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Abstract

The Standard Model is one of the most successful theories which describes strong,

weak and electromagnetic forces and interactions between the elementary particles.

The scalar boson has been found at the Large Hadron Collider (LHC) on 4th July

2012 that has confirmed the Higgs mechanism. Although, the properties of this

scalar are consistent with the Higgs as predicted by the standard model (SM), the

experimental data still allow an extension of the scalar sector. The standard model

fails to explain few physical phenomena in Nature, for example, the presence of dark

matter, existence of massive neutrino, the observed matter-antimatter asymmetry,

inflation of the Universe, etc. These phenomena indicate the presence of new physics

beyond the standard model. In this thesis, various extensions of the scalar sector

have been considered comprising of different SU(2)L multiplets. The main purpose

for writing this thesis is to explore properties of these new scalars using the weak

vector boson scattering processes and from the (meta)stability of the scalar potential.

If the extended scalar sector participates in the electroweak symmetry breaking then

these extra scalars need to couple with the known standard model particles. In this

work, it has been shown that the vector boson scattering involving scalar boson

exchanges provide a complimentary way to direct search methods to probe into the

scalar sector. As different extended scalar sectors have similar types of scalar fields,

e.g., an extra CP -even Higgs, charged Higgs etc., these new physics models can

give rise to the similar types of experimental signatures. In this work, it has been

shown that it is possible to distinguish between such models at various vector boson

scattering processes by looking at the resonances. Also, the shapes of the resonances

can provide further insight to the relevant parameter space of these models.

As in the SM, the electroweak vacuum is metastable, it is important to explore if
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an extended scalar has an answer in its reserve. As the scalar weakly interacting

massive scalar particles protected by Z2 symmetry can serve as viable dark matter

candidates, it is interesting to explore if they help prolong the lifetime of the Uni-

verse. The effective Higgs potential gets modified in the presence of these new extra

scalars, improving the stability of electroweak vacuum. Such an exercise has been

undertaken in various kinds of extended scalar sectors. In order to show the explicit

dependence of the electroweak stability on different parameters of these extended

sectors, various kinds of phase diagrams have been presented. Graphical demonstra-

tions have been provided to illustrate how the confidence level, at which stability

of electroweak vacuum is excluded, depends on such new physics parameters. This

study will help to estimate the lifetime of the electroweak vacuum, especially if it

still remains in the metastable state in the extended scalar sectors.
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Chapter 1

Introduction

The unification of electric and magnetic fields in classical electromagnetism was

realized by James Clerk Maxwell in 1864. Similarly, the Standard Model (SM)

electroweak theory unifies the electromagnetic and weak forces. This was first pro-

posed by Sheldon Glashow in 1961. Abdus Salam and Steven Weinberg revised the

Glashow’s electroweak theory by having the masses for W± and Z bosons. The

SM describes what matter is made of and how it holds together. The basic ideas

are: all matter is made of elementary particles, and these particles interact with

each other by exchanging other particles associated with the fundamental forces.

The SM Lagrangian is designed to respect certain mathematical symmetries. The

equations of motion derived from this Lagrangian have enabled physicists to make

predictions about various observables which have been successfully tested in parti-

cle physics laboratories. Nearly every quantity that has been measured in particle

physics laboratories over the past five decades up to energy of TeV falls right on

the predicted value, within experimental error margins. This has made the SM of

particle physics one of the best tested and established fundamental theory of the

Nature. In the SM, the Higgs mechanism is believed to give rise to the masses of

1
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all the elementary particles through spontaneous symmetry breaking of the gauge

symmetry. Discovery of a Higgs-like scalar boson at the Large Hadron Collider

(LHC) on 4th July 2012 [1,2], confirms that the Higgs mechanism is responsible for

electroweak symmetry breaking.

Although the SM is one of the most successful theories, it is unable to explain

various experimental observations, e.g., it fails to explain non-zero neutrino masses,

baryon-antibaryon asymmetry in Nature, mysterious nature of dark matter and dark

energy. Moreover the SM does not incorporate the theory of gravitation. Also it is

plagued with its own theoretical problems such as the hierarchy problem related to

the mass of the Higgs, mass hierarchy and mixing patterns in leptonic and quark

sectors etc. The mechanism by which the SM particles get their respective masses,

and the deficiencies of the SM from the theoretical as well as experimental points of

view, will be discussed in the following section.

1.1 The Standard Model

The standard model is the theory used to describe the fundamental forces (except

gravity) and the interactions between fundamental particles. It can explain the

three fundamental forces namely the strong, weak and electromagnetic interactions

in terms of local gauge symmetries SU(3)C , SU(2)L, and U(1)Y respectively. The

strong interaction between quarks and gluons is governed by SU(3)C . The group

SU(2)L ⊗ U(1)Y is responsible for electroweak interactions. The weak force is me-

diated by the massive W± and Z bosons, whereas a massless vector gauge boson,

the photon, mediate the electromagnetic force between electrically charged parti-

cles. In the SM, there are three different gauge coupling constants g1, g2, and g3,

corresponding to these groups which are instrumental in determining the strength of

the forces. The gauge coupling constant g3 of group SU(3)C is large, e.g., g3 = 1.17

at an energy scale Mt = 173 GeV. The electromagnetic force is small compared to
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the strong force due to smallness of g1 and g2, e.g., g1 = 0.36 and g2 = 0.67 at

energy scale Mt. The weak force is even smaller than the electromagnetic force as

it is suppressed by a massive gauge boson propagator.

Figure 1.1: The particle spectrum of the SM of elementary particles [3].

In the SM, there are six quarks and six leptons and their antiparticles. Each quark

comes with three colors namely red, green, and blue. The SM also includes gauge

bosons such as photon, W±, Z, and gluons and one neutral Higgs field (see Fig. 1.1).

Higgs is the only particle in the SM which is responsible for the masses of all particles.

In the chiral representation, the four-component Dirac fermions (ψ) can be split into

two separate pieces for the left-handed and right-handed fermions:

ψL =
1− γ5

2
ψ and ψR =

1 + γ5

2
ψ.

A left-handed up-type quark and a left-handed down-type quark together form a

quark doublet under SU(2)L. Similarly, a left-handed charged lepton and the corre-

sponding left-handed neutrino forms a doublet. Right-handed fermions are singlets

under the same group.
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The left-handed quark doublet QL and lepton doublet χL are denoted as,

QL ≡

uL
dL

 and χL ≡

νlL
lL

 , (1.1)

Right-handed quark singlet qR and lepton singlet lR are given by,

qR = uR, dR; and lR, (1.2)

where u represents the up-type quarks of the three generations u, c, t; and d stands

for the down-type quarks d, s, b. The charged leptons are denoted by l = e, µ, τ with

the corresponding left-handed neutrinos νl = νe, νµ, ντ . Right-handed neutrinos are

not included in the SM.

Also, the SM complex scalar transform as a doublet under SU(2)L and is given by,

φ =

φ+

φ0

 ,

where φ+ = φ1+iφ2√
2

is the complex charged scalar field and φ0 = φ3+iφ4√
2

is the neutral

complex scalar field.

In the following, the electroweak part of the SM Lagrangian symmetric under

SU(2)L ⊗ U(1)Y will be presented, which determines electroweak interactions and

masses of the particles. It is given by,

LSM = Lfermions + Lgauge + LHiggs + LY ukawa.

The kinetic terms of the fermions and their interactions with gauge bosons can be

written as,

Lfermions = iQ̄L γ
µDL

µ QL + iχ̄L γ
µDL

µ χL + iq̄R γ
µDR

µ qR + il̄R γ
µDR

µ lR, (1.3)

where the covariant derivative of fermion doublet with left chirality is defined as,

DL
µ =

(
∂µ + ig2T

aW a
µ + ig1

Y

2
Bµ

)
, (1.4)

and the covariant derivative of singlet fermion with right chirality is given by,

DR
µ =

(
∂µ + ig1

Y

2
Bµ

)
. (1.5)
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Field SU(3)C SU(2)L T 3 U(1)Y Q = T 3 + Y
2

QL =

(
uL
dL

)
3 2

( 1
2

−1
2

)
1
3

( 2
3

−1
3

)
uR 3 1 0 4

3
2
3

dR 3 1 0 −2
3

−1
3

LL =

(
νL
lL

)
1 2

( 1
2

−1
2

)
−1

(
0

−1

)
lR 1 1 0 −2 −1

φ =

(
φ+

φ0

)
1 2

( 1
2

−1
2

)
1

(
1

0

)

Table 1.1: Charges of the SM fermions and scalars. C is the color charge under
SU(3)C group, T 3 is the third component of weak isospin of SU(2)L group, Y is the
hypercharge quantum number of U(1)Y group and Q is the electric charge quantum
number.

The second and third terms of the equation 1.4 are related to SU(2)L and U(1)Y

gauge transformations respectively. W a
µ (a=1,2,3) are the SU(2)L gauge bosons,

corresponding to three generators of SU(2)L group and Bµ is the U(1)Y gauge

boson. In the SM, the generators of SU(2)L are 2× 2 matrices T a = 1
2
τa, where the

τa, are the Pauli spin matrices,

τ 1 =

0 1

1 0

 , τ 2 =

0 −i
i 0

 , τ 3 =

1 0

0 −1

 .

Y is the weak hypercharge operator, generator of U(1)Y group. The hypercharge

operator, defined as a linear combination of the electromagnetic charge operator Q

and the third generator T 3 = τ3

2
of SU(2)L, is given by,

Y = 2(Q− T 3).

The third component of weak isospin, T3, hypercharge quantum numbers Y and

the electric charge Q of left-handed and right-handed fermions and scalar fields are

summarized in Table 1.1.

The gauge part of the Lagrangian contains the kinetic term and interaction term of
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the gauge bosons and can be written as,

Lgauge = −1

4
W a
µνW

a,µν − 1

4
BµνB

µν .

The field strength tensors are defined as,

Bµν = ∂µBν − ∂νBµ,

W a
µν = ∂µW

a
ν − ∂νW a

µ − g2ε
abcW b

µW
c
ν ,

where εabc is structure constant of SU(2)L group such that [T a, T b] = iεabcT c.

In the SM, the gauge symmetry prevents us from adding explicit mass terms for

gauge bosons. As a result, in the limit of exact symmetry, all gauge bosons are

massless. To incorporate the massive W± and Z bosons into the SM, the Higgs

mechanism has been developed to circumvent this constraint on the mass. In this

mechanism, the masses of all particles (except neutrinos) are obtained through the

spontaneous breaking of the SU(2)L ⊗ U(1)Y gauge symmetry at the electroweak

scale.

The part of the Lagrangian, which gives rise to the masses of the gauge bosons and

the Higgs and also to the interaction between the Higgs and the gauge bosons, is

given by,

LHiggs = (DL,µφ)†(DL
µφ)− V (φ), (1.6)

where V (φ) is the SM Higgs potential, and is given by,

V (φ) = m2φ†φ+ λ(φ†φ)2, (1.7)

with, φ ≡

 φ+

φ0

 =

 φ1+iφ2√
2

φ3+iφ4√
2

 , (1.8)

The electroweak symmetry breaking and how the particles get masses will be dis-

cussed in the following.

In the SM the electroweak symmetry breaking (EWSB) is realized by the so-called

Higgs mechanism proposed by Robert Brout, François Englert and Peter Higgs [4–
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7]. In this mechanism, the real component φ3 of the neutral complex scalar of

the electroweak doublet acquires a non-vanishing vacuum expectation value (VEV)

leading to EWSB. As a result, the gauge group SU(2)L ⊗ U(1)Y is broken down to

U(1)EM , the symmetry group that corresponds to electromagnetism.

In the SM, the Higgs potential V (φ), which is responsible for spontaneous symmetry

breaking, is given in eqn. 1.7,

V (φ) = m2φ†φ+ λ(φ†φ)2.

For λ < 0, the potential goes to −∞, i.e., it gets unbounded from below at very high

field values. So λ is taken to be positive. If m2 > 0, the minimum of the potential

is found at |φ| =
√
〈0|φ†φ|0〉 = 0, where |0〉 represents the ground state. However,

the minimum occurs at |φ| =
√
〈0|φ†φ|0〉 =

√
−m2

2λ
= v√

2
for m2 < 0 and λ > 0.

In the former case, the symmetry is unbroken while in the latter case symmetry is

apparently broken.

Figure 1.2: Schematic diagram of the Higgs potential. The potential is symmetric
about the vertical axis but at the minimum the symmetry is broken. The circular
line indicates the remaining U(1) symmetry.

The fields φ1, φ2 and φ4 in eqn. 1.8 are not physical fields and do not receive any

VEV. They can be removed by a particular gauge choice, known as unitary gauge

choice. These unphysical fields, known as the Goldstone bosons, are ‘eaten’ by the

massless W± and the Z bosons, so that they get massive. In this gauge, the scalar
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field can be written as,

φ =

 0

h+v√
2

 , (1.9)

where φ3 = h + v, h is the physical Higgs boson. Using the eqns. 1.7, and 1.9, the

eqn. 1.6 can be written explicitly as,

LHiggs =
1

2
∂µh∂

µh+ (h+ v)2

(
g2

2

4
W+
µ W

µ− +
g2

1 + g2
2

8
ZµZ

µ

)
−1

4
λ(h+ v)2((h+ v)2 − 2v2) + ... (1.10)

The charged W± bosons are defined as W±
µ =

W 1
µ∓iW 2

µ√
2

. The Z boson and photon are

orthogonal combinations of W 3
µ and Bµ: Zµ = cWW

3
µ − sWBµ and Aµ = sWW

3
µ +

cWBµ. cW ≡ cos θW and sW ≡ sin θW , where θW is the Weinberg angle. It can be

expressed in terms of the gauge coupling constants as,

θW = cos−1

(
g2√
g2

1 + g2
2

)
. (1.11)

One can express the electric charge in terms of the gauge coupling constants g1 and

g2 as, e = g1g2√
g2
1+g2

2

, which determines the strength of the electromagnetic interaction.

The mass terms for W± and Z bosons as well as for the Higgs boson h from eqn. 1.10

can be identified as,

M2
W =

1

4
g2

2v
2,

M2
Z =

1

4
(g2

1 + g2
2)v2,

M2
h = 2λv2,

where the photon Aµ remains massless after symmetry breaking, i.e., the vacuum

breaks the original symmetry SU(2)L × U(1)Y in such a way that only the U(1)EM

survives as the residual symmetry with a conserved charge Q = T3 + Y
2

.

Like the gauge bosons, explicitly adding the quark or lepton mass terms (−mψ̄ψ) in

eqn. 1.3 violates the SU(2)L gauge symmetry. To retain the gauge invariance, the

fermion mass needs to be introduced into the SM after EWSB through the Yukawa
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interaction between the Higgs field and the fermions fields. The Yukawa part of the

SM Lagrangian is given by,

LY ukawa = −
3∑

i,j=1

(yijd Q̄iL φ djR + yiju Q̄iL φ̃ ujR + yijl χ̄iL φ ljR) + h.c., (1.12)

where φ is the SM complex scalar doublet and φ̃ = iτ2φ
∗, yd=d,s,b are the Yukawa

couplings for down-type quarks, yu=u,c,t for up-type quarks and yl=e,µ,τ for charged

leptons. QL and χL represent the left-handed quark and lepton doublet, uR, dR

are right-handed singlet quarks and lR are the right-handed singlet charged leptons.

Here i, j are the generation indices.

Using eqns. 1.1, 1.2 and 1.9 and substituting them into the eqn. 1.12, the Yukawa

Lagrangian can be written as,

LY ukawa =
1√
2

(h+ v)(yijd d̄iLdjR + yiju ūiLujR + yijl l̄iLljR) + h.c.

The mass matrix of the fermions in flavor basis are then given by,

mij
f =

1√
2
yijf v, with, f = d, u and l,

which can be diagonalized via biunitary transformations with 3×3 unitary matrices

V f
L and V f

R as,

mdiag
f =

1√
2

(V f
L )kiy

ij
f (V f

R )†jkv =
1√
2
ydiagf v,

and the mass eigenstates of quarks and leptons are defined as,

d′iL = (V d
L )ijdjL, d′iR = (V d

R)ijdjR, (1.13)

u′iL = (V u
L )ijujL, u′iR = (V u

R )ijujR, (1.14)

l′iL = (V l
L)ijljL, l′iR = (V l

R)ijljR. (1.15)

It the absence of right-handed neutrinos in the leptonic sector, the flavor and mass

bases are the same for the leptons in the SM. But for the quark sector, both bases are

different. One can get from eqns. 1.13 and 1.14, that the quarks of different flavors

mix to form the mass eigenstates which take part in flavor changing charged current

interactions. Using eqn. 1.3, these interactions can be written as the following
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Lagrangian,

− g2√
2

(ū′L c̄′L t̄′L)γµW+
µ VCKM(d′L s

′
L b
′
L)T + h.c.,

where VCKM = V u
L V

d†
L , stands for the Cabibbo-Kobayashi-Maskawa matrix (CKM) [8,

9]. It is parameterized by three mixing angles and a phase and is given by [10],

VCKM =


|Vud| = 0.97425± 0.00022 |Vus| = 0.2253± 0.0008 |Vub| = 0.00413± 0.00049

|Vcd| = 0.225± 0.008 |Vcs| = 0.986± 0.016 |Vcb| = 0.0411± 0.0013

|Vtd| = 0.0084± 0.0006 |Vts| = 0.0400± 0.0027 |Vtb| = 1.021± 0.032

. (1.16)

However, the SM does not predict any flavor changing neutral current (FCNC) at

the tree level.

1.2 Shortcomings of the SM

Although the SM has been successfully tested at the permill level at LEP, there

exist various kinds of theoretical inconsistencies as well as intriguing experimental

observations that call for the introduction of new physics beyond the SM. A few of

these shortcomings will be briefly discussed in the following subsections.

1.2.1 The Higgs mass hierarchy problem

The mass of the Higgs boson is 125.7 ± 0.3 GeV, as measured at the LHC. The

SM cannot predict the Higgs mass, but relates it as m2
h = 2λv2. If the radiative

corrections are included for the Higgs mass, then the following problem occurs. The

one-loop radiative correction to the Higgs boson mass arising from its self-interaction

and couplings with gauge boson and fermions is given by,

δm2
h =

Λ2
cut

16π2v2
(3m2

h + 3m2
Z + 6m2

W − 12m2
t ) + logarithmic divergences

+finite terms.

If the cut-off scale is set as Λcut = MPl then the Higgs mass scale is naturally

pushed to the Planck scale. This is known as hierarchy problem for the Higgs

mass. In order to bring down mh to the observed scale mEW , a severe fine-tuning

between the quadratic radiative corrections and the bare mass (at least one part in
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1034) is required. This level of fine-tuning is deemed unnatural. The new physics

beyond the SM, for example, supersymmetry, is needed to solve this problem. In

supersymmetric theories, the radiative correction to the Higgs mass arising from SM

gauge bosons and fermions are canceled with the correction terms generated by their

supersymmetric degrees of freedom. However, so far no experiment could confirm

the presence of these superpartners of the known particles.

1.2.2 Flavor Problems

Several unresolved issues are associated with the fermionic sector, termed as flavor

problems. There is no explanation of why the SM includes only three generations

of fermions. In the SM, by construction, the neutrinos are massless as it does not

include right-handed neutrinos. But from the neutrino oscillation experiments we

got convinced that at least two neutrinos have non-zero mass. These experiments

give information about the mass squared differences between neutrino eigenstates,

although the individual values of the masses are not known. From cosmological

measurements, it has been shown that the sum of the three neutrino masses is less

than 0.1 eV [10]. As neutrino masses are tiny compared to other fermion masses,

it is believed that the mechanism behind neutrino mass generation is different from

the other fermions which obtain mass from the Higgs mechanism. The most pop-

ular natural explanation of small neutrino masses is via the see-saw mechanism.

There are broadly three classes of such models namely type-I, type-II, and type-III

see-saw models requiring involvements of right-handed neutrinos, a SU(2)L triplet

scalar with hypercharge Y = 2 or SU(2)L hyperchargeless triplet fermions respec-

tively [11]. Neutrinos can also get mass from non-seesaw mechanisms namely the

Zee mechanism [12], supersymmetry with R-parity violation etc.

Fermions have masses in a range of eleven orders of magnitude, from the neutrino

mass . 0.1 eV, up to the top quark mass ∼ 173 GeV. A new dynamical mechanism,
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e.g., a theory with horizontal symmetries is needed to explain the fermion mass

hierarchy. The SM does not have an answer to the origin of the structure of the

Yukawa matrices and therefore to that of the CKM matrix of eqn. 1.16. Also, as in

the SM the neutrinos are massless, the neutrino flavor mixing remains unexplained.

The mixing angles of the quarks are small (θ12 ∼ 13◦, θ23 ∼ 2.4◦ and θ13 ∼ 0.2◦) [10],

whereas the mixing angles in the neutrino sector are ∼ 32◦, ∼ 45◦ and ∼ 9◦ respec-

tively [10]. There is no underlying mechanism in the SM to reproduce the observed

fermion masses and mixing pattern.

1.2.3 Stability of the electroweak vacuum

With the revelation of the Higgs on 2012 at LHC, the existence of all SM particles

have been confirmed and the values of all the parameters in the Lagrangian are

known at the electroweak scale. These data indicate that if the validity of the SM

is extended to MPl, a second, deeper minimum is located near the Planck scale

such that, the electroweak vacuum is metastable, i.e., the transition lifetime of the

electroweak vacuum to the deeper minimum is finite τ ∼ 10300 years [13–15].

As it was shown in Refs. [16–19] that if the electroweak vacuum is metastable then

Higgs cannot play the role of inflaton. Extra new degrees of freedom are needed

with the SM to explain the inflation of the Universe. However, in this thesis, the

issues related to inflation will not be addressed. New physics beyond the SM can

alter the Higgs potential so that it enhances its stability.

1.2.4 Gravity

Massive particles experience gravitational interactions. Gravity is expected to domi-

nate over all other fundamental forces at energy scale &MPl. However, construction

of models based on quantum gravity theories is outside the scope of the SM.
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1.2.5 Gauge Unification

In the electromagnetism, E and B are unified, as with a single electric charge one

can explain any electromagnetic phenomenon. Hence from a theoretical standpoint,

a theory which can illustrate unification of all the fundamental forces at higher

energies would be an appealing one. The gauge coupling constants g1, g2 and g3

corresponding to the three gauge groups in the SM, namely U(1)Y , SU(2)L and

SU(3)C , assume different values at the electroweak scale. Assuming SM to be valid

all the way to the Planck scale, one can evolve these coupling constants using RG

equations. Given the accuracy involved in measured values of the SM parameters

at the electroweak scale, g1, g2 and g3 do not merge to a single coupling constant at

any energy before MPl, which is desirable to attain gauge unification. One can take

refuge to grand unified theories based on a single gauge group like SU(5) or SO(10)

to realize this dream.

1.2.6 Dark matter

Various kinds of astrophysical observations, e.g., anomalies in the galactic rotation

curves, gravitational lensing effects in Bullet cluster etc., have indicated the exis-

tence of dark matter in the Universe. Dark matter interacts gravitationally. It has

no electric charge, so we cannot observe it through its interactions with photons.

The satellite based experiments such as Wilkinson Microwave Anisotropy Probe

(WMAP) [20] and Planck [21] have measured the Cosmic Microwave Background

Radiation (CMBR) of the Universe with unprecedented accuracy and suggest that

the Universe consists of about 4% ordinary matter, 27% dark matter and the rest

69% is a mysterious unknown energy called dark energy which is thought to be the

cause of accelerated expansion of the Universe. The SM fails to provide a viable

dark matter candidate. To explain the observed presence of the dark matter, the

presence of new physics beyond the SM is required. A popular scheme in this re-
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gard is to introduce ‘weakly interacting massive particles’ (WIMP) protected by a

discrete symmetry that ensures stability of these particles. The issues related to the

dark matter in various extended scalar sectors will be discussed in Chapter 6.

1.2.7 Baryon-antibaryon asymmetry

Astrophysical evidences have indicated that our galaxy and its neighborhood are

predominantly made of matter. The asymmetry is defined as the ratio of the differ-

ence of the baryon and anti-baryon number densities to the photon number densities

in the Universe. According to recent data from WMAP[20] the asymmetry is given

by,

η = (6.19± 0.14)× 10−10.

To produce this baryon asymmetry, three ingredients are necessary as outlined by

Sakharov conditions [23], such as baryon number violation, C and CP violation, and

departure from thermal equilibrium.

Although the SM has the required ingredients, it cannot produce large enough

baryon-to-photon ratio (η) as observed by the experiments. The new physics be-

yond the SM is required as one needs additional sources of CP violation. Several

mechanisms have been proposed to explain the baryon asymmetry, e.g., electroweak

baryogenesis, leptogenesis and GUT baryogenesis etc.

1.2.8 Recent LHC data and scope for an extended scalar
sector

LHC-I, with 20 fb−1 data in its
√
s = 8 TeV run, has confirmed discovery of the

Higgs boson of mass Mh ∼ 125 GeV. The Higgs signal strengths are shown in

the Table 1.2 as measured from ATLAS and CMS collaborations at the LHC. The

measured properties of this Higgs boson are consistent with the minimal choice of

the scalar sector as in the SM. But the data still comfortably allow an extended

scalar sector, which, in turn, can accommodate a more elaborate mechanism for
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Signal strength, µχχ = Γexp(h→χχ)

ΓSM (h→χχ)
ATLAS CMS

µτ̄ τ 1.41± 0.40 0.89± 0.3

µWW ∗ 1.23± 0.22 0.91± 0.23

µZZ∗ 1.5± 0.35 1.05± 0.31

µγγ 1.15± 0.27 1.12± 0.23

Table 1.2: The observed signal strengths and uncertainties for different Higgs boson
decay channels [24] for mass, Mh ∼ 125 GeV. The data have been taken for proton-
proton collision of center-of-mass energies,

√
s = 7, 8 TeV with luminosity, 20

fb−1. W ∗, Z∗ decay to fermions. Γexp(h → χχ) is the decay width as observed in
the experiments and ΓSM(h→ χχ) is the same predicted by the SM.

EWSB. It is also noted that an extended scalar sector may not always participate in

the electroweak symmetry breaking, e.g., as in the case of an extended inert scalar

sector protected by a discrete symmetry.

Recently the ATLAS and CMS collaborations have analyzed the
√
s = 13 TeV data

and announced the possible presence of a scalar resonance around 750 GeV [25].

The significances of the signals are 3.9σ and 3.4σ in the respective experiments.

This indication has fuelled speculations about an extended scalar sector.

In the following section, the particle content of the extended scalar sectors and the

constraints on these new models will be discussed.

1.3 Extended scalar sector

In this thesis, various kinds of extended scalar sectors containing an additional

SU(2)L singlet, doublet or triplet with hypercharges Y = 0, 2, have been considered

along with the SM doublet. The main purpose for writing this thesis is to explore

characteristics of these new scalars using the weak vector boson scattering processes

and from the (meta)stability of the scalar potential.

Each extended scalar sector can consist of different SU(2)L multiplets with different

isospin, hypercharge, etc. So the structure of the scalar potential is changes in
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different extended scalar sectors. The SM doublet φ, given in eqn. 1.8, with isospin

I = 1/2 and hypercharge Y = 1, consists of two singly-charged, a neutral CP -

even and a neutral CP -odd scalar fields respectively. Depending on the isospin

Ii and hypercharge Yi, other scalar multiplets contain different numbers of scalar

fields with different charges. For example, a real triplet scalar with hypercharge

Y = 0 consists of a pair of singly-charged fields and a CP -even neutral scalar field,

whereas a complex triplet scalar with hypercharge Y = 2, has an extra doubly-

charged fields, and a CP -odd neutral scalar field. After the electroweak symmetry

breaking, the fields of the SM scalar doublet mix with the new fields of extra scalar

sector. In the extended scalar sector, one of the linear combinations of the CP -even

states is identified as the observed Higgs, whereas the other combinations become

new physical CP -even scalars. Similarly, one of the combinations of singly-charged

states forms a charged Goldstone boson. This is eaten by the electroweak charged

gauge boson W which becomes massive. The other combinations become new singly-

charged physical scalars. Also, a combination of CP -odd scalar states becomes the

component of the Z boson and the other combinations of these become physical

pseudoscalars. But the fields with electric charge quantum number more than one,

remain as physical scalar fields. These scalar fields can have direct couplings with the

SM particles, or these may get generated after the electroweak symmetry breaking.

If the extra scalar fields are odd under a discrete Z2 symmetry, then the SM particles

cannot couple with odd number of the new scalar fields. This symmetry prevents

the extra scalars to acquire VEVs, and hence these extra scalars do not mix with

the fields of the SM scalar doublet. In this case, the electroweak symmetry breaking

is fully driven by the SM Higgs doublet. The charged and CP -odd components

of the SM doublet remain as Goldstone bosons and CP -even neutral component is

identified with the observed Higgs.
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1.3.1 Constraints on the extended scalar sectors

From experimental and theoretical considerations such as the electroweak precision

experiments, absolute vacuum stability of the scalar potential and unitarity of the

scattering matrix, one can put constraints on parameter space of the extended scalar

sectors. In the following sections, some of these constraints are discussed.

1.3.1.1 The electroweak precision constraints

The electroweak precision constraints on the physics parameter spaces come from

the precise measurement of the neutral current and charged interaction at the Large

Electron–Positron Collider [26] and the Stanford Linear Collider [27], etc. The

relative strength of the neutral and charge currents denoted by ρ can be expressed

as,

ρ =
M2

W

M2
Z cos θ2

W

.

In the SM, at tree-level, the value of the ρ parameter is equal to 1. If an extra

scalar multiplet is added along with the SM scalar doublet, then the ρ parameter

may be modified at the tree-level. These modifications are different for different

types of multiplets. If the extra scalar is odd under any discrete symmetry under

which the SM particles are even, then ρ parameter remains the same as in the SM.

Note that, it will differ when radiative corrections are included into the vector boson

self-energies. Let us now concentrate at tree-level only.

It was shown in the Ref. [28], that the ρ parameter can be easily calculable for

any number of scalar multiplets present in the model. Let the vacuum expectation

values of scalars are vi, where i is the number of multiplets, with the SU(2)L isospin

Ii and hypercharge Yi. Masses of the gauge bosons corresponding to the neutral and

charge current processes are expressed as,

M2
Z =

1

4
(g2

1 + g2
2)
∑
i

|Yi|2v2
i ,
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M2
W± =

1

8
g2

2

∑
i

{4Ii(Ii + 1)− |Yi|2}v2
i .

In terms of vi, Ii and Yi, the ρ parameter can be written as,

ρ =

∑
i{4Ii(Ii + 1)− |Yi|2}v2

i

2
∑

i |Yi|2v2
i

.

In the singlet scalar extension of the SM, both isospin (I) and hypercharge (Y )

of the extra scalar are zero. So there is no modification of the masses of gauge

bosons (W±, Z) and the same is true for ρ at the tree-level. Although, in the

doublet extension, with hypercharge 1, the masses of the vector bosons get modified

as M2
Z = 1

4
(g2

1 + g2
2)(v2

1 + v2
2) and M2

W = 1
4
g2

2(v2
1 + v2

2). Then the ρ parameter for

this model does not deviate from the SM at the tree-level. However, for the triplet

extension of the SM, the ρ parameter can be written as,

ρ(Y = 0) =
v2

1 + 2v2
2

v2
1

,

ρ(Y = 2) =
v2

1 + 2v2
2

v2
1 + 4v2

2

.

The recent experimental fit of ρ parameter is 1.0004±0.00024 [10]. This constraints

the vacuum expectation value v2 of the extra triplet scalar to be less than 4 GeV [29].

Although in an extended scalar sector, the ρ parameter may or may not get addi-

tional contribution in comparison to the SM, at loop level it is not immune to get

corrected. The new physics effects can alter the vacuum polarization of the gauge

bosons. These effects are encoded in the so-called Peskin–Takeuchi [30] parameters

and are denoted by S, T , and U . Alternatively these can also be expressed in terms

of Altarelli-Barbieri [31] parameters ε1, ε2 and ε3. The correction to the ρ param-

eter is related with T as, αT = ∆ρ, where α is the fine structure constant. The

generic expressions of these observables for the extended scalar sectors are given in

Ref. [32]. These electroweak precision observables [33] are used in this thesis to put

constraints on parameter space of new physics models.
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1.3.1.2 Stability of the electroweak vacuum

The extended scalar sectors may have more than one scalar field in the potential.

Due to the complicated structures of such scalar potentials, it is difficult to adjudge

the stability of the minimum. A scalar potential is said to be bounded from below,

if and only if the potential does not become negative infinity along any direction of

the field space.

To find the boundedness of the potential one has to use the copositiviy criteria of

a symmetric matrix. A symmetric matrix M is copositive if the quadratic form

χTM χ > 0 for all vector χ > 0, The notation χ > 0 means that all the components

of the vector χ are greater than zero. These criteria guarantee that the potential

never becomes negative infinity and the vacuum is absolutely stable.

Let us consider a scalar potential,

V (φi) =
N∑
i,j

m2
ijφiφj +

N∑
i,j,k,l

λijklφiφjφkφl.

For high field values, the first term can be neglected. The coefficient of the terms of

the potential which contains odd number of fields, are taken to be zero. So, one can

write the potential in biquadratic in fields and can apply the copositivity criteria to

find the conditions for the boundedness of the scalar potential. The scalar potential

is given by,

V (φi) =
N∑
i,j

λij|φi|2|φj|2.

This potential can be written as in the form of a symmetric matrix χTM χ, where

χ consists of |φi|2 and M contains λij, here λij is symmetric under exchange of the

indices. The scalar potential is bounded from below if [34],

λii > 0, λij +
√
λiiλjj > 0 for i, j = 1, 2.

However, the copositivity criteria are no longer valid when the scalar potential be-

come negative and has extra new minima along any direction of the field space. In
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this case a minimum located at low field values is said to be metastable if the tran-

sition time from this minimum to any other minima of the potential is greater than

the lifetime of the Universe, otherwise, it is unstable. The modification of copositiv-

ity criteria with metastable electroweak vacuum for the extended scalar sector will

be discussed in Chapter 6.

1.3.1.3 Unitarity of the scattering matrix

Unitarity bound on the extended scalar sectors can be calculated from the scattering-

matrix of different processes. The technique was developed by Benjamin W. Lee,

C. Quigg, and H. B. Thacker for the SM and it can also be applied to various

kinds of extended scalar sectors. The scattering-matrix for the extended scalar

sector consists of different scalar-scalar, gauge boson-gauge boson, gauge boson-

scalar scattering amplitudes. Using the Born approximation for partial waves, the

scattering cross-section for any process can be written as,

σ =
16π

s

∞∑
l

(2l + 1)|al(s)|2,

where s = 4E2
CM is the Mandelstam variable, where ECM is the center of mass

energy of the incoming particles. al is the partial wave coefficients corresponding

to specific angular momentum values l. This leads to the following unitarity con-

straint, Re(al) <
1
2
. At high energy the dominant contribution to the al, i.e., to the

amplitude of the two-body scattering processes a, b→ c, d comes from the diagram

involving the quartic couplings. Far away from the resonance, the other contribu-

tions to the amplitude from the scalar mediated s-, t-, and u-channel processes are

negligibly small. Also in the high energy limit, the amplitude of scattering process

involving longitudinal gauge bosons can be approximated by the scalar amplitude in

which gauge bosons are replaced by their corresponding Goldstone bosons. This is

known as equivalence theorem [35]. So to test unitarity of the models with extended

scalar sectors, one can construct the scattering-matrix which consists of only the
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quartic couplings at very high energies. Unitary constraints demand that the eigen-

values of the scattering-matrix should be less than 8π. The detailed calculations will

be shown for Higgs triplet model with a hyperchargeless scalar triplet in Chapter 3.

