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ABSTRACT

KEYWORDS: Analytic, close-to-convex, convex, spiral-like, starlike, univalent, q-close-

to-convex, q-starlike, p-valent, p-valent starlike, p-valent convex, p-valent

spiral-like and hypergeometric functions; area integral; coefficient in-

equality; convolution; Dirichlet-finite; duality technique; integral means;

integral transform; subordination and q-difference operator.

This thesis deals with univalent functions as well as p-valent (or multivalent) functions

defined on the unit disk D := {z ∈ C : |z| < 1}. Let A denote the family of all normalized

analytic functions f(z) = z +
∑∞

n=2 anz
n in D and S denote the class of all univalent

functions f ∈ A.

A generalization of close-to-convex functions by means of a q-analog of the difference

operator acting on analytic functions is called the q-close-to-convex functions in D. The

class of q-close-to-convex functions is denoted by Kq. We determine the several sufficient

conditions for f(z) = z +
∑∞

n=2 anz
n to be in Kq, where the coefficient an are real,

non-negative and connected with certain monotone properties. In addition, we prove

the Bieberbach-de Branges Theorem for functions in the class Kq. One of the classical

problems concerns the class of analytic functions f on D which have finite Dirichlet integral

∆(1, f), where

∆(r, f) =

∫∫
|z|<r
|f ′(z)|2 dxdy (0 < r ≤ 1).

Computing ∆(r, f) is known as the area problem for the function of type f . The class

S∗(A,B) of functions f ∈ A and satisfies the subordination condition zf ′(z)/f(z) ≺

(1 +Az)/(1 +Bz) in D and for some −1 ≤ B ≤ 0, A ∈ C with A 6= B, has been studied

extensively. We are mainly interested to discuss the extremal problem of determining



the value of max
f∈S∗(A,B)

∆(r, z/f) as a function of r. This settles the question raised by

Ponnusamy and Wirths (Ann. Acad. Sci. AI. Math. 39:721-731, 2014). The class of

analytic p-valent functions f(z) = zp+
∑∞

n=p+1 anz
n, p ∈ N is denoted by Ap. For f ∈ Ap,

let us consider the integral means

L(r, f, p) =
r2p

2π

∫ π

−π

dθ

|f(reiθ)|2
, r ∈ (0, 1).

We also focus on computing the integral means and the analog of area problems for

certain subclasses of p-valent functions. We estimate the Taylor-Maclaurin coefficients of

functions belonging to related p-valent functions. These estimation improve the results of

Aouf [7, 8]. We introduce a new class, denoted by Pa,b,c(β), in terms of convolution (∗)

with Gaussian hypergeometric functions 2F1(a, b; c; z), which is defined by

Pa,b,c(β) =

{
f ∈ A :

f(z)

z
= 2F1(a, b; c; z) ∗ p(z); a ≤ b < c

}
,

where p is an analytic function with positive real part of order β (0 ≤ β < 1) in D and

p(0) = 1. Making use of duality principle, we investigate the order of starlikeness (or

convexity) of the integral transform Vλ(f)(z) =
∫ 1

0
λ(t)f(tz)

t
dt over functions f in the

class Pa,b,c(β).
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NOTATION

English Symbols

D unit disk (z : |z| < 1)

N set of natural number

A class of normalized analytic functions in D

Ap class of normalized p-valent analytic functions in D

C complex plane

C class of convex functions

C(β) class of convex functions of order β, 0 ≤ β < 1

Cp class of p-valent convex functions, p ∈ N

Cp(β) class of p-valent convex functions of order β, 0 ≤ β < p

Dr disk of radius r (z : |z| < r, 0 < r ≤ 1)

Dq q-difference operator

2F1 Gaussian Hypergeometric function

f ∗ g Hadamard (convolution) product of f and g

f ≺ g f is subordinate to g

K class of close-to-convex functions

Kq class of q-close-to-convex functions

L1(r, f, p) integral means for f ∈ Ap
S class of univalent functions

Sα class of α-spiral-like functions

Sα(β) class of α-spiral-like functions of order β, 0 ≤ β < 1

Sα,p class of p-valent α-spiral-like functions, |α| < 1

Sα,p(β) class of p-valent α-spiral-like functions of order β, 0 ≤ β < p, |α| < 1



S∗ class of starlike functions

S∗(A,B) the Janowski class, −1 ≤ B < A ≤ 1

S∗p class of p-valent starlike functions

S∗(β) class of starlike functions of order β, 0 ≤ β < 1

S∗p (β) class of p-valent starlike functions of order β, 0 ≤ β < p

S∗q class of q-starlike functions

Vλ(f) integral transform

Greek Symbols

∆(r, f) area of the image of Dr under analytic function f
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CHAPTER 1

INTRODUCTION

This thesis consists seven chapters. The first chapter is introductory in nature and

provides basic definitions, background ideas and pre-requisites for the remaining chapters.

Final chapter concludes with important remarks and some open problems. The thesis is

endued with solutions to a number of problems. For example, we consider the following

problems:

• We find conditions on the coefficients of power series of certain analytic functions

in the unit disk which ensure that they generate functions in a q-analog to the

well-known close-to-convex family. In addition, we discuss a method to compute

the Bieberbach conjecture problem for functions in this family.

• We discuss area integral problems for certain classes of univalent and p-valent

functions.

• We study the coefficient problems for certain p-valent functions.

• We also characterize starlikeness and convexity of certain integral transforms.

1.1. Univalent Functions

Let C be the complex plane and D := {z : |z| < 1} be the open unit disk in C. A

function f that is analytic in a domain D ⊂ C is said to be univalent in D, if f(z1) 6= f(z2)

for all z1, z2 ∈ D with z1 6= z2, i.e. it assumes no value more than once in D. By our

definition, univalent mappings are also called conformal mappings. The question arises in

the study of univalent mappings, whether an arbitrary simply connected domain can be

mapped onto a disk. The Riemann Mapping Theorem [22, pp. 11] answers this question.

It resolves that the study of univalent functions on a simply connected domain can be



confined to the study of these functions onto D. If g is univalent in D and has a Maclaurin

series g(z) = b0 +
∑∞

n=1 bnz
n which is convergent in D, then f(z) = (g(z) − b0))/b1 has

the following form

(1.1) f(z) = z +
∞∑
n=2

anz
n,

where an = bn/b1, is also univalent in D and vise-versa. Geometrically, this amounts to

translating, shrinking or expanding the image domain g(D), and possibly rotating g(D).

We say that the function f has the normalized form (1.1) and other normalizations are also

possible. We denote the family of all normalized analytic functions in D of the form (1.1)

by A and the class of univalent functions f ∈ A by S. The Koebe function

(1.2) k(z) :=
z

(1− z)2
= z +

∞∑
n=2

nzn

play an extremal role for the class S and for numerous subclasses of S. The Koebe

function k(z) and its rotation e−iθk(zeiθ) maps D onto the entire complex plane except

the slit along the negative real axis from −∞ to −1/4. The theory of univalent functions

was initiated by Koebe [46] in 1907. In 1916, on the basis of the estimate |a2| ≤ 2 for

f ∈ S, Bieberbach [14] conjectured that |an| ≤ n for n ≥ 2. The equality holds if and

only if f(z) = z(1 − zeiθ)−2. Initially this conjecture was proved for n = 3, 4, 5 and 6.

A number of several techniques and new methods were also invented to obtain partial

solution of this conjecture. It was finally settled for the whole class S by de Branges [15]

in 1985 and now it is known as de Branges’s Theorem. Detailed account of the work can be

found in the books by Duren [22], Goluzin [28], Graham and Kohr [35], Hayman [40] and

Pommerenke [65]. The long gap between the formulation of the Bieberbach conjecture

and its proof by de Branges encouraged researchers to introduce its legality on certain

subclasses of S. These classes include the class of starlike, convex, close-to-convex and

spiral-like functions.

Let D be a set in C. A set D is called starlike with respect to a point w0 ∈ D if the

line segment joining w0 to an arbitrary point w ∈ D lies entirely in D. If a function f

maps D onto a starlike domain with respect to w0, then we say that f is starlike with

respect to w0. In the special case that w0 = 0, we say that f is starlike with respect to the

2



origin (or simply starlike). Analytically, a function f ∈ A is characterized to be starlike

in D if and only if

Re

(
zf ′(z)

f(z)

)
> 0, z ∈ D.

Also we say that D is convex domain if the line segment joining any two points of D lies

entirely in D. A function f ∈ A is called convex in D if the image domain f(D) is convex.

Analytically, a function f ∈ A is characterized to be convex in D if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ D.

Analytical characterization of starlikeness and convexity were introduced by Nevanlinna [57]

in 1921 and E. Study [92] in 1913, respectively. The classes of starlike and convex

functions are denoted by S∗ and C, respectively. For instance, the Koebe function and

z/(1 − z) belong to S∗ and C, respectively. It can be noted that “f ∈ C ⇔ zf ′ ∈ S∗”.

This was first discovered by Alexander [1] in 1915 and is popularly known as Alexan-

der’s Theorem. The classes S∗(β) = {f ∈ A : Re (zf ′(z)/f(z)) > β, 0 ≤ β < 1} and

C∗(β) = {f ∈ A : Re (1 + zf ′′(z)/f ′(z)) > β} are the classes of starlike functions of order

β and convex functions of order β, respectively. Obviously, S∗(0) = S∗ and C(0) = C.

Another important relation “f ∈ C ⇒ f ∈ S∗(1/2)” is one of the earliest result due

to Marx [53] and Ströhhacker [91]. We also discuss two more subclasses of S that are

generalizations of the class of starlike functions and have geometric characterizations.

A function f ∈ A is said to be close-to-convex if there exists a real number θ ∈

(−π/2, π/2) and g ∈ C such that

Re

{
eiθ
f ′(z)

g′(z)

}
> 0, z ∈ D,

equivalently, by Alexander’s Theorem, we get

Re

{
eiθ
zf ′(z)

h(z)

}
> 0, z ∈ D,

for h ∈ S∗. We denote the class of close-to-convex functions by K and it was considered

by Kaplan [45] in 1952. It is well-known that

C ⊂ S∗ ⊂ K ⊂ S.
3



Geometrically, a function f ∈ S is said to be close-to-convex if and only if the complement

of the image domain f(D) is the union of a family of non-intersecting half-lines or rays

(expect that the origin of one ray may lie on another ray). Such a domain is clearly simply

connected. For instance, see the books [22, 35, 65].

A domain D (0 ∈ D) is said to be α-spiral-like with |α| < π/2 if for all non-zero point

w0 ∈ D, the arc of the α-spiral joining w0 to the origin lies entirely in D. Such a domain

D is simply connected. A function f ∈ S is said to be α-spiral-like if f(D) is α-spiral-like.

Analytically, an α-spiral-like function f is characterized by the relation

(1.3) Re

{
eiα

zf ′(z)

f(z)

}
> 0, |z| < 1 and |α| < π/2.

The class of α-spiral-like functions is denoted by Sα and it was introduced by Špac̆k [90]

in 1933. It is easy to see that the function kα(z) = z(1− z)−2eiα cosα belongs to the class

Sα. This leads to the observation that the class Sα is neither included in the class K nor

includes the class Sα. It is obvious that 0-spiral-like functions are starlike functions.

The Bieberbach conjecture was initially proved for certain subclasses of univalent

functions. Here is a partial list of them.

• In 1921, Nevanlinna [57] proved that “if f ∈ S∗ and has the form (1.1), then

|an| ≤ n for all n ≥ 2. Equality holds for all n unless f is a rotation of the Koebe

function.”

• In 1917, Löwner [50] proved that “if f ∈ C and has the form (1.1), then |an| ≤ 1

for all n ≥ 2. Equality holds for all n unless f is a rotation of l(z) = z/(1− z).”

• In 1955, Reade [74] proved that “if f ∈ K and has the form (1.1), then |an| ≤ n

for n = 2, 3, . . . . Equality holds for n ≥ 2 unless f is a rotation of the Koebe

function.”

One of the problems discussed in this thesis links between geometric function theory and

q-theory.

4



For f ∈ A, the q-difference operator, denoted by Dqf , is defined by

(1.4) (Dqf)(z) =
f(z)− f(qz)

z(1− q)
, z ∈ D \ {0}, (Dqf)(0) = f ′(0),

where q ∈ (0, 1). It is evident that, when q → 1−, Dqf → f ′. Note that the q-difference

operator plays an important role in special functions and quantum physics (see for instance

[4, 23, 24, 48, 89]). The q-theory in geometric function theory was introduced by Ismail

et al. in 1990. They introduced and studied a q-analog of starlike functions via the q-

difference operator in the same paper. A similar generalization of close-to-convex functions

by means of Dqf is defined as follows: A function f ∈ A is said to be q-close-to-convex

function for q ∈ (0, 1), if there exists a g ∈ S∗ such that

(1.5)

∣∣∣∣ z

g(z)
(Dqf)(z)− 1

1− q

∣∣∣∣ ≤ 1

1− q
, for z ∈ D .

The class of q-close-to-convex functions is denoted by Kq and it has been studied in [72].

When q → 1−, the class Kq coincide with the class K. Very less progress was made

between the q-theory and geometric function theory previously. It is therefore worth

to study more problems in this direction. We study two types of problems. Firstly, we

obtain conditions on the coefficients of functions f(z) = z+
∑∞

n=2 Anz
n analytic in D which

ensure that they generate functions in the q-close-to-convex family. As a result we find

certain dilogarithm functions that are contained in Kq family. Secondly, we also study

the Bieberbach conjecture problem for coefficients of q-close-to-convex functions. This

produces several power series of analytic functions convergent to basic hypergeometric

functions.

The second type of problem discussed in this thesis is area problem, namely, computing

the area of an image domain under an analytic function in D. The area of the image of

the subdisk Dr := {z ∈ C : |z| < r} under an analytic function f in D is denoted by

∆(r, f), 0 ≤ r < 1. Thus, we have

(1.6) ∆(r, f) =

∫∫
Dr
|f ′(z)|2 dxdy.

Computing this area is known as the area problem for functions of type f . We set D := D1.

We know that in one-variable calculus, the definite integral
∫ b
a
f(x) dx for a real function

f can be interpreted as the area under the curve f over [a, b]. In the same way, the

5



integral
∫ ∫

D
f(x, y) dA of f(x, y) can be interpreted as the volume enclosed by a surface

z = f(x, y) over a region D. This observation motivates us to study the area of the image

domain under analytic functions in D. The functions f/z and z/f both are non-vanishing

analytic functions in D. One can easily obtain the area problem for functions of type f

and f/z when f is the class of univalent functions by using de Branges’s Theorem. But

it is not easy to solve for functions of type z/f . Yamashita [98] conjectured that

max
f∈C

∆

(
r,
z

f

)
= πr2

for each r, 0 < r ≤ 1, and the maximum is attained only by the rotations of l(z) =

z/(1 − z). This extremal problem is also called the maximal area integral problem for

functions of type z/f when f ranges over an analytic family. In 2013, this conjecture was

settled by Obradović et al. in [58]. We aim to prolong the discussion of Yamashita’s

extremal problem for related classes of analytic functions. In the following paragraph, we

define some basic definitions and notations that are used in the sequel.

