23 5 7 8192 15.2587

Mid systolic click 5 19 5 7 8192 13.2312

Aortic valve 6 27 5 7 8192 13.5503

ejection sound

Third heart sound 3 14 4 7 8192 18.3300

Fourth heart sound 5 30 5 7 8192 16.2531

Normal heart sound 5 24 4 7 8192 28.4630

Average 5 23 5 7 8192 22.8416
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of biological evolution [246]. The algorithm repeatedly modifies a population of individual

solutions. At each step, the GA randomly chose individuals from the existing population

and uses them as parents to create the children for the next generation. The procedure is

repeated for successive generations such that population tends to be an optimal solution. The

main advantage of employing GA for optimization of compression parameters is the faster

execution covering entire search space as bounded by the ranges of the various compression

parameters. In this chapter, the GA has been executed for 50 iterations with a population

of 50 individuals. The parameters that have been optimized are Q, J , r, and b. Each of

these parameters has a specific length in bits as determined using its possible range.

The objective function for optimization of cardiac sound signals using GA can be posed

as [241].

L =
(

1

1 + k1PRD

) 1
1+k2Crate

(
1

1 + k3TPS

)k4
, (7.6)

where, TPS is the time required to compress one second of cardiac sound signals. The value

of objective function can vary in the range [0, 1]. The value of first exponential term varies

in the range [0, 1]. In ideal situations this term takes value 1 for high values of Crate and low

values of PRD. The second exponential term accounts for variation in the time required for

compression of one second of the cardiac sound signal. The values of the constant parameters

k1 to k4 have been used to modify the relative significance of the PRD, Crate and TPS. The

values of these constant parameters have been found experimentally as follows: k1 =k3 = 5,

k2 =0.2, and k4 = 0.1 [241].

7.3 Experimental Results

The proposed method for compression of cardiac sound signals has been validated with one

online available dataset of abnormal cardiac sounds signals which can be freely downloaded

as the heart sounds pod cast series (2011). This dataset has been produced by the Robert J.

Hall Heart Sounds Laboratory of Texas Heart Institute at St. Luke’s Episcopal Hospital. The

139



Table 7.2. The results of cardiac sound signal compression using test set

Method Crate TPS

(µ±σ) (µ±σ)

WT (db9) 8.4511±0.7021 0.3463±0.0731

WT (db10) 8.4274±0.7067 0.3660±0.0775

TQWT 13.5465±5.2175 0.3679±0.0716

dataset is composed of real clinical cases with 50 abnormal cardiac sound signals acquired

from variety of subjects with relevant chest positions with different patient maneuver. The

sampling frequency of most of the data is 44.100 kHz with 16 bits except for few cases.

Some of the recordings in the dataset were corrupted by the human voice, rubbing sound

due to stethoscope and other lung sounds. Also, the duration of the heart beat cycles are

inconsistent. For more information regarding the dataset, this series is available at [100].

The normal cardiac sound signals with sampling frequency of 44.100 kHz with 16 bits have

been obtained from [133].

The proposed compression has been implemented with Matlab using m-files. The func-

tions of the TQWT toolbox and genetic algorithm & direct search toolbox of Matlab have

been used for implementing the proposed method. The Matlab software for TQWT toolbox

is available at [220]. A subset of dataset containing recordings of normal, mid-systolic click,

aortic stenosis, mitral regurgitation, third heart sound and fourth heart sound have been

used for optimization of compression performance. For initial 10 blocks of each recording,

the results of GA based optimization of compression parameters have been shown in Table

7.1. During optimization, the tournament selection has been used to choose the individu-

als. The window length of 8192 samples has been used in this study in view of maximum

samples allowed for Huffman coding. The dynamic threshold has been applied to achieve
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target PRD of 3% as described in [245]. The final compression has been performed with

average values of optimized parameters using the test set and the obtained results have been

presented in Table 7.2. The test set consists of recordings from all the 20 clinical cases in

the heart sounds pod cast series. The mean and standard deviation are denoted by µ and