From the above discussions in Sections 1.3.1.2 and 1.3.1.3, it is clear that the require-

ment of stability of the scalar potential gives a lower bound on the quartic coupling,

whereas unitarity of scattering-matrix gives the upper bound on the quartic coupling

of the extended scalar sector.

These are some of the generic constraints on the extended scalar sector beyond

the SM. Additional bounds on such new physics models can be put from other

phenomenological studies of dark matter, neutrino mass etc. The parameter spaces

of these new models are constrained from non-observation of these scalar signals at

the direct search experiments at high-energetic colliders like LEP, LHC, etc. The

direct search bound on the 2HDM, HTM(Y = 0), and HTM(Y = 2) will be discussed

in the Chapter 3.

1.4 Organization of the Thesis

The organization of the thesis is as follows:

This chapter starts with a brief introduction to the standard model of particle

physics. After that, the deficiencies of the SM have been discussed from the theoret-

ical as well as experimental points of view. Generic bounds on the extended scalar

sectors from the stability of the electroweak vacuum, unitarity of the scattering ma-

trix and the electroweak precision experiments have been reviewed. Compositions

of the physical and unphysical scalar fields in the extended scalar sectors have also

been discussed.

An extra scalar sector protected by a discrete symmetry Z2 can solve the puzzle of

nature of dark matter in the Universe. In the second Chapter, a brief summary of
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the indications of presence of the dark matter from the astrophysical observations

have been discussed. The calculation of relic density of the dark matter has been

reviewed. The direct and indirect detection of the dark matter in experiments has

also been mentioned in brief.

In the third Chapter, various kinds of extended scalar sector such as singlet exten-

sion of the SM, type-II two Higgs doublet model and Higgs triplet model with two

different hypercharges Y = 0 and 2, have been reviewed. After electroweak symme-

try breaking, the masses of all physical particles have been calculated in these new

models. In the presence of a new extended scalar sector, the modified couplings of

the Higgs-like scalar to other SM particles have been shown in terms of the mixing

angles of the new extended scalar fields to the fields of SM doublet. The previously

measured generic bounds on the extended scalar sectors have been applied on these

models.

The extended scalar sector can be probed through longitudinal vector gauge boson

scattering and it has been discussed in the fourth Chapter. The generic expressions

of the longitudinal vector gauge boson scattering amplitude of the processes like

(a) W±
LW

∓
L → W±

LW
∓
L , (b) W±

LW
±
L → W±

LW
±
L , (c) W±

LW
∓
L → ZLZL, (d) W±

L ZL →
W±
L ZL, and (e) ZLZL → ZLZL have been presented in the context of extended

scalar sectors such as type-II two Higgs doublet model, and Higgs triplet models

with Y = 0 and Y = 2 scalar triplets [29]. These scattering processes can be useful

to distinguish these extended scalar sectors from the SM as well as between one

another.

In the fifth Chapter, the stability of the electroweak vacuum of the Higgs scalar

potential in the SM has been reviewed. It has been shown how the Higgs scalar

potential evolves with the running energy from the electroweak scale to the Planck

scale MPl. In this study, the Higgs scalar potential [13] up to two-loop quantum

corrections is used and it has been improved by three-loop renormalization group
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running of the coupling parameters. As a part of this thesis work a computer code

has been developed to analyze a scalar potential at higher energies. In the SM, the

formation of the second, deeper minimum near the Planck scale has been discussed.

The detailed calculation of tunneling probability of the electroweak minimum to

the deeper minimum around the Planck scale is also provided. It has been shown

that the present measured values of the SM parameters imply that the stability of

electroweak minimum is excluded at ∼ 3σ.

As the SM is extended by additional scalar multiplets, the stability of the electroweak

minimum of the Higgs potential gets improved. The extended scalar sectors with a

discrete symmetry Z2 can also provide a viable dark matter candidate. In the sixth

Chapter, the effective Higgs potential has been calculated to explore the stability of

the electroweak vacuum in these extended scalar sectors. The contributions to the

effective Higgs potential from these new physics models have been taken at one-loop

level only. In this scenario, the stability of the electroweak minimum of the new

effective Higgs potential in the different extensions of the scalar sector of the SM,

namely with a real singlet [15], inert doublet [36] or an inert triplet with hypercharge

Y = 0 [37], has been explored. In these extended sectors, parameter spaces have

been identified that correspond to the stable and metastable electroweak vacuum

and also satisfy the relic density constraints on dark matter from Planck experiment.

The modified stability conditions have also been shown when electroweak vacuum

is metastable.

The last Chapter provides the summary and the conclusions of this thesis work.
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Chapter 2

Dark matter: Relic Density,
Direct and Indirect detections

2.1 Introduction

The last few years have seen a revolution in cosmology and astrophysics. It is

confirmed that the Universe is filled with not only dark matter (DM) but also the

even more enigmatic dark energy.

The analysis of observational data of the satellite-based experiments, Wilkinson Mi-

crowave Anisotropy Probe (WMAP) [20] and Planck [21] that look for such very tiny

anisotropies in Cosmic Microwave Background Radiation (CMBR) suggest that the

total mass-energy of the Universe contains 69% dark energy, 27% dark matter and

4% ordinary matter. The nature of these two dominant components of the Universe

is currently one of the biggest mysteries in the modern particle and astrophysics.

Dark matter is a hypothetical type of matter, first proposed by Fritz Zwicky in 1933.

Dark matter is mysterious and invisible in nature as it can neither be seen by our

eyes nor observed by any telescope. Dark matter is electrically neutral – it neither

emits nor absorbs any electromagnetic radiation. If the dark matter would have

electromagnetic and strong interactions with normal matter, it would have formed

isotopes [22] of estimated abundance n > 10−10 nH , which contradicts the present

25
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upper limit of hydrogen isotopes abundance nH . The dark matter has mass so it

can interact with the ordinary matter through the gravitational interaction.

There are many convincing evidences about the existence of the dark matter in the

Universe. A few of these will be discussed in the next section.

2.2 Evidence of Dark Matter

There are several observations to support the argument that the Universe contains

a large amount of matter. In the year 1933, Fritz Zwicky was the first astronomer

to propose the existence of dark matter. He was studying a very large cluster of

galaxies nearest to the Earth: the Coma cluster. He used the Virial theorem, an

equation which relates the average kinetic energy of a system to its total potential

energy, to determine the gravitational mass of the cluster. He measured the total

mass of the luminous object (stars and gas) in the galaxies to find that the mass

of the luminous matter was not enough to keep the cluster bound, and was several

times smaller than the inferred gravitational mass. Zwicky concluded that there

must be non-luminous matter present in the galaxies.

2.2.1 Galactic Rotation Curves

Similar discrepancy was observed in galactic rotation curves, which is the strongest

evidence of the presence of the dark matter in the galaxies. In the 1970s, Kent Ford

and Vera Rubin discovered that rotation curves of galaxies are flat (see Fig. 2.1).

For the analysis of a spiral galaxy, one measures the rotational velocity v(r) of stars,

gas etc. in the galaxy as a function of their distance r from the galactic center.

The spiral galaxy has a dense central region and the density of the visible mass

is reduced as one goes away from the central region. From standard Newtonian

dynamics, one would expect a Keplerian decline of the rotation curve as one goes

away from the dense central region of the galaxy. The observations show that instead

of Keplerian decline the velocities are rather constant after a certain distance r from
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the galactic center as in Fig. 2.1. The flat rotation curves have now been observed

for almost all galaxies, including our galaxy, the Milky Way. If the galaxy contains

far more unknown mass than the luminous object, then this flat rotation curve can

be explained. It was found that more than 95% of the mass of galaxies consists of

unknown dark matter.

Figure 2.1: Galactic rotation curve for NGC 6503 dwarf spiral galaxy. Image credit:
Katherine Freese [38].

2.2.2 Gravitational Lensing and Bullet Cluster

The bending of light while it passes through the vicinity of a gravitating mass gives

rise to the lensing effect. This phenomenon is known as gravitational lensing. If a

luminous object is present in the background of the gravitating mass at a suitable

distance, then the lensing effect will create a distorted or multiple images. The

observance of such lensing effects in the galaxies by unseen matter indicates the

presence of dark matter. The huge amount of unseen dark matter present in the

galaxies will produce ring images (Einstein’s rings) through strong gravitational

lensing effect. Weak lensing by smaller astronomical objects such as planets, stars,

will produce distorted images. From the lensing effect, the unseen dark matter mass

present in the galaxies can be estimated using the lens equation of Einstein’s general
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(a) (b)

Figure 2.2: (a) the left panel is a X-ray satellite Chandra image of the cluster of the
visible matter and (b) The right panel shows a direct image of the cluster obtained
with the 6.5-m Magellan telescope in the Las Campanas Observatory. The contour
lines are drown for the images produces due to the gravitational lensing by the dark
matter in the galaxies. Image credit: D. Clowe et al. [39].

theory of relativity. Weak and strong gravitational lensing phenomena have been

used for discovering one of the most prolific evidence of dark matter in the “Bullet

Cluster” in the cluster 1E0657-558. The bullet cluster was created due the collisions

of two giant galaxies in the Universe. When the smaller galaxy passed through the

core of the larger galaxy, the baryonic mass distribution of the smaller one suffered

distortion in shape due to the enormity of the collision and it took the shape of a

bullet. The X-ray analyses reveal the baryonic mass distribution in the two colliding

clusters. The X-ray image of baryonic distributions are shown in Fig. 2.2(a). The

colors indicate the X-ray temperature of the plasma: blue is coolest and white is

hottest. Direct image of the cluster obtained with the 6.5-m Magellan telescope at

the Las Campanas Observatory is shown in Fig. 2.2(b). The green contour line in

Fig. 2.2(a) and (b) form due to the gravitational lensing of unknown matter (dark
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matter) presence in the galaxies. One can see from these figures that the dominant

population of the baryonic mass is in X-ray gas which is well separated from the

respective dark matter halo of the cluster. This analysis indicates the dark matter

halos in the galaxies, when passed through each other, remain unperturbed and

undistorted. The phenomenon of the “Bullet Cluster” provides an observational

evidence of the existence of dark matter in the galaxies and indicates that the dark

matter is almost collisionless.

2.2.3 The Cosmic Microwave Background

Figure 2.3: The figure shows temperature-temperature (TT) angular power spectrum
of CMBR from the nine years WMAP data. Image credit: C. L. Bennett et al.
[WMAP Collaboration] [20].

The Cosmic Microwave Background Radiation (CMBR) provides a snapshot of the

oldest light after the ‘last scattering’ in our Universe. The last scattering took place

when the Universe was just 380,000 years old. Hence, the CMBR is the earliest

photograph of our Universe. The fluctuations in CMBR provide the information of

the structure formations of the Universe. The anisotropies in the CMBR are capa-

ble of telling us the geometry (or curvature), the baryon content, the dark matter

and dark energy content of the Universe, the value of the Hubble constant, whether
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inflation occurred in the early Universe, etc. In Fig. 2.3, the correlation function Cl

of temperature anisotropy of CMBR, plotted with respect to multipoles (l) shows

multiple peak at different l, where θ = 2π
l

is the angle between two directions. This

temperature anisotropy is useful to extract the physical properties of our Universe.

The angular scale corresponding to the first peak in Fig. 2.3 provides the precise

measurement of the curvature of the Universe. The third peak contains the infor-

mation about the dark matter density in the Universe. From the ratio of the odd

peaks to the even peaks, one can get information about the baryon density in the

Universe.

2.3 Components of Dark Matter

So far, astrophysical and cosmological data can only tell us how much dark matter is

there in the Universe, i.e., the total mass density of the dark matter and the fact that

it does not interact electromagnetically and strongly. Although we are convinced

that dark matter really exists, there is still no consensus on what it is composed of.

The possibilities include the dense baryonic matter and the non-baryonic matter.

There are baryonic components of dark matter like Massive Compact Halo Objects

(MACHOs): condensed objects such as black holes, white dwarfs, very faint stars,

or non-luminous objects like planets. Using the microlensing of the light, the MA-

CHO [40] and the EROS [41] collaborations, concluded that the MACHOs could

add a few percent to the known mass discrepancy in the Galaxy halo, observed in

galactic rotation curves. So if there is a baryonic component to dark matter, then

it has to be quite small.

The non-baryonic dark matter particles can be grouped into three categories on

the basis of their velocities, namely hot dark matter (HDM), warm dark matter

(WDM), and cold dark matter (CDM). The hot dark matter mass is very small

and moves almost with the speed of the light. The neutrinos can be considered
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as the best candidate for the hot dark matter. There are several reasons that the

neutrino cannot be considered as a viable dark matter candidate which alone fulfill

the relic abundance of the Universe. There is an upper limit on neutrino mass from

tritium beta decay experiments mν < 2 eV [42]. Combined with the data from

the neutrino oscillation experiments, one can find the contributions of neutrino to

the matter density is Ωνh
2 < 0.064 [43] in the Universe. This is not enough to

satisfy the total relic abundance of the Universe. For the neutrinos to dominate the

halo of dwarf galaxies, one need to pack them so much that it would violate Pauli

exclusion principle. The neutrino mass should be mν > 500 eV [44], to avoid this

problem. The neutrinos are so light that they are moving at the speed of light, so it

is very difficult to form gravitationally bound structures from fast moving objects.

The velocity of the objects will always be far above the local escape velocities.

If all dark matter were neutrinos, then it would take an enormous time to form

gravitationally bound structures. So neutrino cannot be a prominent dark matter

candidate. The speed of warm dark matter, e,g., sterile neutrino is rather small

compared with the speed of the light. The current data require a mass range of

warm dark matter to be in between 0.3 keV and 3 keV. The warm dark matter is

also a dark matter candidate, however, alone it is unable to explain the formation of

large-scale structure. The cold dark matter moves very slowly. Currently, all viable

models of structure formation indicate that the Universe is dominated by cold dark

matter. It is very difficult to determine the constituents of CDM. The candidates fall

roughly into two categories. (a) Axions were proposed in the late 1970s to solve the

strong-CP problem in quantum chromodynamics (QCD). The Axions are favored

as dark matter candidates as they interact very weakly. The best example of a

nonthermal dark matter candidate is the Axion. If it was produced thermally, then

it cannot fulfill the relic abundance of the Universe. Although the Axions are of

very light mass ∼ O(10−5) eV, however, they behave like a cold dark matter. This
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was shown by authors of Ref. [45] using the proper time averaging of the perturbed

oscillating scalar (Axion) field. (b) Weakly Interacting Massive Particle (WIMP)

is another viable dark matter candidate. It is considered that these particles were

created thermally in the early Universe.

It was observed that the Universe on large scales is not filled uniformly with matter,

instead, we have large empty spaces (voids) separated by narrow filaments (gravita-

tional interactions) and clumps of matter. This clumpy structure requires that the

particles were moving slowly at the time the structure formed. This hints towards

a fairly massive dark matter particle. The WIMP is the best viable candidate for

the dark matter. If the WIMPs exist, mathematical modeling shows there must

be about five times more of these than normal matter, which coincides with the

abundance of dark matter that we observe in the Universe. The annihilation cross-

section of the WIMP dark matter provides the information that they interact with

one another or the other standard particles via a force similar in strength to the

weak nuclear force. This is known as the “WIMP miracle”. Also it can explain the

gamma-ray excess observed at Fermi LAT [46], positron excess observed at AMS-

02 [47] and PAMELA [48]. These are the motivations to adopt the WIMP as the

leading candidate for the cosmological dark matter.

There is also another kind of cold dark matter candidate which may fulfill the relic

abundance of the Universe, for example, the strongly interacting massive particle

(SIMP). These particles interact more strongly with each other. The model only

works if SIMPs interact very weakly with ordinary matter.

Only WIMP dark matter has been considered in this thesis. Hence, in the following

sections, the relic density calculation of the WIMPs will be addressed and the direct

and indirect detection of dark matter will be briefly reviewed.
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2.4 Relic Density of Dark Matter

In the early Universe, WIMPs were created and they were in thermal equilibrium

with photons and other particles at a very high temperature. As the expansion

continued, the temperature of the Universe kept falling down, so that the lighter

particles did not have sufficient kinetic energy to produce the heavier particles. At

some point, the massive particle density would drop low enough, such that, the

probability of one WIMP finding another became small. These kinds of situation

of particles are called “freeze-out”. The density of a specific particle at the time of

freeze-out is known as the “relic-density” of this particle since its abundance remains

same till today. One can calculate the exact freeze-out temperature of the particles

by equating the reaction rate Γ = nσv and the rate of expansion of the Universe,

i.e., the Hubble rate.

The reaction rate of particles per unit volume is given by,

Γ = n 〈σv〉 . (2.1)

This is one of the most important quantities which is used to calculate the relic

abundance of dark matter, where 〈σv〉 is the thermally averaged annihilation cross-

section and n is the number density of the dark matter. In radiation dominated

Universe, the expansion rate is given by,

H =
ȧ

a
= g1/2

∗
T 2

MPl

(
π2

90

)1/2

, (2.2)

where g∗ is the effective degrees of freedom. At the “freeze-out” temperature Tf the

annihilation stopped, i.e., the expansion rate become exactly equal to the annihila-

tion rate. Comparing the eqns. 2.1 and 2.2, we get,

n(Tf ) ' g1/2
∗

T 2
f

〈σv〉MPl

.

Using the Boltzmann equation, one can calculate the number density n and freeze-

out temperature of WIMP dark matter in the present Universe. In this case, one

has to take into account (1) the rate of expansion of the Universe, (2) annihilation
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and co-annihilation of the dark matter particles, and (3) decay of the dark matter

particles.
dn

dt
= −3Hn+ 〈σv〉 (n2 − (neq)2). (2.3)

One can find the equilibrium number density of the dark matter using the classical

Maxwell-Boltzmann distributions. For non-relativistic case, i.e, when temperature

of the Universe is less than the mass of the dark matter, the equilibrium number

density can be written as,

neq =

∫
d3p

(2π)3
e−E/T , with E = MDM +

P2
DM

2MDM

.

= e−x
M3

DM

(2πx)3/2

where x = MDM

T
and PDM is the momentum of dark matter.

In the radiation dominated case, H = 1
2t

, so using eqn. 2.2 we can get dt as,

dt =
xdx

H
.

One can write the eqn. 2.3 as,

dY

dx
= −(1.32g

1/2
∗ MPlMDM)

x2
〈σv〉 (Y 2 − Y 2

eq), (2.4)

where Y is the yield of WIMPs and it is defined as the ratio of number density with

the entropy density at the temperature T : Y = n
s
. For dark matter mass MDM , the

entropy density can be written as s = g∗(
MDM

x
)3
(

2π2

45

)1/2

, and the yield at time of

thermal equilibrium is Yeq = neq

s
= 0.145 e−xx3/2.

One can further simplify the eqn. 2.4 as,
dz

dx
= − 1

x2
(z2 − z2

eq), (2.5)

where z = (1.32g
1/2
∗ MPlMDM) 〈σv〉Y and zeq = 1.914 g

1/2
∗ MPlMDM 〈σv〉 e−xx3/2.

Y0 ≡ Y (T = T0) or z0 ≡ z(T = T0) can be found by integrating the above equation

from x = 0 (i.e., T =∞) to x = x0

(
≡ MDM

T0

)
, where T = T0 is temperature of the

Universe today.



2.5. Direct Detections of Dark Matter 35

The relic abundance of dark matter in the present Universe can be written as,

Ωh2 =
MDMY0

ρc/s0

,

where s0 ∼ 2890 cm−3 is the current entropy density and ρc ∼ 1.05× 10−5h2 GeVcm−3

is critical density of the Universe and h = 0.72 is the Hubble parameter.

One can calculate the freeze-out temperature of the WIMP dark matter from the

Boltzmann eqn. 2.5 by analytic approximations. Approximate solutions can be

found under the assumption that below the freeze-out Tf temperature z � zeq and

z ' zeq above it.

For x > xf , limit, the eqn. 2.5 can be written as,∫ x

xf

dz

z2
= −

∫ x

xf

dx

x2
.

In the limit x→∞, z(xf )� z(x), one can get z(∞) = xf .

Similarly in the other limit x < xf one can get, zeq(xf ) ' xf , which implies,

xf ' 1.914 g1/2
∗ MPlMDM 〈σv〉 e−xfx3/2

f .

Solving the above equation one can approximately calculate [43] xf as,

xf ≈ 24 + log

(
MDM

100 GeV

)
+ log

( 〈σv〉
10−9 GeV−2

)
− 1

2
log
( g∗

100

)
From this one can get the freeze-out temperature Tf = MDM

xf
of the dark matter.

2.5 Direct Detections of Dark Matter

One can also detect dark matter directly or indirectly from experiments. With the

fact that the WIMP dark matter interacts with the matter weakly, there are many

experiments [49–53] which are trying to detect the dark matter directly. If WIMPs

scatter from atomic nucleus then it deposits energy in the detector given by,

Edeposit =
1

2
MDMv

2.

The energy deposition can also be written as,

Edeposit =
µ2v2

mN

(1− cos θ).
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In the Earth frame, the mean velocity v of the WIMPs relative to the target nucleus

is about 220 km/s, µ is the reduced mass of the WIMP of mass MDM and the

nucleus of mass mN , and θ is the scattering angle. As the dark matter is weakly

interacting, it may rarely bump into the nucleus of a detector atom and deposit

energy which may create a signature at the detector. The amount of energy of a

WIMP with mass MDM = 100 GeV would deposit in the detector is Edeposit ' 27

keV. It is very difficult to pick out the DM signature against the background from

natural radioactivity. Natural radioactivity generally emits energies around MeV

range. We need a radioactively clean and cosmic radiation free environment for

the detection of the dark matter in experiments. The experimental set up must be

placed in the deep underground to get shielded from the cosmic-ray or any other

backgrounds.

Figure 2.4: Limit on WIMP cross-sections (normalized to a single nucleon) for spin-
independent coupling versus mass from different experiments. Most stringent limit
comes from the LUX-2013 experiments. Image credit: Aprile E. et al. [50]

Dark matter detections are of two types: spin-dependent and spin-independent. In

the spin-independent case, the scattering cross-section is proportional to the square

of the atomic mass A, whereas the cross-sections for spin-dependent scattering are
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proportional to J(J+1), where J is the spin of the target nucleus. The experimental

sensitivity of spin-dependent cross-section is far below than that of spin-independent

cross-sections as far as the dark matter is concerned [54]. As in this thesis in various

models with extended scalar sectors, a lightest neutral scalar particle is considered as

a viable WIMP dark matter, only the spin-independent cross-sections are considered.

The spin-independent elastic scattering cross-section of a WIMP with the nucleus

is given by,

σ =
4M2

DMm
2
N

π(MDM +mN)2
[Zfp + (A− Z)fn]2,

where A and Z are the atomic mass and atomic number of the target nucleus.

fp, fn ≈ 0.3 are the form factors of the proton and the neutron.

Presently non-observation of dark matter in direct detections from experiments

XENON [50, 51], LUX [53] set a limit on WIMP-nucleon scattering cross-section

for a given dark matter mass (see Fig. 2.4). Currently, most stringent bound is set

by the LUX experiment. These experiments also ruled out the previous claim of find-

ing signature of dark matter around 10 GeV by experiments DAMA/LIBRA [55],

CoGeNT [56], CDMS [57] etc.

Various kinds of theoretical models consider dark matter particles ∼ O(100) GeV

which can easily be produced at the LHC. If the dark matter were created at the

LHC, they would escape through the detectors without creating any signature. How-

ever, the dark matter would carry away energy and momentum, so one could infer

their existence from the amount of energy and momentum “missing” after a collision.

2.6 Indirect Detections of Dark Matter

Indirect detection techniques are quite different for detection of the dark matter. If

the dark matter and its antiparticle are the same, then dark matter can annihilate to

form known standard model particles such as photons (gamma-rays), electrons e−,

positrons e+ etc. The dark matter can then be detected indirectly through products
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of such annihilations. Various kinds of the detector placed in the orbits around the

Earth, for example, Fermi Gamma-ray Space Telescope (FGST), Alpha Magnetic

Spectrometer (AMS), PAMELA etc., observed the excess of gamma-ray and positron

excess. These observations cannot be explained from the known sources. The dark

matter with different mass ranges can be an answer to this puzzle. It is guessed

that this excess is formed due to the annihilation of dark matter at the highly

populated dark matter regions in the Universe like galactic center. From particle

physics point of view, the processes like DM, DM → γγ, e+e− etc. have been

used to explain such excess. These processes are model dependent. The WIMP

dark matter with different mass and coupling of a pair of dark matter to the SM

particle can be considered to explain these high energetic gamma-rays excess from

the galactic center and positron excess in the cosmic ray.

In the following subsections, the gamma-ray excess and the positron excess will be

discussed.

2.6.1 Gamma-ray Excess from Galactic Center

Figure 2.5: The Fermi bubble around the galactic center. Image credit:
NASA/Fermi LAT.
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Gamma-ray excess at the galactic center has been observed by Fermi Gamma-ray

Space Telescope (FGST) [46]. The FGST is the space-based gamma-ray observa-

tory, consisting of a Large Area Telescope (LAT) and a Gamma-ray Burst Monitor

(GBM). The Fermi LAT contains the gamma-ray detector that can detect photons

within the energy range of 20 MeV to 300 GeV. This detector first observed that

the galactic center has the bubble shaped gamma-ray lobes, extending 25000 light-

years above and below the galactic plane (see Fig. 2.5). The data from 1.25◦ to

10◦ around the galactic center can be explained with known sources of gamma-ray.

But the gamma-ray spectrum within 1.25◦ shows an excess. The dark matter self-

annihilations into the gamma-rays at the galactic center give an explanation of this

excess [58].

2.6.2 Positron Excess in the Cosmic Ray

Figure 2.6: The variations of fraction of positron flux with energy. Image credit:
AMS-02. [47]

Alpha Magnetic Spectrometer-02 [47] is placed at the International Space Station

(ISS). It has the capability to detect photon, electron, positron, antiproton etc. in

the cosmic rays. Also, it provides the information of the energy of the detected
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particle. Presently it is detecting the particles in cosmic ray in the energy range

of 0.5 GeV to 500 GeV. AMS has measured the positron fraction
Φe+

Φe++Φe−
, where

Φ are the flux of the particles in the cosmic ray. The most striking result is the

observation of a rise in the positron fraction starting at ∼10 GeV and extending at

least to 350 GeV (see Fig. 2.6 ). A possible explanation for this observation can be

the dark matter annihilations [59].

However, the cosmic particles backgrounds are still poorly understood and it is not

possible at the moment to make a definite statement about the origin of this excess.

In this work, the detailed study of the indirect detection of the dark matter is kept

aside.

2.7 Summary

Current observations support a remarkably simple model of the Universe consisting

of baryonic matter, dark matter, and dark energy. Several observations such as

galactic rotation curves, gravitational lensing in bullet cluster, and the study of cos-

mic microwave background radiations support that the Universe contains unknown

massive dark matter. The properties of dark matter are as much of a mystery now

as they were in 1930’s. In this chapter, the WIMPs and several other possible dark

matter candidates which may contribute to the abundance of the dark matter in

the Universe have been briefly discussed. The detailed relic density calculations

of the WIMP dark matter have been reviewed. The direct and indirect detections

of the dark matter have been shown. The density of the dark matter in the Uni-

verse, formation of large-scale structure, observed γ-, positron-excess etc. cannot

be explained without extending the SM of particle physics. The simplest exten-

sions involve dark matter, composed of the new particle(s) that may explain these

observations.

In this thesis, the SM is extended with a SU(2)L singlet, doublet or triplet scalar. If
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a discrete symmetry Z2 is imposed on the extra scalar sector such that the standard

model particles do not couple with an odd number of these extra scalars, then the

lightest neutral stable scalar can serve as a viable dark matter candidate, which may

fulfill the relic abundance of the Universe. The mass of the dark matter and the

coupling of a pair of them to the standard model particle(s) correspond to a WIMP

dark matter. The detailed study of the scalar dark matter candidate as WIMPs will

be discussed in Chapter 6.
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Chapter 3

Electroweak Symmetry Breaking
in Extended Higgs sector

3.1 Introduction

In 2012, the ATLAS and CMS collaborations at the Large Hadron Collider (LHC)

at the CERN announced the discovery of a new scalar resonance with a mass ∼ 125

GeV. Although the properties of the scalar detected at LHC are consistent with the

Higgs boson predicted by the Standard Model (SM), the experimental data still allow

the extension of the SM Higgs sector with one or more SU(2)L scalar multiplets. The

main goal of this thesis is to explore various models with extended scalar sectors

using weak vector boson scattering processes and from the stability of the scalar

potential. Imposing a discrete symmetry Z2 on these models, the lightest neutral

Z2-odd scalar can serve as a viable dark matter candidate which may fulfill the relic

abundance of the dark matter in the Universe. In this chapter, the structure of the

scalar potential in these new models and, how the new scalar fields interact with the

SM particles and between one another will be discussed. Various theoretical and

experimental bounds on the extended scalar sectors will be reviewed as well.

In the next section, the SM extended with a real singlet scalar will be discussed.

With and without imposing an extra discrete symmetry Z2 to the extended sectors,

43



44 Chapter 3. Electroweak Symmetry Breaking in Extended Higgs sector

how the particle gets masses through the electroweak symmetry breaking will be

shown. In Sections 3.3, 3.4 and 3.5, similar studies of models extended with a

doublet or a triplet scalar with hypercharges Y = 0 and 2 will be elaborated.

3.2 The Standard Model with a real singlet scalar

The simplest way to extend the Higgs sector of SM is to consider the addition of

an extra real scalar S. The scalar S is a singlet under the SM gauge group. The

Lagrangian, invariant under a Z2 symmetry S → −S, can be written as [60],

L = (DµΦ)† (DµΦ) +
1

2
∂µS∂

µS − V (Φ, S),

with the scalar potential,

V (Φ, S) = −m2|Φ|2 + λ |Φ|4 +
1

2
m2
SS

2 +
κ

2
|Φ|2S2 +

λS
4!
S4 . (3.1)

Φ is the SM complex doublet with vacuum expectation value (VEV) vd,

Φ =

 φ+

φ0

 , with φ0 =
1√
2

(h0 + vd + iG0)

If the Z2 symmetry break spontaneously then the singlet scalar also acquires VEV vS

such that S = s+ vS, i.e., the potential can have minimum at (vd, vS) in h0s-plane.

The required conditions are,

m2 = λvd
2 +

κvS
2

2
,

m2
S = −κvd

2

2
− λSvS

2

6
.

The coefficient κ and the VEVs, vd and vS, govern the degree of mixing between

s and h0 of the SM doublet. The mass of the scalar fields are determined by the

parameters, m, mS, λ, κ and the VEVs vd, vS. Using the minimization conditions

we can write the mass matrix of h0 and s,(
h0 s

) Aφφ CφS

CφS BSS

 h0

s

 (3.2)

with,

Aφφ = 2λv2
d,
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BSS =
1

3
λSv

2
S,

CφS = κvdvS.

The mass eigenstates are obtained by diagonalizing the mass matrix in eqn. 3.2 with

a rotation of the (h0 s) basis, h

H

 =

 cosα′ sinα′

− sinα′ cosα′

 h0

s

 .

The mixing angle (α′) between the scalars can be written as,

tan 2α′ =
2CφS

BSS − Aφφ
.

The masses of the scalars are,

M2
h =

1

2

[
(BSS + Aφφ)−

√
(BSS − Aφφ)2 + 4C2

φS

]
,

M2
H =

1

2

[
(BSS + Aφφ) +

√
(BSS − Aφφ)2 + 4C2

φS

]
.

Here h is considered to be the observed Higgs-like scalar particle at ∼ 125 GeV

and H is a heavy scalar particle yet to be observed. The couplings of the Higgs-

like scalar to the known fermions and gauge bosons are also modified. The new

modified couplings are cosα′ times the couplings as in the SM. The couplings of the

heavy Higgs to SM gauge bosons and fermions multiplied with sinα′: For example,

(cosα′g2MW ) hW+W−, (sinα′g2MW ) HW+W− etc.

3.2.1 Constraints on the SM+S model

The parameter space of this model is constrained by various kinds of theoretical

considerations like absolute vacuum stability and unitarity of the scattering matrix.

Also, the LHC puts severe constraints on this model. In the following, the constraints

on the model will be discussed.

3.2.1.1 Constraints from stability of the scalar potential

The stability of the scalar potential requires that the potential should not become
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unbounded from below, i.e, it should not approach negative infinity along any direc-

tion of the field space at large field values. At very large field the quadratic terms of

the scalar potential in eqn. 3.1 are negligibly small compared to the quartic terms,

so the scalar potential can be written as,

V (h0, s) =
1

4
λ(h0)4 +

κ

4
(h0)2(s)2 +

1

24
λS(s)4.

We can further simplify the above equation as,

V (h0, s) =
1

4

{√
λ(h0)2 +

√
λS√
6

(s)2

}2

+
1

4

{
κ+

√
2λλS

3

}
(h0)2(s)2. (3.3)

The scalar potential in eqn. 3.3 is bounded from below if,

λ(Λ) > 0, λS(Λ) > 0 and κ(Λ) +

√
2λ(Λ)λS(Λ)

3
> 0.

where the coupling constants are evaluated at a scale Λ using RG equations. If the

scalar potential has a metastable electroweak vacuum, then the above conditions

will be modified and are shown in Chapter 6.

3.2.1.2 Perturbativity constraints

To ensure that the radiatively improved scalar potential V (Φ, S) of the SM+S model

remains perturbative at any given energy scale, one must impose the following upper

bounds on the couplings λ, κ and λS of scalar potential V (Φ, S) as,

| λ(Λ), κ(Λ), λS(Λ) |≤ 4π.

3.2.1.3 Constraints from unitarity of the scattering matrix

The parameters of the scalar potential of this model are severely constrained by the

unitarity of the scattering matrix (S-matrix) which consists of the quartic couplings

of the scalar potential. At very high field values, one can obtain the scattering

matrix by using various scalar-scalar, gauge boson-gauge boson, and scalar-gauge

boson scatterings. The unitarity of the S-matrix demands that the eigenvalues of

the scattering matrix should be less than 8π. In this model, the unitary bounds are
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obtained from the scattering matrices as [61],

λ ≤ 8π and
∣∣∣12λ+ λS ±

√
16κ2 + (−12λ+ λS)2

∣∣∣ ≤ 32π.

3.2.1.4 Constraints from the LHC

The signal strength measurement of the SM Higgs-like scalar with mass 125 GeV

implies sinα′ less than 0.25 [62]. At the Large Hadron Collider, the direct searches of

the heavy Higgs H boson in gg → H → W ∗+W ∗− and gg → H → Z∗Z∗ ( W ∗±, Z∗

decay into fermions) channels put a stringent bound [62] on the mass of the heavy

scalar. The mass range of 145− 1000 GeV is thus excluded at 95% C.L.

3.2.2 Dark matter in SM+S

If the imposed Z2 symmetry is exact then it prevents the extra scalar to acquire

VEV. The potential can have minimum only along the Higgs field direction, i.e., the

electroweak symmetry breaking driven only by the SM Higgs doublet. This extra

scalar field does not mix with the SM Higgs and odd number of scalars do not couple

with the SM particles. As a result, this scalar is stable and is considered to be a

viable dark matter candidate. The dark matter studies in singlet extended SM will

be taken up in Chapter 6.

3.3 Two Higgs doublet model

In this section, two Higgs doublet model will be briefly reviewed. In this model, an

extra scalar doublet Φ′ is added with the SM doublet Φ. Both of these fields possess

hypercharge +1. Kinetic part of the Lagrangian of these two scalar fields, invariant

under SU(2)L × U(1)Y gauge group, can be written as,

L2HDM
Kinetic = (DµΦ)† (DµΦ) + (DµΦ′)

†
(DµΦ′) ,

where Dµ is the covariant derivative, given in eqn. 1.4.
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The scalars are conventionally written as,

Φ =

φ+

φ0

 , and Φ′ =

φ′+
φ′0

 .