Most of the analytic characterizations/definitions of functions considered in this thesis

use the notion of subordination principle. For two analytic functions f and g in D, we

say that f is subordinate to g if

f(z) = g(w(z)), |z| < 1,

for some analytic function w in D with w(0) = 0 and |w(z)| < 1. We express this symboli-

cally by f ≺ g. Geometrically, if g is univalent in D, then f ≺ g if and only if f(0) = g(0)

and f(D) ⊂ g(D). For instance, one can easily see that 1/(1+z) ≺ (1+z)/(1−z), z ∈ D.

For the theory of subordination, we refer to the textbooks [22, 56, 65].

The class of starlike functions are generalized in a number of ways. We consider the

following: A normalized analytic function f is said to belong to the class S∗(A,B), if it

satisfies the subordination relation

(1.7) S∗(A,B) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 + Az

1 +Bz
, z ∈ D

}
,

where A ∈ C,−1 ≤ B ≤ 0 and A 6= B. In particular, S∗(1− 2β,−1) = S∗(β).
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In this thesis, we discuss an open problem (i.e. to find the maximum value of ∆(r, z/f)

when f ∈ S∗(A,B)) which was posed by Ponnusamy and Wirths in [71] (see also [59]).

Next problem of this thesis deals with starlikeness and convexity of certain integral

transforms. The study of integral transforms has also been an important problem in the

field of geometric function theory. We consider a general integral transform for functions

f ∈ A,

(1.8) Vλ(f)(z) :=

∫ 1

0

λ(t)
f(tz)

t
dt,

where λ : [0, 1] → R is a non-negative function with
∫ 1

0
λ(t)dt = 1. This generalized

integral transform was studied by Fournier and Ruscheweyh in [25]. For some special cases

of λ(t), the integral transform Vλ(f) reduces to various well-known integral transforms

such as the Alexander transform, the Libera transform, and the Bernardi transform.

Let f and g be analytic functions in D and have the series representations

f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n,

respectively. The convolution (or Hadamard product) of f and g is given by

(f ∗ g)(z) =
∞∑
n=0

anbnz
n, for z ∈ D.

Note that f ∗ g is also analytic in D and obviously,convolution

f(z) = f(z) ∗ z

1− z
and zf ′(z) = f(z) ∗ z

(1− z)2
.

The concept of duality also plays a central role in the study of problems in convolution

theory. Let H denote the class of analytic functions in D. Consider a subclass A0 of H

defined by

A0 =

{
f ∈ H : f(z) =

h(z)

z
, h ∈ A

}
.

For V ⊂ A0, we call the set

V∗ = {f ∈ A0 : (f ∗ g)(z) 6= 0, for all g ∈ V and z ∈ D}

dual of V . Note that every dual set is complete (and closed). The set V∗∗ = (V∗)∗ is

called the second dual of V .
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Duality principle [82, Theorem 1.1] has many applications to classes of functions

those are defined by properties like bounded real part, convexity, starlikeness, close-to-

convexity, univalence etc. One can find basic results of duality theory for convolutions and

their numerous applications in the monograph by Ruscheweyh [82] and his article [81].

Silverman et al. in [84] have established new necessary and sufficient conditions in terms

of convolution for some known subclasses of analytic functions. These conditions are

very useful to solve problems associated with several subclasses of univalent functions

and integral transforms. Some of the characterizations of starlike and convex functions

in terms of convolutions are stated as follows:

Theorem 1.1. [84, Theorem 2] A function f ∈ S∗(β) for |z| < R ≤ 1 if and only if

[f ∗ hβ(z)]/z 6= 0 for |z| < R. Here

(1.9) hβ(z) = z

(
1 +

ρ+ 2β − 1

2− 2β
z

)
1

(1− z)2
, 0 ≤ β < 1, |ρ| = 1.

Theorem 1.2. [84, Theorem 1] A function f ∈ C(β) for |z| < R ≤ 1 if and only if

[f ∗ h1β(z)]/z 6= 0 for |z| < R. Here

h1β(z) = z

(
1 +

ρ+ β

1− β
z

)
1

(1− z)3
, 0 ≤ β < 1, |ρ| = 1.

We note that Theorems 1.1 and 1.2 are used to prove our main results in Chapter 6

in terms of the Gaussian hypergeometric functions defined by

2F1(a, b; c; z) = 1 +
∞∑
n=1

(a)n(b)n
(c)n(1)n

zn, |z| < 1,

where a, b, c ∈ C and c 6= Z− = {0,−1,−2, · · · }. Note that the function 2F1(a, b; c; z) is

analytic in D. The Pochhammer symbol (a)n is defined in terms of the Gamma function

Γ, by

(a)0 = 1, (a)n = a(a+ 1) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
.

In 1882, Gauss established the following useful relation connected with the Euler gamma

function

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

<∞,
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for Re(c− a− b) > 0. Similarly, the function 0F1(a; z) is defined as

0F1(a; z) =
∞∑
n=0

1

(a)n

zn

n!
, |z| < 1.

We recall the useful derivative formula

(1.10) 2F
′
1(a, b; c; z) =

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z).

For f ∈ A, the convolution relation zF (1, b; c; z) ∗ f(z) has the integral formula (e.g. see

[11]):

z2F1 (1, b; c; z) ∗ f(z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1f(tz)

t
dt.

which is nothing but the integral transform Vλ(f) with the non-negative weight function

λ(t) = Γ(c)
Γ(b)Γ(c−b)t

b−1(1 − t)c−b−1. For basic information about Gaussian hypergeometric

functions, we refer to the textbooks [5, 73].

To characterize starlikeness and convexity of integral transforms Vλ(f) for certain

analytic functions f , the duality technique introduced by Fournier and Ruscheweyh [25,

82], plays a crucial role in geometric function theory. For γ ∈ [0, 1] and β < 1, we consider

the class

(1.11) Pγ(β) =

{
f ∈ A : Re

(
(1− γ)

f(z)

z
+ γf ′(z)

)
> β

}
.

With the help of the duality theory of convolution, Balasubramanian et al. found condi-

tions so that the integral transform Vλ(f) carries Pγ(β) into S∗(µ) and C(µ) (0 ≤ µ ≤ 1/2)

in [9] and [10], respectively. Initially, the starlikeness and convexity of Vλ(f) for f ∈ P1(β)

were investigated by Fournier and Ruscheweyh [25] in 1994 & Ali and Singh [2] in 1995,

respectively. After that, many contributions have been made on different accounts in

[3, 20, 47, 68]. These contributions motivate us to check whether we can bring the

concept of hypergeometric function in connection to geometric function theory in char-

acterizing starlikeness and convexity of Vλ(f) for functions defined by convolution with

the well-known Gaussian hypergeometric functions. The answer is yes. Indeed, we can

generalize the class Pγ(β) in the following form:

(1.12) Pa,b,c(β) :=

{
f ∈ A :

f(z)

z
= 2F1 (a, b; c; z) ∗ p(z); a ≤ b < c, 0 ≤ β < 1

}
,
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where p is an analytic function with positive real part of order β in D and p(0) = 1.

We are interested to know whether Vλ(f) is starlike of order µ or convex of order µ for

functions f ∈ Pa,b,c(β), µ ∈ [0, 1/2]. For the range µ ∈ (1/2, 1), the problem remains

open.

1.2. p-valent Functions

The theory of p-valent functions is much more than just a generalization of the theory

of univalent functions. If T is a theorem about the set S, the extension to p-valent

function for p ≥ 2, may be completely trivial, or extremely difficult, or perhaps false. In

this section, we drive the concept of starlike and convex to the case of p-valent functions

and also discuss about Goodman’s conjecture [30] for certain p-valent functions.

Let p be a natural number. A function

(1.13) f(z) =
∞∑
n=1

anz
n

is said to be p-valent in D if it is analytic and assumes no value more than p times in

D and there is some w such that f(z) = w has exactly p solutions in D, when roots are

counted in accordance with their multiplicities. Geometrically, a function f is said to be

p-valent (or multivalent) in D if the conditions

f(z1) = f(z2) = · · · = f(zp+1), z1, z2, . . . , zp+1 ∈ D

imply that zr = zs for some pair such that r 6= s, and if there is some w such that the

equation f(z) = w has p roots (counted in accordance with their multiplicities) in D. For

example, f(z) = z2 is a 2-valent function in D.

In 1950, Goodman [31] has studied the classes of p-valent starlike and convex func-

tions. A p-valent function f of the form (1.13) is said to be p-valent starlike in D, if it is

analytic and if there exists a ρ > 0 such that for ρ < |z| < 1

Re

{
zf ′(z)

f(z)

}
> 0
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and ∫ 2π

0

Re

{
zf ′(z)

f(z)

}
dθ = 2pπ,

for z = reiθ. The class of p-valent starlike functions is denoted by S∗p .

A p-valent function f of the form (1.13) is said to be p-valent convex in D, if it is

analytic and if there exists a ρ > 0 such that for ρ < |z| < 1

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0

and ∫ 2π

0

Re

{
1 +

zf ′′(z)

f ′(z)

}
dθ = 2pπ,

for z = reiθ. The class of p-valent convex functions is denoted by Cp. There is a close

relationship between S∗p and Cp in the same way as Alexander theorem, namely,

f ∈ Cp ⇐⇒
zf ′

p
∈ S∗p .

For p = 1, the classes S∗p and Cp are the well-known classes of starlike and convex,

respectively.

Bieberbach’s conjecture was not studied for the class of p-valent functions until 1948.

The initiative was first taken by Goodman. In [30], Goodman made a conjecture that if

f is analytic p-valent and has the form (1.13), then

(1.14) |an| ≤
p∑

k=1

2k(p+ n) !

(p+ k) !(p− k) !(n− p− 1) !(n2 − k2)
|ak|,

for n > p. For p = 2 and n = 3, this gives the conjecture that

(1.15) |a3| ≤ 5|a1|+ 4|a2|.

Inequality (1.14) reduces to the well-known Bieberbach conjecture when p = 1.

In [31], Goodman showed that (1.15) is valid for f ∈ S∗2 which has the form (1.13) with

all the real coefficients an, and this bound is sharp for all pairs |a1|, |a2|, not both zero. In

1951, the full conjecture was proven by Goodman and Robertson [32] for functions f to be

in S∗p and Cp, provided that all its coefficients are real, and sharpness for all p, n > p and

11



by Robertson [76] in 1953, when a1 = a2 = · · · = ap−2 = 0 and the remaining coefficients

being complex.

Consider the function f of the form

(1.16) f(z) = zp +
∞∑
n=1

an+pz
n+p, p ∈ N

with p zeros at origin. Let Ap denote the class of all functions f of the form (1.16) analytic

and p-valent in D. We note that A1 =: S. For the class Ap, Hayman in [39] has showed

that |ap+1| ≤ 2p and Jenkins in [44] has showed |ap+2| ≤ p(2p+ 1). Both of these results

are consistent with (1.14). Both inequalities for p-valent functions are the analog of the

coefficient bounds |a2| ≤ 2 and |a3| ≤ 3 for univalent functions. The problem of estimating

the Taylor-Maclaurin coefficient bounds for many other classes of p-valent functions has

attracted a number of researchers. For example, in 1974, Goluzina [29] introduced and

studied the class of p-valent starlike functions of order β (i.e. functions f ∈ Ap satisfying

Re(zf ′(z)/f(z)) > β, 0 ≤ β < p) and obtained the coefficient estimates for f ∈ Ap such

that

|an+p| ≤
Γ(n+ 2p− 2β)

n ! Γ(2p− 2β)
, n ≥ 1,

and equality holds only for Kp(β) = zp/(1−z)2(p−β) (see also [64]). Goodman’s conjecture

for many other classes of p-valent functions have been studied by various authors, see for

instance [51, 94]. These ideas motivate us to study the Taylor-Maclaurin coefficients

estimates for functions belonging to related p-valent functions having some geometric

properties.

In this thesis, we consider the function classes S∗p (A,B, β),Fp(α, β, λ) and Cp(b, λ)

which are defined by subordination as follows: for p ∈ N,

(1.17)

S∗p (A,B, β) =

{
f ∈ Ap :

zf ′(z)

pf(z)
≺

1 +
[
B + (A−B)(1− β/p)

]
z

1 +Bz
, 1 ≤ B < A ≤ 1

}
,

(1.18)

Fp(α, β, λ) =

{
f ∈ Ap : eiα

zf ′(z)

pf(z)
≺

(
1 + (1− 2β/p)λz

1− λz

)
cosα + i sinα, |α| < π/2

}
,
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and

(1.19) Cp(b, λ) =

{
f ∈ Ap :

1

p

(
1 +

zf ′′(z)

f ′(z)

)
≺ 1 + (2b− 1)λz

1− λz
, 0 6= b ∈ C

}
,

where z ∈ D, 0 ≤ β < p and 0 < λ ≤ 1. The above classes have been introduced

and studied by Aouf in [7] and [8]. Furthermore, we estimate the Taylor-Maclaurin

coefficients |an|, n ≥ p + 1, for functions belonging to these classes, which improve the

results of Aouf [7, 8].

The integral means and Dirichlet integral in p-valent theory are defined as follows.

For r ∈ (0, 1], consider a function f ∈ Ap which has the integral means

(1.20) L1(r, f, p) :=
1

2π

∫ π

−π

r2p

|f(reiθ)|2
dθ, z = reiθ ∈ D,

and the Dirichlet integral

(1.21) ∆(r, f) :=

∫∫
Dr
|f ′(z)|2 dxdy = πpr2p + π

∞∑
n=1

(n+ p)|an+p|2r2(n+p), z = x+ iy.

Computing the integral L1(r, f, p) is known as the integral means problem. The classical

integral means and area problems have not been studied in p-valent setting, which is one

of our objectives in this thesis.

We consider a generalization of the class S∗(A,B) for p-valent functions, written as

S∗p (A,B), defined by

(1.22) S∗p (A,B) :=

{
f ∈ Ap :

zf ′(z)

pf(z)
≺ 1 + Az

1 +Bz
, z ∈ D

}
,

where A ∈ C, −1 ≤ B ≤ 0, A 6= B and p ∈ N.

