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Abstract

Electrocardiogram (ECG) is a noninvasive diagnostic tool which is widely used to

diagnose the cardiovascular diseases (CVD). Heart rate variability (HRV) signals are

extracted from ECG. It contains the relevant information of the cardiac movements.

Congestive heart failure (CHF) is a cardiac disease in which heart is not able to

pump sufficient blood to all the parts of the body. This study aims to diagnose the

CHF accurately using HRV signals. We have used eigenvalue decomposition of Han-

kel matrix (EVDHM) method to decompose the HRV signals. The criteria to select

the significant decomposed components are defined in this work. Thereafter, nine

features corresponding to the five parameters: mean and standard deviation of the

signal, mean frequency calculation using Fourier Bessel series expansion, k-nearest

neighbour ( kNN) entropy, and correntropy are evaluated from the decomposed com-

ponents. The obtained features obtained are normalized with z-score normalisation

method and then the student’s t-test is used to evaluate the differentiation ability

of the features. The ranked features based on t-values are then supplied as input

to the least-squares support vector machine (LS-SVM) classifier with radial basis

function (RBF) kernel for automated diagnosis of CHF HRV signals.

We have tested our method for three combinations of dataset. The combination

with the best results obtained an accuracy of 98.50%, sensitivity of 97.80%, and

specificity of 99.20% with HRV signals of the segment length of 500 samples and an

accuracy of 98.83%, sensitivity of 99.23% and specificity of 98.33% for HRV signals

corresponding to the segment length of 2000 samples. Our proposed method can aid

the cardiac physicians in accurate diagnosis of CHF patients. Hence, it will help in

providing timely treatment to CHF patients.
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Chapter 1

Introduction

For the proper functioning of the human body, the organs require oxygenated blood

rich in nutrients. Circulating blood transports nutrients, oxygen and other necessary

elements to and from the cells of the body [1]. The circulation of blood is studied

under the circulatory system, also called cardiovascular system. Blood flows through

the vessels of the circulatory system. Pumping activity of the heart regulates the

blood flow through the vessels of the circulatory system. Disorders involving heart

and blood vessels can lead to cardiovascular diseases [2]. A very common cardio-

vascular disease, in which the pumping action of the heart is affected is congestive

heart failure (CHF). The structure of the heart and its mechanism is explained in

next section.

1.1 Heart Structure and its Mechanism

Human heart has four chambers, left atria, right atria, left ventricles, and right

ventricles [3]. Left atrium and ventricle are referred as left heart and the right atrium
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and ventricle are together referred as right heart [4]. Left atrium is the smallest and

the left ventricle is the largest among all the four chambers. The heart uses four

valves to ensure blood flow in and out of the heart. Like the heart chambers, it has

four valves, two semilunar valves and two atrioventricular (AV) valves [3].

Valve located between ventricle and atrium is AV valve. Mitral valve and Tricuspid

valve are two AV valves that are present on the left and right side respectively,

between the atrium and ventricle [3]. This valve opens when the pressure in the

atrial side is greater than the pressure on the ventricular part. The valve closes again

when ventricular pressure exceeds the atrial pressure. Aortic valve and Pulmonary

valve are types of semilunar valves.

Aortic valve is between the aorta and left ventricle while pulmonary valve is between

the pulmonary artery and the right ventricle [3, 4]. Aortic valve opens when the

pressure in right or left ventricle exceeds pulmonary or aortic artery pressure.

Rhythm of the heart is determined by the sinoatrial node which is a cluster of

pacemaking cells and it is located in the upper part of right atrium [2, 3]. From

the systematic circulation, the heart receives the deoxygenated blood which enters

the right atrium from body (through veins- superior and inferior venae cavae) and

then passes to the right ventricle with the opening of tricuspid valve [2, 3, 4]. It is

then pumped into the pulmonary circulation, in which pulmonary valve opens and

the blood in right ventricle is pumped to the lungs through pulmonary artery. In

lungs, oxygen is added to the blood and then it is passed to left atrium through

pulmonary veins and then to left ventricles [4]. From left ventricles this oxygen

rich blood is pumped to the rest part of the body through aorta. The sequence

of receiving the deoxygenated blood in right atrium to the passage of oxygenated

blood from right ventricle to body parts constitutes a cycle, called cardiac cycle [2].

This cycle continues without any disruption. The heart regulates the flow of blood
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through blood vessels. Arteries and veins are two types of blood vessels, where veins

are meant to carry the deoxygenated blood while arteries carry oxygen rich blood

[2]. Pulmonary artery and pulmonary vein are exception to the defined properties

of artery and vein. Pulmonary vein carries oxygenated blood from lungs to the

left atrium and pulmonary artery carry deoxygenated blood from right ventricle to

lungs. Any blockages in the blood vessel disturbs the circulation of blood and this

may lead to disorders resulting in dysfunction of some body organs as it will not

get proper supply of oxygen rich blood with proper nutrients. Some of these cardiac

disorders are discussed in next section.

1.2 Cardiovascular Diseases

Disorders involving heart and blood vessels are called cardiovascular diseases (CVD)

[5]. Many CVDs are related to the atherosclerosis. Under this condition, a substance,

plaque develops in walls of arteries [6]. Its presence narrows the arteries, and it dis-

turbs the flow of the blood across [6]. If the clotting of the blood takes place, blood

flow may be stopped and cause heart attack. Some of the other important CVDs are

coronary artery diseases (CAD), heart arrhythmias, heart valve problems, hyperten-

sive heart disease, rheumatic heart disease, cardiomyopathy, congenital heart disease

and CHF [7]. Arrhythmias is a condition which is related with abnormal rhythm of

heart [8]. Heart valve problems are structural problems which arise when the heart

valve does not open enough for the passage of blood [9]. All these disorders disturb

the blood flow in the circulation system. CHF is a condition in which the pumping

action of the blood is affected and its early diagnosis is required for medication to

work effectively. CVD lead to more deaths in the world than any other disease [10]

of which CHF forms one of the major parts.
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1.3 Congestive Heart Failure: Causes, Symptoms

and Diagnosis

If the pumping action of the heart gets affected, it would obstruct blood circulation

and the flow of necessary nutrients to the body cells which will affect the normal

functioning of the body. This complex and severe clinical syndrome are principally

characterized by reduced myocardial contractility, diminished cardiac output, and

hence not able to meet metabolic requirements of the body [11]. For the classi-

fication of CHF patients, measurement of ejection fraction (EF) is considered an

important parameter [11]. The heart contracts and relaxes in each heartbeat. Dur-

ing contraction, the ventricle pumps out the blood and during relaxation, ventricles

fill up. Even in the case of very strong contraction, ventricles are not able to pump

out all the blood at once. The percentage of blood that a ventricle pumps out with

each heartbeat is EF. It is usually measured only in the left ventricle because it is

the major pumping chamber of heart that pumps the oxygenated blood to the other

parts of the body. The CHF patients have reduced EF value [11].

