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Abstract

Speech signal processing applications have gradually found place in diverse fields such

as mobile phones, text reader applications, GPS, human-computer interactions, wireless

communications, voice pathology detection. Real time language translation and natural

language interpretation are the new emerging areas that employ speech signal processing.

The scope of speech signal processing applications is expected to expand and grow in the

coming years.

This thesis focuses on the noise resilient analysis of the speech signal using non-

stationary signal processing techniques. Speech signal analysis in the low frequency range

(LFR) is shown to be advantageous for robust determination of glottal characteristics

pertaining to the voiced regions of a speech signal. It is useful for many applications such

as text to speech synthesis, speaker recognition and emotion recognition. This thesis pro-

poses noise resilient and accurate algorithms for instantaneous V/NV detection, extraction

of the time-varying F0 component of a voiced speech signal and GCI identification. A

novel technique for decomposition of a multi-component non-stationary signal (such as

speech signal) into AM-FM mono-component signals is proposed in the last chapter of

this thesis. It is employed for formant analysis of the voiced speech signal.

The proposed V/NV detection algorithm exploits the property that in the LFR, the

energy over the time-frequency plane is present only during voiced regions of the speech

signal. The proposed iterative algorithm caters to the challenging problem of reliable

extraction of the time-varying F0 component of a voiced speech signal in the presence of

noise, without the need of time-varying filters. The proposed GCI identification method

locates GCIs reliably and accurately by employing negative cycles of the extracted time-

varying F0 component of a voiced speech signal to provide coarse estimate of the intervals

viii



where GCIs are likely to occur. Finally, a novel iterative decomposition approach is

proposed to extract either only strong or strong cum weak AM-FM mono-component

signals from a multi-component non-stationary signal (such as a voiced/unvoiced speech

signal). The proposed iterative decomposition approach efficiently extracts the formant

components of a voiced speech signal. The proposed iterative decomposition approach

when used along with discrete energy separation algorithm (DESA) performs efficient and

noise resilient formant analysis.
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signals ȳp[n], p = 1, 2, 3, 4 obtained using the proposed iterative decompo-

sition approach are shown in solid lines in (b), (c), (d), (e). The original

AM-FM mono-component signals of x̆1[n] are shown in dashed lines in (b),

(c), (d), (e). x[n] is given by (6.26). . . . . . . . . . . . . . . . . . . . . . . 143

6.22 Multi-component signal segment x̆1[n]. Extracted IMFs using the EMD

are shown in solid lines in (b), (c), (d), (e), (f). x[n] is given by (6.26). . . 144

6.23 (a) Low pass filtered voiced speech segment x̆1[n]. Extracted AM-FM
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Chapter 1

Introduction

Speech is essential to establish verbal communication between human beings for conveying

information. It is one of the most primitive modes of communication used by humans to

facilitate socialization and interaction. Humans feel comfortable to express themselves and

exchange information using speech even when at distance from each other. This lead to

the invention of applications like fixed and mobile telephony, voice over Internet protocol

(VOIP), requiring speech signal processing. The demand for human-computer interactions

using speech also motivated the development of a variety of speech signal processing

applications like interactive voice response (IVR) systems, voice-activated GPS navigation

systems, text readers, voice dialing enabled mobile phones, voice security systems etc. The

need for non-invasive detection of voice disorders and objective measurement of vocal

conditions in the medical context paved the way of development of innovative solutions

using speech signal processing techniques.

Speech signal processing refers to the study of characteristics of speech signals and de-

velopment of efficient algorithms for their processing. Here, we assume the speech signal

to have a digital representation. The diverse speech signal processing applications can

be categorized into speech analysis/synthesis, speech coding, speech recognition, speaker

recognition, speaker diarization, speech enhancement, voice analysis. This thesis proposes

noise resilient algorithms for acoustic analysis of the speech signal using both existing and

innovative non-stationary signal processing techniques. The thesis demonstrates the sig-

nificance of performing V/NV detection and GCI identification by analyzing the speech

signal in the low frequency range (LFR: 50 Hz - 500 Hz) to achieve high accuracy and noise
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robustness. An innovative iterative approach for decomposition of a multi-component

non-stationary signal (e.g. speech signal) into amplitude-frequency modulated (AM-FM)

mono-component signals is presented in the last chapter of this thesis. The proposed

iterative decomposition approach is suitably employed for formant analysis of the voiced

speech signal. Before stating the objectives of this thesis and explaining the motivation

behind them, brief description of theory and discrete-time system modeling of human

speech production are provided in the next section for better understanding of the under-

lying concepts.

1.1 Speech Signal Production and Modeling

Speech waveform is a sound pressure wave. The air flow forced from the lungs passes

through the trachea and gets modulated in the larynx. The modulated air flow from

the larynx is spectrally shaped by the movement of organs in the vocal tract system

comprising of pharyngeal cavity (throat), oral cavity (mouth) and nasal cavity (nose).

The spectrally shaped air flow is finally radiated at lips converting the velocity waveform

to pressure waveform. The block diagram of human speech production is depicted in Fig.

1.1 [1].

The modulated air flow coming out of the larynx acts as an excitation to the vocal tract

system. The two elemental types of source excitation are voiced and unvoiced [1]. Voiced

speech is produced when the vocal folds situated in the larynx vibrate in a quasi-periodic

fashion, chopping the air flow passing through them, resulting in the source excitation to

take the form of quasi-periodic puffs of air. The space located between the vocal folds is

known as glottis and the vibration of vocal folds causes repeated opening and closing of

the glottis. Within a glottal cycle, the excitation to the vocal tract system is maximum at

the instant of closure of glottis (GCI). The variation of glottal flow volume velocity and its

first derivative with respect to time represented by u(t) and u′(t) respectively, are shown in

Fig. 1.2 for the duration of a glottal cycle [2]. The glottal pulses in successive glottal cycles

are quasi-periodic in nature. The time duration between successive vocal fold openings

is called as the fundamental period of voiced speech. The inverse of the fundamental
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period provides the rate of vibration of vocal folds known as the fundamental frequency

(F0). F0 is a time-varying quantity and lies in the range of 50 Hz - 500 Hz [1]. Pitch is a

subjective psychoacoustical attribute of the voiced speech which is closely related to F0

of the voiced speech [1]. In this thesis, we have used the words pitch and fundamental

frequency interchangeably. Unvoiced speech is produced when the air flow passes through

a narrow constriction in the vocal tract system, rendering the source excitation to be

noise-like in nature, resulting in a random output. Silence durations occur in the speech

in the absence of any excitation to the vocal tract system [1].

The speech pressure waveform is converted to an electrical signal and vice versa using

microphone and loudspeaker respectively. The analog speech signal is converted into

digital signal by a series of processes: low pass filtering, sampling, quantization and

A/D conversion. The voiced speech signal is a quasi-periodic waveform characterized

by high amplitude, high autocorrelation between samples of successive glottal cycles, low

zero-crossing rate and periodic structure in its magnitude spectrum. The unvoiced speech

signal is a random waveform characterized by low amplitude, low autocorrelation between

samples, high zero-crossing rate and aperiodic spectrum [1,5]. Silence durations of a clean

speech signal have no signal strength and contain the background noise for a noisy speech

signal.

Figure 1.1: Block diagram of human speech production [1].

The understanding of system behavior of the human speech production requires sepa-
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Figure 1.2: (a) Glottal flow volume velocity (b) First order derivative of glottal flow
volume velocity. The waveforms are quasi-periodic in nature and are depicted for a single
glottal cycle [2].

rate modeling of source excitation, vocal tract system and lip radiation. A linear discrete-

time model of the human speech production is shown in Fig. 1.3 [1]. It can be inferred

from Fig. 1.2 that the source excitation of the voiced speech signal can be modeled as

a glottal shaping filter driven by an impulse train generator [1], as depicted in Fig. 1.3.

The time duration between successive impulses in the discrete-time impulse train varies

in accordance to the time-varying fundamental period of the voiced speech signal. The

source excitation of the unvoiced speech signal can be modeled as a random noise gen-

erator [1]. The vocal tract system acts as a linear time-varying filter amplifying certain

frequencies present in the source excitation while attenuating others [1]. The frequencies

at which local peaks occur in the magnitude spectrum of the speech signal are called as

formants. Thus, formants represent frequencies contained in the source excitation that

are emphasized by the vocal tract system. Lets assume the speech production system

to be stationary for a small time duration. The z-transform of a discrete-time speech

segment, s[n] spanning a small duration represented by S[z] can be expressed as [1]:

S[z] = Θ0U [z]H[z]R[z] (1.1)

where the z-domain transfer functions of source excitation, vocal tract system and lip
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radiation are denoted by U [z], H[z], R[z] respectively. The gain constant is represented

by Θ0 which controls the overall amplitude of the system. H[z] is usually modeled as

an all-pole filter [1]. The all-pole model of H[z] is capable of producing a waveform

that preserves the magnitude spectrum of the speech signal, sufficient for speech coding,

recognition and synthesis [1]. The advantage of using an all-pole model for H[z] is that

it submits to the use of a powerful and simple analytic technique, linear prediction (LP)

analysis. For unvoiced excitation, U [z] represents the z-transform of random noise. For

voiced excitation, U [z] = E[z]G[z] where E[z] and G[z] represent the z-transform of the

impulse train and z-domain transfer function of the glottal shaping filter respectively.

It has been found that the lip radiation act as a differentiator and its effect is usually

included in the source excitation [1]. Thus, equation (1) can be written as:

S[z] = Θ0V [z]H[z] (1.2)

where V [z] represents the z-transform of the first order derivative of the discrete-time

glottal air flow denoted by v[n] = u′[n]. It can be deduced from (1.2) that u′[n] act as an

excitation to the vocal tract system. It can be inferred from Fig. 1.2 (b) that the first

order derivative of glottal air flow acting as an excitation to the vocal tract system can be

closely approximated by a train of negative impulses for voiced speech [1]. The impulse-

like behavior of voiced excitation is attributed to the sudden cessation of the glottal air

flow during the closing phase of a glottal cycle [6]. The instants of local minima of u′(t)

(Fig. 1.2 (b)) are indicative of GCIs. The duration between successive GCIs varies with

time and is reflected in the time-varying F0 of voiced speech. Identification of GCIs plays

a significant role in many speech processing applications. The accurate and noise resilient

identification of GCIs act as a motivation for the development of algorithms presented in

this thesis as explained in the next section.

1.2 Importance of Glottal Characteristics

Glottal Closure Instant (GCI) is one of the most important glottal characteristic pertain-

ing to production of the voiced speech. During a glottal cycle, the glottal impedance drops
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Figure 1.3: Discrete-time modeling of human speech production [1].

suddenly at the GCI, resulting in a high voiced speech signal strength. Therefore, GCIs

are generally robust to noise. Identification of GCIs facilitate parametric coding of the

speech signal by enabling modeling of voiced speech signal in each glottal cycle [7]. The

knowledge of GCIs is helpful in identification of the closed phase of glottal cycles required

by inverse filtering techniques used for estimation of the glottal source excitation [2]. The

estimation of glottal source excitation finds use in determining speaker-specific features

employed in applications such as speaker identification and speaker verification [8, 9].

Instantaneous F0 can be estimated by taking inverse of the duration between successive

GCIs [10]. Estimation of the instantaneous F0 finds use in the diagnosis of pathological

voice disorders, speech compression and speech enhancement [11–13]. The variations in F0

also encode prosodic features such as intonation and stress. Stress refers to the variations

in F0 to relatively give more emphasis to certain syllables in a word or certain words in

a phrase or sentence. Intonation implies variation of the pitch contour with respect to

time that signifies whether an utterance is a statement or question, emotional state of

a speaker, presence of sarcasm/humor, taunt in an utterance or any other information

which cannot be included using grammatical rules of a language [1]. Prosody manipulation
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performed in applications such as text-to-speech synthesis, voice conversion, expressive

speech synthesis [14–16] can be carried out in a pitch-synchronous manner by employing

the identified GCIs as markers of the corresponding pitch periods. Prosodic features

have been modeled to perform speaker recognition [17] in the telephone data. It was

concluded in [17] that features derived from the F0 contour were the most useful among

all features employed for automatic speaker recognition in [17]. Classification of emotions

has been accomplished using the feature set comprising of cepstral analysis of the F0

contour, instantaneous F0 and strength of excitation around GCIs [18–20]. Thus, accurate

identification of GCIs is crucial to a variety of speech signal processing applications.

Many of the above mentioned applications entail the algorithms of GCI identification and

instantaneous F0 estimation to be noise resilient.

Many algorithms for instantaneous F0 estimation and GCI identification reported in

the literature assume prior information of the boundaries of voiced regions in the speech

signal [21–24]. The algorithm in [25] detect voiced regions after locating GCIs but the

main drawback of this method is that it requires a fixed level of noise (signal to noise

ratio (SNR): 10 dB) to be added to the speech signal already degraded with noise. Some

methods for F0 estimation also perform voicing decision but require many thresholds to

be set on various parameters [26]. Moreover, the performance of such methods degrade

in the presence of noise. Thus, it is preferable and logical to reliably locate voiced regions

prior to identification of GCIs or estimation of the instantaneous F0, especially in the

presence of noise.

1.3 Motivation

Many methods have been reported in the literature to perform voiced-unvoiced-silence (V-

UV-S) classification, voice activity detection (VAD) and voiced/unvoiced (V/UV) classi-

fication [5, 27–33]. V-UV-S classification implies categorization of the speech signal into

three separate classes based on the type of excitation namely: voiced, unvoiced and silence

(absence of any excitation). VAD involves detection of regions of speech activity (voiced

or unvoiced) in the speech signal. Thus, VAD detects intervals in an utterance with pres-
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ence of human speech. V-UV classification can be performed after VAD to classify speech

activity intervals into two categories depending on the type of excitation namely: voiced

and unvoiced. Few methods have also been reported to accomplish voiced/non-voiced

(V/NV) detection [25,34]. V/NV detection refers to detection of durations in the speech

signal for which the source excitation was of ‘voiced’ type i.e. detection of durations in

the speech signal during which the vocal folds were vibrating. Many methods for GCI

identification and the time-varying F0 estimation require prior information of the bound-

aries of voiced regions of speech signal which can be provided by a noise resilient V/NV

detection method at a less computational expense than V-UV-S classification methods.

Various time domain features such as: zero-crossing rate, short-term energy estimates,

features extracted from the LP analysis, frequency domain features exploiting the periodic

structure of the magnitude spectrum of the voiced speech signal and energy of the zero

frequency resonator (ZFR) filtered signal have been employed to detect voiced regions of

the speech signal [5,27,33,34]. The LP analysis assumes the speech signal to be stationary

for about 20− 25 ms which is not true for quickly varying phonemes such as plosives [35].

The drawbacks of these methods are prerequisite of training data [27, 28], requirement

of prior information of the average pitch period [25, 34] and noise sensitivity. One of the

main limitation of the above mentioned methods lie in their inability to provide the V/NV

detection at each sample instant of the speech signal. The above mentioned limitations

of existing methods and considerable scope of further improvement in performance act as

strong motivations to develop an efficient algorithm for instantaneous and noise robust

detection of voiced regions in the speech signal.

The state of the art for GCI identification includes numerous methods. There are

methods based on autocovariance matrix, LP residual, Frobenius norm, harmonic su-

perposition, lines of maximum amplitudes (LOMA) of the wavelet transform, dynamic

programming projected phase slope algorithm (DYPSA), AM-FM signal model, yet an-

other GCI algorithm (YAGA) [23, 36–42]. These methods suffer from deterioration in

performance in the presence of noise. The speech event detection method using the resid-

ual excitation and a mean based signal (SEDREAMS) [24] and the method based on the

ZFR filtered speech signal [6] were demonstrated to be robust to different noise environ-
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ments in [43] but leave ample scope for further enhancement in the GCI identification

rate and detection accuracy. It was stated in [39] that negative cycles of the time-varying

F0 component of voiced speech signal provide reliable coarse estimate of intervals where

GCIs are likely to occur. However, the harmonic superposition method presented in [39]

have not considered the extraction of the time-varying F0 component and its harmonics

at moderate to low SNRs in noisy environments. The extraction of the time-varying F0

component of voiced speech signal is a challenging task because of high F0 variations

possible during the course of a voiced region, substantially less energy of the time-varying

F0 component in comparison to formant components and distortion caused by noise. The

aim to develop an accurate and noise resilient GCI identification method based on devising

a novel technique to reliably extract the time-varying F0 component of the voiced speech

signal in the presence of noise is the key motivation for this thesis.

As stated in the previous section, many speech signal processing applications require

estimation of the time-varying F0 at each glottal cycle. There are two types of F0 esti-

mation methods which can capture variations in the time-varying F0 at the desired time

resolution, namely: instantaneous methods and event-based methods. The instantaneous

F0 estimation methods estimate the F0 value at each sample instant of the voiced speech

signal. Instantaneous F0 estimation methods based on the time-frequency analysis tech-

niques [22, 26, 44] and modeling of the time-varying F0 using a B-spline expansion [21]

work well for clean speech signals but their performances degrade in the presence of noise.

On the other hand, event-based methods mark the occurrence of a characteristic event in

each glottal cycle such as the GCI and F0 is computed as the inverse of the time interval

between successive GCIs. Thus, the event-based methods estimate the F0 value at the

time-resolution of a glottal cycle. We have already deduced from (1.2) that the voiced

excitation resembles a train of negative impulses occurring at discrete-time instants (in-

stants of glottal closure); therefore, variations in F0 within a glottal cycle are sufficient

to describe the continuous change in F0 [44]. Event-based methods based on the GCI

determination signal, wavelet transform [45, 46] are strongly dependent on the shape of

the speech signal waveform which can get excessively distorted by the noise environment

at moderate to low SNRs. The event-based method presented in [10] derived the final
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pitch contour from the positive zero crossings of the ZFR filtered voiced speech signal

and the positive zero crossings of the ZFR filtered Hilbert envelope of the voiced speech

signal. The performance of [10] was shown to be robust to different noise environments.

However, there is ample scope to further reduce the F0 estimation error rates in clean and

noisy environments. The motivation here is to achieve better performance than the exist-

ing event-based methods for F0 estimation in clean and noisy environments by employing

an accurate and robust GCI identification method. With regard to above discussions, the

objectives of this thesis are stated in the next sub-section.

1.4 Objectives

Having understood the importance of precisely locating GCIs in a voiced speech signal

in the area of speech signal analysis and processing, the need to locate voiced regions in

a speech signal prior to identification of GCIs and limitations of existing methods, the

following objectives have been identified:

1. To explore novel features which can efficiently discriminate between voiced and

non-voiced regions of the speech signal even in the presence of different noise en-

vironments. To design a robust algorithm for instantaneous detection of voiced

regions in the speech signal.

2. To design a technique for accurate and noise resilient extraction of the time-varying

fundamental frequency (F0) component from the detected voiced region in the pres-

ence of additive noise.

3. To design a method to precisely and reliably identify GCIs in the voiced speech

signal by employing the extracted time-varying F0 component and to estimate the

instantaneous F0 from identified GCIs.

1.5 Contributions

In the process of attaining the objectives formulated in section 1.4, the salient contribu-

tions made by this thesis are as follows:

10



1. A generalized amplitude-frequency modulated (AM-FM) signal model of the speech

signal in the LFR is derived. The derived AM-FM signal model signifies that during

voiced regions, the energy is present only at around the time-varying F0 and its

harmonics present in the LFR while negligible energy is present in the LFR during

non-voiced regions of the speech signal.

2. A novel feature, marginal energy density with respect to time (MEDT) over the

LFR is proposed to instantaneously detect voiced regions in the speech signal. The

proposed feature has significant values only during voiced regions of the speech

signal and negligible values for non-voiced regions of the speech signal.

3. The significance of the LFR in performing the speech analysis is demonstrated. The

MEDT over the LFR provided substantially better discrimination between voiced

and non-voiced regions than the MEDT over the full frequency range. It is shown

that the speech signal analysis in the LFR provides robustness against noise.

4. The method based on the Kullback-Leibler divergence (KLD) and cumulative his-

togram of the MEDT over the LFR is devised to automatically determine the value

of threshold on the MEDT over the LFR for reliable detection of voiced regions in

the presence of additive noise.

5. The conditions on the square Hankel matrix size to accurately extract the con-

stant amplitude/frequency harmonically related mono-component signals of a multi-

component signals using eigenvalue decomposition (EVD) of the Hankel matrix are

derived.

6. An iterative algorithm is developed to robustly extract the time-varying F0 com-

ponent of noise deteriorated voiced speech signal by repeatedly performing EVD of

the Hankel matrix. The Hankel matrix is initially constructed from the samples of

the LFR filtered voiced speech signal.

7. An accurate and noise-resilient method is devised for GCI identification that relies

on the extracted time-varying F0 component of a voiced speech signal to provide

coarse estimates of intervals of where GCIs are likely to occur.
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8. A robust event-based method for instantaneous F0 estimation employing the iden-

tified GCIs as markers of respective fundamental periods is proposed.

9. A generalized approach to decompose a multi-component non-stationary signal into

AM-FM mono-component signals based on the iterative EVD of the Hankel matrix is

proposed. The Hankel matrix is initially constructed from the samples of the multi-

component non-stationary signal. The proposed iterative decomposition approach

can extract strong or strong cum weak components of a multi-component non-

stationary signal. The proposed approach is used along with DESA to perform

formant analysis of the voiced speech signal.

1.6 Organization of Thesis

The subsequent chapters of the thesis are structured as follows:

Chapter 2 proposes a novel feature, MEDT over the LFR to efficiently discriminate

voiced and non-voiced regions of the speech signal. The MEDT over the LFR is computed

from the energy distribution of speech signal over the time-frequency plane. The chapter

discusses the advantage of performing V/NV detection in the LFR. A solution for an auto-

matic threshold determination on the MEDT over the LFR is provided to reliably perform

the V/NV detection in the presence or absence of noise. The chapter finally describes

the proposed robust instantaneous V/NV detection method and presents a quantitative

performance evaluation of the proposed method in clean and noisy environments.

Chapter 3 presents the derivation of a generalized AM-FM signal model of the speech

signal in the LFR. The conditions on the square Hankel matrix size for reliable extrac-

tion of harmonically-related constant amplitude/frequency mono-component signals from

a multi-component signal by performing EVD of the Hankel matrix are derived. The

chapter extends the theory developed for the extraction of harmonically related constant

amplitude/frequency mono-component signals contained in a multi-component signal and

proposes a noise resilient iterative algorithm for extraction of the time-varying F0 com-

ponent of voiced speech signal based on repeatedly performing EVD of Hankel matrix,

initially constructed from the samples of the LFR filtered speech signal.
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Chapter 4 proposes an accurate and robust method for GCI identification which relies

on the extracted time-varying F0 component of voiced speech signal to provide coarse

estimate of intervals where GCIs are likely to occur. The chapter provides an objective

performance comparison of the proposed method with some of state of the art methods

at various SNRs in different noise environments.

Chapter 5 proposes an event-based method for F0 estimation based on the employ-

ment of identified GCIs as markers of the respective fundamental periods. The chapter

presents the quantitative performance evaluation of the proposed method and provides an

assessment of the variations in the obtained results with respect to gender of the speaker.

It also provides an objective comparison of the gross F0 estimation errors obtained by the

proposed method and existing methods at various levels of degradation in different noise

environments.

Chapter 6 proposes an approach for decomposing a multi-component non-stationary

signal into AM-FM mono-component signals by iteratively performing EVD of the Han-

kel matrix. The Hankel matrix is initially constructed from the samples of the multi-

component non-stationary signal. The efficacy of the proposed iterative decomposition

approach is manifested by decomposing different kinds of synthetic and natural multi-

component non-stationary signals. The proposed iterative decomposition approach is

employed along with DESA to perform formant analysis of the voiced speech signal.

Chapter 7 presents the conclusions drawn with respect to findings of the study of glot-

tal characteristics of voiced regions and performance evaluation of proposed features and

proposed algorithms on the speech databases. It discusses salient features and advantages

offered by the algorithms proposed in this thesis. It also mentions the scope of future

work.
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Chapter 2

Voiced/Non-voiced Detection

This chapter proposes a novel feature, the MEDT over the LFR to accomplish the instan-

taneous V/NV detection in the presence of noise. The MEDT over the LFR is computed

from the energy distribution of the speech signal on the time-frequency plane, obtained

by computing the pseudo Wigner-Ville distribution (PWVD) coefficients of the analytic

speech signal over the low frequency range (LFR). The significance of the LFR is mani-

fested by the MEDT over the LFR providing considerably better discrimination between

voiced and non-voiced regions in comparison to the MEDT over the full frequency range.

A method based on the KLD and cumulative histogram of the MEDT over the LFR is

presented to automatically determine the threshold value on the MEDT over the LFR to

reliably detect voiced regions in the presence of noise. The experiments were performed

on speech signals of the CMU-Arctic database in different noise environments at various

levels of degradation. The performance of the proposed method is demonstrated to be re-

silient to additive noise. The quantitative comparison of experimental results shows that

the proposed method achieves a significant performance improvement over some state of

the art methods.

2.1 Introduction

Voiced/Non-voiced (V/NV) detection refers to identification of regions in the speech sig-

nal with strong vocal fold activity. During the production of voiced speech, the vocal

tract system is excited by vibration of the vocal folds, resulting in a quasi-periodic speech
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signal. The unvoiced speech is produced when the air is passed through a narrow constric-

tion in the wind pipe, generating a noise like random output signal. Silence occurs in the

absence of any excitation to the vocal tract system and contains only background noise.

Non-voiced speech includes unvoiced speech and silence. While speech signal process-

ing applications like language identification [47], multi-rate speech coders [48,49], speech

signal modeling [50], require classification of the speech signal into voiced, unvoiced and si-

lence (V-UV-S) regions, there are some prominent speech signal analysis applications like

identification of glottal closure instants (GCIs) [23], pitch frequency estimation [21, 51],

which require knowledge of only voiced regions of the speech signal. The prerequisite of

boundaries of voiced regions of these applications can be catered by a V/NV detection

method requiring much less computational complexity than V-UV-S classification meth-

ods. Detection of voiced regions from the speech signal in the presence of noise finds use

in automatic speech recognition (ASR) [52]. Applications like speech enhancement [13],

diagnosis of pathological voice disorders [11, 53], emotion recognition [18, 19] rely on the

estimation of pitch frequency and detection of GCIs from noisy speech signals. A noise

resilient V/NV detection method can provide reliable detection of voiced regions for pitch

frequency determination and extraction of GCIs from speech signals distorted by noise.

Several methods have been proposed in the literature to distinguish V/NV regions in

the speech signal. Various time domain parameters like zero crossing rate (ZCR), short-

term energy estimates have been used to separate voiced/unvoiced (V/UV) regions of the

speech signal [5]. However, the method is susceptible to noise. Features extracted from

the linear prediction (LP) analysis of the speech signal such as the first predictor coeffi-

cient, LP residual energy have been considered to perform V-UV-S classification in [27].

The normalized low frequency energy ratio and merit of periodicity evaluated from the

LP residual, harmonicity measure computed from the LP residual have been employed

to decide V/UV regions in the noisy speech signal [32, 54]. The reliable estimation of

the parameters of the assumed statistical distributions of multiple features used in [27]

to achieve the V-UV-S classification requires large amount of training data. In order

to enable the adaptive modification of the classifier; multilayer feedforward network was

employed in [28] and the feature vector comprising of waveform features and cepstral
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coefficients derived from LP coefficients and the LP residual energy was used to accom-

plish the V-UV-S classification. The LP based analysis assumes the speech signal to be

stationary for about 20 - 25 ms which is not true for quickly varying phonemes such as

plosives [35]. Methods based on frequency domain parameters exploit the periodic struc-

ture of the magnitude spectrum of voiced regions of the speech signal, such as in [33],

the harmonic measure computed from the instantaneous frequency amplitude spectrum

(IFAS) was used to perform the V/UV detection and in [52], the similarity between the

shape of the signal’s short-term magnitude spectrum and the spectrum of the frame anal-

ysis window was employed for voicing detection. The Gabor atomic decomposition was

proposed in [55] and the generalized likelihood ratio test which measures the ratio of the

energy of the harmonic part of the signal to the energy of the complementary orthogonal

non-harmonic part of the signal was proposed in [56] to distinguish V/UV regions in the

speech signal degraded with noise. The method in [56] requires training of the radial

basis function neural network for different types of background noises. The energy of the

zero frequency resonator (ZFR) filtered signal was shown to provide efficient characteri-

zation of the glottal activity in the presence of noise [34]. However, an estimate of the

pitch period is a prerequisite for this method. The property of noise robustness of GCIs

present during voiced regions of the speech signal was explored in [25] to detect V/NV

regions. The limitation of the method is that it requires fixed level of noise (SNR: 10 dB)

to be added to the noisy speech signal. Moreover, thresholds have to be set on various

parameters such as GCI drift, jitter, pitch period and excitation strength.

One of the major drawbacks of methods mentioned above, is that they cannot provide

V/NV decision at each sample instant of the speech signal. Hence, there lies a strong

motivation to develop an instantaneous V/NV detection technique to detect voiced re-

gions in the speech signal. This chapter presents a robust instantaneous V/NV detection

method based on the analysis of the speech signal over the low frequency range (LFR).

The proposed method does not require any prior information about the pitch frequency

or GCIs. The proposed method exploits the property that vibration of the vocal folds

during the production of the voiced speech, produces substantial energy only around the

pitch frequency and its few harmonics (included in the LFR). The energy in the LFR
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is negligible during non-voiced regions of the speech signal. The MEDT over the LFR

computed using the pseudo Wigner-Ville distribution (PWVD) coefficients of the analytic

speech signal is employed as a feature to detect voiced regions of the speech signal. The

reason for choosing the PWVD technique for the time-frequency analysis of the speech

signal over the LFR is that it offers excellent time-resolution at all frequencies (includ-

ing the LFR) without introducing cross-terms between nonconcurrent auto-components

of the multi-component speech signal. The cross-terms introduced by the PWVD tech-

nique between concurrent auto-components of the speech signal in the LFR aid in the

V/NV detection as explained in detail in Section 2.3. This chapter is organized as fol-

lows: Section 2.2 details the computation of the MEDT using the PWVD technique. The

proposed instantaneous method for the V/NV detection is explained in Section 2.3. The

experimental results obtained by the proposed method in various noise environments are

presented in Section 2.4. The concluding remarks are provided in Section 2.5.

2.2 Computation of the MEDT using the PWVD

technique

The Wigner-Ville distribution (WVD) is a quadratic time-frequency analysis technique

that provides optimum temporal and frequency resolutions. The WVD of a discrete-time

signal s[n], denoted SW[n, f ] is given by [57]:

SW[n, f ] = 2
∞∑

m=−∞

s[n−m]s[n+m]exp(−j4πfm) (2.1)

where f =
F

Fs
and (¯) denotes the conjugate operator. The frequency in Hz, the normal-

ized frequency and the sampling frequency of the discrete-time signal s[n] are represented

by F , f and Fs respectively. One of the major limitations of the WVD technique is that it

introduces cross-terms between auto-components of a multi-component signal occurring

at mid-time and mid-frequency of auto-components [58]. Cross-terms are introduced for

each pair of auto-components. Let s[n] be a discrete-time multi-component signal which
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can be expressed as a linear sum of its K auto-components as follows:

s[n] =
K∑
k=1

sk[n] (2.2)

The WVD SW [n, f ] of the multi-component signal s[n] in (2.2) is given by [59]:

SW[n, f ] =
K∑
k=1

SkW[n, f ] +
K−1∑
k=1

K∑
l=k+1

2<
(
Sk,lW [n, f ]

)
(2.3)

The first term and the second term on the right hand side of (2.3) are associated with the

WVD of auto-components of s[n] and cross-terms respectively. There will be
(
K
2

)
cross-

terms present in the WVD SW[n, f ] of the multi-component signal s[n]. A technique to

reduce cross-terms in the WVD based on the separation of auto-components of a multi-

component signal using the Fourier-Bessel (FB) expansion was suggested in [59]. In order

to eliminate cross-terms introduced between nonconcurrent auto-components of a multi-

component signal in the WVD technique, a window function is employed in the PWVD

to emphasize the signal properties near the time of interest compared to far away times.

