
NONLINEAR SIGNAL PROCESSING FOR VISIBLE

LIGHT COMMUNICATION

Ph.D. Thesis

by

RANGEET MITRA

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JANUARY 2017





NONLINEAR SIGNAL PROCESSING FOR VISIBLE

LIGHT COMMUNICATION

A THESIS

Submitted in partial fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

RANGEET MITRA

DISCIPLINE OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JANUARY 2017





INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled

“NONLINEAR SIGNAL PROCESSING FOR VISIBLE LIGHT COMMUNICA-

TION” in the partial fulfillment of the requirements for the award of the degree of DOC-

TOR OF PHILOSOPHY and submitted in the DISCIPLINE OF ELECTRICAL ENGI-

NEERING, Indian Institute of Technology Indore, is an authentic record of my own work

carried out during the time period from January 2014 to January 2017 under the super-

vision of Dr. Vimal Bhatia, Associate Professor, Indian Institute of Technology Indore,

India.

The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other institute.

Signature of the student with date

(Rangeet Mitra)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge.

Signature of Thesis Supervisor with date

(Dr. Vimal Bhatia)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Rangeet Mitra has successfully given his Ph.D. Oral Examination held on

Signature of Thesis Supervisor Convener, DPGC

Date: Date:

Signature of PSPC Member:1 Signature of PSPC Member:2 Signature of External Examiner

Date: Date: Date:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−





ACKNOWLEDGEMENTS

I am immensely grateful to my PhD supervisor Dr. Vimal Bhatia for his invaluable guid-

ance, encouragement and direction throughout this work. He has actively supported my

research and has done everything humanly possible to support my research in IIT indore.

He has helped me in transforming myself into a better researcher, paper-writer and pre-

senter. Further, I will be forever thankful to him for hiring me for a PhD position after

my return from Turkey. I would also take this opportunity to thank my PSPC members

Dr. Somnath Dey and Dr. Shaibal Mukherjee who have mentored my PhD thesis via

interactions in yearly research progress seminars. Their suggestions and insights were

really helpful in shaping my thesis and in forging directions of future work. Further, in-

teractions with Dr. Murat Uysal and Mr. Farshad Miramirkhani acquainted me with the

latest research in VLC and were quite useful in shaping my thesis towards something

substantial.

I would thank Ministry of Human Resource Development (MHRD), Govt. of India

and IIT Indore for providing stipend regularly and marginally hiking it when we were

struggling economically. I would also take this opportunity to thank IIT Indore for par-

tially funding my conference travels. These conferences helped me meet new people who

have helped shape my PhD thesis. I will also thank the finance, administration, academic

and R&D sections for all the support. The support from hostels, transport and mess has

helped ease the research pressure significantly.

I would like to thank my math teachers Mr. Sanjay Misra and Mr. Syed Mohammad

Omair of DPS Ranchi who have mentored my mathematics. Mr. Misra was the one who

aroused my interest in mathematics and encouraged me to delve deeper into mathematics.

Mr. Omair tutored me in Class 12 and made Calculus one of my strengths which has

helped me a lot throughout my research.

Finally, I would like to thank my parents for their constant care and support. Interac-

tions with Dr. Pankaj Sharma have been really insightful and morale-boosting. He always

supported me when I was down and out, and encouraged me to hang in there and wait for

my time to strike. Finally, I thank Mr. Nimesh Tiwary of Silver Springs, Phase-II for his



wonderful tea (and company) and two street dogs who have showered me with selfless

affection.

RANGEET MITRA





ABSTRACT

Recently many research efforts have been directed towards communication in visible light

spectrum (visible light communication (VLC)) keeping in mind bandwidth hungry fu-

ture 5G and beyond systems. However, the performance of VLC systems is degraded

by channel-impairments like inter-symbol interference (ISI) and inherent device impair-

ments like light emitting diode (LED) nonlinearity which limits its overall throughput.

To mitigate these impairments, and to maximize throughput, adaptive signal processing

techniques are proposed in this work which do not need explicit knowledge of the VLC

channel nonlinearity. In other words, online algorithms are proposed in this work, which

adapts, learns and inverts the channel impairments. This adaptive learning can be useful

in tracking scenarios when there is aging in the front-end devices/hardware. Addition-

ally, there are savings in the manufacturing cost of the optical system hardware as these

proposed techniques relax the minimum required tolerance in manufacturing front-end

hardware. Finally, reliability of the overall VLC link increases as these signal processing

techniques help in maintaining the overall signal to noise ratio in the presence of instan-

taneous outages. This thesis aims at developing signal processing techniques for boosting

the throughput of the VLC system. In order to boost the achievable data rate in VLC

system, the first work in this thesis proposes a Chebyshev polynomial based nonlinear

pre-distortion technique for mitigating LED nonlinearity, and ISI of the VLC channel.

Better bit error rate (BER) characteristics were found upon the use of Chebyshev pre-

distortion as compared to popular linear normalized least mean squares (NLMS) based

pre-distortion. The results obtained in this work may be useful for benchmarking with re-

spect to a “perfect” scenario. However, the performance gains achieved in this work rely

on perfect knowledge of the detected symbols at the receiver to be relayed to the transmit-

ted symbols in the uplink which is not feasible in general. The second work focuses on

open-loop VLC system in which the problem of improving the throughput of the VLC sys-

tem is solved by open-loop post-distortion at the receiver. A novel sparse novelty criterion

based kernel minimum symbol error rate (KMSER) post-distorter (or equalizer) based on

reproducing kernel Hilbert space (RKHS) techniques is proposed in which savings in



computational complexity and superior BER characteristics are demonstrated. This work

establishes the RKHS based post-distorter to be a better alternative for post-distortion as

compared to Volterra post-distorters. The third work explores further techniques to bring

the computational complexity of the sparse RKHS-based post-distorter down further by

proposing fixed-budget based dictionary pruning criterion. It is demonstrated from this

work that same BER performance is achieved by fixed-budget KMSER over impaired

VLC channels with lower dictionary size as compared to novelty-criterion based KMSER

technique. Exact mathematical insights on the transient performance of the dynamics of

learning curves of fixed budget-KMSER are drawn in this work. The next work revisits

the problem of post-distortion over VLC channels by exploring unsupervised techniques

for post-distortion. In this work, the proposed multi-stage clustering based Hammerstein

post-distorter is compared with the widely used modified cascaded-MMA (MCMMA)-

based Volterra post-distorter. Superior convergence characteristics are obtained with the

use of multi-stage Hammerstein based post-distortion. The steady-state mean squared er-

ror (MSE) characteristics of the multi-stage post-distorter is analyzed mathematically and

many insights from the analyzed steady-state behavior are derived.

Finally, a multiple-input multiple-output (MIMO)-multi-user scenario is considered

with non-orthogonal multiple access (NOMA) being the multiple-access technique. A

special NOMA-scenario is considered where all users have correlated channel matrices

(and hence similar channel conditions). A novel precoding technique and its correspond-

ing power-allocation strategy is derived. This is the first effort in direction of NOMA in

VLC being extended to arbitrary number of users with similar channel conditions. Based

on these precoding techniques, expression for BER is derived for square-quadrature am-

plitude modulation (QAM) and insights are provided. Above all, the signal processing

algorithms provided in this thesis are aimed at maximizing the overall throughput of the

VLC system in presence of impairments for 5G and beyond communication systems.
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Chapter 1

Introduction

The next generation of communication system would witness a paradigm shift in basic

principles that govern the communication-link design in order to cater to the ever in-

creasing demand for bandwidth in order to accommodate large number of users [1]. The

estimated internet protocol (IP) traffic can be approximated to exceed 500 exabytes (1

exabyte=1018 bytes) by 2020 [1]; which shows the rate at which the demand for band-

width is simply growing with leaps and bounds. For example in applications like internet

of things (IoT), there could be innumerable bandwidth-hungry devices within a single

attocell which needs to be serviced at the same time with different levels of quality of ser-

vice (QoS). In such scenarios, the visual network index (VNI) report published in 2014

indicates that an incremental change over 4G systems would not be able to meet future

bandwidth requirements [1]. Thus, it is certain that well-established techniques for com-

munication in the 4G standard will be outdated and considerable research efforts must

be channelized in the direction of providing for high-speed communications for higher

number of users. This need has initiated many proposals for increasing the available spec-

trum like moving the spectrum for communications towards mm-wave regime, nm-wave

regime (VLC) and massive-MIMO.

One of the proposed techniques for meeting increasing demand for bandwidth is VLC

[2]. In VLC, the LED are used for dual purposes of illumination and as a wireless trans-

mitter. The intensity of the LED is varied at a rate imperceptible to the human eye in

1



1.1. OVERVIEW OF VISIBLE LIGHT COMMUNICATION

accordance with the input modulating signal. This serves the dual purposes of illumina-

tion and signal transmission. This mode of communication is also environment friendly

and hence belongs to the category of green communications. VLC systems/links have

been reported in the literature that achieve speeds of 3Gbps and hence promise to address

the bandwidth requirement of 5G systems (particularly 5G indoor attocells).

1.1 Overview of visible light communication

VLC is a technique of communication in which transmission of data is achieved by mod-

ulating the LED at high rates without affecting the primary purpose of illumination [3].

The purpose of illumination is unaffected as the intensity of the LED is modulated at a

rate above the flicker fusion threshold [3, 4]. LEDs are ubiquitous in our surroundings. If

we look around, we have LED lamps for lighting our rooms/offices, traffic lights, head-

lights of cars, billboards etc. In future, LEDs will dominate the market for illumination

purposes and will be widely prevalent due to their cost-effectiveness [3]. The integration

of using LED intensity modulation based VLC has the potential to complement radio fre-

quency (RF)-spectrum and converge towards development of smart cities [5]. There are

several advantages offered by VLC over RF communications, which are enlisted:

• The 2.4 GHz industrial, scientific and medical (ISM) band is getting increasingly

crowded as compared to the less occupied visible-light spectrum. Thus VLC en-

counters lesser interference and facilitates better link quality.

• As light does not penetrates through the walls, VLC bands have better spectrum

reusability and prevents eavesdropping/jamming from neighboring users.

• The front end devices of VLC based systems do not suffer from phase noise and IQ

imbalance as RF devices, and are also cheap and easily available.

• As wavelength in visible band is in the sub-micron range the variance of channel

estimation algorithms are much lower in general. This also helps in accurate posi-

tioning of the receiver for better link performance.

2
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Due to these advantages of VLC, it has been chosen as one of the dominant research-

directions which has the potential to cater to the ever increasing bandwidth requirements

of 5G and beyond systems in the near future [6].

1.2 Motivation, objective and significance

Motivation

In spite of the advantages of VLC, the overall throughput of the VLC based systems is

significantly reduced by channel impairments like ISI, and LED nonlinearity, which lower

the overall effective signal to noise ratio (SNR). In order to achieve the promised through-

put for VLC systems, and to maintain the SNR in severely degraded channel conditions

many signal processing techniques have been suggested recently. It was noted that the

signal processing techniques for VLC are of two types: a) open-loop post-processing at

receiver, and b) closed-loop processing between receiver and transmitter. By use of both

types of processing techniques, significant gains in performance of VLC systems can be

observed. However, they are mostly based on heuristics and are not propounded by an

optimality criterion. For example, one can peruse a vast amount of literature on Volterra

adaptive equalizer [7, 8], which is generally the preferred solution, is well known to be

subject to local minima and model order dependent. Motivated by these challenges, this

thesis aims at finding nonlinear and convex solutions to the nonlinear VLC-channel ef-

fects. The specific motivation for each chapter is elaborated in the individual chapters.

Objectives

The objectives of this thesis are as follows:

• To propose signal processing algorithms for nonlinear, ISI-impaired VLC systems

that are motivated by an optimality criterion as opposed to existing heuristic based

detectors.

• To validate the performance of the proposed signal processing algorithms with re-
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spect to the achieved BER floor and MSE characteristics.

• To theoretically analyze both the transient and steady-state behavior of the learning

metric for proposed algorithms where applicable.

With these goals in mind, this thesis provides various signal processing techniques to

mitigate the undesirable channel effects in VLC-systems. Also theoretical analysis is pre-

sented in this thesis to validate these signal processing techniques against the existing

literature. First a closed-loop adaptive Chebyshev pre-distorter is proposed which out-

performs the classical linear NLMS-based pre-distorter, which is motivated by a optimal

min-max approximation error guarantee. Next, it is found that the exact knowledge of de-

tected symbols is too idealistic an assumption (however the “idealistic” assumption may

be used for benchmarking or as a bound) and therefore post-distortion techniques are pro-

posed using RKHS-techniques based on the MSER-criterion which are motivated from

notions of convexity and hence are global solutions. Theoretical analysis of the learn-

ing curves (MSE) of the proposed RKHS-based techniques is performed and simulations

are performed to validate the theory. Consequently, post-distortion is approached from

an unsupervised setting using the multi-stage clustering based approach and the blind

multi-stage clustering cost function is found to be intimately linked to the correntropy

criterion. Finally, the problem of pre-distortion is re-visited from a multi-user perspec-

tive in which NOMA being used as a multiple-access technique in a MIMO-setting. A

hybrid closed-loop Chebyshev precoding is proposed for the NOMA-VLC system and

BER-performance of the precoding technique is analyzed theoretically for square-QAM

modulation. The insights gained from the analysis of the proposed algorithms guide the

user towards choice of suitable values for parameters for the proposed algorithms for an

improved VLC link in general.

Significance

VLC systems which are targeted for many 5G and beyond systems [2, 9–11], have at-

tracted a lot of attention recently. However, these VLC systems significantly fail to de-

liver the promised throughput due to channel impairments [7] and without proper signal
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processing techniques. To counteract the channel impairments, latest research in this do-

main is motivated mostly by sub-optimal signal processing techniques. All the works in

this thesis are motivated by an optimality criterion; hence they exhibit superior perfor-

mance than existing signal processing techniques, and may be used as an integral part of

proposed 5G and beyond systems.

1.3 Thesis outline and contributions

The main aim of this thesis is to propose signal processing techniques to counter VLC-

channel impairments, and analyze their learning curves and other performance measures

theoretically. The organization of the thesis may be outlined as follows:

• Chapter 2 introduces the reader to VLC based systems, and briefly reviews the con-

cepts of pre-distortion and post-distortion, linear and nonlinear adaptive filtering,

and multiple access techniques in VLC.

• Chapter 3 investigates a closed-loop Chebyshev polynomial based pre-distorter mo-

tivated by NLMS algorithm. The choice of Chebyshev polynomial is motivated by

min-max approximation error optimality criterion and superior BER characteristics

as compared to linear pre-distorter is observed via simulations. This chapter as-

sumes perfect knowledge of detected symbols at the receiver to be relayed to the

transmitter via a feedback path which may be too idealistic in practice.

• To circumvent this idealistic assumption, Chapter 4 explores post-distortion tech-

niques based on the RKHS-based minimum symbol error rate criterion by open-

loop processing done at the receiver. A new KMSER-based post-distortion tech-

nique is proposed. Theoretical analysis for the transient and steady-state MSE

curves is carried out. Asymptotic analysis for the novelty criterion based sparsifi-

cation is done, and it is observed that the analysis is conserved under sparsification.

• Chapter 5 suggests a better sparsification technique for post-distortion over VLC

channels called the fixed-budget KMSER approach. Detailed performance analysis
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is carried out, and the derived analysis is validated by simulations. It is found that

fixed-budget based sparsification yields lower dictionary sizes, and hence facilitates

computational simplicity as compared to the novelty criterion based sparsification

technique.

• Chapter 6 approaches the task of post-distortion over VLC channels via multi-stage

clustering based blind equalization paradigm. In addition, this chapter analytically

proves that the multi-stage clustering could be linked to the correntropy criterion

(which incorporates higher order statistics), and hence this technique gives better

MSE and BER performance as compared to existing blind post-distorters.

• Chapter 7 looks at closed loop multi-user MIMO-VLC with NOMA as the multiple-

access technique. A novel hybrid precoding technique is proposed using Chebyshev

polynomials. A novel power-allocation strategy is derived for the precoding tech-

nique. Using this power allocation, explicit expression for the BER is derived for

square-QAM. Simulations are carried out to validate the theoretically derived ex-

pressions for BER for the proposed NOMA-VLC system.

Finally, Chapter 8 presents conclusion and direction for future works followed by bibli-

ography and list of publications.
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Chapter 2

Background

In this chapter, the area of visible light communications is introduced to the reader, and

an overview of key signal processing techniques in VLC is provided. The organization

of this chapter is as follows: a) an overview of VLC based systems is given in Section-

2.1, b) components and applications VLC based systems are provided in Section-2.2, c)

learning metrics to evaluate various signal processing algorithms are reviewed in Section-

2.3, d) classical linear adaptive signal processing techniques are reviewed in Section-

2.4, d) existing nonlinear adaptive filtering techniques are reviewed in Section-2.5, e) the

potential of RKHS based techniques is explored in Section-2.6, f) the kernel least mean

squares (KLMS) algorithm is reviewed in Section-2.7, and g) a recently proposed multiple

access technique for VLC called NOMA is reviewed in Section-2.8.

2.1 Overview of visible light communication

VLC is a technique of communication in which transmission of data is achieved by mod-

ulating the LED at high rates without affecting the primary purpose of illumination [3].

The purpose of illumination is unaffected as the intensity of the LED is modulated at a rate

above the flicker fusion threshold [3, 4]. LEDs are ubiquitous in our surroundings. If we

look around, we have LED lamps for lighting our rooms/offices, traffic lights, headlights

of cars, billboards etc. In future, LEDs will dominate the market for illumination purposes

and will be widely prevalent due to their cost-effectiveness [3]. The integration of using
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COMMUNICATIONS

LED intensity modulation based VLC has the potential to complement RF-spectrum and

converge towards development of smart cities [5]. There are several advantages offered

by VLC over RF communications, which are enlisted:

• The 2.4 GHz industrial, scientific and medical (ISM) band is getting increasingly

crowded as compared to the less occupied visible-light spectrum. Thus VLC en-

counters lesser interference and facilitates better link quality.

• As light does not penetrates walls through the VLC bands have better spectrum

reusability and prevents eavesdropping/jamming from neighboring users.

• The front end devices of VLC do not suffer from phase noise and IQ imbalance as

RF devices, and are also cheap and easily available.

• As wavelength in visible band is in the sub-micron range the variance of channel

estimation algorithms are much lower in general. This also helps in accurate posi-

tioning of the receiver for better link performance.

Due to these advantages of VLC, it has been chosen as one of the dominant research-

directions which has the potential to cater to the ever increasing bandwidth requirements

of 5G and beyond systems in the near future [6].

2.2 Components and applications of visible light commu-

nications

Visible light communication refers to communication over visible light spectrum (400-

700nm) [12] which is principally used for illumination. Moreover, this communication is

“green” as compared to RF communication systems (due to use of light as a communica-

tion medium), uses spectrum which is much less cluttered as compared to the RF spectrum

and uses the same infrastructure as compared to the RF systems. The overall downlink

communication system consists of an intensity modulated LED, an LED driver and a

power-line communication (PLC) modem/dongle. In certain scenarios considered in this

8
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Figure 2.1: Example of VLC deployment.

work, when we assume a feedback uplink to transmitter to improve overall performance,

the VLC-uplink consists of a photo-diode (used for converting light to an electrical sig-

nal), trans-impedance amplifier and a PLC modem. These are the components of a typical

VLC communication system.

In future, there will be billions of bandwidth-hungry devices surrounding us as can

be seen from the concept of IoT [13]. A typical VLC scenario is illustrated in Fig. 2.1

(adopted from [12]), in which one can see a plethora of devices connected to an LED

which serves as a router. VLC would be an ideal technology that can act as an integral

component of IoT as it is cheap, robust and can accommodate larger number of users as

most of the visible spectrum is mostly unused/unoccupied as compared to the RF spec-

trum. This also has applications in inter-vehicular communications in smart cars by con-

trolling traffic/communication between vehicles by using traffic lights, lights of cars etc.