One of our aims is to study the integral means and Yamashita conjecture for the class

S∗p (A,B) and for other related class of p-valent functions.
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1.3. Organization of Thesis

In Chapter 2, we concentrate on problems where the coefficients An of functions

f(z) = z +
∑∞

n=2Anz
n ∈ Kq are real, non-negative and connected with certain monotone

properties. For instance, we obtain the following theorems:

Theorem 1.3. Let {An} be a sequence of real numbers such that Bn = An(1−qn)/(1−q)

for all n ≥ 1, where

1 ≥ B2 ≥ · · · ≥ Bn ≥ · · · ≥ 0 or 1 ≤ B2 ≤ · · · ≤ Bn ≤ · · · ≤ 2.

Then f(z) = z +
∑∞

n=2 Anz
n ∈ Kq with g(z) = z/(1− z).

By Theorem 1.3, one can ascertain that the function (1 − q)Li2(z; q) ∈ Kq, where

Li2(z; q) is the quantum dilogarithm function.

Theorem 1.4. Let f(z) = z +
∑∞

n=2 Anz
n ∈ Kq and suppose that

∞∑
n=1

|Bn −Bn−1| ≤ 1, Bn =
An+1(1− qn+1)

1− q
− An(1− qn)

1− q
.

Then f ∈ Kq with g(z) = z/(1− z)2.

By Theorem 1.4, we immediately have the following result:

Theorem 1.5. Let {An} be a sequence of real numbers such that A0 = 0 = A1 − 1 and

Bn defined in Theorem 1.4. Suppose that

1 ≥ B1 ≥ · · · ≥ Bn ≥ · · · ≥ 0 or 1 ≤ B1 ≤ · · · ≤ Bn ≤ · · · ≤ 2.

Then f(z) = z +
∑∞

n=2 Anz
n ∈ Kq with g(z) = z/(1− z)2.

Letting q → 1− in Theorem 1.3 and 1.5, one can obtain couple of results of Alexan-

der [1] and MacGregor (see [52, Theorems 1, 3 and 5]).

Secondly, we analyze the Bieberbach-de Branges theorem for functions belong to Kq.
14



Theorem 1.6 (Bieberbach-de Branges theorem for Kq). If f ∈ Kq, then

|an| ≤
1− q
1− qn

[
n+

n(n− 1)

2
(1 + q)

]
for all n ≥ 2.

It is noticed that the inequality in Theorem 1.6 is not sharp. However, when q → 1,

this leads to the sharp inequality concerning the well-known Beiberbach problem for close-

to-convex functions.

In Chapter 3, a general problem on the Yamashita conjecture for the class S∗(A,B)

is considered which was suggested in [71]. We settle the problem in complete generality

for the full class S∗(A,B) and the main result is stated in the following form.

Theorem 1.7. Let f ∈ S∗(A,B) for −1 ≤ B < 0 with A 6= B and z/f be a non-vanishing

analytic function in D. Then we have

max
f∈S∗(A,B)

∆

(
r,
z

f

)
= π|A−B|2r2

2F1(A/B,A/B; 2;B2r2), 0 < r ≤ 1.

The maximum is attained by the rotations of kA,B(z) = z(1 +Bz)(A/B)−1.

In Chapter 4, we find coefficient bounds for functions f ∈ S∗p (A,B, β) and other

related classes of p-valent functions. These bounds improve the results of Aouf [7, 8]. For

example, we get

Theorem 1.8. Let −1 ≤ B < A ≤ 1, 0 ≤ β < p and p ∈ N. If f ∈ S∗p (A,B, β) is in the

form (1.17), then we have

(1.23) |ap+1| ≤ (A−B)(p− β);

for A(p− β)−B(p− β − 1) ≤ 1 (or A(p− β)−B(n− β − 1) ≤ (n− p− 1)), n ≥ p+ 2,

(1.24) |an| ≤
(A−B)(p− β)

n− p
;

and for A(p− β)−B(n− β − 1) > (n− p− 1), n ≥ p+ 2,

(1.25) |an| ≤
n−p∏
j=1

(A(p− β)−B(p− β + j − 1))

j
.

The inequalities (1.23), (1.24) and (1.25) are sharp.
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In Chapter 5, we determine the integral means and Yamashita’s extremal problem

for the class S∗p (A,B) and for other related class of p-valent functions. Indeed, we obtain

Theorem 1.9. Let A ∈ C,−1 ≤ B ≤ 0, A 6= B and p ∈ N. If f ∈ S∗p (A,B) and zp/f is

a non-vanishing analytic function in D. Then, for 0 < r ≤ 1, we have

L1(r, f, p) := r2pI1(r, f, p) ≤

 2F1

(
φp, φp; 1;B2

)
if B 6= 0;∑∞

n=0(p|A|)2n/(n !)2 if B = 0,

where φ = (A/B)− 1. The equality attains for the function kA,B,p defined by

(1.26) kA,B,p(z) =

 zp(1 +Bz)((A/B)−1)p if B 6= 0,

zpeApz if B = 0
.

Theorem 1.10. Let f ∈ S∗p (A,B), for A ∈ C,−1 ≤ B < 0, p ∈ N with A 6= B and zp/f

be a non-vanishing analytic function in D, then

max
f∈S∗p (A,B)

∆

(
r,
zp

f

)
= π|A−B|2p2r2

2F1

(
φp+ 1, φp+ 1; 2;B2r2

)
, r ∈ (0, 1].

The maximum is attained by the rotations of kA,B,p, B 6= 0 defined in (1.26).

In Chapter 6, we are interested to find conditions such that the integral transform

Vλ(f) is starlike of order µ (or convex of order µ) over functions f ∈ Pa,b,c(β), µ ∈ [0, 1/2].

To discuss the starlikeness (or convexity) of Vλ(f), for f ∈ Pa,b,c(β), we use the

following notations:

(1.27) Λa,b,c(t) =

∫ 1

t

λ(u)

ua+2b−c du.

We let gµa,b,c(t), the solution of the initial value problem

(1.28) (a+ 2b− c)(1 + gµa,b,c(t)) + t
d

dt
gµa,b,c(t) = 2(a+ 2b− c) 1− µ(1 + t)

(1− µ)(1 + t)2
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with gµa,b,c(0) = 1 and let

LµΛa,b,c(hµ) = inf
z∈D

∫ 1

0

ta+2b−c−1Λa,b,c(t)

[
Re

(
hµ(tz)

tz

∗
(
abz

c
F (a+ 1, b+ 1; c+ 1; z) + (a+ 2b− c)F (a, b; c; z)

))
−(a+ 2b− c) 1− µ(1 + t)

(1− µ)(1 + t)2

]
dt > 0, z ∈ D,

where hµ has the form (1.9). We set

(1.29) Λb,c := Λ1,b,c, g
µ
b,c := gµ1,b,c and LµΛb,c := LµΛ1,b,c

.

Concerning this, our main result is as follows:

Theorem 1.11. For 0 ≤ β < 1, let f ∈ Pa,b,c(β) with a ≤ b < c. Suppose that

λ : [0, 1] → R is a non-negative weight function so that
∫ 1

0
λ(t)dt = 1 and Λa,b,c is

defined by (1.27) with the assumption that limt→0+ t
a+2b−cΛa,b,c(t) = 0. Assume that the

quantity β is related by

(1.30)
β

1− β
= −

∫ 1

0

λ(t)gµa,b,c(t)dt,

where gµa,b,c satisfies (1.28). Then Vλ(f) ∈ S∗(µ) (0 ≤ µ ≤ 1/2) if and only if LµΛa,b,c(hµ) ≥

0.

We also discuss the convexity of the integral transform, Vλ(f), of f ∈ Pa,b,c(β) in

Chapter 6 of the thesis.
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CHAPTER 2

ON A GENERALIZATION OF CLOSE-TO-CONVEX

FUNCTIONS

In this chapter, our main aim is to study the q-theory in connection with geometric

function theory. In Section 2.1, we discuss about a generalization of the class of close-

to-convex functions in terms of the q-difference operator Dq. We obtain several sufficient

conditions for f ∈ A to be in Kq in Section 2.2. While Section 2.3 gives the Bieberbach-de

Branges Theorem for f ∈ Kq and also presents some special cases.

The results of this chapter appeared in:

Sahoo S.K., Sharma N.L. (2015), On a generalization of close-to-convex functions, Ann.

Polon. Math., 113(1), 93–108.

2.1. The class Kq

The q-difference operator, defined by (1.4), helps us to generalize the class of starlike

functions S∗ analytically. A q-analog of the class of starlike functions was introduced in

[42] by means of the q-difference operator Dqf acting on f ∈ A. We denote the class

of functions in this generalized family by S∗q . For the sake of convenience, we also use

functions in S∗q as q-starlike functions. It is defined as follows: A function f ∈ A is said

to belong to the class S∗q if∣∣∣∣ z

f(z)
(Dqf)(z)− 1

1− q

∣∣∣∣ ≤ 1

1− q
, z ∈ D .

Clearly, when q → 1−, the class S∗q will coincide with S∗.

A similar form of q-analog of close-to-convex functions was expected and it is defined

in Chapter 1 by (1.5). In [72], the authors have investigated some basic properties of



functions that are in Kq. Some of these results are recalled in this chapter in order to

exhibit their interesting consequences. As (Dqf)(z)→ f ′(z) as q → 1−, we observe in the

limiting sense, the closed disk |w − (1 − q)−1| ≤ (1 − q)−1 becomes the right half-plane

Re (zf ′(z)/g(z)) > 0, and hence the class Kq clearly reduces to K. In this chapter, we

refer to the functions in Kq as q-close-to-convex functions. For the sake of convenience,

we use the notation S∗q instead of the notation PSq used in [42], and Kq instead of PKq

used in [72]. It is easy to see that S∗q ⊂ Kq for all q ∈ (0, 1). Clearly, one can easily see

from the above discussion that

⋂
0<q<1

Kq ⊂ K ⊂ S.

Our main aim in this chapter is to consider the following two ideas.

The first idea has its origin in the work of Friedman [26]. He proved that there are

only nine functions in the class S whose coefficients are rational integers. They are

z,
z

1± z
,

z

1± z2
,

z

(1± z)2

z

1± z + z2
.

It is easy to see that these functions map the unit disk D onto starlike domains. Using

the idea of MacGregor [52], we derive some sufficient conditions for functions to be in Kq
whose coefficients are connected with certain monotonicity properties. These sufficient

conditions help us to examine functions of dilogarithm types [48, 99] which are in the

Kq family. Certain special functions, which are in the starlike and close-to-convex family,

have been investigated in [38, 54, 55, 67, 70, 83, 85].

The second idea deals with the famous Bieberbach conjecture problem in univalent

function theory [15, 22]. A necessary and sufficient condition for a function f to be in

S∗q is obtained in [42] by means of an integral representation of the function zf ′/f which

yields the maximum moduli of the coefficients of f . Using this condition, the Bieberbach

problem for q-starlike functions has been solved in the following form.
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Theorem A. [42, Theorem 1.18] If f(z) = z +
∑∞

n=2 anz
n belongs to the class S∗q , then

|an| ≤ cn, with equality holds for all n if and only if f is a rotation of

kq(z) := z exp

[
∞∑
n=1

−2 ln q

1− qn
zn

]
= z +

∞∑
n=2

cnz
n, z ∈ D.

Note that the function kq plays the role of the Koebe function as defined by (1.2). By

differentiating once the above expression for kq and equating the coefficients of zn−1 on

both sides, we get a recurrence relation for the cn:

c2 =
−2 ln q

1− q

or

(n− 1)cn =
−2 ln q

1− qn−1
(n− 1) +

n−1∑
k=2

−2 ln q

1− qk−1
cn+1−k(k − 1), n ≥ 3.

It can be easily verified that Theorem A turns into the famous conjecture of Bieberbach

(known as the Bieberbach-de Branges Theorem) for the class S∗ if q → 1−. Comparing

with the Bieberbach-de Branges Theorem for close-to-convex functions, one would expect

that Theorem A also holds for q-close-to-convex functions. However, this remains an

open problem. Indeed, in this chapter, we obtain an optimal coefficient bound for q-close-

to-convex functions leading to the Bieberbach-de Branges theorem for close-to-convex

functions when q → 1−. Finally, we collect a few consequences of the Bieberbach-de

Branges Theorem for Kq involving the nine starlike functions considered above.

2.2. Conditions for f(z) = z +
∑∞

n=2Anz
n to be in Kq

In this section, we obtain several sufficient conditions for f(z) = z +
∑∞

n=2Anz
n to

be in Kq, where the coefficients An are real, non-negative and connected with certain

monotone properties. Similar investigations for the class of close-to-convex functions are

conducted in [1, 52] (see references there in for initial contributions of Fejér, Szegö and

Robertson in this direction).
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Rewriting the representation of f , we get

(2.1) f(z) =
∞∑
n=0

Anz
n (A0 = 0, A1 = 1).

If f is of the form (2.1), then a simple computation yields

(2.2) (Dqf)(z) = 1 +
∞∑
n=2

An(1− qn)

1− q
zn−1

for all z ∈ D. With this, we now collect a number of sufficient conditions for functions to

be in Kq.

Lemma 2.1. [72, Lemma 1.1(1)] Let f be of the form (2.1). Suppose that
∑∞

n=1 |Bn+1−

Bn| ≤ 1, with Bn = An(1− qn)/(1− q). Then f ∈ Kq with g(z) = z/(1− z).

As a consequence of Lemma 2.1, we obtain Theorem 1.3 (see Chapter 1).

Proof of Theorem 1.3. We know that

∞∑
n=1

|Bn+1 −Bn| = lim
k→∞

k∑
n=1

|Bn+1 −Bn|.

If 1 ≥ B2 ≥ · · · ≥ Bn ≥ · · · ≥ 0, we see that

lim
k→∞

k∑
n=1

|Bn+1 −Bn| = lim
k→∞

(B1 −Bk+1) ≤ B1 = 1.

Similarly, if 1 ≤ B2 ≤ · · · ≤ Bn ≤ · · · ≤ 2, then we get the bound
∑∞

n=1 |Bn+1 −Bn| ≤ 1.

Thus, by Lemma 2.1, we obtain the assertion of our theorem. �

Example. The quantum dilogarithm function is defined by

Li2(z; q) =
∞∑
n=1

zn

n(1− qn)
, |z| < 1, 0 < q < 1.

Note that this function is studied by Kirillov [48] (see also [99, p.28]) and is a q-

deformation of the ordinary dilogarithm function [48] defined by Li2(z) =
∑∞

n=1(zn/n2),

|z| < 1, in the sense that

lim
ε→0

εLi2(z; e−ε) = Li2(z).