σ respectively. In Fig. 7.2, from (a), (c), (e), (g), (i), (k) and (m) shows the cardiac sound

signals without compression for normal, third heart sound, aortic valve ejection sound, aortic

stenosis, fourth heart sound, mitral regurgitation, mid-systolic click respectively. The corre-

sponding decompressed cardiac sound signals after compression has been shown in Fig. 7.2

from (b), (d), (f), (h), (j), (l) and (n). Fig. 7.2 depicts lower distortion error in cardiac sound

signals after compression/decompression than that of without compression. The experimen-

tal results in Table 6.2 show that maximum of Crate for the proposed method and the WT

based method with db10 wavelet have been 18.7215 and 9.1341 respectively. The proposed

method outperforms the WT based method by providing higher value of Crate with target

PRD of 3% in turn ensuring better quality of reconstructed signal. The proposed method

has provided comparatively better performance which can be attributed to the properties

of TQWT. Moreover, the deployment of the TQWT provides more compression parameters

for optimization.

The following part of this study shows the effect of compression/decompression on the

diagnostic quality of signals for segmentation of cardiac sound signals into heart beat cy-

cles. The automatic segmentation of cardiac sound signals into heart beat cycles is generally

required for the detection and identification of heart disorders. The segmentation of the

cardiac sound signals has been performed using TQWT as described in [118]. The murmurs

from cardiac sound signals have been removed by suitably constraining TQWT based de-

composition and reconstruction. The Q-factor, redundancy parameter and number of stages

of decomposition of the TQWT have been adapted to the desired statistical properties of

the murmur-free reconstructed cardiac sound signals. The envelope based on CSCW has

been extracted after the removal of low energy components from the reconstructed cardiac

sound signals. Then, the heart beat cycles have been derived from the original cardiac sound
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signals by mapping the required timing information of CSCW which has been obtained us-

ing established methods. The experimental results on segmentation of cardiac sound signals

have been shown in Table 7.3 with and without the proposed compression/decompression.

The signals used for segmentation includes the normal and abnormal cardiac sound signals

comprising six different pathological cases same as that have been used during optimization

of compression of cardiac sound signals. In Table 7.3, the correct segmentation has been

defined in terms of segmentation rate (SR) as the ratio of correctly segmented heart beat

cycles (SB) to the actual total number of heart beat cycles (TB). From this study, it has

been found that despite compression based malformations of cardiac sound signals, there

occurs considerably lower distortion of cardiac sound signals for segmentation as applicable

in diagnosis of heart disorders.

7.4 Summary

The TQWT is an important method for analysis and processing of cardiac sound signals.

The compression of cardiac sound signals by using TQWT has been performed to improve

the bandwidth and the storage efficiency for convenient diagnosis of heart disorders. The

optimized values of the compression parameters have been obtained using GA for final eval-

uation of the proposed framework using test data. The proposed TQWT based method for

compression of cardiac sound signals has been found more effective in ensuring diagnostic

quality of signal after compression/decompression by virtue of more parameters for com-

pression. The proposed compression method can be effectively used for data archiving and

telemedicine for computer-aided diagnosis of heart disorders. It would be of interest to de-

velop the compression method for ECG signals based on the proposed compression method

in this chapter.
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Figure 7.2. Examples of cardiac sound signals. (a), (c), (e), (g), (i), (k) and (m) shows

signals without compression for normal, third heart sound, aortic valve ejection sound, aor-

tic stenosis, fourth heart sound, mitral regurgitation, mid-systolic click respectively. The

corresponding signals after compression/decompressed have been shown from (b), (d), (f),

(h), (j), (l) and (n).
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Table 7.3. The experimental results on segmentation of cardiac sound signals with and

without the proposed compression/decompression compression

Method Without With

Compression compression

Type of disease

THV SB/TB SR(%) THV SB/TB SR(%)