The PWVD of a discrete-time signal s[n] denoted by SPW[n, f ] is defined as [60]:

SPW[n, f ] = 2
M∑

m=−M

w[m]s[n−m]s[n+m]exp(−j4πfm) (2.4)

where w[m] represents the real frequency smoothing window function (FSWF) with finite

time support of 2M + 1 samples. The purpose of the FSWF is to make the summation in

(2.1) numerically computable and to eliminate the cross-terms occurring between noncon-

current auto-components of a multi-component signal. However, cross-terms still occur

at mid-frequencies of concurrent auto-components in the PWVD technique [61]. The

spectrum of the real signal consists of both negative and positive frequency components.

In order to further eliminate the cross-terms occurring at mid-frequencies of negative and

positive frequencies associated with the concurrent auto-components of a real signal, the

analytic signal is used to compute the PWVD. Also note that the periodicity of the fre-

quency variable in (2.4) is half of the sampling frequency Fs; therefore, in order to avoid
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aliasing, the PWVD is computed for the analytic signal [62]. The discrete-time analytic

signal, denoted z[n] associated with the discrete-time real signal s[n] spanning (0, N − 1)

samples is given by [62]:

z[n] = s[n] + jŝ[n] n = 0, 1, ...N − 1 (2.5)

where ŝ[n] represents the Hilbert transform of s[n]. The Hilbert transform of s[n] can

be determined by employing a finite impulse response (FIR) filter [62] but the error in-

troduced in the computation of the Hilbert transform increases with a decrease in the

employed FIR filter length [63]. Hence, we have used a frequency domain method de-

scribed in [64] to obtain z[n] from s[n]. The computation of the discrete-time analytic

signal consists of the following steps:

1. Compute the N -point discrete-time Fourier transform (DTFT) denoted by S[v] at N

discrete normalized frequencies
(
fv =

v

N

)
of the discrete-time real signal s[n] consisting

of N samples by using the following equation:

S[v] =
N−1∑
n=0

s[n]exp

(
−j2πvn
N

)
v = 0, 1, ..., N − 1 (2.6)

2. Form the N -point one-sided discrete-time analytic signal transform represented by

Z[v] as follows:

Z[v] =



S[0], v = 0

2S[v], 1 ≤ v ≤ N

2
− 1

S

[
N

2

]
, v =

N

2

0,
N

2
+ 1 ≤ v ≤ N − 1

(2.7)

3. Compute the N -point inverse DTFT to obtain the discrete-time analytic signal denoted

by z[n] with the same sampling rate as the original signal s[n] by using the following

equation:

z[n] =
1

NTs

N−1∑
v=0

Z[v]exp

(
j2πvn

N

)
n = 0, 1..., N − 1 (2.8)
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where Ts denotes the sampling time period of s[n]. The fast Fourier transform (FFT)

algorithm and inverse FFT are used for the computation of the DTFT and the inverse

DTFT respectively. The PWVD of a discrete-time analytic signal z[n], denoted ZPW [n, f ]

is obtained by substituting z[n] in the place of s[n] in (2.4) as follows:

ZPW[n, f ] = 2
M∑

m=−M

w[m]z[n−m]z[n+m]exp(−j4πfm) (2.9)

The cross-terms appearing at mid-frequencies of the positive frequencies associated with

the concurrent auto-components of the multi-component analytic signal z[n] aid in the

V/NV detection as demonstrated in the next section. Let EA[n, f ] represents the energy

distribution of the discrete-time analytic signal z[n] on the time-frequency plane. EA[n, f ]

can be computed from the magnitude of PWVD coefficients, ZPW [n, f ] as follows [65]:

EA[n, f ] = |ZPW[n, f ]| (2.10)

The marginal energy density with respect to time (MEDT) denoted by EA[n] of the

analytic signal z[n] over the frequency range (f1, f2) can be derived from the energy

distribution of the analytic signal on the time-frequency plane EA[n, f ] as:

EA[n] =

f2∑
f=f1

EA[n, f ] (2.11)

2.3 Proposed V/NV Detection Method based on the

MEDT over the LFR

It has been demonstrated in [66] that the discrete-time speech signal in the LFR, denoted

sLF[n], is a multi-component signal which can be expressed using the amplitude and

frequency modulated (AM-FM) signal model as:

sLF[n] =
I∑

k=1

Ak[n] cos (2πkf0[n]n+ θk[n]) (2.12)
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where I denotes the number of harmonic components in the LFR. The normalized time-

varying fundamental frequency or pitch frequency is denoted by f0[n]. The time-varying

amplitude and phase of the kth harmonic of the pitch frequency are denoted by Ak[n] and

θk[n] respectively. In the LFR, the time-varying amplitude Ak[n] has significant values

only for voiced regions of the speech signal and is nearly zero for non-voiced regions of the

speech signal. The pitch frequency of speech signals ranges from 50 Hz - 500 Hz [1]. In

order to suppress the DC component, formants, remove noise energy present outside the

LFR and include the pitch frequency component and its few harmonics, we have chosen

the range of frequencies from 50 Hz - 500 Hz as the LFR. The speech signal segment and

its spectrogram in the LFR are shown in Fig. 2.1. Note that the speech signal segment

in Fig. 2.1 (a) consists of voiced, unvoiced and silence regions. It is observed from the

spectrogram depicted in Fig. 2.1 (c) that substantial energy is present around the pitch

frequency component (200 Hz) and the second harmonic component (400 Hz) on the

time-frequency plane at instants corresponding to voiced regions while negligible energy

is present during non-voiced regions of the speech signal. The reference voiced region is

derived from the differenced electroglottograph (DEGG) signal depicted in Fig. 2.1 (b).

The DEGG signal is the first-order derivative of the electroglottograph (EGG) signal.

The energy distribution on the time-frequency plane over the LFR obtained from the

PWVD coefficients of the analytic speech signal segment using (2.9) and (2.10) is depicted

in Fig. 2.2. The analytic speech signal segment is computed from the real speech segment

shown in Fig. 2.1 (a) using (2.6), (2.7), (2.8). Note the presence of cross-terms that have

occurred at mid frequencies of the pitch frequency component and its harmonics (cross-

terms at 300 Hz and 500 Hz) during the voiced region in Fig. 2.2. These cross-terms

increase the energy during voiced regions of a speech signal and aid in discrimination of

voiced and non-voiced regions of the speech signal. The MEDT over the LFR can be

derived from the PWVD coefficients of the analytic speech signal segment as follows:

EA
LF[n] =

∑
f ε LFR

|ZPW[n, f ]| (2.13)

The speech segment and the MEDT over the LFR derived from the energy distribution
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Figure 2.1: (a) Speech segment (b) DEGG signal (c) Spectrogram of the speech segment.
The reference voiced region is marked by the dashed line.

of the analytic speech segment using (2.6), (2.7), (2.8), (2.9) and (2.13) are shown in Fig.

2.3. The reference voiced region is detected using the DEGG signal. It is clear from Fig.

2.3 (c) that the MEDT over the LFR, EA
LF[n] computed from the PWVD coefficients of

the analytic speech segment can be used as a feature to provide the instantaneous V/NV

decision by applying a suitable threshold, such that the samples having the value of the

MEDT over the LFR above the threshold are considered as voiced and the samples having

the value of the MEDT over the LFR below the threshold are considered as non-voiced.

Automatic threshold determination and the advantage of choosing the LFR for the time-

frequency analysis of the speech signal to accomplish the V/NV detection are discussed

in the sub-section 2.3.1.

2.3.1 Automatic threshold determination

A set of speech signals is created by randomly selecting 300 speech signals from the

phonetically balanced CMU-Arctic speech database [67,68] for determination of a suitable

threshold on the MEDT over the LFR to achieve the V/NV detection in the absence or
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Figure 2.2: Energy distribution over the LFR of the analytic speech segment using the
PWVD technique. The speech segment is shown in Fig. 2.1 (a).

presence of noise. The speech signals are of about 3 s duration with a sampling frequency

of 32 kHz. The sampling frequency of speech signals is reduced to 8 kHz. The cumulative

distribution functions (CDFs) of the MEDT over the LFR for voiced and non-voiced

regions obtained for the set of speech signals are shown in Fig. 2.4 (a) and Fig. 2.4

(b) respectively. The CDF computation of the MEDT over the LFR is based on the

cumulative histogram. It is evident from Fig. 2.4 that the values of the MEDT over the

LFR for the voiced regions is very large (nearly 25 times) compared to the insignificant

values of the MEDT over the LFR for the non-voiced regions. It can be inferred from

Fig. 2.4 (b) that there is 99% probability that the value of the MEDT over the LFR for

non-voiced regions of all speech signals from the set is below 0.0002 and it can be observed

from Fig. 2.4 (a) that 95.5% values of the MEDT over the LFR during voiced regions of

all speech signals from the set are above the value 0.0002. It implies that the MEDT over

the LFR provides excellent discrimination between voiced and non-voiced regions of the

speech signal. The analysis of the speech signal in the LFR also facilitates the removal

of high frequency components which may be present in the noise environment. Speech

signals contain significant energy in the frequency range of (0 Hz - 3400 Hz) [69]. The

CDFs of the MEDT over the frequency range (0 Hz - 3400 Hz) for voiced and non-voiced
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Figure 2.3: (a) Speech segment (b) DEGG signal (c) MEDT over the LFR derived from
the PWVD coefficients of the analytic speech segment. The reference voiced region is
shown by the dashed line.

regions obtained for the set of speech signals are shown in Fig. 2.5 (a) and Fig. 2.5 (b)

respectively. It can be noted from Fig. 2.5 that the MEDT over the frequency range (0

Hz - 3400 Hz) has comparable values for both voiced and non-voiced regions. It can be

deduced from Fig. 2.5 (b) that there is 99% probability that the value of the MEDT over

the frequency range (0 Hz - 3400 Hz) for non-voiced regions of all speech signals from

the set is below 0.00075 and it is evident from Fig. 2.5 (a) that 18.29% values of the

MEDT over the frequency range (0 Hz - 3400 Hz) for voiced regions of all speech signals

from the set are below 0.00075. There is a considerable overlap between the values of the

MEDT over the frequency range (0 Hz - 3400 Hz) for voiced and non-voiced regions of

speech signals from the set. Hence the LFR (50 Hz - 500 Hz) is chosen as the desired

frequency range for the V/NV detection. The ratio of the minimum value of the MEDT

over the LFR to the maximum value of the MEDT over the LFR for voiced regions of any

speech signal taken from the set has been found out to be 0.00924 (nearly 1% percent)

on an average. The percentage of non-voiced samples that lie below 1% of the maximum

value of the MEDT over the LFR for any speech signal taken from the set has been found

out to be 98.41% on an average. Thus, for the set of speech signals created from the

CMU-Arctic database, we define the first preliminary threshold RTH1 to be one percent

of the maximum value of the MEDT over the LFR computed for the speech signal under
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Figure 2.4: CDF of the MEDT over the LFR for (a) Voiced regions (b) Non-voiced regions.
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consideration as: RTH1 = 0.01×max(EA
LF[n]) ∀ n.

While recording, the speech signal is distorted by the ambient noise. In applica-

tions like diagnosis of pathological disorders [11,53], emotion recognition [18,19], speaker

recognition [70], the recording conditions can be controlled to ensure stationary noise

conditions. In the presence of the additive noise, the energy of the noise signal is dis-

tributed across the entire time-frequency plane and augment to the energy distribution

of the speech signal. In order to simulate and estimate the noise floor for stationary noise

environments, we have appended the silence duration at the beginning of the speech signal

and then added the noise realization from the NOISEX-92 database [71] after reducing the

sampling frequency of the noise signal to 8 kHz. Thus, the resultant noisy speech signal

contains only the noise during the appended silence duration. The length of the silence

duration appended at the beginning of the speech signal is critical for reliable estimation

of the underlying noise process. The duration length of the appended silence must be

such that the noise contained in it must be able to characterize the noise added to the

entire duration of the speech signal. The Kullback-Leibler divergence (KLD) denoted by

KLD(p1||p2) is a non-symmetric measure of the difference between two probability density

functions (PDFs) represented by p1(x) and p2(x) and is given by [72]:

KLD(p1||p2) =

∫
p1(x) loge

(
p1(x)

p2(x)

)
dx (2.14)

The value of the KLD(p1||p2) becomes zero when both the PDFs are identical. It can

be deduced from Table 2.1 that the noise contained in 500 ms of the appended silence

duration is optimum to characterize the noise added to the entire duration of the speech

signal for different types of noise realizations, as the value of the KLD between the PDF

of the noise contained in the appended silence duration and the PDF of the noise added

to the entire duration of the speech signal is below or approximately equal to 1%. We

define the second preliminary threshold represented by RTH2 as follows:

P
(
EA

LF[n] ≤ RTH2

)
= 0.99, n ∈ appended silence duration (2.15)

where P denotes the probability operator. The value of the second preliminary threshold
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Table 2.1: Kullback-Leibler Divergence (KLD) between the PDF of the noise contained
in the appended silence duration and the PDF of the noise added to the entire duration
of the speech signal for different types of noises and various silence durations.

Silence Duration AWGN Babble Vehicular
(ms)
31.25 0.0732 0.0576 0.0932
62.50 0.0450 0.0411 0.0920
125.0 0.0328 0.0304 0.0805
250.0 0.0203 0.0210 0.0515
312.5 0.0149 0.0177 0.0361
375.0 0.0108 0.0106 0.0269
437.5 0.0082 0.0089 0.0165
500.0 0.0071 0.0076 0.0112

computed as in (2.15) ensures that, on an average 99% of the samples belonging to silence

regions of the speech signal have the value of the MEDT over the LFR below the value of

RTH2 in the presence of noise. It is already shown in Fig. 2.3 (c) and Fig. 2.4 (b) that the

MEDT over the LFR during unvoiced regions of the speech signal has negligible values.

Thus, the second preliminary threshold allows for rejection of nearly 99% of non-voiced

samples. The final threshold Υ is chosen as the greater of the two preliminary thresholds,

RTH1 and RTH2. At high SNRs, there is negligible energy in the appended silence duration

and the value of RTH1 will be greater than RTH2. At low SNRs, the noise contained in the

appended silence region has significant energy and hence the value of RTH2 will be greater

than RTH1. The proposed V/NV detection algorithm is explained in the next subsection.

2.3.2 V/NV detection algorithm

The proposed algorithm for the V/NV detection consists of the following steps:

1. Append 500 ms of silence duration at the beginning of the speech signal s[n] span-

ning (0, Q − 1) samples. At a speech signal sampling frequency of 8 kHz, 4000

samples of silence duration gets appended at the beginning of the speech signal.

2. The noisy speech signal y[n] resulted from the distortion of the speech signal s[n]

by the additive noise ξ[n] can be expressed as:

y[n] = s[n] + ξ[n] n = 0, 1, ..., Q− 1 (2.16)
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3. Divide the noisy speech signal into segments of 250 ms. Let yl[n] denotes the lth

noisy speech signal segment spanning (0, N − 1) samples.

4. Compute the analytic speech signal segment zl[n] of the noisy speech signal segment

yl[n] using (2.6), (2.7), (2.8).

5. Compute the PWVD coefficients ZPW,l[n, f ] over the LFR for the analytic speech

segment zl[n] using (2.9).

6. Compute the MEDT over the LFR, ELF,l[n] for the analytic speech segment zl[n]

from its PWVD coefficients ZPW,l[n, f ] using (2.13).

7. Repeat steps 4-6 for each noisy speech signal segment and then obtain the MEDT

over the LFR, EA
LF[n] for the entire duration of the speech signal by concatenating

the MEDT over the LFR for each noisy speech signal segment, ELF,l[n] for l =

1, 2, ..., L, one after the other as follows:

EA
LF[n] = (ELF,1[n] ELF,2[n]... ELF,L[n]) (2.17)

where L denotes the total number of noisy speech signal segments.

8. Obtain the smoothed MEDT over the LFR denoted by SEA
LF[n] by applying the

moving average filter as follows:

SEA
LF[n] =

1

2C + 1

C∑
m=−C

EA
LF[n+m] (2.18)

The length of the moving average filter 2C + 1 is not critical and is chosen to be

equal to the highest possible pitch period duration of 20 ms corresponding to the

pitch frequency of 50 Hz. We have kept the length of the moving average filter fixed.

9. Determine two preliminary thresholds RTH1 and RTH2. The value of RTH1 is calcu-

lated as 1% of the maximum value of the SEA
LF[n] and the value of RTH2 is computed

from the values of SEA
LF[n] obtained during the appended silence duration (refer to
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step 1), as follows:

RTH1 = 0.01×max(SEA
LF[n]) n = 0, 1, ..., Q− 1

P (SEA
LF[n] ≤ RTH2) = 0.99 n = 0, 1, ..., 3999

(2.19)

The final threshold Υ is equal to the greater of the two preliminary thresholds.

10. Identify voiced regions in the speech signal by comparing the smoothed MEDT over

the LFR, SEA
LF[n] with the final threshold Υ at each sample instant as follows:

SEA
LF[n] ≥ Υ, y[n] ε Voiced

SEA
LF[n] < Υ, y[n] ε Non-Voiced

(2.20)

Please note here that the V/NV decision is taken instantaneously; i.e., at each

sample instant of the speech signal.

2.4 Experimental Results and Discussion

The experimental results of the proposed method are obtained on clean and noisy speech

signals. The SNR in dB denoted by SNRdB is defined as:

SNRdB = 10 log10

Ps
Pξ

(2.21)

where Ps and Pξ represents the power in the speech signal and the noise signal respectively.

For clean speech signals; y[n] = s[n] in (2.16). The power in the speech signal s[n] is

calculated without taking into account the appended silence duration i.e if s[n] contains

500 ms (4000 samples at Fs = 8 kHz) of appended silence duration at its beginning and

spans (0, Q - 1) samples, then Ps is calculated as:

Ps =
1

(Q− 4000)

Q−1∑
n = 4000

s2[n] (2.22)

In all subsequent figures illustrating the results of the proposed method on clean and noisy

speech signals, the detected voiced regions are shown in dotted lines and the reference
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Figure 2.6: (a) Clean male speech signal (b) DEGG signal (c) Smoothed MEDT over the
LFR using the PWVD technique.

voiced regions derived from the respective DEGG signal are marked in dashed lines.

The results obtained by the proposed method on clean male and female speech signals

are shown in Fig. 2.6 and Fig. 2.7 respectively. As evident from the figures, the SMEDT

over the LFR obtained using the PWVD technique shown in Fig. 2.6 (c) and Fig. 2.7

(c) has significant values during the voiced regions and negligible values during the non-

voiced regions of the speech signal. The detected voiced regions obtained for clean male

and female signals in Fig. 2.6 (c) and Fig. 2.7 (c) match very well with the reference

voiced regions. Fig. 2.8 depicts the result obtained by the proposed method on a male

speech signal at a low SNR of 0 dB in a white noise environment. Please note that the

false detection (detection of non-voiced regions as voiced regions) has occurred (Fig. 2.8

(c)) at around 1 ms and the missed detection (detection of voiced regions as non-voiced

regions) has occurred (Fig. 2.8 (c)) during some regions of the speech signal but still

the proposed method was able to detect many of the voiced regions, obtaining a good

detection accuracy of 96.98%. The detection accuracy is defined later in this section. The

result obtained by the proposed method on a female speech signal at low SNR of 0 dB

in a white noise environment is shown in Fig. 2.9. Please note that the false detection
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Figure 2.7: (a) Clean female speech signal (b) DEGG signal (c) Smoothed MEDT over
the LFR using the PWVD technique.

has occurred (Fig. 2.9 (c)) at around 1 ms, 2.56 s, 2.58 s and the missed detection has

occurred (Fig. 2.9 (c)) during some regions of the speech signal. A detection accuracy of

97.13% was obtained by the proposed method in this case.

The results obt ained by the proposed method on male and female speech signals at 5

dB SNR in a babble noise environment are shown in Fig. 2.10 and Fig. 2.11 respectively.

It can be observed in Fig. 2.10 (c) and Fig. 2.11 (c) that some durations belonging to

voiced regions of the speech signals are detected as non-voiced regions leading to missed

detection. The false detection has occurred at around 0.07 s, 2.24 s, 3.31 s and 3.37 s in

Fig. 2.10 (c). In Fig. 2.11 (c), the false detection has occurred at around 0.07 s, 1.74 s,

1.81 s, 2.05 s, 2.51 s and 2.74 s. The proposed method has obtained the V/NV detection

accuracies of 94.52% and 93.92% in experimental cases depicted in Fig. 2.10 and Fig.

2.11 respectively. Fig. 2.12 and Fig. 2.13 depict the results obtained by the proposed

method on male and female speech signals respectively, at 5 dB SNR in the vehicular

noise environment. It is evident in Fig. 2.12 (c) and Fig. 2.13 (c) that some durations

belonging to voiced regions of speech signals are detected as non-voiced regions leading

to missed detection. The false detection has occurred at around 0.03 s, 0.1 s, 1.18 s, 2.18
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Figure 2.8: (a) Male speech signal at 0 dB SNR (white noise) (b) DEGG signal (c)
Smoothed MEDT over the LFR using the PWVD technique.

s, 3.28 s in Fig. 2.12 (c). In Fig. 2.13 (c), the false detection has occurred at around

0.09 s, 1.14 s, 2.17 s and 2.73 s. The proposed method has obtained the V/NV detection

accuracy of 93.81% and 94.03% in experimental cases shown in Fig. 2.12 and Fig. 2.13

respectively.

The performance of the proposed method is evaluated by performing experiments on

a set of 300 speech signals containing 100 speech signals spoken by each of the two male

speakers and one female speaker, randomly selected from the CMU-Arctic database [67,68]

in different noise environments taken from the NOISEX-92 database [71] at various SNRs.

The CMU-Arctic database consists of around 1150 phonetically balanced sentences of

about 3 s duration, sampled at 32 kHz, spoken by five male and two female speakers with

simultaneous recordings of EGG signals available for two male speakers and one female

speaker. In order to compensate for the larynx to microphone delay which was determined

to be 0.7 ms, the time alignment of speech signals and EGG signals was performed in the

CMU-Arctic database. The NOISEX-92 database consists of various noise environments

sampled at 19.98 kHz. The sampling frequency of speech and noise signals is reduced to

8 kHz. We have selected white, babble and vehicular noise environments to evaluate the
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Figure 2.9: (a) Female speech signal at 0 dB SNR (white noise) (b) DEGG signal (c)
Smoothed MEDT over the LFR using the PWVD technique.

performance of the proposed method. The white noise environment is characterized by a

flat power spectral density (PSD) and the multi-talker babble noise and the vehicular noise

environments contain higher energy in the low frequency components. The performance

measures mentioned in [25] have been used which were defined in terms of number of

percentage of epochs (also known as GCIs) detected as voiced or non-voiced. The lowest

time resolution achieved by the V/NV method in [25] is the minimum duration between

two successive epochs because the V/NV decision is taken at each epoch location. The

duration between two successive epochs contain many samples. The lowest time resolution

achieved by the proposed method is the sampling period because the V/NV decision

is taken at each sample instant. Therefore, in order to meet the requirements for the

instantaneous V/NV detection offered by the proposed method, the definition of the

performance measures in [25] are slightly modified here by expressing them in terms of

number of samples detected as voiced or non-voiced. The performance measures are

defined below:

• Percentage Detection Accuracy (Pd): It is the ratio of correctly detected samples

to total number of samples in the speech signal. A correct decision implies that the
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Figure 2.10: (a) Male speech signal at 5 dB SNR (babble noise) (b) DEGG signal (c)
Smoothed MEDT over the LFR using the PWVD technique.

sample belonging to the voiced region is detected as voiced and the sample belonging

to the non-voiced region is detected as non-voiced.

• Missed Detection Percentage (Pm): It the ratio of the samples that belong to voiced

regions but are incorrectly detected as non-voiced to the total number of samples

in the speech signal.

• False Alarm Percentage (Pf ): It is the ratio of the samples that belong to non-

voiced regions but are incorrectly detected as voiced to the total number of samples

in the speech signal. All measures are expressed as percentage.

The percentage detection accuracy of 98.45% has been obtained by the proposed method

for clean speech signals from the set. The missed detection and the false detection per-

centage of 0.2% and 1.35% respectively were obtained for clean speech signals. We have

compared the performance of the proposed method with other state of the art methods:

Wavesurfer [73, 74], the method based on the robustness of GCIs [25] and the method

based on the ZFR filtered signal energy [34]. Wavesurfer is an open source utility which

relies on the normalized cross correlation based pitch tracking refined by dynamic pro-
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Figure 2.11: (a) Female speech signal at 5 dB SNR (babble noise) (b) DEGG signal (c)
Smoothed MEDT over the LFR using the PWVD technique.

gramming. The method in [25] requires the detection of GCIs from the noisy speech

signal using the ZFR for two different realizations of the Gaussian white noise added to

the speech signal at the SNR of 10 dB; irrespective of the SNR of the speech signal taken

into consideration. The GCIs detected during voiced regions for two different noise realiza-

tions show small drift as compared to the large drift incurred by the GCIs detected during

non-voiced regions. Voiced regions are thus detected in [25] as regions in the speech signal

with low values for GCI drift and jitter. The method in [34] is a frame based approach

for the V/NV detection where the speech signal is divided into 20 ms frames at the rate

of 100 frames/s and for each frame the ZFR filtered signal energy is compared against a

threshold to decide in favor of voiced or non-voiced frame. The method does not present

an automatic way to determine the threshold value to be used on the energy of the ZFR

filtered signal. The threshold value where equal error percentages are obtained for the

false and missed detection was chosen to evaluate the performance of the method. The

percentage detection accuracy obtained by Wavesurfer, the method based on robustness

of epochs and the method based on the ZFR filtered signal energy on clean speech signals

from the set are 95.9%, 97.1% and 94.8% respectively. Table 2.2 shows the comparison of
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Figure 2.12: (a) Male speech signal at 5 dB SNR (vehicular noise) (b) DEGG signal (c)
Smoothed MEDT over the LFR using the PWVD technique.

performance of the proposed method with three other methods for the V/NV detection

in various noise environments. Please note that in Table 2.2, NA implies that the method

is not able to efficiently perform the V/NV detection at the specified SNR in the given

noise environment. It can be inferred from the results displayed in Table 2.2; that the

proposed method has outperformed Wavesurfer and the method based on the ZFR filtered

signal energy, achieving a significant performance improvement in the V/NV detection

accuracy in all noise scenarios. The proposed method has provided improvement in the

V/NV detection accuracy over the method based on the robustness of GCIs in the white

noise environment. A marginal enhancement in the V/NV detection accuracy has been

obtained by the proposed method over the method based on the robustness of GCIs in

babble and vehicular noise environments. It is noted that the performance of the pro-

posed method worsens in vehicular and babble noise environments as compared to the

white noise environment because babble and vehicular noise environments contain more

energy in the LFR than the white noise environment.
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Figure 2.13: (a) Female speech signal at 5 dB SNR (vehicular noise) (b) DEGG signal (c)
Smoothed MEDT over the LFR using the PWVD technique.

2.5 Conclusion

The chapter describes the proposed instantaneous V/NV detection method based on the

time-frequency analysis of the speech signal over the low frequency range (LFR) using the

PWVD. The PWVD technique has offered good time-resolution in the LFR and cross-

terms introduced by the PWVD between the concurrent auto-components during voiced

regions of a speech signal have facilitated the V/NV detection by increasing the energy

during voiced regions of the speech signal. As only voiced regions of the speech signal

contain significant energy in the LFR, the analysis of the speech signal in the LFR has

been proven to be efficient for providing reliable discrimination between voiced and non-

voiced regions in speech signals. The analysis of the speech signal in the LFR also allows

the removal of the high frequency noise components. The proposed method has provided

significantly better results than existing methods in terms of the V/NV detection accuracy

in different noise environments. One of the main advantage of the proposed method as

compared to earlier frame based methods for the V/NV detection, lies in the use of the

MEDT over the LFR as a feature which has allowed instantaneous detection of voiced

regions. The proposed method does not require knowledge of pitch frequency or GCIs of

the speech signal in advance.
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Table 2.2: Comparison of performance of the proposed V/NV detection method with
existing methods in different noise environments

Method Noise Pd

Environment (Pm, Pf )

SNR 20 dB 10 dB 5 dB 0 dB -5 dB

White 98.2 97.5 97.1 96.8 94.9
(0.21, 1.59) (0.35, 2.15) (0.54, 2.36) (0.67, 2.53) (1.92, 3.18)

Proposed Babble 97.5 96.5 95.0 92.8 NA
method (0.54, 1.96) (0.84, 2.66) (2.12, 2.88) (3.77, 3.43)

Vehicular 97.2 96.1 94.3 91.4 NA
(0.62, 2.18) (1.07, 2.83) (2.41, 3.29) (4.54, 4.06)

White 95.3 92.8 89.1 84.8 NA
(1.30, 3.40) (2.36, 4.84) (4.27, 6.63) (7.08, 8.12)

Wavesurfer Babble 94.9 92.0 88.3 85.2 NA
(1.33, 3.77) (2.75, 5.25) (4.94, 6.76) (6.64, 8.16)

Vehicular 95.1 91.8 88.6 85.7 NA
(1.37, 3.53) (2.52, 5.68) (4.57, 6.83) (6.16, 8.14)

White 96.3 95.5 94.6 90.7 NA
Method based (1.24, 2.46) (1.84, 2.66) (2.49, 2.91) (4.45, 4.85)

on the robust- Babble 95.9 94.3 92.2 89.2 NA
ness of GCIs (1.51, 2.59) (2.25, 3.45) (3.28, 4.52) (5.16, 5.64)

Vehicular 95.8 94.5 92.3 88.9 NA
(1.72, 2.48) (2.19, 3.31) (3.34, 4.36) (5.40, 5.70)

Method based White 94.2 93.2 91.9 89.6 NA
on the ZFR (2.90, 2.90) (3.41, 3.41) (4.07, 4.07) (5.18, 5.18)

filtered signal Babble 93.6 91.5 87.5 81.4 NA
energy (3.20, 3.20) (4.26, 4.26) (6.25, 6.25) (9.31, 9.31)

Vehicular 93.9 92.1 88.4 83.1 NA
(3.04, 3.04) (3.95, 3.95) (5.82, 5.82) (8.43, 8.43)

In order to deal with the stationary noise environment, the silence duration has been

appended at the beginning of the speech signal to estimate the noise floor. It should

be noted that in practical noisy scenarios, the silence duration containing only the back-

ground noise must be recorded by the system before recording the speech signal imple-

menting the proposed method. The recording conditions of the speech signal for applica-

tions like diagnosis of pathological disorders, speaker verification and emotion recognition

can be controlled to maintain a stationary noise environment.
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Chapter 3

Extraction of the Time-Varying F0 Component of a

Voiced Speech Signal

This chapter presents derivation of the AM-FM signal model of the voiced speech signal

in the low frequency range (LFR) which indicates the presence of energy only around

the time-varying fundamental frequency (F0) and its harmonics. The conditions on the

Hankel matrix size to reliably and accurately extract harmonically related constant am-

plitude/frequency components contained in a multi-component signal by performing re-

peated EVD of the Hankel matrix are derived. The Hankel matrix is initially constructed

from the samples of the multi-component signal. The theory and concepts developed

for the extraction of harmonically related components of a multi-component stationary

signal are extended and a noise resilient iterative algorithm is proposed in this chapter

to reliably extract the time-varying F0 component from the LFR filtered noisy voiced

segment. The Hankel matrix is initially constructed from the samples of the LFR filtered

noisy voiced segment. A Distance Metric based criterion is employed in the iterative

algorithm to reliably select the dominant frequency suitable for estimating the F0 range

of a noisy voiced speech segment in an Iteration. A Mono-component Signal Criteria is

introduced to ensure that the contamination of higher harmonic components of F0 and

noise is considerably reduced in the extracted time-varying F0 component of the noisy

voiced speech segment. The experiments are performed on a synthetic multi-component

stationary signals, a synthetic multi-component non-stationary signal and a LFR filtered

voiced speech signal in clean and noisy environments to demonstrate the efficacy of the

proposed iterative algorithm.
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3.1 Introduction

Voiced speech is produced when the vocal folds vibrate and chops the air flow from the

lungs in a quasi-periodic manner. The vocal tract system act as a time-varying filter to

the quasi-periodic excitation. It spectrally shapes the quasi-periodic excitation in a time-

varying manner. Voiced speech signal is a quasi-periodic waveform. The rate of vibration

of the vocal folds is comprehended as the fundamental frequency (F0) of the voiced speech

signal. F0 is a time-varying quantity and varies with gender, age, health condition, accent,

emotional condition of the speaker. The prosodic features namely: intonation, stress and

rhythm are incorporated in the speech signal by varying F0 [1]. F0 varies in the range

of 50 Hz - 250 Hz and 150 Hz - 500 Hz for adult males and adult females respectively.