By Theorem 1.3, one can verify that the function (1− q)Li2(z; q) ∈ Kq.
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Proof of Theorem 1.4. Starting with |Bn|, we see that

|Bn| =
∣∣∣ n∑
k=1

(Bk −Bk−1) + 1
∣∣∣ ≤ ∞∑

k=1

|Bk −Bk−1|+ 1 ≤ 2.

Hence, for all n ≥ 2, we have∣∣∣∣An(1− qn)

1− q
− An−1(1− qn−1)

1− q

∣∣∣∣ ≤ 2.

Now, by the triangle inequality, we see that∣∣∣∣An(1− qn)

1− q

∣∣∣∣ =

∣∣∣∣An(1− qn)

1− q
− An−1(1− qn−1)

1− q
+
An−1(1− qn−1)

1− q

−An−2(1− qn−2)

1− q
+ · · ·+ A2(1− q2)

1− q
− 1 + 1

∣∣∣∣
≤ 2(n− 1) + 1 = 2n− 1

and so |An| ≤ (2n− 1)/(1 + q + · · ·+ qn−1). By applying the root test, one can see that

the radius of convergence of
∑∞

n=0 Anz
n is not less than unity. Therefore, f ∈ A.

Since f is of the form (2.1), by using (2.2) we compute

(1− z)2(Dqf)(z)

= 1 +
A2(1− q2)

1− q
z − 2z

+
∞∑
n=3

[
An(1− qn)

1− q
− 2An−1(1− qn−1)

1− q
+
An−2(1− qn−2)

1− q

]
zn−1.

By the definition of Bn as given in the hypothesis, we have

(1− z)2(Dqf)(z) = 1 + (B1 − 1)z +
∞∑
n=3

(Bn−1 −Bn−2)zn−1.

Hence,

1

1− q
−
∣∣∣(1− z)2(Dqf)(z)− 1

1− q

∣∣∣ =
1

1− q
−
∣∣∣1 + (B1 − 1)z

+
∞∑
n=3

(Bn−1 −Bn−2)zn−1 − 1

1− q

∣∣∣
≥ 1− |B1 − 1| −

∞∑
n=3

|Bn−1 −Bn−2| ≥ 0
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if
∑∞

n=2 |Bn−1 −Bn−2| ≤ 1. This proves the assertion of our theorem. �

Theorem 2.2. Let f be defined by f(z) = z +
∑∞

n=2A2n−1z
2n−1 and suppose that

∞∑
n=1

|B2n−1 −B2n+1| ≤ 1, Bn =
An(1− qn)

1− q
.

Then f ∈ Kq with g(z) = z/(1− z2).

Proof. First of all we shall prove that f(z) = z +
∑∞

n=2A2n−1z
2n−1 ∈ A. For this, we

estimate

|B2n+1| =
∣∣∣ n∑
k=1

(B2k−1 −B2k+1)− 1
∣∣∣ ≤ 2

so that |An| ≤ 2/(1 + q+ · · · qn−1). By applying the root test, one can see that the radius

of convergence of the series expansion of f is not less than 1. Therefore, f ∈ A.

Since f(z) = z +
∑∞

n=2 A2n−1z
2n−1, by (1.4) we get

(1− z2)(Dqf)(z) = 1−
∞∑
n=1

[
A2n−1(1− q2n−1)

1− q
− A2n+1(1− q2n+1)

1− q

]
z2n.

Note that Bn = An(1− qn)/(1− q). So, we have

1

1− q
−
∣∣∣∣(1− z2)(Dqf)(z)− 1

1− q

∣∣∣∣ ≥ 1−
∞∑
n=1

|B2n−1 −B2n+1| ≥ 0,

whenever
∑∞

n=1 |B2n−1 −B2n+1| ≤ 1. This proves our conclusion.

By Theorem 2.2, we immediately have the following result which generalizes a result of

MacGregor (see [52, Theorem 2]).

Theorem 2.3. Let {An} be a sequence of real numbers and set Bn = An(1− qn)/(1− q)

for all n ≥ 1. Suppose that

1 ≥ B3 ≥ B5 ≥ · · · ≥ B2n−1 ≥ · · · ≥ 0

or

1 ≤ B3 ≤ B5 ≤ · · · ≤ B2n−1 ≤ · · · ≤ 2.

Then f(z) = z +
∑∞

n=2 A2n−1z
2n−1 ∈ Kq with g(z) = z/(1− z2).
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Lemma 2.4. [72, Lemma 1.1(4)] Let f be defined by (2.1) and suppose that

∞∑
n=2

|Bn −Bn−2| ≤ 1, Bn =
An(1− qn)

(1− q)
.

Then f ∈ Kq with g(z) = z/(1− z2).

Lemma 2.4 leads to the following sufficient conditions for functions to be in Kq.

Theorem 2.5. Let {An} be a sequence of real numbers such that A1 = 1 and set

Bn =
An(1− qn)

1− q
for all n ≥ 1. Suppose that

1 ≥ B1 +B2 ≥ · · · ≥ Bn−1 +Bn ≥ · · · ≥ 0

or

1 ≤ B1 +B2 ≤ · · · ≤ Bn−1 +Bn ≤ · · · ≤ 2.

Then f(z) = z +
∑∞

n=2Anz
n ∈ Kq with g(z) = z/(1− z2).

Proof. We know that

∞∑
n=2

|Bn −Bn−2| = lim
k→∞

k∑
n=2

|Bn −Bn−2|.

If 1 ≥ B1 +B2 ≥ · · · ≥ Bn−1 +Bn ≥ · · · ≥ 0, we see that

lim
k→∞

k∑
n=2

|Bn −Bn−2| = lim
k→∞

(1−Bk−1 −Bk) ≤ 1 + 0 = 1.

Similarly, if 1 ≤ B1 +B2 ≤ · · · ≤ Bn−1 +Bn ≤ · · · ≤ 2, then we get
∑∞

n=2 |Bn−Bn−2| ≤ 1.

Thus, by Theorem 2.4, the proof is complete.

As a consequence of Theorem 2.5, one can obtain the following new criteria for functions

to be in the close-to-convex family.

Theorem 2.6. Let {an} be a sequence of real numbers such that a1 = 1 and set bn = nan

for all n ≥ 1. Suppose that

1 ≥ b1 + b2 ≥ · · · ≥ bn−1 + bn ≥ · · · ≥ 0
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or

1 ≤ b1 + b2 ≤ · · · ≤ bn−1 + bn ≤ · · · ≤ 2.

Then f(z) = z +
∑∞

n=2 anz
n is close-to-convex with g(z) = z/(1− z2).

Lemma 2.7. [72, Lemma 1.1(2)] Let f be defined by (2.1) and suppose that

∞∑
n=1

|Bn−1 −Bn +Bn+1| ≤ 1, Bn =
An(1− qn)

1− q
.

Then f ∈ Kq with g(z) = z/(1− z + z2).

Lemma 2.7 yields the following sufficient condition.

Theorem 2.8. Let {An} be a sequence of real numbers such that A1 = 1 and set Bn =

An(1− qn)/(1− q) for all n ≥ 1. Suppose that either

0 ≥ B2 −B1 ≥ B3 ≥ B2 +B4 ≥ B2 +B3 +B5 ≥ · · ·(2.3)

≥ B2 +B3 +B4 + · · ·+Bn−1 +Bn+1 ≥ −1

or

0 ≤ B2 −B1 ≤ B3 ≤ B2 +B4 ≤ B2 +B3 +B5 ≤ · · ·(2.4)

≤ B2 +B3 +B4 + · · ·+Bn−1 +Bn+1 ≤ 1.

Then f(z) = z +
∑∞

n=2Anz
n ∈ Kq with g(z) = z/(1− z + z2).

Proof. We know that

∞∑
n=1

|Bn−1 −Bn +Bn+1| = lim
k→∞

k∑
n=1

|Bn−1 −Bn +Bn+1|.

If (2.3) holds, on the one hand we see that

lim
k→∞

k∑
n=1

|Bn−1 −Bn +Bn+1| = lim
k→∞
−(B2 +B3 +B4 + · · ·+Bk−1 +Bk+1) ≤ 1.

On the other hand, if (2.4) holds, then similarly
∑∞

n=1 |Bn−1−Bn +Bn+1| ≤ 1. Thus, by

Theorem 2.7, the proof is complete.
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As a consequence of Theorem 2.8, one can obtain the following new criteria for func-

tions to be in the close-to-convex family.

Theorem 2.9. Let {an} be a sequence of real numbers such that a1 = 1 and set bn = nan

for all n ≥ 1. Suppose that

0 ≥ b2 − b1 ≥ b3 ≥ b2 + b4 ≥ b2 + b3 + b5 ≥ · · ·

≥ b2 + b3 + b4 + · · ·+ bn−1 + bn+1 ≥ −1

or

0 ≤ b2 − b1 ≤ b3 ≤ b2 + b4 ≤ b2 + b3 + b5 ≤ · · ·

≤ b2 + b3 + b4 + · · ·+ bn−1 + bn+1 ≤ 1.

Then f(z) = z +
∑∞

n=2 anz
n is in the close-to-convex family with g(z) = z/(1− z + z2).

2.3. The Bieberbach-de Branges Theorem for Kq

A necessary and sufficient condition for membership in S∗q was obtained in [42, The-

orem 1.5]: f ∈ S∗q if and only if |f(qz)/f(z)| ≤ 1 for all z ∈ D.

A similar characterization for functions in Kq is

Lemma 2.10. f ∈ Kq if and only if there exists g ∈ S∗ such that

|g(z) + f(qz)− f(z)|
|g(z)|

≤ 1 for all z ∈ D.

Proof. This follows directly after substituting the formula for Dqf in the equation (1.5).

Lemma 2.10 will be crucial to get coefficient bounds for series representation of func-

tions in the class Kq; in other words, we analyze the Bieberbach-de Branges Theorem for

the class of q-close-to-convex functions. The Bieberbach conjecture for close-to-convex

functions was proved by Reade [74] (see also [33] for more details). It states that if

f ∈ K, then |an| ≤ n for all n ≥ 2.
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We now prove the Bieberbach-de Branges Theorem for functions in the q-close-to-

convex family which stated in Chapter 1 by Theorem 1.6.

Proof of Theorem 1.6. Since f(z) = z +
∑∞

n=2 anz
n ∈ Kq, by Lemma 2.10 there exists

w : D→ D such that

(2.5) g(z) + f(qz)− f(z) = w(z)g(z),

where g(z) = z +
∑∞

n=2 bnz
n and w(z) = q +

∑∞
n=1wnz

n. Clearly w(0) = q. By assuming

a1 = 1 = b1, we have

∞∑
n=1

(bn + anq
n − an)zn =

∞∑
n=1

qbnz
n +

∞∑
n=2

(
n−1∑
k=1

wn−kbk

)
zn.

Equating the coefficients of zn, for n ≥ 2 we obtain

an(qn − 1) = bn(q − 1) +
n−1∑
k=1

wn−kbk.

From the classical result [21], one can verify that |wn| ≤ 1− |w0|2 = 1− q2 for all n ≥ 1.

Since g ∈ S∗, we get

|an| ≤
1− q
1− qn

[
n+ (1 + q)

n−1∑
k=1

k

]
for all n ≥ 2.

This proves the conclusion of our theorem. �

It is easy to see, by the usual ratio test, that the series

(2.6) z +
∞∑
n=2

1− q
1− qn

[
n+

n(n− 1)

2
(1 + q)

]
zn

converges for |z| < 1. Indeed, we can ascertain by using the convergence factor for the

series
∑∞

n=1 z
n/(1− qn) (see [89, 3.2.2.1]) that the series given by (2.6) converges to the

function

1 + q

2
z2d

2Ψ(q; z)

dz2
+ z

dΨ(q; z)

dz
,
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where Ψ(q; z) := zΦ[q, q; q2; q, z] represents the corresponding Heine hypergeometric func-

tion. Note that the q-hypergeometric series was developed by Heine [41] as a generaliza-

tion of the well-known Gauss hypergeometric series:

Φ[a, b; c; q, z] =
∞∑
n=0

(a; q)n(b; q)n
(c; q)n(q; q)n

zn, |q| < 1, 1 6= cqn, |z| < 1,

where the q-shifted factorial (a; q)n is defined by

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1) and (a; q)0 = 1.

This is also known as the basic hypergeometric series and its convergence function is

known as the basic hypergeometric function. We refer to [89] for these notation. For

history of q-series related calculus and their applications, we recommend [23].

Due to Friedman ’s result mentioned in the Introduction, we now study the spe-

cial cases of Theorem 1.6 with respect to the nine functions having integer coefficients.

However, in this situation, it is enough to consider the identity function and four other

functions which contain factors 1− z instead of 1± z in the denominator. In particular,

Theorem 1.6 reduces to the following corollaries below. We provide proofs of last two as

they involve variations in the exponents, whereas the first three corollaries follow directly

after making the corresponding substitution for the starlike functions g.

Corollary 2.11. If f ∈ Kq with the Koebe function g(z) = z/(1− z)2, then for all n ≥ 2

we have

|an| ≤
1− q
1− qn

[
n+ (1 + q)

n(n− 1)

2

]
.

If f ∈ K with g(z) = z, then for all n ≥ 2 it is well-known that |an| ≤ 2/n. As a

generalization, we have the following:

Corollary 2.12. If f ∈ Kq with g(z) = z, then for all n ≥ 2 we have |an| ≤ (1− q2)/(1−

qn).

Here we note that the series z +
∑∞

n=2(1 − q2)/(1 − qn)zn converges to the Heine

hypergeometric function (z + qz)Φ[q, q; q2; q, z] − qz = z + z2Φ[q2, q2; q3; q2, z], as follows

from [89, 3.2.2, pp. 91].
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If f ∈ K with g(z) = z/(1− z), then for all n ≥ 2 it is known that |an| ≤ (2n− 1)/n.

We find the following analogous result:

Corollary 2.13. If f ∈ Kq with g(z) = z/(1− z), then for all n ≥ 2 we have

|an| ≤
1− q
1− qn

[n+ q(n− 1)].

One can similarly verify that the series z +
∑∞

n=2
1−q

1−qn [n + q(n − 1)] converges to

the function z(1 + q) d
dz

Ψ(q; z)− qΨ(q; z), where Ψ(q; z) := zΦ[q, q; q2; q, z] represents the

corresponding Heine hypergeometric function.

If f ∈ K with g(z) = z/(1− z2), then for all m ≥ 1 it is known that

|an| ≤

 1, if n = 2m− 1,

1, if n = 2m.