Systolic and diastolic failures are two very common heart dysfunctions reported in

most of the CHF patients [12]. The term systolic is related with contraction ability

of the heart muscle. In systolic heart failure, heart becomes weak and enlarged which

reduces the ability of heart to contract. In diastolic failure, the muscle becomes stiff

and loses its relaxation ability [13]. Eventually blood and other fluids can back up

inside lungs, liver and other parts of the body which deteriorates human health.

Some common symptoms are fatigue and shortness of breath that can limit the

tolerance to exercise and cause fluid retention, which can further lead to splanchnic

and pulmonary congestion [14]. Initial stage symptoms are fatigues, swelling in

ankles and frequent urination. In the next stage of CHF, the condition of the
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patient deteriorates and the symptoms are irregular heartbeat, shortness of breath

and chest pain that radiates through the upper body [14].

Diagnosis of CHF patients is based on history, physical examination, electrocardio-

graphy (ECG) and echocardiography [15]. The symptoms may draw some medical

attention but these symptoms are not specific to heart failure (HF), especially symp-

toms at the early stages, and therefore, may not discriminate between HF and other

problems [16]. Many symptoms of the HF result from the sodium and fluid retention

(e.g. peripheral oedema), and therefore these are not specific. They resolve quickly

with the diuretic therapy. It is harder to detect more specific signs and hence, less

reproducible. In the patients with chronic lung disease, obese individuals and in the

elderly, it becomes difficult to interpret the signs and symptoms.

Medical history of patient is also very important. Persons without any relevant

medical past that may have the potential to lead some kinds of cardiac damage are

less likely to be the patient of HF [17], whereas those with the medical history that

includes the certain features like myocardial infarction may increase the probability

of being an HF patient.

The echocardiogram and ECG are another tests for suspected HF patients that

are very useful. An echocardiogram captures the heart’s image with the help of

the sound waves and it is also referred as cardiac echo [18]. Ventricular diastolic

and systolic function, thickness of the wall, functions of the valves and chamber

volumes are immediately provided by the echocardiogram [19]. These information

are very important in the diagnosis and appropriate treatment. The ECG presents

the rhythm of the heart and the electrical activity.

It gives information about several cardiac disorders such as blockages in AV, sinoa-

trial disease, abnormal intraventricular conduction and its findings are considered

very important which making decisions for the treatment [20].
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In literature, there are numerous studies based on the ECG recordings which help in

the identification of cardiac and non-cardiac diseases. Heart rate variability (HRV)

signals that are extracted from ECG are also considered very important and have

been widely studied for the diagnosis of cardiac disorders [21]. The study of HRV

signals, its way of obtaining and its importance are discussed in the next section.

1.4 Heart Rate Variability

The HRV signals are widely used in as a clinical tool for the autonomic assessment

and diagnosis of the CVD [22]. The HRV signals are obtained from ECG recording

[21].

The ECG is a process in which electrodes are placed on the body parts and the

electrical movements of heart is recorded for a certain period of time [23]. These

electrodes are able to detect the small changes in the electrical activities on the skin

that appear due to the depolarisation and repolarisation process that represent an

electrophysiologic pattern of heart muscle during each heartbeat [23]. It is a cardi-

ology test that is commonly performed for heart related problems. In biology, the

process of depolarisation involves the changes within a cell, wherein the distribution

of the electric charge in the cell varies that results in less negative charge in the

cell. It is essential for the functioning of various cells, communication among them,

and the overall organism’s physiology [24]. After the phase of depolarisation that

resulted in a positive value of the cell membrane, negative value resumes owing to

change in membrane potential, it is referred as repolarisation [25].

In the conventional way, ECG is recorded by positioning the 10 electrodes on the

chest’s surface and the limbs of the patients [23]. The overall magnitude of the

heart’s electrical potential is then measured from 12 different angles and is recorded
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over a period of time (usually 10 seconds). With this arrangement, in every cardiac

cycle, all the moments are recorded that result from the electrical depolarisation

and repolarisation of the heart [23]. A sample of recorded ECG signal is shown in

Figure 1.1. The data points corresponding to this figure is taken from PhysioBank

Massachusetts Institute of Technology - Beth Israel Hospital (MIT-BIH) normal

sinus rhythm (NSR) database [27]. Vertical axis shows the amplitude of the voltages

resulting due to depolarisation and repolarisation potential. This reading is taken

in continuous time domain which is then sampled for the analysis purposes.
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Figure 1.1: ECG signal

We can see for the Figure 1.1 that a pattern gets repeated. This pattern is cate-

gorised in few regions with the help of few points which are P, Q, R, S and T. A

normal ECG recording consists of P-wave followed by QRS-complex and T-wave. P

wave occurs due to left and right atrial depolarization whereas left and right ven-

tricular depolarization causes QRS-complex [26]. T-wave corresponds to ventricular

repolarization. R wave has the maximum amplitude [26] and it is considered very

important because even in the case of noisy recorded data, because of its high am-

plitude its sample location can be distinguished easily. The plot of R-R interval

against the number of samples forms the HRV signal [7].
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Clinical studies of a wide spectrum of cardiac and non-cardiac ailments involve the

analysis of HRV Signals [28]. Figures 1.2 and 1.3 show HRV signals of normal and

CHF subjects. Data points of Figures 1.2 and 1.3 are obtained from Physiobank

MIT-BIH NSR database [27] and Beth Israel Deaconess Medical Center (BIDMC)

database [27, 29], respectively. More details of these database is given in Chapter 3.
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Figure 1.2: HRV signal of normal subject.
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Figure 1.3: HRV signal of CHF subject.

The unique information present in the pattern of HRV signals helps in the identifi-

cation of disease, but it is tedious to detect visually. Moreover, diagnosis by visual

inspection may be subjective in identification of heart disease. Therefore, various
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automated classification methods using HRV signals have been proposed in the liter-

ature. CAD is automatically diagnosed with the help of HRV signals in [30, 31, 32].

Entropy based features with flexible analytic wavelet transform (FAWT) are used

for CAD diagnosis from HRV signals [32]. The features extracted from the intrin-

sic mode functions (IMFs) for CAD analysis from HRV signals have been studied

in [33]. Diabetes is automatically diagnosed using HRV signals [34, 35]. A study

based on discrete wavelet transform (DWT) with approximate entropy and sample

entropy has been performed for diabetes prognosis using HRV signals [34]. The

Fourier-Bessel (FB) series expansion based features are used for the diagnosis of

diabetes [36]. Hypertension patients are also investigated using HRV signals in [37].