The most general potential with these two scalar fields is given by [63],

V (Φ,Φ′) = m2
11

(
Φ†Φ

)
+m2

22

(
Φ′†Φ′

)
−m2

12

(
Φ†Φ′ + Φ′†Φ

)
+ λ1

(
Φ†Φ

)2

+λ2

(
Φ′†Φ′

)2
+ λ3

(
Φ†Φ

) (
Φ′†Φ′

)
+ λ4

(
Φ†Φ′

) (
Φ′†Φ

)
+
λ5

2

[(
Φ†Φ′

)2
+
(
Φ′†Φ

)2
]

+ λ6

(
Φ†Φ

) (
Φ†Φ′ + Φ′†Φ

)
+λ7

(
Φ′†Φ′

) (
Φ†Φ′ + Φ′†Φ

)
. (3.4)

The parameters m11,m22 and λi (i = 1, . . . 4) are real, whereas m12, λ5, λ6 and λ7

could be complex in general. If these parameters are complex, then imaginary parts

of these parameters give rise to explicit CP -violation in the Higgs sector, as not all

the imaginary parts can be removed by re-phasing transformations. In this particular

incarnation of 2HDM, a fermion can couple to both Φ and Φ′. However, this can lead

to unacceptably large tree level flavor changing neutral currents (FCNC) [64–67].

One can avoid such FCNCs by imposing a Z2 symmetry, namely Φ → −Φ and

Φ′ → Φ′. The Z2 symmetry is exact when m12, λ6 and λ7 vanish. Here only λ5

can be complex. But it becomes real after re-phasing one of the scalar doublets

so that the scalar potential becomes CP -conserving. Furthermore, this symmetry

is said to be broken softly if m12 6= 0, i.e., it is violated in the quadratic terms

only, but it is conserved in quartic terms i.e., λ6 = 0 and λ7 = 0. At this point,

we would like to mention that we are interested in a specific scheme of coupling of

fermions to the doublets. This scheme is known as the Type-II 2HDM, where the

down-type quarks and the charged leptons couple to Φ and the up-type quarks, to

Φ′[68]. This can be achieved by demanding Φ → −Φ and ψiR → −ψiR under the

same Z2 symmetry, where ψ stands for charged leptons or down-type quarks and i

represents the generation index.
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Expanding the neutral fields φ0 and φ′0 around their VEV,

φ0 =
1√
2

(vd + h0 + iζd), (3.5)

φ′0 =
1√
2

(v′d + h′0 + iζ ′d). (3.6)

After electroweak symmetry breaking (EWSB), we have the following minimizing

conditions [69],

m2
11 = m2

12 tan β − 1

2
v2
(

2λ1 cos2 β + (λ3 + λ4 + λ5) sin2 β
)
,

m2
22 = m2

12 cot β − 1

2
v2
(

2λ2 sin2 β + (λ3 + λ4 + λ5) cos2 β
)
,

with tan β =
v′d
vd

. The two VEVs vd and v′d of the doublets contribute to the weakly

interacting gauge boson masses at the tree-level and the masses of weak gauge bosons

of 2HDM are given as:

M2
W =

g2
2

4
v2, M2

Z =
g2

2

4 cos2 θW
v2, where v2 = (v2

d + v′2d ) = (246 GeV)2,

where θW is the Weinberg angle.

3.3.1 Scalar Masses and Mixing for 2HDM

After electroweak symmetry breaking, the squared mass matrix can be expressed as

8 × 8 for the scalars. This matrix composed of four 2 × 2 submatrices with bases,

(φ+, φ′+), (φ−, φ′−), (h0, h′0), (ζd, ζ
′
d). After rotating these fields into the mass basis,

we get five physical mass eigenstates (H±, h,H,A) and remaining three states are

massless Goldstone bosons (G±, G0) eaten up to give mass to the SM gauge bosons

W±, Z. The mass eigenvalues for the physical scalar for 2HDM are given by,

M2
A =

m2
12

sin β cos β
− v2λ5, (3.7)

M2
H± = m2

A +
1

2
v2 (λ5 − λ4) ,

M2
h =

1

2

[
(B + A)−

√
(B − A)2 + 4C2

]
,

M2
H =

1

2

[
(B + A) +

√
(B − A)2 + 4C2

]
,

with tan 2α =
2C

B − A,



50 Chapter 3. Electroweak Symmetry Breaking in Extended Higgs sector

where we have defined,

A = M2
A sin2 β + v2(2λ1 cos2 β + λ5 sin2 β),

B = M2
A cos2 β + v2(2λ2 sin2 β + λ5 cos2 β),

C = −M2
A sin β cos β + v2(λ3 + λ4) sin β cos β.

The mixing between the two doublets in the charged, CP -even and CP -odd scalar

sectors for 2HDM are respectively given by,G±
H±

 =

 cos β sin β

− sin β cos β

φ±
φ′±

 ,

h

H

 =

 cosα sinα

− sinα cosα

h0

h′0

 ,

G0

A

 =

 cos β sin β

− sin β cos β

ζd
ζ ′d

 . (3.8)

3.3.2 Constraints on 2HDM

Varieties of considerations, stemming both from theoretical consistency conditions

and from phenomenological bounds, constrain the 2HDM. In the following sections,

various constraints such as vacuum stability, unitarity of scattering matrix and elec-

troweak precision measurements on this model will be summarized.

3.3.2.1 Constraints from stability of the scalar potential

The tree-level scalar potential V (Φ1,Φ2) is stable and bounded from below if [70]

λ1,2(Λ) ≥ 0, λ3(Λ) ≥ −2
√
λ1(Λ)λ2(Λ), λL,S(Λ) ≥ −

√
λ1(Λ)λ2(Λ) (3.9)

where the coupling constants are evaluated at a scale Λ using RG equations. How-

ever, these conditions become nonfunctional if λ1 becomes negative at some energy

scale to render the EW vacuum metastable. Under such circumstances we need

to handle metastability constraints on the potential differently, which we pursue in

Chapter 6.
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3.3.2.2 Perturbativity constraints

The radiatively improved scalar potential remain perturbative by requiring that all

quartic couplings of V (Φ1,Φ2) satisfy the following:

| λ1,2,3,4,5(Λ) |≤ 4π. (3.10)

These conditions put an upper bound on the couplings of the scalar potential at an

energy scale Λ.

3.3.2.3 Constraints from unitarity of the scattering matrix

Unitarity bounds on λi are obtained considering scalar-scalar, gauge boson-gauge

boson, and scalar-gauge boson scatterings [71]. The constraints come from the

eigenvalues of the corresponding S-matrix [72]:

|λ3 ± λ4| ≤ 8π, |λ3 ± λ5| ≤ 8π

|λ3 + 2λ4 ± 3λ5| ≤ 8π∣∣∣− λ1 − λ2 ±
√

(λ1 − λ2)2 + λ2
4

∣∣∣ ≤ 8π (3.11)∣∣∣− 3λ1 − 3λ2 ±
√

9(λ1 − λ2)2 + (2λ3 + λ4)2

∣∣∣ ≤ 8π∣∣∣− λ1 − λ2 ±
√

(λ1 − λ2)2 + λ2
5

∣∣∣ ≤ 8π.

3.3.2.4 Constraints from electroweak precision experiments

In the 2HDM, the contributions to the S, T and U parameters can be written as in

Ref. [73],

S2HDM =
1

πM2
Z

[
sin2(β − α)B22(M2

Z ,M
2
H ,M

2
A)− B22(M2

Z ,M
2
H± ,M

2
H±)

+ cos2(β − α)

{
B22(M2

Z ,M
2
h ,M

2
A) + B22(M2

Z ,M
2
Z ,M

2
H)− B22(M2

Z ,M
2
Z ,M

2
h)

−M2
ZB0(M2

Z ,M
2
Z ,M

2
H) +M2

ZB0(M2
Z ,M

2
Z ,M

2
h)

}]
,

T2HDM =
1

16πM2
W sin2 θW

[
F (M2

H± ,M
2
A) + sin2(β − α)

{
F (M2

H± ,M
2
H)− F (M2

A,M
2
H)

}
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+ cos2(β − α)

{
F (M2

H± ,M
2
h)− F (M2

A,M
2
h) + F (M2

W ,M
2
H)− F (M2

W ,M
2
h)

−F (M2
Z ,M

2
H) + F (M2

Z ,M
2
h) + 4M2

ZB0(M2
Z ,M

2
H ,M

2
h)

−4M2
WB0(M2

W ,M
2
H ,M

2
h)

}]
, (3.12)

U2HDM = −S2HDM +
1

πM2
Z

[
B22(M2

W ,M
2
A,M

2
H±)− 2B22(M2

W ,M
2
H± ,M

2
H±)

+ sin2(β − α)B22(M2
W ,M

2
H ,M

2
H±)

+ cos2(β − α)

{
B22(M2

W ,M
2
h ,M

2
H±) + B22(M2

W ,M
2
W ,M

2
H)− B22(M2

W ,M
2
W ,M

2
h)

−M2
WB0(M2

W ,M
2
W ,M

2
H) +M2

WB0(M2
W ,M

2
W ,M

2
h)

}]
,

where the functions B22, B0, B0 and F are defined as follows,

B22(q2,m2
1,m

2
2) =

q2

24
[2 ln q2 + ln(x1x2)− 6F (x1, x2)

+{(x1 − x2)3 − 3(x2
1 − x2

2) + 3(x1 − x2)} ln

(
x1

x2

)
−{2(x1 − x2)2 − 8(x1 + x2) +

10

3
} (3.13)

−{(x1 − x2)2 − 2(x1 + x2) + 1}f(x1, x2)],

B0(q2,m2
1,m

2
2) = 1 +

1

2

{
(x1 + x2)

(x1 − x2)
− (x1 − x2)

}
ln

(
x1

x2

)
+

1

2
f(x1, x2),

f(x1, x2) =


−2
√

∆
{

arctan x1−x2+1√
∆
− arctan x1−x2−1√

∆

}
, (∆ > 0)

0 , (∆ = 0)
√
−∆ ln x1+x2−1+

√
−∆

x1+x2−1−
√
−∆

, (∆ < 0) ,

(3.14)

with ∆ = 2(x1 + x2)− (x1 − x2)2 − 1, xi ≡ m2
i /q

2 and

B0(m2
1,m

2
2,m

2
3) =

m2
1 lnm2

1 −m2
3 lnm2

3

m2
1 −m2

3

− m2
1 lnm2

1 −m2
2 lnm2

2

m2
1 −m2

2

,

F (m2
1,m

2
2) = F (m2

2,m
2
1) =

m2
1 +m2

2

2
− m2

1m
2
2

m2
1 −m2

2

ln

(
m2

1

m2
2

)
. (3.15)

The experimental values of S, T and U parameters from the precision electroweak

measurements for the fixed Higgs mass and top quark mass to be at 125 GeV and

173 GeV respectively is given in the Ref. [33].

∆S = 0.05± 0.11, ∆T = 0.09± 0.13, ∆U = 0.01± 0.11, (3.16)
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with correlation coefficients of +0.90 between ∆S and ∆T , −0.59 between ∆S and

∆U , −0.83 between ∆T and ∆U . This would constrain the parameter space of

2HDM. If an exact Z2 symmetry is imposed on the extra doublet then the eqn. 3.13

will be modified as eqn. 6.17 of Chapter 6.

3.3.2.5 Constraints from the LHC

Measured values of the Higgs signal strengths into different decay channels are con-

sistent with the corresponding standard model expectations. Using the experimen-

tal data one gets sin(β − α) ≈ ±1 with tan β = v2

v1
≈ 4. This limit is known as

alignment limit of the 2HDM, in which the couplings of h to vector bosons are

SM-like. In this limit, the nonstandard scalar masses are relatively unconstrained.

B meson decay (B → Xsγ, Xs denotes a strange hadronic final state) which receives

contributions from the charged Higgs at one-loop, imposes a stringent constraint on

the Higgs boson mass MH+ > 300 GeV [74].

3.3.3 Dark Matter in 2HDM

In the above context of 2HDM, we have chosen Z2 to be softly broken such that

the quartic couplings, λ6,7 are absent in the potential. The scalar fields of both the

doublets can mix and also couple with the fermions. If the Z2 symmetry is unbroken

then the term m12 vanish and also this symmetry prevents the extra doublet to

acquire a VEV, hence these scalar fields of the extra doublet do not mix with the

fields of the SM scalar doublet. No SM particle can couple with an odd number of

scalar fields of the extra doublet. The extra doublet (φ′+, φ′0)T can be taken as the

physical basis (H+, (H + iA)/
√

2)T. The lightest neutral particle of the new scalar

sector can be considered as a viable dark matter candidate. The detailed analysis

related to the dark matter issues and metastability scenario will be presented in

Chapter 6.
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3.4 Higgs triplet model with hypercharge Y = 0

In this model a real isospin I = 1 and hypercharge Y = 0 triplet Φ̃ is added with the

SM Higgs doublet Φ. This kind of model is known as Higgs triplet model (HTM).

The kinetic part of the Lagrangian with these scalar fields is given by [75],

LY=0
Kinetic = (DµΦ)† (DµΦ) +

1

2

(
DµΦ̃

)† (
DµΦ̃

)
,

where

DµΦ̃ =

(
∂µ + ig2taW

a
µ

)
Φ̃ with Φ̃ =


η+

η0

−η−

 , (3.17)

and

t1 =
1√
2


0 1 0

1 0 1

0 1 0

 , t2 =
1√
2


0 −i 0

i 0 −i
0 i 0

 , t3 =


1 0 0

0 0 0

0 0 −1

 .

The most general SU(2)L × U(1)Y scalar potential with SM Higgs doublet and a

real scalar triplet is given by,

V (Φ, Φ̃) = µ2
1

(
Φ†Φ

)
+
µ2

2

2

(
Φ̃†Φ̃

)
+ λ̃1

(
Φ†Φ

)2
+
λ̃2

4

(
Φ̃†Φ̃

)2

+
λ̃3

2

(
Φ†Φ

) (
Φ̃†Φ̃

)
+ λ̃4Φ†σaΦΦ̃a , (3.18)

where Φ̃a =
(

1√
2
(η+ + η−), 1√

2
(η+ − η−), η0

)
.

Now expanding neutral component of the triplet field around the VEV v′t and using

eqn. 3.5 and after EWSB we have the following minimization conditions:

µ2
1 =

1

2

(
2λ̃4v

′
t − (2λ̃1v

2
d + λ̃3v

′2
t )
)
,

µ2
2 =

1

2v′t

(
λ̃4v

2
d − λ̃3v

2
dv
′
t − 2λ̃2v

′3
t

)
.

In this scenario the masses for W and Z bosons are given by,

M2
W =

g2
2

4
v2, M2

Z =
g2

2

4 cos2 θW
v2
d , (3.19)

where VEVs are related to the SM VEV by v2 = v2
d + 4v′2t = (246 GeV)2.

It is quite evident from eqn. 3.19 that this model violates custodial symmetry at
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tree level, as,

ρ =
M2

W

M2
Z cos2 θW

= 1 + 4
v′2t
v2
d

.

The experimental value of ρ parameter is 1.0004±0.00024 [10]. Hence, δρ ≈ 0.0004±
0.00024. At tree-level, this puts a stringent constraint on the triplet scalar VEV,

v′t < 4 GeV at 3σ.

3.4.1 Scalar Masses and Mixing for HTM (Y = 0)

After spontaneous symmetry breaking, there are two physical neutral CP -even Higgs

h, H, a pair of charged Higgs H± and three Goldstone bosons G±, G0 (≡ ζd). The

masses of the physical particles are given by,

M2
H± = λ̃4

(v2
d + 4v′2t )

2v′t
,

M2
h =

1

2

[
(B̃ + Ã)−

√
(B̃ − Ã)2 + 4C̃2

]
, (3.20)

M2
H =

1

2

[
(B̃ + Ã) +

√
(B̃ − Ã)2 + 4C̃2

]
,

where,

Ã = 2λ1v
2
d,

B̃ =
λ4v

2
d + 4λ2v

′3
t

2v′t
, (3.21)

C̃ = −λ4vd + λ3vdv
′
t.

The mixing between the SM doublet and the real triplet in the charged and CP -even

scalar sectors for this scenario are respectively given by,G±
H±

 =

 cos β̃ sin β̃

− sin β̃ cos β̃

φ±
η±

 ,

h

H

 =

 cos γ sin γ

− sin γ cos γ

h0

η0

 ,

with sin γ =

√√
(B̃−Ã)2+4C̃2−(B̃−Ã)

2
√

(B̃−Ã)2+4C̃2
and tan β̃ =

2v′t
vd

.
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In large µ2
2 and small v′t limit sin γ and sin β̃ can be written as,

sin γ =

√√√√1

2
− 1

2
√

1 + 16
v′2t
v2
d

≈ 0,

sin β̃ =
2v′t√

v2
d + 4v′2t

≈ 0.

In this limit the λ̃’s look like,

λ̃1 =
M2

h

2v2
d

,

λ̃2 =
2(M2

H −M2
H±)

v2
d sin2 β̃

,

λ̃3 =
2(M2

H± − (sin γ/ sin β̃)M2
H)

v2
d

,

λ̃4 =
sin β̃M2

H±

v2
d

.

Also, in the same limit, if MH± and MH are very heavy compared to Mh, then both

the charged and heavy neutral particle masses should be degenerate (see eqns. 3.20

and 3.21). For large differences in MH± and MH , the λ̃2,3 become non-perturbative

(see Section 3.4.2.2), and in addition it may violate the unitarity (Section 3.4.2.3)

conditions.

3.4.2 Constraints on the HTM (Y = 0)

The parameter space of this model is constrained by theoretical considerations like

absolute vacuum stability, perturbativity, and unitarity of the scattering matrix.

In the following, these theoretical bounds and the bounds from the electroweak

precision measurements on the HTM (Y = 0) will be discussed.

3.4.2.1 Constraints from stability of the scalar potential

A necessary condition for the stability of the vacuum comes from requiring that the

scalar potential is bounded from below when the scalar fields become large in any

direction of the field space. At the tree-level scalar potential potential V (Φ, Φ̃) is
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bounded from below if

λ̃1(Λ) ≥ 0, λ̃2(Λ) ≥ 0, λ̃3(Λ) ≥ −2

√
λ̃1(Λ)λ̃2(Λ) ,

where Λ is an arbitrary energy scale. If the quantum corrections are included to the

scalar potential, then the above conditions will be more complicated. The modifi-

cation of the stability conditions of the scalar potential will be shown in Chapter 6.

3.4.2.2 Perturbativity bounds

The radiatively improved scalar potential remain perturbative by requiring that all

quartic couplings of V (Φ, Φ̃) satisfy the following relations,

| λ̃1,2,3(Λ) |≤ 4π and
∣∣∣ λ̃4(Λ)

Λ

∣∣∣ ≤ 4π .

On applying such conditions, one implies upper bounds on the values of the couplings

λ̃′s at low as well as high scales.

3.4.2.3 Constraints from unitarity of the scattering matrix

In this section, the derivation of unitary bounds on the quartic couplings of the

scalar potential from the scattering matrix will be discussed. To the best of our

knowledge, the full expressions of unitarity bounds on the scalar quartic couplings

in this model have not yet been presented in the literature. It has been shown in

Section 1.3.1.3 of Chapter 1 that the scattering matrix consists of only the quartic

couplings of scalars, gauge bosons, and scalar-gauge bosons [71].

At very high energies, the equivalence theorem implies that the longitudinal modes

of the gauge bosons are equivalent to the corresponding Goldstone bosons, e.g., the

amplitude of W+
LW

−
L → W+

LW
−
L scattering is approximated by G+G− → G+G−.

In this energy limit, pure scalar scattering processes are considered to obtain the

unitarity bound on the quartic couplings of the scalar potential. The scalar quartic

couplings in the physical bases, G±, G0 , H±, h, H, are complicated functions of

λ̃’s, γ, β̃. For example, the hhhh vertex is 6(λ1 cos4 γ+λ3 cos2 γ sin2 γ+λ2 sin4 γ). It
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is difficult to calculate the unitary bounds in the physical bases. So to simplify the

quartic coupling, one can consider the non-physical scalar fields before electroweak

symmetry breaking, φ±, η±, ζd, h
0, η0. Here the crucial point is that the S-matrix

expressed in terms of the physical fields can be transformed into an S-matrix for the

non-physical fields by making a unitary transformation [76].

Different quartic couplings in non-physical bases obtained by expanding the scalar

potential of eqn. 3.18, are given by,

{ζd ζd ζd ζd} = 6λ̃1,{
φ+ φ+ φ− φ−

}
= 4λ̃1,{

φ+ φ− h0 h0
}

= 2λ̃1,

{ζd ζd η0 η0} = λ̃3,

{h0 h0 η0 η0} = λ̃3,{
ζd ζd η

+ η−
}

= λ̃3,{
h0 h0 η+ η−

}
= λ̃3,

{
ζd ζd φ

+ φ−
}

= 2λ̃1,

{ζd ζd h0 h0} = 2λ̃1,

{h0 h0 h0 h0} = 6λ̃1,{
φ+ φ− η0 η0

}
= λ̃3, (3.22)

{η0 η0 η0 η0} = 6λ̃2,{
φ+ φ− η+ η−

}
= λ̃3,{

η0 η0 η+ η−
}

= 2λ̃2,{
η+ η+ η− η−

}
= 4λ̃2.

The full set of these non-physical scalar scattering processes can be expressed as a

16×16 S-matrix. This matrix is composed of three submatrices of dimensions 6×6,

5× 5, and 5× 5 which have different initial and final states.

The first 6× 6 sub-matrixM1 corresponds to scattering processes whose initial and

final states are one of these: (h0 φ+, ζd φ
+ , η0 φ+, h0 φ+, ζd η

+, η0 η+). Using

the Feynman rules in eqn. 3.22, one can obtainM1 as,M1=diag(2λ̃1, 2λ̃1, 2λ̃1, λ̃3,

λ̃3, λ̃3).

The sub-matrix M2 corresponds to scattering process with one of the following

initial and final states: (h0 ζd, φ
+ η−, η+ φ−, η0 ζd, h

0 η0). Similarly, one can

calculate M2, it take the following form: M2=diag(2λ̃1, λ̃3, λ̃3, λ̃3, λ̃3).
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The third sub-matrix corresponds to scattering with one of the following initial and

final states (φ+ φ−, η+ η−, ζd ζd√
2
, h0 h0
√

2
, η0 η0
√

2
). The factor 1√

2
appeared due to

statistics of identical particles. So one can find M3 with the help of the Feynman

rules in eqn. 3.22 and is given by,

M3 =



4λ̃1 λ̃3

√
2λ̃1

√
2λ̃1

λ̃3√
2

λ̃3 4λ̃2
λ̃3√

2
λ̃3√

2

√
2λ̃2

√
2λ̃1

λ̃3√
2

3λ̃1 λ̃1
λ̃3

2√
2λ̃1

λ̃3√
2

λ̃1 3λ̃1
λ̃3

2

λ̃3√
2

√
2λ̃2

λ̃3

2
λ̃3

2
3λ̃2


The eigenvalues ofM3 are :

{
2λ̃1, 2λ̃1, 2λ̃2,

1
2

(
6λ̃1 + 5λ̃2 ±

√
(6λ̃1 − 5λ̃2)2 + 12λ̃2

3

)}
.

Unitary constraints of the scattering processes demand that the eigenvalues ei’s

(i=1,..,16) of the scattering-matrix should be less than 8π.

3.4.2.4 Constraints from electroweak precision experiments

Electroweak precision data has imposed bounds on new physics models via Peskin-

Takeuchi [30] S, T, U parameters. The additional contributions from this model

are given by [77,78],

SY=0
HTM' 0,

T Y=0
HTM =

1

8π

1

sin2 θW cos2 θW

[
M2

H +M2
H±

M2
Z

− 2M2
H±M

2
H

M2
Z(M2

H −M2
H±)

log

(
M2

H

M2
H±

)]
' 1

6π

1

sin2 θW cos2 θW

(∆M)2

M2
Z

,

UY=0
HTM =− 1

3π

(
M4

H log

(
M2

H

M2
H±

)
(3M2

H± −M2
H)

(M2
H −M2

H±)3
+

5(M4
H +M4

H±)− 22M2
H±M

2
H

6(M2
H −M2

H±)2

)
' ∆M

3πMH±
.

S is proportional to sin β̃. In the limit β̃ → 0, the contribution to the S parameter

from the triplet scalar fields is negligible. For β̃ → 0 and MH±,H �Mh the charged

particle H± and heavier CP -even Higgs H are almost degenerate in mass, i.e., ∆M
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is very small. Also the contributions to the T and U parameters from this model

are negligible.

3.4.2.5 Constraints from the LHC

There is no direct search bound on the masses of the Higgs triplet model with hyper-

charge zero. One can get an indirect bound on the mass of the charged Higgs scalar

from the diphoton excess. For MH± < 200 GeV, H± will contribute significantly to

the σ(pp→ γγ) and σ(pp→ Zγ) cross-sections measured at the LHC.

3.4.3 Dark Matter in HTM (Y = 0)

Like in the case of an additional singlet or doublet scalars, if one imposes a discrete

symmetry on the extra triplet scalar then the neutral component of the scalar triplet

can be considered as a viable dark matter candidate. In Chapter 6, the detailed

study of Z2-odd triplet scalar from metastability of electroweak vacuum as well as

dark matter point of view will be discussed.

3.5 Higgs triplet model with hypercharge Y = 2

The detailed discussion of the Higgs triplet model with hypercharge Y = 2 will be

provided in this section. The additional triplet is denoted by ∆ = (∆1,∆2,∆3),

which can be written in the bi-doublet from as,

∆ =
σi√

2
∆i =

δ+/
√

2 δ++

δ0 −δ+/
√

2

 ,

where ∆1 = (δ++ + δ0)/
√

2, ∆2 = i(δ++ − δ0)/
√

2, ∆3 = δ+. The Lagrangian of

this model is given in the following,

LY=2 = LY=2
Yukawa + LY=2

Kinetic − V (Φ,∆). (3.23)

with the relevant kinetic and Yukawa interaction terms are respectively

LY=2
kinetic = (DµΦ)† (DµΦ) + Tr

[
(Dµ∆)† (Dµ∆)

]
, (3.24)
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LY=2
Yukawa = LSM

Yukawa −
1√
2

(Yν)ij L
T
i Ciσ2∆Lj + h.c. . (3.25)

Yν represents neutrino Yukawa coupling, and C is the charge conjugation operator.

Covariant derivative of the scalar triplet field is given by,

Dµ∆ = ∂µ∆ + i
g2

2
[σaW a

µ ,∆] + ig1Bµ∆ (a = 1, 2, 3).

The scalar potential in eqn. 3.23 is given by [79],

V (Φ,∆) = −m2
Φ(Φ†Φ) +

λ′1
4

(Φ†Φ)2 +M2
∆Tr(∆†∆) +

(
µΦTiσ2∆†Φ + h.c.

)
+λ′2

[
Tr(∆†∆)

]2
+ λ′3Tr[(∆†∆)2] + λ′4Φ†∆∆†Φ

+λ′5(Φ†Φ)Tr(∆†∆). (3.26)

λ′i (i = 1, . . . 5) are real dimensionless coupling constants, while mΦ,M∆ and µ are

real mass parameters of the above potential. Here µ term is the only term which can

generate a CP -phase, as the other terms of the potential are self-conjugate. However,

that phase can be absorbed by redefining the fields Φ and ∆. Furthermore, we

assume that m2
Φ > 0 for spontaneous symmetry breaking of above mentioned gauge

group. After EWSB, the scalar potential (see eqn. 3.26) is expanded around the

VEVs of neutral scalar CP -even scalar fields: around vd as in eqn. 3.5 and around

vt as 1√
2
(vt + ξ0 + iζt) respectively. At the minimum of the scalar potential, the

following conditions[79] are satisfied.

m2
Φ =

λ′1v
2
d

4
−
√

2µvt +
(λ′5 + λ′4)

2
v2
t ,

M2
∆ =

2µv2
d −
√

2(λ′5 + λ′4)v2
dvt − 2

√
2(λ′2 + λ′3)v3

t

2
√

2vt
.

Here the triplet VEV (vt) contributes to the weakly interacting gauge boson masses

at the tree-level as in the previous models. In this scenario the masses of weak gauge

bosons are given as:

M2
W =

g2
2

4
(v2
d + 2v2

t ), M2
Z =

g2
2

4 cos2 θW
(v2
d + 4v2

t ). (3.27)

In the following sections, the particle spectrum, the theoretical and experimental

constraints on this model will be discussed.
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3.5.1 Scalar Masses and Mixing for HTM (Y = 2)

After minimization of the scalar potential V (Φ, ∆) in eqn. 3.26 with respect to

the VEVs, a 10× 10 squared mass matrix appeared for the scalars. This matrix is

composed of four 2×2 and two 1×1 matrices. Among the ten eigenstates, seven are

physical (H±±, H±, h, H, A) and they are massive. Remaining three states are

massless Goldstone bosons G±, G0, eaten up to give mass to the SM gauge bosons

W±, Z. The mass eigenvalues for the physical scalars are given by,

M2
H±± =

√
2µv2

d − λ′4v2
dvt − 2λ′3v

3
t

2vt
,

M2
H± =

(v2
d + 2v2

t )(2
√

2µ− λ′4vt)
4vt

,

M2
A =

µ(v2
d + 4v2

t )√
2vt

, (3.28)

M2
h =

1

2

(
B′ + A′ −

√
(B′ − A′)2 + 4C ′2

)
,

M2
H =

1

2

(
B′ + A′ +

√
(B′ − A′)2 + 4C ′2

)
,

with A′ =
λ′1
2
v2
d, B′ =

√
2µv2

d+4(λ′2+λ′3)v3
t

2vt
, C ′ = vd[−

√
2µ+ (λ′5 + λ′4)vt].

The mixing between the doublet and triplet scalar fields in the charged, CP -even

and CP -odd scalar sectors are respectively denoted by,G±
H±

 =

 cos β′ sin β′

− sin β′ cos β′

φ±
δ±

 ,

h

H

 =

 cos γ′ sin γ′

− sin γ′ cos γ′

η0

ξ0

 ,

G0

A

 =

 cos δ′ sin δ′

− sin δ′ cos δ′

ζd
ζt

 ,

where the mixing angles are given by,

tan β′ =

√
2vt
vd

,

tan δ′ =
2vt
vd
,
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tan 2γ′ =
2C ′

B′ − A′ .

3.5.2 Constraints on the HTM (Y = 2)

Let us summarize the constraints on the scalar potential of the Y = 2 triplet model

given by eqn. 3.26 in order to sustain the stability of the electroweak vacuum, the

conservation of the tree-level unitarity in various scattering processes, etc.

3.5.2.1 Constraints from stability of scalar potential

Stability of the electroweak vacuum of the scalar potential in eqn. 3.26 requires that

it be bounded from below i.e., there is no direction in field space along which the

potential tends to minus infinity. The necessary and sufficient conditions are [79]:

λ′1(Λ) ≥ 0, λ′2(Λ) + λ′3(Λ) ≥ 0, λ′2(Λ) +
λ′3(Λ)

2
≥ 0,

λ′5(Λ) +
√
λ′1(Λ)(λ′2(Λ) + λ′3(Λ)) ≥ 0,

λ′5(Λ) +

√
λ′1(Λ)

(
λ′2(Λ) +

λ′3(Λ)

2

)
≥ 0,

λ′5(Λ) + λ′4(Λ) +
√
λ′1(Λ)(λ′2(Λ) + λ′3(Λ)) ≥ 0,

and λ′5(Λ) + λ′4(Λ) +

√
λ′1(Λ)

(
λ′2(Λ) +

λ′3(Λ)

2

)
≥ 0.

where the coupling constants are evaluated at an arbitrary running scale Λ.

3.5.2.2 Perturbativity constraints

For the HTM (Y = 2) to behave as a perturbative quantum field theory at any given

scale, one must impose the conditions on the radiatively improved scalar potential

V (Φ,∆) as,

| λ′1,2,3,4,5(Λ) |≤ 4π,
∣∣∣µ(Λ)

Λ

∣∣∣ ≤ 4π.

These conditions imply an upper bound on the couplings λ′s and µ at an energy

scale Λ.
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3.5.2.3 Constraints from unitarity of the scattering matrix

The tree-level unitarity of the S-matrix for elastic scattering imposes the following

constraints [79]:

|λ′5 + λ′4| ≤ 8π, |λ′5| ≤ 8π , |2λ′5 + 3λ′4| ≤ 16π,

|λ′1| ≤ 16π , |λ′2| ≤ 4π |λ′2 + λ′3| ≤ 4π,∣∣∣λ′1 + 4λ′2 + 8λ′3 ±
√

(λ′1 − 4λ′2 − 8λ′3)2 + 16λ′24

∣∣∣ ≤ 32π,∣∣∣3λ′1 + 16λ′2 + 12λ′3 ±
√

(3λ′1 − 16λ′2 − 12λ′3)2 + 24(2λ′5 + λ′4)2

∣∣∣ ≤ 32π,

|2λ′5 − λ′4| ≤ 16π and |2λ′2 − λ′3| ≤ 8π.

3.5.2.4 Constraints from the neutrino mass and the electroweak preci-
sion experiments

Here we would like to discuss the constraints on the parameters coming from elec-

troweak precision tests and from the neutrino mass. In this model, using eqn. 3.25,

neutrino mass can be expressed as (Mν)ij = vt (Yν)ij. Consequently for realistic

neutrino masses its calls for a tiny value of vt or Yν or both.

If Yν ∼ O(1), then to satisfy sub-eV neutrino mass, vt should be O(10−9) GeV. This

can be achieved via the type-II seesaw mechanism. Using eqn. 3.27, for vt << vd,

the triplet VEV can be expressed as vt ≡ µv2
d

M2
∆

. So one can choose a large M∆ to get

a neutrino mass of O(0.1) eV. This mechanism provides neutrino mass naturally.

At this limit, the couplings of the new scalar particles with the SM particles are

vanishingly small. One can take another extreme limit on vt using ρ-parameter at

the tree-level. In this model, the ρ-parameter can be calculated using the eqn. 3.27

and is given by,

ρ =
M2

W

M2
Z cos2 θW

=
1 +

2v2
t

v2
d

1 +
4v2
t

v2
d

,

and thereby changing the ρ-parameter at the tree-level from its SM value ρ = 1.

The electroweak precision measurements require the ρ-parameter to be very close to
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unity 1.0004±0.00024 [10]. This puts a severe restriction on the VEV of neutral CP -

even component of the scalar triplet as, vt < 4 GeV. In order to satisfy the neutrino

mass, Yν should be O(10−9) for vt ∼ O(1) GeV. So in this limit, the explanation of

neutrino masses is quite unnatural. In this case, the coupling of the new extra scalar

particles to SM particles are not as small as in the previous case with vt ≈ 10−9

GeV. The model benchmark points have been chosen with vt = 3 GeV in Chapter

4.

At loop-level, the contributions of the scalar triplet with hypercharge Y = 2 to the

S, T and U parameters are given by [32,80],

SY=2
HTM = − 1

3π
ln
m2

+1

m2
−1

− 2

π

+1∑
T3=−1

(T3 −Qs2
W )2 ξ

(
m2
T3

m2
Z

,
m2
T3

m2
Z

)
,

T Y=2
HTM =

1

16πc2
W s

2
W

+1∑
T3=−1

(2− T3(T3 − 1)) F

(
m2
T3

m2
Z

,
m2
T3−1

m2
Z

)
,

UY=2
HTM =

1

6π
ln

m4
0

m2
+1m

2
−1

+
1

π

+1∑
T3=−1

[
2(T3 −Qs2

W )2 ξ

(
m2
T3

m2
Z

,
m2
T3

m2
Z

)
− (2− T3(T3 − 1)) ξ

(
m2
T3

m2
W

,
m2
T3

m2
W

)]
,

where m+1,0,−1 ≡MH++,H+,H0 and the function ξ(x, y) is defined as [32],

ξ(x1, x2) =
4

9
− 5

12
(x1 + x2) +

1

6
(x1 − x2)2

+
1

4

[
x2

1 − x2
2 −

1

3
(x1 − x2)3 − x2

1 + x2
2

x1 − x2

]
ln
x1

x2

− 1

12
∆(x1, x2)f(x1, x2) .