Children can have F0 values as high as 500 Hz [1].

It was demonstrated in [39] that negative cycles of the time-varying F0 component pro-

vide reliable coarse estimate of the intervals where GCIs are likely to occur. Therefore,

reliable extraction of the time-varying F0 component from noise deteriorated voiced speech

signal can aid in accurately locating GCIs. However, extraction of the time-varying F0

component of a noisy voiced speech signal is a challenging task due to high F0 variations

(as high as 80%) observed across the entire course of some voiced regions, substantially

lower energy of the time-varying F0 component than the formant components and dis-

tortion caused by noise. The extraction of the time-varying F0 component from a clean

speech signal was accomplished using a bank of two band pass filters and the time-order

representation (TOR) in [26] and [66] respectively. However, both methods are sensitive

to noise. The harmonic superposition method presented in [39] extracted harmonic com-

ponents of a voiced speech signal occurring below the frequency of 1 kHz using the discrete

Fourier transform (DFT) of a windowed voiced speech signal. However, the method in [39]

did not consider the extraction of the time-varying F0 component and its harmonics at

moderate to low SNRs in noisy environments. The use of an adaptive resonance filter

suggested in [75] requires tracking of bandwidth, center frequency of the time-varying F0

component in the presence of noise and entails the use of an adaptive all-zero filter to

attenuate leakages of noise and other harmonics present in the LFR filtered noisy voiced
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speech signal. These limitations act as a strong motivation to develop a robust algorithm

to extract the time-varying F0 component of voiced speech signal without the need to de-

sign filters. This chapter, presents a robust algorithm for extraction of the time-varying

F0 component of a voiced speech signal. The proposed iterative algorithm does not require

designing of filters and relies on the extraction of mono-component signals contained in

a voiced speech signal using EVD of the Hankel matrix, initially constructed from the

samples of the LFR filtered voiced speech signal. The filtering of voiced speech signal in

the LFR, neglecting the non-significant eigenvalue pairs, the use of Distance Metric while

determining the F0 range of voiced speech signal account for the noise resilience of the

proposed iterative algorithm.

This chapter is organized as follows: Section 3.2 presents the derivation of the AM-

FM signal model of the voiced speech signal in the LFR. In Section 3.3, the conditions

on the Hankel matrix size for accurate extraction of harmonically related constant ampli-

tude/frequency components contained in a multi-component signal using EVD of Hankel

matrix are derived. Section 3.4 presents the proposed iterative algorithm for extraction

of the time-varying F0 component of voiced speech signal. Section 3.5 demonstrates ex-

perimental results of the proposed iterative algorithm on a synthetic multi-component

non-stationary signal and a voiced speech signal. Section 3.6 concludes the chapter.

3.2 AM-FM Model of the Voiced Speech Signal in

the LFR

From (1.2), it has been learnt that the z-transform of the voiced speech signal, s[n] can

be modeled as:

S[z] = Θ0V [z]H[z] (3.1)

where Θ0 controls the overall amplitude during the voiced speech production. S[z] and

V [z] denote the z-transforms of s[n] and the first-order derivative of the glottal flow

respectively. The z-domain transfer function of the vocal tract system is represented by

H[z]. The assumption of the speech production system to be stationary is made in (3.1).
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The differentiated glottal flow v[n] = u′[n] act as an excitation to the vocal tract system.

The excitation u′[n] is characterized by a large negative impulse-like pulse during the

return phase of each glottal cycle [76]. In order to facilitate the derivation of the AM-FM

signal model of the voiced speech signal in the LFR, we start with approximating u′[n]

by a periodic train of negative impulses û[n] with period of N0 samples as [1]:

û[n] = −D
∞∑

i=−∞

δ[n− iN0] (3.2)

The fundamental period of û[n] is represented by N0. The strength of each impulse is

denoted by D and δ denotes the unit sample sequence which is defined in [62]. As û[n] is

real and even, its discrete-time Fourier series expansion [62] is:

û[n] = − D

N0

N0−1∑
k=0

cos (2πkf0n) where f0 =
1

N0

=
F0

Fs
(3.3)

where the fundamental frequency in Hz, sampling frequency in Hz and normalized fun-

damental frequency are denoted by F0, Fs and f0 respectively. In reality, the vocal tract

system act as a time-varying filter which changes the amplitude and phase of each har-

monic component in the excitation in a time-varying manner [1]. Thus, by removing the

constraint of the vocal tract system to be stationary, the voiced speech signal s[n] can be

approximated as:

ŝ[n] = − D

N0

N0−1∑
k=0

|H[ωk, n]| cos (ωkn+ angle(H[ωk, n])) (3.4)

where ωk = 2πkf0 represents the normalized angular frequency of kth harmonic com-

ponent of the normalized fundamental frequency f0. The time-varying magnitude and

phase spectrum of the vocal tract system are denoted by |H[ω, n]| and angle(H[ω, n])

respectively. In reality, the interval between successive negative impulses in the differen-

tiated glottal flow v′[n] is not constant and varies with time, resulting in the F0 to be

time-varying in nature. Therefore, if we relax the constraint of constant fundamental
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frequency in (3.4), we get:

ŝ[n] =

N0−1∑
k=0

Ak[n] cos (2πkf0[n]n+ θk[n]) , f0[n] =
F0[n]

Fs
(3.5)

where f0[n], F0[n], Fs, Ak[n] and θk[n] denote the time-varying normalized fundamental

frequency, time-varying fundamental frequency in Hz, sampling frequency in Hz, the time-

varying amplitude and phase of kth harmonic component of f0[n] respectively. Hence, the

voiced speech signal in the LFR (50 Hz - 500 Hz), denoted sLF[n] can be approximated

using the AM-FM signal model as follows:

ŝLF[n] =
K∑
k=1

Ak[n] cos (2πkf0[n]n+ θk[n]) (3.6)

where K denotes the number of harmonic components of f0[n] present in the LFR. It can

be inferred from (3.6) that voiced speech signal in the LFR is a multi-component signal

with the presence of energy only around F0[n] and its few harmonics. The spectrogram

of the voiced speech signal (Fig. 3.1 (a)) over the LFR is shown in Fig. 3.1 (b) which

shows the presence of energy only at around the F0[n] (175 Hz) and its second and third

harmonics in accordance with the derived AM-FM signal model of the voiced speech signal

in the LFR given by (3.6).

Figure 3.1: (a) Clean voiced speech signal (b) Spectrogram over the LFR.
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The sinusoidal functions are eigenfunctions of a linear time-invariant (LTI) system

[1]. The Hankel matrix offers interesting properties which are described in the next

section. It motivated us to derive the conditions on the Hankel matrix size for accurate

and reliable extraction of harmonically related constant amplitude/frequency components

contained in a multi-component signal using repeated eigenvalue decomposition (EVD)

of the Hankel matrix. The Hankel matrix is initially constructed from the samples of

the multi-component signal. The theory and concepts developed in the next section are

extended in Section 3.4 to develop a robust iterative algorithm for extraction of the time-

varying F0 component of a noisy voiced speech signal.

3.3 Extraction of Constant Amplitude/Frequency Har-

monically Related Components using Eigenvalue

Decomposition of the Hankel Matrix

The square Hankel matrix of size N ×N , Hy
N can be constructed from a real signal y[n]

spanning (0, 1, ..., Q− 1) samples, as follows [77]:

Hy
N =


y[0] y[1] . . . y[N − 1]

y[1] y[2] . . . y[N ]

. . . . . .

y[N − 1] y[N ] . . . y[2N − 2]

 (3.7)

We assume that Q ≥ 2N − 1 and N is an even number throughout the rest of this

thesis. The Hankel matrix offers interesting properties because of its peculiar structure.

The square Hankel matrix constructed from a real signal is a symmetric matrix, i.e.

Hy
N = (Hy

N)T , where T denotes the transpose operator. The EVD of the square matrix

Hy
N can be expressed as [77]:

Hy
N = UyΛyU

T
y (3.8)

where Λy is a diagonal matrix with real scalar eigenvalues λy,i and Uy is an orthogonal

matrix, consisting of real eigenvectors, ~uy,i, i = 1, 2, ..., N as its columns, each column
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consisting of N elements. Any two eigenvectors, ~uy,i and ~uy,j corresponding to different

eigenvalues are orthogonal [77].

Let y[n] be the sum of K harmonically related constant amplitude/frequency mono-

component signals as follows:

y[n] =
K∑
k=1

yk[n] =
K∑
k=1

Ak cos(2πkf0n+ θk), n = 0, 1, ..., Q− 1 (3.9)

such that Ak 6= Al for k 6= l, where k, l = 1, 2, ..., K. The normalized fundamental

frequency is represented by f0, where f0 =
F0

Fs
. The amplitude and phase of the kth

harmonic component of f0 are denoted by Ak and θk respectively. It is assumed that

Fs > 2KF0 to avoid aliasing. Using (3.7) and (3.9), the Hankel matrix of y[n], Hy
N can

be expressed as sum of Hankel matrices of its mono-component signals Hyk
N as:

Hy
N =

K∑
k=1

Hyk
N where Hyk

N = (Hyk
N )T (3.10)

The characteristic equation of Hy
N is given by [77]:

det(Hy
N − λI) = λN − Tr(Hy

N)λN−1 + ...+ det(Hy
N) = 0 (3.11)

where Tr(.) and det(.) denote the trace and determinant of the matrix respectively. The

number of sinusoids contained in Hy
N and Hyk

N are K and 1 respectively; therefore, irre-

spective of the value of N , the ranks and non-zero eigenvalues of Hy
N and Hyk

N cannot

be greater than 2K and 2 respectively. Thus, the characteristic equation of Hyk
N can be

written as follows:

|Hyk
N − λI| = λN−2(λ2 − Tr(Hyk

N )λ+ κN−2) = 0 (3.12)

where κN−2 denotes the coefficient associated with λN−2. It is evident from (3.12) that

when Tr(Hyk
N ) becomes zero, the two real eigenvalues of Hyk

N become equal and opposite

in sign (EOS). The trace of the square matrix can be expressed in terms of its eigenvalues
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as follows [77]:

Tr(Hy
N) =

N∑
i=1

λy,i

Tr(Hyk
N ) =

2∑
i=1

λyk,i , N ≥ 2

(3.13)

We now consider two different cases based on the value of N .

3.3.1 Case (i): when Hankel matrix size is an integer multiple

of the fundamental period

In this case, N =
σ

f0

= σN0, where σ is a positive integer. Using (3.7), (3.9) and (3.10),

Tr(Hyk
σN0

) and Tr(Hy
σN0

) are given by:

Tr(Hyk
σN0

) = Ak

σN0−1∑
n=0

cos(2πkf02n+ θk)

= Ak <

(
ejθk

σN0−1∑
n=0

ej2πkf02n

)
= 0 ∀ k

Tr(Hy
σN0

) =
K∑
k=1

Tr(Hyk
σN0

) = 0

(3.14)

The inner product of ith row/column of Hyk
σN0

and jth row/ column of Hyl
σN0

denoted by〈
Hyk
σN0

, Hyl
σN0

〉
i,j

is given by:

〈
Hyk
σN0

, Hyl
σN0

〉
i,j

= AkAl

σN0−1∑
n=0

(
cos(2πkf0(n+ i− 1) + θk)× cos(2πlf0(n+ j − 1) + θl)

)

=
AkAl

2
<

(
ej(2πf0m1+θk+θl)

σN0−1∑
n=0

ej2π(k+l)f0n + ej(2πf0m2+θk−θl)
σN0−1∑
n=0

ej2π(k−l)f0n

)
= 0, i, j = 1, 2, ..., σN0 and k 6= l

(3.15)

where m1 = k(i−1)+ l(j−1) and m2 = k(i−1)− l(j−1). It can be deduced from (3.15)

that rows and columns of Hyk
σN0

and Hyl
σN0

for k 6= l are orthogonal to each other. In such
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scenario, the 2K non-zero eigenvalues and corresponding eigenvectors of Hy
σN0

are equal

to the set consisting of eigenvalues and corresponding eigenvectors of Hyk
σN0

as follows:

λy,(2k+j−2) = λyk,j

uy,(2k+j−2) = uyk,j, k = 1, 2, ..., K, j = 1, 2
(3.16)

Moreover, using (3.13) and (3.14), it can be deduced that:

λyk,1 = −λyk,2 (3.17)

It can be inferred from (3.16) and (3.17) that the kth mono-component signal of y[n] can

be extracted by creating a modified eigenvalue diagonal matrix Λ̃yk which preserves only

the kth non-zero eigenvalue pair of Λy as follows:

Λ̃yk = diag(0, ..., 0, λyk,1,−λyk,1, 0, ..., 0) (3.18)

where diag(.) denotes diagonal matrix. Construct H̃yk
N as follows:

H̃yk
N = UyΛ̃ykU

T
y (3.19)

where N = σN0, H̃yk
N = Hyk

N . The average of skew diagonal elements of H̃yk
N gives ỹk[n],

where ỹk[n] = yk[n] for N = σN0. Here’s an example:

Example 1: y[n] =
3∑

k=1

yk[n] =
3∑

k=1

Ak cos

(
2πk100n

32000

)
, n = 0, 1, ..., 638

where A1 = 2, A2 = 3, A3 = 1. The value of N is chosen to be equal to N0 = 320.

The non-zero eigenvalue pairs corresponding to the three mono-component signals of y[n]

contained in Hy
320 found using MATLAB are {(320, -320), (480, -480), (160, -160)}. Please

note that the value of λyk,1 =
NAk

2
∀k is directly proportional to the amplitude of the

mono-component signal. The signal y[n] and its extracted mono-component signals using

(3.7), (3.8), (3.18) and (3.19) are shown in Fig. 3.2.
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Figure 3.2: (a) Multi-component signal y[n] (b) Mono-component signal y1[n] (c) Mono-
component signal y2[n] (d) Mono-component signal y3[n]. N = N0 = 320.

3.3.2 Case (ii): when Hankel matrix size is not an integer mul-

tiple of the fundamental period

In such cases, N 6= σN0 and the relations in (3.14), (3.15), (3.16), (3.17) no longer hold.

The value of 〈Hyk
N , H

yl
N 〉i,j 6= 0 for some values of i, j, where i, j = 1, 2, ..., N . Let the

eigenvalues of Hy
N be now arranged in ascending order, i.e. λy,i+1 ≥ λy,i, i = 1, 2, ..., N−1.

The modified eigenvalue diagonal matrix preserving the kth eigenvalue pair denoted by

Λ̃yk is now given by:

Λ̃yk = diag(0, ..., 0, λy,k, 0, ..., 0, λy,N−k+1, 0, ..., 0) (3.20)

The kth mono-component signal of y[n] corresponding to the kth eigenvalue pair of Hy
N

can be extracted by substituting Λ̃yk from (3.20) in (3.19), where N 6= σN0 in this case.

Let the kth original and extracted mono-component signals of y[n] be denoted by yk[n]

and ỹk[n] respectively. Consider the same signal y[n] as given in the Example 1, but now

spanning (0, 2N − 2) samples. The non-zero eigenvalue pairs of Hy
N for different values

of Hankel matrix size N are compiled in Table 3.1. The original and extracted mono-

component signals of y[n] obtained using (3.7), (3.8), (3.19) and (3.20) are depicted in

Fig. 3.3, Fig. 3.4 and Fig. 3.5 for three different values of N in solid and dashed lines

respectively. It can be inferred from Fig. 3.3, Fig. 3.4 and Fig. 3.5 that ỹk[n] 6= yk[n] but

ỹk[n] matches closely with yk[n] when N > N0. The mean square error (MSE) between
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ỹk[n] and yk[n], MSEyk
N is calculated as:

MSEyk
N =

1

2N − 1

2N−2∑
n=0

(yk[n]− ỹk[n])2 (3.21)

The values of MSEyk
N , k = 1, 2, 3 are compiled in Table 3.1. It can be deduced that the

MSE decreases as N increases, ∀k.
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Figure 3.3: (a) Multi-component signal y[n] (b) Mono-component signals y1[n] and ỹ1[n]
(c) Mono-component signals y2[n] and ỹ2[n] (d) Mono-component signals y3[n] and ỹ3[n].
N = 280.

In practice the exact value of N0 is not known in advance and therefore, N 6= σN0. We

now comprehensively study the variation of error to signal ratio between the extracted

and original components of a multi-component signal with respect to variation in the

Hankel matrix size N . As an example, let y[n] be a multi-component signal containing

five constant amplitude/frequency harmonically related components as follows:

y[n] =
K∑
k=1

yk[n] =
K∑
k=1

Ak cos

(
2πkn

N0

+ θk

)
, n = 0, 1, ..., 2N − 2 (3.22)

where Ak 6= Al for k 6= l; k, l = 1, 2, ..., K, Fs = 20 kHz, F0 = 70 Hz, N0 = Fs/F0, K = 5,

Table 3.1: Non-zero eigenvalue pairs for different values of N

N Eigenvalue Pairs MSE

280 (250.2, -294.9), (440.9, -421.8), (108.6, -137.9) 0.46, 0.31, 0.24
500 (490.8, -475.3), (780.3, -718.5), (227.9, -243.4) 0.14, 0.08, 0.04
1000 (1016.9, -972.3), (1507.3, -1498.9), (494.9, -501.9) 0.02, 0.02, 0.00
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Figure 3.4: (a) Multi-component signal y[n] (b) Mono-component signals y1[n] and ỹ1[n]
(c) Mono-component signals y2[n] and ỹ2[n] (d) Mono-component signals y3[n] and ỹ3[n].
N = 500.
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Figure 3.5: (a) Multi-component signal y[n] (b) Mono-component signals y1[n] and ỹ1[n]
(c) Mono-component signals y2[n] and ỹ2[n] (d) Mono-component signals y3[n] and ỹ3[n].
N = 1000.

A1 = 2, A2 = 1.8, A3 = 3, A4 = 1.0, A5 = 0.8, θ1 = θ5 = 0, θ2 = π/3, θ3 = π/4, θ4 = π/5.

Let the eigenvalues obtained by performing EVD of Hy
N be arranged in ascending order.

It can be inferred from (3.19) and (3.20) that the Hankel matrix formed by preserving

the pth non-zero eigenvalue pair of Hy
N is given by:

H̃
yp
N = λp~uy,p~u

T
y,p + λN−p+1~uy,N−p+1~u

T
y,N−p+1 (3.23)

where p takes values from 1, 2, ..., K. The pth extracted component of y[n] denoted by

ỹp[n] is computed by taking the average of the skew diagonal elements of H̃
yp
N [4]. We

define the error to signal ratio between the extracted and the original pth mono-component
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signal of y[n], denoted by ESRp
N , as:

ESRp
N =

2N−2∑
n=0

(yp[n]− ỹp[n])2

2N−2∑
n=0

(yp[n])2

, p = 1, 2, ..., K (3.24)

It is not feasible to analytically determine the variation of ESRp
N with respect to the

Hankel matrix size N because ESRp
N is a function of ỹp[n], and it can be inferred from

(3.23) that ỹp[n] is a function of the eigenvectors corresponding to the pth eigenvalue pair

of Hy
N . The derivation of analytical expressions for the eigenvectors of the Hankel matrix

for any arbitrary value of N is not feasible. Therefore, we chose to carry out an empirical

study of the variation of ESRp
N with respect to N and draw meaningful inferences from

it. Fig. 3.6 depicts a magnified view of the variation of ESRp
N , ∀p with respect to N .

It can be inferred from Fig. 3.6 that the reduction of ESRp
N , ∀p with respect to N is

not monotonic in nature but the successive maxima of ESRp
N , ∀p reduce as N increases.

Please also observe in Fig. 3.6 that the values of ESRp
N = 0 for N = σN0, where

N0 ≈ 286 samples, σ = 1, 2, 3 and p = 1, 2, ..., 5, in accordance with the mathematically

derived result in section 3.3.1 [4]. In order to understand the variation of ESRp
N , ∀p

with respect to N , the combined magnitude spectrums of the eigenvectors corresponding

to different eigenvalue pairs of Hy
N over the positive frequency range has been depicted

in Fig. 3.7, Fig. 3.8, Fig. 3.9 and Fig. 3.10 for N = 62, 250, 420, 700 respectively.

It can be observed in Fig. 3.9 and Fig. 3.10 that the combined magnitude spectrum of

~wx,p and ~wx,N−p+1 attains peak at one of the harmonic frequencies contained in y[n] for

N > N0, ∀p. It can be inferred from Fig. 3.7, Fig. 3.8, Fig. 3.9 and Fig. 3.10 that

the frequency range over which the combined magnitude spectrum of ~wx,p and ~wx,N−p+1

has significant value, gradually decreases as N increases, ∀p. Therefore, the extracted

components ỹp[n], ∀p eventually approach the original sinusoidal functions contained in

y[n] and ESRp
N ≈ 0, ∀p when N >> N0. However, it is evident from the comparison

of Fig. 3.9 with Fig. 3.10 that the frequency range over which the combined magnitude

spectrum of ~uy,p and ~uy,N−p+1 has significant value does not reduce monotonically with
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respect to N , where p takes values from 1, 2, ..., K. This accounts for the non-monotonic

variation of ESRp
N , ∀p with respect to N , as shown in Fig. 3.1.
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Figure 3.6: Error to signal ratio with respect to the Hankel matrix size (N) after the first
Iteration. N0 ≈ 286 samples.
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Figure 3.7: Combined magnitude spectrum of the eigenvectors corresponding to different
eigenvalue pairs of Hx

N for N = 62 after the first Iteration.

It is apparent from Fig. 3.7, Fig. 3.8, Fig. 3.9 and 3.11 that the extracted components

corresponding to different eigenvalue pairs of Hy
N may not be mono-component signals

because the combined magnitude spectrums of the eigenvectors (acting as basis functions

for the extracted components) corresponding to different eigenvalue pairs of Hy
N may have

significant value around more than one harmonic frequency contained in y[n]. In other

words, the extracted components may have significant contributions from more than one
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Figure 3.8: Combined magnitude spectrum of the eigenvectors corresponding to different
eigenvalue pairs of Hx

N for N = 250 after the first Iteration.
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Figure 3.9: Combined magnitude spectrum of the eigenvectors corresponding to different
eigenvalue pairs of Hx

N for N = 420 after the first Iteration.

harmonic components of y[n]. In order to determine whether an extracted component is

a mono-component signal or not, we define the Mono-component Signal Criteria in the

next subsection.

Mono-component Signal Criteria

The Mono-component Signal Criteria to find out whether an extracted component is a

mono-component AM-FM signal or not is defined as:

(1) The magnitude of the difference between the number of zero-crossings and local ex-

trema (minima and maxima) of the extracted component denoted by Dn is less than or

equal to one.
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Figure 3.10: Combined magnitude spectrum of the eigenvectors corresponding to different
eigenvalue pairs of Hx

N for N = 700 after the first Iteration.

(2) The number of significant eigenvalue pairs obtained by performing EVD of the Hankel

matrix constructed from the samples of the extracted component denoted by Dr is equal

to one.

Please note that we have considered an eigenvalue pair of the Hankel matrix to be

significant if magnitude of one of the eigenvalues constituting the pair is greater than or

equal to one-fourth of the maximum eigenvalue of the Hankel matrix. Please also note

that the first part of the Mono-component Signal Criteria defined above is first stated and

used in [78] to extract intrinsic mode functions (IMFs) from a multi-component signal

using empirical mode decomposition (EMD).

Multiple Iterations

It is evident from Fig. 3.11 that even when N > N0, the combined magnitude spectrum of

~uy,p and ~uy,N−p+1 may have significant side lobes at harmonic frequencies contained in y[n],

other than the harmonic frequency at which it attains the peak value, where p = 1, 2, ..., K.

The extracted components corresponding to such eigenvectors contain contributions from

more than one harmonic component of y[n] and hence, do not satisfy the Mono-component

Signal Criteria defined in the previous subsection. In order to attenuate the side lobes,

such extracted components are treated as multi-component signals for the second Iteration

and EVD is again performed on the Hankel matrices constructed from their samples.

Let’s assume that the eigenvalues obtained by performing EVD are arranged in ascending
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order. Only the component corresponding to the first eigenvalue pair (highest energy) is

extracted in the second Iteration. It is apparent from the comparison of Fig. 3.11 with

Fig. 3.12 that the side lobes in the combined magnitude spectrum of the eigenvectors

corresponding to different eigenvalue pairs of Hy
N are attenuated after the second Iteration.

The substantial improvement obtained in the ESRp
N , ∀p after the second Iteration is

apparent from the comparison of Fig. 3.6 with Fig. 3.13. Please observe in Fig. 3.13

that the ESRp
N decreases considerably for N > N0, ∀p and the value of error to signal

ratio for the F0 component of x[n] is less than 0.2 (-7 dB) for all values of N . We have

obtained similar improvement in the error to signal ratio for the F0 component of x[n] with

respect to N , for about 300 different combinations of the values of K,Ak, θk and N0 in

(3.24), where we have kept K ≤ 7, 40 ≤ N0 ≤ 400, A1 ≥ 0.25 max(Ak), k = 2, 3, ..., K and

|Ak − Al| ≥ (0.1 max(Ak, Al)) for k = 1, 2, ..., K − 1 and l = k + 1, k + 2, ..., K. We have

kept A1 ≥ 0.25 max(Ak), k = 2, 3, ..., K to ensure that the F0 component has significant

energy relative to other harmonic components of x[n]. The time-varying F0 component

of a voiced speech signal has substantial energy relative to other harmonic components in

the LFR [4,44].

It is also important to note here that the main aim is not to achieve a very low value of

the error to signal ratio for the F0 component of x[n]. The objective is that the intervals

marked by the positive and negative cycles of the extracted F0 component should match

with the intervals marked by the positive and negative cycles of the original F0 component

of y[n] respectively. Negative cycles of the time-varying F0 component of a voiced speech

signal provide a reliable coarse estimate of the intervals where GCIs are likely to occur.

Therefore, we define a quantity, Intervals Matching Percentage (IMP ) to objectively

measure the matching of the intervals marked by the positive and negative cycles of the

extracted F0 component and the original F0 component of x[n] as follows:

IMP =
nNC + nPC

2N − 1
× 100 (3.25)

where nNC and nPC denote the number of samples which are common in the negative

and positive cycles of the extracted F0 component and the original F0 component of y[n]
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respectively. The total number of samples in y[n] is 2N − 1, as given by (3.24). It can

be observed from Fig. 3.14 that IMP is greater than 91% for N > N0 after the second

Iteration. We have obtained similar results on the variation of IMP with respect to N

for 300 different combinations of the values of K,Ak, θk and N0 in (3.24). Hence, from

this empirical study, we draw a general conclusion that the error to signal ratio for the F0

component of x[n] decreases considerably and the value of IMP increases substantially

for N > N0 irrespective of the values of K,Ak, θk, N0, when EVD of the Hankel matrix,

initially constructed from the samples of x[n] is performed repeatedly until the Mono-

component Signal Criteria defined in the previous subsection is satisfied by the extracted

F0 component of y[n].
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Figure 3.11: Combined magnitude spectrum of the eigenvectors corresponding to different
eigenvalue pairs of Hx

N for N = 470 after the first Iteration.
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Figure 3.12: Combined magnitude spectrum of the eigenvectors corresponding to different
eigenvalue pairs of Hx

N for N = 470 after the second Iteration.
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Figure 3.13: Error to signal ratio with respect to the Hankel matrix size (N) after the
second Iteration. N0 ≈ 286 samples.

3.4 Extraction of the Time-varying F0 component us-

ing Eigenvalue Decomposition of the Hankel Ma-

trix

It is inferred from Example 1 of the previous section that the magnitude of eigenvalues

constituting an eigenvalue pair corresponding to a mono-component signal contained in a

multi-component signal is directly proportional to the amplitude of the mono-component

signal. Here, the eigenvalues are obtained by performing EVD of the Hankel matrix con-

structed from the samples of a multi-component signal. The formants contain substan-

tially higher energy than the time-varying F0 component of the voiced speech signal [1,44].

The formants are required to be attenuated to render the magnitude of the eigenvalues

constituting an eigenvalue pair corresponding to the time-varying F0 component signif-

icant. Therefore, in order to diminish the formants of voiced speech signal and render

the time-varying F0 component discernible among its harmonics, the voiced speech signal

is required to be filtered in the LFR. The next subsection describes the filtering of the

voiced speech signal in the LFR.
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Figure 3.14: Interval matching percentage with respect to the Hankel matrix size (N)
after the second Iteration. N0 ≈ 286 samples.

3.4.1 Filtering of voiced regions in the LFR

Let x[n] denote a noisy voiced region spanning Q samples, detected using the method

described in the previous chapter of this thesis. x[n] contains the clean voiced speech

signal, s[n], and the additive noise ξ[n]; i.e, x[n] = s[n] + ξ[n]. The detected noisy voiced

region is filtered in the LFR using the Fourier-Bessel (FB) coefficients. The FB coefficients

are suitable for the analysis of a voiced speech signal because the Bessel functions used as

bases in the FB series expansion of the signal are non-stationary in nature [79, 80]. The

zero-order FB series expansion of a discrete-time noisy voiced speech signal y[n] is given

by [81,82]:

x[n] =

Q∑
l=1

Cx
l J0

(
λln

Q

)
, n = 0, 1, .., Q− 1 (3.26)

The FB coefficients Cy
l of y[n] are computed by using the following analysis equation

[82,83]:

Cx
l =

2

Q2[J1(λl)]2

Q−1∑
n=0

nx[n]J0

(
λln

Q

)
(3.27)

where J0(.) and J1(.) are the zero and first order Bessel functions respectively. The

ascending order positive roots of the equation, J0(λ) = 0 are denoted by λl, where the

order l takes values from 1, 2, .., Q. There exists one to one correspondence between the

order l of the FB coefficient and the continuous-time frequency Fl in Hz at which it attains
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peak as given by [82,83]:

λl ≈
2πFlQ

Fs
where λl ≈ λl−1 + π ≈ lπ (3.28)

From (3.28), it can be inferred that:

l ≈ 2FlQ

Fs
(3.29)

It can be deduced from (3.29) that the order l must vary from 1 to Q (length of the

discrete-time signal) in order to represent the full bandwidth of the discrete-time signal

excluding the DC component; i.e.,

(
0,

Fs
2

]
Hz. Please note that the FB coefficients

cannot represent the DC component of the signal. Therefore, any DC component present

in the signal must be removed prior to computing the FB coefficients of the signal. The

noisy voiced speech signal is filtered in the LFR by using the synthesis equation in (3.26)

with the order l varying in the range of (L1, L2) corresponding to the LFR as follows:

xLF[n] =

L2∑
l=L1

Cx
l J0

(
λln

Q

)
, n = 0, 1, .., Q− 1 (3.30)

where L1 =
2× 50Q

Fs
and L2 =

2× 500Q

Fs
using (3.29) and xLF[n] denotes the LFR filtered

noisy voiced speech signal. Using the linearity property of the FB expansion [83], (3.30)

can be rewritten as:

xLF[n] =

L2∑
l=L1

(Cs
l + Cξ

l )J0

(
λln

Q

)
= sLF[n] + ξLF[n] (3.31)

where Cs
l and Cξ

l represent the FB coefficients of s[n] and ξ[n] respectively. It can be

inferred from (3.31) that in xLF[n], the harmonic structure of sLF[n] given by (3.6) is

corrupted by the components of the additive noise present in the LFR. It can be deduced

from (3.6) that filtering of the voiced speech signal in the LFR suppresses the noise

energy lying outside the LFR and thus, aids in achieving robustness against noise. In the

next section, the theory and concepts developed in the previous section for extraction of
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harmonically related constant amplitude/frequency mono-component signals contained in

a multi-component signal are extended to extract the time-varying F0 component from

the LFR filtered noisy voiced speech signal xLF[n]. The negative cycles of the extracted

time-varying F0 component of xLF[n] provide reliable coarse estimate of intervals where

GCIs are likely to occur.