The statistical analysis of HRV signals performed in [38] concluded that the reduc-

tion in standard deviation of R-R interval is an indicator of HF. Power in very low

frequency range of HRV signal is a predictor of CHF disease [39]. The nonlinear

methods used on HRV signals for the classification of normal and CHF subjects

include Poincare plot [40] and detrended fluctuation analysis (DFA) [41]. A long-

term HRV signal has been employed for CHF detection using a method based on

optimal classification and regression tree [42]. A correlation between nonlinearity

of HRV signals and different risk levels of CHF patients are analysed in [43]. The

generalised discriminant analysis (GDA) has been studied for long-term HRV sig-

nals, where non-linear features have shown better results than the linear features

[44]. Recently, authors have extracted various entropy based features from IMFs in

[16] such as accumulated fuzzy and permutation entropies for CHF diagnosis with

HRV as base signal [32].
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1.5 Motivation

The CHF results in reduced myocardial contractility, less cardiac output, and con-

sequently metabolic requirements of the body is not fulfilled. The consequences of

these changes are breathlessness, severe fatigue, and ultimately death [45]. There-

fore, the diagnosis of HF at an early stage is very important. Various studies based

on HRV discussed in previous section highlight the facts that analysis of HRV signals

provides useful information about the CHF state.

Although these techniques are very informative and useful for the diagnosis of CHF

patients but the reliability and reproducibility of these techniques are still problem-

atic in this field. For the noninvasive treatment, better and more refined techniques

are still required.

Therefore, this work emphases on the extraction of features using eigenvalue decom-

position of hankel matrix (EVDHM) [46] which is able to capture the fine variations

of the HRV signals that helps in the identification of CHF. The EVDHM has been

used for speech signal analysis in [47]. The fundamental frequency of speech sig-

nal has been obtained from the EVDHM method in [48]. A new method for the

time-frequency representation, that is based on EVDHM is given in [49]. This pa-

per presents an application of EVDHM method for the analysis and classification of

HRV signals for diagnosis of CHF.
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1.6 Thesis Organization

Rest of the thesis work are structured as follows: In Chapter 2, the eigenvalue

decomposition (EVD) process is described, where the signal decomposition is dis-

cussed. Feature extraction and classification techniques are presented under pro-

posed methodology section discussed in Chapter 3. Results are presented and dis-

cussed in Chapter 4. Chapter 5 provides the conclusion and directions for future

works.

1.7 Summary

The CHF is a cardiovascular disorder wherein the pumping action of the heart is

affected and the blood circulation process is disturbed. Clinicians physically examine

the patients, refer their medical history and observe ECG and echocardiography

readings to diagnose the CHF patients. Echocardiography produces images with

the help of echo waves which is helpful in predicting the cardiac disorders. ECG

is the another important noninvasive test in which hearts’s electrical activity is

recorded. HRV signals are extracted from the ECG and it is widely used to study

the cardiac behaviour. In literature, HRV signals of CHF patients have been studied

but a reliable technique for the identification of CHF patients is still needed. In this

work, we have studied the HRV signals of normal and CHF subjects and proposed

a technique for the identification of CHF patients.
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Chapter 2

Eigenvalue Decomposition

The first part of our proposed methodology is the decomposition of the HRV signals

which involves the EVD technique that makes use of eigenvalues and eigenvectors

which are special classes of scalars and vectors. In this chapter, we will explain

EVD, decomposition of multicomponent signals using EVD of Hankel matrix, and

selection of decomposition criteria.

2.1 Eigenvectors and Eigenvalues

The eigenvalues and eigenvectors are useful in many applications such as image

segmentation [50], data transformation and reduction [51], ranking [52], etc. Math-

ematically it is explained below.

Let x be vector in a vector space X and T is a linear operator that operates on vector

x so that it satisfies the following relation [53, 54]:

T(x) = λx (2.1)
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Here, x is the eigenvector of the linear operator T. The transformation T which is

applied on x scales the vector x with a factor λ.

If the linear operator is given by a matrix A, then, the above expression can be

written as follows: then,

Ax = λx (2.2)

where, A is the system matrix, x is the eigenvector of matrix A and λ is the eigenvalue

[53, 54].

2.2 EVD

In linear algebra, with the help of EVD, we decompose a matrix in terms of eigen-

vectors and eigenvalues .

For a matrix A, the EVD can be expressed as follows [53, 54, 55]:

A = VΛV′ (2.3)

here, the columns of V contains the eigenvectors of the matrix A and the Λ is the

diagonal matrix that contains all the eigenvalues in its diagonal.
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2.3 EVD of Hankel matrix for the decomposition

of multi-component signals

A multi-component non-stationary signal x[l] of length 2L−1 forms a Hankel matrix

[56], Hx
L, which is represented as follows [46]:

Hx
L =




x[0] x[1] . . x[L− 1]

x[1] x[2] . . x[L]

. . . . .

. . . . .

x[L− 1] x[L] . . x[2L− 2]




(2.4)

The size of Hx
L, L × L is specified in the range L ≫ Fs/δx, where Fs and δx rep-

resent the sampling frequency and least frequency separation between components,

respectively.

The computed eigenvalue matrix Λx and the real eigenvector matrix, Vx of Hx
L,

represent a relation [55] as follows:

Hx
L = VxΛxV

′
x (2.5)

The eigenvalue matrix Λx have L eigenvalues out of which L
2

eigenvalues are positive

values and rest are negative values. The eigenvalues of high magnitude are useful

for the signal decomposition. The significant eigenvalues of Λx are considered with

the significant threshold point (STP) criteria [46, 49] according to which the eigen-

values that come under the range of 10% of magnitude of maximum eigenvalue are

considered as significant eigenvalues.
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Each significant eigenvalue pair is used to extract the component. Therefore, new

eigenvalue matrix based on the sth eigenvalue pair is formed as follows:

Λ̌s
x =




0 0 . . 0 0

0 λxs . . 0 0

. . . . . .

. . . . . .

0 0 . . λxP-s+1
0

0 0 . . 0 0




(2.6)

The new eigenvalue matrix Λ̌s
x replaces Λx in (2.5) and results in a new reconstruction

matrix for the sth component, which is represented as:

Ȟ
xs
L = VxΛ̌s

xV
′
x (2.7)

The mean of anti-diagonal elements of Ȟ
xs
L provides the samples of the sth component.

The construction L × L Hankel matrix requires a signal length of 2L-1 samples,

which is an odd number. In this work, we have used HRV signals of the lengths

2000 samples and 500 samples for the analysis. Therefore, for the decomposition

purpose, the EVDHM method takes 1999 samples and 499 samples, respectively for

both the signal lengths.
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2.4 Selection of decomposition criteria in the present

work

When we processed the HRV signals with the method mentioned in section 2.3,

we came across of the fact that with the given 10% STP criteria [46], the obtained

components failed to approximate the original signal. Thus, we lowered the threshold

level to include more components which when added, shall effectively reproduce

the original signal . We varied the STP criteria from 10% to 1%, but still, the

decomposed components did not add up to approximate the original signal. It failed

to capture the variations present in the signal. To demonstrate this, we take an

HRV signal of normal subject with a segment length of 2000 samples from MIH-BIH

NSR database, the details of the dataset used in our work is explained in chapter 3.