Mitral regurgitation 15 16/18 88.88 15 16/18 88.88

Aortic stenosis 15 40/46 86.96 10 40/46 86.96

Mid systolic click 15 27/27 100 15 27/27 100

Aortic valve 25 10/13 76.92 25 10/13 76.92

ejection sound

Third heart sound 30 29/30 96.66 30 29/30 96.66

Fourth heart sound 45 29/29 100 40 29/29 100

Normal heart sound 10 50/50 100 10 50/50 100
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Chapter 8

Conclusion and Future Scope of the

Work

8.1 Conclusion

The cardiac signals can serve as useful means of diagnosis of heart disorders. The analysis,

preprocessing, segmentation, feature extraction, feature selection and classification of cardiac

signals are emerging areas of Biomedical signal processing for detection and identification of

heart disorders. The advanced signal processing methods and medical artificial intelligence

are of paramount significance to effectively carry out the medical decision making. Now a

days, the need of application of health care services from a distance is growing. Due to this,

the research in the area of telemedicine which use computerized or digital diagnostic equip-

ment and incorporation of information systems for health care applications is developing

tremendously. The application of telemedicine includes, among others, the following re-

motely executed processes: diagnosis, therapy and treatment, monitoring and rehabilitation

of patients, prevention and education of patients, doctors and medical students.

This work explores the capability of TQWT for envelope based segmentation of oscilla-

tory cardiac sound signals into heart beat cycles. The proposed method based on constrained

TQWT based decomposition and reconstruction captures the required information in the re-
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constructed signal using sufficient number of adaptable input parameters of the TQWT. The

experimental results have reflected the capability of constrained TQWT based decomposition

and reconstruction in perfectly identifying the primary heart sounds form the overlapping

murmurs even when with they were having comparable magnitude.

The classification of cardiac sound signals for detection and identification of heart valve

disorders using TQWT based novel feature set have been explored. This feature set has

been obtained by the parameters based on the constrained TQWT, time-domain represen-

tation, and FB expansion of cardiac sound signals. This work has suggested the extraction

of features during the separation of heart sounds and murmur using the segmented heart

beat cycles. Nevertheless, the separation of heart sounds and murmur has been used for

obtaining more diagnostic information with same features to successfully classify cardiac

sound signals. Finally, the features based on FB expansion have been used to represent the

spectral properties of segmented cardiac sound signals. The experimental results have shown

that the proposed novel features are effective for classification of cardiac sound signals. The

proposed classification method requires less number of effective features that can lead to

reduce computation complexity. This feature of the proposed method makes suitable for

real time implementation of expert system for classification of heart valve disorders. Auscul-

tation with an electronic stethoscope integrated with the proposed classification technique

can be used as an expert system. This expert system may be helpful for clinicians to carry

out investigations in the clinic, hospital and even at home.

The diagnosis of septal defects by representation of cardiac sound signals with TQWT

based features has been studied. This feature set has been obtained by the TQWT based

SAMDF of segmented heart beat cycles derived from cardiac sound signals. In search of

appropriate level of TQWT based decomposition that can provide efficient features, the

suggested feature sets have been formed and used to classify cardiac sound signals for different

levels. The proposed features have been used as an input to the LS-SVM classifier together

with different kernel functions. The experimental results have been found promising that

reveals the capabilities of proposed feature set in characterization of different types of cardiac
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sounds signals for diagnosis of septal defects. The salient feature of the proposed method

is that its classification performance has been found to be independent of the values of

Q at tenth level of decomposition using Morlet wavelet kernel function. The proposed

method can be implemented as an expert system for classification of cardiac sound signals

to diagnose septal defects. The computer-aided auscultation using electronic stethoscope

or mobile technology with the proposed classification technique based on TQWT derived

SAMDF can be used as an intelligent and affordable expert system that can automatically

detect the septal defects. This expert system can reduce the health care expenses and

avoid the challenges of mastering cardiac auscultation thereby helping the physicians to

conveniently diagnose the septal defects.