3.4.2 Evolution of concepts for the time-varying case

Let y[n] = xLF[n] where xLF[n] is the LFR filtered noisy voiced speech signal in (3.31)

spanning (0, Q−1) samples. Using (3.6), (3.7) and (3.31), Hy
N can be expressed as follows:

Hy
N = HsLF

N +HξLF

N =
K∑
k=1

H
sLF,k

N +HξLF

N (3.32)

where sLF,k[n] represents the kth mono-component signal of sLF[n]; i.e, sLF,k[n] =

Ak[n] cos(2πkf0[n]n+ θk[n]) and k varies from 1, 2, ..., K. The time-varying fundamental

frequency F0[n] varies slowly with time [45]. The rank of HsLF
N is close to 2K if frequencies

of all K mono-component signals of sLF[n] change significantly slow over the period of

N data samples [84]. Accordingly, the value of N must be kept small such that F0[n]

changes significantly slow over N data samples and the ranks of HsLF
N and H

sLF, k

N are

restricted to 2K and 2 respectively. This condition poses an upper limit on the value of

N . On the other hand, it has been explained in section 3.3.2 that the error to signal ratio

for the F0 component of y[n] reduces considerably for N > N0 and the value of IMP

increases substantially for N > N0. This observation poses a lower limit on the value

of N . The maximum value of N0 denoted by N0,max for voiced speech signal can be
Fs
50

corresponding to the minimum possible value of F0, denoted as F0,min = 50 Hz. Thus,

the value of 2N − 1 is chosen to be the smallest integer which divides the Q samples of

y[n] into L equal size segments denoted by yl[n], l = 1, 2, ..., L of length 2N − 1 samples,

subject to the constraint that N > N0,max; i.e, N >
Fs
50

. The EVD is performed on Hyl
N ∀l

and the time-varying F0 component is extracted for each yl[n] where l = 1, 2, ..., L. Please

note that the assumption of stationarity is not required to divide the voiced speech signal

into segments.
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The presence of additive noise in yl[n] increases the rank and number of non-zero

eigenvalue pairs of Hyl
N by adding energy in the lth segment of sLF[n] at frequencies that

may not coincide with F0[n] or its harmonics. The time-varying F0 component of yl[n] has

significant energy relative to other harmonic components in the LFR as evident in Fig. 3.1

(b); therefore, only components with magnitude of the eigenvalue equal to or greater than

one-fourth of the maximum eigenvalue of Hyl
N are extracted. Ignoring the non-significant

eigenvalue pairs of Hyl
N which may correspond to components of lth segment of the LFR

filtered noise ξLF[n] contained in yl[n] facilitates further noise suppression. Let the mth

extracted component of yl[n] corresponding to the mth significant eigenvalue pair of Hyl
N

be denoted by yl,m[n]. We define two parameters associated with an extracted component

as follows:

(a) Dominant frequency: The positive frequency at which the square magnitude spectrum

of the extracted component attains its peak.

(b) Energy: The sum of the square values of the extracted component.

The noise environments (such as babble noise) that can introduce a narrowband compo-

nent with significant energy in the frequency range lower than the frequency range of the

time-varying F0 component of the voiced speech signal introduce difficulty in determin-

ing the candidate for the time-varying F0 component of yl[n] from among the significant

extracted components of yl[n]. Therefore, a Distance Metric based criterion is employed

for noise resilient estimation of the F0 range of a voiced speech signal as described in the

next subsection.

3.4.3 Distance Metric based F0 range estimation

A reliable estimate of the average value of F0[n] for the entire noisy voiced speech signal,

denoted F̂0, can help in estimation of the F0 range of yl[n] in a noise resilient manner. A

robust estimate of F̂0 facilitates determination of the dominant frequency from among the

dominant frequencies of all significant extracted components of yl[n], which can be used

for estimating the F0 range of yl[n] in an Iteration. In this thesis, the term Iteration refers

to the entire process of performing EVD of Hyl
N , extraction of components corresponding

to the significant eigenvalue pairs and determination of the potential candidate for the
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Figure 3.15: Histogram of F0 values of short duration female speech segments estimated
using the method proposed in [3] (a) in a clean environment (b) at 0 dB SNR in a babble
noise environment.

time-varying F0 component of yl[n].

There are several ways to estimate F̂0. The autocorrelation (ACF) method described

in [3] has been used to estimate the fundamental periods (T0) of central-clipped short

duration (30 ms) voiced speech segments from the locations of the strongest peaks in

their respective ACF in the interval of 2 ms - 20 ms (corresponding to the F0 range of 50

Hz - 500 Hz). The F0 values of voiced segments are obtained as inverse of their respective

T0 values. The histogram of the F0 values of voiced segments is computed by dividing

the F0 range into 18 equal size bins of width 25 Hz. Let p(Fi) denote the normalized

frequency of occurrence of F0 values in the bin with center Fi. The peak in the histogram

of F0 values of voiced segments provides an estimate of F̂0 as follows:

F̂0 = argi max(p(Fi)) ∀i (3.33)

Histograms of F0 values computed for female voiced speech segments using the ACF

method [3] in a clean environment and at 0 dB SNR in a babble noise environment are

depicted in Fig. 3.15 (a) and Fig. 3.15 (b) respectively. The F̂0 value of 187.5 Hz has

been estimated for the two scenarios depicted in Fig. 3.15 using (3.33). The position of

the peak in the two histograms depicted in Fig. 3.15 remain unchanged irrespective of the

SNR. It is understood from this example that F̂0 can be reliably estimated using (3.33).

Let dominant frequencies of M extracted components corresponding to M significant
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eigenvalue pairs of Hyl
N arranged in ascending order be denoted by F̆m,max,m = 1, 2, ..,M .

We define a Distance Metric, denoted Υm for F̆m,max as the absolute value of the difference

between F̂0 and F̆m,max:

Υm = |F̂0 − F̆m,max| , m = 1, 2, ..,M (3.34)

The average value of F0 over yl[n] denoted by F̂ l
0 is approximated by F̆m,max with the

minimum value of Υm as follows:

F̂ l
0 ≈ F̆mp,max if Υmp = min(Υm) ∀m (3.35)

where mp is an integer in the set {1, 2, ..,M}. As 1.5F̂ l
0 is approximately the mid-point

between the time-varying F0 of lth segment of sLF[n] and its second harmonic frequency

contained in yl[n], the F0 range for yl[n] denoted by (F l
0,L, F

l
0,H) is defined using (3.33),

(3.34) and (3.35) as follows:

F l
0,L = max

(
50 Hz,

2F̂ l
0

3

)
= max

(
50 Hz,

2F̆mp,max

3

)

F l
0,H = min

(
500 Hz,

4F̂ l
0

3

)
= min

(
500 Hz,

4F̆mp,max

3

) (3.36)

Let yl,F0 [n] represent the time-varying F0 component of yl[n]. The highest energy com-

ponent among the significant extracted components of yl[n] with their corresponding

dominant frequencies lying in the range (F l
0,L, F

l
0,H) given by (3.36) is considered as the

potential candidate for yl,F0 [n].

The potential candidate for yl,F0 [n] may contain contamination of higher-order har-

monic components of F0 or noise components present in the LFR. Therefore, the Mono-

component Signal Criteria defined in the previous subsection has been employed to ensure

that the selected potential candidate is a mono-component signal. The Mono-component

Signal Criteria defined in the previous section ensures effective removal of the leakage of

other harmonics and noise from the potential candidate for yl,F0 [n]. If the potential can-

didate for yl,F0 [n] obtained in section 3.4.3 satisfies the Mono-component Signal Criteria,
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then it is considered as yl,F0 [n], otherwise the Iteration comprising of the entire process

of EVD of the Hankel matrix, extraction of the significant components and determina-

tion of the potential candidate for yl,F0 [n] is repeated by treating the potential candidate

obtained in section 3.4.3 as yl[n] for the next Iteration. The Iterations are repeated until

yl,F0 [n] is extracted.

3.4.4 Proposed iterative algorithm

The steps of the proposed iterative algorithm for extracting the time-varying F0 compo-

nent of a noisy voiced speech signal represented by x[n] are enumerated below:

1) Determine the average value of F0 of x[n] denoted by F̂0 by using (3.33) (Procedure

stated in subsection 3.4.3).

2) Perform filtering of x[n] in the LFR and compute xLF[n] using (3.27), (3.29) and (3.30)

(Procedure stated in subsection 3.4.2).

3) Let y[n] = xLF[n], where xLF[n] is the LFR filtered noisy voiced speech signal spanning

Q samples given in (3.30). Divide y[n] into equal size segments yl[n], l = 1, 2, .., L consist-

ing of 2N − 1 samples, subject to the constraint that N is an even number greater than
Fs
50

(Procedure stated in subsection 3.4.2).

4) Construct the Hankel matrix Hyl
N from yl[n] using (3.7). Perform EVD of Hyl

N ; i.e.,

Hyl
N = UylΛylU

T
yl

as given by (3.8). Let the eigenvalues be arranged in increasing order i.e.

λyl,i+1 ≥ λyl,i , i = 1, 2, .., N − 1.

5) Determine the maximum eigenvalue denoted by λyl,max among all eigen values, i.e.

λyl,max = max(λyl,i), i = 1, 2, ..., N .

6) Determine the significant eigenvalue pairs of Hyl
N . The mth eigenvalue pair of Hyl

N

denoted by ζl,m, where ζl,m = (λyl,m, λyl,N−m+1) is considered as significant or negligible

as:

max(|ζl,m|) ≥ 0.25 λyl,max, ζl,m ε significant,

max(|ζl,m|) < 0.25 λyl,max, ζl,m ε negligible.
(3.37)
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where m takes values from 1, 2, ...,
N

2
. Let there be M significant eigenvalue pairs.

7) Construct a modified eigenvalue diagonal matrix Λ̃yl,m to preserve only the mth signif-

icant eigenvalue pair as follows:

Λ̃yl,m = diag(0, .., 0, λyl,m, 0, .., 0, λyl,N−m+1, 0, .., 0) (3.38)

where m = 1, 2, ...,M .

8) Extract the mth significant component of yl[n], denoted by ỹl,m[n] by taking the mean

of the elements of the skew-diagonals of H̃yl,m , where H̃yl,m is constructed as:

H̃
yl,m
N = UylΛ̃yl,mU

T
yl

(3.39)

9) Repeat steps 7-8 for m = 1, 2, ..., M .

10) Compute the R-point discrete Fourier transform (DFT), Ỹl,m(Fr) of ỹl,m[n] at fre-

quencies Fr =
rFs
R
, r = 0, 1, ..., R− 1 as follows:

Ỹl,m(Fr) =
2N−2∑
n=0

ỹl,m[n]e−j2πfrn, fr =
Fr
Fs

(3.40)

where m = 1, 2, ...,M . The value of R is chosen high to compute the DFT with good

frequency resolution.

11) Determine the dominant frequency at which |Ỹl,m(Fr)|2 attains the maximum as:

|Ỹl,m(Fm,max)|2 = max(|Ỹl,m(Fr)|2), m = 1, 2, ...,M (3.41)

12) Arrange the extracted components ỹl,m[n] in increasing order of the dominant fre-

quencies Fm,max and denote them by y̆l,m[n], m = 1, 2, ...,M . The dominant frequencies

of y̆l,m[n] are denoted by F̆m,max, such that F̆m+1,max > F̆m,max for m = 1, 2, ...,M − 1.

13) Compute the Distance metric Υm for each dominant frequency using (3.34). The
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value of F̂0 is computed in the step 1 of this algorithm using (3.33). Determine the ap-

proximate value of F̂ l
0 by using (3.35).

14) Determine the F0 range for yl[n] using (3.36). Compute energies of the extracted

components whose dominant frequencies lie in the range of (F l
0,L, F

l
0,H).

15) Let y̆l,m0 [n], where m0 is an integer in the set {M1,M1 + 1, ...,M2} be the highest

energy component among the extracted components y̆l,m[n],m ∈ {M1,M1 + 1, ...,M2}

whose dominant frequencies lie in the range of (F l
0,L, F

l
0,H) where 1 ≤ M1 ≤ M2 ≤ M .

Thus, y̆l,m0 [n] is the potential candidate for yl,F0 [n], the F0 component of yl[n].

16) If y̆l,m0 [n] does not satisfy the Mono-component Signal Criteria, then repeat the steps

4 - 15 by treating yl,m0 [n] as yl[n] for the next Iteration (steps 3 - 16). On the other hand,

if y̆l,m0 [n] satisfies the Mono-component Signal Criteria then it is considered as yl,F0 [n].

17) Repeat steps 4 - 16 for all segments yl[n], l = 1, 2, ..., L to extract their time-varying

F0 components.

18) Concatenate the extracted time-varying F0 components of all segments to obtain the

time-varying F0 component of y[n] denoted by yF0 [n] as follows:

yF0 [n] =
L∑
l=1

yl,F0 [n− (2N − 1)(l − 1)], n = 0, 1, ..., Q− 1 (3.42)

where yl,F0 [n] = 0 for n < 0 and n > 2N − 2.

The next section demonstrates the experimental results obtained by the proposed iterative

algorithm on a synthetic multi-component non-stationary signal with harmonically related

components and a voiced speech signal.

3.5 Experimental Results and Discussion

In order to evaluate the efficacy of the proposed iterative algorithm, experiments have

been performed on synthetic and natural (voiced speech signal) multi-component non-
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stationary signals with harmonically related components in clean and noisy environments.

The synthetic multi-component non-stationary signal is generated at Fs of 32 kHz. The

speech signal is taken from the CMU-Arctic database [67, 68] available at Fs of 32 kHz.

The corresponding time-aligned EGG signals are available in the CMU-Arctic database

for speech signals of some speakers. The white and babble noise signals are taken from the

NOISEX database [71]. The white noise signal was acquired by sampling a high quality

analog noise generator. The source of the babble noise signal was 100 people speaking

in a canteen. These noise signals are available at Fs of 19.98 kHz and therefore, have

been resampled to 32 kHz before adding them to synthetic and natural (speech signal)

multi-component non-stationary signals.

3.5.1 Synthetic multi-component non-stationary signal

The following AM-FM signal model has been used to generate a synthetic multi-component

non-stationary signal represented by y[n], containing three harmonically related time-

varying mono-component signals:

x[n] =
3∑

k=1

Ak(1 + αkn) cos(kω0(1 + βn)n+ θk) , n = 0, 1, ..., Q− 1 (3.43)

where ω0 = 2πf0 represents the normalized angular frequency. The first component of

x[n] corresponding to k = 1 is the time-varying fundamental frequency (F0) component

of x[n]. Please note that in (3.43), the variation of the instantaneous frequency and

amplitude of the three mono-component signals contained in x[n] is linear in nature. In

(3.43), the parameter β controls the rate of variation of f0 with respect to time and the

parameter αk controls the rate of variation of instantaneous amplitude of kth harmonic

component of f0 with time. The values of various parameters used in (3.43) are chosen as:

Q = 4800, β =
0.296

Q
,A1 = 0.017, A2 = 0.022, A3 = 0.012, α1 = 2, α3 = 1.8, α3 = 1.4, θ1 =

0, θ2 = π, θ3 =
π

2
, f0 =

100

Fs
, Fs = 32 kHz. Using (3.43) and the given values of various

parameters of the model, it can be easily found out that the the fundamental frequency

is varying from 100 Hz to 129.59 Hz which corresponds to a positive change of about 30%

over 150 ms duration.
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The LFR filtered synthetic signal xLF[n] is obtained from x[n] using (3.27), (3.29)

and (3.30). Let y[n] = xLF[n]. Subject to the constraint that the Hankel matrix size N

should be greater than
Fs
50

= 640 for Fs = 32 kHz (refer to sub-section 3.4.1), y[n] has

been divided into 3 equal size segments yl[n], l = 1, 2, 3 of length 1599 samples and a

square Hankel matrix of size 800 × 800 is constructed using the samples of each segment.

The EVD has been performed on all Hankel matrices. The experimental results obtained

by the proposed iterative algorithm on the third segment of y[n] are tabulated in Table

3.2 and depicted in Fig. 3.16 and Fig. 3.18 for the two scenarios: clean environment

and at 0 dB SNR in a white noise environment respectively. In order to objectively

measure the difference between the extracted time-varying F0 component and the origi-

nal time-varying F0 component of synthetic multi-component non-stationary signal with

harmonically related components, we introduce the performance measure, error to signal

ratio in dB denoted by ESRdB, defined as follows:

err[n] = yF0 [n]− ỹF0 [n]

ESR (dB) = 10 log10


∑
n

(err[n])2

∑
n

(yF0 [n])2

 (3.44)

where the extracted time-varying F0 component and the original time-varying F0 compo-

nent of y[n] are denoted by ỹF0 [n] and yF0 [n] respectively.

(a) Clean Environment: Understanding of the results obtained by the proposed itera-

tive algorithm on the third segment of y[n] requires explanation of the tabulated results

(Table 3.2) for the clean environment. The same way of interpretation will follow for

the results provided in Table 3.2 for the noisy environment. The third segment of y[n] is

denoted as y3[n] and is depicted in Fig. 3.16 (b). The value of F̂0 estimated using (3.33)

is found to be 137.5 Hz. Three significant components have been extracted using (3.37),

(3.38) and (3.39) by performing EVD of Hy3

N . The dominant frequencies of the extracted

components have been computed using (3.40) and (3.41). The Distance Metric values

of all dominant frequencies have been computed using (3.34). The minimum Distance

Metric value is 0.5 Hz corresponding to the dominant frequency value of 137 Hz. Thus,
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Table 3.2: Experimental results of extraction of the time-varying fundamental frequency com-
ponent from the third segment of the synthetic multi-component non-stationary signal given by
(3.43) obtained using the proposed iterative algorithm in a clean environment and at 0 dB SNR
in a white noise environment.

Average Value of Seg- Iter- Significant Eigen- Dominant Distance Estimated Energy of
F0 of Entire ment ation value Pairs Frequency Metric F0 Range Extracted

Voiced Speech Num- Num- of Extracted in Hz in Hz Compo-
Signal in Hz ber ber Components nents

in Hz

(F̂0) (l) (Fm,max) (Υm) (F l
0,L, F l

0,H ) (Dn, Dr)

CLEAN ENVIRONMENT

(-14.32, 13.96) 275.0 137.5 1.27
137.5 3 1 (-11.23, 11.15) 137.0 0.5 (91.3, 182.7) 0.68 (2, 1)

(-6.35, 6.53) 413.0 275.5 0.24

2 (-10.33 10.07) 137.0 0.5 (91.3, 182.7) 0.67 (0, 1)

WHITE NOISE ENVIRONMENT (SNR: 0 dB)

(-13.68 13.10) 273.0 135.5 1.04
137.5 3 1 (-11.86 12.06) 138.0 0.5 (92.0, 184.0) 0.67 (2, 1)

(-5.63 5.80) 415.0 277.5 0.20

2 (-10.08, 10.03) 137.0 0.5 (91.3, 182.7) 0.64 (0, 1)

by using (3.35) and (3.36), the F0 range for y3[n] is found to be (95.9 Hz, 178.1 Hz).

The component extracted using the second eigenvalue pair has the highest energy with

the dominant frequency lying in the estimated F0 range and therefore, it is the poten-

tial candidate (Fig. 3.16 (c)) for the time-varying F0 component of y3[n]. However, it

does not satisfy the Mono-component Signal Criteria with values of Dn = 2 and Dr = 1.

Therefore, the potential candidate in the first Iteration has been treated as y3[n] for the

second Iteration. In the second Iteration, one significant component using (3.37), (3.38)

and (3.39) has been extracted by performing EVD of the Hankel matrix constructed from

the samples of the potential candidate obtained in the first Iteration. The minimum

Distance Metric value is 0.5 Hz in the second Iteration corresponding to the dominant

frequency value of 137 Hz. Thus, by using (3.35) and (3.36), the F0 range for y3[n] found

to be (95.9 Hz, 178.1 Hz). The component extracted using the first eigenvalue pair in

the second Iteration (Fig. 3.16 (d)) is the time-varying F0 component of y3[n] (Fig. 3.16

(b)) because it is the highest energy component with the dominant frequency lying in the

estimated F0 range and satisfies the Mono-component Signal Criteria with values of Dn =

0 and Dr = 1. It is evident from Fig. 3.16 (d) that the extracted component was able to

follow the variation in the amplitude and frequency of the time-varying F0 component of

y3[n]. The value of error to signal ratio for the F0 component in dB and the value of IMP

(refer to equations (3.44) and (3.25)) are found to be to be -14 dB and 97% respectively.

The results obtained by the proposed iterative algorithm on the entire synthetic multi-
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Figure 3.16: (a) Third segment of a clean synthetic multi-component non-stationary signal
(b) LFR filtered synthetic multi-component non-stationary signal (y3[n]) (c) Potential
Candidate for the time-varying F0 component obtained in the first Iteration (d) Extracted
time-varying F0 component by the proposed iterative algorithm in the second Iteration
in solid line and the reference time-varying F0 component in dashed line.

component non-stationary signal given by (3.40) in a clean environment is depicted in Fig.

3.17. The time-varying F0 component of y[n] depicted in Fig. 3.17 (c) has been obtained

using (3.38), which involves concatenation of the time-varying F0 components extracted

from all segments of y[n]. It is evident from Fig. 3.17 (c) that the extracted time-varying

F0 component closely matches with the reference F0 component of y[n]. The value of

error to signal (refer to equation 3.44) for the F0 component in dB computed is found to

be -14.5 dB and the value of IMP is found to be 97.54% using (3.25).

(b) Noisy Environment: The results obtained by the proposed iterative algorithm at

0 dB SNR in the white noise environment tabulated in Table 3.2 should be interpreted

in the same way as explained in the previous subsection for the clean environment. The

third segment of the LFR filtered noisy synthetic multi-component non-stationary signal

(y3[n]) at 0 dB SNR in a white noise environment is depicted in Fig. 3.18 (b). The time-

varying F0 component of y3[n] extracted using the proposed iterative algorithm in the

second Iteration is depicted in Fig. 3.18 (d). The value of error to signal ratio for the F0

component in dB and the value of IMP (refer to equations (3.44) and (3.25)) are found

to be -12 dB and 96.25% respectively. It is evident from 3.18 (d) and the ESRdB value

that the proposed iterative algorithm was able to efficiently extract the time-varying F0

component of y3[n] in a heavily noise degraded condition also.
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Figure 3.17: (a) Clean synthetic multi-component non-stationary signal (b) LFR filtered
synthetic multi-component non-stationary signal (y[n]) (c) Extracted time-varying F0

component by the proposed iterative algorithm in solid line and the reference time-varying
F0 component in dashed line.

The results obtained by the proposed iterative algorithm on the entire synthetic multi-

component non-stationary signal given by (3.43) at 0 dB SNR in a white environment

is depicted in Fig. 3.19. The time-varying F0 component of y[n] depicted in Fig. 3.19

(c) has been obtained using (3.42), which involves concatenation of the time-varying F0

components extracted from all segments of y[n]. It is evident from Fig. 3.19 (c) that the

extracted time-varying F0 component closely matches with the reference F0 component of

y[n]. This result manifest the noise robustness of the proposed iterative algorithm. The

value of error to signal ratio for the F0 component in dB and the value of IMP are found

to be -12.24 dB and 96.56% respectively (refer to equations (3.44) and (3.25)).

3.5.2 Voiced speech signal

The voiced regions of the speech signal of the CMU-Arctic database [67,68] are detected

using the instantaneous V/NV detection method proposed in the previous chapter of this

thesis. The AM-FM signal model of voiced speech signal derived in section 3.2 assumes

that the voiced speech signal in the LFR is a multi-component non-stationary signal with

harmonically related components. A voiced region represented by x[n] spanning 17825

samples at Fs = 32 kHz is selected for performing experiments using the proposed iterative

algorithm. The LFR filtered voiced speech signal xLF[n] is obtained from x[n] using (3.27),
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Figure 3.18: (a) Third segment of a synthetic multi-component non-stationary signal at 0
dB SNR in a white noise environment (b) LFR filtered noisy synthetic multi-component
non-stationary signal (y3[n]) (b) Potential Candidate for the time-varying F0 component
obtained in the first Iteration (c) Extracted time-varying F0 component by the proposed
iterative algorithm in the second Iteration in solid line and the reference time-varying F0

component in dashed line.

(3.29) and (3.30). Let y[n] = xLF[n]. Subject to the constraint that the size of the Hankel

matrix N should be greater than
Fs
50

= 640 for Fs = 32 kHz (refer to sub-section 3.4.1),

the LFR filtered voiced speech signal y[n] has been divided into 13 equal size segments

yl[n], l = 1, 2, ..., 13 of length 1371 samples and a square Hankel matrix of size 686 × 686

has been constructed from the samples of each segment. The results of extraction of the

time-varying F0 component from y3[n] obtained using the proposed iterative algorithm

in a clean environment and at 0 dB SNR in a babble noise environment are tabulated in

Table 3.3 and shown in Fig. 3.20 and Fig. 3.22 respectively.

(a) Clean environment: The third segment of y[n] is denoted as y3[n] and is depicted

in Fig. 3.20 (b). The results obtained by the proposed iterative algorithm on y3[n] in a

clean environment, summarized in Table 3.3 are explained here. The value of F̂0 estimated

using (3.33) is found to be 137.5 Hz. Three significant components using (3.37), (3.38)

and (3.39) have been extracted by performing EVD of Hy3

N . The dominant frequencies

of the extracted components have been computed using (3.40) and (3.41). The Distance

Metric values of all dominant frequencies have been computed using (3.34). The minimum

Distance Metric value is 9.5 Hz corresponding to the dominant frequency value of 147
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Figure 3.19: (a) Noisy synthetic multi-component non-stationary signal at 0 dB SNR in a
white noise environment (b) LFR filtered noisy synthetic multi-component non-stationary
signal (y[n]) (c) Extracted time-varying F0 component by the proposed iterative algorithm
in solid line and the reference time-varying F0 component in dashed line.

Hz. Thus, by using (3.35) and (3.36), the F0 range for y3[n] is found to be (98.0 Hz, 196.0

Hz). The component extracted using the third eigenvalue pair has the highest energy with

the dominant frequency lying in the estimated F0 range and therefore, it is the potential

candidate selected (Fig. 3.20 (c)) for the time-varying F0 component of y3[n] in the first

Iteration. However, it does not satisfy the Mono-component Signal Criteria with values

of Dn = 11 and Dr = 2. Therefore, the potential candidate in the first Iteration is treated

as y3[n] for the second Iteration. In the second Iteration, two significant components have

been extracted using (3.37), (3.38) and (3.39) by performing EVD of the Hankel matrix

constructed from the samples of the potential candidate obtained in the first Iteration.

The minimum Distance Metric value is 9.5 Hz in the second Iteration corresponding

to the dominant frequency value of 147 Hz. Thus, by using (3.35) and (3.36), the F0

range for y3[n] comes out to be (98.0 Hz, 196.0 Hz). The component extracted using

the first eigenvalue pair in the second Iteration (Fig. 3.20 (d)) is the time-varying F0

component of y3[n] (Fig. 3.20 (b)) because it is the highest energy component with the

dominant frequency lying in the estimated F0 range and satisfies the Mono-component

Signal Criteria with values of Dn = 1 and Dr = 1. It is evident from Fig. 3.20 (d)

that the negative cycles of the extracted time-varying F0 component encompass all GCIs

apparent in the differenced EGG (DEGG) signal shown in Fig. 3.20 (d) in dashed line.

The results obtained by the proposed iterative algorithm on the entire voiced speech
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Table 3.3: Experimental results of extraction of the time-varying fundamental frequency compo-
nent from the third segment of the LFR filtered voiced speech signal obtained using the proposed
iterative algorithm in a clean environment and at 0 dB SNR in a babble noise environment.

Average Value of Seg- Iter- Significant Eigen- Dominant Distance Estimated Energy of
F0 of Entire ment ation value Pairs Frequency Metric F0 Range Extracted

Voiced Speech Num- Num- of Extracted in Hz in Hz Compo-
Signal in Hz ber ber Components nents

in Hz

(F̂0) (l) (Fm,max) (Υm) (F l
0,L, F l

0,H ) (Dn, Dr)

CLEAN ENVIRONMENT

(-44.50, 43.65) 295.0 157.5 11.84
137.5 3 1 (-27.39, 28.80) 443.0 305.5 3.98

(-25.81, 26.24) 147.0 9.5 (98.0, 196.0) 2.08 (11, 2)

2 (-18.33, 19.34) 147.0 9.5 (98.0, 196.0) 1.99 (1, 1)
(-6.16, 6.29) 441.0 303.5 0.27

BABBLE NOISE ENVIRONMENT (SNR: 0 dB)

(-45.20, 48.44) 142.0 4.5 (94.7, 189.3) 11.40 (15, 3)
3 1 (-43.47, 44.32) 145.0 7.5 5.81

(-38.16, 37.19) 299.0 161.5 4.41
137.5 (-23.60, 22.91) 403.0 265.5 1.82

(-20.08, 21.55) 406.0 268.5 0.99
(-14.11, 14.96) 100.0 37.5 0.85

(-23.50, 26.67) 143.0 5.5 (95.3, 190.7) 5.52 (0, 1)
2 (-15.97, 16.70) 296.0 158.5 0.30

(-7.37, 7.39) 442.0 304.5 2.54

signal in a clean environment is depicted in Fig. 3.21. The time-varying F0 component

of the LFR filtered voiced speech signal y[n] depicted in Fig. 3.21 (c) has been obtained

using (3.42), which involves concatenation of the time-varying F0 components extracted

from all 13 segments of y[n]. It is evident from Fig. 3.21 (c) that the negative cycles of the

extracted time-varying F0 component using the proposed iterative algorithm encompass

all GCIs apparent in the DEGG signal shown in Fig. 3.21 (d) in dashed line. The results of

this experiment demonstrates the ability of the proposed iterative algorithm to efficiently

extract the time-varying F0 component from the LFR filtered clean voiced speech signal.

(b)Noisy Environment The results obtained by the proposed iterative algorithm at

0 dB SNR in a babble noise environment tabulated in Table 3.3 should be interpreted

in the same way as explained in the previous subsection for the clean environment. The

third segment of the LFR filtered noisy voiced speech signal (y3[n]) at 0 dB SNR in a

babble noise environment is depicted in Fig. 3.22 (b). The time-varying F0 component of

y3[n] extracted using the proposed iterative algorithm in the second Iteration is depicted

in Fig. 3.22 (d) along with the DEGG signal in dashed line. The noise robustness of the

proposed iterative algorithm is apparent in Fig. 3.22 (d), where the negative cycles of the

extracted time-varying F0 component encompass all GCIs evident in the DEGG signal

shown in Fig. 3.22 (d) in dashed line.
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Figure 3.20: (a) Third segment of a clean voiced speech signal (b) LFR filtered clean
voiced speech segment (y3[n]) (c) Potential candidate for the time-varying F0 component
obtained in the first Iteration (d) Extracted time-varying F0 component by the proposed
iterative algorithm in the second Iteration and the DEGG signal are shown in solid and
dashed lines respectively.

The results obtained by the proposed iterative algorithm on the entire noisy voiced

speech signal at 0 dB SNR in white and babble noise environments are depicted in Fig.

3.23 and Fig. 3.24 respectively. The time-varying F0 component of y[n] depicted in

Fig. 3.23 (c) and Fig. 3.24 (c) are obtained using (3.42), which involves concatenation

of the time-varying F0 components extracted from all segments of y[n]. The negative

cycles of the extracted time-varying F0 component shown in Fig. 3.23 (c) encompass all

GCIs apparent in the DEGG signal depicted in Fig. 3.23 (c) in dashed line. It can be

deduced from Fig. 3.23 (c) that the proposed iterative algorithm is resilient to white noise

environment and performs efficiently at low SNRs also.

The negative cycles of the extracted time-varying F0 component shown in Fig. 3.24 (c)

are able to encompass 69 out of 74 GCIs (≈ 93%) evident in the DEGG signal depicted

in Fig. 3.24 (c) in dashed line. The negative cycles of the extracted time-varying F0

component shown in Fig. 3.24 (c) fail to encompass a few GCIs around the sample

numbers 9800, 13700, 14650, 14900, 16200. It can be observed in Fig. 3.24 (b) that

some of these missed GCIs (around sample numbers 9800, 16200) belong to weak voiced

regions. Also, an erroneous component with three negative cycles not corresponding to

GCIs is extracted from the last segment (sample number range from 16453 - 17823) of

the LFR filtered noisy voiced speech signal y[n]. It can be observed in Fig. 3.24 (b)
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Figure 3.21: (a) Clean voiced speech signal (b) LFR filtered voiced speech signal (c) Extracted
time-varying F0 component by the proposed iterative algorithm in solid line and the DEGG
signal in dashed line.

that the last segment of y[n] is a weak voiced region. The results of this experiment

demonstrates the robustness of the proposed iterative algorithm against the babble noise

environment even at low SNRs. It can be concluded from the analysis of results depicted

in Fig. 3.24 (c) that the proposed method performs fairly well in extracting the time-

varying F0 component from severely noise degraded voiced speech signal. The proposed

iterative algorithm performed better in the white noise environment than the babble

noise environment because the babble noise environment has higher energy in the LFR

and hence, causes more signal distortion in the LFR than the white noise environment.