The HRV signal which is to be decomposed is shown in Figure 2.1. We first create

a Hankel matrix from this signal and decompose the matrix as per the method

described above. As the signal is of 2000 samples, the EVDHM considers 1999

samples for processing. Hence, the order of Hankel matrix will be 1000 × 1000.

After the first iteration, we obtained 1000 eigenvalues of which the highest eigenvalue

obtained was 592.8714 and the second highest value was 20.1355. Now, with the

10% STP criteria, the 10 percent of 592.8714 is calculated which comes to be 59.8714

and only those components get selected which have an eigenvalue greater or equal

to 59.8714. As the second highest eigenvalue is only 20.1355, this gives only one

significant component. As per the components merging criteria [46], the significant

components when added shall always approximate to the original signal. Figure

2.2 shows the signal corresponding to the highest eigenvalue and as this is the only

significant component obtained with 10% STP criteria, this is the approximated

original signal. This approximated signal is plotted together the original signal in

Figure 2.3 . From this figure, it can be visualized that the approximated signal is
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not able to trace the variations present in the original signal. Therefore, in the next

step we will vary the standard STP criteria [46] and decrease the threshold limit so

that we can get more components. We decreased the STP percentage criteria from

10% to 1% with a step size of 1%. Here, we will show the results that we obtained

with 1% STP criteria, which could collect the maximum components compared to

other higher levels of threshold condition. When applied the 1% STP criteria on the

same HRV signal, only two eigenvalues fulfilled this criteria, one with the highest

eigenvalue 592.8714 and the other with eigenvalue 20.1355. We have already seen the

signal corresponding to the highest eigenvalue in Figure 2.2 . Signal corresponding to

another significant eigenvalue is shown in the Figure 2.4 . Now, these two significant

components when added shall reproduce the signal. Approximated signal with 1%

STP condition and the original signal are shown in Figure 2.5 . It can be perceived

from the Figure 2.3 and Figure 2.5 that the second condition is somewhat better than

the first in the process of reproducing the original signal, but still, the reproduced

signal is not able to approximate the original well.
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Figure 2.1: Considered HRV signal segment.

If we are able to get more significant components so that the relevant information

of the signal is not lost and approximated signal can well capture the variations of

the original signal, we can proceed further and would be able to extract the features
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Figure 2.2: Signal constructed from the highest eigenvalue
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Figure 2.3: Original signal and approximated signal with 10% STP criteria

that can lead to better classification accuracy. With an aim to include the relevant

information present in the quick variations of HRV signal, we have proposed the

selection of the first 10 significant decomposed components which would keep the

relevant information present in the signal. Proceeding with the same HRV signal,

we have taken 10 significant components and tried to reconstruct the signal. The

approximated signal is better than what we obtained in the STP conditioned cases

mentioned above and it is shown in Figure 2.6 . From this figure, we can observe that

this approximated signal is able to capture the variations of HRV signal on a larger
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Figure 2.4: Signal constructed from the second highest eigenvalue

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Sample Number

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

R
-R

 in
te

rv
al

 (
in

 s
ec

)

Original Signal
Approximated Signal

Figure 2.5: Original signal and approximated signal with 1% STP criteria

scale as compared with the previous ones obtained using STP criteria. Though, the

STP criteria works well for other signals, like speech signals [47] but here, in the

case of the HRV signals, it is not able to reproduce the original signal well. Thus,

we have proceeded with the proposed technique to decompose the HRV signals. The

next steps are discussed in the methodology section in Chapter 3.
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Figure 2.6: Original signal and approximated signal as defined by the proposed
method

2.5 Summary

If a linear transformation of input vector results in a output with a scalar multiple

of input vector, then the scaled value is the eigenvalue and the input vector is the

eigenvector corresponding to linear operator. This remains the basis of the EVD

process. HRV signal is first processed with EVDHM method. The STP criteria

explained in [46] is not found to be suitable for our work which is demonstrated

above with the help of an HRV signal that we have used in this work. We have used

the component selection criteria based on the significant eigenvalues. Eigenvalues are

then ranked by its absolute value from highest to lowest. Components corresponding

to first ten ranked eigenvalues are selected as significant components.

21





Chapter 3

Database and Methodology

In this chapter, we present the methodology that have been used to design the auto-

mated technique for the identification of CHF patients. This chapter also contains

the information of the databases that have been used for processing. The steps

carried out in the proposed method are shown in the Figure 3.1. At first the HRV

signals of normal and CHF subjects are collected. These signals are decomposed

using EVDHM technique, an overview of which has been given in Chapter 2. Once

the decomposed components are available, the next step is the feature extraction.

In this step, we extract ceratin features of the highest frequency component (HFC)

and lowest frequency component (LFC) of the HRV signal. Next step is the feature

ranking which ranks the features according to their class discrimination ability. The

ranked features are then fed to classifier which trains itself with the some of the

feature vector of all classes. Here, we have two classes namely, normal and CHF.

After the training, the classifier performs the testing part in order to identify the

true classes of the rest of the features which were not used in the training part.
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Figure 3.1: Proposed system for the automated diagnosis of CHF.

3.1 Databases used

The databases used in this work were obtained from PhysioBank MIT-BIH NSR

[27], BIDMC CHF dataset [27, 29] and Fantasia [57, 27]. The detailed information

of these databases is presented in Table 3.1. The HRV signals of 15 (11 males and 4

females) CHF patients were obtained from BIDMC CHF database with a recording

length of 20 hours per person. The normal signals have been obtained from the 58

(20 old, 20 young, 5 males and 13 females) normal subjects which have been taken

from Fantasia and MIT-BIH NSR databases. Recording length for MIT-BIH NSR

was 24 hours. Fantasia database has the recording length of two hours.

Subjects in Fantasia stayed in resting posture in the sinus rhythm while they watched

the movie ’Fantasia’ (Disney, year−1940) to maintain wakefulness. A total 58 HRV
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Table 3.1: Details of HRV signals used from different databases.

Information Class 1 Class 2

(CHF) (Normal)

Database BIDMC MIT-BIH NSR Fantasia

11 males 5 males 20 young

Patient details (age 22 years to 71 years) (age 26 years to 45 years) (age 21 years to 34 years)

4 females 13 females 20 elderly

(age 54 years to 63 years) (age 20 years to 50 years) (age 68 years to 85 years)

BD 1 set 500 segments 500 segments -

500 samples BD 2 set 500 segments - 500 segments

FD set 3212 segments 3420 segments 500 segments

BD 1 set 125 segments 125 segments -

2000 samples BD 2 set 125 segments - 125 segments

FD set 803 segments 855 segments 125 segments

recordings of normal subjects and 15 HRV signals of CHF patients are considered in

this study. The HRV signals are segmented into 500 samples and 2000 samples for

this study. Two categories of dataset, namely balanced dataset (BD set) and full

dataset (FD set) are taken for both types of segment size corresponding to of sample

lengths 500 and 2000 of HRV signals. The balanced sets are further categorized into

two sub-categories namely, balanced set 1 (BD set 1) and balanced set 2 (BD set 2).