As a generalization, we now state the following corollary along with an outline of its proof:

Corollary 2.14. If f ∈ Kq with g(z) = z/(1− z2), then for all m ≥ 1 we have

|an| ≤


1− q
1− qn

(
n

2
(1 + q) +

1

2
(1− q)

)
, if n = 2m− 1,

(1− q2

1− qn
)n

2
, if n = 2m.

Proof. Since g(z) = z/(1− z2) =
∑∞

n=1 z
2n−1, by (2.5) we get

∞∑
n=1

(qn − 1)anz
n = (q − 1)

∞∑
n=1

z2n−1 +

(
∞∑
n=1

z2n−1

)(
∞∑
n=1

wnz
n

)
.

This is equivalent to

∞∑
n=1

(qn − 1)anz
n =(q − 1)

∞∑
n=1

z2n−1 +
∞∑
n=2

(
n−1∑
k=1

w2k

)
z2n−1(2.7)

+
∞∑
n=1

(
n∑
k=1

w2k−1

)
z2n.

In order to prove the required optimal bound for |an|, we equate the coefficients of z2n−1

and z2n separately.
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In (2.7), first we equate the coefficients of z2n−1, for n ≥ 2, to get

(q2n−1 − 1)a2n−1 = (q − 1) +
n−1∑
k=1

w2k.

Since |wk| ≤ (1− q2) for all k ≥ 1 and q ∈ (0, 1), we have

|a2n−1| ≤
1− q

(1− q2n−1)
(−q + (1 + q)n) .

Secondly, by equating the coefficients of z2n, for n ≥ 1, we obtain

(q2n − 1)a2n =
n∑
k=1

w2k−1,

and similarly we get the bound

|a2n| ≤
1− q

(1− q2n)
(1 + q)n.

Thus, we obtain the required optimal bound for |an|.

If f ∈ K with g(z) = z/(1− z + z2), then for all n ≥ 2 it is known that

|an| ≤



4n+ 1

3n
, if n = 3m− 1,

4

3
, if n = 3m,

4n− 1

3n
, if n = 3m+ 1.

As a generalization, we have the following:

Corollary 2.15. If f ∈ Kq with g(z) = z/(1− z + z2), then for all m ≥ 1 we have

|an| ≤



1− q
1− qn

(
1

3
(2− q) +

2n

3
(1 + q)

)
, if n = 3m− 1,

1− q2

1− qn
2n

3
, if n = 3m,

1− q
1− qn

(
2n

3
(1 + q) +

1

3
(1− 2q)

)
, if n = 3m+ 1.

Proof. By rewriting the function g(z) = z/(1− z + z2), we obtain

g(z) =
z(1 + z)

1 + z3
=
∞∑
n=1

(−1)n−1z3n−2 +
∞∑
n=1

(−1)n−1z3n−1.
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Then simplifying (2.5), we get

∞∑
n=1

(qn − 1)anz
n

= (q − 1)

(
∞∑
n=1

(−1)n−1z3n−2 +
∞∑
n=1

(−1)n−1z3n−1

)

+
∞∑
n=1

(
n∑
k=1

(−1)n−kw3k−2

)
z3n−1 +

∞∑
n=1

(
n∑
k=1

(−1)n−kw3k−1

)
z3n

+
∞∑
n=1

(
n∑
k=1

(−1)n−kw3k

)
z3n+1 +

∞∑
n=2

(
n−1∑
k=1

(−1)n−kw3k

)
z3n−1

+
∞∑
n=1

(
n∑
k=1

(−1)n−kw3k−2

)
z3n +

∞∑
n=1

(
n∑
k=1

(−1)n−k−1w3k−1

)
z3n+1.(2.8)

First equating the coefficients of z3n−1, for n ≥ 2, in (2.8), we get

(q3n−1 − 1)a3n−1 = (−1)n−k(q − 1) +
n∑
k=1

(−1)n−kw3k−2 +
n∑
k=1

(−1)n−kw3k.

Since |wk| ≤ (1− q2) for all k ≥ 1 and q ∈ (0, 1), we have

|a3n−1| ≤
1− q

(1− q3n−1)
(−q + 2(1 + q)n)) .

Next, for all n ≥ 1, we equate the coefficients of z3n and z3n+1 in (2.8), and obtain

|a3n| ≤
2(1− q)
(1− q3n)

(1 + q)n and |a3n+1| ≤
(1− q)

(1− q3n+1)
(1 + 2(1 + q)n).

Thus, the assertion of our corollary follows.

Remark. By making use of [42, Theorem 1.5], one can also obtain the Bieberbach-de

Branges Theorem for S∗q , as shown below. This also yields a Bieberbach-de Branges type

theorem for S∗. However, it differs from Theorem A.
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2.4. Appendix

In this section, we verify that a similar technique used in the previous section yields a

form of the Bieberbach-de Branges Theorem for S∗q . This leads to a result of Bieberbach-

de Branges type (different from Theorem A !) for the class S∗, when q → 1−, as well.

Theorem 2.16 (The Bieberbach-de Branges Theorem for S∗q ). If f ∈ S∗q , then for all

n ≥ 2 we have

(2.9) |an| ≤
(

1− q2

q − qn

) n−1∏
k=2

(
1 +

1− q2

q − qk

)
.

Proof. We know that f ∈ S∗q if and only if

|f(qz)/f(z)| ≤ 1 for all z ∈ D.

Then there exists w : D→ D such that

f(qz)

f(z)
= w(z), i.e. f(qz) = w(z)f(z) for all z ∈ D.

Clearly, w(0) = q. In terms of series expansion, we get (with a1 = 1 and w0 = q)

∞∑
n=1

anq
nzn =

(
∞∑
n=0

wnz
n

)(
∞∑
n=1

anz
n

)
=:

∞∑
n=1

cnz
n,

where cn :=
∑n

k=1wn−kak = qan+
∑n−1

k=1 wn−kak. Comparing the coefficients of zn (n ≥ 2),

we get

an(qn − q) =
n−1∑
k=1

wn−kak, for n ≥ 2.

Since |wn| ≤ 1− |w0|2 = 1− q2 for all n ≥ 1, we obtain

|an| ≤
1− q2

q − qn
n−1∑
k=1

|ak| for each n ≥ 2.

Thus for n = 2, one has |a2| ≤ (1 − q2)/(q − q2), and for n ≥ 3, we apply a similar

technique to estimate |an−1| and get

|an| ≤
1− q2

q − qn

(
1 +

1− q2

q − qn−1

) n−2∑
k=1

|ak|.
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Iteratively, we conclude that

|an| ≤
1− q2

q − qn

(
1 +

1− q2

q − qn−1

)(
1 +

1− q2

q − qn−2

)
· · ·
(

1 +
1− q2

q − q2

)
for all n ≥ 3. This completes the proof.

Remark. One can easily verify that the right hand side of (2.9) approaches n as q →

1−, which will lead to the Bieberbach-de Branges Theorem for starlike functions [22,

Theorem 2.14].

We also find that the ratio test easily provides the convergence of the series z +∑∞
n=2Anz

n in the subdisk |z| < q/(q + 1− q2), where

An =

(
1− q2

q − qn

) n−2∏
k=1

(
1 +

1− q2

q − qk+1

)
.

With this, we end this chapter here.
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CHAPTER 3

MAXIMAL AREA INTEGRAL PROBLEM FOR

UNIVALENT FUNCTIONS

In this chapter we settled an open problem on the Yamashita conjecture for the class

S∗(A,B) that was suggested by Ponnusamy and Wriths in [71]. In Section 3.1, we discuss

the definitions and brief introduction on area integral problem. The main results and

some of their consequences are presented in Section 3.2. In Section 3.3, we present useful

lemmas with which we prove our results. We conclude the proofs of our main results of

this chapter in Section 3.4. Finally, Section 3.5 deals with a number of open problems.

Results of this chapter published in the articles:

Ponnusamy S., Sahoo S.K., Sharma N.L. (2016), Maximal area integral problem for certain

class of univalent analytic functions, Mediterr. J. Math., 13, 607–623. Published online

February 12, 2015.

and

Sahoo S.K., Sharma N.L. (2015), On maximal area integral problem for analytic functions

in the starlike family, J. Class. Anal., 6(1), 73–84.

3.1. Preliminaries on Area Problems

In Chapter 1, we presented the definition of the class S∗(A,B) of f ∈ A (see (1.7)).

It is easy to see that the function

(3.1) kA,B(z) :=

 zeAz for B = 0

z(1 +Bz)(A/B)−1 for B 6= 0



belongs to the family S∗(A,B) and acts the role of extremal function for this family.

If A = e−iα(e−iα − 2β cosα) with β < 1 and B = −1, then S∗(A,B) reduces to the

class Sα(β) of functions f (called α-spiral-like of order β) satisfying the condition

Re

(
eiα

zf ′(z)

f(z)

)
> β cosα, z ∈ D,

and recall that each function in Sα(β) is univalent in D if β ∈ [0, 1) and α ∈ (−π/2, π/2)

(see [49]). This class was introduced and studied by Libera [49] in 1967. Clearly, Sα(β) ⊂

Sα := Sα(0) whenever 0 ≤ β < 1. Functions in Sα are called α-spiral-like. The class Sα
is defined by (1.3). The set Sp = ∪{Sα(0) : α ∈ (−π/2, π/2)} is referred as the class of

spiral-like functions. As remarked in [49], spiral-like functions have been used to obtain

important counter-examples in geometric function theory (see also [22, p. 72 and Theorem

8.11]).

The class S∗(A,B) with the restriction −1 ≤ B < A ≤ 1 was introduced and studied

by Janowski [43] in 1973. The values of zf ′/f lie inside the close disk in the right half

plane with center (1−ABr2)/(1−B2r2) and radius (A−B)r/(1−B2r2) for |z| = r < 1 and

so, the class S∗(A,B) becomes a subclass of S∗ whenever −1 ≤ B < A ≤ 1. In Table 3.1,

we listed the certain basic subclasses of the class S∗ that are studied for various choices of

the pair (A,B). Set for an abbreviation q(z) := zf ′(z)/f(z) and t(z) := 1 + zf ′′(z)/f ′(z).

A general form of the definition of T (λ, β) := S∗((1− 2β)λ,−λ), λ ∈ (0, 1] is earlier

introduced by Aouf (see [8, Definition 2]). We see that if β = 0, then the class T (λ, β)

turns into the Padmanabhan class T (λ) [62] (see Table 3.1). It is evident that T (λ) ⊂

S∗(β) for all λ, β ∈ (0, 1) with β ≤ (1− λ)/(1 + λ). Also, the function g(z) = z/(1− z) ∈

S∗(1/2) guarantees that this inclusion is proper. From (3.1), one can also verify that

(3.2) k(1−2β)λ,−λ(z) =
z

(1− λz)2(1−β)
=: kλ,β(z) and kλ,0(z) =: kλ(z).

Consequently, k1,β(z) =: kβ(z) and k1,0(z) =: k(z). The functions kλ,β & kλ play the role

of extremal functions for T (λ, β) & T (λ), respectively. Also, one notes that

T (λ, β) ⊂ T (λ) ⊂ S∗(β) ⊂ S∗; T (1, β) =: S∗(β) and T (1) =: S∗.
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Year Authors Classes Conditions Subordination form

1921 Nevanlinna [57] S∗(1,−1) =: S∗ Re q(z) > 0 q(z) ≺ 1 + z

1− z
1936 Robertson [77] S∗(1− 2β,−1) Re q(z) > β q(z) ≺ 1 + (1− 2β)z

1− z
=: S∗(β), β ∈ [0, 1)

1968 Singh [86] S∗(1, 0) |q(z)− 1| < 1 q(z) ≺ 1 + z

1968 Padmanabhan S∗(λ,−λ) =: T (λ)

∣∣∣∣q(z)− 1

q(z) + 1

∣∣∣∣ < λ q(z) ≺ 1 + λz

1− λz
[62] for λ ∈ (0, 1]

1974 Singh and S∗
(
1, 1−α

α

)
|q(z)− α| < α p(z) ≺ 1 + z

1 + 1−α
α z

Singh [87] for α ≥ 1
2

1988 Aouf [8] S∗((1− 2β)λ,−λ)

∣∣∣∣ q(z)− 1

q(z) + 1− 2β

∣∣∣∣ < λ q(z) ≺ 1 + (1− 2β)λz

1− λz
=: T (λ, β) for

λ ∈ (0, 1], β ∈ [0, 1)

Table 3.1. Analytic and subordination forms of S∗(A,B) for different A and B

The interest to study area problems comes from computing areas of certain regions

in the complex plane. In general it is a difficult problem to find area of an arbitrary

region. However, our problem finds exact area formula of regions that are images of D

under certain functions. The classical Parseval-Gutzmer formula for a function f(z) =∑∞
n=0 anz

n analytic in Dr states that

1

2π

∫ 2π

0

|f(reiθ)|2 dθ =
∞∑
n=0

|an|2r2n.

With the help of this formula, one can get the area ∆(r, f) of the form (1.6) (see Sec-

tion 1.3) in terms of the coefficients of f , f ′(z) =
∑∞

n=1 nanz
n−1. Thus,

(3.3) ∆(r, f) =

∫∫
Dr
|f ′(z)|2 dxdy = π

∞∑
n=1

n|an|2r2n,

which is called the Dirichlet integral of f . Computing this area is known as the area

problem for the functions of type f . Thus, a function has a finite Dirichlet integral

exactly when its image has finite area (counting multiplicities). All polynomials and,

more generally, all functions f ∈ A for which f ′ is bounded on D are Dirichlet finite.
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In 1990, Yamashita [98] discussed the extremal problems

(3.4) A(r) = max
f∈N

∆

(
r,
z

f

)
, r ∈ (0, 1],

where N represents some geometrically motivated subclass of S. This extremal problem

also called the maximal area integral problem for functions of type z/f when f ranges

over an analytic family. In [98], Yamashita conjectured that A(r) = πr2, if N is the class

of convex functions. In 2013, this conjecture was settled by Obradović et al. in [58]. In

fact the conjecture has been solved for a wider class of functions (the class of starlike

functions of order β, 0 ≤ β < 1), which includes the class of convex functions (see also

[59, 71]).

A general problem on the Yamashita conjecture for the class S∗(A,B) was suggested in

[71, p. 725] (see also [59]). In this chapter, we solve the problem in complete generality for

the full class S∗(A,B) and the main results are stated in Section 3.2. Partially, the authors

established the maximum area problem for the functions of type z/f when f ∈ T (λ, β).

3.2. Main Theorems

We now state our main results and their proofs will be given in Section 3.4.