Accurate and early diagnosis of CAD can save the human life. In view of this, a novel

method based on TQWT and CCo to detect CAD subjects using heart rate signals has

been presented. Our method is able to capture the minute changes in the heart rate signal

effectively. We have obtained the average classification accuracy of 99.7%, sensitivity of

99.6%, specificity of 99.8%, and Matthews correlation coefficient of 0.995% for Q varying

between 24 to 30 using Morlet wavelet kernel function. The proposed method can be used

for mass screening of CAD patients accurately. This system is easy to used and can be

installed in hospitals and polyclinics. This technique can be used to diagnose other healthcare

applications.

The compression of cardiac sound signals by using TQWT has been performed to im-

prove the bandwidth and the storage efficiency for convenient diagnosis of heart disorders.

The optimized values of the compression parameters have been obtained using GA for final

evaluation of the proposed framework using test data. The proposed TQWT based method

for compression of cardiac sound signals has been found more effective in ensuring diag-

nostic quality of signal after compression/decompression by virtue of more parameters for

compression.
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8.2 Future Scope of the Work

The proposed framework for analysis, segmentation, feature extraction, feature selection

and classification of cardiac sound signals is effective for detection and identification of heart

valve disorders and septal defects. The diagnosis of CAD by classification of ECG based

heart rate signals can be used for routine medical check ups. The TQWT based optimal

compression of cardiac sound signals is quite promising to be used for telemedicine purpose.

However, to facilitate further development of the proposed methodologies in this thesis, the

following highlighted issues can be addressed in the future.

The murmurs which are extracted using constrained TQWT based decomposition and

reconstruction can provide more insight into the modelling aspects of cardiovascular system.

In this work, categories of cardiac sound signals under study have been expanded to cover

a broader range of diseases. It would be of interest to investigate the effect of noise on

the proposed methodologies. For classification, the proposed methodologies need to be val-

idated with more number of patients for proper stratification of cross-validation procedure

by patients. The k-fold cross-validation procedure can produce more effective classification

performance for detection and identification of heart valve and other disorders. It might

be interesting to find a best kernel function between every hyperplane instead of using one

for all hyperplanes. In order to measure reliable performance of proposed classification

technique for diagnosis of heart valve disorders, more classification performance measures

can be included. The proposed classification methodologies can be compared with other

time-frequency methods to establish the significance of the proposed diagnostic framework.

Moreover, in future, the research can be carried out for screening of features that can reduce

the computational burden of the algorithm with further improvement in the classification

accuracy in diagnosis. In addition, the proposed diagnostic framework should be applied on

out-of-sample data for its possible application in health care clinics.

The part of this work can be further extended for detection and identification of cardiac

devices especially the artificial heart valves in routine emergency check-ups at hospitals. The

classification methodologies presented in this thesis can be extended for identification of type
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and degree of septal defects. The proposed expert systems can be used for classification of

other biomedical signals like EEG, ECG, EMG signals corresponding to normal and abnormal

conditions.

The proposed compression method can be effectively used for data archiving and telemedicine

for computer-aided diagnosis of heart disorders. It would be of interest to develop the com-

pression method for ECG signals based on the proposed compression method in this chapter.
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[24] M. Fernández-Chimeno, M. Qúılez, F. Silva, Understanding electrosurgical unit per-

turbations in order to address hospital operating room electromagnetic compatibility,

IEEE Transactions on Biomedical Engineering 53 (6) (2006) 1206–1209.

[25] E. N. Bruce, Biomedical signal processing and signal modeling, Wiley-Interscience,

New York, 2000.

[26] R. F. Santopietro, The origin and characterization of the primary signal, noise, and

interference sources in the high frequency electrocardiogram, Proceedings of the IEEE

65 (5) (1977) 707–713.