The details of all sets are given in Table 3.1.

3.2 EVDHM method

The HRV signal is first decomposed with the EVDHM method. In this, we first form

a Hankel matrix from the HRV signal and decompose as per the steps discussed

in Chapter 2. Now, instead of going for iterative process of decomposing again

and again, we just extract ten significant components corresponding to the highest
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eigenvalue pairs of Hankel matrix. All these ten components are arranged in the

increasing order of center frequency of each component. Then, the components

corresponding to the lowest and the highest frequncy are selected for the next step,

i.e, feature extraction. A normal HRV signal is shown in Fig. 3.2(a) and its 10

decomposed components are shown in Figure 3.2(b). The LFC and HFC obtained

from the signal shown in Figure 3.2(a) are depicted in Figure 3.2(c). Similarly, the

decomposed components of a CHF HRV signal shown in Figure 3.3(a) are presented

in Figure 3.3(b). The obtained LFC and HFC for this CHF HRV signal are shown

in Figure 3.3(c). In the next section, the features which have been extracted are

explained.

3.3 Computation of features

Feature extraction process helps to represent characteristics of the signals in unique

way. The extracted features are very useful for the classification of biomedical signals

of normal and abnormal classes.

It has been observed that both linear and the non-linear features are useful for

the classification purpose of the normal and CHF HRV signals [44, 58]. In this

work, a total of nine features corresponding to five parameters namely mean and

standard deviation (SD) of the signal (mt and st) [59], mean frequency (MF) of the

signal using Fourier Bessel (FB) expansion, k-nearest neighbourhood (kNN) entropy

measure [60] and correntropy [61] are extracted. The MF using FB series expansion,

kNN entropy and correntropy are discussed in the next section.
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Figure 3.2: Plot of (a) a normal HRV signal; (b) its decomposed 10 components
using EVDHM method; (c) its LFC and HFC components.
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Figure 3.3: Plot of (a) a CHF HRV signal; (b) its decomposed 10 components
using EVDHM method; (c) its LFC and HFC components.
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3.3.1 Computation of mean frequency using FB series ex-

pansion

Aperiodic and decaying nature of Bessel functions make them suitable to represent

nonstationary signals using FB series expansion. Analysis of multicomponent signals

using FB series expansion has been studied in [62, 63]. Consider a signal x(t) over

an interval (0, b), then its zero-order FB series expansion is given as follows [64]

x(t) =
P∑

n=1

CnJ0

(zn
b

t
)

(3.1)

where, zn are the roots of J0(z) = 0 such that zm > zn for m > n and J0

(
zn
b

t
)

is the

Bessel function of zero-order.

In the interval, 0 6 t 6 b, the Bessel functions form an orthogonal set with respect

to t, which can be given as [64]

∫ a

0

tJ0

(zn
b

t
)

J0

(zm
b

t
)

dt = 0 (3.2)

The FB coefficients Cn are calculated as follows [64]:

Cn =
2
∫ b

0
tx(t)J0

(
zn
b
t
)

dt

b2[J1(zn)]2
(3.3)

where, J1(n) is bessel function of first-order.

Thus the mean frequency can be computed as follows [65]:
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fmean =

∑Q
n=1 fnEn∑Q
n=1 En

(3.4)

where,

En = c2n
b2

2
[J1(zn)]2 (3.5)

Here, En is the energy at order n.

The FB expansion has been studied in different areas, such as, analysis of speech

signal using FB expansion in [66], analysis of center of pressure signals [65], and

analysis of Electrocardiogram (EEG) signals [67, 68].

3.3.2 kNN entropy measure

The kNN density estimators have been proposed in [69]. The kNN algorithm is used

for both regression and classification purposes [70]. The kNN entropy is suitable for

the analysis of HRV signals due to its nonlinear nature.

The kNN entropy of a variable x is estimated by the following expression [60, 71]

Hk = ψ(n)− ψ(k) + log(cd) +
d

n

n∑

i=1

log(pk
i ) (3.6)

Here, n is the number of total samples that form the signal and d represents the

dimension of x and pk
i measures the distance between the ith sample of the signal

and its k nearest neighbors. The ψ(y) denotes a digamma function which is given

by following expression:
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ψ(y) =
1

Γy

dΓy

dy
(3.7)

The cd measures volume of the d-dimensional unit ball. The cd is expressed as

follows:

cd =
π

d
2

Γ(1 + d
2
)

(3.8)

In this work, dimension d is taken as 1.

The systematic metabolic disturbances in the patho-physiological states are com-

puted using kNN entropy [71]. The kNN entropy is recently studied for CAD diag-

nosis in [32].

3.3.3 Correntropy

The correntropy is a nonlinear similarity measure between two random variables.

The correlation between two signals can also be measured using correntropy [61, 72].

The correntropy of two signals Ya and Yb can be expressed as follows:

Corr(Ya,Yb) = E [k(Ya − Yb)] (3.9)

where k is a symmetric, positive definite kernel function [73] and E is the expectation

operator.

On considering two signals Ya and Yb which have samples [ya1 , . . . . ., yan ] and

[yb1 , . . . . ., ybn ], respectively. The correntropy, Corrn,σ(Ya,Yb) between Ya and

Yb can be estimated as [61]:
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Corrn,σ(Ya,Yb) =
1

n

n∑

i=1

Kσ(yai
− ybi

) (3.10)

In this work, kernel k is Gaussian kernel and therefore the correntropy has been

calculated as follows [61]:

Corrn,σ(Ya,Yb) =
1

n

n∑

i=1

exp

(−||yai
− ybi

||2
σ2

)
(3.11)

The kernel parameter, σ is taken 1. The correntropy has been used as a cost function

in linear adaptive filters [74]. It has also been studied for the nonlinear similarity

measurement for the multichannel signals [75]. The CAD diagnosis using HRV

signals [31] and focal EEG signal detection with FAWT in [76] also use correntropy

based features. It has also been used in diagnosis of glaucoma from fundus images

[77]. The study presented in [78] has used regularised correntropy for robust feature

selection for the classification of breast cancer. The correntropy based matched

filter for the classification in side-scan sonar imagery has been presented in [79].

The correntropy between LFC and HFC is evaluated in the proposed methodology.

3.4 Feature selection and standardization

Feature selection process helps to minimize computation time and may improve the

performance of classification [80]. The student’s t-test is performed to obtain the

highly distinguishable features [34, 77, 81]. The t-test contains normal distribution

property between feature sets to distinguish different classes. Features ranking is

done based on the t-value as high t-value discriminates more. Therefore, higher

t-value based features are used for performance evaluation process. Further, feature

standardization is performed to normalise the features. It is operated with unit
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standard deviation and zero mean, which is known as z-score normalization [82].