Theorem 3.1. Let f ∈ S∗(A, 0) for 0 < |A| ≤ 1. Then we have

max
f∈S∗(A,0)

∆

(
r,
z

f

)
= EA,0(r) for 0 < r ≤ 1,

where EA,0(r) = π|A|2r2
0F1(2; |A|2r2). The maximum is attained by the rotations of the

function kA,0(z) = zeAz.

If A = 1 in Theorem 3.1, then we get

Corollary 3.2. Let f ∈ S∗(1, 0). Then we have

max
f∈S∗(1,0)

∆

(
r,
z

f

)
= πr2

0F1(2; r2) for 0 < r ≤ 1,

where the maximum is attained by the rotations of the function k1,0(z) = zez.
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Figure 3.1. Images of the unit disk under g5/6,0 and g1/6,0.

Our main theorem for B 6= 0 presented in Chapter 1 by Theorem 1.7.

Note that Theorem 3.1 and Theorem 1.7 generalize the results proved in [58, 98]. To

see the bounds for the Dirichlet finite function, we write

EA,0(1) = π|A|2
∞∑
n=0

1

(1)n(2)n
|A|2n

and

EA,B(1) = π|A−B|2
∞∑
n=0

(A/B)n(A/B)n
(1)n(2)n

B2n.

For certain values of A and B, the images of the unit disk under the extremal functions

gA,0(z) := z/kA,0(z) = e−Az and gA,B(z) := z/kA,B(z) = (1 +Bz)1−A/B,

and numerical values of EA,0(1) and EA,B(1) are described in Figures 3.1–3.4 and in

Table 3.2, respectively. We remind the reader that for B = −1, EA,B(1) is finite only if

2 > Re((A+ A)/B), i.e. if ReA > −1.

We now state certain consequences of Theorem 1.7 for the several classes introduced by

several authors (refer Table 3.1). It is a simple exercise to see that Möbius transformation

w = φ(z) defined by

w = φ(z) =
1 + Az

1 +Bz
39



0.5 1.0 1.5 2.0

-1.0

- 0.5

0.0

0.5

1.0

The image domain g2/3+i/2,0(D)

0.5 1.0 1.5 2.0

- 0.5

0.0

0.5

The image domain g(2−3i)/5,0(D)

Figure 3.2. Images of the unit disk under g2/3+i/2,0 and g(2−3i)/5,0.
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The image domain g5/6,−4/5(D)
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The image domain g1/6,−1(D)

Figure 3.3. Images of the unit disk under g5/6,−4/5 and g1/6,−1.

maps the unit disk D onto the half-plane

Re ((1 + A)w) >
1− |A|2

2

whenever B = −1 and A 6= −1. In particular, if A = eiα(eiα − 2β cosα) (β < 1), then as

remarked in the introduction, the last condition reduces to

Re (e−iαw) > β cosα.
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Figure 3.4. Images of the unit disk under g2/3+i/2,−1/2 and g(2−3i)/5,−3/5.

A Approximate Values of B Approximate Values of

EA,0(1) EA,B(1)

5/6 3.03211 −4/5 11.2917

1/6 0.0884841 −1 4.34607

2/3 + i/2 3.03211 −1/2 6.90284

(2− 3i)/5 2.09682 −3/5 5.4645

Table 3.2. Approximate values of EA,0(1) and EA,B(1)

If −1 < B ≤ 0 and A 6= B, then φ maps D onto the disk∣∣∣∣w − 1− AB
1−B2

∣∣∣∣ < |A−B|1−B2
.

This observation helps us to formulate important special cases.

If A = (1− 2β)λ and B = −λ in Theorem 1.7, then we get

Corollary 3.3. Let f ∈ T (λ, β) := S∗((1 − 2β)λ,−λ) for 0 < λ ≤ 1 and 0 ≤ β < 1.

Then we have

max
f∈T (λ,β)

∆

(
r,
z

f

)
= 4πλ2(1− β)2r2

2F1(2β − 1, 2β − 1; 2;λ2r2), |z| < r

for all r, 0 < r ≤ 1. The maximum is attained by the rotations of kλ,β as defined by (3.2).
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The case β = 0 of Corollary 3.3 (i.e. A = λ and B = −λ of Theorem 1.7) gives

Example 3.4. If f ∈ T (λ) := S∗(λ,−λ) for some 0 < λ ≤ 1, then one has

max
f∈T (λ)

∆

(
r,
z

f

)
= 2πλ2r2(2 + λ2r2) for all 0 < r ≤ 1.

The maximum is attained by the rotation of kλ as defined by (3.2).

If we choose λ = 1 in Corollary 3.3, we get

Corollary 3.5. ([58, Theorem 3]) Let f ∈ S∗(β) := T (1, β) for some 0 ≤ β < 1. Then

we have

max
f∈S∗(β)

∆

(
r,
z

f

)
= 4π(1− β)2r2

2F1(2β − 1, 2β − 1; 2; r2) for 0 < r ≤ 1,

where the maximum is attained by the rotations of kβ as defined by (3.2).

We remark that when A = 1 and B = −1, Theorem 1.7 turns into [58, Theorem A]. If

we choose A = e−iα(e−iα−2β cosα) and B = −1 in Theorem 1.7, then we get Yamashita’s

extremal problem for the class Sα(β) (see [71, Theorem 3]). If we take A = 1 and

B = (1− α)/α, α ≥ 1/2, then Theorem 1.7 yields

Corollary 3.6. If α ≥ 1/2 and f ∈ S∗(1, (1− α)/α), then we have

max
f∈S∗(1,(1−α)/α)

∆

(
r,
z

f

)
= π

(
2− 1

α

)2

r2
2F1

(
α

1− α
,

α

1− α
; 2;

(
α− 1

α

)2

r2

)
,

for 0 < r ≤ 1, where the maximum is attained by the rotations of the function k1,(1−α)/α

as defined by (3.1).

If A = (b2 − a2 + a)/b and B = (1 − a)/b with a + b ≥ 1, a ∈ [b, 1 + b], then, as

a consequence of Theorem 1.7, we obtain the following result for functions in the class

introduced by Silverman (see Table 3.1 in Chapter 1 for the reference).
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Corollary 3.7. Let f ∈ S∗((b2 − a2 + a)/b, ((1− a)/b)). Then we have

max
f∈S∗((b2−a2+a)/b,((1−a)/b))

∆

(
r,
z

f

)
= πs2

1r
2

2F1

(
s2, s2; 2;

(
1− a
b

)2

r2

)
for 0 < r ≤ 1, where

s1 = (b2 − a2 + 2a− 1)/b and s2 = (b2 − a2 + a)/(1− a);

a + b ≥ 1, a ∈ [b, 1 + b]. The maximum is attained by the rotations of the function

k(b2−a2+a)/b,(1−a)/b) as defined by (3.1).

In Section 3.3, we present useful lemmas which are the main tools to prove our main

theorems.

3.3. Preparatory Results

If f ∈ A such that z/f is non-vanishing in D (eg. the non-vanishing condition is

ensured whenever f ∈ S), then

(3.5)
z

f(z)
= 1 +

∞∑
n=1

bnz
n, z ∈ D.

We first present a necessary coefficient condition for a function f of the form (3.5) to be

in S∗(A,B).

Lemma 3.8. Let f ∈ S∗(A,B) for −1 ≤ B ≤ 0 and A 6= B and f be of the form (3.5).

Then
∞∑
k=1

(
k2 − |B − A− kB|2

)
|bk|2 ≤ |A−B|2

holds.

Proof. Denoted by g(z) := z/f(z), f ∈ S∗(A,B). Then g has the form (3.5) and satisfies

the relation

zg′(z)

g(z)
= 1− zf ′(z)

f(z)
≺ 1− 1 + Az

1 +Bz
=

(B − A)z

1 +Bz
, z ∈ D.

43



Then by the definition of subordination, there exists an analytic function w : D→ D with

w(0) = 1 such that

zg′(z)

g(z)
=

(B − A)zw(z)

1 +Bzw(z)
, z ∈ D.

Writing this in series form, we get

∞∑
k=1

kbkz
k−1 =

(
(B − A) +

∞∑
k=1

(B − A− kB)bkz
k

)
w(z);

or equivalently

n∑
k=1

kbkz
k−1 +

∞∑
k=n+1

ckz
k−1 =

(
(B − A) +

n−1∑
k=1

(B − A− kB)bkz
k

)
w(z)

for certain coefficients ck. Since |w(z)| < 1 in D, by Parseval-Gutzmer formula (see also

Clunie’s method [18] and [19, 79, 80]), we obtain

n∑
k=1

k2|bk|2r2k−2 ≤ |A−B|2 +
n−1∑
k=1

|B − A− kB|2|bk|2r2k,

or equivalently,

(3.6)
n∑
k=1

k2|bk|2r2k−2 −
n−1∑
k=1

|B − A− kB|2|bk|2r2k ≤ |A−B|2.

If we take r = 1 and allow n→∞, then we obtain the desired inequality

∞∑
k=1

(
k2 − |B − A− kB|2

)
|bk|2 ≤ |A−B|2.

This completes the proof of our lemma.

Lemma 3.9. Let 0 < |A| ≤ 1 and f ∈ S∗(A, 0). For |z| < r, suppose that

z

f(z)
= 1 +

∞∑
k=1

bkz
k and e−Az = 1 +

∞∑
k=1

ckz
k, r ∈ (0, 1].

Then

(3.7)
N∑
k=1

k|bk|2r2k ≤
N∑
k=1

k|ck|2r2k

holds for each N ∈ N.
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Proof. Clearly, it suffices to prove the lemma for 0 < A ≤ 1. From Lemma 3.8, using the

equation (3.6) for B = 0, and then multiplying the resulting equation by r2 on both sides

shows that

(3.8)
n−1∑
k=1

(k2 − A2r2)|bk|2r2k + n2|bn|2r2n ≤ A2r2.

The function e−Az clearly shows that the equality, when n → ∞, in (3.8) attains for

bk = ck.

Step-I: Cramer’s Rule.

We consider the inequalities corresponding to (3.8) for n = 1, . . . , N and multiply the nth

coefficient by a factor λn,N . These factors are chosen in such a way that the addition of

the left sides of the modified inequalities results the left side of (3.7). For the calculation

of the factors λn,N we get the following system of linear equations

(3.9) k = k2λk,N +
N∑

n=k+1

λn,N(k2 − A2r2), k = 1, . . . , N.

Since the matrix of this system is an upper triangular matrix with positive integers

as diagonal elements, the solution of this system is uniquely determined. Cramer’s rule

allows us to write the solution of the system (3.9) in the form

λn,N =
((n− 1)!)2

(N !)2
DetAn,N ,

where An,N is the (N − n+ 1)× (N − n+ 1) matrix is constructed as follows:

An,N =


n n2 − A2r2 · · · n2 − A2r2

n+ 1 (n+ 1)2 · · · (n+ 1)2 − A2r2

...
...

...
...

N 0 · · · N2

 .

Determinants of these matrices can be obtained by expanding according to Laplace’s rule

with respect to the last row, wherein the first coefficient is N and the last one is N2. The

rest of the entries are zeros. This expansion and a mathematical induction results in the
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following formula. If k ≤ N − 1, then

λk,N = λk,N−1 −
1

N

(
1− A2r2

k2

) N−1∏
m=k+1

(
A2r2

m2

)
.

For fixed k ∈ N and N ≥ k, we see that the sequence {λk,N} is strictly non-increasing,

i.e. λk,N − λk,N−1 < 0 with

λk := lim
N→∞

λk,N =
1

k
−
(

1− A2r2

k2

) ∞∑
n=k+1

1

n

n−1∏
m=k+1

(
A2r2

m2

)
.

To prove that λk,N > 0 for all N ∈ N, 1 ≤ k ≤ N , it is adequate to show that λk ≥ 0

for k ∈ N. This will be completed in Step II. But before that we want to remark that the

proof of the said inequality is sufficient for the proof of the theorem, since we remarked

for (3.8), equality holds for bk = ck.

Step-II: Positivity of the Multipliers.

In this step again has to show

∞∑
n=k+1

1

n

n−1∏
m=k+1

(
A2r2

m2

)
≤ 1

k
(
1− A2r2

k2

) =
1

k

∞∑
n=0

(
A2r2

k2

)n
,

which is indeed easy to prove. The proof of our lemma is complete.

Lemma 3.10. Let −1 ≤ B < 0, A 6= B and f ∈ S∗(A,B). For |z| < r, suppose that

z

f(z)
= 1 +

∞∑
k=1

bkz
k and (1−Bz)1−A

B = 1 +
∞∑
k=1

ckz
k, r ∈ (0, 1].

Then for N ∈ N, the inequality

(3.10)
N∑
k=1

k|bk|2r2k ≤
N∑
k=1

k|ck|2r2k

is recognized.

Proof. As in the proof of Lemma 3.8, we can rewrite (3.6) in the form

(3.11)
n−1∑
k=1

(
k2 − |k − φ|2B2r2

)
|bk|2r2k + n2|bn|2r2n ≤ B2|φ|2r2,

where φ := 1− A/B. The function (1− Bz)1−A/B clearly shows that the equality, when

n→∞, in (3.11) attains for bk = ck.
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Rest of the proof is divided into two steps.

Step-I: Cramer’s Rule.

We consider the inequalities corresponding to (3.11) for n = 1, . . . , N and multiply the nth

coefficient by a factor λn,N . These factors are chosen in such a way that the addition of

the left sides of the modified inequalities results the left side of (3.10). For the calculation

of the factors λn,N we get the following system of linear equations

(3.12) k = k2λk,N +
N∑

n=k+1

λn,N
(
k2 − |k − φ|2B2r2

)
, k = 1, . . . , N.

Since the matrix of this system is an upper triangular matrix with positive integers as

diagonal elements, the solution of this system is uniquely determined. Cramer’s rule

allows us to write the solution of the system (3.12) in the form

λn,N =
((n− 1)!)2

(N !)2
DetAn,N ,

where An,N is the (N − n+ 1)× (N − n+ 1) matrix is constructed as follows:

An,N =


n n2 − |n− φ|2B2r2 · · · n2 − |n− φ|2B2r2

n+ 1 (n+ 1)2 · · · (n+ 1)2 − |n+ 1− φ|2B2r2

...
...

...
...

N 0 · · · N2

 .
Determinants of these matrices can be found by expanding according to Laplace’s rule

with respect to the last row, wherein the first coefficient is N and the last one is N2. The

rest of the entries are zeros. This expansion and a mathematical induction results in the

following formula. If k ≤ N − 1, then

λk,N = λk,N−1 −
1

N

(
1−

∣∣∣∣1− φ

k

∣∣∣∣2B2r2

)
N−1∏

m=k+1

∣∣∣∣1− φ

m

∣∣∣∣2B2r2.