The definitions of ∆, f and F can be found in eqns. 3.14 and 3.15.

These parameters can be used for constraining the parameter space of this model

from the electroweak precision data [33].

3.5.2.5 Constraints from the LHC

For vt ∼ 1 GeV, the direct search of H±± via pp→ H++H−−, H±± → W ∗±W ∗± →
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µ±νµµ
±νµ process at the LHC, puts a lower bound on MH±± > 84 GeV [81]. If

constraints like the stability, unitarity, T -parameter and µγγ at LHC are considered,

then one can obtain the following lower bounds on the nonstandard scalar masses:

MH+ > 130 GeV, MA,H > 150 GeV [82].

3.5.3 Dark matter in HTM (Y = 2)

If a discrete Z2 symmetry is imposed on the triplet scalar such that the couplings

of an odd number of scalar fields of the triplet with the SM particles are prohibited,

then lightest of H and A can serve as a viable DM candidate which may saturate the

measured DM relic density of the Universe. In this model, the dark matter candidate

can annihilate to the SM particles via the exchange of a Higgs or a Z boson through

s-channel diagrams and H, A and H± mediated t- and u-channel diagrams. As the

dark matter particle can interact with the nucleons through Higgs and Z mediated

t-channel exchanges, the dark matter direct detection cross-sections rather large in

this model. It was shown in Ref. [83], a significant portions of the parameter space

is excluded [83] from direct detection experimental data from XENON and LUX.

3.6 Summary

In this chapter, several extensions of the scalar sector namely, SM+S, 2HDM, HTM

with hypercharge Y = 0, 2 have been explored. At a time, it has been considered

that one such extended sector as a new physics option beyond the SM. It is assumed

that the electroweak symmetry breaking driven by the CP -even component the SM

Higgs doublet and CP -even component of the extra scalar sector. In this case, both

the CP -even scalar gets VEV and scalar field(s) of the extended sector can be mixed

with the scalar fields of the SM Higgs doublet. The Goldstone boson, which is a

combination of the scalar fields of the SM doublet and extra scalar sector, is the

longitudinal component of corresponding vector boson. Also, it has been shown that

the extra scalar fields can have direct couplings with the SM particles, or these may
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get generated after the electroweak symmetry breaking. The other combinations

become new physical scalar fields. It has been seen that depending on the isospin I

and hypercharge Y , the models with extended scalar sectors have different numbers

of neutral and charged scalar fields. Particle spectrum for different scalar extensions

of the standard model has been calculated. For each extension of scalar sector

of the standard model, various theoretical and phenomenological constraints have

been shown. Using the above constraints, one can get allowed parameter space

of these models. In this work, several benchmark points have been chosen, for

which the vector boson scattering cross-section distributions with CM energy of

these new models such as 2HDM, HTM with hypercharge Y = 0, 2 have been shown

in Chapter 4. It has also been discussed in this chapter if one impose a discrete

symmetry Z2 on the extended scalar such that odd number of scalar fields do not

couple with the SM particles then the lightest neutral scalar particle becomes stable.

This scalar field can be taken as a dark matter candidate which may fulfill the relic

abundance of the Universe that will be discussed in Chapter 6.
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Chapter 4

Vector boson scattering in
extended Higgs sector

4.1 Introduction

It has been discussed in the earlier Chapters that the measurement of properties of

this scalar boson at Large Hadron Collider (LHC), is consistent with the minimal

choice of the scalar sector, consisting of a single complex doublet. However, the

data still allow an extended scalar sector, which, in turn, can accommodate a more

elaborate mechanism for the EWSB. One immediate extension of this kind is the

presence of either additional scalar doublet(s) or higher multiplet(s) of SU(2)L.

Even a marginal role of such scalars can in principle be probed in the upcoming

experiments, utilizing their interaction with the electroweak gauge bosons.1

If indeed there are additional scalars that couple with the W -and Z-bosons, longi-

tudinal vector boson scattering (VBS) including scalar exchanges should provide a

complementary way to direct search methods to probe into the scalar sector. In the

SM, the Higgs boson helps preserve the unitarity of the S-matrix for the longitudinal

electroweak vector boson scattering VLVL → VLVL. The Higgs boson mediated dia-

gram precisely cancels the residual s-dependence (where
√
s denotes the energy in

1It should be noted that the new scalars may not always participate in the EWSB, e.g. as in
the inert scalar model [15,36].

69
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the center-of-mass frame), thus taming the high energy behavior of the cross-section

appropriately [84]. With an extended scalar sector, the preservation of unitarity

could be a more complex process. Several factors then modify the
√
s-dependence

of the VLVL scattering. The first of these is the modification, albeit small, of the

strength of the 125 GeV scalar to gauge boson pairs. Secondly, the extent of the

influence of other scalars present in an extended scenario depends on their gauge

quantum numbers and on the theoretical scenario in general. Thirdly, the observed

mass of the 125 GeV scalar makes it kinematically impossible for it to participate as

an s-channel resonance in VLVL scattering processes. However, such resonant peaks

may in general occur when heavier additional scalars enter into the arena.

One can thus expect that the
√
s-dependence of VLVL scattering cross-sections will

be modified with respect to SM-expectations as a result of the above effects. Such

modifications have been formulated in terms of certain general parameters in some

recent studies [85–88]. An apparent non-unitarity of the scattering matrix may be

noticed here when the SM-like scalar with modified interaction strength is partici-

pating as the only scalar. However, unitarity is restored once the complete particle

spectrum is taken into consideration. We emphasize here that the three effects men-

tioned above leave the signature of the specific non-standard EWSB sector in the

modified energy-dependence, as long as the new scalars have their masses within or

about the TeV-range.

To further elaborate our point, the purpose of writing this chapter is twofold. Using

resonances at various VLVL (where V ≡ W± or Z) scattering processes, we illustrate

that it may be possible to distinguish between different extensions of the scalar

sector, once the high-energy run of the LHC continues long enough. The shapes of

the energy-dependence curves, especially the presence of resonant peaks, can shed

light on the relevant scalar spectra of these models. We use for illustration some

popular extensions like the Type-II two Higgs doublet model (2HDM) and real as
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well as complex Higgs triplet models (HTM). It is shown in the ensuing study how

the
√
s-dependence of the cross-sections reflect the characteristics of each of these

scenarios so long as the additional scalars lie within about 2 TeV. This supplements

rather faithfully other LHC-based phenomenology, and thus spurs the improvement

of techniques to extract the dependence of VLVL scattering cross-sections on
√
s.

The other goal is to present analytical expressions for VLVL scattering amplitudes

in these otherwise well-motivated models. To the best of our knowledge, these full

expressions have not yet been presented in the literature.

4.2 Polarization of Vector Bosons

To handle the electroweak sector, one of the main focus of this work is the polariza-

tion of the massive vector bosons W± and Z. In this section, the longitudinal and

transverse modes of the vector bosons will be defined.

The Lagrangian of a vector boson fields with mass m is given by,

L = −1

4
F µνFµν −

m2

2
AµAµ. (4.1)

This Lagrangian is not gauge invariant because the mass term violates the U(1)

symmetry. The field strength tensor is given by, F µν = ∂µAν − ∂νAµ. Using the

Euler-Lagrange equation ∂µ
(

∂L
∂µAν

)
− ∂L

∂Aν
= 0, the equation of motion of the gauge

fields can be obtained for Lagrangian of eqn. 4.1 as,

− ∂µFµν −m2Aν = 0. (4.2)

In the momentum space, these equations can be written as,

− p2Aν + pνp
µAµ −m2Aν = 0.

Now multiply this equation with pν to get,

− p2pνAν + p2pµAµ −m2pνAν = 0

⇒ pνAν = 0.

This reduces the numbers of independent components of the polarization vector of

a massive vector boson to three.



72 Chapter 4. Vector boson scattering in extended Higgs sector

For the massless field, one write eqn. 4.2 as,

∂µFµν = 0⇒ p2Aν − pνpµAµ = 0. (4.3)

These are the Maxwell equations which also give, pµAµ = 0, i.e., three degrees of

freedom remains for a massless vector field. Masslessness of the photon demands

the corresponding Lagrangian is invariant under a gauge transformation,

Aµ → Aµ + ∂µf, (4.4)

where f is an function that satisfies �2f = 0. Now, one can choose f such that

A0(p) = 0, which is not possible for massive vector fields. So for the massless photon,

we have an extra constraint on the vector fields due to the gauge invariance. Thus,

the photon has only two polarization vectors which are transverse to the three-

momentum of the photon.

Now the polarization vector will be calculated in terms of momentum and energy

for a massive vector boson. The components of the polarization vector in x-, y-, and

z-directions are chosen as,

εµx = (0, 1, 0, 0),

εµy = (0, 0, 1, 0),

εµz = (x1, x2, x3, x4).

The polarization vector follows,

εi.εj = −δij, and p.ε(p) = 0, (4.5)

where pµ = (E, px, py, pz) is the four momentum of the vector boson. Using eqn. 4.5,

we get, x2 = x3 = 0 and,

εz.εz = −1 ⇒ x2
1 − x2

4 = −1,

p.ε(p) = 0 ⇒ px = 0, py = 0 and x4 =
E

pz
x1.

Thus, we get x1 = |p|
m

, with |p| =
√
p2
x + p2

y + p2
z and x4 = E

m
. The polarization

vector along the z-axis can be written as,

εz =

( |p|
m
,
E

m
p̂

)
. (4.6)
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This is the longitudinal component and the combinations ε± = 1√
2
(εx ± iεy) are the

transverse components of the polarization vector corresponding to a massive vector.

From the above, it is evident that the longitudinal polarization of vector bosons

grows with energy, whereas transverse components are independent of energy. Hence,

at high energies E � m one expects that longitudinal mode of the gauge bosons

dominates over transverse modes. This is the difference between the longitudinal

and transverse components of the gauge bosons.

4.3 Connection with Electroweak Symmetry Break-
ing

In the SM, after EWSB the charged scalar fields G± and G0 of the scalar doublet

are eaten by the W± and Z gauge bosons respectively, which become massive and

also gain a third, longitudinal polarization. The longitudinal component of massive

gauge boson is a Goldstone scalar field that belongs to the SM doublet. So through

vector bosons scattering one can explore the Higgs sector.

In the extended scalar sectors such as doublet-, or triplet-extensions, one of the

linear combination of charged scalar fields is eaten by the W boson which becomes

massive, other combinations of fields become massive charged scalar fields. Simi-

larly, a combination of pseudo scalars become the longitudinal part of massive Z

gauge boson and the other combinations survive as physical pseudoscalars. One can

use VBS processes to find the nature of the electroweak symmetry breaking in the

presence of these extra scalars. In future colliders, if we find any direct signature

of the extended scalar sector then this study will supplement our knowledge about

these scalars obtained from direct searches.

In the following section, the study of the scattering cross-section using the partial

wave analysis will be reviewed.
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4.4 Scattering cross-section: Partial Wave Anal-
ysis

Let us consider a mono-energetic beam of particles being scattered by a target

located at (0, 0, 0). We will work here in the spherical coordinate system,

(r sin θ cosφ, r sin θ sinφ, r cos θ)

It is assumed that the detector covers a solid angle dΩ = sin θdθdφ in the direction

(θ, φ) from the scattering center and the incoming beam travels along the z-axis.

The wave vector is given by,

~k =

√
2mE

~
ẑ,

where E is the energy of the incident beam. The number of particles per unit time

entering the detector is NdΩ. The differential cross-section can be written as,
dσ

dΩ
=
dn

Fin
, (4.7)

which is defined as the number dn of particles scattered into the direction (θ, φ)

per unit time, per unit solid angle, normalized by the incident flux. Here Fin is the

incident flux of the beam, which is defined as the number of particles per unit time,

crossing a unit area placed normal to the direction of incidence. In the next, we will

calculate the differential cross-section.

The plane wave of the incident particles are defined as ψ = Aeikz, with normalization

A. The wave encounters a scattering potential producing an outgoing spherical wave.

At large distances from the scattering center, one can decompose the wave function

ψ(r) into a part eikz describing the incident beam and a part ψsc for the scattered

particles. As the collision is elastic, i.e., the energies of the incident and scattered

particle are the same, one can write the wave function as,

ψ(r)
∣∣∣
r→∞

≈ eikz + f(θ, φ)
eikr

r︸ ︷︷ ︸
ψsc

. (4.8)

The function f(θ, φ) represents the amplitude of the scattering and depends on the

interaction of the incident particles. For momentum dependent coupling between
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particles, the function f is expressed as f ≡ f(k, θ, φ) to include dependence on

the incident energy and momentum of the particles. If the target is azimuthally

symmetric then f is independent of φ, thus f ≡ f(k, θ).

The current density is associated with the wave function, ψ, is given by,

~J =
~

2m

[
ψ∗~∇ψ − ψ~∇ψ∗

]
=

1

m
Re

[
~
i
ψ∗~∇ψ

]
. (4.9)

Using eqn. 4.9, we can calculate both the incident flux and the number of scattered

particles. The incident flux Fin with probability constant C, is given by,

Fin = CJin = C
~k
m
.

The scattered particle current density can be written as,

Jsc =
1

m
|f(θ, φ)|2~k

r2
. (4.10)

The number of scattered particles crossing the area ~ds = dsr̂ is given by,

dn = C ~Jsc. ~ds

= C
~k
m
|f(θ, φ)|2dΩ

= Fin|f(θ, φ)|2dΩ,

where dΩ = ds
r2 the solid angle subtended by the area ds. Comparing the above

equation with eqn. 4.7, we get the differential cross-section as,
dσ

dΩ
=
dn

Fin
= |f(θ, φ)|2.

The function, f(θ, φ), actually gives us information about the probability ampli-

tude for scattering processes in a direction (θ, φ). In the following, the Schrödinger

equation of the scattering particles will be solved to find the scattering amplitude.

Let us consider a target of fixed central potential V (r). The angular momentum ~L of

the particles is constant under the central potential. There exists a stationary state

which is a common eigenstate of the operator Hamiltonian H, angular momentum

~L and z-component of angular momentum(Lz). We can write the wave function as

ψnlm. This can be written as,

ψnlm = Rl(r)Y
m
l (θ, φ).
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As we have considered the azimuthal symmetry, the above equation is independent

of φ, i.e., m = 0. The spherical harmonics are then given by,

Y 0
l (θ, φ) =

√
2l + 1

4π
Pl(cos θ).

Let us now solve the radial part of the wave function. From the Schrödinger equation

of the wave function ψ, [
− ~2

2m
∇2 + V (r)

]
ψ = Eψ

one gets, [
d2

dr2
+

2

r

d

dr
−
{ l(l + 1)

r2
+

2m

~2
V (r)− k2

}]
Rl(r) = 0

⇒ d2(rRl(r))

dr2
−
[
l(l + 1)

r2
+

2m

~2
V (r)− k2

]
(rRl(r)) = 0.

The solution of the radial part Rl(r) of the wave function can be written as,

Rl(r) = Jljl(kr) +Nlηl(kr)

where jl(kr) and ηl(kr) are the Bessel and Neumann functions. Jl and Nl are the

normalization constants, independent of r. The scattering potential is assumed to

be short-ranged, i.e., V (r)→ 0 at large distance r and the particles are free from the

scattering potential. In the free region, r →∞, the Bessel and Neumann functions

can be written as,

lim
r→∞

jl(kr)→
sin
(
kr − lπ

2

)
kr

and lim
r→∞

ηl(kr)→
cos
(
kr − lπ

2

)
kr

. (4.11)

Using eqns. 4.11, one gets the radial part of the wave function ψ,

lim
r→∞

Rl(r) = Cl
sin
(
kr − lπ

2
+ δl

)
kr

.

The normalization constant Cl and phase δl are related with the Jl and Nl as,

Cl =
√
J2
l +N2

l and δl = −Nl

Jl
.

Rl(r) can be written in the form of incoming and outgoing waves as,

Rl(r) →
1

kr
Cl
e(kr−

lπ
2

+δl) − e−(kr− lπ2 +δl)

2i

=
1

2ikr
Cle
−iδle−

lπ
2

(
ekre2iδl − ile−kr

)
.
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The solution of the wave function of the free particle is given by

ψnlm =
1

2ikr

∞∑
l=0

Cle
−iδle−

lπ
2

(
ekre2iδl − ile−kr

)
Pl(cos θ). (4.12)

The wave function ψ = eikz is independent of azimuthal angle φ so that only the

Ylm with m = 0, which are proportional to the Legendre polynomials Pl(cos θ), can

contribute to the expansion as,

eikz =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ)

=
∞∑
l=0

il(2l + 1)
sin
(
kr − lπ

2

)
kr

Pl(cos θ), as r →∞

=
1

2ikr

∞∑
l=0

(2l + 1)e−
lπ
2

(
ekr − ile−kr

)
Pl(cos θ). (4.13)

Using eqn. 4.13 in eqn. 4.8, we get the wave function of the scattered particles as,

ψ(r)
∣∣∣
r→∞

≈ eikz + f(θ, φ)
eikr

r

=
1

2ikr

∞∑
l=0

(2l + 1)e−
lπ
2

(
ekr − ile−kr

)
Pl(cos θ) + f(θ, φ)

eikr

r
. (4.14)

Comparing eqn. 4.12 and eqn. 4.14, one can get, Cl = il(2l + 1)eiδl and,

f(θ, φ) =
1

2ik

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cos θ)

=
1

k

∞∑
l=0

(2l + 1)alPl(cos θ). (4.15)

One can find al from the above equations as,

al = e2iδl − 1 = eiδl sin δl. (4.16)

The real and imaginary part of al follows equation of the unitary circle (Fig. 4.1)

as,

|al| ≤ 1⇒ [Re(al)]
2 +

[
Im(al)−

1

2

]2

≤
(

1

2

)2

. (4.17)

So the scattering amplitude obeys the unitarity conditions. In the previous discus-

sions, the quantum mechanical scattering cross-section has been calculated using the

method of partial wave analysis. How this quantum mechanical scattering ampli-

tude f(θ, φ) is related to the Feynman amplitude in Quantum Field Theory (QFT)
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will be shown now.

- 0.5 0 0.5
Re H al L

0.5

1

ImH al L

Figure 4.1: Argand diagram of the function al in Re(al)− Im(al) plane is a unitary
circle with radius 0.5.

Let us consider a scattering process for which the Feynman amplitude M can be

expressed as a function of CM energy
√
s and scattering angle θ or equivalently, of

the Lorentz-invariant Mandelstam variables s, t and u. The differential cross-section

is defined as,
dσ

dΩ
=

1

64π2s
|M|2 = |f(θ, φ)|2, (4.18)

where M is the Feynman amplitude. Comparing with eqn. 4.15 one can write the

following relation as,

M = 16π
∞∑
l=0

(2l + 1)alPl(cos θ). (4.19)

Using eqn. 4.19 and putting into eqn. 4.18,

dσ

dΩ
=

1

64π2s
(16π)2

∞∑
l=0

(2l + 1)2|al|2 [Pl(cos θ)]2

=
4

s

∞∑
l=0

(2l + 1)2|al|2 [Pl(cos θ)]2 .

Now we get the total cross-section after integrating the differential cross-section over

the solid angle (dΩ = −2πd(cos θ)),

σ =
8π

s

∞∑
l=0

(2l + 1)2|al|2 ×
∫ 1

−1

[Pl(cos θ)]2 d(cos θ)
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=
8π

s

∞∑
l=0

(2l + 1)2|al|2 ×
2

(2l + 1)

=
16π

s

∞∑
l=0

(2l + 1)|al|2. (4.20)

Multiplying both sides of eqn. 4.19 with Pl(cos θ) and integrating with respect to

cos θ from −1 to +1, one gets,

al =
1

32

∫ +1

−1

M(θ)Pl(cos θ)d(cos θ). (4.21)

where al are the partial wave coefficients corresponding to specific angular momen-

tum values l. If the amplitude at tree level increases with energy then the unitary

bound is violated after certain energy, then the theory becomes sick and can indicate

the incompleteness of theory.

In the SM, various vector bosons scattering processes such as W±
LW

∓
L → W±

LW
∓
L ,

W±
LW

±
L → W±

LW
±
L , W±

LW
∓
L → ZLZL, W±

L ZL → W±
L ZL and ZLZL → ZLZL have

been reviewed. It has been checked that without a Higgs boson, the unitarity con-

dition is not fulfilled at high energies. The inclusion of Higgs-mediated diagrams

restores unitarity rather spectacularly. Any extended scalar sector is in general ex-

pected to satisfy the unitarity condition, unless one can come to terms with strongly

coupled physics controlling electroweak interactions at high energy. Thus the VLVL

scattering cross-sections in a ‘well-behaved’ new physics scenario should fall at high

center-of-mass energies. However, if the scattering process involves the participa-

tion of an s-channel resonance at mass M , then one expects a peak at
√
s = M ,

above which the cross-section should die down gradually. The energy-dependence of

the cross-sections, along with the appearance (or otherwise) of such resonant peaks

should thus be computed if one has to verify the imprints of new physics in VBS

when the appropriate measurements are feasible.

In this work, the amplitudes have been calculated in different models, using the

exact expressions for polarization vectors (see appendix A.1), as we are dealing
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with the energy range (∼ 200 GeV → 2000 GeV). However, we have checked that

at the high-energy limit, our results are consistent with calculations based on the

equivalence theorem.

4.5 Benchmark points in different models for VLVL
scattering

In the Chapter 3 detailed theoretical and experimental constraints on extended

scalar sectors namely type-II 2HDM, HTM (Y = 0), and HTM (Y = 2) had been

discussed. Measurements of the couplings at LHC of SM-like Higgs with the vector

bosons (see table 1.2 of Chapter 1) put indirect constraints on the models with

an extended scalar sector. For example, a charged Higgs can contribute to hγγ at

one loop. In our analysis, the heavier scalars are taken to be heavy so that hγγ

constraints are not that important. hWW and hZZ coupling measurements at

present agrees with SM values, thereby restricting couplings of the heavier scalars

appreciably. As a result, 2HDM is pushed towards the alignment regime where

couplings of heavier Higgs bosons with SM gauge bosons tend to vanish. We have

taken care of all such constraints at 1σ in our analysis.

Benchmark points used for VLVL scattering:

type-II 2HDM:

(i) cos(β − α) = 0.04, MH± 'MH = 500 GeV, ΓH± = 3.6 GeV, ΓH = 7 GeV

(ii) cos(β − α) = 0.08, MH± 'MH = 500 GeV, ΓH± = 3.7 GeV, ΓH = 6.7 GeV

(iii) cos(β−α) = 0.02, MH± 'MH = 1500 GeV, ΓH± = 25.4 GeV, ΓH = 26.8 GeV

(iv) cos(β − α) = 0.04, MH± ' MH = 1500 GeV, ΓH± = 101.9 GeV, ΓH = 106.7

GeV

HTM (Y = 0):

(i) sin γ = 0.023, v′t = 3 GeV, MH± 'MH = 500 GeV, ΓH± = 0.167 GeV, ΓH = 0.12
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GeV

(ii) sin γ = 0.024, v′t = 3 GeV, MH± 'MH = 1500 GeV, ΓH± = 5.8 GeV, ΓH = 4.8

GeV

HTM (Y = 2):

(i) sin γ′ = 0.025, vt = 3 GeV, MH±± ' MH± ' MH = 500 GeV, ΓH±± = 0.0001

GeV, ΓH± = 0.006 GeV, ΓH = 0.023 GeV

(ii) sin γ′ = 0.024, vt = 3 GeV, MH±± ' MH± ' MH = 1500 GeV, ΓH±± = 0.0002

GeV, ΓH± = 0.023 GeV, ΓH = 0.635 GeV

N.B.: The similar notations have been followed for the above models as in the

Chapter 3.

4.6 VLVL scattering with extended scalar sectors

Next, we demonstrate how it is possible to distinguish among 2HDM, HTM (Y = 0)

and HTM (Y = 2) using the five VBS processes: W+
LW

−
L → W+

LW
−
L , W+

LW
−
L →

ZLZL, ZLZL → ZLZL, W+
LW

+
L → W+

LW
+
L and W+

L ZL → W+
L ZL. One can im-

mediately see that the mediating scalar can be a neutral scalar, as also a singly or

doubly charged Higgs. Thus the very constituents of 2HDM or triplet scenarios are

potential players in the game.

Two things turn out to be crucial here: (a) nature of the energy-dependence, and

(b) the center-of-mass energy at which the resonances occur. The shape of the

resonance depends on the decay width, and hence, on the mass and the coupling of

the resonating scalar. Thus an identification of the resonance can guide one to the

theoretical scenario including the particle spectrum.

In any model with an extended scalar sector around a TeV, the very fact that the

V V h interactions (V ≡ W,Z and h ≡ the 125 GeV scalar) are largely SM-like

makes the non-resonant additional contributions small. In 2HDM, however, these
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constraints allow enough parameter space for the heavier scalars to have a large

decay width so that the effect of resonances can be felt for a wider range of
√
s. In

HTM models, however, this is not the case and the resonances are narrow.

For a 2HDM scenario, the lighter CP -even scalar in the particle spectrum is usually

interpreted as the SM-like Higgs. Going especially by the rate of decays into pairs of

gauge bosons, the couplings of this state is expected to be ‘nearly SM-like’, implying

that a 2HDM can be feasible largely in the ‘alignment limit’. Recent LHC data

are by and large consistent with this limit [89]. Hence we have performed our

analysis almost in that limit. Among the five scattering modes, we have resonant

peaks for only three channels, namely, W+
LW

−
L → W+

LW
−
L , W+

LW
−
L → ZLZL and

ZLZL → ZLZL (see Fig. 4.2) involving the heavier CP -even Higgs H. We have set

its mass MH of at two benchmark values (500 GeV and 1500 GeV) which are given

in Section 4.5. The corresponding decay widths (ΓH) can also be read off from the

resonance peaks in Fig. 4.2. Using the high-energy scattering amplitudes given in

Appendices A.1 and A.3, we should be able to predict the shapes of plots which

contain such resonance peaks. It is quite evident from the plots, that apart from

the occurrence of the peaks, the cross-sections are almost SM-like, as expected in

the alignment limit.

Let us decompose the aforementioned amplitude2 as M = Mgauge,h +MH , where

MH is proportional to 1/(E2
CM−M2

H). When ECM < MH , the H mediated diagram

interferes constructively with the remaining terms, due to which the interference

contributions to cross-section increases with energy. On the other hand, for ECM >

MH , MH interferes destructively, and hence its contribution to the cross-section

decreases. In the high-energy limit (ECM �MH), the amplitudes can be expressed

as a power series in the energy (see eqn. A.9 of Appendix A.3). In this limit the terms

2This decomposition is not relevant for ZLZL → ZLZL, since in this process there is no gauge
boson mediated Feynman diagram.
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proportional E4
CM as well as E2

CM of the amplitude become zero. The remaining

terms are either independent of energy or go in negative powers of energy, so that

the cross-section decreases with rising energy, thus ensuring perturbative unitarity.

It has been seen that in expansion of |M|2, square of the termMH which containing

the factor
Γ2
HM

2
H

(E2
CM−M

2
H)2+Γ2

HM
2
H

, is always larger than the interference term that contains

(E2
CM−M

2
H)

(E2
CM−M

2
H)2+Γ2

HM
2
H

near the pole. However, depending on the relative magnitudes of

Mgauge,h and MH , the interference term may dominate over |MH |2 away from the

pole. It should be also noted here that due to the absence of W±ZH± couplings in

2HDM, there are no Feynman diagrams mediated by H± (s-channel) for W+
L ZL →

W+
L ZL. Moreover, 2HDM does not contain H±± which can mediated the process

W+
LW

+
L → W+

LW
+
L . Therefore, for 2HDM we have no peaks for these two processes.

The cross-sections for these processes are also similar to that of SM, due to the

feeble coupling strength of H with gauge bosons.

As has been mentioned already, we have also studied triplet models with two dif-

ferent values of the U(1) hypercharge (Y = 0 and 2). In these models we can have

interactions of charged scalars with pairs of gauge bosons.

Of these, we primarily focus on a Y = 2 HTM. This scenario is relevant in the

context of the type-II seesaw mechanism of neutrino mass generation, and it also

arises in left-right symmetric gauge theories. Now the question is how to isolate such

a scenario from a Y = 0 HTM or even a type-II 2HDM models? our findings will

be summarized in Table 5.1 which clearly indicates that HTM (Y = 0) and 2HDM

can be distinguished via a s-channel H+ resonance in W+
L ZL → W+

L ZL scattering

process, as H+ couples to W+ and Z only in the triplet models.

The other aspect which might help in such a distinction is the width of the reso-

nances: In 2HDM the allowed parameter space allows for a wider resonance than

that in the HTM models. But width of the resonances does not help in identifying

the hypercharge of the scalar triplet.
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Figure 4.2: Plots for V V scattering in 2HDM.
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Figure 4.3: Plots for V V scattering in Y=0, HTM.
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Figure 4.4: Plots for V V scattering in Y=2, HTM.
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Process 2HDM HTM(Y = 0) HTM(Y = 2)

W+
LW

−
L → W+

LW
−
L 3, (H) 3, (H) 3, (H)

W+
LW

+
L → W+

LW
+
L 7 7 3, (H++)

W+
LW

−
L → ZLZL 3, (H) 3, (H) 3, (H)

W+
L ZL → W+

L ZL 7 3, (H+) 3, (H+)

ZLZL → ZLZL 3, (H) 3, (H) 3, (H)

Table 4.1: Different scattering processes and corresponding mediator particles for
resonance in various extended scalar sectors. “3” indicates presence of a resonance
where as “7” corresponds to no resonance peak.

As HTM (Y = 2) contains a H++ that can couple to a pair of W+, in contrast

to the 2HDM and HTM (Y = 0) models, the distinguishing feature of this model

would be a s-channel H++ resonance in W+
LW

+
L → W+

LW
+
L scattering process.

4.7 Summary

In this chapter, the elastic scattering of different modes of longitudinally polarized

gauge bosons in various extended scalar sectors has been considered. The exact

expression of longitudinal polarization vectors has been used to determine the scat-

tering cross-sections. Generally, the idea of VLVL scattering has been used for the

proper understanding of the EWSB or in other words to perceive the importance

of Higgs boson. In this analysis, a quantitative study of VLVL scattering has been

carried out to probe the various non-standard scalars in various BSM scenario at an

intermediate energy-range.

In this analysis, the parameter space of these models has been scanned via several

theoretical as well as phenomenological constraints. From the allowed parameter

space, several benchmark points have been picked up for which the CM energy

dependence of scattering cross-sections of different VBS modes in several models

have been shown.
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As far as model benchmark points are concerned, we have chosen only those regions

of the parameter space which satisfy all the existing constraints. The present LHC

data have allowed only a small portion of the parameter space of these models, thus

we are compelled to execute our analysis in the restricted parameter space. As a

result the cross-section is very much similar to the SM case away from the peaks. To

differentiate between different extended scalar sectors from VBS one need to look

for resonances at different VBS modes.

In this analysis to illustrate the effect of the non-standard scalar particles, two

different masses have been chosen, ∼ 500 GeV and other is at the relatively higher

∼ 1500 GeV. Depending on the model parameters of a particular model and for a

particular process the height and width of the peaks (if present) at the two different

values of mass range of the heavier scalars are different from each other, as these

are controlled by mass and corresponding decay width of those non-standard scalars

which we want to probe via VLVL scattering. If we consider a particular process then

we can differentiate between the different models from the nature of these peaks. So

this analysis provides an exclusive approach to discriminate the different extended

scalar sectors.
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Metastability in Standard Model

5.1 Introduction

If one assumes the standard model is valid up to the Planck MPl scale then the

Higgs potential develops a second minimum near MPl that is much deeper than

the electroweak (EW) vacuum in which we live. This implies absolute stability of

the EW vacuum (minimum) is excluded at a confidence level of about 3σ. For

the measured experimental values of the SM parameters the instability (the Higgs

quartic coupling λ becomes negative) occurs at scales larger than 1010 GeV. The

instability problem does not necessarily lead to an inconsistency of our existence at

the EW scale. The transition time from the EW vacuum to its deeper minimum is

spectacularly greater than the lifetime of the Universe. New physics can change the

stability of EW vacuum modifying the SM Higgs potential.

When extrapolating the known physics to higher energy scales, renormalization of

the known parameters plays a crucial role. The parameters of the theory involved

in a physical process, are dependent on the energy scales.

In this chapter, the metastability of the SM is revisited. The stability of the SM

potential and mass bounds of the Higgs from the (meta)stability, instability, and

perturbativity will be reviewed. Finally in the summary, the interpretation of the

89
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instability problem and possible hints about the new physics at or below the insta-

bility scale will be discussed.

5.2 Effective Higgs potential in the Standard Model

In this section, the structure of the Higgs potential from the EW scale to the Planck

scale MPl will be analyzed. In this study, the Higgs scalar potential up to two-loop

quantum corrections is used and it has been improved by three-loop renormalization

group running of the coupling parameters.

The SM tree-level Higgs potential is given by,

V SM
0 (φ) = −1

2
m2φ2 +

1

4
λφ4. (5.1)

In Landau gauge using ms scheme, the SM Higgs potential up to two-loop can be

found in Refs. [13,90,91]. The one-loop potential can be written as,

V SM
1 (φ) =

5∑
i=1

ni
64π2

M4
i (φ)

[
ln
M2

i (φ)

µ2(t)
− ci

]
, (5.2)

where ni is the number of degrees of freedom. For scalars and gauge bosons, ni

comes with a positive sign, whereas for fermions it is associated with a negative

sign. Here cH,G,f = 3/2, cW,Z = 5/6 and µ(t) is related to the running parameter t

as, µ(t) = MZ exp(t). Mi(φ) is given by,

M2
i (φ) = κi(t)φ

2(t)− κ′i(t),
ni, κi and κ′i can be found in eqn. (4) of Ref. [92] (see also Refs. [93–96]). It has been

observed that the variation in the mass term m2 of the Higgs potential from the EW

scale to MPl is very small. One can neglect it for φ� 1 TeV. Also, the β-functions

of eqns. B.5-B.8 are independent of m2. In this work, the RGE of m2 has not been

considered. The running energy scale µ is replaced with the field φ in the potential

[92] such that all the couplings of the SM remain within the perturbative domain.

For φ� v, the quantum corrections to V (φ), are reabsorbed in the effective running

coupling λeff (see eqn. B.1) such that the effective potential becomes,

Veff(φ) ' 1

4
λeffφ

4. (5.3)
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The matching conditions and RG evaluation of the SM couplings, which play an

important role in the stability of the Higgs potential will be discussed in the next

section.

5.2.1 Matching conditions and RG evaluation of the SM
couplings

Using matching conditions one can evaluate the coupling constants at the highest

mass scale of the SM namely the top quark mass Mt and then run them according

to the RGEs up to the Planck scale. To know their values at Mt, one should take

into account various threshold corrections up to Mt [97–99],

gi(Mt) = gi(MZ) + δgi(Mt). (5.4)

λ(Mt) =
M2

h

2v2
(1 + δH(Mt)) . (5.5)

yt(Mt) =

√
2Mt

v
(1 + δt(Mt)) . (5.6)

All coupling constants are expressed in terms of pole masses (see table. 5.1). To

calculate g1(Mt) and g2(Mt), one-loop RGEs are enough. For g3(Mt), first three-

loop RGE running of αs with five flavors excluding the top quark are used, and

then the effect of top is included using prescriptions of an effective field theory.