[12, 14, 15]. There are several other applications of VLC, including in medicine [16–18]

where monitoring of patients in a hospital is done remotely by sensors and maintaining
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records automatically. While RF spectrum is mostly occupied, this monitoring can be

achieved by a VLC link that will not be as prone to interference and jamming.

Despite these desirable characteristics and applications of VLC links, the performance

of VLC links are limited by the ISI and nonlinear characteristics of the LED. The follow-

ing section provides information about these impairments in much greater detail.

2.3 VLC channel impairments

This section provides background on the impairments encountered in VLC links and em-

phasizes the need for signal processing techniques to mitigate these impairments. Also,

performance metrics used in this work to assess performance of various signal processing

algorithms (for mitigating these impairments) are explained. There are two major factors

which impede the performance of a VLC link and prevent it from delivering the promised

throughput for 5G systems: a) the LED characteristics, which presents saturation type

nonlinearity causing distortion of the input signal, and b) the ISI/pulse spreading caused

by different multi-path reflections from walls of the room. The following paragraphs

elaborate on these performance-limiting impairments.

2.3.1 LED nonlinearity impairments

An LED’s transfer characteristics are inherently nonlinear when one operates in the pulse-

regime of LED or uses cheaply manufactured LEDs with lesser tolerance levels. In par-

ticular, white LED is modeled by saturation type nonlinearity in [19] called the Rapp

model. Different values of parameters were derived in [19] to fit various nonlinearity

types of white LEDs to the Rapp model which has been widely used previously in RF-

communications to model power amplifiers. Mathematically, the Rapp model can be

written as follows:

A(x) =
x

(1+( x
Isat

)2p)
1

2p
,x >Vth

= 0 ,x < 0
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where p is the parameter that defines the shape of the nonlinearity and Isat indicates the

LED saturation current. By invoking the well known Bussgang’s theorem [20] it can be

proven mathematically that the overall SNR falls considerably upon assuming a satura-

tion nonlinearity to be acting on the input due to introduction of an uncorrelated additive

component to the input signal. Techniques to mitigate LED nonlinearity are widely stud-

ied in the literature [7, 8, 21, 22], and it has been also widely established that additional

signal processing techniques are required in order to maintain the BER below the forward

error correction (FEC) limit.

2.3.2 Channel impairments

Early investigations on VLC assumed the channel to have a dominant line of sight com-

ponent [23]. However, apart from the line of sight component, there exists multiple

echoes/reflections of the transmission from the walls. In [24] these echoes were simu-

lated using data-files of various LEDs by ray tracing technique and standardized channels

were obtained. These channels were part of the IEEE 802.15 PAN VLC standard. From

standardized channel models, significant delay spread causing severe ISI is observed. This

is found to seriously hinder system throughput [24] without the use of advanced signal

processing techniques.

A typical channel impulse response (CIR) is plotted in Fig. 2.2 for the “Open-Office”

scenario and in Fig. 2.3 for the “office with cubicles” scenario. The LED nonlinearity

characteristic is plotted in Fig. 2.4.

2.3.3 Performance measures

The following performance measures, to compare the proposed algorithm with existing

algorithms, are used in this work:

MSE

MSE is defined as the variance of the deviation of an estimate from its desired value. MSE

gives a measure of the reliability of an estimation technique. A low value of MSE for an
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Figure 2.2: CIR of a VLC channel for “Open-Office” scenario.
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Figure 2.3: CIR of a VLC channel for “office with cubicles” scenario.
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Figure 2.4: Nonlinear LED transfer characteristics.

estimator is always desired in order to ensure accurate parameter estimation. The MSE of

an estimate value x̂ of a parameter x, is given by the following equation:

MSE(x) = E[(x− x̂)2] (2.1)

where E[.] denotes the statistical expectation operator. MSE gives a measure of variance

for an unbiased estimator, and is a sufficient statistic in additive white Gaussian noise

(AWGN) scenarios.

BER

In order to recover the transmitted bits in the presence of channel nonlinearity and ISI, an-

other important optimization criterion for online learning is BER. The BER of the overall

system is the probability of a received bit being flipped with respect to a transmitted bit
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obtained via Monte-Carlo simulations. The BER is given by the following equation:

BER = lim
N1→∞

k1

N1
(2.2)

where k1 is number of received bits that are in error, and N1 is the total number of trans-

mitted bits. BER is an important optimality criterion and is an independent cost function

in its own right.

SER

Similar to BER, the symbol error rate (SER) is defined as the number of received symbols

in error. Symbols are defined to be groups of q1-bits which are mapped to a 2q1-ary

number. The SER can be defined as:

SER = lim
N2→∞

k2

N2
(2.3)

where k2 is number of received symbols that are in error, and N2 is the total number

of transmitted symbols. Alternatively, SER can also be shown to be related to BER as

follows:

SER = 1− (1−BER)q1 (2.4)

Optimization of the minimum bit error rate (MBER)/MSER cost function in general yields

faster convergence due to incorporation of order statistics and hence is a better learning

criterion particularly over nonlinear channels.

2.4 Review of classical LMS based adaptive filtering

A classical linear adaptive filter [25], in its simplest form estimates a weighted sum of

input xk, with the adaptive filter weights Ωk to form the output yk = ΩT
k xk, where (·)T

denotes the transpose operator. Next, the following cost function, JLMS, is formulated
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which is equivalent to the quadratic loss function:

JLMS = E[(sk−D− yk)
2] (2.5)

where E[·] denotes the statistical expectation operator, sk denotes the transmitted symbols,

and D is the overall lag of the channel and the equalizer. Since, it is difficult to evaluate

the expectation, an instantaneous approximation of the cost function is assumed, and since

JLMS is convex in Ωk, convergence to the global minima by a stochastic gradient learning

algorithm is achieved, by adapting the weights recursively in the negative direction of

the instantaneous gradient. The adaptation equation for the least mean squares (LMS)

algorithm can hence be written as follows:

Ωk+1 = Ωk +ηekxk (2.6)

where ek = (sk−D− yk) denotes the error term of the LMS algorithm, and η denotes the

step-size.

A drawback of LMS algorithm is its sensitivity to the scaling of observations which

could prevent its convergence. To counter this, the NLMS algorithm [25] scales the obser-

vations by the square of its Euclidean norm and hence prevents instability in convergence

due to high variance of the observation vector. The NLMS algorithm uses a time varying

step-size as follows:

Ωk+1 = Ωk +ηkekxk (2.7)

where ηk =
η

‖xk‖2
2
.

The LMS algorithm and its variants have reasonable performance, are simple to imple-

ment (as their growth of computational complexity scales linearly with the dimensionality

of regressors), and find widespread applicability in many areas like channel estimation,

equalization, noise cancellation, and antenna beam-forming. Two examples of applica-

tions of the classical adaptive filtering in system identification and inverse channel mod-
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eling for a given plant/system [26], are illustrated in Fig. 2.5, and Fig. 2.6 respectively.
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Figure 2.5: Application of adaptive filtering for system identification [26].
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Figure 2.6: Application of adaptive filtering for system inversion [26].

However, the linear adaptive filtering techniques lose their validity, and are sub-optimal

in scenarios when there is an inherently nonlinear system/plant, and therefore the obser-

vations are not linearly separable. In such scenarios, nonlinear adaptive filters need to be

considered as candidate signal processing techniques.
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2.5 Existing signal processing techniques for VLC

In VLC based systems, complex nonlinear signal processing techniques are required to

achieve the FEC limit for BER of 3.8× 10−3 due to the VLC channel impairments like

ISI and LED nonlinearity. The existing signal processing methods for mitigating the im-

pairments in VLC based systems can be classified into two categories: a) closed loop

pre-distortion at the transmitter [27], and b) open-loop post-distortion at the receiver

[21, 22, 28]. Linear closed loop pre-distortion uses a linear weight as a pre-distorter,

which is learnt by NLMS algorithm using the detected symbols at the receiver as feed-

back to the transmitter. However, assumption of perfect feedback of labels is too idealistic

an assumption, and hence open loop post-distortion has been explored in the literature.

Among existing techniques for post-distortion, Volterra, and Hammerstein polynomial

based adaptive filters have been explored lately, which rely on a truncated Taylor’s se-

ries approximation of a function. However, their performance is severely affected by the

modeling error incurred due to abrupt truncation of the Volterra series. As an example,

let g : Rn→ R be any differentiable function. Then, by the Taylor’s series expansion, we

arrive at the following approximation for g(x) till second order terms, where x ∈ Rn:

g(x) = g(x0)+∇g(x0)
T (x−x0)+

1
2
(x−x0)

T J(x0)(x−x0)+higher order terms (2.8)

where x0 is an arbitrary expansion point, ∇g(x0) denotes the gradient operator, and J(x0)

denotes the Hessian matrix evaluated at the expansion point x0. Assuming the second

order expansion of g(x), we have:

ĝ(x) = g(x0)+∇g(x0)
T (x−x0)+

1
2
(x−x0)

T J(x0)(x−x0) (2.9)

It is observed from (2.9), that the final estimate of g(·), ĝ, is a linearly weighted com-

bination of first order terms [x1,x2...xn], and the second order terms [x2
1,x1x2,x1x3...x2

n].

These terms are cumulatively called the second order Volterra kernel. Let the regressors
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corresponding to the second order Volterra kernel be denoted as:

φVOLTERRA(xk) = [x1,x2...xn,x2
1,x1x2,x1x3...x2

n] (2.10)

and the output as:

yk = Ω
T
k φVOLTERRA(xk) (2.11)

Existing generic Volterra filters (the Volterra filters can handle memory as well and hence

are better than simple Taylor’s series approximation which is presented here as an illus-

trative special case) optimize the following cost function given below:

JVOLTERRA = E[(g(xk)− yk)
2] (2.12)

where, the weights Ωk are adapted by taking instantaneous gradient of JVOLTERRA as follows:

Ωk+1 = Ωk +ηekφVOLTERRA(xk) (2.13)

where ek = g(xk)− yk. It should be noted that truncation till the second order Volterra

kernel introduces modeling error in estimation of g(·). Further, the performance of poly-

nomial expansion based approaches like Volterra filtering are susceptible to local minima,

and is also sensitive to the choice of model order. Additionally, these approaches exhibit

slow convergence, and have high computational requirement which prevent their deploy-

ment in practical VLC based systems.

Therefore, signal processing techniques need to be developed that have the following

desirable properties: a) convexity, b) representation of a wide variety of functions without

modeling errors, and c) which can be readily sparsified for computational tractability.
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2.6 Potential of RKHS based adaptive filtering

In order to circumvent the computational complexity, and incurred modeling error by clas-

sical nonlinear signal processing techniques like Volterra filtering, online RKHS based

learning techniques have been proposed in the literature which rely on the representer

theorem in RKHS. In order to understand the theory behind RKHS, one can introduce

the notion of evaluation function F : H → C corresponding to a functional f (.), such

that Fx( f ) = f (x) (H denotes the Hilbert space of functionals f (.)). A Hilbert space

is defined to be an RKHS if the evaluation functionals are bounded. Therefore, by Reisz

representation theorem [29], there exists a kx ∈H such that:

Fx( f ) = f (x) =< kx,x >H (2.14)

Since kx is a function in RKHS in its own right, by reproducing property, one can write:

kx(x) =< kt ,kx >H = K(t,x) (2.15)

where K(t,x) is the reproducing kernel defined on H . It can be easily proven that all

valid reproducing kernels are symmetric and positive semi-definite functions defined over

Cn×Cn.

An important result over RKHS is the representer theorem. Considering the loss func-

tion, J( f ), given below:

J( f ) = l( f )+λ‖ f‖2
H (2.16)

where l( f ) is a loss function of f and ‖.‖H is the norm defined on RKHS H . From the

representer theorem,

f̂ (x) = argmin
f

J( f ) = ∑
∀i

αiK(xi,x) (2.17)

Thus, inference over a high (or even infinite) dimensional RKHS H becomes equivalent
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to minimizing over Cn by use of kernels K(., .). Thus, the minimizer of a regularized non-

linear loss-function can be written as a weighted sum of kernel functions which indicate

inner-product in RKHS.

From (2.17), it has been found that the original RKHS based approaches have a tempo-

rally increasing computational and storage requirement, which is an undesirable feature of

these techniques. Hence, sparsification of the learning techniques based on many criteria

like novelty criterion, surprise criterion, fixed-budget criterion, have been proposed in the

literature. These techniques selectively learn from the incoming observations using a dic-

tionary consisting of “different” observations and error terms (the notion of “difference”

being given by the respective sparsification criterion). Thus, these sparsification tech-

niques curtail the temporally expanding requirement of the kernel adaptive filters without

sacrificing performance. The RKHS based techniques can be viewed as an radial basis

function (RBF) structure as shown in Fig. 2.7 [30], assuming a dictionary of observa-

tions, {D (i)
k }
|Dk|
i=1 , and a corresponding dictionary of error terms Ik defined similarly. As

opposed to classical post-distortion techniques like Volterra filtering, the RKHS based ap-

proaches are convex (and hence do not converge to local minima), allow for computational

simplicity via sparsification, and have no modeling error (by the representer theorem), and

hence is promising for post-distortion for standardized VLC channels.

2.7 Review of KLMS

In this section we provide a review of an online RKHS based adaptive filtering technique

called KLMS [31]. This paradigm refers to online stochastic minimization of the qua-

dratic loss function in (2.16).

By the representer theorem given in [32], unique representation for any arbitrary non-

linearity exists in RKHS. Therefore, to recover the input symbols, the nonlinear equation

as given in (6.1) is inverted by mapping a received vector of observation xk to a linearly

separable high dimensional RKHS Hσ corresponding to a single kernel width σ by a

feature map φ(·), where φ : Cn→Hσ corresponding to the kernel width σ . Consequent
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Figure 2.7: RKHS adaptive filter shown as an equivalent RBF network.
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to this mapping, the following cost function is formed for the KLMS based post-distorter:

JKLMS(k) = E[(sk−D−Ω
T
k φ(xk))

2] (2.18)

where Ωk is the post-distorter weight in RKHS, sk−D is the delayed desired symbols (D

being the overall lag of the channel and the equalizer), and E[·] denotes the statistical

expectation operator. The Ωk is optimized using a stochastic gradient based approach.

Let us denote yk = ΩT
k φ(xk). Then the classical adaptation equation is given as follows:

Ωk+1 = Ωk +ηekφ(xk) (2.19)

where η is the step size, and ek = sk−D− yk denotes the error term for the KLMS algo-

rithm. However, from (2.19), we can write as follows:

yk = η

k−1

∑
i=1

ei < φ(xi),φ(xk)>Hσ
(2.20)

where < ·, ·>Hσ
denotes the inner product in RKHS. By the kernel trick, explicit knowl-

edge of φ(·) is not essential to evaluate this inner product. Instead it can be written as:

< φ(xi),φ(xk)>Hσ
= κσ ,Cn(xi,xk) = (2.21)

exp
(
− ∑∀q(xi(q)−xk(q)

∗)2

σ2

)

where x(q) denotes the qth component of the vector, x, and (·)∗ denotes complex conjuga-

tion.

2.8 Multiple-access for VLC

In classical multiple access techniques, users share an orthogonal set of time-frequency

resources, which are allocated to them; but their overall throughput is lesse than the upper

bound for the achievable capacity. However, with the increase in demand for spectrum

for upcoming 5G based deployments, it is possible to overlap many users on the same
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time-frequency resource by superposition coding. The same time-frequency resource is

shared by multiple users with different power-levels allocated to them (which is called

power-domain multiplexing or classical NOMA) [33, 34]. At each user equipment, there

is an ordered successive interference canceller (SIC) which recovers the users’ signals

in the order decided by the signals’ allocated power level. As an example, consider two

users UE1 and UE2 with channel gains h(1), and h(2), symbols s(1) and s(2), and the

corresponding channel outputs y(1), and y(2). We have the following equation relating

these parameters at the kth time instant assuming a quasi-static single-input single-output

(SISO) channel model [33]:

y(1)k = h(1)(
√

P(1)s(1)k +
√

P(2)s(2)k )+n(1)k (2.22)

y(2)k = h(2)(
√

P(1)s(1)k +
√

P(2)s(2)k )+n(2)k

where n(1)k and n(2)k are the noise terms at each user equipment (UE) with variance σ2
n . If

h(1) > h(2), P(1) < P(2). Hence, after one-tap equalization, s(2)k is recovered from y(2)k at

UE2 with the following signal to interference and noise ratio (SINR) (denoted by Γ(u) for

the uth user):

Γ
(2) =

|h(2)|2P(2)

|h(2)|2P(1)+σ2
n

(2.23)

At UE1, however, detection proceeds in two stages of SIC. First, the s(2)k is detected from

y(1)k treating the contribution of s(2)k to y(1)k as noise. Next, the contribution of the detected

s(2)k (denoted by ŝ(2)k ) is subtracted from y(1)k , and is detected with the following SINR:

Γ
(1) =

P(1)|h(1)|2
σ2

n
(2.24)

Although initially proposed for RF based systems, the NOMA has been recently found

to be useful in VLC. A typical NOMA setup for a VLC based system is given in Fig. 2.8.

Classical NOMA assumes diverse channel conditions at each UE and hence facilitates
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Figure 2.8: A typical NOMA-VLC setup.

diverse power allocation coefficients for each user. However, in practice, all users in a

typical attocell in a VLC network may not experience similar channels, but have differing

data-rate requirements [35]. Existing precoding techniques do not address this scenario

in general, and this problem is addressed only for the two-user scenario [35]. Hence,

precoding and power-allocation techniques need to be developed that extends the work in

[35] for a multiple user scenario, when many users experience similar/correlated channels,

which can happen in practical VLC scenarios when some users are located close to each

other.

2.9 Conclusion

In this chapter, a brief overview of VLC based systems was provided to aid the under-

standing of the contents of the thesis. Next, the major impairments for VLC based com-

munication techniques, and existing signal processing techniques to mitigate those im-
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pairments were reviewed. Next, the potential of RKHS based learning was discussed.

Finally, multiple-access in VLC was taken up. An upcoming multiple-access technique

called NOMA was discussed, and potential challenges in VLC based systems for NOMA

were raised.
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Chapter 3

Chebyshev Polynomial based Adaptive

Pre-distorter for VLC

3.1 Introduction

In VLC, the device-nonlinearity of an LED degrades the overall performance of a com-

munication link [36]. To improve the overall link-performance in such scenarios, several

pre-distortion schemes have been suggested to counter the nonlinear characteristics of

LED. The simplest pre-distortion scheme is to use a lookup table (LUT) which stores the

input-output pairs for the nonlinearity of the LED and pre-distorts the transmitted signal

by assigning the nearest member in the LUT. This type of receiver is simple to implement;

however the LED characteristics are prone to change due to factors like temperature vari-

ation and aging [27]. To mitigate this, an adaptive NLMS based pre-distorter that learns a

scaling factor for pre-distortion, and tracks changes in LED characteristics was proposed

in [27].

However, in order to counter-effect LED nonlinear characteristics, one must “learn” a

nonlinear transformation on the input as opposed to a linear hypothesis proposed in [27] in

order to incorporate order statistics. The reason is that the inverse of a nonlinearity should

be a nonlinearity in general. Therefore, a Chebyshev polynomial expansion of the input

is suggested in this chapter for pre-distorter design using a familiar stochastic-gradient
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based approach.

There has been some ongoing research on joint ISI and LED nonlinearity mitiga-

tion using techniques like Volterra adaptive filters [22, 28] and Hammerstein filters [21].

However, the Volterra based adaptive filters are computationally complex. The indoor

ISI channel of a room is mostly static which can be obtained from ray-tracing techniques

[37]. Hence, at the receiver, the data received after photo-diode (which is assumed to

be linear) can be post-processed by incorporating the pseudo-inverse of the convolutional

matrix corresponding to the ISI channel in the feedback loop of [27] as a zero-forcing

solution to mitigate ISI. Using the post-processed data the system model in [27] can be

used to mitigate the LED distortion (using Chebyshev polynomial regression) so that the

transmitted symbols can be recovered accurately. To evaluate robustness of the proposed

approach, comparisons have been made against the NLMS based pre-distortion approach

and post-distortion based approaches like Volterra [28] and Hammerstein filters [21] for

a variety of modulation schemes. There have also been works that use an adaptive mean

square criterion [38] for equalization which is suboptimal for nonlinear scenarios.