Mean value of data is subtracted from the data and thereafter, resultant is divided

by the standard deviation of data. The normalized data ẑ can be characterized as

[83]:

ẑ =
z− z̀

z̃
(3.12)

where, z̃ represents the standard deviation and z̀ represents the mean of data z.

3.5 Classification

In this work, support vector machine (SVM) classifier is used for classification of the

HRV signals corresponding to normal and CHF subjects. The SVM is a supervised

machine learning method in which the classification is achieved with the help of

input output mapping functions that is generated from a set of labeled training

data [84]. Classifier model based on SVM method presents a set of data points in

the feature space, which are mapped so that the data points of different classes are

separated as far as possible. The new data is also mapped into the same space and

obtained boundaries during training phase are used for separating the classes.

For the classification purpose, input data is presented in high dimensional space with

the help of the kernel functions and the hyperplanes with the maximum margins are

created so that the classes are better distinguished. Here, input data is presented

into high dimensional space and the hyperplanes with maximum margins are created

so that the classes are better distinguished.

The LS-SVM is a least square version of the SVM and it finds many applications in
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real-world problems, such as, image processing [85], text categorization [86], charac-

ter recognition [87], and bioinformatics [88]. It is widely used in biomedical appli-

cations such as seizure classification [89, 90, 91, 92, 93], diagnosis of cancer disease

[94], diabetes diagnosis [34, 36], and CAD diagnosis [31, 32, 95, 96, 97].

Mathematically, the LS-SVM can be expressed as follows [84]:

y(p) = sign

{
N∑

n=1

ynαnK(p, pn) + b

}
(3.13)

Here, b represents the bias term, αn is the Lagrange multiplier, yn denotes the target

vector, pn denotes nth input vector of d-dimension, N is the number of input and

output pairs that is used for training and K represents the kernel function that

transforms input vector into higher dimensional space. In this work, radial basis

function (RBF) kernel is used .

Mathematically, RBF kernel [98, 100] can be expressed as follows:

K(p, pn) = exp

(−||p− pn||2
σ2

)
(3.14)

Three major performance evaluation parameters of LS-SVM classifier are accuracy

denoted by Acc , specificity denoted by Spe and sensitivity denoted by Sen [101]. The

Acc measures the proportion of correctly classified data out of total samples. The

Sen measures the proportion of CHF patient’s HRV signals that are distinguished

correctly and the measure of the proportion of healthy person’s HRV signals that

are correctly identified is Spe.
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If true positive (TP) represents the number of patient’s HRV signals that are truly

classified, true negative (TN) represents the number of healthy person’s HRV sig-

nals that are truly classified and false positive (FP) presents the number of healthy

person’s HRV signals that are incorrectly classified as patient’s data and false neg-

ative (FN) evaluates the number of CHF patient’s HRV signals that are incorrectly

classified as healthy persons data, then Sen, Spe, and Acc are expressed as follows

[100]:

Sen =
TP

FN + TP
× 100% (3.15)

Spe =
TN

TN + FP
× 100% (3.16)

Acc =
TN + TP

FP + FN + TP + TN
× 100% (3.17)

The ten-fold cross validation method has been explored with the LS-SVM classifier

to ensure the robustness of the method [99]

3.6 Summary

Database of the HRV signals used in this work are publicly accessible database.

Analysis and classification of the signals are done in two categories with two different

sizes, one with a size of length of 2000 samples and the another with 500 samples.

For both categories of sample size, three sets are formed, namely BD 1 set, BD 2

set and FD set. The HRV signals are then decomposed using EVDHM method and
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the significant ten decomposed components are extracted and then arranged in the

order of their centre frequency. Out of these ten components, only LFC and HFC

components are considered for the next step. Next step is the feature extraction.

Features corresponding to the mean and SD of the signal, mean frequency using

FB expansion, kNN entropy, and correntropy are computed. With the help of these

five parameters, a total of nine features are computed. These computed features

are ranked with the t-test method which uses z-score normalisation. The ranked

features are then supplied as an input to the LS-SVM classifier with RBF kernel.

A ten fold cross-validation method in the LS-SVM classification process has been

used. Finally, we evaluate the classifier’s performance in terms of the Acc, Spe and

Sen.
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Chapter 4

Results and Discussion

We have processed the HRV signals as per the methodology described in Chapter 3.

Before starting the processing part, we have categorised the dataset into two parts

on the basis of segment length. Segments with size of 500 samples are processed

in one part and the segments with the size of 2000 samples are processed in the

other part. This is further divided in the two balanced and one unbalanced set

as described in Chapter 3. The results obtained after processing HRV signals are

discussed below.

4.1 Results

The EVDHM method is applied to each HRV signal to extract ten components based

on dominant eigenvalue pairs in one iteration. The LFC and HFC are obtained from

the decomposed components. Thereafter, features corresponding to five parameters

are measured from the these components. The mean of LFC (mtl), SD of LFC (stl),

mean of HFC (mth), SD of HFC (sth), mean frequency of LFC (mfl), mean frequency
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of HFC (mfh), kNN of LFC (kNNl), kNN of HFC (kNNh), and correntropy between

LFC and HFC (Corr) are measured. Therefore, total 9 features are computed.

Results for 500 and 2000 samples HRV signal are explained in next sections.
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Figure 4.1: Accuracy versus kernel parameter for BD set 1, set 2, and FD set
using 500 samples of HRV signals with LS-SVM classifier.

4.1.1 HRV signals of length 500 samples

In this section, we have worked on dataset with segment length of 500 samples. The

3920 segments belonging to 58 normal subjects and 3212 segments from 15 CHF

subjects are considered.

BD set 1 and BD set 2 consist of 500 segments from both the classes. BD set

1 comprises of 500 segments of normal class (MIT-BIH NSR database) and 500

segments from CHF class (BIDMC database). BD set 2 contains 500 segments

of normal class from Fantasia database and 500 segments from CHF class (BIDMC

database). The FD set consists of 3212 segments from CHF class (BIDMC database)

and 3920 segments of normal class (500 segments from Fantasia database and 3420

segments from MIT-BIH NSR database). The RBF kernel parameter value is varied

from 0.1 to 1.5 with step size of 0.1 to find the kernel parameter which yields highest
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classification accuracy. Accuracy versus kernel parameter values for BD set 1, set

2, and FD set using 500 samples of HRV signals with LS-SVM classifier is shown in

Figure 4.1.
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Figure 4.2: Accuracy versus number of features plot for BD set 1, set 2, and
FD set using 500 samples of HRV signals with LS-SVM classifier.

4.1.1.1 BD set 1

The mean and SD of features evaluated from the decomposed components are shown

in Table 4.1. The t-values for features are computed to rank the features. It can be

observed from the table that t-values are remarkably high for first seven features.

Hence, these features are given as input to the LS-SVM classifier. For BD set 1, we

obtained Acc of 98.50%, Sen of 97.80%, and Spe of 99.20% using only 7 features

(Figure. 4.2).