The leading term in four-loop RGE for αS is also taken into account. Amongst all

Yukawa couplings, the running of yt is the most significant. yt(Mt) is related to the

top pole mass Mt by the matching condition eqn. 5.6. In δt(Mt), three-loop QCD,

one-loop EW, and two-loop O(ααS) corrections are taken into account. Similarly,

the relation between λ(Mt) in ms scheme and Higgs pole mass Mh is given in eqn. 5.5.

In δH(Mt), one-loop EW, two-loop O(ααS), two-loop O(y4
t g

2
3) and two-loop O(y6

t )

corrections are considered. The loop effects considered in these matching conditions

are comparable to Refs. [13, 100]. After knowing the values of various coupling

constants at Mt, full three-loop SM RGEs are used to run them up to MPl.

Using these matching conditions one can estimate all the coupling constants at the
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Physical Observable Value Reference

Pole mass of the W± boson MW 80.384 ± 0.014 GeV [101]

Pole mass of the Z boson MZ 91.1876 ± 0.0021 GeV [102]

Pole mass of the Higgs Mh 125.7 ± 0.3 GeV [103]

Pole mass of the top quark Mt 173.1 ± 0.6 GeV [104]

VEV 246.21971 ± 0.00006 GeV [105]

αS(MZ) 0.1184 ± 0.0007 [106]

Table 5.1: SM observables which can be taken as input to fix the SM fundamental
parameters g1, g2, g3, yt and λ.

scale Mt including the uncertainty in Mt, Mh and αs(MZ) (see table 5.1) as:

g1(µ = Mt) = 0.358725 + 0.000007

(
Mt [GeV]− 173.1

0.6

)
(5.7)

g2(µ = Mt) = 0.64818− 0.00002

(
Mt [GeV]− 173.1

0.6

)
(5.8)

g3(µ = Mt) = 1.16449− 0.0003

(
Mt [GeV]− 173.1

0.6

)
+0.0031

(
αS(MZ)− 0.1184

0.0007

)
(5.9)

yt(µ = Mt) = 0.935643 + 0.0033

(
Mt [GeV]− 173.1

0.6

)
− 0.0004

(
αS(MZ)− 0.1184

0.0007

)
−0.00001

(
Mh [GeV]− 125.7

0.3

)
(5.10)

λ(µ = Mt) = 0.127054− 0.00003

(
Mt [GeV]− 173.1

0.6

)
−0.00001

(
αS(MZ)− 0.1184

0.0007

)
+ 0.00061

(
Mh[GeV]− 125.7

0.3

)
(5.11)

As running of all the SM couplings is being considered up to the Planck scale, the

values at very high energies are extremely sensitive to the initial values at Mt. These

changes should be taken into account because it will also affect the stability of EW

vacuum of Higgs potential. However, the stability of the Higgs potential does not

alter due to the uncertainties in the other SM parameters at Mt. Setting all the

couplings at Mt, using the RG-eqns. B.5-B.9, one can obtain the SM couplings at
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Figure 5.1: (a) RG evolution of the gauge couplings g1, g2, g3, top Yukawa coupling
yt, Higgs self-quartic coupling λ in ms scheme and (b) RG evolution of λ in the SM
and in the panes 3σ bands for Mt, Mh and αs(MZ) are displayed.

MPl as:

g1(µ = MPl) = 0.477685 + 0.00002

(
Mt [GeV]− 173.1

0.6

)
+0.00001

(
αS(MZ)− 0.1184

0.0007

)
+10−8

(
Mh[GeV]− 125.7

0.3

)
(5.12)

g2(µ = MPl) = 0.505632− 0.00001

(
Mt [GeV]− 173.1

0.6

)
−0.00001

(
αS(MZ)− 0.1184

0.0007

)
+10−9

(
Mh[GeV]− 125.7

0.3

)
(5.13)

g3(µ = MPl) = 0.48714− 0.00002

(
Mt [GeV]− 173.1

0.6

)
(5.14)

+0.0002

(
αS(MZ)− 0.1184

0.0007

)
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+10−9

(
Mh[GeV]− 125.7

0.3

)
(5.15)

yt(µ = MPl) = 0.38227 + 0.00304

(
Mt [GeV]− 173.1

0.6

)
+0.0009

(
αS(MZ)− 0.1184

0.0007

)
−8× 10−6

(
Mh[GeV]− 125.7

0.3

)
(5.16)

λ(µ = MPl) = −0.0122748− 0.003935

(
Mt [GeV]− 173.1

0.6

)
−0.00209

(
αS(MZ)− 0.1184

0.0007

)
+0.0008

(
Mh[GeV]− 125.7

0.3

)
(5.17)

The couplings g1, g2, g3, yt and λ have been plotted with the running energy in

Fig. 5.1(a) and only the Higgs quartic coupling λ has been shown in Fig. 5.1(b). In

Fig. 5.1(b), the blue solid line corresponds to the measured central values of Mt, Mh

and αS(MZ), the blue band belongs to the 3σ deviation in Mh, whereas the red and

black correspond to the deviation in αS(MZ) and Mt respectively. As the running

of the Yukawa couplings of the other quarks and leptons are very small, these are

not included in this analysis.

As defined in eqn. 5.3, λeff differs from λ as it takes care of quantum corrections. It

has been observed that for high energy scale φ � v, the difference in λeff and λ is

not appreciable (see Fig. 5.2). In the stability analysis, λeff has been used instead

of λ.

The Higgs quartic coupling, λ or λeff becomes negative after µ ∼ 1010 GeV. This

corresponds to the metastability of the EW vacuum. The detailed study of the

metastability of the Higgs potential will be carried out in the next section.
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Figure 5.2: Higgs quartic coupling λ and effective λeff-function as a function of
running RGE scale.

5.2.2 Metastability and Tunneling Probability

The Higgs quartic coupling determines the shape of the Higgs potential V (φ). How

it changes with the running energy and why an extra deeper minimum in the Higgs

potential is located near the Planck scale, will be discussed in the following.

One can realize from the β-function of the coupling constants of eqns. B.5-B.8 and

Fig. 5.1 that except the gauge coupling g1, the other SM couplings are the decreasing

functions of the running energy. The top Yukawa coupling yt decreases due to the

dominant contributing term −8ytg2
3

16π2 , which is present in βyt . Similarly in the β-

function of the gauge couplings g2 and g3, the dominant contributions are − 7g2
3

16π2

and − 19g2
2

96π2 respectively. But the running of the Higgs quartic coupling is of different

nature than the other SM couplings.

In Fig. 5.3, for the central values (including the other SM parameters) of Mt = 173.1

GeV,Mh = 125.7 GeV and αS(MZ) = 0.1184, the variation of Higgs quartic coupling

λ (blue) and corresponding β-function (red) with the running energy scale have been
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Figure 5.3: Higgs quartic coupling λ and corresponding β-function as a function
of the running RGE scale.

shown. The λ decreases up to ∼ 1017 GeV because βλ remains negative as it contains

the dominant term, − 6y4
t

16π2 (see eqn. B.9). As yt also decreases with the running

energy, βλ is an increasing function of the running energy. It crosses zero around

the energy µmin ∼ 1017 GeV. λ increases after this energy scale. Therefore, the Higgs

potential V (φ) has one extra minimum at that particular scale. The depth of the

minimum is ∼ 1
4
|λ(µmin)|µ4

min, much deeper than the depth of the EW vacuum. So

the false minimum, i.e., the EW vacuum could tunnel to the true (deeper) minimum.

The vacuum tunneling probability of EW vacuum to the true minimum at the

present epoch is given by [14,107,108]

P0 = 0.15
Λ4
B

H4
0

e−S(ΛB), (5.18)

where H0 = 1.44 × 10−42 GeV (natural units) is the Hubble parameter and S(ΛB)

is the minimum action of the Higgs potential at energy ΛB. Now one can calculate

the action S of the Higgs potential using semi-classical approach. The Euclidean



5.2. Effective Higgs potential in the Standard Model 97

equations of motion of φ can be written as [14,107,108],

−∂µ∂µφ+
∂Veff(φ)

∂φ
= 0 (5.19)

−φ′′ − 3

r
φ
′
+ |λeff | φ3 = 0, (5.20)

where r = xµx
µ and the eqn. 5.20 satisfies the following boundary conditions,

φ
′
(0) = 0 and φ(∞) = v → 0 . (5.21)

Here the Euclidean solution of φ starting and end point is φ = v at Euclidean time

τ(≡ it) = ∓∞. The choice of the origin for the Euclidean time τ can be made in

such a way that the turning point φ = 0 is reached at τ = 0. Such a solution is called

a “bounce”. With this boundary conditions, the Euclidean equation of motion can

be solved analytically and the solution of eqn. 5.20 is given by,

φ(r) =

√
2

|λeff |
2R

r2 +R2
, (5.22)

where R is some arbitrary parameter, generally it is called the size of the bounce.

Action of the Higgs potential given by,

S =

∫
d4x

(1

2
(5φ)2 − Veff(φ)

)
. (5.23)

Here d4x = 2π2r3dr is the volume element of 4-dimensional sphere, using eqn. 5.22,

one can get

S =
16R2

|λeff |

∫ ∞
0

2π2r3dr
(r2 −R2)

(r2 +R2)4

=
8π2

3 |λeff |
. (5.24)

One can calculate tunneling time from EW vacuum to new deeper minimum using

the eqn. 5.18. The lifetime τEW is given by [14],

τEW =

(
55

3π

)1/4
eS(ΛB)/4

ΛB

≈ TU

P1/4
0

, (5.25)

where, TU ≈ 0.96
H0
≈ 13.7 billion years is the lifetime of the Universe.

The minimum action of the Higgs potential is needed to calculate the EW vacuum

decay time. For βλeff = 0, λeff is minimum and negative, i.e., S of eqn. 5.24 become

minimum. In this calculation the loop correction to the action is neglected, as in
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Ref. [108] it had been argued that setting the running scale to R−1 significantly

restricts the size of such corrections. Also the gravitational corrections [17, 109] to

the action is neglected as in Ref. [15]. In Ref. [108] it was pointed out that thermal

corrections are important at very high temperatures. Finite temperature effects to

EW vacuum stability in the context of SM have been calculated in [110]. It had been

claimed in Ref. [111] that the parameter space corresponding to EW metastability

gets further reduced. In this work zero temperature field theory has been used

however.

If τEW is greater than the lifetime of the universe TU , then the EW vacuum is called

metastable, i.e., 0 < P0 < 1. This ensuing bounds on the effective Higgs quartic

coupling [15,108] as,

λeff(ΛB) < 0 and λeff(ΛB) > λmin(ΛB) =
−0.06488

1− 0.00986 ln (v/ΛB)
. (5.26)

On the other hand, if λeff(ΛB) < λmin(ΛB), then the vacuum is unstable, implies no

existence of the Universe. If λeff(ΛB) > 0, i.e., P0 = 0, no transition will take place,

i.e., the EW vacuum is stable. But the recent experimental data suggest that the

EW vacuum remains in the metastable state, considering there is no new physics up

to the Planck scale. Therefore, the EW vacuum could transit to the other minimum

and such a transition can release an enormous amount of energy and which will

destroy the present Universe.

The variations of the tunneling probability against the top mass Mt has been shown

in Fig. 5.4. It is clear from the figure that the tunneling probability decreases with

the decrease of Mt, i.e., the lifetime of EW vacuum increases. For Mt . 171 the

lifetime of EW vacuum become infinite as λ > 0 at all scales, i.e., the EW vacuum of

the Higgs potential become absolutely stable. One can obtain from Fig. 5.4 that the

experimental favored data imply that the lifetime of EW vacuum is ∼ 10100 − 10500

years, much greater than the lifetime of our present Universe.

The stability of EW vacuum is best displayed with the aid of phase diagrams. One
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Figure 5.4: Tunneling probability P0 dependence on Mt in SM. Light-green band
stands for Mt at ±1σ. The solid blue line corresponds to the central values of Mh

and αS(MZ), whereas the light-red band corresponds to the 1σ deviation in Higgs
mass and light-gray band for αS(MZ).

can also identify the regions of EW stability and metastability in Mt−Mh plane of

Fig. 5.5 and in αs(MZ) −Mt plane of Fig. 5.6. In these figures, the unstable (red)

and the metastable (yellow) region is separated by instability line which occurs when

λ(µ) = λmin. The criticality (βλ(µ) = λ(µ) = 0) line separated the metastable and

stable (green) regions. The red region (right-side) of Fig. 5.5(a) is excluded as the

theory becomes non-perturbative at the Planck scale. The Fig. 5.5(a) illustrates the

remarkable coincidence for which the EW vacuum in the SM appears to live right

in between the stable and unstable regions. The Fig. 5.5(b) is zoomed version of

the Fig. 5.5(a), here the gray ellipses are experimentally preferred range of Mh and

Mt at 1, 2 and 3σ. From these figures one can conclude that for the Higgs mass

Mh < 125.7 GeV, the stability of the EW vacuum up to the Planck mass is excluded

at 98% C.L. (one-sided).
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Figure 5.5: (a) In SM, regions of absolute stability (green), metastability (yellow),
instability (red) of the EW vacuum in the Mh−Mt plane phase diagram. (b) Zoomed
in the region of the preferred experimental range of Mh and Mt. The boundary lines
(red) correspond to 1σ variation in αs(MZ). The gray areas denote the experimen-
tally favored zones for Mh and Mt at 1, 2 and 3σ.

5.2.3 Bounds on the Higgs mass from metastability and per-
turbativity

As it has been seen from Fig. 5.5, the measured values of Mh and Mt appear to be

rather special, in the sense that they place the SM EW vacuum in a near-critical con-

dition, i.e., at the border between stability and metastability. The vacuum stability

bound on the Higgs mass approximated as,

Mh [GeV] > 129.46 + 1.12

(
Mt [GeV]− 173.1

0.6

)
− 0.56

(
αS(MZ)− 0.1184

0.0007

)
,

(5.27)

is obtained from the requirement λ = βλ = 0. One can see from eqn. 5.27 that

the main uncertainty comes from the top mass, Mt, so any improvement in the

measurement of the top mass is of great importance for the question of EW vacuum

stability.
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The metastability bound is given by,

Mh [GeV] > 109.73 + 1.84

(
Mt [GeV]− 173.1

0.6

)
− 0.88

(
αS(MZ)− 0.1184

0.0007

)
,

(5.28)

comes from the requirement βλ = 0 and λ = λmin. To ensure perturbativity, one

demand λ(MPl) < 4π, which leads to

Mh [GeV] < 172.23 + 0.36

(
Mt [GeV]− 173.1

0.6

)
− 0.12

(
αS(MZ)− 0.1184

0.0007

)
.

(5.29)

Note that these bound are scheme independent, while the higher order RG equations,

the potential calculation including radiative corrections or the threshold matching

conditions are scheme and gauge dependent. The instability scale ΛI in Landau

gauge with ms scheme has been found as,

log10

(
ΛI

GeV

)
= 10.277− 0.82

(
Mt [GeV]− 173.1

0.6

)
+ 0.33

(
αS(MZ)− 0.1184

0.0007

)
+0.23

(
Mh [GeV]− 125.7

0.3

)
. (5.30)

5.2.4 Asymptotic safety in SM

Shaposhnikov and Wetterich predicted [112] mass of the Higgs boson of 126 GeV

imposing the constraint λ(MPl) = βλ(MPl) = 0, in a scenario known as asymptotic

safety of gravity. This corresponds to the fact that both the EW minimum and new

minimum residing at the Planck scale, are degenerate. From Fig. 5.7, it clear that

the present experimental data of the SM parameters does not allow this condition

to be realized in the SM. This condition is satisfied at Mh = 132.033 GeV and

Mt = 174.294 GeV for fixed central values of the other SM parameters.
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5.2.5 Veltman’s conditions in SM

The Higgs mass with quadratic divergence term in cutoff regularization scheme is

given by,

m2
h = m2

h,bare +
Λ2
cut

16π2v2
STr(M2).

STr(M2) = 3(m2
h +m2

Z + 2m2
W − 4m2

t ). (5.31)

The quadratic divergences part gives rise to the hierarchy problem related to the

Higgs mass. The condition for the absence of the quadratic divergences at one loop,

STr(M2) = 0, is known as the Veltman’s condition (VC). For high energy φ � v

eqn. 5.31 can be written as,
STr(M2)

φ2
= 6λ1 +

9

4
g2

2 +
3

4
g2

1 − 12y2
t = 0.

Due to the large negative contribution from the term containing the top Yukawa

coupling, it is not possible to satisfy VC atMPl given the experimental measurements

of Mt and Mh. It has been seen that if one consider Higgs mass Mh ≈ 135±2.5 GeV

with top mass Mt = 173.1 ± 0.6 GeV, the VCs in the SM at MPl can be satisfied,

which is excluded at more than 5σ. For Mh ≈ 135±2.5 GeV the quadratic divergence

part may cancel at one-loop but if two-loop corrections are included then the problem

arises again. Also, the VCs may be satisfied at a given scale but a nonzero quadratic

divergence part in the Higgs mass may reappear for a different cut-off scale. This

implies that the hierarchy problem is not solvable in the SM using the VC.

5.3 Summary

In this chapter, it has been shown that the ground state of the Higgs potential

depends on the SM parameters. With the present experimental values of the SM

parameters, it has been observed that the Higgs quartic coupling λ, together with

all other SM coupling constants, remains perturbative in the entire energy domain

between the EW and the Planck scales. It has also been seen that assuming the

validity of the SM up to the Planck scale MPl, the measured value of Mh ' 125 GeV
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is near-critical, i.e., it places the EW vacuum right at the border between absolute

stability and metastability. The absolute stability of the EW vacuum of the Higgs

potential is excluded at about 98% confidence level.

In the SM, with the present measured values of the SM parameters, the asymptotic

safety of gravity at the Planck scale MPl is not realized. Also the possible solution

of hierarchy problem related to the Higgs mass, i.e., Veltman’s condition cannot be

achieved at any scale between EW and MPl. At MPl this condition is fulfilled for

the Higgs mass Mh > 130 GeV, which is excluded at more than 5σ C.L.

New physics can modify the effective Higgs potential through the quantum correc-

tions as well as the stability of the EW vacuum will also alter. In the next chapter,

the detailed modifications of stability of the Higgs potential in the presence of new

physics in the form of an additional scalar multiplet will be discussed.



Chapter 6

Metastability in Extended Scalar
Sectors of the Standard Model

6.1 Introduction

It has been seen in the previous chapter that life time of the Universe is finite in the

SM. It is important to explore if the new extra scalar field(s) of an extended scalar

sector has an answer to this puzzle in its reserve. In this work a SU(2)L singlet [36]

or a doublet [15] or a hyperchargeless triplet [37] scalar is added to the SM and

a Z2-symmetry is imposed on these new models such that the odd number of new

scalar fields do not couple with the SM particles. As the lightest neutral particle of

the additional scalar sector cannot decay, it becomes stable and serves as a viable

dark matter candidate which may saturate the relic abundance of the dark matter

in the Universe. As these new models contain various kinds of new scalar fields, the

structure of scalar potential and the absolute stability bounds of the EW vacuum

of the scalar potential which had been shown in Chapter 3 are rather complicated

than that in the SM due to the involvement of more parameters.

In this work, a detailed study of the metastability of the EW vacuum of Higgs poten-

tial in the extended scalar sector will be presented. Various kinds of phase diagrams

will be drawn to illustrate the region of absolute stability, metastability, instability

105
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and the non-perturbativity on different parameter spaces of these extended scalar

sectors. In the Section 6.2, the stability of the EW vacuum in the presence of a real

singlet scalar will be discussed. In Sections 6.3 and 6.4, similar studies for the inert

doublet model (IDM) and inert triplet model (ITM) will be elaborated.

6.2 Singlet scalar extension of SM

Recent cosmological and astrophysical evidences suggest presence of cold dark mat-

ter (DM). A simple choice is to add a gauge singlet real scalar S to the SM [113]. An

additional Z2 symmetry ensures the stability of S. The scalar modifies the Higgs ef-

fective potential, and can ensure vacuum stability up to MPl. Such extensions of SM

have been discussed in the literature [114–129] in the context of vacuum stability.

In the context of SM, detailed studies of metastability has shown in Chapter 5.

Along the same line, in this section, the studies of the metastable vacuum has been

extended to the SM+S model [15].

6.2.1 Effective potential and RGE running

In this model, an extra real scalar singlet field S, odd under Z2 symmetry, is added

to the SM, providing a suitable candidate for dark matter. The corresponding

Lagrangian density is given by,

LS =
1

2
(∂µS)(∂µS)− V S

0

with,

V S
0 =

1

2
m2
SS

2 +
κ

2
|Φ|2S2 +

λS
4!
S4 , (6.1)

where,

Φ =

 G+

(h+ v + iG0)/
√

2

 .

After spontaneous EW symmetry breaking, DM mass MS is expressed as M2
S =

m2
S + κv2/2.
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SM tree level Higgs potential

V SM
0 (φ) = −1

2
m2h2 +

1

4
λh4

is augmented by the SM+S one-loop Higgs potential in Landau gauge using ms

scheme, which is written as

V SM+S
1 (h) = V SM

1 (h) + V S
1 (h).

The expression of V SM
1 (h) is given1 in eqn. 5.2 and the one loop contribution of the

singlet scalar can be written as [119,130],

V S
1 (h) =

1

64π2
M4

S(h)

[
ln

(
M2

S(h)

µ2(t)

)
− 3

2

]
,

where,

M2
S(h) = m2

S(t) + κ(t)h2(t)/2 .

SM contributions are taken at two-loop level [13,14,90,91], whereas the scalar con-

tributions are considered at one-loop only.

For h� v, the effective potential can be approximated as

V SM+S
eff (h) ' λeff(h)

h4

4
, (6.2)

with

λeff(h) = λSM
eff (h) + λSeff(h) , (6.3)

where λSM
eff (h) can be found in eqn. B.1 and,

λSeff(h) = e4Γ(h)

[
κ2

64π2

(
ln
(κ

2

)
− 3

2

)]
. (6.4)

As quartic scalar interactions do not contribute to wave function renormalization

at one-loop level, S does not alter γ(µ) of SM and anomalous dimension of S is

zero [117]. All running coupling constants are evaluated at µ = h.

The beta functions for the new physics parameters κ and λS are given in eqn. B.12.

mS also evolves with energy. But as the beta functions of other parameters do not

involve mS, its beta function is not considered in this discussion. Here, new physics

effects are included in the RGEs at one-loop only.

1Here h is used instead of φ, representing the SM-like Higgs field.
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6.2.2 Singlet Scalar as a dark matter candidate

As it has already been discussed that the new extended real singlet scalar is odd

under Z2 symmetry, i.e., under this symmetry, S → −S, but Standard Model par-

ticles are invariant. Due to Z2 symmetry odd numbers of the scalar fields S do not

couple with the SM particles. The particle S is stable and it can be considered as a

viable dark matter candidate. This model can provide dark matter with almost all

possible mass ranges which allowed from the relic density constraints of WMAP [20]

and Planck [21] data.

After EW symmetry breaking one can write the potential (see eqn. 6.1) explicitly

as,

V S
0 =

1

2

(
m2
S +

κv2

2

)
S2 +

kv

2
hS2 +

κ

4
h2S2 +

λS
24
S4. (6.5)

S is the scalar singlet under the SM gauge symmetry so there are no 4-point coupling

like, SSXX (X is the SM vector boson or a fermion). The scalar field can annihilate

to SM particles only via Higgs exchange. S is called a Higgs portal dark matter.

LHC has put a stringent bounds on the Higgs invisible decay width [131]. The decay

width of h to pair of S is given by,

Γ (h→ SS) =
v2

32πMh

κ2

(
1− 4M2

DM

M2
h

)1/2

. (6.6)

Also the direct detection experiments, XENON 100 [50, 51] and LUX [53] puts a

bound on the dark matter mass from the non-observation of dark matter-nucleon

scattering. DM direct detection involve the h-mediated t-channel process, SN →
SN . The scattering cross-section is given by,

σS,N =
m2
r

4π
f 2
Nm

2
N

(
κ

MDMM2
h

)2

(6.7)

where fN ≈ 0.3 is the form factor of the nucleus. mr represents the reduced mass

of the nucleus and the scattered dark matter particle.

With the invisible Higgs decay width at LHC and non-observation of dark matter

in the direct detection experiment at the LUX and including indirect Fermi-LAT
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bounds, it has been shown in Refs. [132, 133] that the dark matter mass below

50 GeV and 70 − 110 GeV are excluded. In the table 6.1, few benchmark points

have been shown for low dark matter mass less than the half of the Higgs mass.

FeynRules [134] along with micrOMEGAs [135,136] have been used to compute relic

density of scalar DM in SM+S model. The main dominant contributions to the relic

density in these region is SS → bb̄.

MDM (GeV) κ Relic density σSI (cm2) Br(h→ SS) in %

55 0.007 0.1242 1.3× 10−46 1.83

56 0.0045 0.1182 5.5× 10−47 0.72

58 0.0018 0.1199 8.2× 10−48 0.121

60 0.00075 0.1203 1.3× 10−48 0.013

Table 6.1: Benchmark points with dark matter mass MDM < Mh/2, which is allowed
from the relic density constraint on the DM of WMAP and Planck, Ωh2 = 0.1198±
0.0026 within 3σ confidence level, direct detection LUX (2013) and Higgs invisible
decay width from the LHC.

In Fig. 6.1, how the relic density changes with the dark matter mass in this model,

has been shown. The plot generated for three different Higgs portal coupling

κ(MZ) = 0.05 (black), κ(MZ) = 0.10 (brown), and κ(MZ) = 0.15 (red). Here

the blue band corresponds to the relic density constraints from WMAP and Planck

data allowed at 3σ confidence level. The light red band region is excluded from the

Higgs invisible decay width. For the κ(MZ) = 0.05, one can see that there are four

regions in dark matter mass which cross the blue band, i.e., satisfy the relic density

in the right ballpark.

The dark matter mass near the 50 GeV, the dominant part in the annihilation of

relic density is SS → bb̄ (79%), SS → W±W∓∗2 (8%), SS → cc̄(7%), however these

regions are not allowed from Higgs invisible decay width as well as from the direct

detection data. For 70 GeV, the process SS → bb̄ is about 52% and SS → W±W∓∗

2The virtual W±∗ can decay to quarks and leptons.
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is 40% of total annihilation cross-section. Whereas for the dark matter mass around

160 GeV, the dominant contributions in the annihilation are, SS → W±W∓ (48%),

SS → hh (30%) and in SS → ZZ (22%) are allowed from direct searches. Similarly

for other values of κ(MZ), the relic density in the right ballpark can be found near

the dark matter mass 400 GeV and 500 GeV. In this case dominant contributions

are SS → hh, tt̄.

Figure 6.1: Dark matter relic density Ωh2 as a function of the dark matter mass
MDM(≡ MS) for different values of the portal coupling: κ(MZ) = 0.05 (black),
κ(MZ) = 0.10 (brown), and κ(MZ) = 0.15 (red). The thin blue band corresponds to
the relic density of the dark matter, Ωh2 = 0.1198 ± 0.0026 (3σ) of the present the
Universe.

In Fig. 6.2, the relic density in κ(MZ)−MDM plane for the high dark matter masses

have been plotted. In this plot the blue line (upper dotted) corresponds to the relic

density Ωh2 = 0.112 (minimum relic density allowed from WMAP and Planck) and

other two belong to Ωh2 = 0.1198 and Ωh2 = 0.1276 (maximum) respectively. The

relic density band is almost like a straight line because for MDM > MW ,Mh, the

annihilation cross-section is proportional to κ2

M2
DM

.
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Figure 6.2: SM+S allowed parameter space in the κ(MZ)−MDM plane in agreement
with the relic density constraints, direct and indirect detection. Where the upper
dotted, solid in the middle and the lower dotted blue line correspond to the relic
density Ωh2 = 0.112, 0.1198 and 0.1276 respectively.

6.2.3 RGE running from µ = Mt to MPl in SM+S

The similar technique of the matching conditions of Section 5.2.1 has been used to

calculate all the coupling at µ = Mt. After knowing the values of various coupling

constants at Mt, full three-loop SM RGEs and one-loop RGEs for the scalar S have

been used to run them up to MPl.

MS (GeV) κ(MZ) λS(MZ) g1 g2 g3 yt λ κ λS

620 0.185 1 0.478 0.506 0.487 0.382 −0.0029 0.424 4.66

795 0.239 0.389 0.478 0.506 0.487 0.382 0 0.412 1

Table 6.2: Values of all SM+S coupling constants at MPl = 1.2 × 1019 GeV with
Mt = 173.1 GeV, Mh = 125.7 GeV and αS(MZ) = 0.1184.

For SM+S, the running B.12 depends on the extra parameters MS, κ(MZ) and

λS(MZ). Assuming the values of SM parameters at Mt as given in eqns. 5.7− 5.11,

for two different sets of MS, κ(MZ) and λS(MZ), the values of all parameters at

MPl in SM+S model in Table 6.2 has been presented. The first set stands for
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our benchmark point, as described later. For this choice, λ(MPl) is negative. The

second set is chosen such that λ(MPl) = 0. Note that as the running of new physics

parameters is not considered till MS, in this case it is all the same to specify these

parameters either at MZ or at Mt.

In the SM, the gauge couplings g1, g2, g3, top Yukawa coupling yt do not vanish at

MPl. The same is true in SM+S model [116], since running of these couplings are

hardly affected by S, as displayed in Fig. 6.3. Higgs portal coupling κ and scalar self-

quartic coupling λS increase with energy. The rise of λS is so rapid that it may render

the theory nonperturbative at higher energies. For example, if λS(MZ) > 1.3, λS

becomes nonperturbative before MPl. Higgs self-quartic coupling λ also gets affected

by inclusion of S. But the change is not visible in Fig. 6.3.

Mh = 125.7 GeV, Mt = 173.1 GeV

ΑsH MZ L = 0.1184, MS = 620 GeV

Κ H MZ L = 0.185, ΛS H MZ L = 1.0
g3

yt
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Figure 6.3: SM+S RG evolution of the gauge couplings g1, g2, g3, top Yukawa
coupling yt, Higgs self-quartic coupling λ, Higgs portal coupling κ and scalar self-
quartic coupling λS in ms scheme.

As the issue of stability hinges on the value of λ at higher energies, the running of λ

is focused for SM+S model in Fig. 6.4 as for the SM in Fig. 5.1(b), for a benchmark
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Figure 6.4: RG evolution of λ in the SM+S for our benchmark point. 3σ bands
for Mt,Mh and αs(MZ) are displayed.

point MS = 620 GeV, κ(MZ) = 0.185 and λS(MZ) = 1. It has been observed that

the behavior of λ running might change significantly, modifying instability scale ΛI

to 1.68 × 1011 GeV, whereas in SM ΛI ∼ 1.9 × 1010 GeV (see eqn. 5.30). It has

the potential to push out the EW vacuum from metastability to a stable vacuum.

The benchmark point was chosen keeping in mind that the new physics effects are

clearly visible, yet the vacuum is still in metastable state. This point also satisfies the

WMAP and Planck imposed DM relic density constraint Ωh2 = 0.1198±0.0026 [21].

As defined in eqn. 6.3, λeff differs from λ as it takes care of loop corrections. In the

SM, in Fig. 5.2, one can see that the difference λeff−λ is always positive and negligible

near MPl. Similar features has also been seen in SM+S model (see Fig. 6.5(a)).

However, the instability scale ΛI changes significantly if λeff instead of λ is chosen

to work: In SM, the instability scale changes to 1.25 × 1011 GeV and in SM+S, it

becomes 1.7× 1012 GeV. Also βλ has been plotted to show that at high energies, λ,

λeff and βλ all seem to vanish.
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Figure 6.5: (a) RG evolution of λ (red band), λeff (blue band) and βλ (dot-dashed
black) in SM+S for our benchmark point. (b) Evolution of λ for different κ(MZ).
Each κ(MZ) corresponds to a specific MS to satisfy DM relic density Ωh2 ≈ 0.1198.

In Fig. 6.5(b) the RGE running of λ for various new physics parameters has been

displayed to explicitly demonstrate that as κ(MZ) increases, for a given energy, λ

assumes a higher value [115, 137]. Finally, for some parameter space, λ never turns

negative, implying stability of the EW vacuum. It happens due to the κ2/2 term

in βλ. Due to this positive contribution, the presence of the scalar never drives EW

vacuum towards instability. Next, the tunneling probability will be calculated to

demonstrate stability issues with EW vacuum in this model SM+S.

6.2.4 Tunneling probability and Metastability in SM+S

The present data on Mh and Mt indicate that the Universe might be residing in a

false vacuum in SM, waiting for a quantum tunneling to a true vacuum lying close

to the Planck scale.

The vacuum decay probability P0 of EW vacuum at the present epoch is given in
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eqn. 5.18. In S(ΛB) = 8π2

3|λ(ΛB)| , the effective Higgs quartic coupling as given in

eqn. 6.3 has been used. The metastability and perturvativity constraints in this
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Figure 6.6: (a) Tunneling probability P0 as a function of Mt. The left band
corresponds to SM and the right one to SM+S for our benchmark point. Light-green
band stands for Mt at ±1σ. (b) P0 as a function of κ(MZ) for various λS(MZ).

model are shown here.

• If λ(ΛB) > 4π
3

, |κ| > 8π, |λS| > 8π, then the theory is nonperturbative.

• If λ(ΛB) > 0, then the vacuum is stable.

• If 0 > λ(ΛB) > λmin(ΛB), then the vacuum is metastable.

• If λ(ΛB) < λmin(ΛB), then the vacuum is unstable.

• If λS < 0, the potential is unbounded from below along the S-direction.

• If κ < 0, the potential is unbounded from below along a direction in between

S and H.
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In Fig. 6.6 tunneling probability P0 as a function ofMt has been plotted. To calculate

P0, the minimum value of λeff (see eqn. 6.3) has been found and put the same in

S(ΛB). The right band corresponds to the tunneling probability for our benchmark

point. For comparison, the same plot for SM as the left band in Fig. 6.6(a) is

shown. 1σ error bands in αS and in Mh are also displayed. The error due to αS is

clearly more significant than that due to Mh. It has been observed that for a given

Mt, these new physics effects lower the tunneling probability. It bolsters our earlier

observation that scalar S helps the EW vacuum to come out of metastability. It

has been demonstrated in Fig. 6.6(b), where P0 as a function of κ(MZ) for different

choices of λS(MZ) has been plotted, assuming central values for Mh, Mt and αS. It

has been seen that for low values of κ(MZ), P0 tends to coincide with its SM value.

For a given κ(MZ), for higher λS(MZ), P0 gets smaller, making the EW vacuum

more stable.

6.2.5 Phase diagrams in SM+S

The phase diagrams in different parameter planes for this model has been presented

to demonstrate the stability of the EW vacuum.

In the SM, the phase diagram in Mh −Mt plane is given in Fig. 5.5. Given the

measured errors on Mt and Mh, the SM phase diagram indicates that the stability

of EW vacuum is excluded3 at∼ 3σ. However, the extra scalar in this model modifies

these findings, as illustrate by the phase diagram in the Mh −Mt plane for SM+S

in Fig. 6.7. For our benchmark point, it has been seen that the boundaries shift

towards higher values of Mt, so that the EW vacuum stability is excluded only at

1.1σ, indicated by the blue-dashed ellipse. For MS = 360 GeV, κ(MZ) = 0.105 and

λS(MZ) = 1.6, the plot is redrawn to highlight the fact that λS might turn out to be

too large, so that the theory becomes nonperturbative (marked as the orange region

in Fig. 6.7(b)). Here EW vacuum stability is excluded at 2σ. All these boundaries

3In a mass dependent renormalization scheme, such exclusion happens at 3.5σ [138].
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Figure 6.7: (a) In SM+S, regions of absolute stability (green), metastability (yel-
low), instability (red) of the EW vacuum in the Mh −Mt plane phase diagram is
presented for the benchmark point MS = 620 GeV, κ(MZ) = 0.185 and λS(MZ) = 1.
(b) Similar plot for MS = 360 GeV, κ(MZ) = 0.105 and λS(MZ) = 1.6. The orange
region corresponds to nonperturbative zone for λS. The three boundary lines (dot-
ted, solid and dotted red) correspond to αs(MZ) = 0.1184± 0.0007. The gray areas
denote the experimentally favored zones for Mh and Mt at 1, 2 and 3σ.

separating various stability regions in the phase diagram depend on αS. 1σ bands

for the same is also displayed in these figures.