[27] D. Jennings, A. Flint, B. C. H. Turton, L. D. M. Nokes, Introduction to medical

electronics applications, Edward Arnold, a division of Hodder Headline PLC, London,

1995.

153



[28] S. Jesus, H. Rix, High resolution ECG analysis by an improved signal averaging

method and comparison with a beat-to-beat approach, Journal of Biomedical Engi-

neering 10 (1) (1988) 25–32.

[29] N. Ahmed, P. J. Milne, S. G. Harris, Electrocardiographic data compression via orthog-

onal transforms, IEEE Transactions on Biomedical Engineering (6) (1975) 484–487.

[30] E. J. Berbari, E. A. Bock, A. C. Cházaro, X. Sun, L. Sornmo, High-resolution analysis

of ambulatory electrocardiograms to detect possible mechanisms of premature ventric-

ular beats, IEEE Transactions on Biomedical Engineering 52 (4) (2005) 593–598.

[31] E. N. Marieb, K. Hoehn, The Cardiovascular System: The Heart, Human Anatomy &

Physiology (2007) 677–712.

[32] R. Berne, M. Levy, Cardiovascular Physiology (4th ed), The C.V. Mosby Company,

1998.

[33] C. Ahlström, Nonlinear phonocardiographic signal processing (2008).

[34] R. M. Rangayyan, Biomedical Signal Analysis. A Case-Study Approach, IEEE Press,

Piscataway, NJ, 2005.

[35] Y.-T. Zhang, G. Chan, X.-y. Zhang, L. Yip, Heart sounds and stethoscopes, Wiley

Encyclopedia of Biomedical Engineering, Wiley Online Library, 2006.

[36] S. Ari, K. Hembram, G. Saha, Detection of cardiac abnormality from PCG signal using

LMS based least square SVM classifier, Expert Systems with Applications 37 (12)

(2010) 8019–8026.

[37] G. J. Tortora, B. H. Derrickson, Principles of anatomy and physiology (13th ed.), John

Wiley & Sons, 2012.

[38] H. Nazeran, Electrocardiocarphy, Computer In, Vol. 3, Wiley Encyclopedia of Medical

Devices and Instrumentation, Wiley Online Library, 2006.

154



[39] G.-X. Yan, R. S. Lankipalli, J. F. Burke, S. Musco, P. R. Kowey, Ventricular repo-

larization components on the electrocardiogramcellular basis and clinical significance,

Journal of the American College of Cardiology 42 (3) (2003) 401–409.

[40] J. G. Webster, Medical Instrumentation: Application and Design (3rd ed.), John Wiley

& Sons, New York, 1998.

[41] W. J. Tompkins, Biomedical digital signal processing, Prentice-Hall, Upper Saddle

River, NJ.

[42] E. Grayden, Cardiopulmonary Resuscitation, Vol. 2, Wiley Encyclopedia of Medical

Devices and Instrumentation, Wiley Online Library, 2006.

[43] E. Goldberger, Unipolar lead electrocardiography and vectorcardiography (ed. 3) lea

& febiger, Publishers, Philadelphia (1954) 189.

[44] A. Leatham, Auscultation of the Heart and Phonocardiography (2nd ed.), J. & A.

Churchill, London, UK, 1970.

[45] W.-C. Kao, C.-C. Wei, Automatic phonocardiograph signal analysis for detecting heart

valve disorders, Expert Systems with Applications 38 (6) (2011) 6458–6468.

[46] A. C. Stasis, E. Loukis, S. Pavlopoulos, D. Koutsouris, A multiple decision trees ar-

chitecture for medical diagnosis: The differentiation of opening snap, second heart

sound split and third heart sound, Computational Management Science 1 (3-4) (2004)

245–274.