This chapter is organized as follows: Section-3.2 reviews NLMS based pre-distortion,

the proposed approach is given in Section-3.3, Section-3.4 describes the simulation results

and Section-3.5 summarizes this chapter.

3.2 NLMS based pre-distortion

NLMS based pre-distortion has been one of the seminal techniques suggested for mitigat-

ing the effect of LED nonlinearity [27]. In NLMS based pre-distortion, the pre-distorter

is chosen as a linear scaling factor (considering the Bussgang decomposition of the LED

nonlinearity), and this pre-distorter is adaptively learnt by the NLMS algorithm with the

detected symbols at the receiver being relayed to the transmitter in order to form the error

signal.

In the considered system model, let xk denote the sequence of input symbols indexed

28



CHAPTER 3. CHEBYSHEV POLYNOMIAL BASED ADAPTIVE
PRE-DISTORTER FOR VLC

over time k. The A(.) in [39] is modeled by the following “quadratic” equation:

A(x) = b0 +b1(x−0.5)+b2(x−0.5)2 (3.1)

b0, b1 and b2 are the polynomial coefficients which are parameterized by b0 = ζ ,b1 =

1,b2 = −4ζ +2, where ζ is a parameter to control the severity of nonlinearity. Another

kind of nonlinearity considered in the simulations is taken from [36], which is called the

“Rapp” nonlinearity and is widely used to model power-amplifiers in RF communications.

The work in [27] assumes a scaling factor rk, which is multiplied with the input symbol

sequence xk. Consequently, it passes though the LED nonlinearity A(.), and an indepen-

dently identically distributed (i.i.d) AWGN nk is added after passing through the channel

so as to form an estimated signal l̂k.

Several online stochastic gradient based online adaptive filtering techniques exist in

the literature [40] for parameter estimation (the parameter in this chapter would indicate

the inverse of the LED nonlinearity). Chief among such techniques is the LMS algorithm

which optimizes the stochastic approximation of the squared error, and is widely known

for its robustness and simple implementation. However, it suffers from the problem of

gradient noise amplification upon encountering observations towards the higher end of its

dynamic range. To counter this phenomenon, the observations are divided by their norm

and then used for stochastic-gradient adaptation. This adaptive technique prevents high

values of the observations from amplifying the gradient noise. This adaptive algorithm is

called the NLMS algorithm. Mathematically, it has also been motivated as optimization

of the MSE cost function under assumption of a temporal smoothness constraint in [41],

and also as a rank one approximation of the Newton-update as given in [40].

Due to the above desirable characteristics of the NLMS algorithms, in [27] the linear

pre-distorter rk is updated using the following NLMS-based algorithm:

rk+1 = rk +ηkekxk (3.2)

where, ηk =
η

∑∀k |xk|2 is the step-size for the NLMS algorithm [40] at the kth iteration given
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PRE-DISTORTION IN FREQUENCY-FLAT CHANNELS
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Figure 3.1: Block diagram of the proposed system model.

in [40, 42] (η being a small positive number), ek = βxk− l̂k (β being a biasing constant),

where l̂k is the output given by l̂k = A(rkxk)+ nk. β is a constant which is the gain term

of LED.

3.3 Chebyshev polynomial-expansion based pre-distortion

in frequency-flat channels

Orthogonal polynomials [43] are defined to be a set of orthogonal basis functions with

respect to an inner product. In other words, given a closed subset of the real line [a,b],

two orthogonal polynomials fm(x) and fn(x) must satisfy the following condition,

∫ b

a
fm(x) fn(x)dx = 0 (3.3)

Orthogonal polynomials find numerous applications in approximation theory according to

which an arbitrary function in a Sobolev space could be expressed as a linear combination

of orthogonal basis polynomials. There exists many kinds of orthogonal polynomials (e.g.

Hermite, Lauguerre) among which the Chebyshev polynomials are widely preferable due

to its min-max error approximation property in the interval [−1,1]. They are given by the
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following recurrence relation:

Tn+1(x) = 2xTn(x)−Tn−1(x) (3.4)

where Tn denotes the Chebyshev polynomial of first kind of order n. These functions can

also be viewed as solutions to the following differential equation:

(1− x2)
d2y
dx2 − x

dy
dx

+α
2y = 0 (3.5)

where α is an arbitrary constant. Due to min-max approximation error optimality of the

Chebyshev expansion, this Chapter explores Chebyshev polynomial based pre-distortion.

The basic blocks for Chebyshev pre-distortion are described below and illustrated in Fig.

3.1. The noise process is modeled by AWGN which comes after passing through the

channel H (considered according to the system model in [44], where H denotes the con-

volutional matrix corresponding to the CIR). Please note that there could be a possibility

of an amplifier after the photodiode in Fig. 3.1. However, as this is a closed loop control

system scaling factors are compensated by the closed loop adaptive pre-distorter system.

Hence, this block can be omitted without loss of generality. To correct an LED nonlinear-

ity A(.), it is desirable that the characteristics of the pre-distorter be a nonlinear function

of the input xk, as opposed to rkxk (discussed in previous the section). A polynomial

pre-distorter is proposed which would make l̂k = A(∑∀i r(i)k Ti(xk))+H†nk, where Ti(x) is

a Chebyshev polynomial of ith order, and r(i)k is the ith pre-distorter weight at time in-

stant k. This is a nonlinear transformation on input signals which is written as a sum

of orthonormal basis polynomials in interval [−1,1]. This expansion is better suited for

approximating the inverse of the restriction of the LED nonlinearity in the interval [-1,1]

as compared to approximating by just a scaling factor in [27], since the inverse of the

nonlinear characteristic is better modeled by a nonlinear function.

Chebyshev polynomials have been found in the control literature for nonlinear system

identification and nonlinear parameter learning in general [45]. Chebyshev polynomials

have desirable properties like: a) orthogonality, b) minimizing the min-max error from
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the desired polynomial, and c) having decaying coefficients (eigenvalues for orthonormal

polynomials) for smooth functions; hence it can ascertain the optimal polynomial order to

avoid overfitting. Hence, the Chebyshev polynomials are good choice for approximating

smooth functions within the closed interval [−1,1]. Although the nonlinearity may not

be contained in [−1,1] one can consider its restriction over the closed interval by proper

biasing of LED such that the signal and its nonlinear transformation are within [-1,1]. This

is implementation-wise practical as in a real-life scenario one deals with signals with a

finite dynamic range which can be scaled to the interval [-1,1].

To perform Chebyshev NLMS based pre-distortion, the cost-function to be minimized,

J = min
r(i)k

E[(βxk − l̂k)]2, is the mean squared deviation from the detected signal l̂k and

transmitted symbol xk. The coefficients r(i)k are updated by taking derivative of J with

respect to r(i)k (which is practically implemented as a Random Access Memory (RAM))

via a similar stochastic gradient NLMS approach as:

r(i)k+1 = r(i)k +ηkekTi(xk) (3.6)

The first four Chebyshev polynomials which was used in this chapter are given as T0(x) =

1,T1(x) = x,T2(x) = 2x2−1,T3(x) = 4x3−3x.

Please note that for coefficient update and comparison both the algorithms in [27]

and the proposed approach uses the NLMS algorithm, however with different inputs.

The former approach passes the inputs directly to the NLMS filter while the latter uses

orthogonal polynomials. Hence, the covariance matrix of the data on the latter case will

be the identity matrix, which will culminate in a larger Eigen-value spread of the data and

hence faster convergence is achieved [41].

3.4 Simulations

In this section, simulations are presented to validate the proposed adaptive pre-distortion

approach against existing pre-distortion/post-distortion techniques for VLC. First, the

proposed algorithm is compared to the existing pre-distortion algorithms given in [27]
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as shown in the Fig. 3.2. The proposed algorithms are compared against: a) no pre-

distortion, b) lookup table with ζ = 0.582, c) lookup table with ζ = 0.582 + 0.025,

d) NLMS algorithm in [27] with ζ = 0.582, e) NLMS algorithm in [27] with ζ1 =

0.582+0.025, f) proposed polynomial expansion based algorithm with ζ = 0.582, and g)

proposed polynomial expansion based algorithm with ζ1 = 0.582+0.025. It is observed

that the proposed algorithm has better performance as compared to alternative approaches

compared in [27] for various values of ζ ,ζ1. A gain of 1 decade of SER at an SNR of 14dB

is found for the proposed algorithm as compared to the NLMS based approach in [27] for

ζ = 0.582,ζ1 = 0.582+0.025 for 16-QAM. Thus it can be inferred from simulations that

the polynomial expansion based approach outperforms NLMS based approach in [27] as

a pre-distortion technique for compensating the nonlinear characteristics of the LED.

Similar advantages are observed in the case of LED characteristic given in [36] for the

proposed algorithm vis-a-vis the same approaches described in the literature. SER gain

of a decade is shown in Fig. 3.3. The modulation scheme in this figure was quadrature

phase shift keying (QPSK).

To further validate the robustness of the proposed algorithm, ISI VLC channels are

considered. The CIR for an indoor channel h can be estimated easily as given in [37, 46–

48] by ray-tracing techniques. Assuming that the impulse response is known, consider

the data block (in time) to be multiplied by the convolutional matrix H corresponding

to h, where H is full-rank. If the data-block is post-processed in time by the pseudo-

inverse of H, the channel reduces to a frequency-flat channel and the block diagram in

Fig. 3.1 will be applicable. This post-processing is necessary as ISI introduces memory

in the system and makes the transmitted symbols temporally dependent. Thus, upon post-

processing by a left-inverse of H, the temporal whiteness of symbols is restored and hence

the Chebyshev polynomial expansion may be used to learn the LED nonlinearity in the

feedback loop. The CIR considered in this scenario has 169 taps as Configuration C

of [49]. In Figs. 3.4 and 3.5, better SER improvements is observed for the proposed

Chebyshev polynomial expansion based nonlinearity mitigation approach as compared

with NLMS based nonlinearity mitigation approach in the ISI scenario in [49] using the
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system model in Fig. 3.1.

In Fig. 3.6 the performance of 4-pulse amplitude modulation (PAM) for the proposed

approach, NLMS based approach and Volterra adaptive filtering in [28] are compared.

The same 169 taps ISI channel as [49] was used as in previous simulations so as to model

an indoor channel. Same temporal post-coding, by the pseudo-inverse of the convolu-

tional matrix, was used in case of the proposed approach and NLMS based approaches.

For Volterra equalizer, the post processing was performed at the receiver using the LMS

algorithm [28]. It is observed in Fig. 3.6 that by using the proposed approach, better

performance is achieved as compared to NLMS based adaptive pre-distorter and Volterra

based adaptive post-distorter (at high SNR). Please note that the system model in Fig. 3.1

is used only for Chebyshev regression and NLMS pre-distorter; and the respective system

models for other algorithms are used as given in their corresponding seminal works. In

other words, for the Chebyshev and Hammerstein filters, the system models as given in

[21, 28] are used. The purpose of this simulation is to compare how the proposed pre-

distortion technique compare against existing post-processing techniques which are also

valid ways of optimizing the bit error rate. In Fig. 3.6 the general Hammerstein based ap-

proach in [21] is compared with the proposed approach using the recursive least squares

(RLS) based approach proposed in their work. It is found that the proposed algorithm

delivers better SER performance as compared to these approaches.
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Figure 3.2: Performance comparison of the proposed approach with standard approaches
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3.5 Summary

In this chapter, a typical closed-loop VLC system is considered and is found to be im-

paired by LED nonlinearity and ISI. To mitigate these impairments, a technique for

transmit-side mitigation of LED-nonlinearity (also called pre-distortion) is contributed.

The nonlinear adaptive pre-distortion algorithm is more effective in correcting LED non-

linearities in a VLC setting as compared to other existing linear pre-distortion algorithms.

Instead of the scaling factor-based pre-distortion proposed in the literature, this chapter

suggests the use of orthogonal polynomials to mitigate the nonlinear LED characteris-

tics. In this chapter, normalized Chebyshev regression based pre-distortion is suggested

to learn the pre-distorter weights due to min-max approximation properties of Chebyshev

polynomials in the interval [-1,1]. The polynomial coefficients of the Chebyshev pre-

distorter were derived by a stochastic gradient based NLMS algorithm which was found

to be more suited for correcting nonlinearity as compared to a linear adaptive pre-distorter

as given in [27]. Additionally, the system model was extended to model ISI scenarios by

incorporation of pseudo-inverse of the circulant channel matrix over the closed loop sys-

tem model proposed in this chapter. Simulations were carried over frequency-flat/ISI

scenarios, and the proposed Chebyshev polynomial based pre-distortion algorithm was
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compared with a) Volterra post-distortion, b) Hammerstein post-distortion, and c) simple

NLMS pre-distortion [27]. As observed from simulations, considerable SER performance

improvement is achieved using the proposed Chebyshev polynomial based pre-distortion

algorithm as compared to existing linear pre-distortion based approaches.



Chapter 4

Adaptive Dictionary based Minimum

Symbol Error Rate Post-distorter in

VLC

4.1 Introduction

VLC communication systems promise bandwidths of 4-5 orders of magnitude higher than

4G systems, and 2-3 orders of magnitude higher than modern optical fiber systems (as-

suming there is no electrical to optical conversion issue) with speeds upto 3-Gb/s being

reported [50]. However, their performance is limited by impairments like LED nonlinear-

ity and ISI due to the propagation channel, as highlighted in Chapter 1. LED nonlinearity

particularly affects the performance of VLC systems when multilevel constellations like

PAM and QAM with high peak to average power ratio (PAPR) are used. One can argue

that LED always has a linear working region, and lifetime of a modern LED is 10 years

due to which the characteristics may remain more or less invariant (which can be resolved

by manual calibration). However, the strength of post-distortion is apparent in the fol-

lowing scenarios: (a) high power/pulse mode of LED, in which nonlinearity is higher and

the life time of LED is shorter, b) robustness on the tolerance of manufacturing, since

different production bins give difference grades of LED, and post-processing technique
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would be useful to save the cost in manufacturing, and maintaining SNR under dynamic

environment in presence of interference, power instability, etc.

For a VLC system, the CIR of an indoor environment is typically long which requires

complex receiver architecture based on Volterra-decision feedback equalizer (DFE) [28].

Many VLC systems have been demonstrated successfully in the literature which mitigate

these impairments by pre-distortion techniques, and post-distortion techniques or an (it-

erative) combination of both. Post-distortion, and pre-distortion (as discussed in previous

chapter) techniques generally go hand-in-hand [22] and are both valid solutions to miti-

gate the overall VLC channel impairments. Post-distortion, as an independent task, aims

to mitigate the overall nonlinearity of the cascade of LED nonlinearity and ISI channel

by a long computationally demanding solution like Volterra-DFE [7, 8, 28]. This formu-

lation, though attractive, is based on heuristics like choice of optimal filter order and may

suffer from convergence to local minima if the filter parameters are not chosen properly.

Moreover, the overall throughput can be affected if the Volterra-DFE takes a large number

of iterations to converge.

In parallel, recently there has been a growing interest in RKHS based techniques

[31, 51, 52] for equalization and channel estimation of nonlinear systems. These classes

of algorithms are generally adaptive and find convex solutions to nonlinear optimization

problems [30]. Several classes of linear adaptive algorithms like LMS algorithm, and

RLS algorithm have been absorbed within the framework of RKHS techniques with rea-

sonable computational complexity. Recently, the MSER based equalization [53, 54](a

better paradigm than MMSE paradigm as it incorporates higher order statistics) has also

been adopted into the RKHS framework by the name the kernel minimum symbol error

rate equalizer [55]. Both KLMS [31] and KMSER based approaches [55], give good

BER performance; however they require infinite storage and polynomial computational

complexity, thereby calling for dictionary sparsification techniques [56].

In order to lower the computational complexity and make the KMSER viable for

VLC channels, a sparsification technique is proposed in Section 4.4. From the litera-

ture survey, the use of RKHS techniques has not been explored for equalization of VLC

40



CHAPTER 4. ADAPTIVE DICTIONARY BASED MINIMUM SYMBOL
ERROR RATE POST-DISTORTER IN VLC

channels. Simulations reveal that the proposed sparsified-KMSER has equivalent/better

performance in most scenarios as compared to Volterra-DFE, with lower computations

required as compared to the Volterra-DFE. As an additional novelty, theoretical expres-

sions dictating MSE dynamics for KMSER are derived and validated by simulations. This

analysis provides control over the desired MSE floor, and the convergence rate of KMSER

by varying the step-size in a manner dictated by the mathematically derived expressions.

The following terminology is used in this chapter: scalar at time k is represented by

(·)k and vector of past M samples at time k is represented by boldface with subscript k

such as xk (which are elements of CM, M being the row dimension of the vector, and C

denotes the field of complex numbers) and italicised variables like Dk and Ik denote an

online dictionary of observation and error terms respectively, at the time instance k. Real

part of a complex quantity is denoted by the superscript (·)R and ℜ{·}, and the imaginary

part is denoted by (·)I and ℑ{·}.

This chapter is organized as follows: Section-4.2 provides the system model, Section-

4.3 reviews KMSER, Section-4.4 proposes the sparsification of KMSER for VLC chan-

nels via novelty criterion, Section-4.5 derives the equations that dictate the MSE dynamics

of KMSER, Section-4.6 provides simulations to validate the proposed approach against

the Volterra DFE, and Section-4.7 summarizes this chapter.

4.2 System Model

In this section, the system model considered in this chapter is described. Let sk denote the

input constellation (with DC bias so as to be placed in the forward-bias of LED) at the kth

time instant. The transmit symbol can be complex valued, where the real, and imaginary

parts of the transmitted symbols would be modulated by orthogonal pulse-shapes at the

baseband prior to transmission. It is passed through an finite impulse response (FIR) filter

{hi}L−1
i=0 , of order L−1. The received symbol at kth time instant, xk, is given as follows:

xk =
L−1

∑
i=0

hiA(sk−i)+nk (4.1)
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AWGN,nk

sk xk

Figure 4.1: Block diagram of the used system model.

where A(.) is a Rapp LED nonlinearity [19, 57] which had been used to model a white

LED, and nk is i.i.d AWGN with variance σ2
n . The block diagram of the system model

is given in Fig. 4.1. The channel consists of a linear FIR filter h = [h0,h1, ...,hL−1]

(which models the VLC indoor channel from standard channel models [58, 59] obtained

by techniques given in [24] and surveyed in [60]), and a Rapp nonlinearity A(.) which

models the LED characteristics [23, 61]. The equalizer considered in this chapter is a

nonlinear adaptive equalizer with observation xk as input. ŝk−D is the equalizer estimate

delayed by D samples, where D is the cumulative lag of the equalizer.

4.3 Review of KMSER based technique for nonlinear chan-

nel equalization

In this section, a recent adaptive algorithm for nonlinear channel equalization based on

KMSER cost function in RKHS [55] is reviewed.