Set as an abbreviation Uk = 1− |1− φ/k|2B2r2, we get

(3.13) λk,N = λk,N−1 −
1

N
Uk

N−1∏
m=k+1

(1− Um).

Note that Uk in (3.13) may be positive as well as negative for all k ∈ N. We investigate

this by including here a table (see Table 3.3).
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k A B r Uk

1 2 + i all 0.5 −5.25

1 1 + i all 0.4 0.2

2 −2 + i −1 0.5 0.375

2 −2 + i −1 0.8 −0.6

Table 3.3. Signs of the constant Uk

Case (i): Suppose that Uk is negative.

From the relation (3.13), we see that for fixed k ∈ N, k ≤ N − 1, the sequence {λk,N}

is strictly non-decreasing, i.e.

λk,N − λk,N−1 > 0

so that

λk,N > λk,N−1 > · · · > λk,k = 1/k > 0,

and thus λk ≥ 0 when N →∞ as required.

Case (ii): Suppose that Uk is positive.

For fixed k ∈ N, N ≥ k, the sequence {λk,N} is strictly non-increasing, i.e. λk,N −

λk,N−1 < 0 with

(3.14) λk := lim
N→∞

λk,N =
1

k
− Uk

∞∑
n=k+1

1

n

n−1∏
m=k+1

(1− Um).

For all N ∈ N, 1 ≤ k ≤ N , to prove that λk,N > 0, it is sufficient to prove λk ≥ 0 for

k ∈ N. This will be completed in Step II. But before that we want to annotate that the

proof of the said inequality is sufficient for the proof of the theorem, as we noted in the

beginning of the proof, equality is received for bk = ck.

Step-II: Positivity of the Multipliers.

Let for an abbreviation

Sk =
∞∑

n=k+1

1

n

n−1∏
m=k+1

(1− Um), k ∈ N.
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We now prove that

Sk ≤
1

kUk
.

From the relation (3.14), we get

λk =
1

k
− Sk + (1− Uk)Sk.

Again set for an abbreviation

Tk =
1

k
+ (1− Uk)Sk.

It is enough to prove that

(3.15) Tk ≤
1

kUk
.

To prove (3.15) we use the inequality

(3.16)
1

nUn
>

1

(n+ 1)Un+1

and the identity

(3.17)
1

nUn
=

1

n
+

1− Un
nUn

which are valid for each n ∈ N. Repeated application of (3.16) and (3.17) for n =

k, k + 1, . . . , P results the inequality

1

kUk
>

P∑
n=k

1

n

n−1∏
m=k

(1− Um) +

∏P
m=k(1− Um)

PUP
=: Sk,P +Rk,P , for k ≤ P .

Since Rk,P > 0, taking the limit as P →∞ we obtain

1

kUk
≥ lim

P→∞
Sk,P =

∞∑
n=k

1

n

n−1∏
m=k

(1− Um),

and we complete the inequality (3.15). This completes the proof of Lemma 3.10.
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3.4. Proofs of the Main Results

Proof of Theorem 3.1. Let f ∈ S∗(A, 0). By the definition of the class S∗(A, 0), it

suffices to assume that 0 < A ≤ 1 and

zf ′(z)

f(z)
≺ 1 + Az =

zk′A,0(z)

kA,0(z)
, z ∈ D.

By the subordination principle, we obtain that z/f(z) ≺ e−Az which in terms of the Taylor

coefficients may be written as

1 +
∞∑
n=1

bnz
n ≺ e−Az = 1 +

∞∑
n=1

cnz
n, cn = (−1)n

An

n!
.

By Lemma 3.9, we have

N∑
n=1

n|bn|2r2n ≤
N∑
n=1

n|cn|2r2n, N ∈ N, r ∈ (0, 1],

which implies that

∆

(
r,
z

f

)
= π

∞∑
n=1

n|bn|2r2n ≤ ∆

(
r,

z

kA,0

)
= π

∞∑
n=1

n|cn|2r2n.

We claim that

π
∞∑
n=1

n|cn|2r2n = EA,0(r),

where EA,0(r) = πA2r2
0F1(2;A2r2) with 0 < A ≤ 1. To prove the claim, we observe that

π−1∆

(
r,

z

kA,0

)
=
∞∑
n=1

n
A2n

(n!)2
r2n

= A2r2

∞∑
n=0

1

(2)n(1)n
A2nr2n

= A2r2
0F1(2;A2r2)

=: π−1EA,0(r)

and thus,

∆

(
r,
z

f

)
≤ ∆

(
r,

z

kA,0

)
= EA,0(r).

The equality case is obvious from z/kA,0(z) = e−Az. The proof of the theorem is complete.

�
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Proof of Theorem 1.7. Suppose f ∈ S∗(A,B), −1 ≤ B < 0 and A 6= B. Then by

setting g(z) = z/f(z), we write

zg′(z)

g(z)
= 1− zf ′(z)

f(z)
≺ 1− 1 + Az

1 +Bz
=

(B − A)z

1 +Bz
, z ∈ D.

By a well-known subordination result, we get

g(z) =
z

f(z)
≺ (1 +Bz)1−A

B =
z

kA,B(z)
,

where kA,B is defined by (3.1). If

z

f(z)
= 1 +

∞∑
n=1

bnz
n and

z

kA,B(z)
= 1 +

∞∑
n=1

cnz
n, |z| < r,

then Lemma 3.10 gives that

N∑
n=1

n|bn|2r2n ≤
N∑
n=1

n|cn|2r2n

for each N ∈ N and r ∈ (0, 1]. Allowing N →∞, we obtain

∆

(
r,
z

f

)
=
∞∑
n=1

n|bn|2r2n ≤ ∆

(
r,

z

kA,B

)
=
∞∑
n=1

n|cn|2r2n.

Clearly,

cn = (−1)n
(ζ)n
(1)n

Bn with ζ = (A/B)− 1.

Now, applying the area formula (3.3) for the function z/kA,B, we obtain

π−1∆

(
r,

z

kA,B

)
=
∞∑
n=1

n|cn|2r2n, |z| < r

=
∞∑
n=1

n
(ζ)n(ζ)n
(1)n(1)n

B2nr2n

= |ζ|2B2r2

∞∑
n=0

(ζ + 1)n(ζ + 1)n
(2)n(1)n

B2nr2n

= |A−B|2r2
2F1(A/B,A/B; 2;B2r2)

=: π−1EA,B(r),

and the proof of Theorem 1.7 is complete. �

We end this chapter with the following remarks.
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3.5. Concluding Remarks

It would be interesting to solve analog of Yamashita’s extremal problem (3.4) for many

interesting geometric subclasses of functions from S. For example, determining the analog

of Theorems 3.1 and 1.7 when zf ′ belongs to the class S∗(A,B) (see also [59, 71]) and

also for functions f in the Bazilevič class [13] or for functions convex in some direction,

would be interesting to study.
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CHAPTER 4

COEFFICIENT ESTIMATES FOR p-VALENT FUNCTIONS

This chapter concerns with the Taylor-Maclaurin coefficient estimates for some classes

of p-valent functions. This problem was initially studied by Aouf in [7, 8]. The proof

given by Aouf is found to be partially erroneous and a correct proof of it is derived in

this chapter. Section 4.1 provides an introduction. We study a sharp correct form of the

coefficient bounds for the classes S∗p (A,B, β),Fp(α, β, λ) and Cp(b, λ) and their proofs in

Section 4.2.

The results of this chapter will appear in:

Sahoo S.K., Sharma N.L., A note on a class of p-valent starlike functions of order beta,

Siberian Math. J., pages 6, Accepted.

and

Sharma N.L., A note on coefficient estimates for some classes of p-valent functions,

Ukrainian Math. J., pages 16, Accepted.

4.1. Introduction

We refer to Chapter 1 for related definitions and notations used in this chapter. In

Chapter 1, we consider the class S∗p (A,B, β) defined by the equation (1.17) and for special

values of A,B, β and p, the class S∗p (A,B, β) reduces to the following classes:

S∗p (1,−1, β) =: S∗p(β), S∗p(1,−1, 0) =: S∗p , S∗1 (1,−1, β) =: S∗(β), S∗1 (1,−1, 0) =: S∗,

and S∗1 (A,B, 0) =: S∗(A,B) with − 1 ≤ B < A ≤ 1.



Note that S∗p(β) is the class of p-valent starlike functions of order β and it was introduced

by Goluzina [29], and S∗p is the usual class of p-valent starlike functions.

In [62], Padmanabhan introduced the class of starlike functions of order λ (0 < λ ≤ 1)

defined as

Definition 4.1. A function f ∈ A is said to be in T (λ), if∣∣∣∣(zf ′(z)

f(z)
− 1

)/(zf ′(z)

f(z)
+ 1

)∣∣∣∣ < λ,

equivalently,

zf ′(z)

f(z)
≺ 1 + λz

1− λz
or

zf ′(z)

f(z)
≺ 1− λz

1 + λz
,

for all z ∈ D and 0 < λ ≤ 1.

A function f ∈ Ap is said to be p-valent α-spiral-like function of order β in D, if it is

analytic and if there exists a ρ > 0 such that for ρ < |z| < 1

Re

{
eiα

zf ′(z)

f(z)

}
> β cosα

and ∫ 2π

0

Re

{
eiα

zf ′(z)

f(z)

}
dθ = 2pπ,

for z = reiθ. The class of p-valent α-spiral-like of order β is denoted by Sα,p(β). In [63],

Patil and Thakare introduced the class Sα,p(β).

Two subclasses Fp(α, β, λ) and Cp(b, λ) of p-valent functions in D were acquainted by

Aouf in [8] which are defined as follows:

Definition 4.2. A function f ∈ Ap is said to belong to the class Fp(α, β, λ), if it satisfies

the following condition ∣∣∣∣H(f(z))− 1

H(f(z)) + 1

∣∣∣∣ < λ, z ∈ D,

where

H(f(z)) =
eiα zf

′(z)
f(z)
− β cosα− ip sinα

(p− β) cosα
.

By subordination property, equivalently, it can be written in the form (1.18) in Chapter 1.
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Definition 4.3. Let b be a non-zero complex number. For 0 < λ ≤ 1 and p ∈ N, let

Cp(b, λ) denote the class of functions f ∈ Ap satisfying the relation∣∣∣∣H(f(z))− 1

H(f(z)) + 1

∣∣∣∣ < λ for z ∈ D,

where

H(f(z)) = 1 +
1

pb

(
1 +

zf ′′(z)

f ′(z)
− p
)
.

By subordination relation, it can be written in the form (1.19) in Chapter 1.

We note that a number of subclasses have been studied by several authors and the

subclasses can be obtain by putting for different values of p, α, β, λ and b. We list some

of them here.

1. Fp(0, 0, 1) =: S∗p and Fp(0, β, 1) =: S∗p (β). Cp(1, 1) =: Cp and Cp((1 − β/p), 1) =:

Cp(β), 0 ≤ β < p, is the class of p-valent convex functions of order β (i.e. zg′/p ∈

S∗p(β)).

2. Fp(α, 0, 1) =: Sα,p and Fp(α, β, 1) =: Sα,p(β) are the classes of p-valent α-spiral-like

functions and p-valent α-spiral-like functions of order β, respectively.

3. Cp(e−iα cosα, 1) and Cp(e−iα(1 − β/p) cosα, 1) for |α| < π/2, are the classes of p-

valent functions g for which zg′/p are p-valent α-spiral-like functions and p-valent

α-spiral-like functions of order β, respectively.

4. The class F1(α, β, λ) =: F(α, β, λ) was inquired by Gopalakrishna and Umarani [34].

5. Cp(b, 1) is the class of p-valent functions g ∈ Ap and it satisfies

Re

{
p+

1

b

(
1 +

zg′′(z)

g′(z)
− p
)}

> 0 for z ∈ D.

This class was considered by Aouf in [6].

6. F1(0, 0, 1) =: S∗, F1(0, β, 1) =: S∗(β), C1(1, 1) =: C. The class C1(1 − β, 1) =:

C(β) is the class of convex functions of order β for 0 ≤ β < 1 and this class

was introduced by Robertson [77]. F1(0, 0, λ) =: T (λ) (see Definition 4.1), and

C1(1, λ) =: C(λ) is the class of functions g for which zg′ ∈ T (λ).

7. F1(α, 0, 1) =: Sα and C1(e−iα cosα, 1), |α| < π/2, respectively define the classes of

α-spiral-like functions and the class of functions g for which zg′ ∈ Sα was introduced
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by Robertson [78]; F1(α, β, 1) =: Sα(β) and C1

(
e−iα(1 − β) cosα, 1

)
=: Cα(β) for

|α| < π/2, are the classes of α-spiral-like functions of order β and functions g for

which zg′ is α-spiral-like of order β introduced by Chichra [17] and Sizuk [88].

8. C1(b, 1) =: C(b) is the class of functions g ∈ A and it satisfies

Re

(
1 +

1

b

zg′′(z)

g′(z)

)
> 0 for z ∈ D.

This class was introduced by Wiatrowski [97] and studied in [60, 61].

Aouf estimated the coefficient bounds for the functions from the classes S∗p (A,B, β);

Fp(α, β, λ) and Cp(b, λ) in [7, 8], receptively, in which the proof is found to be incorrect.

In this chapter, we present their correct proofs.

4.2. Coefficient Estimates

The following Lemma is obtained by Goel and Mehrok:

Lemma 4.4. [27, Theorem 1] Let −1 ≤ B < A ≤ 1 and f ∈ S∗(A,B). Then

(4.1) |a2| ≤ A−B;

for A− 2B ≤ 1, n ≥ 3,

(4.2) |an| ≤
A−B
n− 1

;

and for A− (n− 1)B > (n− 2), n ≥ 3,

(4.3) |an| ≤
1

(n− 1) !

n∏
j=2

(A− (j − 1)B).

The equality signs in (4.1) and (4.2) are attained for the rotation of the functions

kn,A,B(z) =

 z(1 +Bzn−1)(A−B)/(n−1)B, if B 6= 0;

z exp
(

Azn−1

n−1

)
, if B = 0,

,

and in (4.3) equality is attained for the rotation of the functions

kA,B(z) =

 z(1 +Bz)(A−B)/B, if B 6= 0;

zeAz, if B = 0,
.
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However, a p-valent analog of Lemma 4.4 was wrongly proven by Aouf in the following

form:

Theorem A. [7, Theorem 3] Let −1 ≤ B < A ≤ 1 and p ∈ N. If f(z) = zp +∑∞
n=p+1 anz

n ∈ S∗p(A,B, β), then

|an| ≤
n−p−1∏
j=0

|(B − A)(p− β) +Bj|
j + 1

,

for n ≥ p+ 1, and these bounds are sharp for all admissible A,B, β and for each n.