4.1.1.2 BD set 2

The BD set 2 is formed using 500 segments of normal class (Fantasia database) and

500 segments from CHF class. The mean and SD with t-values of features computed
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Table 4.1: Mean and SD values of ranked features with t-value for normal
(MIT-BIH database) and CHF classes using 500 samples of HRV signals.

Features MIT-BIH NSR BIDMC CHF t-value

(mean ± SD) (mean ± SD)

mfh 0.1468±0.1046 0.38±0.1274 30.36

kNNl -12.7695±1.4437 -14.6921±1.7767 27.24

Corr 0.7263±0.0825 0.8009±0.0693 23.65

kNNh -14.836±1.3633 -16.5324±2.0346 23.11

mtl 0.7954±0.1444 0.6608±0.1323 23

stl 0.0318±0.0455 0.0172±0.1465 8.74

sth 0.0127±0.0411 0.0103±0.1187 5.53

mfl 0.0027±0.0024 0.0028±0.002 2.2

mth 0±0.00037 -0.000006±0.0006 0.34

from the decomposed components are presented in Table 4.2. We can observe from

Figure 4.2 that, maximum Acc of 97.3%, Sen of 97.6% and Spe of 97% is obtained

using only 5 features.

4.1.1.3 FD set

The mean and SD with t-values of features computed from the decomposed com-

ponents for FD set are presented in Table 4.3. The plot of accuracy versus number

of features for BD set 1, set 2, and FD set using 500 samples of HRV signals with

LS-SVM classifier is shown in Figure 4.2. It can be observed from this figure that
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Table 4.2: Mean and SD values of ranked features with t-value for normal
(Fantasia database) and CHF classes using 500 samples of HRV signals.

Features FANTASIA BIDMC CHF t-value

(mean ± SD) (mean ± SD)

mtl 0.9902±0.1461 0.6598±0.1273 20.48

Corr 0.6127±0.0865 0.8008±0.0682 20.38

kNNh -16.4534±1.1304 -18.1683±1.8247 15.27

mfh 0.0913±0.1267 0.2905±0.1893 12.66

sth 0.0073±0.0052 0.0069±0.0413 7.27

kNNl -14.7209±1.0435 -15.4945±1.8141 3.17

mfl 0.0008±0 0.001±0.0031 2.7

stl 0.0184±0.0099 0.0178±0.0375 1.08

mth 0±0.00024 0.000003±0.0001 0.39

we have obtained the highest Acc of 93.33%, Sen of 91.41% and Spe of 94.90% using

only 8 features.

4.1.2 HRV signals of length 2000 samples

A set of 980 segments from 58 normal subjects and 803 segments from 15 CHF

subjects with each segment having length of 2000 samples are chosen. BD set

1 comprises of 125 segments from normal class (MIT-BIH NSR dataset) and 125

segments from CHF class. BD set 2 contains 125 segments belonging to normal

class (Fantasia dataset) and 125 segments from CHF class. FD set consists of 803
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Table 4.3: Mean and SD values of ranked features with t-value for normal
(MIT-BIH NSR database and Fantasia database) and CHF classes using 500

samples of HRV signals.

Features Normal BIDMC CHF t-value

(mean ± SD) (mean ± SD)

mfh 0.0905±0.1103 0.2905±0.1893 26.46

mtl 0.8202±0.1541 0.6598±0.1273 24.07

Corr 0.712±0.0894 0.8008±0.0682 23.77

kNNh -16.3826±1.3399 -18.1683±1.8247 23.09

kNNl -14.0563±1.4106 -15.4945±1.8141 18.37

stl 0.0312±0.0274 0.0178±0.0375 8.43

sth 0.0100±0.0177 0.0069±0.0413 2

mfl 0.0009±0.0016 0.0010±0.0031 0.8

mth 0±0.0002 0.000003±0.0001 0.19

segments belonging to CHF class and 980 segments from normal class (125 segments

from Fantasia dataset and 855 segments from MIT-BIH NSR dataset). The plot of

accuracy versus kernel parameter values for 2000 samples is shown in Figure 4.3.

4.1.3 BD set 1

The mean and SD of features evaluated from the decomposed components are shown

in Table 4.4. Features are then ranked using t-values and then supplied as input to
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Figure 4.3: Accuracy versus kernel parameters for BD set 1, set 2, and FD set
using 2000 samples of HRV signals with LS-SVM classifier.
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Figure 4.4: Accuracy versus number of features plot for BD set 1, set 2, and
FD set using 2000 samples of HRV signals with LS-SVM classifier.

the LS-SVM classifier. We obtained a classification Acc of 98.82%, Sen of 99.23%,

and Spe of 98.40% using only 9 features (Figure 4.4).

4.1.4 BD set 2

The BD set 2 is formed using 125 segments of normal class (Fantasia database) and

125 segments from CHF class. The mean and SD with t-values of features computed
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Table 4.4: Mean and SD values of ranked features with t-value for normal
(MIT-BIH database) and CHF classes using 2000 samples of HRV signals.

Features MIT-BIH NSR BIDMC CHF t-value

(mean ± SD) (mean ± SD)

kNNh -16.3722±1.3682 -18.1683±1.8247 17.08

Corr 0.7265±0.0802 0.8008±0.0682 12.39

mtl 0.7954±0.1388 0.6598±0.1273 12.37

mfh 0.0904±0.1078 0.2905±0.1893 10.67

kNNl -13.9592±1.4314 -15.4945±1.8141 8.71

stl 0.0331±0.0286 0.0178±0.0375 6.21

sth 0.0104±0.0188 0.0069±0.0413 4.68

mfl 0.0009±0.0017 0.001±0.0031 1.61

mth 0±0.00019 0.000003±0.0001 0.8

from the decomposed components are presented in Table 4.5. We can observe from

Figure 4.4 that, maximum Acc of 98.83%, Sen of 98.33% and Spe of 99.23% is

achieved using only 6 features.

4.1.5 FD set

The mean and SD together with t-values of features computed from the decomposed

components for FD set are presented in Table 4.6. The plot of accuracy versus

number of features for BD set 1, set 2, and FD set from 2000 samples of HRV

signals with LS-SVM classifier is shown in Figure 4.4. It can be observed from this
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Table 4.5: Mean and SD values of ranked features with t-value for normal
(Fantasia database) and CHF classes using 2000 samples o HRV signals.

Features FANTASIA BIDMC CHF t-value

(mean ± SD) (mean ± SD)

mtl 0.9902±0.1461 0.6598±0.1273 20.48

Corr 0.6127±0.0865 0.8008±0.0682 20.38

kNNh -16.4534±1.1304 -18.1683±1.8247 15.27

mfh 0.0913±0.1267 0.2905±0.1893 12.66

sth 0.0073±0.0052 0.0069±0.0413 7.27

kNNl -14.7209±1.0435 -15.4945±1.8141 3.17

mfl 0.0008±0 0.0010±0.0031 2.7

stl 0.0184±0.0099 0.0178±0.0375 1.08

mth 0±0.00024 0.000003±0.0001 0.39

figure that we have obtained the highest Acc of 91.70%, Sen of 88.68% and Spe of

94.18% using only 7 features.