3.6 Conclusion

A noise resilient iterative algorithm for extraction of the time-varying F0 component from

a voiced speech signal based on EVD of the Hankel matrix has been proposed in this

chapter. The Hankel matrix is initially constructed from the samples of the LFR filtered

voiced speech signal. The condition on the Hankel matrix size to enable extraction of the

time-varying F0 component of the voiced speech signal using repetitive EVD has been

derived. The employed Mono-component Signal Criteria has ensured effective removal

of contamination from the potential candidate for the time-varying F0 component of the

voiced speech signal in successive Iterations. There is no requirement of the assumption

of stationarity of the voiced speech signal over short time periods. No assumption has
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Figure 3.22: (a) Third segment of a noisy voiced speech signal at 0 dB in a babble noise
environment (b) LFR filtered noisy voiced speech segment (y3[n]) (c) Potential candidate for
the time-varying F0 component obtained in the first Iteration (d) Extracted time-varying F0

component by the proposed iterative algorithm in the second Iteration and the DEGG signal
are shown in solid and dashed lines respectively.

been made that the time-varying F0 component possess the highest energy in the LFR

filtered voiced speech signal.

The proposed iterative algorithm has been shown to efficiently extract the time-varying

F0 component from noise degraded voiced speech signal. The derived AM-FM model of

the voiced speech signal in the LFR signifies energy only around the time-varying F0 and

its harmonics. The filtering of the voiced speech signal in the LFR rendered the time-

varying F0 component of the voiced speech signal discernible among its harmonics by

attenuating formants. It also helped in achieving noise robustness by removing the noise

energy lying outside the LFR. The rejection of the non-significant eigenvalue pairs of the

Hankel matrix in an Iteration, which may correspond to LFR components of the noise

signal, aids in noise suppression. The noise resilience of the proposed iterative algorithm

is also attributable to the Distance Metric based F0 range estimation.
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Figure 3.23: (a) Noisy voiced speech signal at 0 dB in a white noise environment (b) LFR filtered
noisy voiced speech signal (y[n]) (c) Extracted time-varying F0 component by the proposed
iterative algorithm in solid line and the DEGG signal in dashed line.
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Figure 3.24: (a) Noisy voiced speech signal at 0 dB in a babble noise environment (b) LFR filtered
noisy voiced speech signal (y[n]) (c) Extracted time-varying F0 component by the proposed
iterative algorithm in solid line and the DEGG signal in dashed line.
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Chapter 4

Identification of Glottal Closure Instants

This chapter proposes a robust method to accurately identify glottal closure instants

(GCIs) in the voiced speech signal. This chapter assumes that the voiced regions of speech

signal are detected by using the V/NV detection method described in the second chapter

of this thesis. The proposed method relies on the noise resilient extraction of the time-

varying F0 component of voiced speech signal using the iterative algorithm described in the

previous chapter of this thesis, to provide reliable coarse estimates of intervals where GCIs

are likely to occur. The negative cycles of the LFR filtered voiced speech signal occurring

within these intervals are isolated. GCIs are identified in two steps: In the first step, GCI

candidates are detected as local minima in the derivative of the falling edges of the isolated

negative cycles of the LFR filtered voiced speech signal. In the second step, a selection

criterion is used to discard false GCI candidates. An objective performance comparison

of the proposed GCI identification method with some state of the art methods on speech

signals of the CMU-Arctic database in clean and noisy environments demonstrate the

superiority of the proposed method over existing methods.

4.1 Introduction

The vocal cords vibrate during the production of voiced speech, rendering the excitation

to take the form of quasi-periodic puffs of air. The amplitude and phase of the harmonic

components contained in the quasi-periodic excitation are modified by the vocal tract

system in a time-varying manner. The rate of vibration of the vocal folds is comprehended
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as the fundamental frequency (F0) of voiced speech. Pitch of the voiced speech signal

corresponds closely to its F0. During each glottal cycle, the excitation to the vocal tract

system attains the peak at the instant of closure of the glottis (GCI) which causes a

sudden decrease in the glottal impedance, resulting in a high signal strength.

The accurate detection of GCIs from the speech signal found use in various speech

signal processing applications. The instantaneous F0 of voiced speech signal can be esti-

mated as inverse of the interval between successive GCIs [10, 45]. Prosody manipulation

can be performed in a pitch-synchronous manner by employing the identified GCIs as

pitch period markers. Prosody manipulation finds use in applications such as text to

speech synthesis, voice conversion, expressive speech synthesis [14–16]. The closed phase

in each glottal cycle can be located with the help of GCIs. The inverse filtering tech-

niques require identification of the close phase of glottal cycles for estimation of the glottal

source excitation [2]. The excitation parameters characterizing the glottal flow derivative

around GCIs provide speaker-specific features that aid in speaker identification and ver-

ification [8, 9]. Parametric voice coding can be performed with the knowledge of GCIs

by modeling the voiced speech signal in each glottal cycle [7]. Applications like speech

enhancement, speaker recognition, emotion recognition entail the detection of GCIs from

noisy speech signals [13,19,20,85].

Various methods have been reported in the literature for detection of GCIs from speech

signals. One of the earlier methods to identify GCIs was based on the auto-covariance

matrix whose elements were computed using the samples of the speech signal [36]. The

peak in the linear prediction (LP) residual of the voiced speech signal within a pitch

period was located as the GCI in [86]. The ambiguity arising from the presence of peaks

of opposite polarities around GCIs in the LP residual was eliminated by computing its

Hilbert envelope in [37]. The Frobenius norm of the voiced speech signal computed using

a sliding window was used to estimate the signal energy at each sample instant and the

GCI was detected as the instant with maximum energy within a pitch period [38]. An

amplitude-frequency modulated (AM-FM) signal model based approach for GCI detection

was proposed in [41] but it requires the band-limited (0 Hz - 300 Hz) speech signal to

be a mono-component signal. The lines of maximum amplitudes (LOMA) obtained from
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the amplitude maxima of the wavelet transform of the speech signal computed at various

scales was used to locate GCIs in [40]. The group delay function based approach to

determine GCIs from the positive zero crossings of the average slope function of the

unwrapped phase of the short-time Fourier transform (STFT) of the LP residual was

proposed in [87]. The dynamic programming projected phase slope algorithm (DYPSA)

that determined GCI candidates from positive and projected zero crossings of the phase-

slope function followed by further refinement by the dynamic programming was proposed

in [23]. However, above mentioned methods suffer from low accuracy and performance

degradation in the presence of noise. Lately, we proposed a time-order representation

(TOR) based method for accurately detecting GCIs from the speech signal with excellent

identification rate [66]. However, the main shortcoming of [66] is that the extraction of

the time-varying F0 component of a voiced speech signal by finding the first local peak

in the marginal energy density with respect to frequency (MEDF) over the low frequency

range (LFR) is vulnerable to noise because false local peaks arise in the MEDF around

the true local peak corresponding to F0 in the presence of noise.

The determination of GCIs from noisy speech signals was addressed in [6, 24, 46, 88].

A maximum likelihood theory based method for estimation of GCIs was proposed in [45].

Cohen’s class time-frequency representation based method derived a detection function

in the time-frequency plane followed by a morphological closing to detect GCIs from

noisy voiced regions in [88]. Recently, a quantitative performance comparison of five con-

temporary GCI detection methods namely: Hilbert envelope of the LP residual based

method [37], DYPSA [23], zero frequency resonator (ZFR) based method [6], yet another

GCI algorithm (YAGA) [42] and speech event detection based on the residual energy and

a mean based signal (SEDREAMS) [24] was performed in [43]. The positive zero cross-

ings of the zero frequency resonator (ZFR) filtered speech signal was used to extract GCIs

in [6]. The YAGA method is a union of existing GCI detection techniques using a frame-

work based on the DYPSA algorithm [42]. In SEDREAMS method [24], intervals where

GCIs are likely to occur were derived from the mean-based signal, followed by determin-

ing a precise location of the GCI within an interval by locating a discontinuity in the LP

residual. The YAGA and SEDREAMS methods were shown to provide the highest accu-
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racy in estimating GCIs from clean voiced speech signals [43]. The SEDREAMS and ZFR

based methods were demonstrated to be noise resilient and provided high identification

rates at moderate to low SNRs [43].

In order to achieve further improvement in the performance, we envisaged the employ-

ment of the time-varying F0 component of the voiced speech signal for GCI identification.

The negative cycles of the time-varying F0 component provide reliable coarse estimate of

intervals where GCIs are likely to occur [39]. This chapter presents an accurate and noise

resilient method to identify GCIs in the voiced speech signal that relies on the iterative al-

gorithm described in the previous chapter of this thesis for extraction of the time-varying

F0 component of the voiced speech signal. During each glottal cycle, the abrupt closure

of the glottis (refer to Fig. 1.2) causes the glottal impedance to fall sharply; therefore, the

proposed method detects GCI candidates as local minima in the derivative of the falling

edges of the negative cycles of the LFR filtered voiced speech signal occurring within the

intervals marked by the negative cycles of the time-varying F0 component. The analysis

of the speech signal in the LFR renders the glottal characteristics distinguishable by at-

tenuating formants and helps to achieve noise robustness by removing the noise energy

present at high frequencies. This chapter is organized as follows: The proposed method

for GCI identification is described in Section 4.2. The experimental results on speech sig-

nals of the CMU-Arctic database in white and babble noise environments are presented

and compared with some of state of the art methods in Section 4.3. The concluding

remarks are provided in Section 4.4.

4.2 Proposed GCI Identification Method

GCIs are characteristic of the voiced speech signal; therefore, the voiced regions of speech

signal are required to be detected before identifying GCIs. The noise resilient instanta-

neous V/NV detection method detailed in the second chapter of this thesis is used to

detect voiced regions of speech signal. The detected voiced regions are filtered in the LFR

using the FB coefficients as explained in subsection 3.4.1 of the previous chapter of this

thesis. The filtering of voiced region in the LFR render the time-varying F0 component
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distinguishable among its harmonics, attenuates formant components, remove the DC

component and noise energy present outside the LFR.

The proposed GCI identification method is based on the extraction of the time-varying

F0 component of the voiced speech signal. Let x[n] represents a voiced speech signal

spanning Q samples; i.e, n = 0, 1, ..., Q - 1. The time-varying F0 component of x[n] is

extracted using the iterative algorithm stated in subsection 3.4.4 of the previous chapter

of this thesis. The negative cycles of the extracted time-varying F0 component represented

by xF0 [n] provide reliable coarse estimate of intervals where GCIs are likely to occur. The

negative cycles of the LFR filtered voiced speech signal represented by xLF[n] occurring

within the intervals marked by the negative cycles of xF0 [n] are isolated. There is a sudden

decrease in the glottal impedance at GCIs, resulting in high signal strength; therefore,

GCI candidates are detected as local minima in the derivative of the falling edges of the

isolated negative cycles of xLF[n]. There can be only one GCI per negative cycle of xF0 [n]

but sometimes more than one negative cycle of xLF[n] occur within a single negative cycle

of xF0 [n]. The shape of the falling edge of a isolated negative cycle of xLF[n] could also

sometimes give rise to more than one local minima in its derivative. This leads to detection

of many false GCI candidates along with the true ones. Therefore, a selection criterion

is employed to retain only true GCI candidates. Out of all GCI candidates detected in

the interval marked by a negative cycle of xF0 [n], the GCI candidate corresponding to

the highest magnitude of xLF[n] is selected. The steps of the proposed GCI identification

method are as follows:

1. Let x[n], n = 0, 1, ..., Q−1 denote a voiced region of the speech signal detected using

the V/NV detection algorithm stated in subsection 2.3.2 of the second chapter of

this thesis. Let the sampling rate of x[n] be denoted by Fs.

2. Let xLF[n], n = 0, 1, ..., Q− 1 denote the LFR filtered voiced speech signal obtained

using the FB coefficients of x[n] corresponding to the LFR as described in subsection

3.4.1 of the third chapter of this thesis.

3. Divide xLF[n] into L segments containing 2N−1 samples, xl[n], l = 1, 2, ..., L, where

N is the smallest even number which divides the Q samples of xLF[n] into L equal
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size segments, subject to the constraint that N >
Fs
50

(refer to subsection 3.4.2).

Extract the time-varying F0 component of xl[n],∀l using the iterative algorithm

(refer to subsection 3.4.4). Concatenate the extracted time-varying F0 components

of xl[n],∀l denoted by xl,F0 [n],∀l to obtain the time-varying F0 component of x[n],

as stated in subsection 3.4.4 of the third chapter of this thesis. Let the time-varying

F0 component of x[n] be denoted by xF0 [n].

4. Create a new signal χ[n] from xF0 [n] which is equal to one for only the negative

cycles of xF0 [n] as follows:

χ[n] =

0 if xF0 [n] ≥ 0

1 if xF0 [n] < 0 ∀n
(4.1)

5. Create a new signal Γ[n] from xLF[n] which is equal to one for only the negative

cycles of xLF[n] as:

Γ[n] =

0 if xLF[n] ≥ 0

1 if xLF[n] < 0 ∀n
(4.2)

6. Compute the differenced LFR filtered noisy voiced speech signal denoted by x′LF[n]

as:

x′LF[n+ 1] = xLF[n+ 1]− xLF[n], n = 0, 1, ..., Q− 2 (4.3)

where x′LF[0] = 0.

7. Create a new signal ϑ[n] which preserves the derivative corresponding to the falling

edges of xLF[n] as follows:

ϑ[n] =

0 if x′LF[n] ≥ 0

x′LF[n] if x′LF[n] < 0 ∀n
(4.4)

8. GCI Detection Signal ϑ̃[n]: Extract the derivative corresponding to the falling edges

84



of the peak negative cycles of x[n] as:

ϑ̃[n] = ϑ[n]× Γ[n]× χ[n] ∀n (4.5)

Detect GCI candidates as local minima of ϑ̃[n].

9. GCI Selection Criterion: Compute the dominant frequency (refer to subsection

3.4.2) of xl,F0 [n] denoted by F̂ l
0. A coarse estimate of the fundamental time period

of xl[n] is given by T̂ l0 =
1

F̂ l
0

. If any two GCIs candidates detected in the lth segment

of x[n] are separated by less than
T̂ l0
2

, then the GCI candidate corresponding to a

higher magnitude of xLF[n] is selected and the other is rejected.

The results of the proposed GCI identification method on a clean male voiced speech

segment of duration 42.8 ms (1371 samples at Fs = 32 kHz) are shown in Fig. 4.1. The

voiced speech signal is of 556.9 ms duration (17823 samples at Fs = 32 kHz) and is divided

into 13 segments of length 1371 samples. Hence, the value of 2N − 1 = 1371, where N

denotes the Hankel matrix size N used by the iterative algorithm of subsection 3.4.4.

The proposed GCI identification method accurately identified all GCIs apparent in the

DEGG signal as shown in Fig. 4.1 (i). Fig. 4.2 depicts the results of the proposed GCI

identification method on a clean female voiced speech segment of duration 50.1 ms (1603

samples at Fs = 32 kHz). The voiced speech signal is of 150.2 ms duration (4809 samples

at Fs = 32 kHz) and is divided into 3 segments of length 1603 samples. Hence, the value of

2N −1 = 802, where N denotes the Hankel matrix size N used by the iterative algorithm

of subsection 3.4.4. The proposed GCI identification method accurately identified all

GCIs apparent in the DEGG signal as shown in Fig. 4.2 (i). The next section presents

comprehensive results obtained by the proposed method on a speech database in clean

and noisy environments.

4.3 Experimental Results and Discussion

In order to objectively assess the performance of the proposed GCI identification method

and compare it with some existing noise-resilient GCI identification methods, experiments
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Figure 4.1: (a) Clean male voiced speech segment (b) LFR filtered voiced speech segment
(c) Extracted time-varying F0 component (x1,F0 [n]) (d) Differenced LFR filtered voiced

speech segment (e) χ[n] depicting the intervals marked by negative cycles of x1,F0 [n] (f)
Γ[n] depicting the intervals marked by negative cycles of the LFR filtered voiced speech
segment (g) ϑ[n] depicting only negative cycles of the differenced LFR filtered voiced
speech segment (e) GCI detection signal ϑ̃[n] whose local minima are detected as GCI
candidates (i) GCIs identified in solid line and the DEGG signal in dashed line.

have been performed on a number of speech signals distorted with noise at various levels

of degradation.

Databases: The experiments have been performed on speech signals of the CMU-Arctic

database [67,68] available at a sampling rate of 32 kHz and 16 bit resolution. The database

consists of around 1150 phonetically balanced sentences spoken in the English language

by each of the seven speakers (five male and two female). The corresponding time-aligned

electroglottograph (EGG) signals are available for speech signals of three speakers (bdl:

US male, jmk: Canadian male, slt: US female). The white and babble noise signals are

taken from the NOISEX-92 database [71]. The noise signals are available at a sampling
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Figure 4.2: (a) Clean female voiced speech segment (b) LFR filtered voiced speech segment
(c) Extracted time-varying F0 component (x1,F0 [n]) (d) Differenced LFR filtered voiced

speech segment (e) χ[n] depicting the intervals marked by negative cycles of x1,F0 [n] (f)
Γ[n] depicting the intervals marked by negative cycles of the LFR filtered voiced speech
segment (g) ϑ[n] depicting only negative cycles of the differenced LFR filtered voiced
speech segment (e) GCI detection signal ϑ̃[n] whose local minima are detected as GCI
candidates (i) GCIs identified in solid line and the DEGG signal in dashed line.

rate of 19.98 kHz. The white noise signal was acquired by sampling a high quality ana-

log noise generator. The source of the babble noise signal was 100 people speaking in a

canteen. The noise signals have been resampled to 32 kHz before adding them to speech

signals at various SNRs ranging from 0 dB to 20 dB.

Existing methods used for performance comparison: The proposed method is

compared with two existing GCI identification methods which are shown to be robust

to different noisy environments in [43] namely, ZFR based method [6] and SEDREAMS

method [24].

(a) ZFR based method: In this method [6], the speech signal is passed through a cascade
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of two ideal 0 Hz resonators after removing any DC bias which may be present in it. In

order to remove the large mean value from the filtered output of the cascade of two res-

onators, the local mean is computed and subtracted from the filtered output, this process

is called as ‘trend removal’ operation [6] and is repeated three times to extract the zero

frequency filtered signal. The positive zero crossings of zero frequency filtered signal are

indicative of GCIs. The length of the window used to compute the local mean of the

filtered output of the cascade of two Hz resonators should be in the range of one to two

times of the average pitch period. We have chosen a window length equal to 1.5 times of

the average pitch period.

(b) SEDREAMS method: In this method [24], firstly, a mean based signal is computed

to determine the intervals in the voiced speech signal where GCIs may be present. The

precise GCI positions within the intervals are obtained by locating discontinuities in the

LP residual. The length of the window used to compute the mean based signal should be

one to two times of the average pitch period in order to achieve high identification rate.

A length of window equal to 1.75 times of the average pitch period has been used while

carrying out experiments.

Performance evaluation criteria: In order to perform a quantitative performance as-

sessment of the proposed method for GCI identification and enable its performance com-

parison with existing methods, we have used the performance measures defined in [23].

In [23], the larynx cycle was defined as the range of samples:
nl−1 + nl

2
≤ nl <

nl + nl+1

2
,

given a reference GCI at sample nl with preceding and following reference GCIs at sam-

ples nl−1 and nl+1. The following are the measures defined in [23] which have been used

to evaluate the performance of GCI identification methods:

(a) Identification rate (IDR): It is the percentage of larynx cycles for which exactly one

GCI are detected.

(b) Miss rate (MR): It is the percentage of larynx cycles for which no GCI is detected.

(c) False-alarm rate (FR): It is the percentage of larynx cycles for which more than one

GCI are detected.

(d) Identification accuracy (IDA): It is the standard deviation of the timing error be-
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tween the reference and detected GCI locations. The timing error is calculated for larynx

cycles for which exactly one GCI is detected.

(e) Accuracy to ± 0.25 ms (AR): It is the percentage of GCI locations detected with a

timing error of ± 0.25 ms.

Reference GCIs are located as local minima in the DEGG signal. The following subsec-

tions presents the comparison and discussion of results of the proposed and existing GCI

identification methods in clean and noisy environments.

4.3.1 Clean environment

The performance evaluation of the proposed GCI identification method and two existing

methods on male and female speech signals of the CMU-Arctic database are tabulated

in Table 4.1 and Table 4.2. It can be deduced from Table 4.1 and Table 4.2 that the

proposed method has performed better than the existing methods in terms of IDR, MR,

FR and IDA for both male and female speech signals. For male speech signals, a marginal

improvement of 0.66% and 1.47% has been achieved by the proposed method in the value

of IDR in comparison to SEDREAMS and ZFR based methods respectively. A significant

reduction of 69.39% and 86.61% has been obtained by the proposed method in the value

of MR in comparison to SEDREAMS and ZFR based methods respectively, for male

speech signals. The value of FR obtained for the proposed method is at least 40% lower

than those obtained by existing methods for male speech signals. The best AR results

for male speech signals has been obtained by the SEDREAMS method, achieving an

improvement of nearly 7.67% and 13.37% in comparison to the proposed and ZFR based

methods respectively.

A slight improvement of 0.63% and 1.28% has been obtained by the proposed method

in the value of IDR, computed for female speech signals, in comparison to SEDREAMS

and ZFR based methods respectively. The proposed method has achieved the lowest

possible value of MR for female speech signals. The proposed method has obtained a

considerable improvement of nearly 70.83% and 79.1% in the value of FR, computed for

female speech signals, in comparison to the SEDREAMS and ZFR based methods. The

best AR results for female speech signals has been obtained by the SEDREAMS method,
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Table 4.1: Performance comparison of GCI identification methods on clean male speech
signals

Method IDR (%) MR (%) FR (%) IDA (ms) AR (%)

Proposed 99.40 0.15 0.45 0.28 73.77
ZFR 97.96 1.12 0.92 0.39 70.06

SEDREAMS 98.75 0.49 0.76 0.33 79.43

Table 4.2: Performance comparison of GCI identification methods on clean female speech
signals

Method IDR (%) MR (%) FR (%) IDA (ms) AR (%)

Proposed 99.86 0.00 0.14 0.22 76.65
ZFR 98.60 0.73 0.67 0.33 73.21

SEDREAMS 99.24 0.28 0.48 0.27 83.34

achieving an improvement of nearly 8.73% and 13.84% in comparison to the proposed and

ZFR based methods respectively.

The histograms of the timing error between the reference and the identified GCI

locations obtained by the proposed method and two existing GCI identification methods

are depicted in Fig. 4.3. It can be inferred from Fig. 4.3 that the standard deviation

of the timing error and hence the value of IDA obtained by the proposed method is

less than those obtained by SEDREAMS and ZFR based methods, in conformance to the

IDA results compiled in Table 4.1 and Table 4.2. The reason of the excellent performance

obtained by the proposed method is the employment of the time-varying F0 component to

reliably provide coarse estimate of intervals where GCIs are likely to occur. The proposed

method performed marginally better for clean female speech signals in comparison to clean

male speech signals because owing to the lower F0 range of male speech signals, the LFR

filtered male speech signal contains more number of harmonic components in comparison

to the LFR filtered female speech signal. This increases the difficulty in reliable extraction

of the time-varying F0 component of a male speech signal for weakly voiced segments and

accounts for a lower performance of the proposed method on male speech signals than

female speech signals.
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Figure 4.3: Histogram of the timing error between the identified and reference GCIs in
a clean environment obtained by (a) ZFR based method (b) SEDREAMS method (c)
Proposed method.

4.3.2 Noisy environment

The experimental results of the proposed GCI identification method obtained for a noisy

male voiced speech signal at 0 dB SNR in white and babble noise environments are

depicted in Fig. 4.4 and Fig. 4.5 respectively. The identification rate (IDR) of 100%

and 90.19% and identification accuracy (IDA) of 0.28 ms and 0.45 ms are obtained in

white and babble noise environments respectively. Please note in Fig. 4.5 that GCI

identification errors mainly occurred in a weakly voiced segment of the voiced speech

signal at around 0.8 s and 0.82 s because of the extraction of an erroneous component by

the iterative algorithm of section 3.4.4 at 0 dB SNR in the babble noise environment.

The experimental results of the proposed GCI identification method obtained for a

noisy female voiced speech signal at 0 dB SNR in white and babble noise environments

are depicted in Fig. 4.6 and Fig. 4.7 respectively. The identification rate (IDR) of 100%

and 100% and identification accuracy (IDA) of 0.22 ms and 0.55 ms are obtained in

white and babble noise environments respectively. These results demonstrate the noise

resilience of the proposed method. The proposed method performed fairly well even for

severely degraded conditions.

The performance comparison of the proposed GCI identification method with two
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Figure 4.4: (a) Noisy male voiced speech signal at 0 dB SNR in a white noise environment
(b) LFR filtered noisy voiced speech signal (c) Extracted time-varying F0 component
(xF0 [n]) (d) Differenced LFR filtered noisy voiced speech signal (e) GCI detection signal
ϑ̃[n] whose local minima are GCI candidates (f) GCIs identified in solid line and DEGG
signal in dashed line.

existing methods on speech signals of the CMU-Arctic database in white and babble

noise environments at a SNR range of 0 dB to 20 dB are shown in Fig. 4.8 and Fig. 4.9

respectively. In the white noise environment (Fig. 4.8), the proposed GCI identification

method based on the extraction of the time-varying F0 component of a voiced speech

signal has performed noticeably better than the existing methods in terms of IDR, MR,

FR and IDA. The proposed method remained robust to noise even at low SNRs and

its performance did not degrade much with a reduction in the SNR, even when the SNR

dropped to 0 dB value. The SEDREAMS method was able to detect a large percentage

of GCIs with a higher accuracy than the proposed method and ZFR based methods, as

reflected in the AR results obtained by the SEDREAMS method. Over the SNR range

from 5 dB to 20 dB, the AR results obtained by the SEDREAMS method are better than

the proposed and ZFR based methods. However, over the SNR range from 0 dB to 5 dB,
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Figure 4.5: (a) Noisy male voiced speech signal at 0 dB SNR in a babble noise environment
(b) LFR filtered noisy voiced speech signal (c) Extracted time-varying F0 component
(xF0 [n]) (d) Differenced LFR filtered noisy voiced speech signal (e) GCI detection signal
ϑ̃[n] whose local minima are GCI candidates (f) GCIs identified in solid line and DEGG
signal in dashed line.

the proposed method has obtained better results for the AR than the SEDREAMS and

ZFR based methods.

In the babble noise environment (Fig. 4.9), the values of the performance parameters:

IDR, MR, FR obtained by the proposed method are better than the existing methods

for the SNR range from 10 dB to 20 dB. However, over the SNR range from 0 dB to 5

dB, the proposed method performed similar to the existing methods in terms of IDR,

MR, FR. The proposed method has provided the best MR results over the SNR range

from 3 dB to 20 dB. Over the SNR range from 0 dB to 3 dB the SEDREAMS method

has provided better MR results than the proposed and ZFR based methods. In terms

of IDA, the proposed method performed better than the existing methods throughout

the entire SNR range from 0 dB to 20 dB. The SEDREAMS method provided better AR

results than the proposed and ZFR based methods over the SNR range from 10 dB to 20
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Figure 4.6: (a) Noisy female voiced speech signal at 0 dB SNR in a white noise environment
(b) LFR filtered noisy voiced speech signal (c) Extracted time-varying F0 component
(xF0 [n]) (d) Differenced LFR filtered noisy voiced speech signal (e) GCI detection signal
ϑ̃[n] whose local minima are GCI candidates (f) GCIs identified in solid line and DEGG
signal in dashed line.

dB. Over the SNR range from 0 dB to 10 dB, the proposed method obtained better AR

results than the existing methods.

4.4 Conclusion

The proposed GCI identification method employs the extracted time-varying F0 com-

ponent to provide reliable coarse estimate of intervals where GCIS are likely to occur,

which accounts for the high identification rate obtained by the proposed method. The

high accuracy obtained by the proposed method is attributed to locating GCI candidates

as local minima in the derivative of the falling edges of the isolated negative cycles of

the LFR filtered voiced speech signal. The proposed method neither requires modeling

or characterization of the vocal tract system nor assumes the voiced speech signal to be
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Figure 4.7: (a) Noisy female voiced speech signal at 0 dB SNR in a babble noise environ-
ment (b) LFR filtered noisy voiced speech signal (c) Extracted time-varying F0 component
(xF0 [n]) (d) Differenced LFR filtered noisy voiced speech signal (e) GCI detection signal
ϑ̃[n] whose local minima are GCI candidates (f) GCIs identified in solid line and DEGG
signal in dashed line.

stationary for short duration.

It has been shown that the proposed GCI identification method is resilient to different

noise environments and has provided high identification rate and accuracy, even when

voiced speech signal is severely degraded by noise. The noise resilience of the proposed

method is attributed to the use of a robust algorithm for extraction of the time-varying F0

component of a voiced speech signal. The filtering of the voiced speech signal in the LFR

eliminates the noise energy outside the LFR and also attenuates formant components.

The employed selection criterion efficiently discards false GCI candidates and ensure that

only one GCI is identified per negative cycle of the extracted time-varying F0 component

of the voiced speech signal.
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Figure 4.8: Performance comparison of GCI identification methods in white noise envi-
ronment.
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Figure 4.9: Performance comparison of GCI identification methods in babble noise envi-
ronment.
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Chapter 5

Estimation of Instantaneous Fundamental Frequency

This chapter presents a robust event-based method for estimation of the instantaneous

fundamental frequency of a voiced speech signal. The time-varying F0 component of a

voiced speech signal is extracted by the robust algorithm of subsection 3.4.4 that iter-

atively performs eigen value decomposition (EVD) of the Hankel matrix, initially con-

structed from the samples of the LFR filtered voiced speech signal. The negative cycles of

the extracted time-varying F0 component provide reliable coarse estimate of the intervals

where the glottal closure instants (GCIs) are likely to occur. The negative cycles of the

LFR filtered voiced speech signal occurring within these intervals are isolated. GCIs are

detected as local minima in the derivative of the falling edges of the isolated negative

cycles of the LFR filtered voiced speech signal, followed by a selection criterion to discard

false GCI candidates. The instantaneous F0 is estimated as the inverse of the time in-

terval between two consecutive GCIs. Experiments were performed on Keele and CSTR

speech databases in white and babble noise environments at various levels of degradation

to assess the performance of the proposed method. The proposed method substantially

reduces the gross F0 estimation errors in comparison to some state of the art methods.

5.1 Introduction

Voiced speech is a quasi-periodic signal produced by excitation of the vocal tract system

by quasi-periodic puffs of air [1]. The excitation of the vocal tract system is maximum at

the instant of closure of the glottis (GCI). The fundamental frequency (F0) of the voiced
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speech signal is one of the most important acoustic parameters which is defined as the

rate of vibration of the vocal folds during the production of voiced speech. It is a time-

varying quantity which also depends on the gender, emotion, language, accent, age and

health condition of the speaker. Pitch is a subjective psychoacoustical attribute of voiced

speech and its human perception corresponds closely to F0 of the voiced speech signal.

An accurate estimate of the instantaneous F0 is required by various pitch synchronous

speech signal processing algorithms used in speech compression, text-to-speech synthesis,

voice conversion and expressive speech synthesis [12, 14–16]. Prosodic features derived

from the variations in F0 find use in applications such as speaker recognition and emotion

recognition [17,89]. Some speech signal processing applications like speech enhancement,

speech recognition, emotion recognition, diagnosis of pathological voice disorders [11, 13,

20,89,90] require a reliable estimate of the instantaneous F0 from noisy speech signals.