In the KMSER channel equalizer, a nonlinear implicit feature map, Φ(xk), is applied

on the observation at kth instant (denoted by xk). KMSER is the application of the kernel

trick to the normalized-adaptive MBER (NAMBER) recursion [54] which is written as

follows for nonlinear channel equalization,

Ωk = Ωk−1−ηIk
Φ(xk)

∗

< Φ(xk),Φ(xk)>H +τ
(4.2)

where Φ(.) is an implicit feature map from CM→H , ∗ denotes complex conjugation, η

is the step-size, τ is a small positive number, < ·, ·>H denotes the inner product in RKHS

42



CHAPTER 4. ADAPTIVE DICTIONARY BASED MINIMUM SYMBOL
ERROR RATE POST-DISTORTER IN VLC

H , and Ωk is the implicit parameter weight in RKHS at time k. Ik = tanh(β (yR
k − sR

k−D +

1))+ tanh(β (yR
k −sR

k−D−1))+ j(tanh(β (yI
k−sI

k−D+1))+ tanh(β (yI
k−sI

k−D−1))) where

β is a constant high enough to approximate the signum function. Thus the output at kth

instant yk can be written as

yk =−η

k−1

∑
i=1

Ii < Φ(xi),Φ(xk)>H (4.3)

By applying the kernel trick, the adaptation at the kth instant would then become [31],

yk =−η

k−1

∑
i=1

Iiκγ,Cd(xi,xk) (4.4)

where,

κγ,Cd(xi,xk+1) = exp

(
−∑
∀q
(xi(q)−xk+1(q)

∗)2
γ

)
(4.5)

where x(q) denotes the qth entry of the vector x, Ii is the corresponding error term at ith

instant which is defined as a soft function of the MSER constraint and γ is the kernel para-

meter. This is the basic KMSER algorithm as introduced in [55]. This algorithm was val-

idated over some benchmark channels in the literature and was found to outperform other

RKHS based equalizers, thus being a strong candidate to be implemented over practical

scenarios like VLC channel equalization. Please note that while using a Gaussian ker-

nel, the explicit knowledge of Φ(.) is not required as the overall adaptation is expressed

as the inner product in (4.5). From [32] it is known that if γ is chosen properly, any

arbitrary nonlinearity can be modeled by this inner product in RKHS by Representation

theorem [32]. Another advantage of these approaches is that knowledge of the nonlinear-

ity, that is to be compensated for, is not required to be known a-priori for processing at

the receiver. Additionally, the receiver is not constrained by the structure of nonlinearity,

as assumed by Volterra-DFE (viz. maximum order of Volterra series) and the KMSER

based approach also leads to a convex optimization problem in RKHS [55]. Despite these

desirable properties, the computational complexity of KMSER grows with time which

is its major drawback and makes the system unrealizable in practical scenarios. In the
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next section, a modification to KMSER equalizer is proposed via novelty criterion [56] so

as to further curtail its computational complexity and make it suitable for practical VLC

channel equalization.

4.4 Sparsified-KMSER using novelty criterion based post-

distortion for VLC channels

The computational complexity of Volterra-DFE (which is a popular post-distortion al-

gorithm for VLC systems) increases with an increase in memory of the first order and

second order terms. Also, truncation till second-order coefficients in the Volterra-series

representation introduces modeling error (as the representation for the nonlinearity is be-

ing approximated by a second order Taylor’s series [62]) in the symbol estimates. As

opposed to this, the RKHS based techniques have ability to represent any nonlinearity

exactly (due to closedness of Hilbert spaces and the Representation theorem [32]). Due to

this, the modeling error is significantly reduced by using RKHS based techniques. How-

ever, from (4.3), it is observed that the number of computations required for KMSER (or

any online RKHS technique like KLMS) grows undesirably as O(k). With the huge in-

flux of observations (data) for high data-rate 5G systems, an infinitely growing dictionary

(i.e a set of observations based on which the equalizer is estimated in RKHS) cannot be

maintained. Hence, in order to make the RKHS based techniques practical, a selectively

growing dictionary based on pruning/sparsification is proposed.

Here, an RKHS based sparsified post-distorter is proposed, which: a) does not suffer

from the approximation error (due to Taylor’s series truncation) and the computational

complexity of the Volterra-DFE, and b) does not require infinite storage and computa-

tional requirements as required for KLMS and KMSER. Therefore, a dictionary sparsifi-

cation technique based on novelty criterion as has been suggested in [30] for KLMS is pro-

posed for KMSER criterion for VLC channels. The notion of a dictionary Dk = {D (i)
k }
|Dk|
i=1

denotes a collection of observations indexed by (i) at the kth instant which is maintained

and updated in accordance with the incoming observations. The output, yk, is calcu-
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lated according to the dictionaries Dk (a collection of significantly different observations

which represent the data) and Ik (a collection of corresponding Ik which have been se-

lectively added to the dictionary indexed by (i)). If the incoming observation xk satisfies

mini ‖D (i)
k − xk‖ ≤ τ1 (i.e. a similar entry to the current observation exists in the dictio-

nary), then the new observation is rejected and the dictionary remains unchanged. If not,

then if |Ik+1| > τ2 (i.e. if the MSER constraint is violated significantly), the xk is added

to D
(i)
k , otherwise the xk is rejected. This algorithm is described in detail in Algorithm 1.

From the analysis provided in Section 4.5.5, it is proven asymptotically that, the MSE

Algorithm 1 Sparsified-KMSER

1: Initialize constants τ1 and τ2. Dictionary D1 = {x1}, I1 = I1, η , kernel-width γ .
2: while k ≤ 10000 (maximum number of iterations as given in [28]) do

3: yk =−η ∑
|D (i)

k |
i=1 I

(i)
k κγ,Cd(D

(i)
k ,xk)

4: Ik = tanh(β (yR
k − sR

k−D + 1)) + tanh(β (yR
k − sR

k−D− 1)) + j(tanh(β (yI
k − sI

k−D +

1))+ tanh(β (yI
k− sI

k−D−1)))

5: if mini ‖D (i)
k −xk‖ ≥ τ1 and |Ik|> τ2 then

6: Dk+1 := Dk∪ (xk)
7: Ik+1 := Ik∪ (Ik)
8: end if
9: end while

behavior of the proposed sparsified-KMSER is similar to that of KMSER if τ1 = 0.1
√

1
2γ

and τ2 = σe are chosen by rules given in [30], with σ2
e denoting the targeted steady-state

MSE floor, while providing a practical and low complexity adaptive solution. Thus, the

proposed sparsified KMSER based post-distorter is robust to nonlinearity, requires far less

storage and computations, thereby making it a practical solution for VLC communication.

4.5 Theoretical analysis of KMSER

In this section, various properties of KMSER are demonstrated by theoretically analyzing

its MSE dynamics. This analysis is necessary, as step-size can be varied (within the range

specified by the following MSE analysis), so as to achieve a specified MSE floor within a

number of iterations.

First, the theoretically derived transient dynamics of the KMSER is provided. Next,
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the KLMS is analyzed in the derived framework (of analysis), so that the proposed ap-

proach can be compared with KLMS. Consequently, a step-size range for convergence

of KMSER is provided which helps us in the choice of step-size. Then the steady-state

MSE of KMSER is theoretically compared with that of the KLMS, and it is proven that

KMSER has lower excess misadjustment as compared to KLMS for a given step-size.

Next, a step-size range is derived, within which the KMSER converges faster as com-

pared to KLMS. Finally, it is shown that the analysis for transient and steady state MSE

of KMSER asymptotically holds under the assumption of an online sparsified dictionary

and closely matches the MSE curves obtained from simulations.

4.5.1 MSE transient dynamics for KMSER

In this section, from analysis, the MSE behavior of the KMSER is predicted. This analysis

is necessary to theoretically predict the converged MSE floor and iterations required for

convergence as the step-size η is varied.

Let Ωk denote the implicit parameter in RKHS which is being estimated using KMSER

criterion. Let Ω̃k be the deviation of Ωk from the optimal parameter Ωo, such that

sk−D =< Ωo,Φ(xk) >H +nk (existence of Ωo stems from the Representation theorem

of Mercer kernels). Also, let the a-priori deviation of the implicit parameters in RKHS

be denoted as Ω̃a
k = Ωk−Ωo and a-posteriori deviation be denoted as Ω̃

p
k = Ωk+1−Ωo.

Then from [63], Ω̃
p
k and Ω̃a

k are related by the following equation,

Ω̃
p
k = Ω̃

a
k−ηIk < Φ(xk), . >H (4.6)

Let, at the kth instant, ỹk =< Ω̃a
k ,Φ(xk)>H and ỹk+1 =< Ω̃

p
k ,Φ(xk)>H . The ỹk = yk−yo

is the stochastic deviation from the fixed point over expectation. As the trace of the kernel

Gram is “1” for the Gaussian kernel, the following equation is inferred,

ỹk+1 = ỹk−ηIk (4.7)

=⇒ E[|ỹk+1|2] = E[|ỹk|2]+E[η2|Ik|2−2ηℜ{I∗k ỹk}] (4.8)
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as,

E[I∗k ỹk + ỹ∗kIk] = E[2ℜ{I∗k ỹk}] (4.9)

Since, Ik = tanh(β (yR
k − sR

k−D+1))+ tanh(β (yR
k − sR

k−D−1))+ j(tanh(β (yI
k− sI

k−D+

1))+ tanh(β (yI
k− sI

k−D−1))), the deviation of the signal point sk−D from the signal point

yk can be written as yk− sk−D = ỹk + nk. The Taylor series approximation for Ik around

“1” upto third order exponents for β = 1 (a high enough value for approximating a signum

function [54]) is found to be,

IR
k ≈−0.29(ỹR

k +nR
k )

3 +0.80(ỹR
k +nR

k )
2 +0.33(ỹR

k +nR
k )+0.11 (4.10)

This Taylor series approximation is valid since a smooth adaptation is assumed. Assum-

ing small ỹk and nk, E[ỹk]→ 0 (unbiasedness), neglecting terms of 3rd order assuming

Gaussianity of ỹk and nk in RKHS (therefore odd moments are zero) and assuming ỹk and

nk to be independent.

E[IR
k ỹR

k ]≈ E[0.33(ỹR
k +nR

k )+0.116]ỹR
k ≈ 0.33E[|ỹR

k |2]

|ÎR
k |2 ≈ 0.29(ỹR

k +nR
k )

2 +0.077(ỹR
k +nR

k )+0.0135≈ 0.29(ỹR
k +nR

k )
2 +0.077(ỹR

k +nR
k )

(4.11)

=⇒ E[|ÎR
k |2]≈ 0.29[E[ỹR2

k ]+σ
2
n ]

Without loss of generality, assuming similar results for imaginary part, (4.8) can be writ-

ten as,

E[|ỹk+1|2]≈ (1−0.66η +0.29η
2)E[|ỹk|2]+δ1 (4.12)

where δ1 = 0.29η2σ2
n .

For validation and comparison of the proposed approach against KLMS, the KLMS

algorithm can also be analyzed in the similar way as the proposed KMSER algorithm.

For KLMS, the adaptation equation is as given in [31], in which instead of Ik, the er-
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ror term, ek = yk− sk−D = ỹk + nk (which follows from adaptive filter theory as ek =<

Ω̃k,Φ(xk)>H +nk),

ỹk+1 = ỹk−η(ỹk +nk)κγ,Cd(xk,xk) (4.13)

Therefore, after squaring both sides and then taking expectation, the adaptation in (4.13)

can be written approximately as,

E[|ỹk+1|2] = E[|ỹk|2](1−2η +η
2)+δ2 (4.14)

where δ2 = η2σ2
n .

Thus, having derived a unified framework for analysis of MSE-dynamics for KMSER

in (4.12) and KLMS in (4.14), several desirable features of the KMSER as compared to

KLMS, are highlighted in the following sections.

4.5.2 Step-size range for convergence

In this section, bounds are derived for step-size for which KMSER converges. The adap-

tation equation for KMSER (4.8) converges iff,

0 < 1−0.66η +0.29η
2 < 1 =⇒ 0 < η < 2.27 (4.15)

Comparing with KLMS, which converges iff 0 < η < 2
Trace[Gφ ]

=⇒ 0 < η < 2 (as given

in [30] and can be found by putting (1− 2η +η2) < 1 from (4.14)), where Gφ is the

kernel Gram matrix. Therefore, it is observed that the proposed algorithm converges

over a wider step-size range as compared to KLMS, which is a desirable property of the

proposed algorithm.
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4.5.3 Excess mean squared error analysis

In this section, the excess mean squared error (EMSE) for KMSER is derived and then

compared with KLMS. In (4.12), assuming convergence for KMSER, E[|ỹk+1|2]≈E[|ỹk|2]

E[|ỹk+1|2] =
0.29η2σ2

n
0.66η−0.29η2 (4.16)

At low enough step-size, for the KMSER, the steady state excess misadjustment is given

by the following equation,

E[|ỹ∞|2]≈ 0.4394ησ
2
n (4.17)

The approximation in (4.17) is under the assumption of a small step-size.

Using the same assumption for KLMS, E[|ỹk+1|2] ≈ E[|ỹk|2] in (4.14), implies the

steady state excess misadjustment for KLMS would be,

E[|ỹ∞|2] =
ησ2

n
2−η

≈ 0.5ησ
2
n (4.18)

The approximation in (4.18) is also under assumption of small step-size. This expression

is same as derived in [31]. This shows that the methodology for the analysis used in this

chapter justifies the results in literature [31]. Also, from (4.17) and (4.18), it is observed

that EMSE of KMSER is lower than that of KLMS which is a desirable property of the

proposed algorithm.

4.5.4 Convergence analysis of KMSER

In this section, the convergence rate of the KMSER is analyzed and compared with con-

vergence rate of KLMS algorithm. Let there be an arbitrary adaptation equation as given

below,

tk+1 = αtk +δ (4.19)
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Then, at a particular instant k, the value of tk is given by,

tk = δ
1−αk−1

1−α
(4.20)

The steady state value, to, of tk is

to =
δ

1−α
(4.21)

assuming 0 < |α| < 1 for convergence [64]. Without loss of generality, let us model tk

as E[|ỹk|2]. Let us now model the proposed KMSER algorithm by this recursion. From

(4.12), α1 = 1− 0.66η + 0.29η2 for the proposed algorithm. By the same methodology

for KLMS, from (4.14), α2 = 1−2η +η2. Hence, for the proposed algorithm to converge

faster than KLMS, the following condition from (4.20) is required, assuming convergence

to the same steady state value,

1−α
k−1
1 < 1−α

k−1
2 (4.22)

Substituting the above values of α1 and α2, the following condition is found,

0 < η < 1.88 (4.23)

Hence, under these ranges of step-sizes for KMSER, faster convergence is achieved in

case of KMSER as compared to KLMS algorithm.

4.5.5 Does the analysis hold under sparsification of dictionary?

In line with the above analysis provided above for KMSER with no sparsification, a proof

is now provided that the dynamical equations derived in this chapter for transient dynam-

ics are valid upon sparsification of the dictionary Dk. In other words, it is proven that the

sparsification does not affect the results derived in this chapter (which are based on dy-

namical equation (4.12)) if the τ1 and τ2 are chosen according to τ1 = 0.1
√

1
2γ

and τ2 =σe

as given in [30]. It can be assumed that the set of input observations {xk} belongs to a

compact subset of CM (as it is a closed and bounded subset of CM). By Cover’s theorem,
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a dictionary exists Dk = {c1,c2, · · · ,cP} with P centers whose union of disjoint Euclid-

ean nieghborhoods cover the compact input domain [30]. Again, if the a-posteriori and

a-priori deviation Ω
p
k and Ωa

k is calculated, two scenarios arise as considered in Algorithm

1:

Scenario 1: xk is added at the kth instant to dictionary

In this scenario, Dk(= {c1,c2, · · · ,cP}) 6= Dk+1(= {c1,c2, · · · ,cP,xk})

Ω
a
k =−η

P

∑
i=1

I (i) < Φ(ci), ·>H (4.24)

Ω
p
k =−η

P

∑
i=1

I (i) < Φ(ci), ·>H −ηIk < Φ(xk), ·>H (4.25)

Taking inner product on both sides (4.24) and (4.25) by Φ(xk) in RKHS H (similar to

(4.7)),

ỹk+1 = ỹk−ηIk < Φ(xk),Φ(xk)>H (4.26)

where, ỹk =< Ω̃a
k ,Φ(xk)>H and ỹk+1 =< Ω̃

p
k ,Φ(xk)>H . For the Gaussian kernel

< Φ(xk),Φ(xk)>H = 1. Therefore, ỹk+1 can be written as,

ỹk+1 = ỹk−ηIk (4.27)

which is same as (4.7).

Scenario 2: Center similar to xk exists in the dictionary or Ik < τ2

In this scenario, Dk = Dk+1. Then, the ỹk+1 can be written as:

ỹk+1 = ỹk (4.28)
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Thus, from (4.27) and (4.28), probabilistically, ỹk+1 can be written as follows:

ỹk+1 = ỹk− pηIk (4.29)

where p and 1− p are probabilities of the event of addition of an element to the dictio-

nary Dk and the event of keeping the dictionary same respectively. In the initial phase of

adaptation, p→ 1 as more and more samples are being added to the dictionary and (4.29)

approximates (4.7). In the convergence phase, p→ 0 and 1− p→ 1. That would imply

E[|ỹk+1|2] = E[|ỹk|2]. This implies that in the initial transient phase the MSE behavior

of sparsified-KMSER is conserved with respect to KMSER and the growth of the adap-

tive dictionary is turned off upon achieving convergence. Therefore, transient equations

developed based on (4.7) are approximately conserved upon sparsification. Thus it can

be concluded that the analysis presented in this chapter is valid upon sparsification of the

dictionary for the proposed post-distorter.

4.6 Simulations

The proposed sparsified-KMSER is compared against sparsified-KLMS, Volterra-DFE

(with 45 linear taps and 25×25 second order taps [8]), and linear DFE with 45 linear taps.

The kernel width γ of KLMS and KMSER is determined by Silverman’s rule [65], the τ1 is

chosen as 10−2 and τ2 is chosen as 0.3. From Figs. (4.2(a)), (4.2(b)), it is observed that the

proposed sparsified-KMSER outperforms the BER performance of Volterra-DFE in the

high-SNR regime while maintaining lower computational cost as compared to sparsified-

KLMS and Volterra-DFE over “open office” and “office with cubicles channels” of IEEE

802.15 standard respectively, for 4-PAM. For 4-PAM, the sparsified-KMSER has the least

computational complexity in all scenarios with equivalent BER performance as compared

to sparsified-KLMS and Volterra-DFE. An ensemble of 10000 samples is considered over

500 Monte-Carlo trials in all the BER plots.

In Figs. (4.3(a)), (4.3(b)), it is observed that the proposed sparsified-KMSER actu-

ally outperforms the Volterra-DFE in “open-office” and “office with cubicles” scenarios

52



CHAPTER 4. ADAPTIVE DICTIONARY BASED MINIMUM SYMBOL
ERROR RATE POST-DISTORTER IN VLC

(in terms of BER) in the low SNR regime with much lower computational complexity

in case of 16-QAM. However, as the SNR is increased the RKHS based post-distorters

and the Volterra-DFE exhibit similar behavior for 16-QAM modulation scheme. Among

the Volterra-DFE, the proposed sparsified-KMSER and sparsified-KLMS, the sparsified-

KMSER is found to be computationally more efficient in case of 16-QAM as compared

to sparsified-KLMS. Sparsified-KMSER outperforms Volterra-DFE in case of 16-QAM,

both computationally, as well as in terms of BER-performance.

Finally, the transient and steady state MSE behavior of the KMSER in Figs. (4.4(a)),

(4.4(b)) given by (4.12) and (4.17), are compared over “open-office” and “office with cu-

bicles” scenario for 16-QAM constellation. The transient and the steady state behavior is

plotted over a range of step-sizes from η ∈ [0.25,0.4] and it is found that the simulations

closely match the theoretically derived MSE derived curves, thus providing us full control

over the step-size range so as to achieve a given MSE floor at a desired convergence rate.