Given the sizable error on αS(MZ), it is instructive to draw the phase diagram in the

Mt−αS(MZ) plane as well. This diagram for SM is available in Fig. 5.6. The same

is presented in Fig. 6.8 for this model using our benchmark point. With increase

of κ(MZ) and/or λS(MZ), the boundaries between different stability regions shift

towards right, allowing the EW vacuum to be more stable.

The phase diagram for κ(MZ) −MS plane is displayed in Fig. 6.9. As addition of

the scalar does not drive the EW vacuum towards instability, there is no unstable

region marked on the plot. Between the dashed lines, the allowed region is marked
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ensuing from relic density constraints.

In SM, the vacuum stability, metastability and perturbativity bound are given in

eqns. 5.27− 5.29. In SM+S model, change in Mh bounds with respect to κ(MZ) was

considered in Refs. [117,129] for different cut-off scales, considering stability aspects

only. As shown in Fig. 6.10, in presence of the scalar S, these bounds shift to lower

values for larger κ(MZ). For large values of κ(MZ), depending on the choice of λS

at MZ , λS(MPl) may become so large that the theory becomes nonperturbative.

This imposes further constraints on the parameter space, shown as the curved line

representing λS(MPl) = 8π. As before, for a given κ(MZ), MS is chosen in such a

way that Ωh2 ≈ 0.1198 for Mh = 125.7 GeV. However, in the plot, as Mh changes,

Ωh2 also changes. But this variation is contained within 3σ.
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Figure 6.10: Phase diagram in κ(MZ)−Mh plane in SM+S. Regions of absolute
stability (green), metastability (yellow) and instability (red) of the EW vacuum for
λS(MZ) = 1 are displayed. λ and/or λS are/is nonperturbative in the orange region.
The blue dashed line corresponds to Mh = 125.7 GeV.
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6.2.6 Confidence level of vacuum stability in SM+S

As new physics effects do change the stability of EW vacuum, it is important to

show the change in the confidence level at which stability is excluded or allowed. In

Fig. 6.11, the confidence level against κ(MZ) has been plotted for Mt = 173.1 GeV,

Mh = 125.7 GeV and αS(MZ) = 0.1184. MS is dictated by κ(MZ) to satisfy

Ωh2 ≈ 0.1198. For λS(MZ) = 1, It has been seen that the EW vacuum becomes

stable for κ(MZ) = 0.24 onward. For a lower λS(MZ), this point shifts to a higher

value. If λS(MZ) = 0, stability is assured for κ(MZ) ≥ 0.27. Note that as κ

dependence in RGE running of λ creeps in through the term κ2/2 in βλ, the stability

strongly depends on κ(MZ). However, as βλ depends on λS only via κ running,

although λS running is relatively strong, the stability of EW vacuum does not change

appreciably when λS(MZ) is varied from 0 to 1.
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Figure 6.11: Dependence of confidence level (one-sided) at which EW vacuum sta-
bility is excluded/allowed on κ(MZ) in SM+S. Regions of absolute stability (green)
and metastability (yellow) of EW vacuum are shown.
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Figure 6.12: In SM+S model, (a) Contour plot for λ(MPl) = 0 (red line) and
βλ(MPl) = 0 (blue line) for our benchmark point. (b) Similar plot for λ(Λ) = 0 and
βλ(Λ) = 0, where Λ = 3.8× 1014 GeV. Dotted lines correspond to ±3σ variation in
αs(MZ). The gray areas denote the experimental allowed region for Mh and Mt at
1, 2 and 3σ.

6.2.7 Asymptotic safety in SM+S

Shaposhnikov and Wetterich predicted [112] mass of the Higgs boson of 126 GeV

imposing the constraint λ(MPl) = βλ(MPl) = 0, in a scenario known as asymptotic

safety of gravity. As mentioned before, this corresponds to two degenerate vacua.

In Fig. 5.7, it has been shown that the present error in Mt and Mh does not allow

this condition to be realised in SM. In SM+S model, the situation worsens [114]

and it has demonstrated in Fig. 6.12(a) for our benchmark point. In presence of

the scalar, the values of Mt and Mh, required to satisfy this condition, are pushed

far away from the experimentally favored numbers: For our benchmark point this

condition is satisfied at Mh = 140.8 GeV and Mt = 179.5 GeV.

However, it is possible to meet this condition at a lower energy than at MPl. In

Fig. 6.12(b), it is demonstrated that at a different point in the parameter space:
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MS = 914 GeV, κ(MZ) = 0.276 and λS(MZ) = 0.229, the condition λ(Λ) = βλ(Λ) =

0 is indeed satisfied at Λ = 3.8×1014 GeV and is also consistent with experimentally

allowed range for Mt and Mh. The value of Λ decreases with λS(MZ) and κ(MZ).

The corresponding value of MS is chosen to satisfy relic density of DM constraints.

Also, it is difficult to simultaneously satisfy Veltman condition at MPl [114]. All

these observations indicate that some new physics could be operational at very high

energies to take care of such issues.

6.3 Doublet scalar extension of SM

The model is popularly known in the literature as the inert doublet (ID) model, first

proposed by Deshpande and Ma [70].

In previous Section 6.2, stability analysis, including NNLO corrections, has done

for extended singlet scalar DM model. The stability of the EW vacuum was shown

to depend on new physics parameters. In this section such an analysis has been

extended to the ID model. It has been assumed that ID DM is the only DM particle

which saturates the entire DM relic density. In this context, the constraints on the

parameters of the ID model have been reviewed.

A detailed study on the ID parameter space was performed in Refs. [89, 139–147]

indicating bounds from absolute EW vacuum stability, perturbativity, collider study,

EW precision tests (EWPT), etc. In this work [36], the new parameter spaces have

been found allowing the metastability of the Higgs potential.

6.3.1 Inert Doublet Model

In this model, the standard model is extended by adding an extra SU(2)L doublet

scalar, odd under an additional discrete Z2 symmetry. The Z2 symmetry prohibits

the inert doublet to acquire a vacuum expectation value.
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The scalar potential of eqn. 3.4 at the tree level with exact Z2 symmetry, is given4

by,

V (Φ1,Φ2) = m2
11|Φ1|2 + λ1|Φ1|4 +m2

22|Φ2|2 + λ2|Φ2|4

+λ3|Φ1|2|Φ2|2 + λ4|Φ†1Φ2|2 +
λ5

2

[
(Φ†1Φ2)2 + h.c.

]
, (6.8)

where the SM Higgs doublet Φ1 and the inert doublet Φ2 are given by

Φ1 =

 G+

1√
2

(v + h+ iG0)

 , Φ2 =

 H+

1√
2

(H + iA)

 .

Φ2 contains a CP even neutral scalar H, a CP odd neutral scalar A, and a pair of

charged scalar fieldsH±. The Z2 symmetry prohibits these particles to decay entirely

to SM particles. The lightest of H and A can then serve as a DM candidate.

After EW symmetry breaking, the scalar potential is given by

V (h,H,A,H±) =
1

4

[
2m2

11(h+ v)2 + λ1(h+ v)4 + 2m2
22(A2 +H2 + 2H+H−)

+λ2(A2 +H2 + 2H+H−)2
]

+
1

2
(h+ v)2

[
λ3H

+H− + λSA
2 + λLH

2
]

(6.9)

where,

λL,S =
1

2
(λ3 + λ4 ± λ5) . (6.10)

Masses of these scalars are given by,

M2
h = m2

11 + 3λ1v
2,

M2
H = m2

22 + λLv
2,

M2
A = m2

22 + λSv
2,

M2
H± = m2

22 +
1

2
λ3v

2 .

For λ4 − λ5 < 0 and λ5 > 0 (λ4 + λ5 < 0 and λ5 < 0), A (H) is the lightest Z2 odd

particle (LOP). In this work, A has been taken as the LOP and hence, as a viable

DM candidate. Choice of H as LOP will lead to similar results.

For large DM mass, MA � MZ , appropriate relic density of DM is obtained if

4Here the notation of Higgs quartic coupling λ1 is used instead of λ.
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MA, MH , and MH± are nearly degenerate that will be explained latter. Hence, in

anticipation, one can define,

∆MH = MH −MA,

∆MH± = MH± −MA .

so that the new independent parameters for the ID model become {MA,∆MH ,∆MH± ,

λ2, λS}. Here λS is chosen as A is treated as the DM particle.

The one-loop effective potential for h in the ms scheme and the Landau gauge is

given by

V SM+ID
1 (h) = V SM

1 (h) + V ID
1 (h) (6.11)

The SM one-loop effective Higgs potential V SM
1 (h) can be found in eqn. 5.2 and the

additional contribution to the one-loop effective potential due to the inert doublet

is given by [145]

V ID
1 (h) =

∑
j=H,A,H+,H−

1

64π2
M4

j (h)

[
ln

(
M2

j (h)

µ2(t)

)
− 3

2

]
(6.12)

where,

M2
j (h) =

1

2
λj(t)h

2(t) +m2
22(t) (6.13)

with λA(t) = 2λS(t), λH(t) = 2λL(t), and λH±(t) = λ3(t).

In the present work, in the Higgs effective potential, SM contributions are taken at

the two-loop level, whereas the ID scalar contributions are considered at one loop

only.

For h� v, the Higgs effective potential can be approximated as

V SM+ID
eff (h) ' λ1,eff(h)

h4

4
, (6.14)

with

λ1,eff(h) = λSM
1,eff(h) + λID

1,eff(h) , (6.15)

where λSM
1,eff can be found in eqn. B.1 and,

λID
1,eff(h) =

∑
j=L,S,3

e4Γ(h)

[
δjλ

2
j

64π2

(
ln (δjλj)−

3

2

)]
. (6.16)
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Here δj = 1 when j = L, S; δj = 1
2

for j = 3; and anomalous dimension γ(µ) of

the Higgs field takes care of its wave function renormalization (see the Appendix).

As quartic scalar interactions do not contribute to wave function renormalization at

the one-loop level, ID does not alter γ(µ) of the SM. All running coupling constants

are evaluated at µ = h.

If DM mass MA is larger than Mt, then the ID starts to contribute after the energy

scale MA. For MA < Mt, the contributions of ID to the β-functions (see eqns. B.14−
B.18) are rather negligible for the running from MA to Mt, as is evident from the

expressions.

To compute the RG evolution of all the couplings, all the couplings with threshold

corrections at Mt has been calculated. In Table 6.3 a specific set of values of λi at

Mt = 173.1 GeV and at MPl = 1.2× 1019 GeV for Mh = 125.7 GeV and αs (MZ) =

0.1184 have been provided. In Fig. 6.13 the running of the scalar couplings (λi)

has been shown for this set of parameters. It has been seen that for this specific

choice of parameters, λ1 assumes a small negative value leading to a metastable EW

vacuum as discussed in the following sections. This set is chosen to reproduce the

DM relic density in the right ballpark.

λS λL λ2 λ3 λ4 λ5 λ1

Mt 0.001 0.039 0.10 0.0399 0.00003 0.038 0.127

MPl 0.046 0.082 0.127 0.090 0.038 0.036 −0.009

Table 6.3: A set of values of all ID model coupling constants at Mt and MPl for
MA = 573 GeV, ∆MH± = 1 GeV, ∆MH = 2 GeV, and λS (MZ) = 0.001.

6.3.2 Constraints on ID model

ID model parameter space is constrained from theoretical considerations like abso-

lute vacuum stability, perturbativity and unitarity of the scattering matrix. EW

precision measurements and direct search limits at LEP, LHC put severe restric-
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tions on the model. The recent measurements of Higgs decay width at the LHC

put additional constraints. The requirement that the ID DM saturates the DM

relic density all alone restricts the allowed parameter space considerably. The tree

level vacuum stability bound of the ID model can be found in eqn. 3.9. The unitary

(eqn. 3.12) and perterbativity (eqn. 3.10) bounds up to the MPl have also been taken

into account.
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Figure 6.13: IDM RG evolution of the couplings λi (i = 1, .., 5) , λL, λS for the set
of parameters in Table 6.3.

6.3.2.1 Bounds from electroweak precision experiments

Bounds ensuing from electroweak precision experiments are imposed on new physics

models via Peskin-Takeuchi [30] S, T, U parameters. The additional contributions

from 2HDM can be found in eqn. 3.13, which are modified for ID model [72,148] as,

∆S =
1

2π

[
1

6
ln

(
M2

H

M2
H±

)
− 5

36
+

M2
HM

2
A

3(M2
A −M2

H)2
+
M4

A(M2
A − 3M2

H)

6(M2
A −M2

H)3
ln

(
M2

A

M2
H

)]
,

∆T =
1

32π2αv2

[
F
(
M2

H± ,M
2
A

)
+ F

(
M2

H± ,M
2
H

)
− F

(
M2

A,M
2
H

) ]
(6.17)
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The NNLO global electroweak fit results of ∆S, ∆T and ∆U are given eqn. 3.16

have been used, with a correlation coefficient of +0.91, fixing ∆U to zero. The

contribution of the scalars in the ID model to ∆U is rather negligible. To assess the
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Figure 6.14: Allowed parameter space in ∆MH± −∆MH plane for MA = 70 GeV
and λS = 0.007 in IDM. Constraints from S and T parameters are shown by solid
black, green and red lines. The blue band corresponds the 3σ variation in Ωh2 =
0.1198±0.0026 [21]. On the brown region the unitarity bound is violated on or before
MPl. The cross-hatched region is excluded from LEP II data.

implications of S and T constraints on the ID model, in Fig. 6.14, in the ∆MH± −
∆MH plane, various constraints is displayed for MA = 70 GeV and λS = 0.007. This

is the maximum value of λS for the given DM mass, allowed by LUX [53] direct

detection data at 1σ. The blue region allowed by relic density constraints shifts

upwards for smaller λS. Constraints on ∆S and ∆T , as mentioned in eqn. 3.16, are

marked as black, green, and red solid lines. It has been seen that the 1σ bound on

∆T is the most stringent one. The black line corresponding to the lower limit on

∆S at 1σ can also be interesting. But the LEP II bounds, represented by the cross-

hatched bar, take away a considerable part. The line representing the ∆S upper

limit is beyond the region considered and lies towards the bottom-right corner of
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the plot. In this plot, increasing MH enhances S, but T gets reduced. In addition, if

one demand unitarity constraints to be respected up to MPl, assuming no other new

physics shows up in between, the parameter space gets severely restricted. In this

plot, a small window is allowed by ∆T only at 2σ, which satisfies DM relic density

constraints. As mentioned earlier, this window gets further reduced with smaller λS

(the relic density band takes an “L” shape as shown in Fig. 6.18).

6.3.2.2 Direct search limits from LEP and LHC

The decays Z → AH, Z → H+H−, W± → AH±, and W± → HH± are restricted

from Z and W± decay widths at LEP. It implies MA + MH ≥ MZ , 2MH± ≥ MZ ,

and MH± +MH,A ≥MW . More constraints on the ID model can be extracted from

chargino [149] and neutralino [150] search results at LEP II: The charged Higgs

mass MH± ≥ 70 GeV. The bound on MA is rather involved: If MA < 80 GeV, then

∆MH should be less than ∼ 8 GeV, or else MH should be greater than ∼ 110 GeV

(see Fig. 6.17). The Run 1 of LHC data provide significant constraints on the ID

parameter space through the direct searches in final states with two leptons plus

missing transverse energy [151]. These analyses exclude inert scalar masses of up

to about 55 GeV. For MH± = 85 GeV and MA = 55 GeV, the MH . 145 GeV are

excluded at 4σ and for MA > 60 GeV all masses of H are allowed. For MH± > 150

GeV with MA = 55 GeV, 115 . MH . 160 GeV region is excluded and MA > 80

GeV all masses of H are allowed.

6.3.2.3 Bounds from LHC diphoton signal strength

In the ID model, Higgs to diphoton signal strength µγγ is defined as

µγγ =
σ(gg → h→ γγ)

σ(gg → h→ γγ)SM

≈ Br(h→ γγ)ID

Br(h→ γγ)SM

(6.18)

using the narrow width approximation for the production cross-section of σ(gg →
h→ γγ) and the fact that σ(gg → h) in both the SM and ID are the same.

Now if the ID particles have masses less than Mh/2, h→ ID, ID decays are allowed.
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In that case,

µγγ =
Γ(h→ γγ)ID

Γ(h→ γγ)SM

Γtot(h→ SM, SM)

Γtot(h→ SM, SM) + Γtot(h→ ID, ID)
, (6.19)

where [152]

Γ (h→ ID, ID) =
v2

16πMh

λ2
ID

(
1− 4M2

ID

M2
h

)1/2

, (6.20)

where for ID = A,H,H±, λID = λS, λL,
√

2λ3.

In this case, the ID particles are heavier than Mh/2,

µγγ =
Γ(h→ γγ)ID

Γ(h→ γγ)SM

. (6.21)

In the ID model, the H± gives additional contributions at one loop. The analytical

expression is given by [153–155]

Γ(h→ γγ)ID =
α2m3

h

256π3v2

∣∣∣∣∣∑
f

N c
fQ

2
fyfF1/2(τf ) + yWF1(τW ) +Q2

H±
vµhH+H−

2m2
H±

F0(τH±)

∣∣∣∣∣
2

(6.22)

where τi = m2
h/4m

2
i . Qf , QH± denote electric charges of corresponding particles. N c

f

is the color factor. yf and yW denote Higgs couplings to ff̄ and WW . µhH+H− = λ3v

stands for the coupling constant of the hH+H− vertex. The loop functions F(0, 1/2, 1)

are defined as

F0(τ) = −[τ − f(τ)]τ−2 ,

F1/2(τ) = 2[τ + (τ − 1)f(τ)]τ−2 ,

F1(τ) = −[2τ 2 + 3τ + 3(2τ − 1)f(τ)]τ−2 ,

where,

f(τ) =

{
(sin−1√τ)2 , τ ≤ 1

−1
4
[ln 1 +

√
1−τ−1

1
−
√

1− τ−1 − iπ]2 , τ > 1
, (6.23)

From the diphoton decay channel of the Higgs at the LHC, the measured values are

µγγ=1.17± 0.27 from ATLAS [156] and µγγ=1.14+0.26
−0.23 from CMS [157].

One can see that a positive λ3 leads to a destructive interference between SM and ID

contributions in eqn. 6.22 and vice versa. Hence, for ID particles heavier than Mh/2,

µγγ < 1 (µγγ > 1) when λ3 is positive (negative). However, if these ID particles
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happen to be lighter than Mh/2, they might contribute to the invisible decay of the

Higgs boson. Using the global fit result [131] that such an invisible branching ratio

is less than ∼ 20%, in eqn. 6.19, the second ratio provides a suppression of ∼ 0.8 –

1.

Now can negative λ3 is allowed in the ID model? It will be discussed at the end of

this section. The benchmark points with positive λ3 is used here, allowed at 1σ by

both CMS and ATLAS experiments.

6.3.2.4 Constraints from dark matter relic density and direct search
limits

As it has been seen that Higgs can decay to pair of inert particles (see eqns. 6.9,6.20),

so most of the parameter spaces with dark matter mass less than Mh/2, are strictly

restricted from the Higgs invisible decay width of LHC and also from the direct

detection experimental data. In this model the dark matter mass below 50 GeV are

excluded from these constraints. In Table 6.4, few benchmark points for IDM with

the dark matter mass, MA(≡MDM) < Mh/2 have been shown.

The heavy CP -even and charge Higgs mass have been fixed at 180 and 200 GeV

respectively. The relic density, dark matter-nucleon cross-section, as well as the

branching ratio of Higgs to pair of dark matter particles have been shown in the

same table. For all these points, it has been seen that the dominant process in the

dark matter annihilation is AA→ bb̄.

The ID dark matter candidate A can self-annihilate into SM fermions. Once the

DM mass is greater than the W±-mass, so that the DM can annihilate into a pair

of W± bosons, the cross-section increases significantly, thereby reducing DM relic

density. Hence, it becomes difficult to saturate Ωh2 after ∼ 75 GeV with positive

λS, although for MA < 75 GeV, both signs of λS can be allowed to arrive at the

right DM relic density Ωh2.
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MDM(≡MA) (GeV) λS Relic density σSI (cm2) Br(h→ SS) in %

54.7 0.004 0.1263 1.78× 10−46 3.67

56 0.0022 0.1197 3.47× 10−48 1.05

58.8 0.0006 0.1222 2.4× 10−48 0.06

60 0.00035 0.1236 1.13× 10−48 0.017

Table 6.4: Benchmark points with dark matter mass MDM < Mh/2, with MH± =
200 GeV and MH± = 180 GeV, which is allowed from the relic density constraint
of WMAP and Planck, Ωh2 = 0.1198 ± 0.0026 within 3σ confidence level, direct
detection LUX (2013) and Higgs invisible decay width from the LHC.

The role of the sign of λS can be understood from the contributing diagrams to the

AA → W+W− annihilation processes. Four diagrams contribute: the AAW+W−

vertex driven point interaction diagram (henceforth referred to as the p-channel

diagram), H+-mediated t- and u-channel diagrams, and the h-mediated s-channel

diagram. For AA→ ZZ annihilation, the t- and u-channel diagrams are mediated by

H. A negative λS induces a destructive interference between the s-channel diagram

with the rest, thereby suppressing AA → W+W−, ZZ processes. For DM masses

of 75 − 100 GeV, this can be used to get the appropriate Ωh2 [140, 158]. To avoid

large contributions from t- and u-channel diagrams and coannihilation diagrams,

the values of MH and MH± can be pushed to be rather large & 500 GeV. However,

to partially compensate the remaining p-channel diagram by the s-channel one, λS

assumes a large negative value ∼ −0.1, which is ruled out by the DM direct detection

experiments. That is why in the ID model, DM can be realized below 75 GeV, a

regime designated as the “low” DM mass region.

At “high” DM mass MA & 500 GeV, one can get the right Ωh2 due to a partial

cancellation between different diagrams contributing to the AA → W+W− and

AA → ZZ annihilation processes. For example, in AA → W+W−, the p-channel

diagram tends to cancel with the H+-mediated t- and u-channel diagrams [142,159]

in the limit MA � MW , and the sum of amplitudes of these diagrams in this



132 Chapter 6. Metastability in Extended Scalar Sectors of the Standard Model

(a) (b)

Figure 6.15: In IDM, (a) Dark matter relic density Ωh2 as a function of the
dark matter mass MDM(≡ MA) for different values of the Higgs portal coupling:
λS(MZ) = 0.002 (black), λS(MZ) = 0.005 (brown), and λS(MZ) = 0.008 (red),
with ∆MH± = ∆MH = 50 GeV. (b) For Higgs portal coupling: λS(MZ) = 0.05
(black), λS(MZ) = 0.10 (brown), and λS(MZ) = 0.15 (red), with ∆MH± = 1 GeV
and ∆MH = 2 GeV. The thin blue band corresponds to the relic density of the dark
matter, Ωh2 = 0.1198 ± 0.0026 (3σ) of the present the Universe. Light red band is
disallowed from the Higgs invisible decay width.

limit is proportional to M2
H± − M2

A. Hence, at high MA, a partial cancellation

between these diagrams is expected for nearly degenerate MH± and MA. Similarly,

for AA→ ZZ, a cancellation is possible when the masses MH and MA are close by.

For MA & 500 GeV, keeping the mass differences of MH± and MH with MA within

8 GeV, such cancellations help reproduce the correct Ωh2. It is nevertheless worth

mentioning that such nearly degenerate masses will lead to coannihilation of these

Z2 odd ID scalars [160] to SM particles. Despite such near-degeneracy, both H and

H+, being charged under the same Z2 as A, decay promptly to the LOP A, so that

they do not become relics. FeynRules [134] along with micrOMEGAs [135, 136] used

to compute the relic density of A.
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In Fig. 6.15, the relic density against the dark matter mass have been shown. For

Fig. 6.15(a), ∆MH± = ∆MH = 50 GeV have been chosen, so the relic density is

mainly dominated by the self-annihilation of the dark matter candidate. For three

different values of Higgs portal coupling, λS = 0.002, 0.005, 0.008, the relic density

turns out in the right ballpark for the dark matter mass 65−70 GeV. The dominant

annihilation channels are, AA → bb̄,W±W∓∗. Fig. 6.15(b), the relic density is in

the right ballpark with dark matter mass around 600 GeV. In this case both the co-

annihilation and annihilation of the dark matter play important role. In this region

inert particles annihilate mainly to W±W∓, ZZ, hh. The blue band corresponds

to the constraints coming from the WMAP and Planck data. The region which

is allowed from the relic density is also allowed from the direct search of the dark

matter.

DM direct detection experiments involve the h-mediated t-channel process AN →
AN with a cross-section proportional to λ2

S/M
2
A in the limit MA � mN :

σA,N =
m2
r

π
f 2
Nm

2
N

(
λS

MAM2
h

)2

(6.24)

where fN ≈ 0.3 is the form factor of the nucleus. mr represents the reduced mass

of the nucleus and the scattered dark matter particle.

Thus, λS is constrained from non observation of DM signals at XENON 100 [50,51]

and LUX [53]. For MA = 70 GeV, the ensuing bound from LUX [52,53] data at 1σ

is |λS| < 0.007.

The constraint on λS from DM direct detection experiments gets diluted with MA

[see eqn. 6.24]. Hence, for low DM mass, direct detection bounds are more effective.

At high mass, the relic density constraints are likely to supersede these bounds. For

example, for MDM = 573 GeV, the upper limit on |λS| is 0.138 from LUX. However,

to satisfy the relic density constraints from the combined data of WMAP and Planck

within 3σ, λS can be as large as 0.07 only.
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Within the framework of the ID model, it is possible to explain the observations

in various indirect DM detection experiments [143, 161] for some regions of the

parameter space. In this work, such details have not included as such estimations

involve proper understanding of the astrophysical backgrounds and an assumption

of the DM halo profile which contain some arbitrariness. For a review of constraints

on the ID model from astrophysical considerations see, for example, Ref. [162].

Sign of λ3

Whether λ3 can be taken as positive or negative depends on the following:

• If the ID model is not the answer to the DM puzzle, so that both relic density

and direct detection constraints can be evaded, no restriction exists on the

possible sign of λ3(MZ). Otherwise, the following two cases need be considered:

– A negative λ3(MZ) implies

λS(MZ) < − 1

v2
(M2

H± −M2
A) .

As A is considered as the DM candidate, so that MA < MH± , λS(MZ)

is always negative when λ3(MZ) < 0. For low DM mass, the splitting

(MH± −MA) & 10 GeV, as otherwise DM coannihilation processes cause

an inappreciable depletion in Ωh2. For MA = 70 GeV, this implies a

lower bound λS(MZ) . −0.025, which violates the DM direct detection

bound |λS| < 0.007. Hence, for low DM mass, a negative λ3(MZ) is not

feasible.

– For high mass DM, the right relic density can be obtained when the split-

ting (MH±−MA) ∼ a few GeV or less. The above logic then implies that

a negative λ3 does not put any severe restriction on λS to contradict DM

direct detection bounds as earlier. Hence, for a high DM mass, λ3(MZ)
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can assume both the signs. Moreover, due to propagator suppression for

large MH± in the hγγ vertex, the ID contribution to µγγ is negligibly

small and hence, the sign of λ3(MZ) is not constrained by measurements

on µγγ as well.

• If at any scale, λ3 is negative while λ1 > 0, then the bound (3.9) must be

respected.

• If at some scale, λ1 < 0, then a negative λ3 makes the potential unbounded

from below, as mentioned in the following section. This means one can start

with a negative λ3(MZ), but with RG evolution when λ1 turns negative, λ3

evaluated at that scale must be positive. Such parameter space does exist.

Here, a significant deviation has been found of this analysis from earlier anal-

yses which did not allow a negative λ1. For example, in Ref. [142] a negative

λ3(MZ) was not allowed from stability of the Higgs potential if the theory has

to be valid up to 1016 GeV together with relic density considerations.

6.3.3 Tunneling Probability and Metastability in IDM

The presence of the inert doublet induces additional contributions to βλ1 (see eqn. B.14).

As a result, which is generic for all scalars, λ1 receives a positive contribution com-

pared to the SM, which pushes a metastable vacuum towards stability, implying a

lower P0 (see eqn. 5.18).

Electroweak metastability in the ID model has been explored earlier in the literature,

albeit in a different context [163–166]. If H+ gets a VEV, there could exist another

charge-violating minimum. If instead, A receives a VEV, another CP -violating

minimum could pop up. But these vacua always lie higher than the usual EW

vacuum. If Z2 is broken by introducing additional soft terms in the Lagrangian,

then the new Z2-violating minimum can be lower than the usual Z2-preserving EW

minimum. As in this work, Z2 is an exact symmetry of the scalar potential, so such
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Figure 6.16: (a) Tunneling probability P0 dependence on Mt. The left band (between
dashed lines) corresponds to SM. The right one (between dotted lines) is for ID
model for DM mass MA = 573 GeV. Constraints from WMAP and Planck measured
relic density, as well as XENON 100 and LUX DM direct detection null results are
respected for these specific choice of parameters. Light-green band stands for Mt

at ±1σ. (b) P0 is plotted against Higgs dark matter coupling λS(MZ) for different
values of λ2(MZ).

cases need not be considered. However, as mentioned earlier, if at some scale before

MPl, the sign of λ1 becomes negative, there might exist a deeper minimum which is

charge-, CP - and Z2-preserving and lying in the SM Higgs h direction.

The EW vacuum is metastable or unstable, depends on the minimum value of λ1

before MPl, which can be understood as follows. For EW vacuum metastability, the

decay lifetime should be greater than the lifetime of the Universe, implying P0 < 1

(eqn. 5.26). Hence the vacuum stability constraints on the ID model can now be

reframed, when λ1,eff runs into negative values, implying metastability of the EW

vacuum. It is reminded to the reader that in the ID model, instability of the EW

vacuum cannot be realized as addition of the scalars only improves the stability of
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the vacuum.

• If 0 > λ1,eff(ΛB) > λ1,min(ΛB), then the vacuum is metastable.

• If λ1,eff(ΛB) < λ1,min(ΛB), then the vacuum is unstable.

• If λ2 < 0, then the potential is unbounded from below along the H,A and H±

direction.

• If λ3(ΛI) < 0, the potential is unbounded from below along a direction in

between H± and h.

• If λL(ΛI) < 0, the potential is unbounded from below along a direction in

between H and h.

• If λS(ΛI) < 0, the potential is unbounded from below along a direction in

between A and h.

In the above, ΛI represents any energy scale for which λ1,eff is negative and the

conditions for unboundedness of the potential follow from eqn. 6.9. At this point note

the significant deviations are being made in the allowed parameter space compared to

the usual vacuum stability conditions: According to eqn. 3.9, λ3,L,S can take slightly

negative values. But at a scale where λ1,eff is negative, with the new conditions λ3,L,S

have to be positive.

The tunneling probability P0 is computed by putting the minimum value of λ1,eff

in eqn. 5.24 to minimize S(ΛB). In Fig. 6.16(a), P0 has been plotted as a function

of Mt. The right band corresponds to the tunneling probability for our benchmark

point as in Table 6.3. For comparison, P0 has been plotted for SM as the left band

in Fig. 6.16(a). 1σ error bands in αs and Mh are also shown. As expected, for a

given Mt, the presence of ID lowers tunneling probability. This is also reflected in

Fig. 6.16(b), where P0 has been plotted as a function of λS(MZ) for different choices
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of λ2(MZ), assuming Mh = 125.7 GeV, Mt = 173.1 GeV, and αs = 0.1184. Here

DM mass MA is also varied with λS to get Ωh2 = 0.1198. For a given λS(MZ),

the higher the value of λ2(MZ), the smaller P0 gets, leading to a more stable EW

vacuum.

6.3.4 Phase diagrams in IDM

The stability of EW vacuum depends on the value of parameters at low scale, chosen

to be MZ . In order to show the explicit dependence of EW stability on various

parameters, it is customary to present phase diagrams in various parameter spaces.

In Fig. 6.17 the LEP constraints has been shown in the MH − MA plane as in
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Figure 6.17: Constraints in MH − MA plane in IDM. The cross-hatched region
is excluded from LEP [150]. Choosing MH± = 120 GeV and λS(MZ) = 0.001,
relic density constraint is satisfied at 3σ on the blue band. The green (yellow) region
corresponds to EW vacuum stability (metastability). The solid brown line correspond
to MH = MA. The gray area on the left to it is of no interest to us as MH > MA has
been chosen. The dashed brown line shows the LEP I limit. On the brown region,
unitarity constraints are violated before MPl.

Ref. [150]. Identifying regions of EW stability and metastability, the plot has been

updated here. As a scenario is being considered where the ID model is valid till
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MPl, there are further limits from unitarity. The relic density constraint imposed

by WMAP and Planck combined data is represented by the thin blue band. The

choice of λ2(MZ) does not have any impact on relic density calculations, but affects

EW stability as expected. In this plot, for higher values of λ2(MZ), the region

corresponding to EW metastability will be smaller. The chosen parameters satisfy

the LUX direct detection bound.
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Figure 6.18: Phase diagram in ∆MH − ∆MH± plane for MA = 70 GeV in IDM.
The green and yellow regions correspond to EW vacuum stability and metastability
respectively. The cross-hatched band is excluded from LEP. The brown region suffers
from unitarity violation before MPl. The blue band reflects relic density constraint
at 3σ.

As small splitting among MA, MH , and MH± leads to some cancellations among

diagrams contributing to DM annihilation, ∆MH± and ∆MH are often used as free

parameters in the ID model. In Fig. 6.18, constraints on this parameter space for

MA = 70 GeV has been presented. As before, the brown region corresponds to

unitarity violation before MPl. For small ∆MH± and ∆MH , λ3,4,5 are required to

be small, which leads to little deviation from SM metastability. The metastable

region is shown by the yellow patch, which shrinks for larger λ2. The blue band
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reflects the relic density constraint for λS(MZ) = 0.001. For such small λS(MZ),

the h-mediated s-channel diagram in AA → WW or AA → ZZ contributes very

little. H+- or H-mediated t- and u-channel diagrams are also less important than

the quartic vertex driven diagram due to propagator suppression. This explains

the “L” shape of the blue band. For higher values of λS(MZ), the shape of the

band changes and ultimately leads to a closed contour. It appears that due to

LEP constraints, EW vacuum metastability is almost ruled out. Although the LEP

constraint permits ∆MH < 8 GeV, allowing a narrow strip towards the left, the relic

density constraints cannot be satisfied on this strip as it leads to an increased rate

of DM coannihilation processes, leading to a dip in Ωh2. But as it will be seen later,

if Mt and αs are allowed to deviate from their respective central values, for some

region in this parameter space, it is possible to realize a metastable EW vacuum.

To delineate the role of MH in EW vacuum stability, in Figs. 6.17 and 6.18, λ2(MZ)

is chosen to be small. To demonstrate the effect of λS, phase diagrams will be

presented in Fig. 6.19 in the λS(MZ) −MA plane. Panel (a) deals with low DM

masses. For ∆MH± = 40 GeV and ∆MH = 40 GeV, part of the allowed relic

density band (blue) is allowed from LEP constraints (cross-hatched band). The

entire parameter space corresponds to EW vacuum stability. Choosing small ∆MH±

and ∆MH , which imply small values of λ3,4,5, can lead to metastability. But those

regions are excluded by LEP. Again, metastability can creep in if Mt and αs are

allowed to deviate from their central values.