A number of F0 estimation algorithms have been reported in the literature. They can

be broadly categorized into three classes: block-based, instantaneous and event-based

methods. An extensive review of these methods can be found in [91–93]. Block-based

methods based on the short-time average magnitude difference function (AMDF), autocor-

relation function (ACF), cepstrum, simplified inverse filter tracking (SIFT), modulation

model or subharmonic summation [3, 94–98] divide the voiced speech signal into many

segments, assuming it to be stationary within the segment duration. An estimate of F0

is obtained for each segment. Only a few block-based methods based on weighted auto-

correlation (WAC), dominant harmonic components, harmonic sinusoidal autocorrelation

model (HSAC) and autocorrelation pitch detector [99–102] considered F0 estimation from

noisy speech signals. The main limitation of these block-based methods lie in their in-

ability to track F0 variations occurring within the segment, spanning a few glottal cycles.

Instantaneous methods estimate the F0 value at each sample instant of the voiced speech

signal. Instantaneous F0 methods based on the filtering of the speech signal using a

bank of two band pass filters, modeling of the time-varying F0 using B-spline expansion,

the Hilbert-Huang transform (HHT) or ensemble empirical mode decomposition (EEMD)

were proposed in [21,22,26,44]. However, these methods are sensitive to noise.

On the other hand, event-based methods as proposed in [10, 45, 46, 103] mark the
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occurrence of a characteristic event in each glottal cycle such as the GCI, and F0 is

computed as the inverse of the time interval between successive GCIs. The time resolution

of a glottal cycle is sufficient for F0 estimation in order to describe the continuous variation

in F0 [44]. The presence of spurious peaks in the GCI determination signal in the presence

of white noise causes ambiguity in detecting the true GCIs [45]. The method in [46] was

based on the concept that a local maximum occurs across various scales in the wavelet

transform (WT) of the voiced speech signal around a GCI. The limitation of using a

heuristic approach in [46] for finding local maxima in the WT was overcome in [103] by

the use of an optimization scheme. However, performance of methods in [46,103] was not

evaluated on large speech databases that contain reference F0 values determined using

a simultaneously recorded EGG signal. In [10], the final F0 contour was obtained from

the positive zero crossings of the zero frequency resonator (ZFR) filtered signals derived

from the voiced speech signal and its Hilbert envelope respectively. A noise resilient GCI

detection method presented in [24] was based on the computation of a mean based signal

from the voiced speech signal to extract intervals where GCIs may be present. GCIs were

located within the extracted intervals by determining the instants of discontinuity in the

linear prediction (LP) residual. The methods in [10,24] were shown to be robust to noise.

In the last chapter of this thesis, a novel GCI identification method has been presented

which provided better identification rate and accuracy than the existing methods [10,24]

in clean and noisy environments. It is based on the extraction of the time-varying F0

component of a voiced speech signal using the iterative algorithm of subsection 3.4.4. The

event-based instantaneous F0 method proposed in this chapter estimates the instantaneous

F0 as the inverse of the time interval between two consecutive GCIs, identified using the

GCI identification method of Section 4.2. This chapter is organized as follows: The

proposed event-based method for estimating the instantaneous F0 is presented in Section

5.2. The quantitative performance evaluation of the proposed method on Keele and CSTR

speech databases in clean, white and babble noise environments is presented in Section

5.3. This section also presents a comparison of the experimental results obtained using

the proposed method with those obtained by some state of the art methods. The chapter

is concluded in Section 5.4.
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5.2 Proposed Event Based Instantaneous Fundamen-

tal Frequency Method

The detection of voiced regions is a prerequisite for estimation of the instantaneous F0

of voiced regions. The V/NV detection method proposed in the second chapter of this

thesis is used to detect the voiced regions of a speech signal. The detected voiced regions

are filtered in the LFR using the FB coefficients as described in subsection 3.4.1 to render

their time-varying F0 components discernible among other harmonic components and

to remove the noise energy present outside the LFR. Let x[n] denote a detected voiced

region of a speech signal. Let y[n] = xLF[n], where xLF[n] represents the LFR filtered

noisy voiced speech signal given by (3.31). y[n] is divided into L equal size segments

yl[n], l = 1, 2, ...., L as described in subsection 3.4.2. The time-varying F0 component

of y[n] is extracted using the iterative algorithm of subsection 3.4.4 of this thesis. Let

yF0 [n] and yl,F0 [n] represent the extracted time-varying F0 component of y[n] and yl[n]

respectively. Only one GCI can occur in the interval marked by a negative cycle of yF0 [n].

Thus, the negative cycles of yF0 [n] provide a reliable coarse estimate of intervals where

GCIs may occur [39].

The GCI identification method based on the extracted time-varying F0 component

of a voiced region (detailed in Section 4.2) is used to identify GCIs in x[n]. The GCI

identification method of Section 4.2 isolates the negative cycles of y[n] that are occurring

within the intervals marked by the negative cycles of yF0 [n]. The GCI candidates are

detected as local minima in the derivative of the falling edges of the isolated negative

cycles of y[n]. However, sometimes more than one negative cycle of y[n] are contained in

the interval marked by a negative cycle of yF0 [n]. Moreover, the shape of the falling edge

of a isolated negative cycle of y[n] sometimes give rise to more than one local minimum

per negative cycle of yF0 [n]. This results in detection of many false GCI candidates. Out

of all GCI candidates detected in the interval marked by a negative cycle of yl,F0 [n], a

selection criterion is used in the GCI identification method of Section 4.2 to select the

GCI candidate corresponding to the peak negative cycle of yl[n] occurring in the interval.

Thus, the selection criterion ensures that only one GCI candidate is identified per negative
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cycle of yF0 [n].

The proposed event-based instantaneous F0 estimation method computes the instan-

taneous F0 as the inverse of the time interval between successive GCIs identified in x[n].

The interpolated F0 contour is obtained at intervals of 0.1 ms by linearly interpolating

the values of instantaneous F0 computed at the time-instants of occurrence of respective

GCIs. The F0 contour value at 10 ms intervals is obtained by downsampling the inter-

polated F0 contour every 10 ms. Please note that these operations are required only for

comparison with the reference F0 values provided in the Keele speech database [104–106]

at 10 ms intervals. The next section quantitatively evaluates the performance of the pro-

posed event-based instantaneous F0 estimation method and presents a comparison of the

performance of the proposed method with some state of the art methods.

5.3 Quantitative Performance Evaluation and Com-

parison

5.3.1 Speech signal databases

The speech signals of Keele and CSTR databases [104–106] have been used for the per-

formance evaluations of the proposed method and some state of the art methods.

(a) Keele Database: It consists of phonetically balanced utterances of about 34 s duration

each, spoken by five female and five male speakers in the English language, sampled at

a rate of 20 kHz. The simultaneously recorded EGG signal of an utterance was divided

into frames of 25.6 ms duration, and the reference N0 value for a frame was obtained by

determining the peak in the respective ACF, at a frame rate of 100 Hz. The database

provides reference fundamental period values in samples (N0) at 10 ms intervals. Positive,

negative and zero reference N0 values are indicated for certain voiced frames, uncertain

frames and unvoiced frames respectively. We have computed reference F0 values as Fs/N0

for voiced frames.

(b) CSTR Database: It is approximately of 7 min duration and consists of 50 English

sentences spoken by a male and a female speaker. The speech signals were sampled at
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20 kHz. The reference F0 values are provided in the database at the time-instants of oc-

currence of respective GCIs, identified in the first-order derivative of the simultaneously

recorded EGG signal. The reference F0 contour at 10 ms intervals by linearly interpolat-

ing the reference F0 values at 0.1 ms intervals, followed by a downsampling operation at

10 ms intervals.

5.3.2 Noise database

The white and babble noise signals are taken from the NOISEX-92 database [71]. The

white noise signal was acquired by sampling a high quality analog noise generator. The

source of the babble noise signal was 100 people speaking in a canteen. These noise

signals are available at Fs of 19.98 kHz and therefore, have been resampled to 20 kHz

before adding them to speech signals.

5.3.3 Existing pitch frequency estimation methods

The performance of the proposed method in clean and noisy environments has been com-

pared with the performance of four existing methods namely: ZFR based method [6],

YIN [107], Praat’s autocorrelation (AC) method [108] and the method based on the iter-

ative algorithm of [4].

(a) ZFR based method : In this method, the final F0 contour is derived from the positive

zero crossings of ZFR filtered signals derived from the voiced speech signal and its Hilbert

envelope respectively. During experiments, we have used a window length of 1.5 times of

the average fundamental period (T̂0) for the trend removal operation [6].

(b) YIN : This method introduced a few modifications to the conventional ACF; e.g., a

difference function formulation, normalization and parabolic interpolation for attenua-

tion of the secondary peaks in the ACF at F0 harmonics to reduce errors in the estimated

fundamental period (T0) [107]. We have downloaded the YIN software from the author′s

homepage.

(c) Praat’s autocorrelation (AC) method : In this method [108], the ACF of the windowed
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voiced segment is divided by the ACF of the window function to reduce windowing ar-

tifacts. A sinc interpolation is carried out around the local maxima corresponding to T0

to overcome the artifacts introduced because of sampling of the continuous-time speech

signal.

(d) Method based on the iterative algorithm of [4]: This method is based on the identi-

fication of GCIs by employing the time-varying F0 component of a voiced speech signal

extracted using the iterative algorithm of [4]. The instantaneous F0 is estimated as the

inverse of the time interval between two consecutive GCIs.

While evaluating the performance, the F0 search range for all F0 estimation methods has

been set to 50 Hz - 500 Hz.

5.3.4 Performance evaluation criteria

The following performance evaluation measures have been used to determine the efficacy

of the F0 estimation methods [10]:

(a) Gross Error Percentage (GEP ): It is the percentage of voiced frames (10 ms duration)

with estimated F0 values deviating from the reference F0 values by more than 20%.

(b) Mean Error (ME): It is the mean of the absolute value of the difference between the

estimated and reference F0 values in Hz.

(c) Standard Deviation (SD): It is the standard deviation of the absolute value of the

difference between the estimated and the reference F0 values in Hz.

Please note that the gross errors have not been considered in the calculation of ME and

SD.

5.3.5 Clean environment

The experimental results on the clean voiced speech signal demonstrated in Fig. 5.1 shows

that the proposed event-based method, method based on the iterative algorithm of [4]

and the YIN method were excellent in estimating the value of F0 for the entire duration

of the voiced speech signal (Fig. 5.1 (a)) while the ZFR based and AC methods made

an error in estimating the F0 at 0.54 s and 0.99 s respectively. A more comprehensive
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Figure 5.1: (a) Clean voiced speech signal (b) LFR filtered voiced speech signal (c) Ex-
tracted F0 component using the proposed iterative algorithm of subsection 3.4.4 (d) GCI
detection signal in solid line and the detected GCI candidates in dashed line (e) GCIs
identified after applying the selection criterion in dashed line and the DEGG signal in
solid line (please refer to Section 4.2). Estimated F0 contour in solid line using (f) Pro-
posed event-based method (g) Method based on iterative algorithm of [4] (h) ZFR based
method (i) YIN method (j) Praat’s AC method. Reference F0 contour shown in dashed
lines in (f)-(j).

and quantitative performance comparison of different methods on male and female speech

signals of the two speech databases are presented in Table 5.1 and Table 5.2. It can be

inferred from Table 5.1 and Table 5.2 that the proposed method provides the lowest GEP

among all methods for both male and female speech signals. The proposed method has

achieved at least 50% reduction in the GEP for both male and female speech signals in

comparison to the ZFR based, YIN and Praat’s AC methods. The substantial reduction

in the GEP achieved by the proposed method is due to the employment of the extracted

time-varying F0 component of the voiced speech signal to reliably and accurately identify

GCIs. The GEP obtained by the proposed method for female speech signals is nearly

23% less than the GEP obtained for male speech signals. The reason is that a LFR

filtered male speech signal usually contains more number of harmonic components than

104



Table 5.1: Comparison of performance of different F0 estimation methods on clean male
speech signals

KEELE SPEECH DATABASE

MALE FEMALE

METHOD GE (%) ME (Hz) SD (Hz) GE (%) ME (Hz) SD (Hz)

Proposed 1.634 3.225 3.971 1.224 3.313 4.421

Method Based
on Iterative
Algorithm 1.915 3.614 4.018 1.361 3.539 4.662

of [32]

ZFR Based 3.026 3.159 4.124 2.251 3.418 4.763

YIN 3.522 2.718 4.215 2.744 3.276 5.093

AC 5.617 2.162 3.628 4.926 2.815 4.379

Table 5.2: Comparison of performance of different F0 estimation methods on clean female
speech signals

CSTR SPEECH DATABASE

MALE FEMALE

METHOD GE (%) ME (Hz) SD (Hz) GE (%) ME (Hz) SD (Hz)

Proposed 1.033 3.857 4.345 0.817 4.028 4.813

Method Based
on Iterative
Algorithm 1.213 4.119 4.561 0.880 4.206 5.184

of [32]

ZFR Based 2.372 5.011 5.923 1.536 5.548 7.297

YIN 3.681 4.217 4.639 2.772 4.632 5.784

AC 5.823 2.916 5.011 5.104 3.592 5.930

a LFR filtered female speech signal. This presents difficulty in reliably extracting the

F0 component of weakly voiced regions of a male speech signal. The values of ME and

SD obtained by the proposed method are commensurate with those obtained by the

ZFR based and YIN methods. The values of ME obtained by the proposed method are

greater than those obtained by Praat’s AC method, especially for male speech signals.

The reason is that Praat’s AC method resulted in gross errors while estimating the F0 for

weakly and non quasi-periodic voiced frames. These gross errors have not been included

while calculating the ME, which resulted in low values of ME. On the other hand, the

estimated F0 values by the proposed method resulted in high absolute errors for some

weakly voiced segments of male speech signals but they do not come under the category

of gross errors; i.e., the magnitude of such errors does not exceed 20% of the reference F0

values and therefore, contributed towards an increase in overall ME values.

The Kruskal-Wallis test [109] when applied to the absolute F0 estimation errors ob-
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tained using the proposed method and the method based on the iterative algorithm of [4]

results in p-values of 0.1440 and 0.6109 for male and female speech signals respectively.

At a level of significance, denoted α of 0.05, the results obtained by the two methods are

statistically insignificant. Thus, it can be concluded from Table II and statistical results

that in the clean environment, the proposed method achieves similar performance as the

method based on the iterative algorithm of [32]. The main advantage of using the pro-

posed method over the method based on the iterative algorithm of [32] becomes apparent

in the next section discussing the results obtained in noisy environments.
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Figure 5.2: (a) Noisy voiced speech signal at 0 dB SNR in a babble noise environment (b)
LFR filtered noisy voiced speech signal (c) Extracted F0 component using the proposed
iterative algorithm of subsection 3.4.4. (d) GCI detection signal in solid line and the
detected GCI candidates in dashed line (e) GCIs identified after applying the selection
criterion in dashed line and the DEGG signal in solid line (please refer to Section 4.2).
Estimated F0 contour in solid line using (f) Proposed event-based method (g) Method
based on iterative algorithm of [4] (h) ZFR based method (i) YIN method (j) Praat’s AC
method. Reference F0 contour in dashed lines in (f)-(j).
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Figure 5.3: Performance comparison of different F0 estimation methods in white noise
environment in terms of GEP (%) on (a) Keele database male speech signals (b) CSTR
database male speech signals (c) Keele database female speech signals (d) CSTR database
female speech signals.

Table 5.3: p-values obtained by applying the Kruskal-Wallis test on absolute F0 estimation
errors obtained using the proposed event-based method and the method based on the
iterative algorithm of [4] at different SNRs

MALE FEMALE

NOISE

ENVIRONMENT WHITE BABBLE WHITE BABBLE

SNR (dB)

20 0.1123 0.5431 0.0731 0.0377

15 0.0130 0.0001 0.0562 0.0005

10 0.0027 0.0016 0.0252 0.0000

5 0.0000 0.0000 0.0047 0.0000

0 0.0001 0.0000 0.0001 0.0003

-5 0.0000 NA 0.0000 NA

5.3.6 Noisy environment

The experimental results of F0 estimation at 0 dB SNR in a babble noise environment has

been shown in Fig. 5.2. It is evident from the comparison of Fig. 5.2 (f) with Fig. 5.2 (h)

and Fig. 5.2 (i) that the proposed method more reliably estimated the F0 with the GEP

value of 10.85% than the ZFR based method and the YIN method with the GEP values

of 34.13% and 34.59% respectively. Praat’s AC method and the method based on the

iterative algorithm of [4] failed to estimate the F0 in this scenario with the GEP values

higher than 50%. The quantitative performance comparison of the proposed event-based

method with existing methods in terms of the GEP obtained for male and female speech

signals in white and babble noise environments at different levels of degradation are shown
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Figure 5.4: Performance comparison of different F0 estimation methods in babble noise
environment in terms of GEP (%) on (a) Keele database male speech signals (b) CSTR
database male speech signals (c) Keele database female speech signals (d) CSTR database
female speech signals.

in Fig. 5.3 and Fig. 5.4 respectively.

In the white noise environment, the proposed method has achieved a GEP reduction

of nearly 28% and 36% on male and female speech signals respectively, on an average

across the SNR range of -5 dB to 5 dB, in comparison to the ZFR based, YIN and Praat’s

AC methods. The proposed method has obtained a GEP reduction of approximately 12%

and 19% on male and female speech signals respectively, in comparison to the method

based on the iterative algorithm of [4], over the SNR range of 10 dB to 20 dB. A high GEP

reduction of approximately 25% and 31% has been achieved by the proposed method on

male and female speech signals respectively, in comparison to the method based on the

iterative algorithm of [4], over the SNR range of -5 dB to 5 dB. The proposed method

has obtained nearly 25% lower GEP values for female speech signals than male speech

signals across the entire SNR range.

In the babble noise environment, a GEP reduction of nearly 37% and 46% on male

and female speech signals respectively, has been achieved by the proposed method in

comparison to the ZFR based, YIN and AC methods, over the SNR range of 10 dB to

20 dB. The proposed method has obtained roughly 12% GEP reduction on both male

and female speech signals in comparison to the ZFR based, YIN and AC methods, over

the SNR range of 0 dB to 5 dB. The proposed method has obtained a GEP reduction of

around 7% for both male and female speech signals in comparison to the method based
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on the iterative algorithm of [4], over the SNR range of 15 dB to 20 dB. A high GEP

reduction of around 28% has been achieved by the proposed method for both male and

female speech signals in comparison to the method based on the iterative algorithm of [4],

over the SNR range of 0 dB to 10 dB.

The absolute F0 estimation errors obtained using the proposed method and the method

based on the iterative algorithm of [32] at different SNRs in white and babble noise

environments for female and male speech signals are depicted in Fig. 5.5 and Fig. 5.6

respectively. The p-values obtained when the Kruskal-Wallis test [109] is applied on

absolute F0 estimation errors of the two methods are tabulated in Table 5.3. In Table

5.3, NA stands for not applicable and implies that the method described in subsection

2.3.2 is not able to efficiently detect voiced regions at the specified SNR. It can be inferred

from Table 5.3 and Fig. 5.6 that at α equals to 0.05, the results obtained for male speech

signals using the two methods are statistically significant over the SNR range of -5 dB to

15 dB in a white noise environment and 0 dB to 15 dB in a babble noise environment. It

can be deduced from Table 5.3 and Fig. 5.5 that the results obtained by two methods for

female speech signals are statistically significant over the SNR range of -5 dB to 10 dB in

a white noise environment and 0 dB to 20 dB in a babble noise environment at α equals

to 0.05.

The performance of the proposed method is worse in the babble noise environment

than the white noise environment. The reason is that babble noise is correlated and

introduces high energy components in the LFR, resulting in an increased probability of

extraction of an erroneous component by the proposed iterative algorithm of subsection

3.4.4.

5.4 Conclusion

A robust event-based method for instantaneous F0 estimation based on the GCI identifi-

cation method of Section 4.2 has been presented in this chapter. The proposed method

can efficiently track F0 variations occurring at each glottal cycle and unlike the auto-

correlation method, it does not require assumption of stationarity of the voiced speech
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Figure 5.5: Absolute F0 estimation errors for female speech signals obtained using the
proposed event-based method (denoted by M1) and the method based on the iterative
algorithm of [4] (denoted by M2) at different SNRs in a (a) white noise environment (b)
babble noise environment.

signal over short duration. The proposed method achieves substantial reduction in the

gross error percentage in comparison to some state of the art methods in different noise

environments at various levels of degradation.
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Figure 5.6: Absolute F0 estimation errors for male speech signals obtained using the
proposed event-based method (denoted by M1) and the method based on the iterative
algorithm of [4] (denoted by M2) at different SNRs in a (a) white noise environment (b)
babble noise environment.
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Chapter 6

A Novel Iterative Approach for Decomposition and

Analysis of Multi-component Non-stationary Signals

The decomposition of multi-component signals finds use in the signal analysis. This chap-

ter presents a novel iterative approach to decompose a multi-component non-stationary

signal into amplitude-frequency modulated (AM-FM) mono-component signals. The ex-

tracted AM-FM mono-component signals are narrowband signals whose instantaneous

amplitudes and frequencies can be computed using DESA or Hilbert transform. The

proposed iterative decomposition approach is based on repeatedly performing eigenvalue

decomposition (EVD) of the Hankel matrix and extracting components corresponding

to significant eigenvalue pairs of the Hankel matrix. The Hankel matrix is initially con-

structed from the samples of the multi-component non-stationary signal. The proposed

iterative decomposition approach is adaptive and provides good frequency resolution over

the entire frequency range. It has also been shown that unlike the EMD, the ability

of the proposed iterative approach to separate constituent mono-component signals of a

multi-component signal is neither affected by the ratio of their mean frequencies nor by

their relative amplitudes.

6.1 Introduction

The extraction of mono-component signals from a multi-component signal is referred

to as decomposition of the multi-component signal [110]. Many signals encountered in

practice, such as speech signal, electroencephalogram (EEG) signal, seismic signal, phono-
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cardiogram (PCG) signal, electrocardiogram (ECG) signal etc. are multi-component non-

stationary signals. The decomposition of multi-component signal into mono-component

signals finds use in the signal analysis [111–114], signal modeling and signal classification

[115–117]. The Hilbert transform or discrete-energy separation algorithm (DESA) can

be applied on mono-component signals extracted from a multi-component non-stationary

signal to compute their instantaneous frequencies [12, 44,118].

The frequency domain methods based on the Fourier transform are not suitable to an-

alyze the time-varying nature of the non-stationary signal. Many time-frequency analysis

techniques such as: short-time Fourier transform (STFT), continuous wavelet transform

(CWT), Wigner-Ville distribution (WVD) facilitate the analysis of multi-component non-

stationary signals. The STFT and CWT are linear transformations while the WVD is a

quadratic transformation [119]. The limitation of the STFT is that it assumes piecewise

stationarity of the non-stationary signal over the duration of the employed window func-

tion. The drawback of the STFT is that it suffers from fixed time-frequency resolution

over the entire time-frequency plane. The time-frequency resolution is governed by the

window function being used to compute the STFT. The Heisenberg’s uncertainty prin-

ciple states that infinitesimal time and frequency resolutions can not be simultaneously

achieved by a window function [119]. The CWT offers more flexibility than the STFT

and offers good time-resolution at high frequencies and good frequency resolution at low

frequencies [120]. The optimal wavelet basis needs to be selected depending on the type

of application and the signal under consideration [121,122]. Once chosen, the type of the

wavelet basis is kept fixed for the analysis of data. However, the CWT is unable to resolve

closely or moderately spaced mono-component signals in the high frequency range. The

WVD provides optimum time and frequency resolutions over the entire time-frequency

plane. However, the WVD of a multi-component signal suffers from cross-terms occurring

at mid-time and mid-frequency of auto-components of the WVD of the multi-component

signal and can have significant magnitudes. These cross-terms arise from the quadratic

nature of the WVD. These artifacts obscure the analysis of the multi-component sig-

nal [119]. Various methods based on exponential kernel, wavelet packet decomposition,

time-order representation (TOR), image processing techniques have been suggested in
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the literature to reduce cross terms in the WVD of the multi-component signal [123–126].

However, the suppression of cross-terms is achieved at the expense of sacrificing time and

frequency resolutions obtained by the WVD.

The adaptive filter bank has been used to decompose a multi-component signal into

mono-component signals [75]. The adaptive filters track the center frequencies of the

strong mono-component signals contained in the multi-component signal. The determi-

nation of the number of filters required to track emerging and decaying mono-component

signals in the time-varying multi-component signal, tracking of bandwidth and center

frequencies of all the strong mono-components signals, attaining the desired frequency

resolution, determination of the required adaptation rate of the filter parameters are key

challenges of such methods. Moreover, an adaptive all-zero filter is required along with

each adaptive resonance filter to attenuate leakages in the desired mono-component signal

from the other mono-component signals contained in the multi-component signal [75].

An adaptive method, empirical mode decomposition (EMD) has been proposed in [78]

to decompose multi-component non-stationary signals. It decomposes a multi-component

signal into a set of intrinsic mode functions (IMFs) which are derived from the multi-

component signal using the sifting process. The IMFs have nearly zero instantaneous

mean and are amplitude-frequency modulated (AM-FM) signals. However, the limitation

of the EMD is that its ability to separate any two constituent mono-component signals

of a multi-component signal is affected by the ratio of their mean frequencies and relative

amplitudes. EMD is not able to separate two mono-component signals if the ratio of the

lower mean frequency to higher mean frequency of the two mono-component signals is

approximately in the range of 0.5 - 2 [127]. Therefore, the frequency resolution of the

EMD decreases in the high frequency range for a specific value of the sampling rate [128].

EMD also faces difficulty in separating the two constituent mono-component signals of a

multi-component signal if the amplitude of the lower frequency component is higher than

the amplitude of the higher frequency component [128, 129]. Moreover, the problem of

mode-mixing among different IMFs exists in the EMD. Mode-mixing refers to the presence

of oscillations of disparate frequency ranges occurring in an IMF during different durations

and presence of oscillations of the same frequency range occurring in different IMFs during
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different durations. The ensemble EMD (EEMD) proposed in [130] attempts to rectify

the mode-mixing problem of EMD but with the disadvantage of very high computational

complexity.

The parametric approach of modeling a multi-component non-stationary signal as a

sum of AM-FM mono-component signals and estimating model parameters correspond-

ing to each constituent mono-component signal has also been considered in [50,131,132].

These methods require prior information about the number of mono-component signals

present in the multi-component signal. The determination of maximum likelihood esti-

mate of model parameters is a non-linear process in [131]. In [50], the voiced speech signal

is modeled as a multi-component amplitude modulated (AM) signal and the frequency

modulation present in it due to the time-varying fundamental frequency (F0) and its time-

varying harmonics is neglected. The method proposed in [132] requires coarse estimates

of the frequencies of the mono-component signals present in a multi-component signal in

advance. The limitation of being able to track only slowly time-varying mono-component

signals of [132] was overcome in [111] which was based on an adaptive quasi-harmonic

model (QHM). However, the QHM is suitable to model only those signals which have

harmonic structure like voiced speech signal.

There exists a need for a decomposition technique which is adaptive, free of cross-

terms, complete and has good frequency resolution over the entire time-frequency plane.

In this chapter, we present a new approach to decompose a multi-component non-stationary

signal into AM-FM mono-component signals based on performing repeated eigenvalue de-

composition (EVD) of the Hankel matrix, initially constructed from the samples of the

multi-component non-stationary signal. The proposed approach is iterative in nature.

The process of constructing the Hankel matrix, performing EVD of the Hankel matrix

and extraction of components, which we refer to as ‘Iteration’ is repeated till all ex-

tracted components satisfy the defined Mono-component Signal Criteria (MSC). This

chapter is organized as follows: Section 6.2 derives the conditions on the Hankel ma-

trix size to enable separation and extraction of constituent constant amplitude/frequency

mono-component signals of a multi-component signal. Section 6.3 extends the theory and

concepts developed in Section 6.2 and proposes an iterative approach for decomposition
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of a multi-component non-stationary signal into AM-FM mono-component signals. Sec-

tion 6.4 presents the decomposition results of the proposed iterative approach on different

kinds of synthetic and natural multi-component non-stationary signals and their com-

parison with the decomposition results obtained using the DFT and EMD. Section 6.5

concludes the paper.

6.2 Extraction of Components from a Multi-

component Signal consisting of constant ampli-

tude/frequency mono-component signals

Let Hx
N represent the square Hankel matrix of size N ×N consisting of 2N − 1 elements,

constructed from a real signal x[n] spanning Q samples as follows [77]:

Hx
N =


x[0] x[1] . . . x[N − 1]

x[1] x[2] . . . x[N ]

. . . . . .

x[N − 1] x[N ] . . . x[2N − 2]

 (6.1)

where n = 0, 1, ..., Q − 1 and Q ≥ 2N − 1. N is an even number. The square Hankel

matrix constructed from a real signal is a symmetric matrix; i.e., Hx
N = (Hx

N)T , where

T denotes the transpose operator. The EVD of the square matrix Hx
N can be expressed

as [77]:

Hx
N = VxΛxV

T
x (6.2)

where Λx is a diagonal matrix with N real and scalar eigenvalues λx,i, i = 1, 2, ..., N . Vx

is an orthogonal matrix; i.e., V −1
x = V T

x , consisting of real eigenvectors ~vx,i, i = 1, 2, ..., N

as its columns, each column consisting of N elements. Any two eigenvectors, ~vx,i and ~vx,j

corresponding to different eigenvalues (λx,i 6= λx,j) are orthogonal [77].

Let x[n] be a multi-component signal consisting of L constant amplitude/frequency
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mono-components signals as:

x[n] =
L∑
l=1

xl[n] =
L∑
l=1

Al cos (2πfln+ θl) , n = 0, 1, .., Q− 1 (6.3)

such that Ak 6= Al for k 6= l; where k, l = 1, 2, ..., L. In (6.3), fl =
1

Nl

=
Fl
Fs

. The

frequency of xl[n] in Hz, the sampling frequency in Hz, the normalized frequency of xl[n]

are denoted by Fl, Fs, fl respectively. The period of xl[n] in samples is denoted by Nl.