Also, the theoretically derived MSE characteristics via Taylor series approximation is also

compared with the MSE characteristics obtained assuming perfect knowledge of Ik. The

expectations involving Ik-terms in (4.8) (like E[ℜ{I∗k ỹk}] and E[|Ik|2]) were evaluated us-

ing numerical techniques as suggested in [54] under Gaussian distribution. It is observed

that in all scenarios, they almost overlap, which highlights the validity and applicability

of Taylor series approximation of Ik.
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Figure 4.2: BER and computational complexity comparison for 4.2(a) open office IEEE
802.15 PAN channel for 4-PAM. 4.2(b) office with cubicles IEEE 802.15 PAN channel
for 4-PAM.
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Figure 4.3: BER and computational complexity comparison for 4.3(a) open office IEEE
802.15 PAN channel for 16-QAM. 4.3(b) office with cubicles IEEE 802.15 PAN channel
for 16-QAM.
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Figure 4.4: 4.4(a) Transient and steady-state MSE analysis of KMSER for “open office”
channel for 16-QAM and 4.4(b) Transient and steady-state MSE analysis of KMSER for
“office with cubicles” channel for 16-QAM.
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4.7 Summary

In this chapter, a severely impaired open-loop VLC system with LED nonlinearity and

ISI scenario is considered. Signal processing in this scenario is more difficult as relaxed

assumptions of knowledge of channel at the receiver and estimated symbols at the trans-

mitter do not exist. To deal with such nonlinear channel impairments in these scenarios, a

novel RKHS based post-distortion technique is proposed to mitigate the LED-nonlinearity

at the receiver. First, existing Volterra based post-distorters were surveyed and were found

to suffer from three drawbacks: a) convergence to local minima, b) high computational

complexity, and c) modeling error due to truncation of Volterra series. As opposed to

Volterra-DFE, sparsified KMSER-NC was proposed which has the following advantages:

a) problem is convex in RKHS; hence there is guarantee of global optima, b) the approach

is computationally simple due to sparsification by novelty criterion, and c) no modeling

error occurs due to guarantee of exact representation by the representer theorem. The

convergence of sparsified-KMSER is analyzed theoretically, and the simulated MSE be-

havior is found to be closely matching the theoretically derived dynamical equations for

MSE. It is also found asymptotically, that the MSE characteristics of the KMSER are

approximately preserved upon sparsification with proper choice of spread parameters and

error-thresholds. Additionally, an approximate dynamical equation for convergence was

derived and validated with different choice of step-sizes. Superior BER characteristics

were observed in case of KMSER as compared to KLMS and Volterra-DFE which indi-

cates that the proposed sparsified-KMSER based post-distortion is a viable solution for

equalization of nonlinear indoor IEEE 802.15 PAN VLC channels in the presence of non-

linear LED characteristics.
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Chapter 5

Finite Dictionary Techniques for MSER

Equalization in RKHS

5.1 Introduction

In this chapter, the problem of post-distortion over IEEE 802.15 PAN VLC channels is

once again taken up. It was seen in the last chapter that RKHS techniques deliver equiv-

alent performance as compared to Volterra-filters and have significantly lower computa-

tional complexity. The computational complexity of RKHS techniques depends on the

sparsification criterion used in order to learn the dictionary. In the previous chapter, the

novelty criterion as a sparsification mechanism for learning the dictionary. This chapter

explores the use of the quantized criterion [66], and the fixed-budget criterion [67] in

conjunction with the KMSER-equalization for learning the dictionary. The fixed budget

criterion introduces a mechanism to prune “unimportant” entries in the dictionary (which

does not exist among other dictionary-learning techniques) thereby ensuring faster con-

vergence and lower dictionary size.

In this chapter, the quantized kernel MSER (QKMSER) and fixed budget quantized

kernel MSER (FBQKMSER) are proposed and analyzed which requires lower dictionary-

size as compared to other sparsification approaches without significant loss of perfor-

mance. Following are the contributions in this chapter:
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• Proposing finite dictionary variants of KMSER called QKMSER and FBQKMSER.

• Derive corresponding exact theoretical expression for transient and steady-state

MSE within a unified framework.

• Finding conditions (bounds on η) for convergence for QKMSER and FBQKMSER.

Simulation carried over IEEE 802.15 PAN VLC channels, indicate that: i) the MSE per-

formance of QKMSER and FBQKMSER is not affected significantly while working with

a finite dictionary, ii) the FBQKMSER outperforms all algorithms in terms of conver-

gence metric characteristics in considered simulation conditions, and iii) the theoretically

derived and simulated MSE dynamical curves are almost overlapping, which establishes

the validity of the derived dynamical equations for QKMSER and FBQKMSER.

The following terminology is used in this chapter: scalar at time k is represented by

(·)k and vector of past M samples at time k is represented by boldface with subscript k

such as xk (which are elements of CM, M being the row dimension of the vector, and C

denotes the field of complex numbers) and italicised variables like Dk and Ik denote an

online dictionary of observation and error terms respectively, at the time instance k. Real

part of a complex quantity is denoted by the superscript (·)R and ℜ{·}, and the imaginary

part is denoted by (·)I and ℑ{·}.

This chapter is organized as follows: Section-5.2 provides the system model assumed

in this chapter that will be used in following sections. The QKMSER and FBQKMSER

are proposed in Section-5.3 and Section-5.4 respectively. Mathematical analysis of QKMSER

and FBQKMSER is done in Section-5.5. To validate the proposed algorithm against exist-

ing approaches, simulations are provided in Section-5.6. To summarize the contributions

of this chapter, the conclusions are drawn in Section-5.7.

5.2 System model

In this section, the system model of the considered VLC system is described. Let sk

denote the input constellation at the kth time instant. It is passed through an FIR filter
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{hi}L
i=1 (given by IEEE 802.15 PAN VLC standard) denoting channel coefficients, where

L is the tap length. The received symbol at kth time instant, xk, is given as follows:

xk =
L−1

∑
i=0

hiA(sk−i)+nk (5.1)

A(.), as mentioned previously, denotes the-transmit side Rapp non-linearity, nk is i.i.d

AWGN with variance σ2
n and D denotes the equalizer delay. The channel consists of a

linear FIR filter h = [h0,h1, ...,hL−1]. The equalizer considered in this chapter is a non-

linear adaptive equalizer with symbols sk and observation xk as input. ŝk−D is the equalizer

estimate delayed by D samples, where D is the cumulative lag of the equalizer.

5.3 Quantized kernel MSER

To avoid the unbounded growth of the kernel dictionary, it is selectively grown depending

on a similarity criterion for incoming regressors for the MSER based algorithm in [68].

Along the lines of the work reviewed in [66, 67, 69], the quantized kernel MSER is pro-

posed. Let us assume a dictionary Dk = {I ( j)
k ,x( j)

k }
|Dk|
j=1, where |Dk| denotes cardinality of

the dictionary. Please note the terminology here; Ik is the set of all Ik which are present at

instant k in the dictionary. I
( j)

k denotes the jth element of the set Ik, which is a measure

of deviation from the MSER constraint [54]. Using above terminology, quantized kernel

MSER algorithm is proposed (as described in Algorithm 2). This algorithm (as described

in Algorithm 2) initializes by taking a step-size of η , kernel bandwidth σ and an initial

dictionary of size 1 consisting of the first observation and innovation. Then, for every kth

iteration, the output yk is calculated and the innovation Ik for KMSER is calculated using

yk. Then the current observation xk, is compared using Euclidean distance ‖ · ‖2 to all

members in the dynamic dictionary of observations Dk. If the Euclidean distance to the

closest member of the dictionary is less than threshold ε , then the MSER innovation I j∗
k

in Dk is updated. Otherwise, the new observation xk is added to the dictionary. Proceed-

ing with such selective addition of data, the unbounded growth of the dictionary is partly

curtailed, while maintaining a reasonable level of performance.
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Algorithm 2 Quantized Kernel MSER (QKMSER)

1: Initialise step-size η , kernel width γ =
√

1
2σ2 and quantization threshold ε > 0, and

initial dictionary D0 = {δ0,x0}.
2: while |Dk| ≥ 1 do
3: yk = η ∑

|Dk−1|
j=1 κγ,Cd×Cd(D

( j)
k−1,xk)I

( j)
k−1

4: Ik = tanh(β (ℜ(yk) − ℜ(sk−D) + 1)) + tanh(β (ℜ(yk) − ℜ(sk−D) − 1)) +√
−1(tanh(β (ℑ(yk)−ℑ(sk−D)+1))+

5: tanh(β (ℑ(yk)−ℑ(sk−D)−1)))
6: j∗ = argmin1≤ j≤|Dk−1| ‖xk−D

( j)
k−1‖

7: if ‖xk−D j∗
k−1‖ ≤ ε then

8: Dk = Dk−1

9: I
( j∗)

k = I
( j∗)

k−1 +ηIk
10: else
11: Dk = Dk−1∪xk,Ik = Ik−1∪ Ik
12: end if
13: end while

Though this algorithm curtails the infinite memory-storage requirement of KMSER by

selectively growing the dictionary based on Euclidean distance to the nearest entry in the

dictionary, it gives no technique of shrinking the given dictionary by rejecting unimportant

samples. The algorithm given in the next section introduces a technique for shrinking the

dictionary based on significance values for kernel MSER.

5.4 Fixed budget quantized kernel MSER

This technique gives a method to prune the size of the available dictionary by techniques

which are based on online estimation of a term called “significance”. Let ζ be a forgetting

factor such that 0 << ζ < 1. Significance is estimated in the following manner depending

on whether a new center is added, merged or pruned. In case a center is added, the

significance, E( j)
k , for jth entry of the dictionary at kth time instant is updated as follows

[67]:

E( j)
k = ζ E( j)

k−1 + |I
|Dk−1|+1

k |κγ,Cd×Cd(D
( j)
k−1,D

(|Dk−1|+1)
k ), (5.2)

∀1≤ j ≤ |Dk−1|
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(i) In case of merging:

E( j 6= j∗)
k = ζ E( j 6= j∗)

k−1 + |I ( j 6= j∗)
k |κγ,Cd×Cd(D

( j 6= j∗)
k−1 ,D

( j∗)
k ) (5.3)

where λ
( j)
k is a variable which is updated as:

λ
( j)
k = ζ λ

( j)
k−1 (5.4)

and,

E( j∗)
k =

|I ( j)
k +ηIk|
|I ( j)

k |
I

( j)
k ζ E( j∗)

k−1+ (5.5)

|I ( j)
k +ηIk|κγ,Cd×Cd(D

( j∗)
k−1 ,D

( j∗)
k )

(ii) In case of deletion/pruning of the Mth dictionary entry,

E( j)
k = E( j)

k−1−|I
( j)

k |λ
( j)
k−1κγ,Cd×Cd(D

( j)
k−1,D

(M)
k−1) (5.6)

λ
( j)
k = ζ λ

( j)
k−1 +1 (5.7)

Using these online estimates of significance, the proposed FBQKMSER is given in Al-

gorithm 3. This algorithm begins with a quantization threshold ε , kernel-width σ an

initial dictionary D0 with initial values of the innovation and first observation x0. Then

for every kth iteration the output at the kth instant yk is calculated using the innovation Ik at

the kth iteration. Now this algorithm branches into three possibilities: a) Updation: If the

current observation xk is close enough in the Euclidean norm ‖ ·‖2 to any of the elements

of the dictionary Dk at time instant k, the corresponding innovation in Dk is updated, b)

Addition: If xk is significantly “different” (in the sense of ‖ · ‖2) as compared to all ele-

ments in the dictionary, then the innovation Ik and xk are appended to the dictionary, and

c) Pruning: The entry with minimum significance at each iteration E j
k is deleted. Thus
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Algorithm 3 Fixed Budget Quantized Kernel MSER (FBQKMSER)

1: Initialise step-size η , kernel width γ =
√

1
2σ2 and quantization threshold ε > 0, and

initial dictionary D0 = {δ0,x0}.
2: while |Dk| ≥ 1 do
3: yk = η ∑

|Dk−1|
j=1 κγ,Cd×Cd(D

( j)
k−1,xk)I

( j)
k−1

4: Ik = tanh(β (ℜ(yk)−ℜ(sk−D)+1))+ tanh(β (ℜ(yk)−ℜ(sk−D)−1))
5: +

√
−1(tanh(β (ℑ(yk)−ℑ(sk−D)+1))+ tanh(β (ℑ(yk)−ℑ(sk−D)−1)))

6: j∗ = argmin1≤ j≤|Dk−1| ‖xk−D
( j)
k−1‖

7: if ‖xk−D
( j∗)
k−1‖ ≤ ε then

8: Dk = Dk−1

9: I
( j∗)

k = I
( j∗)

k−1 +ηIk

10: Update significance {E( j)
k }∀ j as per eq. (5.3) and eq. (5.5).

11: else
12: Dk = Dk−1∪xk,Ik = Ik−1∪ Ik

13: Update significance {E( j)
k }∀ j as per eq. (5.3) and eq. (5.5).

14: Also update significance for newly added tuple as per eq. (5.2).
15: end if
16: D

′
k−1 = {(I

( j)
k ,x( j)

k ) ∈Dk−1∀ j : E( j)
k = min{Ek}}

17: Dk = Dk−1−D
′
k−1

18: Update significance {E( j)
k }∀ j as per eq. (5.6).

19: end while

this provides a means of deleting unimportant entries in the dictionary that helps in bet-

ter learning and tracking in non-stationary environments as observed from simulation in

Section-5.6.

In the next section, analysis of the performance of the proposed QKMSER and FBQKMSER

is presented. Recursive dynamical equations parameterized by the step-size η that dictate

the MSE evolution with respect to iterations, are derived. Also expressions for steady state

MSE and conditions for convergence of the proposed algorithms are derived theoretically.

5.5 Expression for transient and steady-state behavior of

QKMSER and FBQKMSER

In this section, in order to analyze the MSE dynamics of the proposed approaches, the

equations for the transient behavior of the QKLMS and FBQKMSER are developed. First,

the state transition probabilities are calculated and consequently a generic probabilistic
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adaptation equation for QKMSER and FBQKMSER is defined.

First, measure of the interval, given by µ1(n), that a new entry is not added in the

dictionary. The mathematical expression for µ1(n) is given by:

µ1(k) = υ(E[κ(x,xk)]> ε) (5.8)

where υ(·) denotes measure of the interval. This can be written as follows using result

from [67]:

µ1(k)≈
1
|Dk|

|Dk|
∑
j=1

∫
∞

−∞

κ(x,xk)κ(x,x j)dx (5.9)

as ε is assumed to be small. This is equivalent to (for the widely-used Gaussian kernel):

µ1(k)≈
1
|Dk|

|Dk|
∑
j=1

κ(xk,x j) (5.10)

Measure µ2 of the dictionary-size being incremented is given by, µ2(k) ≈ 1− µ1(k). To

compute measure of interval such that the significance drops below a threshold for a

dictionary to get decremented, p3(n), one needs to find probability of the following event:

E
[
|Ik|exp

(−‖x j−xk‖2

2σ2

)]
< ε

′
(5.11)

where ε
′ → 0. Hence p3(n) is given by,

µ3(k)≈ E[|Ik|]
[
1−

∫
· · ·
∫

∞

−∞

exp
(−‖x−xk‖2

2σ2

)
(5.12)

1
|Dk|

|Dk|
∑
j=1

κ(x−x j)dx
]
=

E[|Ik|]
{

1−
[ 1
|Dk|

|Dk|
∑
j=1

exp
(−‖x j−xk‖2

2σ2

)]}

assuming the random variable Ik and proximity measure exp(−‖x j−xk‖2

2σ2 ) to be independent

of each other. E[|Ik|] can be estimated online to calculate theoretical µ3(k). Hence the

transformed transition probabilities would be given by, pi(k) =
µi(k)

∑
3
i=1 µi(k)

The assumption
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used in the following derivation are: a) Ik is i.i.d, and b) 0 < η << 1. By using the prob-

abilities {pi(k)}, one can evaluate the transient behavior of QKMSER and FBQKMSER.

Dynamical equations for the a-priori and a-posteriori deviation of the output yk from the

fixed point yo can be written probabilistically as ỹk:

ỹk+1 = ỹk−η p1(k)
( |Dk|−1
|Dk|+1

)
Ik < φ(x j∗),φ(xk)> (5.13)

−η p2(k)
( 1
|Dk|+1

)
I

(|Dk|+1)
k < φ(x|Dk|+1),φ(xk)>

+η p3(k)
( 1
|Dk|+1

)
I

(M)
k < φ(xM),φ(xk)>

Squaring both sides and taking expectation,

E(|ỹk+1|2) = E(|ỹk|2)+η
2
( |Dk|−1
|Dk|+1

)2
p2

1(k)E[|Ik|2] (5.14)

η
2 p2

2(k)
( 1
|Dk|+1

)2
E[|Ik|2]+η

2 p2
3(k)

( 1
|Dk|+1

)2
E[|Ik|2]−

2ηE[ỹkIk]{
( |Dk|−1
|Dk|+1

)
p1(k)+

1
|Dk|+1

p2(k)−
1

|Dk|+1
p3(k)}

From Taylor’s series approximation of Ik around 1, E(|Ik|2) ≈ 0.29(E[|ỹk|2] +σ2
n ) and

E[ỹkIk]≈ 0.33E[|ỹk|2]. Let C1 =
(
|Dk|−1
|Dk|+1

)2
p2

1(k)+ p2
2(k)

(
1

|Dk|+1

)2
+ p2

3(k)
(

1
|Dk|+1

)2
.

Using these values, the following exact equation for transient behavior of FBQKMSER

is derived,

E(|ỹk+1|2) =
[
1−0.66η

{( |Dk|−1
|Dk|+1

)
p1(k) (5.15)

+
1

|Dk|+1
p2(k)−

1
|Dk|+1

p3(k)
}
+0.29C1η

2
]
E(|ỹk|2)

+0.29η
2C1σ

2
n

Using the assumption 0 < η << 1 the approximate dynamical equation for the transient
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behavior for the FBQKMSER is given by:

E(|ỹk+1|2) =
[
1−0.66η

{( |Dk|−1
|Dk|+1

)
p1(k) (5.16)

+
1

|Dk|+1
p2(k)−

1
|Dk|+1

p3(k)
}]

E(|ỹk|2)+0.29η
2C1σ

2
n

In the same framework putting p3 = 0 gives the exact transient behavior for QKMSER as

under:

E(|ỹk+1|2) =
[
1−0.66η

{( |Dk|−1
|Dk|

)
p1(k) (5.17)

+
1
|Dk|

p2(k)
}
+0.29η

2
{( |Dk|−1

|Dk|
)2

p2
1(k)+

p2
2(k)

( 1
|Dk|

)2}]
E(|ỹk|2)+0.29η

2
{( |Dk|−1

|Dk|
)2

p2
1(k)+

( 1
|Dk|

)2
p2

2(k)
}

σ
2
n

Under approximation of small step size, the approximate dynamical equation for the tran-

sient behavior for the QKMSER is given by:

E(|ỹk+1|2) =
[
1−0.66η

{( |Dk|−1
|Dk|

)
p1(k) (5.18)

+
1
|Dk|

p2(k)
}]

E(|ỹk|2)

+0.29η
2
{( |Dk|−1

|Dk|
)2

p2
1(k)+ p2

2(k)
( 1
|Dk|

)2}
σ

2
n

These expressions which were derived for transient behavior of the proposed algorithms

imply the following performance metric properties:

5.5.1 Step-size range for convergence

In this section, step-size range for both QKMSER and FBQKMSER is derived by the

analysis which is provided below:
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FBQKMSER

From eq. (5.15), let there be a constant C2, which is given as follows:

C2 =
( |Dk|−1
|Dk|+1

)
p1(k)+

( 1
|Dk|+1

)
p2(k)− (5.19)

( 1
|Dk|+1

)
p3(k)

From eq. (5.15), the adaptation converges iff,

|(1−0.66ηC2 +0.29C1η
2|< 1 (5.20)

Hence, the step-size range for convergence is given by:

0 < η <
C2

C1
2.2 (5.21)

QKMSER

Let there be two constants C3 and C4 as follows:

C3 =
( |Dk|−1
|Dk|

)
p1(k)+

1
|Dk|

p2(k)) (5.22)

C4 =
( |Dk|−1
|Dk|

)2
p2

1(k)+ p2
2(k)

1
|Dk|

(5.23)

From eq. (5.18), the adaptation converges iff,

|(1−0.66ηC3 +0.29C4η
2|< 1 =⇒ 0 < η < 2.2

C3

C4
(5.24)

5.5.2 Steady state misadjustment

The steady-state misadjustment for FBQKMSER and QKMSER is mathematically given

as follows:
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FBQKMSER

From eq. (5.15), the steady-state value is given by:

E(|ỹ∞|2) =
0.29
0.66

ησ
2
n

C1

C2
(5.25)

This equation governs the steady state misadjustment of FBQKMSER as a function of

step-size η . Note that C3
C4
, C1

C2
→ 1 at convergence with C1

C2
< C4

C3
.