[47] V. Fuster, R. Alexander, R. O’Rourke, R. Roberts, S. King, I. Nash, E. Prystowsky,

J. Hurst, Hurst’s the Heart (11th ed.) (2004).

[48] K. Dumont, Experimental and numerical modeling of heart valve dynamics, Ph.D.

thesis, Ghent University, Belgium (December 2005).

[49] S. of Cleveland Clinic, Diseases and conditions, my.clevelandclinic.org (2014).

155



[50] A. G. Tilkian, M. C. Boudreau, Understanding heart sounds and murmurs: With an

introduction to lung sounds (4th ed.), Saunders, Philadelphia, 2001.

[51] S. Sun, H. Wang, Z. Jiang, Y. Fang, T. Tao, Segmentation-based heart sound feature

extraction combined with classifier models for a VSD diagnosis system, Expert Systems

with Applications 41 (4(2)) (2014) 1769–1780.

[52] C. A. Warnes, R. Liberthson, G. K. Danielson, A. Dore, L. Harris, J. I. Hoffman,

J. Somerville, R. G. Williams, G. D. Webb, Task force 1: The changing profile of

congenital heart disease in adult life, Journal of the American College of Cardiology

37 (5) (2001) 1170–1175.

[53] J. A. Finegold, P. Asaria, D. P. Francis, Mortality from ischaemic heart disease by

country, region, and age: Statistics from World Health Organisation and United Na-

tions, International Journal of Cardiology 168 (2) (2013) 934–945.

[54] D. P. Faxon, M. A. Creager, S. C. Smith, R. C. Pasternak, J. W. Olin, M. A. Bettmann,

M. H. Criqui, R. V. Milani, J. Loscalzo, J. A. Kaufman, et al., Atherosclerotic vascu-

lar disease conference executive summary: Atherosclerotic vascular disease conference

proceeding for healthcare professionals from a special writing group of the american

heart association, Circulation 109 (21) (2004) 2595–2604.

[55] S. K. Bhatia, Biomaterials for clinical applications, Springer, 2010.

[56] D. M. L, O. T. G., Coronary Artery Disease. The Gale Encyclopaedia of Medicine (3rd

ed.), L. Longe Jacqueline , Farmington Hills. MI. Thompson Gale, 2006.

[57] D. Steinberg, A. M. Gotto Jr, Preventing coronary artery disease by lowering choles-

terol levels: fifty years from bench to bedside, Journal of the American Medical Asso-

ciation 282 (21) (1999) 2043–2050.

[58] P. D. Thompson, B. D. Levine, Protecting athletes from sudden cardiac death, Journal

of the American Medical Association 296 (13) (2006) 1648–1650.

156



[59] J. K. Ockene, L. H. Kuller, K. H. Svendsen, E. Meilahn, The relationship of smok-

ing cessation to coronary heart disease and lung cancer in the Multiple Risk Factor

Intervention Trial (MRFIT), American Journal of Public Health 80 (8) (1990) 954–958.

[60] R. D. Brook, B. Franklin, W. Cascio, Y. Hong, G. Howard, M. Lipsett, R. Luepker,

M. Mittleman, J. Samet, S. C. Smith, et al., Air pollution and cardiovascular disease:

A statement for healthcare professionals from the expert panel on population and

prevention science of the American Heart Association, Circulation 109 (21) (2004)

2655–2671.

[61] D. Giri, U. Rajendra Acharya, R. J. Martis, S. Vinitha Sree, T.-C. Lim, T. Ahamed VI,

J. S. Suri, Automated diagnosis of coronary artery disease affected patients using LDA,

PCA, ICA and discrete wavelet transform, Knowledge-Based Systems 37 (2013) 274–

282.

[62] E. N. Silber, L. N. Katz, Heart Disease, Macmillan Publishing Co., New York, 1975.

[63] J. A. San Román, I. Vilacosta, J. A. Castillo, M. J. Rollán, M. Herńandez, V. Peral,
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