In Fig. 6.19(b), the same parameter space has been studied for high DM masses. As

mentioned before, to obtain the correct relic density, smaller mass splitting among

various ID scalars needs to be chosen. For ∆MH± = 1 GeV and ∆MH = 2 GeV,

the 3σ relic density constraint is shown as the blue band. The blue dashed line

demarcates the boundary between stable (green) and metastable (yellow) phases of

EW vacuum. The choice of small values of ∆MH± and ∆MH , in turn, leads to a
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Figure 6.19: Phase diagram in λS(MZ) − MA plane for λ2(MZ) = 0.1 in IDM.
Panel (a) stands for ‘low’ DM mass. The blue band corresponds the 3σ variation in
Ωh2 when ∆MH± = 40 GeV and ∆MH = 40 GeV. LEP direct search constraints are
represented by the cross-hatched band at the bottom. Entire green region imply EW
vacuum stability. Panel (b) stands for ‘high’ DM masses. The relic density band
(blue) now correspond to ∆MH± = 1 GeV and ∆MH = 2 GeV. The corresponding
stable and metastable phases for EW vacuum are represented by green and yellow
patches respectively. The relic density band (red) corresponds to ∆MH± = 5 GeV
and ∆MH = 2 GeV. For this, the boundary separating the EW phases is denoted by
the red dashed line.

large region pertaining to EW metastability.

To illustrate the sensitivity to the mass splitting, in Fig. 6.19(b), another relic

density band (red) has been presented for ∆MH± = 5 GeV and ∆MH = 2 GeV.

The corresponding boundary between the phases is denoted by the red dashed line.

The region on the right implies EW stability (the green and yellow regions do not

apply to this case). As for high DM masses, EW metastability can be attained for a

sizable amount of the parameter space; λ2(MZ) need not be chosen to be very small

to maximize the metastable region for the sake of demonstration.
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The fact that for SM the EW vacuum stability is ruled out at ∼ 3σ, is demonstrated

by a phase space diagram in the Mt−Mh plane [13,14]. In Ref. [15], similar diagrams

were presented for a singlet scalar extended SM. To demonstrate the impact of ID

scalars to uplift the EW vacuum metastability, phase diagrams have been presented

in the Mt − Mh plane for two sets of benchmark points in Fig. 6.20. Panel (a)

is drawn for MA = 70 GeV, ∆MH± = 11.8 GeV, ∆MH = 45 GeV, λS(MZ) =

0.001, and λ2(MZ) = 0.1. For panel (b) the set of parameters in Table 6.3 is

being used. Both sets of parameters are chosen so that they respect the WMAP
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Figure 6.20: Phase diagrams in Mh −Mt plane in IDM. Panels (a) and (b) stand
for ‘low’ and ‘high’ DM masses respectively. Regions of absolute stability (green),
metastability (yellow), instability (red) of the EW vacuum are also marked. The
gray zones represent error ellipses at 1, 2 and 3σ. The three boundary lines (dotted,
solid and dotted red) correspond to αs(MZ) = 0.1184±0.0007. Details of benchmark
points are available in the text.

and Planck combined results on DM relic density and the direct detection bounds

from XENON 100 and LUX. As in Ref. [15], the line demarcating the boundary

between stable and metastable phases of EW vacuum is obtained by demanding
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that the two vacua be at the same depth, implying λ1(ΛB) = βλ1(ΛB) = 0. The line

separating the metastable phase from the unstable one is drawn using the conditions

βλ1(ΛB) = 0 and λ1(ΛB) = λ1,min(ΛB), as in eqn. 5.26. The variations due to

uncertainty in the measurement of αs are marked as dotted red lines. In each panel,

the dot representing central values for Mh and Mt is encircled by 1σ, 2σ, and 3σ

ellipses representing errors in their measurements. According to Fig. 6.20(a), EW

vacuum stability is allowed at 1.5σ, whereas in Fig. 6.20(b), it is excluded at 2.1σ,

indicated by blue-dashed ellipses.
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Figure 6.21: Phase diagrams in Mt − αs(MZ) plane in IDM for the same sets of
benchmark points as in Fig. 6.20. Notations used are also the same as in Fig. 6.20.

As in the literature SM EW phase diagrams are also presented in the αs(MZ)−Mt

plane [100, 167], the same is done in the ID model as well. In Fig. 6.21, the same

sets of benchmark parameters has been used as in Fig. 6.20. As a consistency check,

one can note that the EW vacuum is allowed or ruled out at the same confidence

levels.

To study the impact of nonzero ID couplings, however, it is instructive to study the
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Figure 6.22: Dependence of confidence level at which EW vacuum stability is
excluded (one-sided) or allowed on λS(MZ) and λ2(MZ) in IDM. Regions of absolute
stability (green) and metastability (yellow) of EW vacuum are shown for λ2(MZ) =
0.1. The positive slope of the line corresponds to the stable EW vacuum and negative
slope corresponds to the metastability.

change in the confidence level (σ) at which EW stability is modified with respect to

these couplings. As in Ref. [15], In Fig. 6.22 σ has been plotted against λS(MZ) for

different values of λ2(MZ). MA is varied along with λS(MZ) to keep DM relic density

fixed at Ωh2 = 0.1198 throughout the plot. Note that changing λ2(MZ) does not

alter Ωh2. The masses of other ID particles are determined using ∆MH± = 1 GeV

and ∆MH = 2 GeV. The parameter space considered does not yield too large DM-

nucleon cross-section, inconsistent with XENON 100 and LUX DM direct detection

null results. For a specific value of λ2(MZ) = 0.1, with the increase of λS(MZ),

the confidence level at which EW is metastable (yellow region) gets reduced and

becomes zero at λS(MZ) ' 0.04. After this, EW vacuum enters in the stable phase

(green). With further increases in λS(MZ), the confidence level at which EW is

stable keeps increasing. Two other values in the same plot is used to illustrate

the role of λ2(MZ). The value of λS(MZ) at which the EW vacuum enters in the
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stable phase increases with decreases in λ2(MZ), as expected. The yellow and green

marked regions are not applicable when λ2(MZ) = 0.05, 0.15.

6.3.5 Veltman’s conditions in IDM

As the validity of the ID model have been extended till MPl, it is interesting to

explore whether Veltman’s condition (VC) can be satisfied in this model at any

scale on or before MPl. It has been shown in Section 5.2.5, if one imposes VC in

the SM at MPl, then the top mass measurement Mt = 173.1 ± 0.6 GeV implies

Mh ≈ 135± 2.5 GeV, which is excluded at more than 5σ.

Veltman’s condition implies that the quadratic divergences in the radiative correc-

tions to the Higgs mass can be handled if the coefficient multiplying the divergence

somehow vanishes [168, 169]. VC includes the contributions from the infrared de-

grees of freedom of the theory and does not carry any special information about the

ultraviolet divergences. In SM, it suggests the combination

6λ1 +
9

4
g2

2 +
3

4
g2

1 − 12y2
t = 0 .

Due to the large negative contribution from the term containing the top Yukawa cou-

pling, it is not possible to satisfy VC till MPl given the experimental measurements

of Mt and Mh within the context of SM.

In the ID model, as more scalars are added a possibility opens up to satisfy VC, as

their contributions can offset the large negative contribution from the top quark.

The above VC for the SM associated with m11 is promoted in the ID model to [148,

170]

6λ1 + 2λ3 + λ4 +
9

4
g2

2 +
3

4
g2

1 − 12y2
t = 0. (6.25)

If 2λ3 + λ4 is positive, then it has been checked with the RG improved coupling

constants, and it is possible to satisfy the above VC at a scale before MPl.

However, in the ID model m22 also receives quadratically divergent radiative correc-
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tions. The corresponding VC reads as

6λ2 + 2λ3 + λ4 +
9

4
g2

2 +
3

4
g2

1 = 0 . (6.26)

Note that it lacks the Yukawa contribution as the unbroken Z2 forbids fermionic

interactions of the inert doublet Φ2. As 2λ3 + λ4 is already positive, this VC can be

satisfied if λ2 is negative. But a negative λ2 renders the potential unbounded from

below as evident from the earlier discussions. Note that amongst our RG improved

coupling constants λ1 can be driven to negative values at high scales. But this makes

the required cancellations for VCs even worse. Hence, it is not possible to satisfy

Veltman’s conditions in a scenario where only the ID model reigns the entire energy

regime up to the MPl.

6.4 Triplet (Y = 0) scalar extension of the SM

In this case, the SM is extended by an additional hyperchargeless SU(2)L scalar

triplet. This triplet is odd under a discrete Z2 symmetry, whereas, the standard

model fields are even. Also this symmetry prohibits the inert triplet to acquire a

vacuum expectation value.

The tree-level scalar potential of eqn. 3.18 with additional Z2-symmetry, can be

written5 as,

V0(Φ, T ) = µ2
1|Φ|2 + λ1|Φ|4 +

µ2
2

2
tr|T |2 +

λ2

4
tr|T |4 +

λ3

2
|Φ|2tr|T |2 , (6.27)

where the SM Higgs doublet Φ and the inert scalar triplet T are given by,

Φ =

 G+

1√
2

(v + h+ iG0)

 , T =

 H/
√

2 −H+

−H− −H/
√

2

 , (6.28)

T contains a neutral scalar H and a pair of charged scalar fields H±. The Z2

symmetry prohibits these particles to decay entirely to SM particles. The neutral

particle H can then serve as a DM candidate.

5Here T is denoted as the scalar triplet, which is equivalent to Φ̃ of eqn. 3.17 and the λi’s are
equivalent to λ̃i of the eqn. 3.18.
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After electroweak symmetry breaking the scalar potential can be written as,

V (h,H,H±) =
1

4

[
2µ2

1(h+ v)2 + λ1(h+ v)4 + 2µ2
2(H2 + 2H+H−)

+λ2(H2 + 2H+H−)2 + λ3(h+ v)2(H2 + 2H+H−)
]
.

Masses of these scalars are given by,

M2
h = µ2

1 + 3λ1v
2,

M2
H = µ2

2 +
λ3

2
v2,

M2
H± = µ2

2 +
λ3

2
v2 .

At the tree level both the neutral and charged particle masses are the same. If

we include one-loop radiative correction then the charged particles become slightly

heavier [171,172] than neutral ones.

∆M = (MH± −MH)1-loop =
αMH

4πs2
W

[
f(
MW

MH

)− c2
Wf(

MZ

MH

)
]

where,

f(x) = −x
4

[
2x3 log(x) + (x2 − 4)

3
2 log

[1

2
(x2 − 2− x

√
x2 − 4)

]]
.

One-loop effective Higgs potential in ms scheme in the Landau gauge is given by

V SM+IT
1 (h) = V SM

1 (h) + V IT
1 (h) (6.29)

V SM
1 (h) can be found in eqn. 5.2. The additional contribution to the one-loop

effective potential due to the inert triplet is given by [77],

V IT
1 (h) =

∑
j=H,H+,H−

1

64π2
M4

j (h)

[
ln

(
M2

j (h)

µ2(t)

)
− 3

2

]
(6.30)

where,

M2
j (h) =

1

2
λj(t)h

2(t) + µ2
2(t) (6.31)

with λH,H±(t) = λ3(t). In the present work, in the Higgs effective potential, SM con-

tributions are taken at two-loop level and the IT scalar contributions are considered

at one-loop only.

Similarly for large field value h � v, the Higgs effective potential can be approxi-
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mated as

V SM+IT
eff (h) ' λ1,eff(h)

h4

4
, (6.32)

with

λ1,eff(h) = λSM
1,eff(h) + λIT

1,eff(h) , (6.33)

where λSM
eff (φ) same as in eqn. B.1 and,

λIT
1,eff(h) = e4Γ(h)

[
3λ2

3

256π2

(
ln

(
λ3

2

)
− 3

2

)]
. (6.34)

To compute the RG evolution of all the couplings in these model, we first calculate
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Figure 6.23: ITM RG evolution of the couplings λ1, λ2, λ3 for the set of parameters
in Table 6.5.

λ1 λ2 λ3

Mt 0.127054 0.10 0.10

MPl −0.00339962 0.267706 0.206306

Table 6.5: A set of values of all ITM coupling constants at Mt and MPl for MDM =
1897 GeV.

all couplings with threshold corrections at Mt and using the RG-eqns. B.19−B.22,

one can obtain the couplings λ1,2,3 at MPl. For a specific set of values of λi at

Mt = 173.1 GeV, their values at MPl = 1.2 × 1019 GeV for Mh = 125.7 GeV and
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αs (MZ) = 0.1184 have been provided in Table 6.5. In Fig. 6.23 we explicitly show

running of the scalar couplings (λi) for this set of parameters. It has been found

that for the specific choice of parameters, λ1 assumes a small negative value leading

to a metastable EW vacuum as discussed in the previous sections.

6.4.1 Constraints on ITM

The absolute stability of the EW vacuum of the scalar potential (eqn. 6.27), unitarity

of scattering matrix, perturbativity and the EW precision measurements puts a

stringent bound on the ITM parameter space which had been shown in Chapter 3.

Constrains from LHC diphoton signal strength and dark matter will be discussed in

the following subsections.

6.4.1.1 Bounds from LHC diphoton signal strength

The Higgs to diphoton signal strength µγγ can be defined similar to eqn. 6.19. If

the IT particles have masses greater than Mh/2, i.e., Γ (h→ IT, IT) = 0 then,

µγγ =
Γ(h→ γγ)IT

Γ(h→ γγ)SM

. (6.35)

In ITM, the additional contributions to µγγ at one-loop due to the H± can be found

in eqn. 6.22, where µhH+H− = λ3v stands for the coupling constant of hH+H−

vertex. One can see that a positive λ3 leads to a destructive interference between

SM and IT contributions in eqn. 6.22 and vice versa. Hence, for IT particles heavier

than Mh/2, µγγ < 1 (µγγ > 1) when λ3 is positive (negative). One can see from

the eqn. 6.22, the contribution to the Higgs diphoton channel is proportional to

λ3

M2
H±

. It has been seen, if the charged scalar mass is greater than 300 GeV then the

contributions of inert triplet model to the diphoton signal is negligible.

6.4.1.2 Constraints from dark matter relic density

In Fig. 6.24, we have plotted the relic density as a function of dark matter mass

for ITM. Here in this plot, the Higgs portal coupling λ3(MZ) = 0.10 has been used.
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Figure 6.24: Dark matter relic density Ωh2 as a function of the dark matter mass
MDM(≡ MH) for the portal coupling: λ3(MZ) = 0.10 (red) in ITM. The thin blue
band corresponds the relic density, Ωh2 = 0.1198± 0.0026 (3σ).

The light red band is excluded from the Higgs invisible decay width data from the

LHC. It has been seen that from eqn. 6.29, the mass difference between the neutral

and charged particles is ∼150 MeV [171, 172]. The co-annihilation cross-section of

the dark matter H with charged (H±) particles are very large. It has been seen

that for 500 GeV, the total cross-section is 〈σv〉 ∼ 10−25 cm3s−1 and so the relic

density becomes ∼ 0.01 which corresponds to under-abundance. For dark matter

mass greater than 1.8 TeV, one can get relic density of the dark matter in the right

ballpark.

6.4.2 Tunneling Probability and Metastability in ITM

The tunneling probability P0 (see eqn. 5.18) is computed by putting the minimum

value of λ1,eff of eqn. 6.33 in eqn. 5.24. In Fig. 6.25(a), we have plotted P0 as a

function of Mt. The right band corresponds to the tunneling probability for our

benchmark point as in Table 6.5. For comparison, we plot P0 for SM as the left

band in Fig. 6.25(a). 1σ error bands in αs and Mh are also shown. We plot P0
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Figure 6.25: (a) Tunneling probability P0 dependence on Mt. The left band (between
dashed lines) corresponds to SM. The right one (between dotted lines) is for IT
model for DM mass MH = 1897 GeV. Dark matter constraints are respected for
these specific choices of parameters. Light-green band stands for Mt at ±1σ. (b) P0

is plotted against Higgs dark matter coupling λS(MZ) for different values of λ2(MZ).

as a function of λ3(MZ) in Fig. 6.25(b) for different choices of λ2(MZ), assuming

Mh = 125.7 GeV, Mt = 173.1 GeV and αs = 0.1184. Here DM mass MDM is also

varied with λ3 to get Ωh2 = 0.1198.

The modified vacuum stability conditions are,

• If 0 > λ1(ΛB) > λ1,min(ΛB), then the vacuum is metastable.

• If λ1(ΛB) < λ1,min(ΛB), then the vacuum is unstable.

• If λ2 < 0, the potential is unbounded from below along the H and H±-

direction.

• If λ3(ΛI) < 0, the potential is unbounded from below along a direction in

between H and h also H± and h.
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In the above, ΛI represents any energy scale for which λ1 is negative.

6.4.3 Phase diagrams in ITM
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Figure 6.26: Phase diagrams in (a) Mh −Mt plane and (b) Mt − αs(MZ) plane
ITM. Regions of absolute stability (green), metastability (yellow), instability (red)
of the EW vacuum are also marked. The gray zones represent error ellipses at 1,
2 and 3σ. The three boundary lines (dotted, solid and dotted red) correspond to
αs(MZ) = 0.1184± 0.0007.

To explain the impact of inert triplet scalars to uplift the EW vacuum metastability,

in Fig. 6.26 phase diagram in Mt −Mh and αs(MZ)−Mt plane has been presented

for the benchmark points MDM = 1897 GeV, λ2(MZ) = 0.10 and λ3(MZ) = 0.10.

For this points one can see from the phase diagram in Fig. 6.26 that the stability

electroweak is excluded at 1.2σ (one-sided).

The confidence level vs λ3(MZ) diagram like Fig. 6.11 of SM+S and Fig. 6.22 of

IDM is presented in Fig. 6.27 for the inert triplet model. If the ITM is valid up

to the Planck scale, which may saturate the relic abundance of the dark matter

of the Universe then this phase diagram becomes important to realize where the
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Figure 6.27: Dependence of confidence level at which EW vacuum stability is
excluded (one-sided) or allowed on λ3(MZ) and λ2(MZ) in ITM. Regions of ab-
solute stability (green) and metastability (yellow) of EW vacuum are shown for
λ2(MZ) = 0.1.

present EW vacuum is residing. Along the line (black, blue and red) in the Fig. 6.27

the dark matter mass change in such a way that the relic density Ωh2 = 0.1198

remains same. One can see that with the increase of λ2,3(MZ), the EW vacuum

approaches the stability. In this model, the electroweak vacuum becomes absolutely

stable after λ3(MZ) = 0.154 for λ2(MZ) ≈ 0.10 (see blue line in the Fig. 6.27).

This phase diagram has been presented for central values of Mh, Mt and αs(MZ).

However, if we increase the top mass or decrease the Higgs mass or decrease αs(MZ)

within experimental uncertainties then the size of the region corresponding to the

metastability of the EW vacuum increases. With a maximum top mass Mt = 174.9

GeV and a minimum Mh = 124.8 GeV and a minimum αs(MZ) = 0.1163, allowed

at 3σ, the EW vacuum the Higgs potential becomes absolutely stable for the dark

matter mass more than 1912 GeV with λ3(MZ) greater than 0.31 for fixed λ2(MZ) =

0.1.
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In Fig. 6.28, we have shown the valid parameter spaces in λ3(MZ) −MH plane for

central value of Mt, Mh and α(MZ). Here the lower (red) region are excluded, as

the scalar potential becomes unbounded from below along the direction in between

H± and h. In this region the effective Higgs quartic coupling is negative and form a

local minima along the Higgs h direction near the Planck scale and at the same time

λ3 remains negative up to the Planck scale. It has been found that the parameter

spaces with negative λ3(MZ) is also allowed from the metastability. In this case λ3

becomes positive at the scale ΛB of global minimum and remains positive up to the

Planck scale. The green region implies that the EW vacuum is absolutely stable. In

the upper red region the unitary bounds are violated. In the plot, the right-side of

the black dotted line are viable from µγγ at 1σ.
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Figure 6.28: Phase diagram in λ3(MZ)−MH plane in ITM. Right side of the black-
dotted line is allowed from the signal strength ratio of µγγ within 68% confidence
level. and the left side is excluded at 1σ. In the metastable region, the Higgs portal
coupling λ3(MZ) is negative, however, beyond the scale ΛB it is greater than zero.
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6.5 Summary

According to the standard model of particle physics with the present measured val-

ues of the SM parameters, the electroweak vacuum is lying right in between stability

and instability, as if it is ready to tunnel into a regime of absolute instability. Nev-

ertheless, the transition time required for this is safely beyond the present lifetime

of the Universe. Still, the question is, what prompts such a near-criticality? In

this chapter, we did not try to find an answer to this question. But we explored

the validity of this question in the context of the different models containing extra

scalar field(s) that also offers a solution to the dark matter puzzle.

Near-criticality is best explained with the help of phase diagrams which were used

in the Chapter 5 for the SM. A similar endeavor has been made in this chapter

for various kinds of extended scalar sectors namely SM+S, inert doublet and inert

triplet models. The next-to-next-to-leading order corrections have been included in

the SM calculations. The effects due to the extra scalar(s) were incorporated up to

two-loop.

In this chapter, various kinds of dark matter models have been chosen to illustrate

changes in EW vacuum stability as apart from neutrino masses, the presence of

dark matter in the Universe is the most striking signature of new physics beyond

the standard model of particle physics.

In these models, for some specific choice of parameter space, the scalar field(s) can

rescue the EW vacuum from metastability, making it absolutely stable, so that

λ never turns negative. But as the DM direct detection experiments or collider

searches are yet to confirm the exact nature of the DM candidate, the parameter

space allowed by DM relic density constraints, dictated by the cosmic microwave

background radiation experiments such as Planck or WMAP, have been considered.

It has been checked that in these considerations, the related DM-nucleon cross-
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sections are beyond the present sensitivity of direct-detection experiments such as

XENON100 and LUX.

The addition of scalar multiplet does not help in realizing the asymptotic safety

scenario of gravity. But it is possible to have two degenerate vacua at somewhat

lower energy (shown for the SM+S model), which depends on the parameter space

under consideration.

In short, near-criticality of EW vacuum indicates the presence of new dynamics

other than the SM at a very high energy. In this chapter, new scalars physics have

been introduced at EW scale to demonstrate the influence of such scalars in shaping

the minimum (if any) of the potential lying close to MPl.



Chapter 7

Summary and Conclusions

The Higgs signal strength data is consistent with the theoretical predictions of the

SM with small uncertainties. The LHC is yet to find any convincing signal suggesting

the existence of any new physics beyond the standard model of particle physics.

There are several well-motivated possibilities for an enlarged scalar sector that go

far beyond the minimalistic one doublet scenario of the standard model. Small

uncertainty in Higgs signal data at LHC does allow physics beyond the SM. Other

experimental evidences point towards the existence of dark matter, which so far

could have escaped detection in colliders and DM direct detection experiments.

In this thesis, several extended scalar sectors of the SM have been discussed. The

SM has been extended with either a SU(2) singlet or doublet or triplet with different

hypercharges. It has been considered that the extra scalar fields transform under

same standard model gauge group.

This work has two aspects. In the first case, it has been considered that both the

SM doublet and the extra scalar field are responsible for the electroweak symmetry

breaking, i.e., both the neutral CP -even component of SM doublet and extra scalar

fields are getting vacuum expectation values. In other words, the minima of the

combined scalar potential form on the plane containing the CP -even components.

These components mix and form a Higgs-like particle and extra heavy scalar parti-
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cles. The different extended scalar sectors contain different kinds of scalar particles

such as charged, or neutral CP -even and CP -odd scalar(s). These scalars can couple

to the vector bosons. In this point of view, various kinds of vector boson scattering

processes have been calculated for the three models such as (i) type-II two Higgs

doublet model, (ii) Higgs triplet model with a hyperchargeless scalar triplet, and

(iii) Higgs triplet model with a scalar triplet with hypercharge Y = 2. The exact

expressions of longitudinal polarization vectors have been used to determine the

scattering cross-sections. Generally, the idea of vector boson scattering has been

used for a better understanding of EWSB. A generic expression of the amplitude of

the vector boson scattering has been given for these models. From this analysis, it is

revealed that away from resonance the cross-sections are not significantly different

from that of the SM. This is quite expected because only those parameter spaces

have been chosen which satisfy all the existing constraints. One can differentiate

these three models from the standard model and between one another, looking for

the resonance peaks in different modes of vector boson scattering. In future, if we

observe any signature of these new scalars in the future collider experiments, then

this study will help in revealing the characteristics of the extended scalar sector.

If the standard model is valid up to the Planck scale, the present measurements on

the masses of the top quark and Higgs indicate the presence of a deeper minimum

of the scalar potential at a very high energy scale, threatening the stability of the

present electroweak vacuum. State of the art NNLO calculations performed to

evaluate the probability that the present EW vacuum will tunnel into the deeper

vacuum lying close to MPl suggest that the present EW vacuum is metastable at

∼3σ. As a part of this thesis, this has been reproduced. The lack of stability might

be the artifact of the incompleteness of the SM.

It is important to look into the problem of EW stability in a scenario which addresses

the issue of DM as well. In this case, at a time an extended scalar sector has been



159

taken which provides a viable dark matter candidate. In the presence of these

new scalar sectors, the detailed study of the Higgs potential has been discussed.

Assuming these models valid up to the MPl scale and allowing the metastability of

the electroweak vacuum, new viable parameter spaces have been found. As new extra

scalar sector introduces a few new parameters and fields, the study of the parameter

space is quite involved when one considers radiatively improved scalar potentials

containing SM NNLO corrections and two-loop new sector contributions. Inclusion

of these NNLO corrections is mandatory to reproduce the correct confidence level at

which EW vacuum is metastable in the SM. In these models, the formation of the

extra minimum near the MPl scale have been described. The detailed calculation of

transition probability from the EW minimum to the new minimum at the Planck

scale has also been shown. In the presence of new scalar sectors, the conditions for

absolute stability of the EW vacuum have been reviewed in this work. If one allows

the metastable EW vacuum then new metastability conditions arise which have also

been shown for these extended scalar sectors of the SM.

As extra scalar sectors can provide a viable dark matter candidate which may fulfill

the relic abundance of the dark matter in the Universe, in this context, it is in-

structive to explore whether these extra scalars can also extend the lifetime of the

Universe. This study will help in estimating the mean lifetime of the EW vacuum,

especially if it still remains in the metastable state in models with extended scalar

sectors.
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Appendix A

Analytical expressions for vector
boson scattering

A.1 Amplitudes for different modes of VLVL scat-
tering

Let p1, p2 are the four momenta of initial state gauge bosons and k1, k2 are that for

the final state gauge bosons. εµ(p) be the polarization four vector of a gauge bosons

V (≡ W±, Z) with four momentum p. It can be written as, εµ(p) ≡ { |p|
MV

, EV
MV

p̂},
where EV =

√
|p|2 +M2

V is the energy of the gauge boson. Here, MV is the mass

of V . We use the shorthand notations ε1 ≡ ε(p1), ε2 ≡ ε(p2), ε3 ≡ ε(k1), ε4 ≡ ε(k2),

cW ≡ cos θW and sW ≡ sin θW and x ≡ cos θ, where θ is the scattering angle.

Mandelstam variables are defined as: s = (p1 + p2)2; t = (p1 − k1)2; u = (p1 − k2)2.

A.1.1 W+
L (p1) + W−

L (p2)→ W+
L (k1) + W−

L (k2)

Scattering amplitudes in terms of longitudinal polarization vectors and four mo-

menta:

(a) Mp = g2
2{2(ε1.ε3)(ε2.ε4)− (ε1.ε2)(ε3.ε4)− (ε1.ε4)(ε2.ε3)}.

(b) Mγ+Z
s = − g2

2

(
s2
W

s
+

c2
W

s−M2
Z

)
{(p1 − p2)µ(ε1.ε2) + 2(p2.ε1)εµ2 − 2(p1.ε2)εµ1}

{(k2 − k1)µ(ε3.ε4)− 2(k2.ε3)ε4µ − 2(k1.ε4)ε3µ}.

(c) Mγ+Z
t = − g2

2

(
s2
W

t
+

c2
W

t−M2
Z

)
{(p1 + k1)µ(ε1.ε3)− 2(k1.ε1)εµ3 − 2(p1.ε3)εµ1}

{(p2 + k2)µ(ε2.ε4)− 2(k2.ε2)ε4µ − 2(p2.ε4)ε2µ}.

1
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(d) MS
s = − (C g2MW )2

s−M2
S

(ε1.ε2)(ε3.ε4).

(e) MS
t = − (C g2MW )2

t−M2
S

(ε1.ε3)(ε2.ε4).

(f) MH++

u = − (Ĉ g2MW )2

u−M2
H++

(ε1.ε4)(ε2.ε3).

W+
L W+

L

W−
L W−

L

(a)

W+
L W+

L

W−
L W−

L
Z, γ

(b)

W+
L W+

L

W−
L W−

L

Z, γ

(c)

W+
L W+

L

W−
L W−

L
S

(d)

W+
L W+

L

W−
L W−

L

S

(e)

W+
L W+

L

W−
L W−

L

H++

(f)

Figure A.1: Generic Feynman diagrams for W+
L (p1) + W−

L (p2) →
W+
L (k1) + W−

L (k2) scattering

Scattering amplitudes in terms of center of momentum energy and scattering angle:

(a) Mp =
E2
CMg

2
2

16M4
W

{
8M2

W (1− 3x) + E2
CM

(
−3 + 6x+ x2

) }
.

(b) Mγ+Z
s = − g2

2

4M4
W

(
s2
W

s
+

c2
W

s−M2
Z

)(
E6
CM − 12E2

CMM
4
W − 16M6

W

)
x.

(c) Mγ+Z
t = − g2

2

32M4
W

(
s2
W

t
+

c2
W

t−M2
Z

){
− 64M6

W (1 + x) + E6
CM(−1 + x)2(3 + x)

+16E2
CMM

4
W

(
1− 7x+ 10x2

)
− 4E4

CMM
2
W

(
3− 13x+ 9x2 + x3

) }
.

(d) MS
s = − (C g2MW )2

s−M2
S

(E2
CM − 2M2

W )
2

4M4
W

.
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(e) MS
t = − (C g2MW )2

t−M2
S

{4M2
W + E2

CM(−1 + x)}2

16M4
W

.

(f) MH++

u = − (Ĉ g2MW )2

u−M2
H++

{−4M2
W + E2

CM(1 + x)}2

16M4
W

.

Here, ECM =
√
s is the center of momentum energy.

A.1.2 W+
L (p1) + W+

L (p2)→ W+
L (k1) + W+

L (k2)

W+
L W+

L

W+
L W+

L

(a)

W+
L W+

L

W+
L W+

L

Z, γ

(b)

W+
L W+

L

W+
L W+

L

Z, γ

(c)

W+
L W+

L

W+
L W+

L

S

(d)

W+
L W+

L

W+
L W+

L

S

(e)

W+
L W+

L

W+
L W+

L
H++

(f)

Figure A.2: Generic Feynman diagrams for W+
L (p1) + W+

L (p2) →
W+
L (k1) + W+

L (k2) scattering.

Scattering amplitudes in terms of longitudinal polarization vectors and four mo-

menta:

(a) Mp = g2
2{2(ε1.ε2)(ε3.ε4)− (ε1.ε3)(ε2.ε4)− (ε1.ε4)(ε2.ε3)}.

(b) Mγ+Z
t = g2

2

(
s2
W

t
+

c2
W

t−M2
Z

)
{(p1 + k1)µ(ε1.ε3)− 2(k1.ε1)εµ3 − 2(p1.ε3)εµ1}

{(p2 + k2)µ(ε2.ε4)− 2(k2.ε2)ε4µ − 2(p2.ε4)ε2µ}.

(c) Mγ+Z
u = g2

2

(
s2
W

u
+

c2
W

u−M2
Z

)
{(p1 + k2)µ(ε1.ε4)− 2(k2.ε1)εµ4 − 2(p1.ε4)εµ1}

{(p2 + k1)µ(ε2.ε3)− 2(k1.ε2)ε3µ − 2(p2.ε3)ε2µ}.
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(d) MS
t = − (C g2MW )2

t−M2
h

(ε1.ε3)(ε2.ε4).

(e) MS
u = − (C g2MW )2

u−M2
h

(ε1.ε4)(ε2.ε3).

(f) MH++

s = − (Ĉ g2MW )2

s−M2
H++

(ε1.ε2)(ε3.ε4).

Scattering amplitudes in terms of center of momentum energy and scattering angle:

(a) Mp = −
(

g2

8M4
W

){
8E2

CMM
2
W + E4

CM

(
−3 + x2

) }
.

(b) Mγ+Z
t =

g2
2

32M4
W

(
s2
W

t
+

c2
W

t−M2
Z

){
− 64M6

W (1 + x) + E6
CM(−1 + x)2(3 + x)

+16E2
CMM

4
W

(
1− 7x+ 10x2

)
− 4E4

CMM
2
W

(
3− 13x+ 9x2 + x3

) }
.

(c) Mγ+Z
u =

g2
2

32M4
W

(
s2
W

u
+

c2
W

u−M2
Z

){
64M6

W (−1 + x)− E6
CM(−3 + x)(1 + x)2

+16E2
CMM

4
W

(
1 + 7x+ 10x2

)
+ 4E4

CMM
2
W

(
−3− 13x− 9x2 + x3

) }
.

(d) Mh
t = − (C g2MW )2

t−M2
h

{4M2
W + E2

CM(−1 + x)}2

16M4
W

.

(e) Mh
u = − (C g2MW )2

u−M2
h

{−4M2
W + E2

CM(1 + x)}2

16M4
W

.

(f) MH++

s = − (Ĉ g2MW )2

s−M2
H++

(E2
CM − 2M2

W )
2

4M4
W

.

A.1.3 W+
L (p1) + W−

L (p2)→ ZL(k1) + ZL(k2)

Scattering amplitudes in terms of longitudinal polarization vectors and four mo-

menta:

(a) Mp = − g2
2c

2
W{2(ε1.ε2)(ε3.ε4)− (ε1.ε3)(ε2.ε4)− (ε1.ε4)(ε2.ε3)}.

(b) MW
t = − g2

2c
2
W

t−M2
W

[
{(p1 + k1)µ(ε1.ε3)− 2(k1.ε1)εµ3 − 2(p1.ε3)εµ1}

{(p2 + k2)µ(ε2.ε4)− 2(k2.ε2)ε4µ − 2(p2.ε4)ε2µ}

+
(M2

W −M2
Z)2

M2
W

(ε1.ε3)(ε2.ε4)

]
.

(c) MW
u = − g2

2c
2
W

u−M2
W

[
{(p1 + k2)µ(ε1.ε4)− 2(k2.ε1)εµ4 − 2(p1.ε4)εµ1}

{(p2 + k1)µ(ε2.ε3)− 2(k1.ε2)ε3µ − 2(p2.ε3)ε2µ}
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+
(M2

W −M2
Z)2

M2
W

(ε1.ε4)(ε2.ε3)

]
.

(d) MS
s = −

(C g2MW )(C ′ g2MZ

cW
)

s−M2
S

(ε1.ε2)(ε3.ε4).

(e) MH+

t = −
(C̃ g2MZ

cW
)2

t−M2
H+

(ε1.ε3)(ε2.ε4).

(f) MH+

u = −
(C̃ g2MZ

cW
)2

u−M2
H+

(ε1.ε4)(ε2.ε3).

W+
L ZL

W−
L ZL

(a)

W+
L ZL

W−
L ZL

W+

(b)

W+
L ZL

W−
L ZL

W+

(c)

W+
L ZL

W−
L ZL

S

(d)

W+
L ZL

W−
L ZL

H+

(e)

W+
L ZL

W−
L ZL

H+

(f)

Figure A.3: Generic Feynman diagrams for W+
L (p1) + W−

L (p2)→ ZL(k1) + ZL(k2)
scattering.

Scattering amplitudes in terms of center of momentum energy and scattering angle:

(a) Mp =
E2
CMg

2
2c

2
W

8M2
WM

2
Z

{
4
(
M2

W +M2
Z

)
+ E2

CM

(
−3 + x2

) }
.