Al and θl represent the amplitude and phase of xl[n] respectively. The number of mono-

component signals in x[n] is represented by L. Let Fl < Fl+1, l = 1, 2, ..., L− 1. In order

to avoid aliasing, Fs > 2FL. Using (6.1) and (6.3), the Hankel matrix of x[n], Hx
N can be

expressed as sum of the Hankel matrices of its mono-component signals Hxl
N as:

Hx
N =

L∑
l=1

Hxl
N , where Hxl

N = (Hxl
N )T (6.4)

The characteristic equation of Hx
N is given by [77]:

det(Hx
N − λI) = λN − Tr(Hx

N)λN−1 + ...+ det(Hx
N) = 0 (6.5)

where Tr(.) and det(.) denote the trace and determinant of the matrix respectively. Irre-

spective of the value of N , the ranks and number of non-zero eigenvalues of Hx
N and Hxl

N

cannot be greater than twice of the number of constant amplitude/frequency components

contained in them. The trace of the matrix can be expressed in terms of its non-zero

eigenvalues as follows [77]:

Tr(Hx
N) =

2L∑
i=1

λx,i

Tr(Hxl
N ) =

2∑
i=1

λxl,i , N ≥ 2L

(6.6)

We now derive the conditions on the Hankel matrix N to enable separation of mono-

component signals of x[n] (given by (6.3)) using EVD of Hx
N . We have considered two

different cases based on the value of N .
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6.2.1 Case (i): when the Hankel matrix size is an integer mul-

tiple of the LCM of the fundamental periods contained in

the multi-component signal

In this case, N = σNLCM. The symbols σ and NLCM denote a positive integer and the

least common multiple (LCM) of Nl, l = 1, 2, ..., L respectively. Using (6.1), (6.3) and

(6.4), Tr(Hxl
σNLCM

) and Tr(Hx
σNLCM

) are given by:

Tr(Hxl
σNLCM

) = Al

σNLCM−1∑
n=0

cos(2πfl2n+ θl)

= Al <

(
ejθl

σNLCM−1∑
n=0

ej2πfl2n

)
= 0 , ∀l

Tr(Hx
σNLCM

) =
L∑
l=1

Tr(Hxl
σNLCM

) = 0

(6.7)

The inner product of ith row/column of Hxl
σNLCM

and jth row/ column of Hxk
σNLCM

denoted

by
〈
Hxl
σNLCM

, Hxk
σNLCM

〉
i,j

is given by:

〈
Hxl
σNLCM

, Hxk
σNLCM

〉
i,j

= AlAk

σNLCM−1∑
n=0

(
cos(2πfl(n+ i− 1) + θl)

× cos(2πfk(n+ j − 1) + θk)

)

=
AlAk

2
<

(
ej(2π(m1+m2)+θl+θk)

σNLCM−1∑
n=0

ej2π(fl+fk)n

+ ej(2π(m1−m2)+θl−θk)

σNLCM−1∑
n=0

ej2π(fl−fk)n

)
= 0, i, j = 1, 2, ..., σNLCM and k 6= l

(6.8)

where m1 = fl(i − 1) and m2 = fk(j − 1). It can be deduced from (6.8) that rows and

columns of Hxl
σNLCM

and Hxk
σNLCM

for l 6= k are orthogonal to each other, where k, l can

take values from 1, 2, ..., L. In such scenario, the 2L non-zero eigenvalues and corre-
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sponding eigenvectors of Hx
σNLCM

are equal to the set consisting of non-zero eigenvalues

and corresponding eigenvectors of Hxl
σNLCM

as follows:

λx,(2l+j−2) = λxl,j

~vx,(2l+j−2) = ~vxl,j, l = 1, 2, ..., L and j = 1, 2
(6.9)

Moreover, using (6.6) and (6.7), it can be deduced that the two non-zero eigenvalues of

Hxl
σNLCM

constituting a pair are equal and opposite in sign (EOS) as follows:

λxl,1 = −λxl,2 ∀l (6.10)

It can be inferred from (6.9) and (6.10) that the kth mono-component signal of x[n] can

be extracted by creating a modified eigenvalue diagonal matrix Λ̃xk which preserves only

the kth non-zero eigenvalue pair of Λx as follows:

Λ̃xk = diag(0, ..., 0, λx,2k−1, λx,2k, 0, ..., 0)

= diag(0, ..., 0, λxk,1,−λxk,1, 0, ..., 0)
(6.11)

where diag(.) denotes diagonal matrix. Construct H̃xk
N as follows:

H̃xk
N = VxΛ̃xkV

T
x (6.12)

where N = σNLCM, H̃xk
N = Hxk

N . The kth mono-component signal of x[n], denoted x̃k[n]

is extracted as the average of the skew diagonal elements of H̃xk
N . Please note that x̃k[n]

= xk[n]. Thus, in this case the extracted mono-component signals of x[n] denoted by

x̃k[n], ∀k are same as the original mono-component signals of x[n] denoted by xk[n], ∀k.

Here’s an example:

Example 1: x[n] =
L∑
l=1

xl[n] =
L∑
l=1

Al cos

(
2πFln

Fs
+ θl

)
n = 0, 1, ..., Q− 1

(6.13)
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Figure 6.1: (a) Multi-component signal x[n] given by (6.13) (b) Mono-component signal x1[n]
(c) Mono-component signal x2[n] (d) Mono-component signal x3[n]. Hankel matrix size N =
NLCM = 120. Please note that xk[n] = x̃k[n], ∀k.
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Figure 6.2: Magnitude spectrum of the multi-component signal x[n] (given by (6.13)). Significant
transform coefficients are marked by rectangles in dashed lines. Length of the DFT: 239.

where Q = 239, Fs = 6400 Hz, L = 3, A1 = 2, A2 = 3, A3 = 1, θ1 = π/2, θ2 = 0, θ3 =

0, F1 =
640

3
Hz, F2 =

800

3
Hz and F3 = 320 Hz. The value of N is chosen to be equal to

NLCM = 120. The non-zero eigenvalue pairs corresponding to the three mono-component

signals of x[n] contained in Hx
120 found using MATLAB are {(-120, 120), (-180, 180), (-60,

60)}. Please note that |λxl,1| =
NAl

2
∀l, which implies that the magnitude of the eigenval-

ues constituting a pair is directly proportional to the amplitude of the mono-component

signal corresponding to it [4]. The extracted mono-component signals of x[n] using (6.1),

(6.2), (6.11) and (6.12) are shown in Fig. 6.1. For comparison, we computed the Q-point

(Q = 239) discrete Fourier transform (DFT) [62] of x[n], which resulted in 8 significant
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Figure 6.3: (a) Multi-component signal x[n] given by (6.13). Mono-component signals xl[n], l =
1, 2, 3 and mono-component signals extracted by computing the Q-point inverse DFT of each of
the three significant transform coefficient pairs are shown in (b), (c) and (d) in dashed and solid
lines respectively. (e) Mono-component signal extracted using the Q-point inverse DFT of the
fourth significant transform coefficient pair is shown in solid line.

transform coefficients (4 significant transform coefficient pairs, one coefficient correspond-

ing to the positive frequency and the other corresponding to the negative frequency) as

shown in Fig. 6.2. We have considered the DFT coefficients significant if their magnitude

is greater than 5% of the maximum magnitude in the Q-point DFT of x[n]. Three original

mono-component signals of x[n] and four mono-component signals extracted by comput-

ing the Q-point inverse DFT [62] of each of the significant transform coefficient pairs are

depicted in dashed and solid lines respectively in Fig. 6.3. The time limited nature of x[n]

gives rise to side leakages around the local maxima in the DFT of x[n], which resulted in

one additional component being extracted from x[n] as shown in Fig. 6.3 (e). The local

maxima in the DFT of x[n] occur at around the fundamental frequencies of xl[n], ∀l.

6.2.2 Case (ii): when the Hankel matrix size is not an integer

multiple of the LCM of the fundamental periods contained

in the multi-component signal

In this case, N 6= NLCM. Let us consider the same signal x[n] given by (6.13), but now

spanning (0, 1, ..., 2N −2) samples. In practical scenarios, NLCM is not known in advance.
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In such cases, the relations in (6.7), (6.8), (6.9), (6.10) no longer hold. Let the eigenvalues

of Hx
N be now arranged in an ascending order; i.e., λx,i+1 ≥ λx,i, i = 1, 2, ..., N − 1. In

this case, the modified eigenvalue diagonal matrix preserving the kth non-zero eigenvalue

pair of Λx is given by:

Λ̃xk = diag(0, ..., 0, λx,k, 0, ..., 0, λx,N−k+1, 0, ..., 0) (6.14)

The Hankel matrix formed by preserving the kth eigenvalue pair of Hx
N denoted by H̃xk

N

is computed using Λ̃xk as follows:

H̃xk
N = VxΛ̃xkV

T
x

= λx,k~vx,k~v
T
x,k + λx,N−k+1~vx,N−k+1~v

T
x,N−k+1

(6.15)

The kth mono-component signal of x[n] is extracted by taking the mean of the skew

diagonal elements of H̃xk
N . Let the kth original component of x[n] and the kth extracted

component of x[n] be denoted by xk[n] and x̃k[n] respectively. In order to objectively

measure the difference between xk[n] and x̃k[n], we define a quantity, error to signal ratio

for xk[n], denoted ESRk
N as follows:

ESRk
N =

2N−2∑
n=0

(xk[n]− x̃k[n])2

2N−2∑
n=0

(xk[n])2

(6.16)

where k can take values from 1, 2, ..., L. A small value of ESRk
N ,∀k ensures separation

of mono-component signals of x[n] with good accuracy. Therefore, we now study the

variation of ESRk
N with respect to N . It is apparent in (6.15), that x̃k[n] is a function

of the two eigenvectors (~vx,k, ~vx,N−k+1), corresponding to the kth eigenvalue pair of Hx
N .

It is not feasible to derive mathematical equations for the eigenvectors of Hankel matrix

of arbitrary size N . Therefore, it is very difficult to analytically derive the relation

between ESRk
N and the Hankel matrix size N . Hence, we resort to an empirical study

of the variation of ESRk
N with respect to N . As depicted in Fig. 6.4, the value of
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Figure 6.4: Error to signal ratio for the three mono-component signals of the multi-component
signal x[n] (given by (6.13)) with respect to the Hankel matrix size (N), computed after the
first Iteration.

ESRk
N , k = 1, 2, ..., L does not vary monotonically with respect to N . However, the

successive local maxima of ESRk
N ,∀k reduces with an increase in the value of N . It can

be observed in Fig. 6.4 that the value of ESRk
σNLCM

= 0, ∀k, σ = 1, 2, 3, in accordance

to the mathematically derived result of the last subsection.

In order to comprehend the variation of ESRk
N with respect to N , it is necessary

to understand the variation of the combined magnitude spectrum of the eigen vectors

(~vx,k, ~vx,N−k+1) with respect to N,∀k. The combined magnitude spectrums of the eigen-

vectors corresponding to significant eigenvalue pairs of Hx
N over the positive frequency

range are shown in Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig. 6.8 for N = 60, 90, 130, 270. We have

considered an eigenvalue pair to be significant if the magnitude of one of its eigenvalues

is equal to or greater than 10% of the maximum eigen value of Hx
N . It can be deduced

from Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig. 6.8 that the eigenvectors (~vx,k, ~vx,N−k+1),∀k

are not sinusoidal signals. It can be easily computed using (6.13) that the minimum

frequency separation denoted by ∆Fx,min between the components of x[n] is 53.33 Hz.

The inverse of ∆Fx,min is equal to 120 samples at Fs = 6400 Hz. It can be inferred

from Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig. 6.8 that the combined magnitude spectrum of

(~vx,k, ~vx,N−k+1),∀k attains the maximum value at the fundamental frequency of xk[n],∀k

only when N >
Fs

∆Fx,min

, where k = 1, 2, ..., L. It can be deduced from Fig. 6.5, Fig.

123



0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

Frequency (Hz)

M
ag

ni
tu

de
 S

pe
ct

ru
m

 

 

First Eigen Value Pair
Second Eigen Value Pair
Third Eigen Value Pair

Figure 6.5: Combined magnitude spectrum of the eigenvectors corresponding to significant
eigenvalue pairs of Hx

N after the first Iteration. N = 60.

6.6, Fig. 6.7 and Fig. 6.8 that the frequency range over which the combined magnitude

spectrum of (~vx,k, ~vx,N−k+1) has significant value, gradually reduces with an increase in

the value of N , where k = 1, 2, ..., L. However, it can be inferred from the comparison

of Fig. 6.7 with Fig. 6.9 that such a reduction is not monotonic in nature with respect

to N , which accounts for the non-monotonic reduction of ESRk,∀k with respect to N ,

as shown in Fig. 6.4. It can be observed in Fig. 6.4 that the value of ESRk
N ≈ 0,∀k

for N >>
Fs

∆Fx,min

. The reason is that the frequency range over which the combined

magnitude spectrum of (~vx,k, ~vx,N−k+1) has significant value reduces substantially and it

takes the form of narrowband pulse at around the fundamental frequency of xk[n] for

N >>
Fs

∆Fx,min

,∀k, which results in x̃k[n],∀k to approach the original sinusoidal func-

tions contained in x[n]. We have obtained similar variation of ESRk
N ,∀k with respect

to N for 500 different combinations of the values of L,Al, θl, Fl, Fs. Hence, we conclude

from this empirical study that the frequency resolution that can be achieved by perform-

ing EVD of Hx
N increases non-monotonically with an increase in the value of the Hankel

matrix size N .

Multiple Iterations and Mono-component Signal Criteria

It can be inferred from Fig. 6.9 that even when N >
Fs

∆Fx,min

, the combined magnitude

spectrum of (~vx,k, ~vx,N−k+1) may have side lobes around the fundamental frequencies con-

tained in x[n], other than the fundamental frequency at which it attains the maximum,
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Figure 6.6: Combined magnitude spectrum of the eigenvectors corresponding to significant
eigenvalue pairs of Hx

N after the first Iteration. N = 90.
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Figure 6.7: Combined magnitude spectrum of the eigenvectors corresponding to significant
eigenvalue pairs of Hx

N after the first Iteration. N = 130.

where k can take values from 1, 2, ..., L. The extracted components corresponding to such

eigen vectors contain significant contribution from two or more mono-component signals

of x[n] and it may be possible to further decompose them. Therefore, each extracted

component x̃k[n],∀k is checked for the Mono-Component Signal Criteria (MSC) defined

as follows:

(1) The magnitude of difference between the number of zero crossings and number of

extrema (local minima and local maxima) of the extracted component denoted by Dn is

equal to zero or one.

(2) The number of significant eigen values pairs obtained by performing EVD of the Han-

kel matrix constructed from the samples of the extracted component denoted by Dr is
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Figure 6.8: Combined magnitude spectrum of the eigenvectors corresponding to significant
eigenvalue pairs of Hx

N after the first Iteration. N = 270.
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Figure 6.9: Combined magnitude spectrum of the eigenvectors corresponding to significant
eigenvalue pairs of Hx

N after the first Iteration. N = 160.

equal to one.

If an extracted component of x[n] does not satisfy the MSC, then the process of

EVD and component extraction using (6.14) and (6.15) which we refer to as ‘Iteration’

is repeated by treating the extracted component as multi-component signal for the next

Iteration. The Iterations are repeated till all the extracted components of x[n] satisfy

the MSC. Please note that the first part of the MSC is first stated and used in [78] to

extract the intrinsic mode functions (IMFs) from a multi-component signal using EMD.

The combined magnitude spectrum of the eigenvectors corresponding to different mono-

component signals of x[n] extracted after the second Iteration for N = 160 are depicted

in Fig. 6.10. Please observe in Fig. 6.10 that none of the extracted components have
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Figure 6.10: Combined magnitude spectrum of the eigenvectors corresponding to different ex-
tracted mono-component signals of x[n] (given by (6.13)) after the second Iteration. At the
second Iteration level, EVD is performed on the Hankel matrices constructed from the samples
of the extracted components obtained after the first Iteration that do not satisfy the MSC. N
= 160.

significant side lobes. Thus, the extraction of mono-component signals from x[n] (given

by (6.13)) became possible for N = 160 after the second Iteration. However, it can

be observed in Fig. 6.10 that some of the extracted mono-component signals contain

oscillations belonging to the same frequency range. Therefore, we require the next step

as explained below.

Merging of extracted AM-FM mono-component signals with overlapping 1-dB

bandwidth

At the last Iteration level, the extracted mono-component signals of x[n] that have over-

lapping 1-dB bandwidth are added to each other. Let the P mono-component signals of

x[n] obtained at the last Iteration level be denoted by yp[n], p = 1, 2, ..., P . The squared

magnitude spectrum of yp[n] in dB denoted by Ep(fr) is given by:

Ep(fr) = 10 log10(|Yp(fr)|2), fr =
r

R
(6.17)

where Yp(fr) denotes the R-point DFT of yp[n]. The value of R must be chosen large to

compute the DFT at a good frequency resolution. The 1-dB bandwidth of yp[n] is defined
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as the range of frequencies over which the value of Ep(fr) is not below more than 1-dB

of the maximum value of Ep(fr), where p = 1, 2, ..., P . Let the AM-FM mono-component

signals of x[n] (given by 6.13) obtained after merging of the extracted components at the

last Iteration level with overlapping 1-dB bandwidth be denoted by ȳp[n], p = 1, 2, ..., S,

where S ≤ P . The variation of ESRk
N ,∀k with respect to N computed after the sec-

ond Iteration is depicted in Fig. 6.11, where x[n] is given by (6.13). For each original

mono-component signal xk[n], the extracted mono-component signal ȳp[n], p = 1, 2, ..., S

that provides the minimum value of the error to signal ratio is chosen. We have obtained

similar variation of ESRk
N with respect to N for 500 different combinations of the values

of L,Al, θl, Fl, Fs. Hence we conclude from this empirical study that ESRk
N ,∀k reduces

substantially for N >
Fs

∆Fx,min

, when Iterations are repeated till all the extracted com-

ponents of x[n] (given by (6.3)) satisfy the MSC. In practice, Iterations are terminated

after the fourth level. Please note that multiple Iterations are introduced to separate

components of x[n] (given by (6.3)) belonging to disparate frequency ranges and hence,

improve the frequency resolution of the decomposition process for a given value of the

Hankel matrix size N .

The AM-FM mono-component signals of x[n] (given by (6.13)) obtained in the sec-

ond Iteration after the merging step are depicted in Fig. 6.12 and Fig. 6.13 for the two

different values of N . It is evident from Fig. 6.12 that the iterative EVD of the Hankel

matrix, initially constructed from the samples of x[n] was not able to separate the contri-

butions of three original mono-component signals contained in x[n] for N = 60 because

60 <
Fs

∆Fx,min

, where
Fs

∆Fx,min

= 120 (using (6.13)). When N = 220, the separation of the

three components of x[n] was achieved by performing the iterative EVD of the Hankel

matrix, initially constructed from the samples of x[n]. The following inferences are drawn

from this empirical study:

(1) In order to separate all the components contained in x[n], the Hankel matrix size

N must be greater than
Fs

∆Fx,min

, where ∆Fx,min is the minimum frequency separation

between the components of x[n] (given by (6.3)).

(2) The components extracted by EVD ofHx
N approach original sinusoidal mono-component

signals contained in x[n] when N = σNLCM or when N >>
Fs

∆Fx,min

.
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Figure 6.11: Error to signal ratio for the three mono-component signals of the multi-component
signal x[n] (given by (6.13)) with respect to the Hankel matrix Size (N) computed after the
second Iteration.

In order to compare the results obtained in Fig. 6.12 and Fig. 6.13 with those obtained

by the DFT, we computed the DFT of 2N−1 samples of x[n] (given by (6.13)) for the two

values of N : 60 and 220, which resulted in 3 and 10 significant transform coefficient pairs

respectively. It clearly indicates that the DFT results in representation of the time-limited

multi-component signal x[n] using either equal or significantly more number of sinusoidal

functions than the number of original sinusoidal components contained in x[n]. On the

other hand, brevity is achieved by representing x[n] as sum of AM-FM mono-component

signals extracted by performing iterative EVD of the Hankel matrix, initially constructed

from the samples of x[n]. We now extend the concepts and theory developed in this

section to devise an approach for the extraction of AM-FM mono-components signals

from a multi-component non-stationary signal.
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Figure 6.12: (a) Multi-component signal x[n] given by (6.13). Extracted AM-FM mono-
component signals ȳp[n], p = 1, 2, 3 in (b), (c) and (d) after the second Iteration. N = 60.

6.3 Extraction of AM-FM Mono-Component Signals

from a Multi-

Component Non-stationary Signal using Eigen-

value Decomposition of Hankel Matrix

Let x[n] be a multi-component non-stationary signal given by:

x[n] =
L∑
l=1

xl[n], n = 0, 1, ..., Q− 1 (6.18)

where xl[n] is the lth AM-FM mono-component signal of x[n]. Thus, xl[n] can be repre-

sented as:

xl[n] = Al[n] cos (2πfl[n]n+ θl[n]) , fl[n] =
Fl[n]

Fs
(6.19)

where Al[n], fl[n], θl[n] denote the time-varying amplitude, normalized frequency and

phase of xl[n]. The time-varying frequency of xl[n] in Hz is represented by Fl[n].
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Figure 6.13: (a) Multi-component signal x[n] given by (6.13). Extracted AM-FM mono-
component signals ȳp[n], p = 1, 2, 3 in (b), (c) and (d) after the second Iteration. N = 220.

6.3.1 Tradeoff between frequency resolution and brevity of rep-

resentation

The rank and number of non-zero eigenvalues of Hx
N are greater than 2L, when xl[n] have

time-varying amplitudes. Hx
N is a full rank matrix if Fl[n] are time-varying in nature,

where l can take values from 1, 2, ..., L. However, if the frequencies of xl[n],∀l do not

change significantly over N samples, the rank of Hx
N is close to 2L [84]. Therefore, in order

to restrict the rank and number of significant eigenvalues of Hx
N close to 2L, the value

of N must be chosen such that the frequencies Fl[n],∀l do not change significantly over

the N data samples. This condition on the value of N facilitates in achieving brevity by

representing x[n] in terms of the extracted components corresponding to a small number

of significant eigenvalue pairs. This condition poses an upper limit on the value of N .

An implication of this condition is that the rank and number of significant eigenvalue

pairs of Hxl
N , ∀l is restricted to be close to two and one respectively. It implies that the

time-varying component xl[n] can be very closely approximated using a few significant

eigenvalue pairs and the corresponding eigenvectors of Hxl
N , where l = 1, 2, ..., L.

On the other side, it has been deduced in the previous section that the value of N must

be greater than
Fs

∆Fdes

, to enable separation of components of x[n] separated in frequency

domain by equal to or greater than ∆Fdes, using repeated EVD of Hankel matrix. The
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desired frequency resolution in Hz is represented by ∆Fdes. This condition poses a lower

limit on the value of N . Thus, the two conditions on the value of N presents a tradeoff

between the frequency resolution and the brevity of representing x[n] in terms of the

extracted AM-FM mono-component signals, that can be achieved by performing iterative

EVD of Hankel matrix, initially constructed from the samples of x[n]. The value of 2N−1

can be chosen as the smallest integer which divides x[n] spanning Q samples into M equal

size segments denoted by x̆m[n],m = 1, 2, ...,M of length 2N − 1 samples, subject to the

constraint that N >
Fs

∆Fdes

. Please note that the assumption of short-term stationarity

of x[n] is not required while dividing the multi-component non-stationary signal x[n] into

segments.

6.3.2 Proposed iterative approach for decomposition of a multi-

component non-stationary signal

Each segment of x[n] is decomposed separately by iteratively performing EVD of H x̆m
N ∀m.

The EVD of Hankel matrix of H x̆m
N is given by:

H x̆m
N = Vx̆mΛx̆mV

T
x̆m (6.20)

It can be inferred from (6.15), that the Hankel matrix formed by preserving the kth

non-zero eigenvalue pair of H x̆m
N is given by:

H̃
x̆m,k

N = Vx̆mΛ̃x̆m,k
V T
x̆m

= λx̆m,k
~vx̆m,k

~vTx̆m,k
+ λx̆m,N−k+1

~vx̆m,N−k+1
~vTx̆m,N−k+1

(6.21)

The kth extracted component of x̆m[n] denoted by x̃m,k[n] is computed by taking aver-

age of the skew diagonal elements of H̃
x̆m,k

N , where k can take values from 1, 2, ..., N/2.

The extracted component x̃m,k[n] may contain significant contributions from two or more

mono-component signals contained in x̆m[n]. Therefore, each extracted component of the

multi-component non-stationary signal segment x̆m[n] is checked for the Mono-Component

Signal Criteria (MSC) defined in subsection 6.2.2. If an extracted component of x̆m[n]
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does not satisfy the MSC, then the Iteration comprising of the process of EVD of Han-

kel matrix, component extraction using (6.20) and (6.21), is repeated by treating the

extracted component as the multi-component non-stationary signal segment for the next

Iteration. The Iterations continue till all the extracted components of the considered

segment satisfy the MSC. In practice, Iterations are terminated after the fourth level as

stated in subsection 6.2.2.

The block diagram of the proposed iterative approach for decomposing a multi-component

non-stationary signal x[n] into AM-FM mono-component signals is depicted in Fig. 6.14.

The multi-component non-stationary signal is divided into equal size segments x̆m[n],m =

1, 2, ...,M as stated in the subsection 6.3.1. The components corresponding to different

eigenvalue pairs of the considered segment are extracted using (6.20) and (6.21). Fig.

6.14 shows the extraction of components from the first segment of x[n]. The compo-

nents of other segments of x[n] are extracted similarly. Each extracted component of

the considered segment is categorized as a multi-component or mono-component signal

depending on whether it satisfies the MSC or not. All the extracted components that do

not satisfy the MSC go through the next level of Iteration. The last step is to merge the

extracted mono-component signals obtained at the last Iteration level with overlapping

1-dB bandwidth as explained in subsection 6.2.2. Let the extracted mono-component sig-

nals of x̆m[n] obtained at the last Iteration level be denoted by ym,p[n], p = 1, 2, ..., P . Let

the AM-FM mono-component signals of x̆m[n] obtained after performing the merging of

ym,p[n], ∀p with overlapping 1-dB bandwidth be denoted by ȳm,p[n], p = 1, 2, ..., S, where

S ≤ P . The reconstructed signal denoted by x̂m[n] is computed by adding the extracted

AM-FM mono-component signals as follows:

x̂m[n] =
S∑
p=1

ȳm,p[n] (6.22)

The signal to reconstruction error ratio in dB denoted by SREdB for x̆m[n] is computed
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as:

SREdB = 10 log10


2N−2∑
n=0

(x̆m[n])2

2N−2∑
n=0

(x̆m[n]− x̂m[n])2

 (6.23)

Adaptive

The proposed iterative decomposition approach is adaptive. Using (6.21), it can be de-

duced that the two eigenvectors (~vx̆m,k
, ~vx̆m,N−k+1

) corresponding to the kth eigenvalue pair

of H x̆m
N act as basis functions for the extracted component x̃m,k[n]. The process of EVD

is data dependent. It can be inferred from Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig. 6.8, Fig. 6.9,

Fig. 6.12, Fig. 6.13 that the time and frequency domain characteristics of the eigenvectors

(acting as basis) corresponding to the different eigenvalue pairs of Hankel matrix depend

on the data used to construct the Hankel matrix and the Hankel matrix size N .

Completeness

The proposed iterative approach for decomposition of a multi-component non-stationary

signal is complete by the virtue of (6.20) and (6.21) because it is based on the extrac-

tion of components corresponding to different eigenvalue pairs of the Hankel matrix,

initially constructed from the samples of the multi-component non-stationary signal seg-

ment. More the number of eigenvalue pairs used to extract components corresponding to

them, lesser is the value of the SREdB. It has been experimentally proven in subsection

6.2.1 that the magnitude of the eigenvalues constituting a pair is directly proportional

to the amplitude of the component corresponding to it. Thus, eigenvalues constituting a

pair having significant magnitudes correspond to the high energy components of x̆m[n].

Hence, it is sufficient to extract components corresponding to only significant eigenvalue

pairs of H x̆m
N . The criterion for determining whether an eigenvalue pair is significant or

not is as follows: An eigenvalue pair is considered to be significant if the magnitude of

one of the eigenvalues constituting a pair is greater than the significant threshold per-

centage (STP ) of the maximum eigenvalue of the Hankel matrix, constructed from the

samples of the multi-component signal segment under consideration. The value of STP
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is a design issue and solely depends on the type of the application for which the proposed

iterative approach for decomposition of a multi-component non-stationary signal is being

used. If weak components of the multi-component non-stationary signal are required to

be extracted, then the value of STP must be kept small.

Figure 6.14: Block diagram of the proposed iterative approach for decomposing a multi-
component non-stationary signal. The Iterations get terminated when all the extracted
components are mono-component signals. The decomposition is performed on each seg-
ment of the multi-component non-stationary signal.

6.4 Experimental Results

In this section we present the decomposition results obtained by the proposed iterative

approach on various synthetic and natural multi-component non-stationary signals (voiced
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speech and unvoiced speech signal). The decomposition results obtained by the DFT and

EMD are also shown for comparison.

6.4.1 Multi-component non-stationary signal consisting of only

amplitude modulated mono-component signals

Let x[n] be a multi-component non-stationary signal with only AM components given by:

x[n] =
L∑
l=1

xl[n] =
L∑
l=1

Al(1 + αln) cos(2πfln+ θl) (6.24)

where n = 0, 1, ..., Q − 1 and fl =
Fl
Fs

. The factor αl controls the rate of variation of

Al[n], ∀l. The values of various parameters used in (6.24) are: L = 5, Q = 4800, Fs =

6400 Hz, A1 = 2, A2 = 1, A3 = 0.9, A4 = 3, A5 = 2.5, α1 = 20/Q, α2 = α5 = 18/Q, α3 =

14/Q, α4 = 16/Q, F1 = 100 Hz, F2 = 140 Hz, F3 = 210 Hz, F4 = 320 Hz, F5 = 500

Hz, θ1 = θ4 = 0, θ2 = π, θ3 = π/2, θ5 = π/3. θl,∀l is specified in radians. We have

chosen ∆Fdes = ∆Fx,min = 40 Hz. The 4800 samples of x[n] are divided into equal size

segments of length 2N − 1 samples, subject to the constraint that N >
Fs

∆Fx,min

. The

decomposition results obtained by the proposed iterative approach on the first segment

of x[n] denoted by x̆1[n] for N = 184 and STP = 10% are depicted in Fig. 6.15. The

Iterations got terminated after the second level. A very high value of SREdB = 36.2

dB has been obtained by extracting the components corresponding to only significant

eigenvalue pairs.

The 367-point DFT of x̆1[n] resulted in 32 significant transform coefficient pairs.

Thus, the number of significant DFT coefficient pairs substantially increases for a multi-

component signal consisting of AM modulated mono-component signals. The reason

is that the DFT uses a fixed set of sinusoidal basis functions and presence of ampli-

tude modulation in xl[n] increases the bandwidth of xl[n],∀l [119]. The results obtained

by the EMD of x̆1[n] are shown in Fig. 6.16. The implementation of the EMD using

the MATLAB programming language is available at [133]. It is apparent in Fig. 6.16

that the EMD was not able to separate the constituent AM mono-component signals of
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Figure 6.15: (a) Multi-component signal segment x̆1[n]. Extracted AM-FM mono-
component signals ȳ1,p[n], p = 1, 2, ..., 5 obtained using the proposed iterative decomposi-
tion approach are shown in solid lines in (b), (c), (d), (e), (f). Original mono-component
signals of x̆1[n] are depicted in dashed lines in (b), (c), (d), (e), (f). N = 184. x[n] is
given by (6.24).

x̆1[n]. The reason is that the EMD suffers from the mode-mixing problem. The abil-

ity of the EMD to separate mono-component signals is also adversely affected when the

amplitude of the lower frequency mono-component signal is higher than the amplitude

of the higher frequency mono-component signal [129]. Please note that in this exam-

ple, A4 > A5 > A1 > A2 > A3. It is apparent from Fig. 6.15 that the advantage

of the proposed iterative approach lies in decomposing x̆1[n] into its constituent AM

mono-component signals with a good accuracy and achieving brevity of representation

by expressing x̆1[n] as sum of five AM-FM mono-component signals. This example also

demonstrated that the ability of the proposed iterative decomposition approach to resolve

components is not affected by the relative amplitudes of the constituent mono-component

signals.
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6.4.2 Multi-component non-stationary signal consisting of only

frequency modulated mono-component signals

Let x[n] be a multi-component non-stationary signal with only frequency modulated (FM)

components given by:

x[n] =
L∑
l=1

xl[n] =
L∑
l=1

Al cos(2πfl(1 + βln)n+ θl) (6.25)

where n = 0, 1, ..., Q− 1. The parameter βl controls the rate of variation of the instan-

taneous frequency of xl[n],∀l.

(1) Single FM component: The value of L = 1 in this case. The values of various param-

eters in (6.25) are chosen as: Fs = 6400 Hz, Q = 4800, A1 = 2, F1 = 210 Hz, θ1 = 0,

β1 = 3/Q. Using (6.25) and the values of β1 and Q, the value of F1[Q − 1] comes out

to be 839.87 Hz. It implies that there is a change of nearly 300% in F1[n] over 750 ms.

In this case, the value of ∆Fx,min is theoretically infinite because x[n] consists of a single

mono-component signal. Therefore, we can choose N to be very small (such as 20) in

order to restrict the rank of H x̆1
N to be close to 2 and to achieve a very high value of SREdB

for a given value of STP . For the sake of demonstrating the outcome of the proposed

iterative decomposition approach for relatively large value of N , we have chosen N =

200. The decomposition results obtained by proposed iterative approach by terminating

the Iterations after the fourth level for the two different values of STP : 10% and 5% are

depicted in Fig. 6.17. The SREdB values obtained for the two different values of STP :

10% and 5% are 11.19 dB and 14.23 dB respectively.