QKMSER

From eq. (5.18), the adaptation converges to a steady-state value under the assumption of

small step-size given by,

E(|ỹ∞|2) =
0.29
0.66

ησ
2
n

C4

C3
(5.26)

This equation governs the steady state misadjustment of QKMSER as a function of step-

size η .

5.6 Simulations

In this section, simulations are provided that will validate the proposed approaches against

the existing literature. The kernel parameter γ =
√

1
2σ2 used throughout for all the algo-

rithms is chosen by the well known Silverman’s rule [65, 70, 71]. An ensemble of 200

Monte-Carlo simulations has been chosen for all the simulations as further averaging did

not change the variance of the output-simulation parameters significantly. The modula-

tion scheme was assumed as QPSK. In Fig. 5.1 and Fig. 5.2, the proposed FBQKMSER

is compared with existing sparsification procedures like KLMS with novelty criterion

(KLMS-NC) and KMSER with novelty criterion (KMSER-NC) as proposed in [72] for

post-distortion in VLC channels [24]. Two IEEE PAN 802.15 standardized VLC channels

were considered, namely, for the “office” scenario and for the “office with cubicles” sce-

nario. BER performance was monitored for various sparsification algorithms considered
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in this chapter whilst monitoring dictionary size/computational complexity trade-off.
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Figure 5.1: BER and computational complexity comparison of FBQKMSER with other
sparsification approaches over IEEE 802.15 PAN ’Office’ indoor VLC channel.
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Figure 5.2: BER and computational complexity comparison of FBQKMSER with other
sparsification approaches over IEEE 802.15 PAN ’Office with cubicles’ indoor VLC chan-
nel.
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Figure 5.3: Theoretical validation of MSE for FBQKMSER over IEEE 802.15 PAN ’Of-
fice’ indoor VLC channel (for LED non-linearity).
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Figure 5.4: Theoretical validation of MSE for FBQKMSER over IEEE 802.15 PAN ’Of-
fice with cubicles’ indoor VLC channel (for LED non-linearity).
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It can be observed from Fig. 5.1 and Fig. 5.2, that the proposed FBQKMSER main-

tains equivalent performance as compared to KMSER-NC and KLMS-NC (proposed in

[72]) with much lesser number of computations. This validates FBQKMSER as a better

and more applicable sparsification mechanism as it facilitates for computational simplic-

ity without sacrificing performance.

Additionally, in Fig. 5.3 and Fig. 5.4, the transient behavior for MSE dynamics for

FBQKMSER is compared against the theoretical MSE behavior of FBQKMSER derived

from (5.15) for various step-size values. It is observed that the theoretical and simulated

curves almost overlap with each other for both the considered VLC channels. This vali-

dates the derived dynamical equation in (5.15) in a practical VLC scenario.

5.7 Summary

In this chapter the problem of mitigating device impairments over VLC channels like LED

nonlinearity and ISI was re-visited by providing techniques that facilitate for further low-

ering computational complexity as compared to previous approaches. A unifying frame-

work of analysis was given for sparse-KMSER filtering techniques. In this chapter, two

new sparse RKHS adaptive post-distortion techniques inspired by MSER criterion have

been proposed to mitigate the LED nonlinearity at the receiver, namely: a) QKMSER,

and b) FBQKMSER over VLC channels. In particular, FBQKMSER relies on a measure

of “significance” of an observation to grow/prune the dictionary which gives us a mech-

anism for rejecting the redundant observations, thereby facilitating for lower-dictionary

sizes as compared to other sparsification critera like novelty criterion/QKMSER. Theoret-

ical formulae have been derived to analyze the transient and steady-state convergence of

these approaches (QKMSER and FBQKMSER), along with KMSER and complex kernel

least mean squares (CKLMS) within a unified framework. Ranges for step-size η have

been found in this chapter in which the proposed algorithms converge. This makes the

analysis presented in this chapter, an important theoretical contribution in the analysis of

non-linear sparse kernel adaptive equalization over VLC channels. It is also found in this
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chapter that the FBQKMSER converges to a lower dictionary size as QKMSER/KMSER-

NC while delivering similar BER performance which confirms its viability as an efficient

sparsification mechanism as compared to quantized/ NC-based approaches.
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Chapter 6

Unsupervised Multi-Stage Clustering

based Hammerstein Post-distortion for

VLC

6.1 Introduction

In this chapter, the problem of post-distortion over impaired VLC channels is revisited

once again. The open loop VLC system model is considered with a nonlinear post-

distorter/equalizer at the receiver. There are three basic techniques of training an equal-

izer/learning the equalizer coefficients: a) supervised based training, b) unsupervised

based training and c) semi-supervised training. Supervised training assumes knowledge

of training data/labels to be available. On the other hand, unsupervised-based training

does not assume any knowledge of training data. Thus it saves precious bandwidth by re-

ducing the overhead required for training symbols and hence enhances the achievable data

rate. Semi-supervised based training assumes partial knowledge of labels. This chapter

focuses on the problem of unsupervised learning of the post-distorter coefficients (with-

out knowledge of training symbols). While there has been a growing literature on various

supervised post-distortion techniques based on Volterra filtering and other nonlinear ap-

proaches [28, 72], most literature on unsupervised post-distortion for VLC still relies on
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multi-modulus algorithm (MMA) based approaches like cascaded-MMA (CMMA) [73]

and the MCMMA Volterra filtering [7, 8, 74].

In parallel, there is another independent paradigm that has existed in the domain of

blind equalization for the past two decades called “multi-stage clustering” based approach

[75], which was found to outperform traditional paradigms like constant-modulus algo-

rithm (CMA), MMA and many others as found in [76, 77]. More recently, a normal-

ized phase-splitting variant of the multi-stage clustering paradigm was proposed in [78],

which significantly accelerates the convergence of the multi-stage clustering based ap-

proach. However, all the algorithms derived till date for the improved multi-stage clus-

tering (IMSC) paradigm are designed for linear channels and are unsuitable for LED

nonlinearity affected scenarios; and thus calls for complex receiver architectures.

In this chapter, the scope of unsupervised learning based post-distortion is explored

with relevance to VLC channels. For blind post-distortion over VLC channels affected by

LED nonlinearity, an unsupervised normalized Hammerstein post-distortion structure for

the improved multi-stage clustering based approach is proposed. This approach is termed

as normalized Hammerstein improved multi-stage clustering equalizer (HIMSC). Vari-

ous properties of the normalized HIMSC is highlighted which reinforces its suitability for

VLC system as compared to the existing blind MCMMA-Volterra based approach. Ad-

ditionally, a bound is derived for step-size over which the normalized HIMSC converges

using classical adaptive filter theory based techniques. Further, an explicit expression for

steady-state MSE floor as a function of step-size is derived in this chapter for normalized

HIMSC. Simulation carried over standard IEEE 802.15 PAN VLC channels indicate that

indeed normalized HIMSC delivers better MSE and BER performance as compared to

the IMSC or the MCMMA-Volterra algorithm with much lower computational complex-

ity. Furthermore, the derived expression for steady-state MSE is validated via simulations

carried over IEEE 802.15 PAN VLC channels.

In this chapter, the following terminology is used: scalar at time k is represented by

(·)k and vector at time k is represented by boldface with subscript k such as xk (which

are elements of CK , K being the row dimension of the vector, and C denotes the field
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of complex numbers). Real part of a complex quantity is denoted by the superscript (·)R

and ℜ{·}, and the imaginary part is denoted by (·)I and ℑ{·}. The transpose operation is

denoted by (·)T .

This chapter is organized as follows: Section-6.2 provides the system model pro-

vided used in this work, Section-6.3 gives the proposed unsupervised Hammerstein post-

distorter, Section-6.4 presents the simulations to validate the proposed approach, Section-

6.5 summarizes this chapter.

6.2 System model

In this section, the system model considered in this chapter is described. Let sk denote the

input constellation (with DC bias so as to be placed in the forward-bias of LED) at the

kth time instant. It is passed through an FIR filter {hi}L−1
i=0 , of order L−1. This channel is

modeled by the convolution of the lowpass impulse response of LED (which is modeled

by a lowpass filter with cutoff frequency 20MHz) given in [79] and the IEEE 802.15 PAN

VLC channel. It is to be noted that the lowpass response of the LED models its finite

modulation bandwidth which greatly affects the system throughput. The received symbol

at kth time instant, xk, is given as follows:

xk =
L−1

∑
i=0

hi f (sk−i)+nk (6.1)

where f (.) is a Rapp LED nonlinearity [19] which had been used to model a white LED,

and nk is i.i.d (independent identically distributed) AWGN with variance σ2
n . The factor

p controls the level of nonlinearity. For example, p = 0.5 has been considered to be a

significant nonlinear characteristic in [57] and therefore the same has been considered

throughout this chapter. The block diagram of the system model is given in Fig. 6.1. The

channel consists of a linear FIR filter h= [h0,h1, ...,hL−1] (which models the IEEE 802.15

PAN VLC indoor channel [24, 58]). The equalizer considered in this chapter is a nonlinear

adaptive equalizer with observation xk as input. ŝk−D is the equalizer estimate delayed by

D samples, where D is the cumulative lag of the equalizer, such that K = 2D+ 1. The
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Figure 6.1: Block diagram of the used system model.

output of the blind post-distorter is denoted by yk.

6.3 Proposed normalized Hammerstein improved multi-

stage clustering based post-distorter

In this section, the normalized HIMSC is formulated for unsupervised post-distortion in

nonlinear LED affected VLC IEEE 802.15 channels. The following transformation on the

regressor xk is defined as follows as per the Hammerstein expansion,

φ(xk) = [xk,xk−1, ...,xk−2D, (6.2)

x2
k ,x

2
k−1, ...x

2
k−2D, ...,x

M
k ,xM

k−1, ..,x
M
k−2D]

where M is the order of the Hammerstein expansion. Let the equalizer weight at the kth

instant be denoted by Ωk = ΩR
k + jΩI

k which is of same dimension as φ(.). Let us define,

yR
k = ℜ(ΩT

k φ(xk)), and yI
k = ℑ(ΩT

k φ(xk)) (6.3)
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Using these expressions, the following cost function for the real and imaginary parts is

formed:

JR
HIMSC =

1
Q

Q

∑
j=1

exp
(
−

(yR
k −µR

j )
2

ρ

)
(6.4)

JI
HIMSC =

1
Q

Q

∑
j=1

exp
(
−

(yI
k−µ I

j)
2

ρ

)

where {µR
j }Q

j=1 and {µ I
j}Q

j=1 are the possible real and imaginary parts of the transmitted

constellation, ρ is the spread parameter, and Q is the number of modulii used for channel

equalization in a given stage of clustering. The cost-function in (6.4) is optimized by using

a hierarchical clustering approach. For example, for 16-QAM, first initial convergence is

achieved using classification of the constellation in the four-quadrants, i.e., µR
j and µ I

j will

take values {+2,−2}. The second stage acts like a soft-decision-directed phase, and then

µR
j and µ I

j can be allowed to take values {+1,−1,+3,−3}. Some characteristics of the

proposed normalized HIMSC cost function are: a) The multi-stage clustering cost func-

tion is actually the a-posteriori probability density function (p.d.f) of yk parameterized by

Ωk (assuming equally likely transmit-constellation symbols) [75], and b) The multi-stage

clustering criterion can be viewed as the sum of correntropy between the filtered output

and the points of the transmit constellation. Hence, the proposed normalized HIMSC cost

function is a better similarity measure as compared to deviation from fixed modulii as

in CMMA or MCMMA due to incorporation of higher order statistics of the error term.

As mathematically proven in the literature [80], correntropy converges to a lower MSE

as compared to a simple squared deviation criterion due to incorporation of higher order

statistics. Hence, intuitively, the second order fixed modulus based classical Bussgang

cost functions like MMA are not sufficient statistics for nonlinear channel equalization.

The cost function in (6.4) is optimized by a stochastic gradient algorithm with a nor-
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malized descent direction which is updated as:

Ω
R
k+1 = Ω

R
k +µeR

HIMSC
φ(xk)

‖φ(xk)‖2
2

(6.5)

Ω
I
k+1 = Ω

I
k +µeI

HIMSC
φ(xk)

‖φ(xk)‖2
2

(6.6)

where,

eR
HIMSC =

Q

∑
j=1

exp
(
−

(yR
k −µR

j )
2

ρ

)
(yR

k −µ
R
j ) (6.7)

eI
HIMSC =

Q

∑
j=1

exp
(
−

(yI
k−µ I

j)
2

ρ

)
(yI

k−µ
I
j)

which as found in [78] (which has been derived for the linear channel case and can be

extended to the VLC channels as well by considering the regressors as φ(xk)) is the solu-

tion to the following optimization problems for the real and imaginary parts of the phase

splitting equalizer:

minimize
ΩR

k ,Ω
I
k

1
2
‖ΩR

k+1−Ω
R
k ‖2

2 +
1
2
‖ΩI

k+1−Ω
I
k‖2

2

subject to
ε→0

JR
HIMSC = (1− ε),JI

HIMSC = (1− ε)

6.3.1 Derivation of step-size range for convergence

In this section, an upper bound on the step-size is derived so as to ensure convergence

of the proposed normalized HIMSC. Let us denote the a-priori deviation from optimal

weight Ωo = ΩR(o) + jΩI(o) as Ω̃k = Ωk −Ωo and a-posteriori deviation from optimal

weights Ω̃k+1 = Ωk+1−Ωo. Additionally, let us denote the real and imaginary modulus

as µR
∗ and µ I

∗, such that µR
∗ = ΩR(o)T

φ(xk) and µ I
∗ = ΩI(o)T

φ(xk). Further, it is noted that
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JHIMSC can be approximated as follows:

JR
HIMSC ≈ ĴR

HIMSC =
1
Q

exp
(
− (yR

k −µR
∗ )

2

ρ

)
(6.8)

JI
HIMSC ≈ ĴI

HIMSC =
1
Q

exp
(
− (yI

k−µ I
∗)

2

ρ

)

where ˆ(·) operator denotes the approximation of the HIMSC cost-function to the nearest

constellation point. In other words, the multi-modal mixture in (6.4) is being approxi-

mated by the most dominant component. Let the output of the adaptive filter be denoted

as ỹk = Ω̃T
k φ(xk) and ỹk+1 = Ω̃T

k+1φ(xk). From (6.5), one can write as follows;

ỹk+1 = ỹk−µeHIMSC (6.9)

Squaring and taking expectation on both sides, one arrives at:

E[|ỹk+1|2]≈ E[|ỹk|2]+µ
2E[|êHIMSC|2]− (6.10)

2µE[(êR
HIMSCỹR

k + êI
HIMSCỹI

k)]

and,

êR
HIMSC =

1
Q

exp

(
− (yR

k −µR
∗ )

2

ρ

)
(yR

k −µ
R
∗ ), (6.11)

êI
HIMSC =

1
Q

exp

(
− (yI

k−µ I
∗)

2

ρ

)
(yI

k−µ
I
∗),

Consequently, one arrives at the following step-size range for convergence from (6.10)

(i.e. to ensure that E[|ỹk+1|2]≤ E[|ỹk|2]),

0≤ µ ≤ 2E[êR
HIMSCỹR

k + êI
HIMSCỹI

k]

E[|êHIMSC|2]
(6.12)

Let ρ = 2σ
2, E[|ỹ∞|2] = S, and f (ỹk + nk) = êIMSC. Noting that f (x) = exp(− x2

2σ2 )x,

one can arrive at the following expressions under the assumption of Gaussian noise with
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variance σ2
n as per integrals given in [80]:

E[|êHIMSC|2] = E[ f (ỹk +nk)
2] =

2σ3(S+σ2
n )

(2S+2σ2
n +σ2)

3
2

(6.13)

E[êR
HIMSCỹR

k + êI
HIMSCỹI

k] =
2σ3S

(S+σ2
n +σ2)

3
2

Under the assumption of high signal to noise ratio, one gets the following bound for the

step-size range,

0≤ µ ≤ 2
[

2S+σ2

S+σ2

] 3
2

(6.14)

The following special cases of the expression derived in (6.14) can be derived based on

value-ranges of S and σ2:

• For S >> σ2, (6.14) can be approximated as 0 ≤ µ ≤ 2× 2
3
2 . This is intuitive as

our bound can be relaxed to achieve a higher targeted S.

• For S << σ2, (6.14) can be approximated as, 0 ≤ µ ≤ 2. Thus, one has a more

strict bound to achieve a lower targeted S.

• For S≈ σ2, (6.14) can be approximated as, 0≤ µ ≤ 2×1.5
3
2 .

Thus one can conclude from above three points that the step-size range required for con-

vergence becomes more stringent as one reduces the targeted excess mean square error

floor S.

For adaptive equalizers, steady-state misadjustment is an important learning metric

which, in turn, is influenced by choice of step-size. In the next section, the impact of vary-

ing the step-size on the steady-state misadjustment of the proposed normalized HIMSC is

studied.
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6.3.2 Steady-state MSE vs step-size

Assuming convergence in (6.10), one arrives at:

µ
2 S+σ2

n

(2S+2σ2
n +σ2)

3
2
= 2µ

S

(S+σ2
n +σ2)

3
2

(6.15)

Assuming small S and σ2
n at high signal to noise ratio (SNR), S+σ2

n << σ2 and σ2
n << S

(6.15) can be approximated as:

µ

2

(
1+

S+σ2
n

σ2

)(
1− 2S+2σ2

n
σ2

)
=
(

1− 2
3

σ2
n

S+σ2
n

)
(6.16)

Simplifying further and neglecting fourth order error terms, one arrives at:

µ

2

(
1− S+σ2

n
σ2

)
≈ 1− 2

3
σ2

n
S

(6.17)

Simplifying and assuming S2→ 0:

S≈ 4σ2σ2
n(

1− µ

2

)
6σ2 +3µσ2

n

(6.18)

Now, an interesting property of the proposed approach is demonstrated. In (6.18), if

σ2
n << σ2, (6.18) can be reduced as:

S≈ 4σ2
n

6−3µ
(6.19)

It is interesting to note that at high SNR, the steady-state MSE of the proposed normal-

ized HIMSC is independent of the spread parameter σ2. This means that small tweaks

in parameter values of σ2 does not affect the performance of the proposed normalized

HIMSC at high SNR. One can also infer from (6.18), that as µ is increased, the steady

state mean squared error also increases, which is intuitive from classical adaptive filtering

theory [40].
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6.4 Simulations

In this section, simulations are presented to validate the normalized HIMSC with respect

to MCMMA based Volterra post-distorter. The Hammerstein expansion was chosen with

D = 4 and corresponding step-size were chosen so that they learn the LED characteristics

at the same rate of the MSE learning curve. For normalized HIMSC, µ = 0.25 was used;

while for Volterra-MCMMA, the µ = 0.0003 was chosen.The rms delay spread of the

overall channel was calculated to be 19.94ns and 18.75ns respectively for “office” and

“office with cubicles” scenarios respectively. The transmit bit-rate was assumed to be

400Mbps.

For Volterra-MCMMA, 45-linear taps and 25-second order taps as used in [8] was

chosen. It is observed in Fig. 6.2 and Fig. 6.3 that both in the open office and of-

fice with cubicles IEEE 802.15 PAN VLC channels, the normalized HIMSC outperforms

Volterra-MCMMA and converges to a lower MSE. The MSE curves are compared at 33dB

signal SNR. Also from Figs. 6.4 and 6.5, it can be concluded that at high SNR, IMSC

and normalized HIMSC demonstrate superior BER performance as compared to Volterra-

MCMMA. This indicates that amongst unsupervised approaches, the normalized HIMSC

is a superior paradigm to learn the post-distorter from the observations itself without the

need of training symbols.