(b) MW
t = − c2

Wg
2
2

32M4
WM

2
Z(t−M2

W )

{
3E6

CMM
2
W − 4E4

CMM
4
W − 10E4

CMM
2
WM

2
Z

+8E2
CMM

4
WM

2
Z + 2E4

CMM
4
Z + 16E2

CMM
2
WM

4
Z − 96M4

WM
4
Z

−8E2
CMM

6
Z + 32M2

WM
6
Z + x(E4

CMM
2
W x2 − 5E4

CMM
2
W

+12E2
CMM

4
W + 24E2

CMM
2
WM

2
Z + 16M4

WM
2
Z
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−4E2
CMM

4
Z)
√

(−E2
CM + 4M2

W )(−E2
CM + 4M2

Z) + E6
CMM

2
Wx

2

−16E4
CMM

4
Wx

2 + 32E2
CMM

6
Wx

2 − 22E4
CMM

2
WM

2
Zx

2

+96E2
CMM

4
WM

2
Zx

2 + 2E4
CMM

4
Zx

2 + 32E2
CMM

2
WM

4
Zx

2
}
.

(c) MW
u = − c2

Wg
2
2

32M4
WM

2
Z(u−M2

W )

{
3E6

CMM
2
W − 4E4

CMM
4
W − 10E4

CMM
2
WM

2
Z

+8E2
CMM

4
WM

2
Z + 2E4

CMM
4
Z + 16E2

CMM
2
WM

4
Z − 96M4

WM
4
Z

−8E2
CMM

6
Z + 32M2

WM
6
Z − x(E4

CMM
2
W x2 − 5E4

CMM
2
W

+12E2
CMM

4
W + 24E2

CMM
2
WM

2
Z + 16M4

WM
2
Z

−4E2
CMM

4
Z)
√

(−E2
CM + 4M2

W )(−E2
CM + 4M2

Z) + E6
CMM

2
Wx

2

−16E4
CMM

4
Wx

2 + 32E2
CMM

6
Wx

2 − 22E4
CMM

2
WM

2
Zx

2

+96E2
CMM

4
WM

2
Zx

2 + 2E4
CMM

4
Zx

2 + 32E2
CMM

2
WM

4
Zx

2
}
.

(d) MS
s = −

(C g2MW )(C ′ g2MZ

cW
)

s−M2
S

(E2
CM − 2M2

W ) (E2
CM − 2M2

Z)

4M2
WM

2
Z

.

(e) MH+

t = −
(C̃ g2MZ

cW
)2

t−M2
H+

{√
(E2

CM − 4M2
W ) (E2

CM − 4M2
Z)− E2

CMx
}2

16M2
WM

2
Z

.

(f) MH+

u = −
(C̃ g2MZ

cW
)2

u−M2
H+

{√
(E2

CM − 4M2
W ) (E2

CM − 4M2
Z) + E2

CMx
}2

16M2
WM

2
Z

.

A.1.4 W+
L (p1) + ZL(p2)→ W+

L (k1) + ZL(k2)

Scattering amplitudes in terms of longitudinal polarization vectors and four mo-

menta:

(a) Mp = − c2
Wg

2
2{2(ε1.ε3)(ε2.ε4)− (ε1.ε4)(ε2.ε3)− (ε1.ε2)(ε3.ε4)}.

(b) MW
s =

g2
2c

2
W

s−M2
W

[
{(p1 − p2)µ(ε1.ε2) + 2(p2.ε1)εµ2 − 2(p1.ε2)εµ1}

{(k2 − k1)µ(ε3.ε4)− 2(k2.ε3)ε4µ − 2(k1.ε4)ε3µ}

−(M2
W −M2

Z)2

M2
W

(ε1.ε2)(ε3.ε4)

]
.

(c) MW
u = − g2

2c
2
W

u−M2
W

[
{(p1 + k2)µ(ε1.ε4)− 2(k2.ε1)εµ4 − 2(p1.ε4)εµ1}

{(p2 + k1)µ(ε2.ε3)− 2(k1.ε2)ε3µ − 2(p2.ε3)ε2µ}
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−(M2
W −M2

Z)2

M2
W

(ε1.ε4)(ε2.ε3)

]
.

(d) MS
t = −

(C g2MW )(C ′ g2MZ

cW
)

t−M2
S

(ε1.ε3)(ε2.ε4).

(e) MH+

s = −
(C̃ g2MZ

cW
)2

s−M2
H+

(ε1.ε2)(ε3.ε4).

(f) MH+

u = −
(C̃ g2MZ

cW
)2

u−M2
H+

(ε1.ε4)(ε2.ε3).

W+

L
W+

L

ZL ZL

(a)

W+

L
W+

L

ZL ZL

W+

(b)

W+

L
W+

L

ZL ZL

W+

(c)

W+

L
W+

L

ZL ZL

S

(d)

W+

L
W+

L

ZL ZL

H+

(e)

W+

L
W+

L

ZL ZL

H+

(f)

Figure A.4: Generic Feynman diagrams for W+
L (p1) + ZL(p2)→ W+

L (k1) + ZL(k2)
scattering.

Scattering amplitudes in terms of center of momentum energy and scattering angle:

(a) Mp = − c2
Wg

2

16E4
CMM

2
WM

2
Z

{
4E2

CM

(
M2

W −M2
Z

)2 (
M2

W +M2
Z

)
(−1 + x)

+
(
M2

W −M2
Z

)4
(−1 + x)2

+4E6
CM

(
M2

W +M2
Z

)
(1 + 3x) + E8

CM

(
−3− 6x+ x2

)
−2E4

CM

(
M2

W −M2
Z

)2 (−1 + 4x+ x2
) }
.
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(b) MW
s = − c2

Wg
2

4E2
CMM

4
WM

2
Z(s−M2

W )

[
E6
CM

(
M2

W −M2
Z

)2
+
(
M5

W −MWM
4
Z

)2
(−1 + x)

+E8
CMM

2
Wx− E4

CM

{
2M6

Z + 4M4
WM

2
Z(−1 + 2x)

+M2
WM

4
Z(−1 + 2x) +M6

W (3 + 2x)
}

+E2
CM

{
M2

W +M2
Z)(3M6

W +M2
WM

4
Z +M6

Z

−M4
WM

2
Z(5 + 8x)

}]
.

(c) MW
u =

M2
Zc

2
Wg

2

32E6
CMM

4
W (u−M2

W )

[{
M2

W (M2
W −M2

Z)6(−1 + x)3

+E12
CMM

2
W (−3 + x)(1 + x)2

−2E2
CM(M2

W −M2
Z)4(−1 + x)2(−M4

Z +M4
Wx+

+M2
WM

2
Z(3 + x)

}
+ 2E10

CM

{
M4

Z(1 + x)2

+M2
WM

2
Z(1 + 9x+ 7x2 − x3) +M4

W (4 + 15x+ 10x2 − x3)
}

+4E6
CM

{
−M8

Z(−3 + x2)−M6
WM

2
Z(−9 + 9x+ 7x2 + x3)

+M8
W (−2 + x+ 10x2 + x3) +M2

WM
6
Z(−9 + x+ 15x2 + x3)

−M4
WM

4
Z(−15 + 9x+ 17x2 + x3)

}
−E4

CM(M2
W −M2

Z)2
{
− 8M6

Z(−1 + x)

+M6
W (−7− 5x+ 11x2 + x3)

+M2
WM

4
Z(−23 + 11x+ 11x2 + x3)

−2M4
WM

2
Z(−3− 25x+ 27x2 + x3)

}
− E8

CM

{
8M6

Z(1 + x)

+2M4
WM

2
Z(9 + 25x+ 31x2 − x3)

+M2
WM

4
Z(−13 + 19x+ 49x2 + x3)

+M6
W (3 + 35x+ 49x2 + x3)

}]
.

(d) MS
t = −

(C g2MW )(C ′ g2MZ

cW
)

t−M2
S

(
1

16E4
CMM

2
WM

2
Z

) [{
E4
CM(−1 + x)

+(M2
W −M2

Z)2(−1 + x)

+2E2
CM(−M2

Z(−1 + x) +M2
W (1 + x))

}{
E4
CM(−1 + x)

+(M2
W −M2

Z)2(−1 + x) + 2E2
CM(−M2

W (−1 + x)
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+M2
Z(1 + x))

}]
.

(e) MH+

u = −
(C̃ g2MZ

cW
)2

u−M2
H+

(
1

16E4
CMM

2
WM

2
Z

){
2E2

CM(M2
W +M2

Z)

+(M2
W −M2

Z)2(−1 + x)− E4
CM(1 + x)

}2
.

(f) MH+

s = −
(C̃ g2MZ

cW
)2

s−M2
H+

(−E2
CM +M2

W +M2
Z)2

4M2
WM

2
Z

.

A.1.5 ZL(p1) + ZL(p2)→ ZL(k1) + ZL(k2)

Scattering amplitudes in terms of longitudinal polarization vectors and four mo-

menta:

(a) MS
s= −

(C ′ g2MZ

cW
)2

(s−M2
S)

(ε1.ε2)(ε3.ε4).

(b) MS
t = −

(C ′ g2MZ

cW
)2

(t−M2
S)

(ε1.ε3)(ε2.ε4).

(c) MS
u= −

(C ′ g2MZ

cW
)2

(u−M2
S)

(ε1.ε4)(ε2.ε3).

ZL ZL

ZL ZL

S

(a)

ZL ZL

ZL ZL

S

(b)

ZL ZL

ZL ZL

S

(c)

Figure A.5: Generic Feynman diagrams for ZL(p1) + ZL(p2)→ ZL(k1) + ZL(k2)
scattering.

Scattering amplitudes in terms of center of momentum energy and scattering angle:

(a) MS
s= −

(C ′ g2MZ

cW
)2

(s−M2
S)

(E2
CM − 2M2

Z)2

4M4
Z

.

(b) MS
t = −

(C ′ g2MZ

cW
)2

(t−M2
S)

{
4M2

Z + E2
CM(−1 + x)

}2

16M4
Z

.
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(c) MS
u= −

(C ′ g2MZ

cW
)2

(u−M2
S)

{
− 4M2

Z + E2
CM(1 + x)

}2

16M4
Z

.

A.2 Required Feynman rules for V V scattering

The Feynman rules for the different vertices with the assumption that all momenta

and fields are incoming.

W+ µ ν W−

W− σ λ W+

: ig2
2(2gµλgσν − gµσgνλ − gσλgµν). (A.1)

W+ µ ν W−

Z σ λ Z

: −ig2
2c

2
W (2gµνgσλ − gνσgµλ − gνλgµσ). (A.2)

p

q k

W+ µ

W− ν

λ
Z

: ig2cW{(p− q)λ gµν + (q − k)µ gλν + (k − p)ν gµλ}.
(A.3)

p

q k

W+ µ

W− ν

λ
γ

: ig2sW{(p− q)λ gµν + (q − k)µ gλν + (k − p)ν gµλ}.
(A.4)
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W+ µ

W− ν

h,H : ig2MWgµνC, where C is given by:

SM :

 for h, C = 1,

for H, C = 0,

2HDM :

 for h, C = sin(β − α),

for H, C = cos(β − α),

Y = 0 HTM :

 for h, C = (cos β̃ cos γ + 2 sin β̃ sin γ),

for H, C = (− cos β̃ sin γ + 2 sin β̃ cos γ),

Y = 2 HTM :

 for h, C = (cos β′ cos γ′ +
√

2 sin β′ sin γ′),

for H, C = (− cos β′ sin γ′ +
√

2 sin β′ cos γ′).

(A.5)

Z µ

Z ν

h,H :
ig2MZ

cW
gµνC

′, where C ′ is given by:

SM :

 for h, C ′ = 1,

for H, C ′ = 0,

2HDM :

 for h, C ′ = sin(β − α),

for H, C ′ = cos(β − α),

Y = 0 HTM :

 for h, C ′ = cos γ,

for H, C ′ = − sin γ,

Y = 2 HTM :

 for h, C ′ = (cos δ′ cos γ′ + 2 sin δ′ sin γ′),

for H, C ′ = (− cos δ′ sin γ′ + 2 sin δ′ cos γ′).

(A.6)
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W+ µ

Z ν

H− :
ig2MZ

cW
gµνC̃, where C̃ is given by:

SM : C̃ = 0,

2HDM : C̃ = 0,

Y = 0 HTM : C̃ = sin β̃ cos β̃
MW

MZ

,

Y = 2 HTM : C̃ = cW

{
sin β′ cos δ′s2

W −
(1 + s2

W )√
2

cos β′ sin δ′
}
.

(A.7)

W+ µ

W+ ν

H−− : ig2MWgµνĈ, where Ĉ is given by:

SM : Ĉ = 0,

2HDM : Ĉ = 0,

Y = 0 HTM : Ĉ = 0,

Y = 2 HTM : Ĉ = 2 sin β′.

(A.8)

A.3 Restoration of unitarity in extended scalar
sectors

Generally when ECM >> Mi (i ≡ W,Z, h,H,H+, H++), one can express VLVL →
VLVL scattering amplitude as,

M = A4 E
4
CM + A2 E

2
CM + A0 + A−2 E

−2
CM + .... (A.9)



A.3. Restoration of unitarity in extended scalar sectors 13

IfA4,2 6= 0 then the scattering cross-section will increase with ECM . The SU(2)L × U(1)Y

gauge symmetry implies that A4 = 0 from the gauge mediated and cross diagrams.

We need the scalar particles in the model so A2 becomes exactly zero for ECM >> Mi

and theory become unitarized, i.e., the cross-section will decrease with energy.

The gauge and scalar contributions to A2 and A0 are denoted as,

A2 = A2,g +
∑
S

A2,S, S = h,H,H+, H++ , (A.10)

and

A0 = A0,g + A0,S. (A.11)

The expressions for A2,g, A2,S, A0,g and A0,S of different vector bosons scattering

processes are presented for different models of extended scalar sector.

1. W+
LW

−
L → W+

LW
−
L

SM 2HDM HTM(Y = 0) HTM(Y = 2)

A2,g
g2
2(4M2

W−3c2WM2
Z)(1+x)

2M4
W

g2
2(4M2

W−3c2WM2
Z)(1+x)

2M4
W

g2
2(4M2

W−3c2WM2
Z)(1+x)

2M4
W

g2
2(4M2

W−3c2WM2
Z)(1+x)

2M4
W

A2,S(S ≡ h,H) − g2
2

2M2
W
C2 (1 + x) − g2

2

2M2
W
C2 (1 + x) − g2

2

2M2
W
C2 (1 + x) − g2

2

2M2
W
C2 (1 + x)

A2,S(S ≡ H+) 0 0 0 0

A2,S(S ≡ H++) 0 0 0
g2
2

2M2
W
Ĉ2 (1 + x)

Table A.1: A2,g and A2,S for W+
LW

−
L → W+

LW
−
L process. C and Ĉ can be found

in Appendix A.2.

A0,g =
g2

2

4M4
W (−1 + x)

{
− c2

WM
4
Z(3 + x2)− 2c2

WM
2
WM

2
Z(−3− 6x+ x2)

+4M4
W (−1− 4x+ x2)

}
(A.12)

A0,S = − 1

4M4
W

[
(g2MW Ĉ)2

{
M2

H++ − 2M2
W (−1 + x)

}
+2

∑
S=h,H

(g2MWC)2
{
MS

2 +M2
W (−1 + x)

}]
(A.13)
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2. W+
LW

+
L → W+

LW
+
L

SM 2HDM HTM(Y = 0) HTM(Y = 2)

A2,g
g2
2(3c2WM2

Z−4M2
W )

M4
W

g2
2(3c2WM2

Z−4M2
W )

M4
W

g2
2(3c2WM2

Z−4M2
W )

M4
W

g2
2(3c2WM2

Z−4M2
W )

M4
W

A2,S(S ≡ h,H)
g2
2

M2
W
C2 g2

2

M2
W
C2 g2

2

M2
W
C2 g2

2

M2
W
C2

A2,S(S ≡ H+) 0 0 0 0

A2,S(S ≡ H++) 0 0 0 − g2
2

M2
W
Ĉ2

Table A.2: A2,g and A2,S for W+
LW

+
L → W+

LW
+
L process. C and Ĉ can be found in

Appendix A.2.

A0,g =
g2

2

2M4
W (−1 + x2)

{
c2
WM

4
Z(3 + x2) + 4M4

W (1 + 3x2)

−2c2
WM

2
WM

2
Z(3 + 5x2)

}
(A.14)

A0,S = − 1

4M4
W

{
(g2MW Ĉ)2(M2

H++ − 4M2
W )

+2
∑
S=h,H

(g2MWC)2(M2
S + 2M2

W )

}
(A.15)

3. W+
LW

−
L → ZLZL

SM 2HDM HTM(Y = 0) HTM(Y = 2)

A2,g
g2
2c

2
WM2

Z

M4
W

g2
2c

2
WM2

Z

M4
W

g2
2c

2
WM2

Z

M4
W

g2
2c

2
WM2

Z

M4
W

A2,S(S ≡ h,H) − g2
2

cWMWMZ
CC ′ − g2

2

cWMWMZ
CC ′ − g2

2

cWMWMZ
CC ′ − g2

2

cWMWMZ
CC ′

A2,S(S ≡ H+) 0 0
g2
2

c2WM2
W
C̃2 g2

2

c2WM2
W
C̃2

A2,S(S ≡ H++) 0 0 0 0

Table A.3: A2,g and A2,S for W+
LW

−
L → ZLZL process. C,C ′ and C̃ can be found

in Appendix A.2.

A0,g = − c2
Wg

2
2M

2
Z

2M4
W (−1 + x2)

{
M2

Z(−1 + x2) + 2M2
W (1 + x2)

}
(A.16)

A0,S =
1

4M2
WM

2
Z

[
− 2

(
g2MZ

cW
C̃

)2

(M2
H+ +M2

W +M2
Z)
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+
∑
S=h,H

(g2MWC)

(
g2MZ

cW
C ′
){
−MS

2 + 2(M2
W +M2

Z)
}]

(A.17)

4. W+
L ZL → W+

L ZL

SM 2HDM HTM(Y = 0) HTM(Y = 2)

A2,g −g2
2c

2
WM2

Z(1−x)

8M4
W

−g2
2c

2
WM2

Z(1−x)

8M4
W

−g2
2c

2
WM2

Z(1−x)

8M4
W

−g2
2c

2
WM2

Z(1−x)

8M4
W

A2,S(S ≡ h,H)
g2
2(1−x)

8cWMWMZ
CC ′

g2
2(1−x)

8cWMWMZ
CC ′

g2
2(1−x)

8cWMWMZ
CC ′

g2
2(1−x)

8cWMWMZ
CC ′

A2,S(S ≡ H+) 0 0 − g2
2

8c2WM2
W

(1− x) C̃2 g2
2

8c2WM2
W

(1− x) C̃2

A2,S(S ≡ H++) 0 0 0 0

Table A.4: A2,g and A2,S for W+
L ZL → W+

L ZL process. C,C ′ and C̃ can be found
in Appendix A.2.

A0,g =
c2
Wg2

2M2
Z

4M4
W (1 + x)

{
2M2

W (−1 + x) +M2
Z(1 + x)2

}
(A.18)

A0,S = − 1

4M2
WM

2
Z

[(
g2MZ

cW
C̃

)2 {
2M2

H+ − (M2
W +M2

Z)(1 + x)
}

+
∑
S=h,H

(g2MWC)

(
g2MZ

cW
C ′
){

(M2
S + (M2

W +M2
Z)(1 + x)

}]
(A.19)

5. ZLZL → ZLZL

There are no gauge contributions in this process so A2,V = 0 and the contributions

to A0 are given as follows:

A0,V = 0, (no gauge contributions), (A.20)

A0,S = − 3

4M4
Z

∑
S=h,H

(
g2MZ

cW
C ′
)2

M2
S. (A.21)
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Appendix B

Effective Higgs quartic coupling
and RG-equations for SM

B.1 Effective Higgs quartic coupling for SM

The Higgs effective quartic coupling including one-loop and two-loop radiative cor-

rections[14].

λSM
eff (φ) = e4Γ(φ)[λ(µ = φ) + λ

(1)
eff (µ = φ) + λ

(2)
eff (µ = φ)] (B.1)

Here,

(16π2) λ
(1)
eff =

3

8
g4

2

(
ln
g2

2

4
− 5

6
+ 2Γ

)
+

3

16
(g2

1 + g2
2)2

(
ln
g2

1 + g2
2

4
− 5

6
+ 2Γ

)
−3y4

t

(
ln
y2
t

2
− 3

2
+ 2Γ

)
+ 3λ2 (4 lnλ− 6 + 3 ln 3 + 8Γ) (B.2)

and

(16π2)2λ
(2)
eff =

1

576
g4

1g
2
2

{
4359 + 218π2 − 36

(
2Γ + ln

g2
2

4

)
− 153

(
2Γ + ln

g2
2

4

)2

−4080

(
2Γ + ln

g2
1 + g2

2

4

)
+ 306

(
2Γ + ln

g2
2

4

)(
2Γ + ln

g2
1 + g2

2

4

)
+924

(
2Γ + ln

g2
1 + g2

2

4

)2

+ 132

(
2Γ + ln

g2
1 + g2

2

4

)(
2Γ + ln

y2
t

2

)
−66

(
2Γ + ln

y2
t

2

)2
}

+
1

192
g2

1g
4
2

{
817 + 46π2 + 213

(
2Γ + ln

g2
2

4

)2

−6

(
2Γ + ln

g2
2

4

)
(50 + 53

(
2Γ + ln

g2
1 + g2

2

4

)
+4

(
2Γ + ln

g2
1 + g2

2

4

)(
− 91 + 57(2Γ + ln

g2
1 + g2

2

4

)

1
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+12

(
2Γ + ln

g2
1 + g2

2

4

)(
2Γ + ln

y2
t

2

)
− 6

(
2Γ + ln

y2
t

2

)2
}

+8g2
3y

4
t

{
9− 8

(
2Γ + ln

y2
t

2

)
+ 3

(
2Γ + ln

y2
t

2

)2
}

+
1

8
g2

1g
2
2y

2
t

{
− 57 + 44

(
2Γ + ln

g2
1 + g2

2

4

)
+ 4

(
2Γ + ln

y2
t

2

)

−18

(
2Γ + ln

g2
1 + g2

2

4

)(
2Γ + ln

y2
t

2

)
+ 9

(
2Γ + ln

y2
t

2

)2
}

+
1

48
g4

1y
2
t

{
189− 28

(
2Γ + ln

g2
1 + g2

2

4

)
− 68

(
2Γ + ln

y2
t

2

)

−54

(
2Γ + ln

g2
1 + g2

2

4

)(
2Γ + ln

y2
t

2

)
+ 27

(
2Γ + ln

y2
t

2

)2
}

+
1

576
g6

1

{
2883 + 206π2 − 9

(
2Γ + ln

g2
2

4

)2

+ 708

(
2Γ + ln

g2
1 + g2

2

4

)2

−102

(
2Γ + ln

y2
t

2

)2

+ 6

(
2Γ + ln

g2
1 + g2

2

4

)(
− 470 + 3

(
2Γ + ln

g2
2

4

)
+34

(
2Γ + ln

y2
t

2

))}
+

1

6
y6
t

{
− 9g2

2

(
1− ln

g2
2

4
+ ln

y2
t

2

)
+ 4g2

1

(
9− 8

(
2Γ

+ ln
y2
t

2

)
+ 3

(
2Γ + ln

y2
t

2

)2)}
+

1

192
g6

2

{
− 2067 + 90π2 + 1264

(
2Γ

+ ln
g2

2

4

)
+ 69

(
2Γ + ln

g2
2

4

)2

+ 632

(
2Γ + ln

g2
1 + g2

2

4

)
− 414

(
2Γ + ln
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2

4
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+ ln
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1 + g2
2

4

)
+ 156

(
2Γ + ln

g2
1 + g2

2

4

)2

+ 36

(
2Γ + ln

g2
1 + g2

2

4

)(
2Γ + ln

y2
t

2

)
54

(
2Γ + ln
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− ln
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2
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+ ln

y2
t
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)(
2Γ + ln

g2
2y

2
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4
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+
1

2
y6
t
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− 69− π2 + 48

(
2Γ + ln

y2
t

2

)
− 6

(
2Γ + ln

g2
2

4

)(
2Γ + ln

y2
t

2

)

−3

(
2Γ + ln

y2
t

2

)2

− 6

(
− ln
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2

4
+ ln

y2
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2

)(
2Γ + ln

g2
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2
t

4

)}



B.1. Effective Higgs quartic coupling for SM 3

+
3

16
g4

2y
2
t

{
15 + 2π2 + 8

(
2Γ + ln

g2
2

4

)
+ 4

(
2Γ + ln

g2
1 + g2

2

4

)
− 12

(
2Γ + ln

y2
t

2

)
−6

(
2Γ + ln

g2
1 + g2

2

4

)(
2Γ + ln

y2
t

2

)
− 3

(
2Γ + ln

y2
t

2

)2

+12

(
− ln
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2

4
+ ln

y2
t

2

)(
2Γ + ln

g2
2y

2
t

4

)}
+

3

4

(
g6

2 − 3g4
2y

2
t + 4y6

t

)
Polylog2

[
g2

2

2y2
t

]

+
1
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2
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g4
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2
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2 −
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2

)√
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2)
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2)2
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3
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1
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− 1
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−3 +

4g2
1
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−4Polylog2

[
1

2
− 1

2

√
−3 +

4g2
1
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]}
+

1
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√
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1 + g2
2)(g2

1 + g2
2 − 8y2

t )

(
17g4

1

−6g2
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2
2 + 9g4

2 + 2
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2 +
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2
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π2

3
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√
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)]2

− 4Polylog2

[
1

2

(
1−
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1− 8y2

t

g2
1 + g2

2

)]}
, (B.3)

where,

Γ(φ) =

∫ φ

Mt

γ(µ) d lnµ .

Anomalous γ(µ) function of the Higgs field takes care of its wave function renormal-

ization.

γ =
1

16π2

{
3g2

1

4
+

9g2
2

4
− 3y2

t

}
+

1

(16π2)2

{
− 431g4

1
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+
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+
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+
1581g2

3y
4
t

20
− 45λy4

t −
6013y6

t

13

}

B.2 Standard Model β-functions

The beta functions of the coupling parameters χ (χ ≡ g1, g2, g3, yf , λ and m2) for

the SM are defined as,

βχ =
∂χ

∂ lnµ
. (B.4)

Beta function of the standard model coupling constants and the mass term up to

three loop are presented here for completeness [14,173–177],

βg1 = g3
1

[
1

16π2

(41

6

)
+

1

(16π2)2

{
1

18

(
199g2

1 + 81g2
2 + 264g2

3 − 51y2
t

)}

+
1

(16π2)3

{
− 388613g4

1

5184
+

1315g4
2

64
+ 99g4

3 − 3λ2 − 29g2
3y

2
t

3

+
315y4

t

16
+

1

864
g2

1(1845g2
2 − 4384g2

3 + 1296λ− 8481y2
t )

+g2
2

(
− g2

3 +
3λ

2
− 785y2

t

32

)}]
(B.5)

βg2 = g3
2

[
1

16π2

(
− 19

6

)
+

1

(16π2)2

{
1

6

(
9g2

1 + 35g2
2 + 72g2

3 − 9y2
t

)}

+
1

(16π2)3

{
− 5597g4

1

576
+

324953g4
2

1728
+ 81g4

3 − 3λ2 − 7g2
3y

2
t

+
147y4

t

16
+

1

96
g2

1(873g2
2 − 32g2

3 + 48λ− 593y2
t )

+g2
2

(
39g2

3 +
3λ

2
− 729y2

t

32

)}]
(B.6)

βg3 = g3
3

[
1

16π2

(
− 7
)

+
1

(16π2)2

{
11g2

1

6
+

9g2
2

2
− 2(13g2

3 + y2
t )

}

+
1

(16π2)3

{
− 2615g4

1

216
+

109g4
2

8
+

65g4
3

2
− 40g2

3y
2
t + 15y4

t
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+g2
2

(
21g2

3 −
93y2

t

8

)
− 1

72
g2

1

(
9g2

2 − 616g2
3 + 303y2

t

)}]
(B.7)

βyt = yt

[
1

16π2

{ 1

12

(
− 17g2

1 − 27g2
2 − 96g2

3 + 54yt2
)}

+
1

(16π2)2

{1187g4
1

216
− 23g4

2

4

+g2
1

(
− 3g2

2

4
+

19g2
3

9
+

131y2
t

16

)
+ g2

2

(
9g2

3 +
225y2

t

16

)
−6(18g4

3 − λ2 − 6g2
3y

2
t + 2λy2

t + 2y4
t )

}
+

1

(16π2)3

1

24

{
24g2

3(16λy2
t − 157y4

t )

+4g4
3y

2
t (3827− 1368ζ(3)) + 16g6

3(−2083 + 960ζ(3))

+9
(
− 96λ3 + 10λ2y2

t + 528λy4
t + y6

t (113 + 36ζ(3))
)}]

(B.8)

βλ =

[
1

16π2

{
3

8
(2g4

2 + (g2
1 + g2

2)2) + 24λ2 − 6y4
t − 3λ(g2

1 + 3g2
2 − 4y2

t )

}

+
1

(16π2)2

1

48

{
− 379g6

1 − 559g4
1g

2
2 − 289g2

1g
4
2 + 915g6

2

+48λ

(
629g4

1

24
− 73g4

2

8
+ 108g2

2λ− 312λ2 + g2
1

(
39g2

2

4
+ 36λ

))
−4
(
57g4

1 − 2g2
1(63g2

2 + 85λ) + 3(9g4
2 − 90g2

2λ+ 64λ(−5g2
3 + 9λ))

)
y2
t

−16(8g2
1 + 96g2

3 + 9λ)y4
t + 1440y6

t

}
+

1

(16π2)3

1

12

{
20952λ3y2

t

+288λ4(299 + 168ζ(3))

−y4
t

(
g4

3(2128− 768ζ(3)) + 48g2
3y

2
t (19− 120ζ(3)) + 9y4

t (533 + 96ζ(3))
)

+108λ2y2
t

(
16g2

3(−17 + 16ζ(3)) + y2
t (191 + 168ζ(3))

)
+λy2

t

(
27y4

t (13− 176ζ(3))− 32g4
3(−311 + 36ζ(3))

−24g2
3y

2
t (−895 + 1296ζ(3))

)}
+ 0.0000133607g6

3y
4
t

]
(B.9)

βm2 = m2

[
1

(16π2)

{
6λ+ 3y2

t −
9g2

2

4
− 3g2

1

4

}
+

1

(16π2)2

{
λ(−30λ− 36y2

t + 36g2
2 + 12g2

1)
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+y2
t

(
− 27y2

t

4
+ 20g2

3 +
45g2

2

8
+

85g2
1

24

)
+−145

32
g4

2 +
557

96
g4

1 +
15g2

2g
2
1

16

}
+

1

(16π2)3

{
λ2(1026λ+ 148.5y2

t − 192.822g2
2 − 64.273g2

1) + λy2
t (347.394y2

t

+80.385g2
3 − 318.591g2

2 − 99.498g2
1) + λ(−64.5145g4

2 − 182.79g4
1

−63.0385g2
2g

2
1) + y4

t (154.405y2
t − 209.24g2

3 − 3.82928g2
2 − 12.5128g2

1)

+y2
t (178.484g4

3 − 102.627g4
2 − 77.0028g4

1 + 7.572g2
3g

2
2 + 14.545g2

3g
2
1

+19.1167g2
2g

2
1) + g4

2(−28.572g2
3 + 301.724g2

2 + 16.552g2
1) + g4

1(−11.642g2
3

+27.161g2
2 + 38.786g2

1)

}]
(B.10)

B.3 β-functions for singlet scalar extended SM

As a discrete Z2 symmetry have been imposed on the extra singlet scalar, odd number

of scalars do not couple with the standard model particles. So the β-functions of

g1, g2, g3 and Yukawa couplings remain unchanged. Only the Higgs quartic coupling

βλ gets modified. At one loop, we have to add k2/2
16π2 with βλ of eqn. B.4. The

β-functions of λS and κ are given by [15,114,118,178],

βκ =

 0 for µ < MS

κ
16π2

[
4κ+ 12λ+ 6y2 − 3

2
(g′2 + 3g2) + λS

]
for µ ≥MS

, (B.11)

βλS =

 0 for µ < MS

1
16π2 [3λ2

S + 12κ2] for µ ≥MS

. (B.12)

B.4 β-functions for inert doublet extended SM

As in inert doublet model pseudoscalar A has been taken as a lightest particle, the

expressions of β-functions at one loop are given as follows [36],

For µ < MA,

βλ1 = βSMλ and βλ2,3,4,5 = 0, (B.13)
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and for µ > MA

βλ1 =
1

16π2

[
24λ2

1 + 2λ2
3 + 2λ3λ4 + λ2

4 + λ2
5

+
3

8

(
3g4

2 + g4
1 + 2g2

2g
2
1

)
− 3λ1

(
3g2

2 + g2
1

)
+4λ1

(
y2
τ + 3y2

b + 3y2
t

)
− 2

(
y4
τ + 3y4

b + 3y4
t

) ]
, (B.14)

βλ2 = 24λ2
2 + 2λ2

3 + 2λ3λ4 + λ2
4 + λ2

5

+
3

8

(
3g4

2 + g4
1 + 2g2

2g
2
1

)
− 3λ2

(
3g2 + g2

1

) ]
, (B.15)

βλ3 =
1

16π2

[
4 (λ1 + λ2) (3λ3 + λ4) + 4λ2

3 + 2λ2
4 + 2λ2

5

+
3

4

(
3g4

2 + g4
1 − 2g2

2g
2
1

)
− 3λ3

(
3g2

2 + g2
1

)
+2λ3

(
y2
τ + 3y2

t + 3y2
b

) ]
, (B.16)

βλ4 =
1

16π2

[
4λ4 (λ1 + λ2 + 2λ3 + λ4) + 8λ2

5

+3g2
2g

2
1 − 3λ4

(
3g2

2 + g2
1

)
+2λ4

(
y2
τ + 3y2

t + 3y2
b

) ]
, (B.17)

βλ5 =
1

16π2

[
4λ5 (λ1 + λ2 + 2λ3 + 3λ4)

−3λ5

(
3g2

2 + g2
1

)
+2λ5

(
y2
τ + 3y2

t + 3y2
b

) ]
. (B.18)

In this case the symbol λ1 is the same as Higgs quartic coupling λ. Let us note the

yt dependence of these expressions. While βλ1 is dominated by the y4
t term, βλ2 does

not depend on yt. The yt dependence of other βλis are softened by the corresponding

λi multiplying the y2
t terms. Two-loop RGEs used in this work have been generated

using SARAH [179].

B.5 β-functions for inert triplet (Y = 0) extended
SM

Similarly for β-functions for inert triplet model at one-loop given as follows [77]:
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For µ < MH ,

βλ1 = βSMλ and βλ2,3 = 0, (B.19)

and for µ > MH

βλ1 =
1

16π2

[
24λ2

1 +
3

2
λ2

3 +
3

8

(
3g4

2 + g4
1 + 2g2

2g
2
1

)
− 3λ1

(
3g2

2 + g2
1

)
+4λ1

(
y2
τ + 3y2

b + 3y2
t

)
− 2

(
y4
τ + 3y4

b + 3y4
t

) ]
, (B.20)

βλ2 =
1

16π2

[
22λ2

2 + 2λ2
3 + 12g4

2 − 24g2
2λ2

]
, (B.21)

βλ3 =
1

16π2

[
6g4

2 + 12λ1λ3 + 10λ2λ3 + 4λ2
3 + λ3(6y2

t −
33

2
g2

2 −
3

2
g2

1)
]
. (B.22)

In this work two-loop RGEs are used for the extra scalar sectors.
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