The 399-point DFT of x̆1[n] resulted in 26 significant transform coefficient pairs. Thus,

the number of significant DFT coefficient pairs substantially increases for a single FM

modulated component. The reason is that the presence of frequency modulation in x̆1[n]

increases the bandwidth of x̆1[n] [119]. The results obtained by the EMD of x̆1[n] are

shown in Fig. 6.18. As x̆1[n] satisfies the two conditions to be considered as an IMF [78],

the EMD results in only one IMF, which is same as x̆1[n]. The proposed iterative decom-

position approach is able to represent x[n] as a single component and offered advantage
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Figure 6.16: (a) Multi-component signal segment x̆1[n]. Extracted IMFs using the EMD
of x̆1[n] are shown in (b), (c), (d), (e), (f), (g). x[n] is given by (6.24).
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Figure 6.17: Signal segment x̆1[n] in dashed line and the extracted AM-FM mono-
component signal using the proposed iterative decomposition approach in solid line are
shown for (a) STP = 10% (b) STP = 5%. x[n] is given by (6.25) and contains single
FM component.

over the DFT which requires 26 sinusoidal functions to represent x[n]. The EMD is better

than the proposed iterative decomposition approach in this scenario because it was able

to represent x[n] as a single component with absolute accuracy.

(2) Multiple FM components: Let x[n] contain two FM components. The values of various

parameters in (6.25) are chosen as: L = 2, Fs = 6400 Hz, Q = 1190, A1 = 3, A2 = 2, F1

= 500 Hz, F2 = 700 Hz, θ1 = 0, θ2 = π, β1 = 0.744/Q, β2 = −0.620/Q. Using (6.25), the

value of F1[119] = 537.19 Hz, F2[119] = 656.62 Hz. The value of ∆Fx,min for 119 samples

of x[n] = 119.43 Hz. Therefore, we have chosen a value of N = 60, which is greater
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Figure 6.18: Signal segment x̆1[n] in dashed line and the extracted AM-FM mono-
component signal using the EMD in solid line. x[n] is given by (6.25) and contains
single FM component.

than
Fs

∆Fx,min

. The decomposition results obtained by the proposed iterative approach

on x̆1[n] for STP = 10% are shown in Fig. 6.19. The Iterations got terminated after the

second level. A high value of SREdB of 24.81 dB has been obtained by extracting the

components corresponding to only significant eigenvalue pairs.

The 119-point DFT of x̆1[n] resulted in 8 significant transform coefficient pairs. Thus,

the number of significant DFT coefficient pairs substantially increases for a multi-component

signal consisting of FM modulated mono-component signals. The reason is that the pres-

ence of frequency modulation in xl[n] increases the bandwidth of xl[n],∀l [119]. The

results obtained by the EMD of x̆1[n] are shown in Fig. 6.20. It is apparent in Fig. 6.20

that the EMD was not able to separate the constituent FM mono-component signals of

x̆1[n]. It can be inferred by observing Fig. 6.20 carefully, that the first IMF (Fig. 6.20

(b)) extracted using the EMD of x̆1[n] closely matches x̆1[n]. The reason is that the

EMD is not able to separate two mono-component signals if the ratio of the lower mean

frequency to higher mean frequency of the two mono-component signals is approximately

in the range of 0.5 - 2 [127, 128]. The ability of the EMD to resolve components also

got adversely affected because A1 > A2 in this example [129]. It is apparent from Fig.

6.19 that the advantage of the proposed iterative approach lies in decomposing x̆1[n] into

its constituent FM mono-component signals with a good accuracy and achieving brevity

of representation by expressing x̆1[n] as sum of three AM-FM mono-component signals.

Unlike the EMD, the proposed iterative decomposition approach is neither affected by
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Figure 6.19: Multi-component signal segment x̆1[n]. Extracted AM-FM mono-component
signals ȳp[n], p = 1, 2, 3 obtained using the proposed iterative decomposition approach are
shown in solid lines in (b), (c), (d). The original FM mono-component signals of x̆1[n]
are shown in dashed lines in (b) and (c). x[n] is given by (6.25) and contains two FM
components.

the ratio of the mean frequencies nor by the relative amplitudes of the mono-component

signals contained in a multi-component signal.

6.4.3 Multi-component non-stationary signal consisting of

amplitude-frequency modulated mono-component signals

Let x[n] be a multi-component non-stationary signal with AM-FM components given by:

x[n] =
L∑
l=1

xl[n] =
L∑
l=1

Al(1 + αl[n]) cos(2πfl(1 + βln)n+ θl) (6.26)

where n = 0, 1, ..., Q− 1. The values of various parameters used in (6.26) are chosen as:

L = 4, Fs = 10000 Hz, Q = 1190, A1 = 3, A2 = 2, A3 = 0.9, A4 = 1.5, α1 = 7.44/Q, α2 =

α3 = 6.69/Q, α4 = 5.95/Q, F1 = 500 Hz, F2 = 700 Hz, F3 = 1100 Hz, F4 = 1400 Hz,

θ1 = θ4 = 0, θ2 = π, θ3 = π/2, β1 = β3 = 0.744/Q, β2 = −0.620/Q, β4 = −0.496/Q.

Using (6.26), the value of F1[119] = 537.19 Hz, F2[119] = 656.62 Hz, F3[119] = 1181.80 Hz,

F4[119] = 1330.60 Hz. The value of ∆Fx,min for 119 samples of x[n] = 119.43 Hz. We have

chosen ∆Fx,des = ∆Fx,min. Therefore, we have kept the value of N = 60, which is greater
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Figure 6.20: Multi-component signal segment x̆1[n]. Extracted IMFs using the EMD are
shown in solid lines in (b), (c), (d), (e), (f). x[n] is given by (6.25) and contains two FM
components.

than
Fs

∆Fx,min

. The decomposition results obtained by the proposed iterative approach

on x̆1[n] for STP = 10% are depicted in Fig. 6.21. The Iterations got terminated after

the second level. A high value of SREdB of 22.29 dB has been obtained by extracting the

components corresponding to only significant eigenvalue pairs.

The 119-point DFT of x̆1[n] resulted in 20 significant transform coefficient pairs.

Thus, the number of significant DFT coefficient pairs substantially increases for a multi-

component signal consisting of AM-FM modulated component signals. The reason is that

the DFT employs sinusoids as basis functions and the presence of amplitude and frequency

modulation in xl[n] increases the bandwidth of xl[n],∀l [119]. The results obtained by

the EMD of x̆1[n] are shown in Fig. 6.22. It is apparent in Fig. 6.22 that the EMD

was not able to separate the constituent AM-FM mono-component signals of x̆1[n]. The

mode-mixing problem of the EMD is evident in the first IMF (Fig. 6.22 (b)) that con-

tains oscillations belonging to disparate frequency ranges. The ratio of mean frequencies

and relative amplitudes of the mono-component signals contained in a multi-component

signal affect the ability of the EMD to separate components. It is apparent from Fig. 6.21

that the AM-FM mono-component signals extracted by the proposed iterative approach

do not exactly follow the instantaneous frequency and amplitude of the original AM-FM

mono-component signals over the entire duration of x̆1[n]. The benefit of the proposed
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Figure 6.21: Multi-component signal segment x̆1[n]. Extracted AM-FM mono-component
signals ȳp[n], p = 1, 2, 3, 4 obtained using the proposed iterative decomposition approach
are shown in solid lines in (b), (c), (d), (e). The original AM-FM mono-component signals
of x̆1[n] are shown in dashed lines in (b), (c), (d), (e). x[n] is given by (6.26).

iterative decomposition approach is that it reasonably separated the oscillations lying

in disparate frequency bands and achieved brevity by representing x̆1[n] as sum of four

AM-FM mono-component signals.

6.4.4 Voiced speech signal

The vocal folds vibrate during the production of voiced speech like vowels, sonorants. It

causes the excitation to the vocal tract system take the form of quasi periodic puffs of

air, resulting in a quasi-periodic output signal. The rate of vibration of vocal folds is

comprehended as the fundamental frequency (F0) of voiced speech signal. The AM-FM

signal model of voiced speech signal proposed in [66] states that the voiced speech signal

is a multi-component signal containing significant energy only around the time-varying

F0 component and its time-varying harmonics.

We have determined the boundaries of voiced regions of a speech signal of the CMU-

Arctic database [67,68] using the V/NV detection method proposed in the second chapter

of this thesis. The speech signals are available at a Fs of 32 kHz. Voiced speech signal

has significant energy in the frequency range of 0 Hz - 3400 Hz [69]. Therefore, the voiced

speech signal under consideration is passed through a low pass filter (LPF) with cut off
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Figure 6.22: Multi-component signal segment x̆1[n]. Extracted IMFs using the EMD are
shown in solid lines in (b), (c), (d), (e), (f). x[n] is given by (6.26).

frequency at 3400 Hz, 80 dB attenuation in the stopband and 0.5 dB passband ripple. The

F0 range of voiced speech is 50 Hz - 500 Hz [1]. Let x[n] denote the low pass filtered voiced

region (spanning 3849 samples) under consideration for decomposition. According to the

AM-FM signal model of voiced speech signal [66], the smallest possible value of ∆Fx,min

is equal to the lowest possible F0 value of 50 Hz. We have chosen ∆Fx,des = ∆Fx,min.

Therefore, we have kept the value N = 642, which is greater than
Fs

∆Fx,min

and divides

x[n] into equal size segments. Thus, the length of each segment (2N − 1 samples) comes

out to be 1283 samples. The decomposition results obtained by the proposed iterative

approach on the first segment of the low pass filtered voiced speech signal denoted by

x̆1[n] for STP = 7% are depicted in Fig. 6.23. A moderate value of SREdB = 14.40

dB has been obtained by extracting components corresponding to only significant eigen-

value pairs. The Iterations got terminated after the second level. We have computed the

following two parameters for AM-FM mono-component signals extracted from a multi-

component non-stationary signal:

(a) Dominant Frequency: The positive frequency at which the squared magnitude spec-

trum of the extracted AM-FM mono-component signal attains the peak value.

(b) Energy: The squared sample values of the extracted AM-FM mono-component signal.

The extracted AM-FM mono-component signals are arranged in the increasing order

of dominant frequencies. The dominant frequencies and energies of the AM-FM mono-
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Table 6.1: Extraction of AM-FM mono-component signals from a voiced speech segment
using the proposed iterative decomposition approach. N = 642.

Segment Last Dominant Energy of
Number Iteration Frequency Extracted

Level of Extracted Mono-
Mono- Component

Component Signals
Signals

127.1 0.30
256.9 0.30
510.7 3.80

1 2 642.6 18.50
765.5 0.50
894.8 3.10

1017.8 0.30
3173.5 0.20
3292.7 0.20

component signals ȳp[n], p = 1, 2, ..., 9 extracted from x̆1[n] are compiled in Table 6.1. It

can be inferred from Table 6.1 and Fig. 6.23 that the proposed iterative decomposition

approach has been able to extract AM-FM mono-component signals corresponding to the

time-varying F0 component at around 127 Hz and its time-varying higher harmonic com-

ponents (2nd, 4rd, 5th, 6th, 7th, 8th, 25th, 26th harmonic). The extraction of the time-varying

F0 component of voiced speech signal finds applications in identifying GCIs and estimat-

ing the instantaneous F0 [4,26]. It can be deduced from Table 6.1 and Fig. 6.23 that the

4th extracted AM-FM mono-component signal ȳ4[n] corresponding to the 5th harmonic of

the time-varying F0 is the formant component of x̆1[n] because it has significantly more

energy than the other extracted components.

The 1283-point DFT of x̆1[n] resulted in 38 significant transform coefficient pairs.

The disadvantage of the DFT is that it requires a large number of sinusoids to represent

x̆1[n]. The results obtained by decomposing x̆1[n] using EMD are shown in Fig. 6.24.

The mode-mixing problem of EMD is apparent in the first and second IMFs (Fig. 6.24

(b) and Fig. 6.24 (c)). It can be deduced from Fig. 6.24 that EMD was not able to

resolve the time-varying F0 component and its higher harmonic components contained

in x̆1[n]. Therefore, EMD of x̆1[n] was not able to facilitate the understanding of the

AM-FM signal model of voiced speech signal [66] and the underlying process of voiced

speech production. The disadvantage of EMD is that its ability to separate components
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Figure 6.23: (a) Low pass filtered voiced speech segment x̆1[n]. Extracted AM-FM mono-
component signals ȳp[n], p = 1, 2, ..., 9, obtained using the proposed iterative decomposi-
tion approach are shown in (b), (c), (d), (e), (f), (g), (h), (i), (j).

(belonging to disparate frequency ranges) from a multi-component signal is affected by

the relative amplitudes of the mono-component signals contained in it [129]. EMD also

suffers from poor frequency resolution over the high frequency range [128]. The proposed

iterative approach offers flexibility. The frequency resolution ∆Fdes that can be achieved

by the proposed iterative decomposition approach can be altered by changing the Hankel

matrix size N . The frequency resolution remains same over the entire frequency range

once the value of N is fixed.

6.4.5 Unvoiced speech signal

Unvoiced speech is produced by the passage of air through a narrow constriction in the

windpipe. The unvoiced speech includes fricatives, plosives etc. The unvoiced region has

been taken from a speech signal of the CMU-Arctic database [67, 68] available at a Fs
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Figure 6.24: (a) Low pass filtered voiced speech segment x̆1[n]. Extracted IMFs obtained
using the EMD are shown in solid lines in (b), (c), (d), (e), (f), (g).

of 32 kHz. Unvoiced speech signal has significant energy at high frequencies up to 8000

Hz [69]. Therefore, the unvoiced speech signal under consideration is passed through a

LPF with cut-off frequency at 8000 Hz, 80 dB stop band attenuation and 0.5 dB passband

ripple. The unvoiced speech signal energy is scattered over the frequency range of 0 -

8000 Hz because of its noise-like random nature, with more energy in the high frequency

components than in the low frequency components. We choose the value of ∆Fdes to

be 400 Hz. We have chosen a value N equal to 94 which is greater than
Fs

∆Fdes

and

divides x[n] (spanning 4489 samples) into equal size segments. The decomposition results

obtained by the proposed iterative approach on the first segment of the low pass filtered

unvoiced speech signal x̆1[n] after the fourth Iteration level for STP = 1% are depicted

in Fig. 6.25 and Fig. 6.26. A high value of SREdB of 16.94 dB has been obtained in this

case, when components corresponding to only significant eigenvalue pairs were extracted.

The dominant frequencies and energies of the extracted AM-FM mono-component signals

are tabulated in Table 6.2.

The 187-point DFT of x̆1[n] resulted in 56 significant transform coefficient pairs. The

proposed iterative approach achieves brevity in comparison to the DFT while representing

x̆1[n] as sum of mono-component signals. The IMFs obtained by performing EMD of x̆1[n]
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Table 6.2: Extraction of AM-FM mono-component signals from an unvoiced speech seg-
ment using the proposed iterative decomposition approach. N = 94.

Segment Last Dominant Energy of
Number Iteration Frequency Extracted

Level of Extracted Mono-
Mono- Component

Component Signals
Signals

296.9 0.2650 ×10−3

972.7 0.1718 ×10−3

1885.6 0.0276 ×10−3

2235.4 0.0002 ×10−3

2538.9 0.0001 ×10−3

3090.0 0.0109 ×10−3

3515.8 0.0483 ×10−3

3813.8 0.0026 ×10−3

4051.2 0.0001 ×10−3

4345.1 0.0046 ×10−3

4679.3 0.0013 ×10−3

1 4 4984.4 0.0180 ×10−3

5369.9 0.0002 ×10−3

5520.6 0.0008 ×10−3

5912.1 0.0062 ×10−3

6483.3 0.0115 ×10−3

6785.2 0.0134 ×10−3

7376.1 0.0748 ×10−3

7641.4 0.0013 ×10−3

7981.0 0.0466 ×10−3

are shown in Fig. 6.27. The severe mode-mixing problem is apparent in the three IMFs

depicted in Fig. 6.27 (b), Fig. 6.27 (c). Fig. 6.27 (d). It can be inferred by carefully

observing Fig. 6.27, that there are more number of IMFs with oscillations in the low

frequency range than IMFs with oscillations in the high frequency range, even when noise-

like unvoiced speech signal is known to have more energy scattered in the high frequency

range than in the low frequency range [1, 69]. It is evident from this example that the

frequency resolution of the EMD degrades in the high frequency range [128]. It can be

inferred from Table 6.2, Fig. 6.25, Fig. 6.26 that the advantage of the proposed iterative

approach is that it was able to resolve mono-component signals in the low frequency range

as well as in the high frequency range at the desired frequency resolution ∆Fdes.
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Figure 6.25: (a) Low pass filtered unvoiced speech segment x̆1[n]. Extracted AM-FM
mono-component signals using the proposed iterative decomposition approach ȳp[n], p =
1, 2, ..., 11 are shown in (b), (c), (d), (e), (f), (g), (h), (i), (j), (k), (l). In total 20 AM-FM
mono-component signals are extracted, 11 of which are depicted in this figure and the
rest 9 extracted AM-FM mono-component signals are depicted in the next figure (Fig.
6.26).

6.4.6 Formant analysis

Formants are frequencies at which local peaks occur in the magnitude spectrum of the

speech signal. Thus, formants correspond closely to the resonant frequencies of the vocal

tract system. The voiced speech signal can be efficiently parameterized using formants.

Formant parameters are used in speech synthesizers to produce high quality speech. Noise

resilient formant analysis finds use in speech recognition. The method used for formant

analysis should result in detection of a few missed or extra formants and must have the

ability to track variations in formants [134].

The proposed iterative approach for decomposition of a multi-component signal can

be used along with DESA for formant analysis of the speech signal using an appropri-

ate value of STP . DESA employs Teager’s non-linear energy operator [134] to compute
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Figure 6.26: Remaining 9 out of the 20 AM-FM mono-component signals ȳp[n], p =
12, 13, ..., 20 extracted from the low pass filtered unvoiced speech segment (shown in the
Fig. 6.25 (a)) using the proposed iterative decomposition approach are shown in (m), (n),
(o), (p), (q), (r), (s), (t), (u).

instantaneous amplitudes and frequencies of extracted mono-component signals. The

Teager-energy of a discrete-time mono-component signal y[n], represented using the op-

erator ψ(.) as ψ(y[n]) is computed as [135]:

ψ(y[n]) = y2[n]− y[n− 1]y[n+ 1] (6.27)

Teager energies of y[n] and its first order derivative r[n] = y[n] − y[n − 1] are used by

DESA to compute the instantaneous amplitude and instantaneous angular frequency in
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Figure 6.27: (a) Low pass filtered unvoiced speech segment (b) Extracted IMFs using the
EMD are shown in (b), (c), (d), (e), (f), (g), (h).

radians/sec of y[n], denoted A[n] and ω[n] respectively as follows [63,136]:

A[n] ≈
√√√√ ψ(y[n])

1−
(

1− ψ(r[n])+ψ(r[n+1])
4ψ(y[n])

)2

ω[n] ≈ cos−1

(
1− ψ(r[n]) + ψ(r[n+ 1])

4ψ(y[n])

) (6.28)

A filter is applied to perform smoothing of the estimated instantaneous amplitude and

instantaneous angular frequency to reduce estimation errors [63]. Let us consider an

example, a multi-component non-stationary signal x[n] consisting of harmonically related

AM-FM mono-component signals given by:

x[n] =
∑
l

xl[n] =
∑
l

Al(1 + αl[n]) cos(2πlf0(1 + βn)n+ θl) (6.29)

where n = 0, 1, ..., Q− 1. The values of various parameters used in (6.29) are chosen as:

l = 1, 2, 4, 5, 6, 7, 8, 24, 25, Fs = 20000 Hz, Q = 3600, A1 = 0.075, A2 = 0.2, A4 = 0.3, A5 =
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0.7, A6 = 0.05, A7 = 0.04, A8 = 0.25, A24 = 0.06, A25 = 0.09, α1 = 5/Q, α2 = α6 = α7 =

α25 = 4.5/Q, α4 = α8 = 3.5/Q, α5 = α24 = 4.0/Q, F0 = 120 Hz, θ1 = θ5 = θ24 = 0, θ2 =

θ7 = π, θ4 = θ8 = π/2, θ6 = θ25 = π/3, β = 0.75/Q. The value of ∆Fx,min = F0 = 120

Hz. The value of ∆Fx,des is chosen to be equal to ∆Fx,min. Therefore, the value of N is

chosen to be 360, which is greater than
Fs

∆Fx,min

. The dominant frequencies and energies

of extracted AM-FM mono-component signals of x[n] (given by 6.29) obtained by the

proposed iterative decomposition approach in a clean environment and at 5 dB SNR in a

white noise environment are compiled in Table 6.3 and Table 6.4 respectively. The energy

of white noise is distributed over the entire time-frequency plane. As explained in the

third chapter of this thesis that in the presence of noise in x[n], components corresponding

to insignificant eigenvalue pairs of Hx
N either correspond to noise contained in x[n] or weak

components of x[n]. Therefore, the value of STP is chosen relatively higher than previous

examples because for formant analysis, only strong mono-component signals of x[n] need

to be extracted.

Table 6.3: Extracted AM-FM mono-component signals of x[n] (given by (6.29)) ob-
tained using the proposed iterative decomposition approach in a clean environment.
N = 360, STP = 15%.

Segment Last Dominant Energy of
Number Iteration Frequency Extracted

Level of Extracted Mono-
Mono- Component

Component Signals
Signals

268.0 25.30
1 2 531.0 41.90

675.0 315.90
1064.0 24.10

Let Emax denote the maximum energy of extracted AM-FM mono-component signals.

The instantaneous frequencies are computed by applying DESA on extracted AM-FM

mono-component signals with energy equal to or greater than 5% of Emax. The reference

instantaneous frequencies of original four strongest mono-component signals of x[n] ob-

tained using (6.29) and instantaneous frequencies of extracted AM-FM mono-component

signals computed using DESA in a clean environment and at 5 dB SNR in a white noise

environment are depicted in Fig. 6.28. It is evident from Fig. 6.28 that the proposed
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Table 6.4: Extracted AM-FM mono-component signals of x[n] (given by (6.29)) using the
proposed iterative decomposition approach at 5 dB SNR in a white noise environment.
N = 360, STP = 15%.

Segment Last Dominant Energy of
Number Iteration Frequency Extracted

Level of Extracted Mono-
Mono- Component

Component Signals
Signals

269.0 26.70
1 2 533.0 33.05

643.0 239.50
717.0 6.70

1070.0 23.80

iterative approach along with DESA is able to track instantaneous frequencies of strong

mono-component signals contained in x[n] in both clean and noisy environments.

The formant analysis results obtained using the proposed iterative decomposition ap-

proach along with DESA on a male voiced segment of 40 m duration in a clean environment

and at 5 dB SNR in a white noise environment are depicted in Fig. 6.29. The sampling

rate of the male voiced segment is 32 kHz. The value of N is chosen to be 640, which

is greater than Fs/∆Fx,min = Fs/F0,min, where F0,min represents the minimum value of

the fundamental frequency of the speech signal (F0) is equal to 50 Hz. The dominant

frequencies and energies of extracted AM-FM mono-component signals of the male voiced

segment using the proposed iterative decomposition approach in a clean environment and

at 5 dB SNR in a white noise environment are tabulated in Table 6.5 and Table 6.6 re-

spectively. It is evident from Table 6.5 and Table 6.6 that the value of Emax is 18.47 and

17.38 in the clean and white noise environment respectively. Please note in Table 6.5 and

Table 6.6 that there are two extracted AM-FM mono-component with energies less than

5% of Emax. Instantaneous frequencies of only those extracted AM-FM mono-component

signals with energies equal to or greater than 5% of Emax are computed using DESA.

The extracted AM-FM mono-component signals with instantaneous frequencies spanning

a frequency range of 500 Hz or above over the voiced segment duration (40 ms) are also

rejected, because such components are assumed to contribute to the overall spectral shape

and not the vocal-tract resonances [134]. It is apparent from Fig. 6.29 that the proposed
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Figure 6.28: Reference instantaneous frequencies of four strongest mono-component sig-
nals of x[n] (given by (6.29)) in dashed lines. Instantaneous frequencies of extracted AM-
FM mono-component signals of x[n] (given by (6.29)) in a clean environment and at 5 dB
SNR in a white noise environment in solid and dash-dotted lines respectively. AM-FM
mono-component signals of x[n] (given by (6.29)) are extracted using the proposed iter-
ative decomposition approach. Instantaneous frequencies of extracted mono-component
signals are computed using DESA.

iterative decomposition approach has satisfactorily extracted the formant components of

the male voiced segment in both clean and noisy environments and instantaneous fre-

quencies of formant components can be tracked by applying DESA on extracted formant

components.

Table 6.5: Extracted AM-FM mono-component signals of a clean male voiced segment
using the proposed iterative decomposition approach. N = 640, STP = 15%.

Segment Last Dominant Energy of
Number Iteration Frequency Extracted

Level of Extracted Mono-
Mono- Component

Component Signals
Signals

125.0 0.30
255.0 1.08
382.0 0.35
511.0 4.03

1 2 643.0 18.47
765.0 1.09
895.0 3.00
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Table 6.6: Extracted AM-FM mono-component signals of a male voiced speech segment
at 5 dB SNR in a white noise environment using the proposed iterative decomposition
approach. N = 640, STP = 15%.

Segment Last Dominant Energy of
Number Iteration Frequency Extracted

Level of Extracted Mono-
Mono- Component

Component Signals
Signals

123.0 0.71
255.0 0.87
381.0 0.34
511.0 5.43

1 3 642.0 17.38
764.0 0.92
895.0 2.77
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Figure 6.29: Instantaneous frequencies of formant components extracted from a male
voiced segment in a clean environment and at 5 dB SNR in a white noise environment
in solid and dashed lines respectively. Formant components are extracted using the pro-
posed iterative decomposition approach. Instantaneous frequencies of extracted formant
components are computed using DESA.

The formant analysis results obtained using the proposed iterative decomposition ap-

proach along with DESA on a female voiced segment of 40 ms duration in a clean en-

vironment and at 5 dB SNR in a white noise environment are shown in Fig. 6.30. The

sampling rate of the female speech segment is 32 kHz. The value of N is chosen to be

640, which is greater than Fs/∆Fx,min = Fs/F0,min, where F0,min is equal to 50 Hz. The
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Table 6.7: Extracted AM-FM mono-component signals of a female voiced speech seg-
ment in a clean environment using the proposed iterative decomposition approach.
N = 640, STP = 15%.

Segment Last Dominant Energy of
Number Iteration Frequency Extracted

Level of Extracted Mono-
Mono- Component

Component Signals
Signals

238.0 1.1
470.0 0.2
573.0 0.05
704.0 1.4

1 3 747.0 0.06
842.0 0.32
936.0 0.72

1117.0 0.50

Table 6.8: Extracted AM-FM mono-component signals of a female voiced speech segment
at 5 dB SNR in a white noise environment using the proposed iterative decomposition
approach. N = 640, STP = 15%.

Segment Last Dominant Energy of
Number Iteration Frequency Extracted

Level of Extracted Mono-
Mono- Component

Component Signals
Signals

237.0 1.2
473.0 0.2
573.0 0.11
622.0 0.15
704.0 1.6

1 3 743.0 0.07
806.0 0.03
852.0 0.38
936.0 0.77

1181.0 0.43
1416.0 0.02

dominant frequencies and energies of extracted AM-FM mono-component signals of the

female voiced segment using the proposed iterative decomposition approach in a clean en-

vironment and at 5 dB SNR in a white noise environment are tabulated in Table 6.7 and

Table 6.8 respectively. It is evident from Table 6.7 and Table 6.8 that the value of Emax is

1.40 and 1.60 in the clean and noisy environment respectively. Please note that in Table
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Figure 6.30: Instantaneous frequencies of formant components extracted from a female
voiced segment in a clean environment and at 5 dB SNR in a white noise environment
in solid and dashed lines respectively. Formant components are extracted using the pro-
posed iterative decomposition approach. Instantaneous frequencies of extracted formant
components are computed using DESA.

6.7 and Table 6.8 that there are two or more extracted AM-FM mono-component signals

with energies less than 5% of Emax. Instantaneous frequencies of only those extracted

AM-FM mono-component signals with energies equal to or greater than 5% of Emax are

computed using DESA. The extracted AM-FM mono-component signals with instanta-

neous frequencies spanning a frequency range of 500 Hz or above over the voiced segment

duration (40 ms) duration are also rejected, because such components are assumed to

contribute to the overall spectral shape and not the vocal-tract resonances [134]. It is

apparent from Fig. 6.30 that the proposed iterative decomposition approach has satisfac-

torily extracted the formant components of the female voiced segment in both clean and

noisy environments and instantaneous frequencies of formant components can be tracked

by applying DESA on extracted formant components.

6.5 Conclusion

A new iterative approach for decomposition of a multi-component non-stationary signal

into AM-FM mono-component signals has been proposed in this chapter. The proposed it-
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erative decomposition approach is based on performing repeated eigenvalue decomposition

(EVD) of the Hankel matrix, initially constructed from the samples of multi-component

non-stationary signal segment. The AM-FM mono-component signals extracted from the

multi-component non-stationary signal using the proposed iterative approach are narrow

band signals whose instantaneous frequencies can be obtained using the Hilbert transform

or DESA.

The proposed iterative approach is adaptive in the sense that the eigenvectors of the

Hankel matrix acting as bases for the extracted AM-FM mono-component signals are

determined using EVD, which is a data-dependent process. The proposed iterative ap-

proach offers flexibility in defining the criterion for significant eigenvalue pair. Therefore,

depending upon the type of application either only the strong mono-components signals or

strong cum weak mono-component signals of a multi-component signal can be extracted.

The proposed decomposition iterative approach is suitably employed for robust formant

analysis of the voiced speech signal.

The proposed iterative approach does not require prior information about the number

of mono-component signals present in the multi-component non-stationary signal. Unlike

the EMD, the proposed approach does not suffer from mode-mixing problem or degra-

dation of the frequency resolution in the high frequency range. The frequency resolution

that can be achieved by the proposed iterative decomposition approach can be altered by

changing the Hankel matrix size. Unlike the EMD, the ability of the proposed iterative

approach to resolve components of a multi-component signal is neither affected by the

ratio of their mean frequencies nor by their relative amplitudes.
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Chapter 7

Summary

The previous chapters stated the objectives considered in this thesis and described the

evolution of algorithms developed to accomplish the identified objectives. This chap-

ter provide the concluding remarks on the obtained analytical results and experimental

studies carried out in the previous chapters.

It has been derived and demonstrated that voiced speech signal has significant energy

only around the time-varying F0 and its harmonics in the LFR. The smoothed MEDT

over the LFR computed using the PWVD coefficients of the analytic speech signal has

been shown to provide an excellent discrimination between the voiced and non-voiced

regions of the speech signal. The PWVD provides good time resolution in the LFR and

hence, enables instantaneous V/NV detection. It is one of the rare applications of the

PWVD where the cross-terms in the PWVD of analytic speech signal have been found

to be facilitating the discrimination of the voiced and non-voiced regions of the speech

signal by increasing the value of the MEDT over the LFR during the voiced regions of

the speech signal.

The analysis of the speech signal in the LFR has been demonstrated to provide a better

distinction between voiced and non-voiced regions of the speech signal and enhanced

robustness against the high frequency and white noise environments than the analysis

of the speech signal in the FFR by eliminating noise energy lying outside the LFR. The

filtering of the speech signal in the LFR suppresses formants and renders the time-varying
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F0 component of the voiced speech signal distinguishable among its harmonic components.

The time-varying F0 component has been extracted from the LFR filtered voiced

speech signal without designing any time-varying filter and without using time-frequency

analysis techniques. The proposed iterative algorithm has been demonstrated to reliably

and efficiently extract the time-varying F0 component of voiced speech signal even at

low SNRs. The filtering of voiced speech signal in the LFR, rejection of non-significant

eigenvalue pairs, Distance Metric based F0 range estimation have enhanced the noise

robustness of the proposed iterative algorithm. The proposed GCI identification method

has been demonstrated to accurately and reliably identify the GCIs in the voiced speech

signal by employing the negative cycles of the extracted time-varying F0 component to

provide coarse estimate of intervals where GCIs may occur. The performance of all the

algorithms for V/NV detection, GCI identification and F0 estimation have been found to

be better in the white noise environment than the babble noise environment because of

the babble noise environment containing higher energy in the LFR.

The proposed iterative decomposition approach to extract AM-FM mono-component

signals from a multi-component signal has been shown to be adaptive because the eigen-

vectors acting as bases functions are data-dependent. The proposed decomposition ap-

proach offers flexibility and only the strong or strong-cum weak components of the multi-

component signal can be extracted. It has been analytically cum experimentally shown

that the frequency resolution that can be achieved by the proposed decomposition ap-

proach can be changed by varying the Hankel matrix size. The proposed iterative decom-

position approach is suitably employed to perform formant analysis of the voiced speech

signal.
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