Furthermore, the steady-state MSE values obtained via simulations for various step-

sizes are validated by the theoretical expression derived in (6.18). It could be observed

from Fig. 6.6 and Fig. 6.7 that the theoretically derived expression in (6.18) closely

matches the simulated MSE floors in the high SNR regime. Also, it is observed that

at high SNR (as the SNR is changed from 40dB to 36dB) there is not much change

in simulated value of steady-state MSE floor as a function of step-size which further

validates the theory for steady-state MSE derived in this chapter. In other words, at high

SNR, the same σ produces similar MSE characteristics.

The proposed normalized HIMSC is much computationally simpler as compared to

the blind MCMMA based Volterra equalizer in [8]. The unsupervised algorithm in [8],
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needs O(8(45+252)+2) operations as there are 45 linear taps and 25 second order taps

in [8] and computational complexity of a simple Widrow-Hopf rule is O(8G+ 2) real

operations [40], where G is the dimensionality of the regressors. Whereas for comparison,

for simulating the proposed normalized HIMSC, the use of D = 4 and M = 5 leads to

O(10(45)+2) real operations (that is, O(10G+2) for normalized Widrow-Hopf rule, G

in our case is 45). This indicates that the proposed normalized HIMSC is computationally

less complex as compared to the Volterra-MCMMA in [8] and provides computational

savings by a factor of 11.86 coupled with superior BER performance shown in Fig. 6.4

and Fig. 6.5.
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Figure 6.2: MSE comparison for open office IEEE 802.15 PAN channel for 16-QAM.
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Figure 6.3: MSE comparison for office with cubicles IEEE 802.15 PAN channel for 16-
QAM.

85



6.4. SIMULATIONS

5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

SNR

 

 

Volterra−MCMMA

Normalized−IMSC

Normalized−HIMSC

Figure 6.4: BER comparison for open office over IEEE 802.15 PAN channel for 16-QAM.

5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

SNR

 

 

Volterra−MCMMA

Normalized−IMSC

Normalized−HIMSC

Figure 6.5: BER comparison for office with cubicles over IEEE 802.15 PAN channel for
16-QAM.
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6.5 Summary

In this chapter, the problem of post-distortion over dispersive VLC channels was re-

considered. However, the focus of this chapter was limited to unsupervised approaches

as opposed to supervised approaches in previous chapters. Additionally, the effect of fi-

nite modulation bandwidth of the LED was considered in the system model. A novel

unsupervised nonlinear post-distorter based on multi-stage clustering paradigm called

normalized HIMSC was proposed and validated against existing Volterra-MCMMA over

IEEE 802.15 PAN VLC channels. A suitable step-size range was theoretically derived

to guarantee convergence of the proposed adaptive post-distorter. Superior MSE curves

and BER performance as compared to Volterra-MCMMA was observed with lower com-

putational complexity, thus validating its suitability as a blind post-distorter for VLC.

Furthermore, theoretical expressions for steady-state MSE was derived analytically and

validated by simulations over IEEE 802.15 PAN VLC channels, which reinforces correct-

ness of the theory derived in this chapter. These results also indicate that the multi-stage

clustering based nonlinear filtering paradigm can be a preferred alternative as compared

to MMA/CMA and other blind post-distorters for VLC.
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Chapter 7

Precoded Chebyshev-NLMS based

pre-distorter for nonlinear LED

compensation in NOMA-VLC

7.1 Introduction

To meet the ever increasing demand of users in VLC for 5G systems by 2020, a novel

multiple access scheme called NOMA has attracted much attention recently [81, 82]. In

this multiple access scheme, instead of allocation of orthogonal dimensions to each user

(be it code, frequency, time), the signals of users are overlapped (superimposed) over

the same dimension with power diversity, and the signals of users are separated out at

each UE by a SIC. Recently, NOMA has been found to be viable for adoption into VLC

mainly due to the following reasons [33]: a) NOMA can handle small number of users

which typically happens in a Li-Fi attocell (a small femtocell) [83], b) channel is generally

dominated by a line of sight (LOS) path which facilitates for accurate channel estimation,

and c) adjusting tuning angles and field of view (FOV) gives additional degrees of freedom

for multiplexing multi-user signals which can induce differential channel gains facilitating

for power diversity.

Among existing major techniques for NOMA, the work in [34] suggest choices of
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precoding matrices which rely on the channel conditions to be different. For example,

the work in maximal ratio combining (MRC) post-processing [34] would work well if

the channel matrices are well conditioned/ the columns of the channel matrices of all

users (with all users having different QoS requirements) are all independent/dissimilar to

ensure power-diversity. However, if the channel matrices are aligned/similar, the MRC

based processing would render the same effective channel conditions at each UE thereby

culminating in a failure of the NOMA system. While the work in [84] is related to the

problem addressed in this chapter, however it assumes a single antenna for each UE in its

formulation. In MIMO-VLC, however, one has an array of photodiodes at each UE thus

restricting the validity of the approach in [84] (which essentially decomposes the MIMO

detection problem into several spaced multiple-input single-output (MISO) problems and

losing diversity gain as given in [84]). In fact, the work in [84] is the “one-antenna per

UE”-analog of the problem handled in this chapter. Moreover, the impact of device im-

pairments like nonlinearity is not considered in a MIMO-VLC scenario in a NOMA set-

ting. The precoding technique in [35] holds even when channel conditions for UEs are

similar, however is applicable to only two-user scenario (additionally it promises a di-

versity gain for one of the users) and leaves its possible extension to arbitrary number of

users as an open problem. The works in [34, 35] propose a new paradigm for NOMA

power allocation called “cognitive-radio inspired power allocation”. In this paradigm, the

user with a better channel condition is considered as a secondary-user and the user with

worse channel condition is treated as a primary-user. When a new user wants to access

the link, it is served opportunistically under the condition that the existing users’ QoS re-

quirements are maintained. This policy applies in many 5G scenarios like IoT where users

have diverse QoS requirements and not necessarily diverse channel conditions [35]. To

accommodate multiplicity of users in such scenarios, it is crucial to have diverse channel

conditions which can be either in-built [34], or achieved by precoding [35] (though this

precoding, as mentioned before, was done for only two users). In this chapter, techniques

for cognitive-radio inspired NOMA (which arises typically in 5G scenarios like internet

of things [35]) are explored wherein channels of all users exhibit significant correlation
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coupled with device-impairments.

Despite employing NOMA-VLC, the capacity of VLC systems is limited by inherent

LED nonlinearity [39], which can be mitigated by using pre-distortion or post-distortion

techniques. Among pre-distortion techniques, the simplest technique would be to main-

tain a lookup table of the estimated nonlinearity. However, such static lookup tables

lose their practicability due to varying LED characteristics [27] (due to device aging);

hence there is a need for adaptive pre-distorters. Such adaptive pre-distorters have been

suggested in the literature which are learnt using NLMS algorithm [27], and Chebyshev

regression using NLMS approach [85]. This chapter proposes a modified Chebyshev-

NLMS based pre-distortion with hybrid eigen-decomposition based precoding in a MIMO-

VLC scenario for IoT applications and demonstrates the superiority of Chebyshev regres-

sion based pre-distortion approach.

Additionally, to the best of authors’ knowledge, all studies so far in a VLC-NOMA

system [33, 86, 87] do not consider LED nonlinearity in a MIMO scenario for the design

of a pre-distorter. In view of the existing NOMA literature in VLC, the major contribu-

tions of this chapter are summarized as follows:

• A new hybrid precoding technique for NOMA-VLC channels is suggested in a

closed loop adaptive Chebyshev pre-distorter, based on singular value decompo-

sition (SVD), in IoT applications. The proposed approach works even when the

left and the right eigenvectors of all the available channel matrices for all users are

correlated. In other words, if the channels have correlated CIR, one cannot design

different precoding vectors for users by the framework of analysis given in [34]. For

two users, a QR decomposition technique based approach in [35] is able to deliver

varying grades of service even in scenarios with similar channel conditions. How-

ever, the precoding technique presented in this chapter holds for arbitrary number

of users which is a challenge raised in [35].

• A novel power allocation technique is found for the proposed precoding scheme

based on QoS requirements of various users. While finding the optimal power al-

location coefficients, the SVD based precoding technique given in this chapter is
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considered in a scenario when the channel matrices of all the users have similar

CIR with each user being opportunistically served whilst maintaining the QoS re-

quirements of existing users. In such conditions as given in [35], the users have

diverse QoS requirements as opposed to diverse channel conditions. Simulations

indicate that the proposed power allocation technique performs well for square M-

QAM modulation schemes in the above mentioned scenario for varying number of

users.

• In order to validate the proposed NOMA precoding scheme via simulations, gener-

alized formulae for BER vs SNR for varying number of users is derived and vali-

dated by simulations for square M-QAM. The simulations indicate that the theoret-

ically derived BER formulae indeed match the simulated BER curves for varying

number of users, which further validates the framework of analysis presented in this

chapter.

In this chapter, the following terminology is adopted: scalars at time k are denoted by

subscript k such as xk, vectors (which are tuples of scalars), are denoted as {xk} and

matrices are denoted by capital boldface such as H. Transpose of matrices/vectors are

denoted by (·)T . Additionally, inverse of transpose of a matrix is denoted by (·)−T and

the pseudo-inverse is denoted by (·)†. Sets are denoted by < ·> in this chapter.

This chapter is organized as follows: Section-7.2 discusses the MIMO-NOMA system

model, and existing QR precoded linear NOMA is reviewed in Section-7.3. Section-7.4,

presents proof of the feasibility of the proposed precoded Chebyshev-pre-distortion for

nonlinear LED affected VLC-NOMA, and Section-7.5 suggests the choice of suitable

precoding matrix. Section-7.6 presents the power allocation strategy for the given sys-

tem. Expression for BER performance for square M-QAM is derived in Section-7.7. The

simulation results are described in Section-7.8. Finally, the chapter is summarized in

Section-7.9.
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7.2 MIMO-NOMA system model

In this section, the MIMO-NOMA system model considered in this chapter is presented

and the terminology followed throughout the chapter is introduced. The input vector

at time instant k is denoted as, xk = {xk}(z+1)MT
k=zMT+1, where z is an arbitrary integer that

denotes the sample duration, and MT is the number of LEDs at the transmitter. The symbol

x′k = {x
′
k} indicates precoding of {xk} by a matrix P. In case different precoding matrices

are used for each user (which has been done previously in [88, 89], although in a different

setting), the precoding matrix for the uth user is denoted as P(u). The proposed system

model is given in Fig. 7.1. This input vector is actually a non-orthogonal superposition

of many users’ signals (called a mixed-constellation in this chapter), with suitable power

allocation. Mathematically, this can be written as:

{xk}=
U

∑
u=1

√
P(u){s(u)k } (7.1)

where U is the number of users and u is the uth user index variable. P(u) is the power

allocated to each user and {s(u)k } is the uth user’s constellation at kth time instant. If

{s(u)k } is a bipolar constellation, then it should be offset by a DC value so that the entire

constellation lies in the forward bias regime of the LED. Without loss of generality, to

impose a constant power constraint, it is assumed that ∑
U
u=1 P(u) = 1. This is followed by

pre-distorter mapping T (.). The considered channel matrix for the uth user is denoted by

H(u) ∈ RMR×MT (where MR is the number of receive photodiodes in the photodiode array

for each user) and consequently the i.i.d AWGN is added, and the superposition of signals

is broadcasted from the transmitter LED array. For the uth user, the received signal vector

y(u)k = {y(u)k } can be written as:

{y(u)k }= H(u)A(T ({x′k}))+{nk} (7.2)

where nk = {nk} denotes AWGN with zero mean and covariance matrix σ2
n I (I being

the identity matrix). T (·) denotes the adaptive pre-distorter transformation which can be
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learnt by popular techniques like NLMS [27] or Chebyshev regression based NLMS [85].

At each UE, {s(u)k } is then recovered by SIC. The LED nonlinearity A(.) in [19] is a Rapp

LED nonlinearity.

In the case of imperfect channel state information (CSI) (both transmit and receieve)

considered in this chapter, one can express the following measure of deviation in terms of

actual elements of channel matrix H = [hg], and ĥg, which is the gth column of channel

matrix affected by estimation error:

‖hg− ĥg‖2 ≤ γ (7.3)

where γ-neighborhood is assumed to be Gaussian distributed with variance σ2
γ as given

in [90]. ‖ · ‖2 denotes the Euclidean norm.

In this paragraph, every considered block of the system model in Fig. 7.1 is described.

In the first block the mixed-constellation {xk} is taken, precoded by the matrix P(u) cor-

responding to User u, and passed through the pre-distorter T (.) = ∑∀i r(i)k Ti(.), where Ti

denotes the ith Chebyshev polynomial and r(i)k denotes the pre-distorter weights. This

precoded transmission is passed to the transmitter LED array, where the nonlinearity A(.)

is (implicitly) applied. Then the AWGN at the kth instant, nk, is added. At the receiver,

for each user u, the precoded transmission affected by nonlinearity is received by the uth

photodiode array. Then, according to the QoS of the user, an estimate of the mixed signal

{l̂(u)k } for each user u is recovered by multiplying with (H(u)P(u))† to form an estimate of

the mixed constellation {xk} at each UE, given by {l̂(u)k }. After this, the SIC is performed

at each UE to recover the user’s symbols. It is to be noted that in the simulations, errors

induced at each layer of SIC are taken into account. The l̂k, which is chosen among the

{l̂(u)k } from UEs with the highest QoS and the input signal is used in the feedback loop

(which can be an RF uplink [13, 91] or PLC-based [23, 92]) to adjust the pre-distorter

coefficients r(i)k using the NLMS or the Chebyshev-NLMS algorithms.
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Figure 7.1: Block diagram of the proposed system model.

7.3 Review of QR-precoded NOMA

In this section, a technique for NOMA is reviewed which considers NOMA for a special

two-user scenario, even when channels of the users exhibit significant correlation. This

problem is generalized in this chapter to arbitrary number of users and hence it will be

insightful to review the work given in [35] prior to the proposed algorithm. In the work

in [35], a two user scenario is considered which experiences similar channels, H(u), with

u ∈ {1,2} but with varying QoS requirements.

{xk}=
2

∑
u=1

√
P(u){s(u)k } (7.4)

The idea in [35] is to select a user (say User 2), whose experience one would like to

improve selectively, and consider the QR decomposition of the transpose of the corre-

sponding channel such that H(2)T
= Q(2)R(2). Here, Q(2) ∈ RMR×MR is a unitary matrix

and R(2) ∈RMR×MT is an upper triangular matrix obtained by QR-decomposition. Conse-

quently, the broadcast xk is precoded by P(u) = Q(2),u = 1,2 to form x′k. In other words,
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x′k = Q(2)x. Then User 2’s signals are recovered by successive interference cancellation

and User 2 experiences a diversity gain.

On the other hand, User 1’s signal is recovered by the zero forcing solution upon x′k by

the matrix (H(1)Q(2))†. This step actually induces different channel condition at UE with

lesser QoS due to multiplication by the Wishart matrix corresponding to (H(1)Q(2))†. In

other words, the multiplication of (H(1)Q(2))† the equivalent channel condition at User 1

is degraded as compared to that of User 2, to the extent controlled by the power allocation,

which is done so that User 1’s QoS are met while improving the performance of User 2.

This is achieved by minimizing the probability of rate-outage of User 1 as given in [35].

7.4 Proposed extension of Chebyshev pre-distortion to MIMO

systems

For a single UE scenario, the Chebyshev polynomial based pre-distortion was proposed

in Chapter 2 for SISO systems. However, this chapter considers a multi-user MIMO VLC

scenario with NOMA as the multiple-access technique. In this chapter, it is assumed

that all UEs are equipped with a photodiode array and hence the received signal for all

users are vectors. In order to learn the pre-distorter weights in a MIMO scenario, the

modified cost function, JMIMO = min
r(i)k

E[(‖{βxk}−{l̂k}‖2
2)], involving Euclidean norm, is

minimized with respect to the weights {r(i)k }. JMIMO could also be written as:

JMIMO = ∑
∀xk∈{xk},l̂k∈{l̂k}

(βxk− l̂k)2 (7.5)

To clarify the terminology in the previous equation, a double summation is not denoted

in above equation. A single summation, after element-wise subtraction and squaring of

elements of the vectors, is denoted. As the Euclidean norm is convex in the Chebyshev

coefficient weights, stochastic gradient descent based adaptation is guaranteed to converge

to the global optimum of the cost function.

The estimate l̂k is derived from a feedback uplink from the receiver (which can be
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achieved by time-division duplexing, frequency division duplexing or by a separate RF

uplink [13, 91]). Each of the U UEs sends an estimate l̂(u)k among which l̂k is chosen

from the link with the highest QoS as it will have the maximum SINR. The pre-distorter

coefficients r(i)k are updated by taking gradient of JMIMO with respect to r(i)k via a similar

stochastic gradient NLMS based approach as:

r(i)k+1 = r(i)k + ∑
∀xk∈{xk},l̂k∈{l̂k}

η

∑∀i Ti(xk)2 ekTi(xk) (7.6)

for all, xk in {xk}. r(i)k denotes the ith pre-distorter weight at kth time instant and ek =

βxk− l̂k for each xk in {xk}.

The Chebyshev weight-estimation inverts nonlinearity of the LED. However, to in-

corporate power-diversity in the framework, precoding techniques are required. This

raises important questions regrading the overall system like: a) how does Chebyshev

pre-distortion perform when precoding is employed? Are the signals detected success-

fully?; b) if so, then at what signal to noise ratio (this is important as this would influence

the rate which in turn would affect the power-allocation technique)? These questions are

answered in the next paragraph using a modified Bussgang theorem. In further sections,

more elaboration on suitable precoding matrices and derive the power allocation strategy

for the considered NOMA-MIMO scenario over VLC channels, is provided.

In this paragraph, the feasibility of a hybrid Chebyshev pre-distorter that is coupled

with precoding is proven to extend its suitability to NOMA channels. The Chebyshev pre-

distortion in [85] is modified by adding a precoder P(u) at the transmitter for each user u

(in addition to the Chebyshev pre-distorter which mitigates the LED nonlinearity), and the

mixed constellation l̂(u)k at the receiver {xk} is recovered by multiplying by (H(u)P(u))†.

In the next paragraph, it is shown that the recovery of symbols is made possible by using

this pre-distorter in the presence of LED nonlinearity. The output l̂(u)k can be written as
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follows:

{l̂(u)k }= (H(u)P(u))† (7.7)

[H(u)A({∑
∀i

r(i)k Ti(P(u){xk})})+{nk}]

From extension of Bussgang’s theorem [93], one can write

{l̂k}(u) = {αxk}+(H(u)P(u))†H(u){δ}+(H(u)P(u))†{nk} (7.8)

where δ is zero mean uncorrelated noise sequence with variance σ2
δ

and α is a scaling

correlation factor between A(T (·)) with its argument. H(u)† is the pseudo inverse of a

matrix H(u) and is assumed to be a left-inverse of H. Hence, l̂(u)k lies in the same subspace

of xk. Hence any precoding as done in the case of the linear scenario in [35], works for

the nonlinear closed loop system model as well.

In order to study the impact of nonlinearity on the overall detection performance, let

us define the following terms: Z(u) = (H(u)P(u))† and W(u) = (H(u)P(u))†H(u). Thus,

from (7.8) the uth user is decoded with the following SINR (denoted by Γ(u)),

Γ
(u) =

α2P(u)
(

α2
∑∀b>u P(b)+Tr(W(u)T

W(u))σ2
δ

+Tr(Z(u)T
Z(u))σ2

v

) (7.9)

, where Tr(.) denotes the trace. Upon convergence of Chebyshev coefficients to their

optimal values (ensured by NLMS algorithm), α → 1 and σ2
δ
→ 0. Then, the SINR for

the uth user is as follows:

Γ
(u) =

P(u)

∑∀b>u P(b)+Tr(Z(u)T Z(u))σ2
v

(7.10)

Please note that in the above expression, the transmit constellation of each user is assumed

to be normalized to unit power, and b is the index variable denoting the layer of SIC.
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7.5 Choice of precoding matrices

In this section, the technique of choosing precoding matrices is described in detail to

induce a power-diversity over the considered multi-user VLC scenario. In (7.10), the

SINR experienced by the uth user depends on the pseudo-inverse of the overall channel

matrix H(u)P(u). It can be noted that the following salient points to motivate the proposed

precoding technique:

• The channel matrix is ill-conditioned in VLC-MIMO systems [94, 95]. This makes

some of the eigenvalues of the channel-matrix very small as compared to other

eigenvalues of the channel matrix.