4.2 Discussion

In the present technique, the HRV signals are decomposed using EVDHM method.

The obtained LFC and HFC decomposed components are used for feature extraction.

Mean and SD of the signal, mean frequency using FB series expansion are measured

to use them as features for the classification of CHF and normal HRV signals. The
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Table 4.6: Mean and SD values of ranked features with t-value for normal
(MIT-BIH NSR database and Fantasia database) and CHF classes using

2000 samples of HRV signals

Features Normal BIDMC CHF t-value

(mean ± SD) (mean ± SD)

mfh 0.0905±0.1103 0.2905±0.1893 26.46

mtl 0.8202±0.1541 0.6598±0.1273 24.07

Corr 0.7120±0.0894 0.8008±0.0682 23.77

kNNh -16.3826±1.3399 -18.1683±1.8247 23.09

kNNl -14.0563±1.4106 -15.4945±1.8141 18.37

stl 0.0312±0.0274 0.0178±0.0375 8.43

sth 0.0100±0.0177 0.0069±0.0413 2

mfl 0.0009±0.0016 0.0010±0.0031 0.8

mth 0±0.0002 0.000003±0.0001 0.19

kNN entropy for LFC and HFC and Corr between LFC and HFC are also evaluated.

Study is performed on three combinations of data namely, BD set 1, BD set 2 and

FD set for 500 and 2000 samples lengths. Three combinations for two different

segment lengths are considered to evaluate the variation in the performance of the

proposed methodology.

We have obtained the LFC and HFC of HRV signals using EVDHM method. The

LFC in this work depicts the slow variation in the time series and the HFC represents

the transient behaviour of signal.

We have used mean, deviation using mt, st and mf features to distinguish the signal
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on the basis of LFC and HFC. The obtained LFC has lower value of mt feature

for CHF HRV signal as compared to normal HRV signal in all combinations of

datasets. The mtl and mfh features are ranked high and contributed significantly

for the classification. The values of kNN entropy based features show lower value

for CHF HRV signal as compared to the normal HRV signal. Similar results are

obtained in [16] for CHF patient as compared to normal person. The correlation

between LFC and HFC is measured by Corr. The Corr based feature holds high

value for CHF HRV signal as compared to normal HRV signal in all combinations

of our study. During CHF, the HRV decreases due to reduced pumping ability of

myocardium resulting in high correlation and low entropy values.

In [59], CHF HRV signals are classified using 16 features with an accuracy of 98.79%

for a data length of 2000 samples. While, authors obtained classification accuracy

of 91.56% using 27 features from long-term HRV signal in [58]. The CHF detection

from long-term HRV signal is time consuming and hence faster diagnosis may not

be possible, which is required to alert the clinicians to provide further treatment.

Therefore, we have studied the short-term HRV signals of length 500 samples for

CHF diagnosis. Our method successfully obtained an accuracy of 98.50% with 7

features using 500 samples of HRV signals for BD set 1. In [97], authors obtained

an accuracy of 98.40% using 11 features for BD set 1. The proposed methodology

achieved an accuracy of 93.33% with 8 features for FD set using 500 samples of

HRV signals. We have used 2000 samples of HRV signals and obtained an accuracy

of 98.82% with 9 features. The authors in [16] obtained an accuracy of 96.70%

using 12 features and in [97] an accuracy of 98.80% is achieved using 9 features for

2000 samples of HRV signals. Our proposed method uses less number of features

to attain high accuracy as compared to [16] and [97] for CHF diagnosis using short

term HRV signals. A summary of the developed methodologies in the literature and

proposed methodology with studied databases and achieved performance measures
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have been shown in Table 4.7. We have used one iteration in EVDHM to obtain

the decomposed components and few features are used for classification with less

computational complexity as compared to [16]. Therefore, our methodology has

achieved good performance with less number of features and helps to diagnose the

CHF efficiently using few features. This method uses Hankel matrix to decompose

the multi-component non-stationary signal. The proposed technique may take more

time to decompose long duration HRV signals.
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4.3 Summary

The HRV signals with segment size of 500 samples and 2000 samples are separately

processed for two different combinations of data set, BD set 1 and BD set 2, and FD

set. All the features corresponding to parameters, correntropy, kNN entropy, mtl

and mfh are present in the first five ranked features that help in the classification of

two classes, CHF and normal, with highest accuracy. Kernel parameter of LS-SVM

classifier is varied from 0.1 to 1.5 and for the 500 samples length of HRV signals

BD set 1, BD set 2 and FD set achieve the highest accuracy at kernel parameter

value of 0.9, 1.3 and 0.7, respectively. In the case of 2000 samples length, it achieves

the highest accuracy at kernel parameter value of 0.9, 0.6 and 0.8 respectively. The

comparison of the proposed method has been done with the existing methods in the

literature which shows that the classification accuracy obtained under this work are

better than that obtained in previous works.

The number of features required to obtain these accuracy levels are also less for

BD set 1 and BD set 2. For FD set, which has not been studied before as per our

knowledge also achieves a decent accuracy level.
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Chapter 5

Conclusion and Future Work

This work presents a novel technique for the automated diagnosis of CHF patients

using HRV signals. The EVDHM method is used to decompose the HRV signals

and HFC and LFC components are subsequently extracted. These HFC and LFC

components contain the unique and relevant information of the CHF and normal

HRV signals. Both linear and nonlinear features were extracted from these compo-

nents and our methodology performed well for all three data sets (BD set 1, BD

set 2 and FD set). We studied these features for two different signal lengths (2000

and 500 samples per segment) of HRV signals and tested our methodology on three

different combinations of dataset. The proposed method is able to capture subtle

variations efficiently and yielded the highest classification accuracy as compared to

other existing methods. Our methodology performed well for all three combina-

tions of dataset with classification accuracy, sensitivity and specificity of 93.33%,

91.41% and 94.90% respectively for combined full dataset of 500 samples length.

Balanced dataset with 500 samples length achieved classification accuracy, sensi-

tivity and specificity of 98.50%, 97.80% and 99.20% respectively. As this method

provides better classification results even for short term HRV signals (signal length
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of 500 samples), clinicians may find it useful for the timely correct diagnosis of CHF

patients and also this may create a desire to work on noninvasive technique based

on HRV signals to design a single cardiac test for the cardiac patients.

With good classification results, our findings also support the fact that HRV signals

contain the relevant information of cardiac movements. In this work, we have used

only 15 CHF patients for our study. In future, we intend to test our developed system

using more patients from diverse background. We will also explore the selection

criteria of the proposed decomposed technique and study different features which

could help in faster and better classification. It would be of interest to explore

the possibility of using our proposed method to diagnose other cardiac diseases like

myocardial infarction, coronary artery disease and heart valve problems.
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