• Traditional beamforming as in [88] may not work as some of the channel matrices

have correlated eigenvectors, thereby reducing the available degrees of freedom to

accommodate more users (a phenomenon which is more pronounced in VLC due

to the ill conditioned channel matrix).

The ill-conditioned channel matrix is actually a blessing in disguise, as this helps us in

inserting many levels of QoS for each user by the precoding technique described below.

To design a precoding matrix P(u), let us consider the SVD of the uth users’ channel matrix

H(u) as follows:

H(u) = U(u)Σ(u)V(u)T
(7.11)

where

Σ(u) = diag(σ (1,(u)),σ (2,(u)), ...,σ (c(u),(u)),0,0,0...) (7.12)

c(u) denotes the rank of the uth user’s matrix. The matrices U(u) and V(u) consists of

eigenvectors of H(u)H(u)T
and H(u)T

H(u). Thus the precoding matrix P(u) for each user
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would be given by:

P(u) = V(u)Σ(u)λ (u)−1
(7.13)

where λ (u) is the exponent assigned to uth user and

Σ(u)λ (u)−1
= diag(σ (1,(u))λ (u)−1

,σ (2,(u))λ (u)−1
, ...,

σ
(c(u),(u))

λ (u)−1

,0,0,0...)

Upon such precoding, each user would experience a virtual “parallel” channel given by

the following equation (assuming α → 1 and σ2
δ
→ 0):

{l̂k}(u) ≈ {αxk}+(U(u)Σ(u)λ (u)

)†{nk} (7.14)

Thus each user would experience a channel U(u)Σ(u)λ (u)
with a distinctive trace and hence

inducing diverse channel conditions with proper choice of λ (u). Further, as in [35], one

may want to improve the condition number of one of the users’ (say u1) channel with

a higher QoS by QR factorization technique as done in [35], i.e. one may assign P(u) =

V(u)Σ(u)λ (u)−1Q(u1), where U(u1)Σ(u1)
λ
(u1)

= R(u1)
T
Q(u1)

T
. However, this QR factorization

technique is not a pressing necessity as the generalized power diversity is achieved by

varying λ (u). The exact technique of finding λ (u) for the uth user according to varying

levels of user-QoS is given in the next section.

7.6 Power allocation strategy

In this section, the power allocation strategy that needs to fulfill a given QoS for a given

user, is derived. QoS for the uth user is typically designated by a reliable transmission rate

R(u). This can be written mathematically as:

log2(1+Γ
(u))≥ R(u) (7.15)
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Let us define ε(u) = 2R(u)−1. Thus,

P(u)

∑∀b>u P(b)+Tr(Z(u)T Z(u))σ2
v
≥ ε

(u) (7.16)

Rearranging terms one gets,

P(u) ≥ ε
(u)

∑
b>u

P(b)+ ε
(u)Tr(Z(u)T

Z(u))σ2
v (7.17)

adding ∑b>u P(b) both sides,

1≥ P(u)+ ∑
b>u

P(b) ≥ (1+ ε
(u)) ∑

b>u
P(b)+ (7.18)

ε
(u)Tr(Z(u)T

Z(u))σ2
v

=⇒ ∑
b>u

P(b) ≤ 1− ε(u)Tr(Z(u)T
Z(u))σ2

v

1+ ε(u)

Assuming 1−P(u) ≥ 0, one arrives at the following power allocation for each user:

P(u) = min

(
1,ε(u)

(1+Tr(Z(u)T
Z(u))σ2

v )

1+ ε(u)

)
(7.19)

It is to be noted that this power allocation strategy is derived by considering different

users’ differing QoS requirements with each user having a specific Z(u) depending on its

requirement ε(u). Thus this power-allocation technique is a better and a more generalized

power allocation technique as compared to the gain ratio power allocation in [33] for the

considered MIMO NOMA-VLC channel considering correlated channels.

7.6.1 Choice of λ (u) for each user

In NOMA it is very important to induce power diversity, which is provided by precoding.

One can simplify the expression for the residual noise power from (7.14) for each user,

the following expression is arrived at:

Tr(Z(u)T
Z(u))σ2

v = Tr(Σ(u)−λ (u)
T

Σ(u)−λ (u)

)σ2
v (7.20)
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For power diversity, i.e. for different channel-quality at various UE,

log
|Z(u)T

Z(u)|σ2
v

|Z(u+1)T Z(u+1)|σ2
v
≥ 0 (7.21)

=⇒ 1
λ (u)

log(
c(u+1)

∑
g=1
|σ (g,(u+1))|2)

≥ 1
λ (u+1)

log(
c(u)

∑
g=1
|σ (g,(u))|2)

=⇒ λ
(u+1) ≥ λ

(u) log(∑c(u)
g=1 |σ (g,(u))|2)

log(∑c(u+1)

g=1 |σ (g,(u+1))|2)

Hence this gives us a recursive rule for choosing λ (u) for each user by initializing λ (1)= 1.

The lower-bound for λ (u+1) in (7.21) is considered so as to improve the overall condition

number of the channel matrix.

7.7 Analytical expression for BER of square M-QAM

In this section, an analytical expression for bit error rate of M-QAM is derived for the pro-

posed precoding algorithm. This analytical expression is necessary to predict the system

performance without computationally intensive Monte-Carlo simulations and for overall

calibration of the wireless link for link-optimization [96]. The case of square M-QAM is

chosen in this chapter because of its widespread use in the VLC literature [50, 97, 98].

Let us denote a square M-QAM constellation with amplitude and phase set being

given by < An >
√

M
n=1,< φm >

√
M

m=1 such that M-QAM constellation is expressed as <

An exp( jφm) >
√

M
n,m=1. Hence, at each layer, one can have the following recursion for the
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respective set of modulii µb,m,n for l̂k (using laws of vector addition):

µ1,(m,n) = (7.22)
√

P(1)|Am|2 +P(2)|An|2 +2
√

P(1)P(2)A∗mAn cos(φn)

µb+1,(m,n) =
√

P(b)|Am|2 + |µb,(m,n)|2 +2
√

P(b)µb,(m,n)A∗m cos(φn)

∀m,n = 1,2, · · · ,
√

M

Finally the probability of bit-error P√M for an equivalent
√

M-PAM modulation scheme

could be written as (i.e. the BER of square M-QAM modulation can be assumed as two

independent
√

M-PAM modulation [99]):

P√M = 2
(√M−1√

M

)
∑
∀b

∑
∀m

∑
∀n

(7.23)

Q

(√
|µb+1,(m,n)−µb,(m,n)|2

Tr[Z(u)T Z(u)
σ2

v ]

)

Finally, the final expression for square M-QAM can be given by the following equation

by considering the real and imaginary parts of the M-QAM constellation as independent:

PM = 1− (1−P√M)2 (7.24)

Thus (7.24) gives us an expression for probability of error for square M-QAM for the

proposed SVD based precoding technique in a NOMA-VLC scenario. For the special

case of 4-QAM, one arrives at the following expression for BER

PQAM√M=2
= ∑
∀b

√
M

∑
m=1

√
M

∑
n=1

(7.25)

Q

(√
|µb+1,(m,n)−µb,(m,n)|2

Tr[Z(u)T Z(u)
σ2

v ]

)
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and,

PQAM√M=2
= 1− (1−PQAM√M=2

)2 ≈ 2PQAM√M=2
(7.26)

where the relation between µb+1 and µb can be written as follows (considering the ampli-

tude set to be ±1 and phase set to be ±π

4 ) :

µb+1 =

√
P(b)+ |µb|2 +

√
2P(b)µb (7.27)

It could be readily seen that the above equation is the special case of (7.23) assuming

the amplitude set to be having only the modulii {±1} and phase ±π

4 as encountered for

4-QAM modulation.

7.8 Simulations

A typical channel matrix was generated mathematically as given in [33], for a room of

size 5m× 5m× 3m, with refractive index of lens 1.5, height of LED-2.25m, area of the

photo-diode (PD) 1cm2, spacing between transmitter LED array and receiver photodiode

array 0.4m, (X,Y) coordinates of PDs corresponding to User 1’s photodiode array are

(0.2,0.2) and (0.2,-0.2). (X,Y) coordinates of User 2’s PDs in its photodiode array are

(-0.2,0.2) and (-0.2,-0.2). FOV of the photodetectors is kept fixed at 60 degrees. A 2×2

MIMO channel was considered for each user. All users were chosen close to each other

such that all experience almost similar channel conditions. For power allocation for each

user, (7.19) was used in all simulations. These simulation parameters are tabulated in

Table 7.1. For all the simulations 106 symbols were considered with ensemble of 3000

Monte-Carlo runs.

The VLC quasi-static [44] deterministic channel model used for simulating the chan-
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nel matrix is given by the following equation [33, 95]:

H(u) =[hi j]
(u) =

Ae,i

d2
i j sin2

Ψ
R(φi j)cosθi j, 0 < φi j < Ψ (7.28)

=0, otherwise

Ae,i denotes the area of the ith photodetector. di j is the distance between ith transmitter

LED and jth photodetector for each UE, φi j is the perpendicular angle of jth LED, θi j is

the angle between ith transmit LED in transmitter-array and jth photodetector in a pho-

todetector array with the receiver axis. Ψ denotes the FOV for each photodetector. R(φi j)

denotes the Lambertian radiant intensity which can be written as follows:

R(φi j) =
(κ +1)cosκ(φi j)

2π
(7.29)

κ is the order of Lambertian emission given as follows:

κ =− ln2
ln(cos(φ 1

2
))

(7.30)

Typically, as given in [94, 95], these channel-matrices are inherently ill-conditioned and

exhibit correlatedness when users are located near to each other.

Table 7.1: Simulation Parameters

Room-Size 5m×5m×3m

LED-Height 2.25m

Photodetector-Area 1cm2

LED array spacing 0.4m

LED Emission Half-Angle φ 1
2

70 degrees

η 0.00022

User 1’s PD array coordinates (0.2,0.2,−3),(0.2,−0.2,−3)

User 2’s PD array coordinates (−0.2,0.2,−3),(−0.2,−0.2,−3)

User 3’s PD array coordinates (−0.7,0.7,−3),(−0.7,−0.7,−3)

User 4’s PD array coordinates (0.7,0.7,−3),(0.7,−0.7,−3)

FOV, Ψ 60 degrees

Using the given simulation setup, the simulations that validates the proposed SVD-precoded
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Chebyshev-NLMS based pre-distorter are described. Two scenarios are considered: a) the

two user mixed constellation scenario in which the Chebyshev pre-distortion is compared

with NLMS in conjunction with the proposed precoding to highlight gains received from

Chebyshev pre-distortion as compared to NLMS pre-distortion, and b) the U-user sce-

nario in which sum-rate and the average BER is studied by varying the number of users.

7.8.1 Mixed constellation for two user scenario

In all the simulations considered in this sub-section for the two-user mixed-constellation

scenario, User 1 is assumed to use a 16-QAM constellation while User 2 is assumed to

have 4-QAM modulation. In Fig. 7.2, performance of the NLMS and the proposed SVD-

precoded Chebyshev NLMS based approach is compared in full-CSI scenario (which

means that σ2
γ = 0 or in other words, perfect knowledge of channel at the transmit-

ter and the receiver). It is found that the proposed SVD precoded Chebyshev-NLMS

pre-distorter exhibits superior BER vs SNR characteristics as compared to NLMS pre-

distortion. Additionally, from Fig. 7.3 and Fig. 7.4, it is clear that the proposed SVD

precoded Chebyshev-NLMS algorithm has superior convergence characteristics with re-

spect to NLMS pre-distortion in a MIMO VLC-NOMA scenario in full CSI scenario. Per-

formance gains of several decades of BER are observed for the proposed SVD-precoded

Chebyshev-NLMS over simple NLMS. These simulations indicate that SVD-precoded

Chebyshev pre-distortion is a better solution for NOMA-VLC system as compared to

NLMS algorithm.

7.8.2 U-user scenario

Using the proposed power allocation scheme derived in (7.19), simulations are performed

by varying the number of users as monitoring the trend of sum-rate and the average BER

for the proposed SVD-precoded Chebyshev-NLMS for 4-QAM. From Fig. 7.5, it is ob-

served that initially the sum-rate increases as the number of users is increased from one

to two. As the number of users is increased to three, there is a slight dip in the sum-rate,

although the sum rate obtained in this case is still greater than the scenario for U = 1.
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Figure 7.2: 2-user scenario with full CSI. One 4-QAM, another user 16-QAM. Chebyshev
pre-distortion outperforms NLMS in SVD-precoded scenario which is designed keeping
QoS requirements in consideration. Performance is shown for User-2 and User-1.
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Figure 7.3: Convergence comparison for proposed SVD precoded Chebyshev pre-
distorter and SVD precoded NLMS pre-distorter for User-2 at 25dB SNR in a two user
scenario.
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Figure 7.4: Convergence comparison for proposed SVD precoded Chebyshev pre-
distorter and SVD precoded NLMS pre-distorter for User-1 at 40dB SNR in a two user
scenario.
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Figure 7.5: Sum-Rate plot for N-user scenario. After 3-users the sum-rate decays drasti-
cally. Specially, for the N-user scenario, all users are assigned 4-QAM.
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Figure 7.6: Average BER plotted as a function of SNR for U = 2 for the proposed pre-
coding technique. All users use 4-QAM modulation scheme.
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Figure 7.7: Average BER plotted as a function of SNR for U = 3 for the proposed pre-
coding technique. All users use 4-QAM modulation scheme.
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Figure 7.8: Average BER plotted as a function of SNR for U = 2,3 for the proposed
precoding technique. All users use 16-QAM modulation scheme in full CSI scenario.

As one more user is added (U = 4), the sum rate decreases and drastically degrades the

overall system performance. It is assumed that all users are served according to their QoS.

Additionally, the average BER vs SNR is plotted for U = 2,3 in Fig. 7.6 and Fig. 7.7.

It can be observed that till 3 users, the overall BER performance of the system is quite

acceptable. However, as the number of users is increased to U = 4, the BER becomes

totally unacceptable (and hence is not plotted). This further reinforces the observation in

sum-rate plots that the number of users that can be accommodated is at maximum three

in the considered scenario. Moreover, the derived expression for BER in (7.23) (denoted

as “theoretical”) approximates the simulated BER curve (derived for σ2
γ = 0 and perfect

knowledge of the channel scenario denoted as full CSI), which confirms validity of the

derived theoretical expressions. Also, a marked loss of BER performance is observed

upon small values in σ2
γ = 10−3.8,10−3.6 [90] which can be attributed to ill-conditioned

channel matrices which one typically encounters in VLC scenarios [95].

Furthermore, for U = 2,3, the performance of the proposed SVD-precoded Cheby-

shev NLMS based technique is simulated for 16-QAM, and the BER vs SNR is plotted

in Fig. 7.8 and compared to the theoretically derived formula in (7.23) for the full CSI

scenario (σ2
γ = 0). It is observed that the theoretical BER curves match the simulated

BER curves very closely for varying number of users U = 2,3. This validates the gener-

alized framework of analysis for higher order QAM modulation schemes proposed in this
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chapter.

7.9 Summary

In this chapter, the problem of pre-distortion was taken up in a multi-user scenario. For

multiple-access, NOMA was considered as it is one of the major emerging multiple-access

techniques for 4G/5G systems. A novel generalized hybrid precoding technique is pro-

posed for IoT scenarios for arbitrary number of users with differing QoS requirements.

This precoding technique is combined with Chebyshev pre-distortion for applicability

in LED nonlinearity impaired scenarios. Performance gains were found with respect to

NLMS pre-distortion in perfect CSI as well as imperfect CSI scenarios. A novel power-

allocation algorithm is also proposed for the precoding algorithm derived in this chap-

ter. The proposed precoding also works in situations in which there are ill-conditioned

channel matrices and number of degrees of freedom in the channel matrix are limited to

accommodate arbitrary number of users. This work could have applications in VLC as an

integral part of IoT and Li-fi devices where the applications of NOMA are more prevalent

as one converges towards 5G technologies.
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Chapter 8

Conclusion and future work

This chapter provides conclusions and major insights gained from this thesis, and further

outlines directions of future work.

8.1 Conclusion

In this thesis, novel signal processsing techniques for mitigating LED nonlinearity and ISI

(which are two major performance limiting factors in VLC), were proposed and validated.

These techniques are required for delivering the promised throughput of VLC systems

targeted for 5G systems. These techniques can be classified into two categories: a) pre-

distortion techniques, and b) post-distortion (equalization) techniques.

In Chapter 3, in order to mitigate LED-nonlinearity, pre-distortion techniques were

considered and a novel Chebyshev polynomial based pre-distorter was proposed in this

work. This proposed choice of orthogonal polynomial based NLMS, instead of classi-

cal linear-NLMS based pre-distorter resulted in better BER performance. These desir-

able characteristics were justified by the whiteness and min-max error approximation of

Chebyshev regression, which facilitate for better convergence characteristics. However,

the system model in that work used some idealistic assumptions like a perfect uplink

between transmitter and receiver, which would not hold good in practical scenarios.

To look into some practical VLC links with ISI, the problem of post-distortion was

subsequently considered. Supervised post-distortion techniques for mitigating ISI and
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LED-nonlinearity were proposed using the RKHS methods, which guarantee convex and

universal representation for nonlinear optimization problems. Novel MSER techniques

for dictionary sparsification were proposed using novelty-criterion (refer Chapter 4), and

fixed budget criterion (in Chapter 5) to facilitate for computational simplicity. Mathemat-

ical analysis is carried for the MSE dynamics of the proposed post-distorter, both in the

transient and the steady-state regime.

In addition, in Chapter 6, an unsupervised Hammerstein-based post-distorter based on

a multi-stage clustering based paradigm is proposed which demonstrates faster conver-

gence and better BER performance as compared to existing blind post-distorters based

on MCMMA-criterion. The steady-state MSE behavior was mathematically analyzed

and validated via simulations. Additionally, it was found to be computationally simpler

as compared to existing unsupervised implementations of post-distorters available in the

literature.

Finally, in Chapter 7, the system model given in Chapter-3 was extended to multi-user

MIMO scenario. For multiple access, NOMA was considered as it is one of the emerging

multiple-access techniques for 5G systems, particularly for VLC. Novel precoding and

power-allocation techniques were derived which hold even when users do not encounter

dissimilar channels. Theoretical expressions for BER for square M-QAM were derived

and validated via simulations. A power allocation technique is derived for ill-conditioned

channels in order to opportunistically satisfy the individual rate constraint based QoS.

This happens to be one of the seminal investigations in NOMA-VLC in a MIMO-setting.

8.2 Future work

VLC is an emerging area of active research and all the algorithms developed in this work

are novel approaches to improve throughput of the VLC link. The proposed algorithms

and novel techniques proposed in this thesis leads to several open problems that could be

explored.

Firstly, another direction of research could be deployment of a novel sparsification
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criterion apart from novelty criterion/fixed budget criterion. Also, exact analysis MSE-

dynamics of all the post-distorters in this work without Taylor-series approximations is

an open problem.

Secondly, in NOMA-VLC, it will be interesting to investigate the performance of

the proposed pre-distorter in ISI-MIMO fading channels, which may facilitate for better

throughput of the overall VLC-link.

Lastly, a practical implementation of all algorithms proposed in this thesis needs to

be made and fixed point analysis of all algorithms needs to be done in order to study

the behavior of the proposed approaches under finite-precision arithmetic, and real time

operations.
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