The following theorems were mistakenly proven by Aouf in [8].

Theorem B. [8, Theorem 2] Let 0 < λ ≤ 1, 0 ≤ β < p, p ∈ N and |α| < π/2. If

f(z) ∈ Fp(α, β, λ) and has the form (1.16), then

|an| ≤
n−p−1∏
j=0

λ
∣∣j + 2(p− β)e−iα cosα

∣∣
j + 1

,

for n ≥ p+ 1, and these bounds are sharp for all admissible α, β, λ and for each n.

Theorem C. [8, Theorem 3] Let 0 < λ ≤ 1, p ∈ N and b 6= 0 be any complex number. If

f(z) ∈ Cp(b, λ) and has the form (1.16), then

|an| ≤
n−p−1∏
j=0

λ|j + 2bp|
j + 1

,

for n ≥ p+ 1, and these bounds are sharp for all admissible α, β, λ and for each n.

In Chapter 1, we provided the correct form (Theorem 1.8) of the coefficients bounds

for the function f ∈ S∗p (A,B, β) as stated in Theorem A.

Proof of Theorem 1.8. Let f ∈ S∗p (A,B, β). By the relation (1.17), we can guarantee

an analytic function φ : D→ D with φ(0) = 0 such that

zf ′(z)

pf(z)
=

1 +
[
B + (A−B)(1− β/p)

]
φ(z)

1 +Bφ(z)
,

i.e.

zf ′(z)− pf(z) =
[
(pB + (A−B)(p− β))f(z)−Bzf ′(z)

]
φ(z).
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Substituting the series expansion (1.16), of f , and cancelling the factor zp on both sides,

we obtain

∞∑
k=1

kap+kz
k =

(
(A−B)(p− β)−

∞∑
k=1

[
B(p+ k) + (−pB + (B − A)(p− β))

]
ap+kz

k

)
φ(z).

Rewriting it, we get

∞∑
k=1

kap+kz
k =

(
(A−B)(p− β) +

∞∑
k=1

[
A(p− β)−B(k + p− β)

]
ap+kz

k

)
φ(z).

By Clunie’s method [18] (for instance see [80, 79]) for n ∈ N, we observe that

n∑
k=1

k2|ap+k|2 ≤ (A−B)2(p− β)2 +
n−1∑
k=1

[
A(p− β)−B(k + p− β)

]2|ap+k|2.
Simplification of the above inequality leads to

|ap+n|2 ≤
1

n2

(
(A−B)2(p− β)2 +

n−1∑
k=1

([
A(p− β)−B(k + p− β)

]2 − k2
)
|ap+k|2

)
or

|ap+n|2 ≤
1

n2

(
(A−B)2(p− β)2 +

n∑
k=2

([
A(p− β)−B(k + p− β − 1)

]2
− (k − 1)2

)
|ap+k−1|2

)
.

Above inequality can be rewritten by replacing p+ n by n as

|an|2 ≤
1

(n− p)2

(
(A−B)2(p− β)2 +

n−p∑
k=2

([
A(p− β)−B(k + p− β − 1)

]2
(4.4)

− (k − 1)2
)
|ap+k−1|2

)
for n ≥ p+ 1.

Note that the terms under the summation in the right hand side of (4.4) may be positive

as well as negative. We investigate it by including here a table (see Table 4.1) for values

of W :=
(
A(p − β) − B(k + p − β − 1)

)2 − (k − 1)2 for various choices of A,B, k, β and

p. So, we can not apply direct mathematical induction in (4.4) to establish the required

bounds for |an|. Therefore, we are considering different cases for this.
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k p A B β W

2 1 0.8 0.5 0 -0.96

2 1 -0.5 -0.8 0 0.21

3 2 0.5 0.4 0.5 -3.5775

3 2 -0.1 -0.7 0.5 1.29

Table 4.1. Signs of the constant W

(This is the place where the incorrectness of Aouf’s proof is found!)

First, for n = p+ 1, we easily see that (4.4) reduces to

|ap+1| ≤ (A−B)(p− β),

which establishes (1.23).

Secondly, A(p−β)−B(p−β−1) ≤ 1 if and only if A(p−β)−B(n−β−1) ≤ (n−p−1)

for n ≥ p+2. Since all the terms under the summation in (4.4) are non-positive, it reduces

to

|an| ≤
(A−B)(p− β)

n− p
,

for A(p − β) − B(p − β + 1) ≤ 1, n ≥ p + 2. This proves (1.24). The equality holds in

(1.23) and (1.24) for the rotation of the functions

kn,p,A,B,β(z) =

 zp
(
1 +Bzn−1

)(A−B)(p−β)/(n−1)B
, B 6= 0;

zp exp
(

A(p−β)zn−1

n−1

)
, B = 0,

.

Finally, let us prove (1.25) when A(p−β)−B(n−β−1) > (n−p−1), n ≥ p+ 2. We

see that all the terms under the summation in (4.4) are positive. We prove the inequality

by the usual mathematical induction. Fix n, n ≥ p+ 2 and suppose that (1.25) holds for
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k = 3, 4, . . . , n− p. Then from (4.4), we find

|an|2 ≤
1

(n− p)2

(
(A−B)2(p− β)2 +

n−p∑
k=2

([
A(p− β)−B(k + p− β − 1)

]2 − (k − 1)2
)(4.5)

k−1∏
j=1

[
A(p− β)−B(p− β + j − 1)

]2
j2

)
.

It is now enough to show that the square of the right hand side of (1.25) is equal to the

right hand side of (4.5), that is

m−p∏
j=1

[
A(p− β)−B(p− β + j − 1)

]2
j2

=
1

(m− p)2

(
(A−B)2(p− β)2

(4.6)

+

m−p∑
k=2

([
A(p− β)−B(k + p− β − 1)

]2 − (k − 1)2
) k−1∏
j=1

[
A(p− β)−B(p− β + j − 1)

]2
j2

)
,

for A(p−β)−B(m−β−1) > (m−p−1), m ≥ p+2. We also use the induction principle

to prove (4.6).

The equation (4.6) is recognized for m = p + 2. Suppose that (4.6) is true for all

m, p+ 2 < m ≤ n− p. Then from (4.5), we obtain

|an|2 ≤
1

(n− p)2

(
(A−B)2(p− β)2 +

n−p−1∑
k=2

([
A(p− β)−B(k + p− β − 1)

]2 − (k − 1)2
)

×
k−1∏
j=1

[
A(p− β)−B(p− β + j − 1)

]2
j2

+
([
A(p− β)−B(n− β − 1)

]2
− (n− p− 1)2

)
×

n−p−1∏
j=1

[
A(p− β)−B(p− β + j − 1)

]2
j2

)
.

Using the induction hypothesis, for m = n− 1, we get

|an|2 ≤
1

(n− p)2

(
(n− p− 1)2

n−p−1∏
j=1

[
A(p− β)−B(p− β + j − 1)

]2
j2

+
([
A(p− β)−B(n− β − 1)

]2 − (n− p− 1)2
) n−p−1∏

j=1

[
A(p− β)−B(p− β + j − 1)

]2
j2

)
.
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hn p A B β

h1 2 5/6 0 0.5

h2 3 1/2 0 1

h3 2 5/6 −1 0.5

h4 3 1/2 −0.6 1

Table 4.2. The extremal function hn

- 2 -1 0 1 2 3

- 3

- 2

-1

0

1

2

3

The image domain h1(D)
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The image domain h2(D)

Figure 4.1. Images of the unit disk under h1 and h2.

Hence

|an| ≤
n−p∏
j=1

[
A(p− β)−B(p− β + j − 1)

]
j

.

It is easy to prove that the bounds are sharp for the rotation of the functions

kp,A,B,β(z) =

 zp
(
1 +Bz

)(A−B)(p−β)/B
, B 6= 0;

zpeA(p−β)z, B = 0,
.

This completes the proof of Theorem 1.3. We remark that, choosing p = 1 and β = 0 in

Theorem 1.3, it turns into Lemma 4.4.

For different values of p,A,B and β (see Table 4.2), the images of the unit disk under

the extremal functions hn := kp,A,B,β are described in Figures 4.1 & 4.2.
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Figure 4.2. Images of the unit disk under h3 and h4.

Secondly, we now give the correct form of the coefficients bounds for f ∈ Fp(α, β, λ)

as stated in Theorem B and its proof.

Theorem 4.5. Let 0 < λ ≤ 1, 0 ≤ β < p, p ∈ N and |α| < π/2. If f ∈ Fp(α, β, λ) is in

the form (1.16), then we have

(4.7) |ap+1| ≤ 2λ(p− β) cosα;

for λ2
(
2p− 2β + (n− p− 1)

)2 ≤ (n− p− 1)2
(

sec2 α− λ2 tan2 α
)
,

(4.8) |an| ≤
2λ(p− β)

n− p
cosα, n ≥ p+ 2;

and for λ2
(
2p− 2β + (n− p− 1)

)2
> (n− p− 1)2

(
sec2 α− λ2 tan2 α

)
,

(4.9) |an| ≤
n−p∏
j=1

λ
∣∣2(p− β)e−iα cosα + j − 1

∣∣
j

, n ≥ p+ 2.

The equality signs in (4.7), (4.8) and (4.9) are attained.

Proof. Let f ∈ Fp(α, β, λ). It follows from (1.18) that

eiα
zf ′(z)

pf(z)
=

(
1 + (1− (2β)/p)λφ(z)

1− λφ(z)

)
cosα + i sinα,
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for some analytic function φ in D with φ(0) = 0 and |φ(z)| < 1. We divide the expansion

by cosα on both sides and get

eiα secαzf ′(z)− (p+ ip tanα)f(z) = λ
(
eiα secαzf ′(z) + (p− 2β − ip tanα)f(z)

)
φ(z).

Substituting this in the series expansion (1.16), of f , we find that

∞∑
k=0

(
eiα(k + p) secα− p− ip tanα

)
ak+pz

k+p

= λ

(
∞∑
k=0

(
eiα(k + p) secα + p− 2β − i tanα

)
ak+pz

k+p

)
φ(z),

where ap = 1 and φ(z) =
∑∞

k=0 wk+pz
k+p. Rewriting it, we obtain

m∑
k=0

(
eiα(k + p) secα− p− ip tanα

)
ak+pz

k+p +
∞∑

k=m+1

Ckz
k+p

= λ

(
m−1∑
k=0

(
eiα(k + p) secα + p− 2β − i tanα

)
ak+pz

k+p

)
φ(z)

for certain coefficients Ck. Since |φ(z)| < 1 in D, then by Parseval-Gutzmer formula (see

also Clunie’s method [18] and [80, 79]), we get

m∑
k=0

∣∣∣eiα(k + p) secα− p− ip tanα
∣∣∣2|ak+p|2r2p+2k +

∞∑
k=m+1

|Ck|2r2p+2k

≤ λ2

(
m−1∑
k=0

∣∣∣eiα(k + p) secα + p− 2β − i tanα
∣∣∣2|ak+p|2r2p+2k

)
.

Letting r → 1, the above inequality can be written as

∣∣∣eiα(m+ p) secα− p− ip tanα
∣∣∣2|am+p|2 ≤

m−1∑
k=0

(
λ2
∣∣∣eiα(k + p) secα + p− 2β − i tanα

∣∣∣2
−
∣∣∣eiα(k + p) secα− p− ip tanα

∣∣∣2)|ak+p|2.

Simplification of the above inequality leads

m2 sec2 α|am+p|2 ≤
m−1∑
k=0

(
λ2(k + 2p− 2β)2 − k2(sec2 α− λ2 tan2 α)

)
|ak+p|2
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k p α β λ T

all 1 all all 1 positive

2 1 ±π/4 0.9 0.9 −0.0236

3 2 ±π/3 1 0.6 −5.92

3 2 ±π/3 1 0.8 1.92

Table 4.3. Signs of the constant T

(This is the place where the incorrectness of Aouf’s proof is found!)

or

|am+p|2 ≤
cos2 α

m2

(
4λ2(p− β)2 +

m∑
k=2

(
λ2(k − 1 + 2p− 2β)2

− (k − 1)2(sec2 α− λ2 tan2 α)
))
|ak+p−1|2.

Above inequality can be rewritten by replacing m+ p by n as

|an|2 ≤
cos2 α

(n− p)2

(
4λ2(p− β)2 +

n−p∑
k=2

(
λ2(k − 1 + 2p− 2β)2

(4.10)

− (k − 1)2(sec2 α− λ2 tan2 α)
))
|ak+p−1|2, for n ≥ p+ 1.

Note that the terms under the summation in the right hand side of (4.10) may be positive

as well as negative. We verify it by including here a table (see Table 4.3) for values of

T := λ2(k − 1 + 2p− 2β)2 − (k − 1)2(sec2 α− λ2 tan2 α)

for various choices for k, p, α, β and λ. So, we can not apply direct principle of math-

ematical induction in (4.10) to establish the desired bounds for |an|. Therefore, we are

considering different cases for this.

First, for n = p+ 1, we readily see that (4.10) reduces to

|ap+1| ≤ 2λ(p− β) cosα,
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which is equivalent to (4.7).

Secondly, λ2
(
2p− 2β + (n− p− 1)

)2 ≤ (n− p− 1)2
(

sec2 α− λ2 tan2 α
)

for n ≥ p+ 2.

Since all the terms under the summation in (4.10) are negative, we get

|an| ≤
2λ(p− β)

n− p
cosα.

This gives the bound for |an| as asserted in (4.8). The equality holds in (4.7) and (4.8)

for the rotation of the functions

kn,p,α,β,λ,(z) =
zp

(1 + λzn−1
)ζn .

Here ζn := 2(p− β)e−iα cosα/(n− 1).

Finally, we consider the case λ2
(
2p−2β+(n−p−1)

)2
> (n−p−1)2

(
sec2 α−λ2 tan2 α

)
for n ≥ p + 2 and obtain bound for |an| as stated in (4.9). We see that all the terms

under the summation in (4.10) are non-negative. We prove the inequality by the usual

induction principle. Fix n, n ≥ p+ 2 and suppose that (4.9) holds for k = 3, 4, . . . , n− p.

Then by (4.10), we obtain

|an|2 ≤
cos2 α

(n− p)2

(
4λ2(p− β)2 +

n−p∑
k=2

(
λ2(2p− 2β + k − 1)2

(4.11)

− (k − 1)2(sec2 α− λ2 tan2 α)
)) k−1∏

j=1

λ2
∣∣2(p− β)e−iα cosα + j − 1

∣∣2
j2

.

It is now sufficient to prove that the square of the right hand side of (4.9) is equal to the

right hand side of (4.11), that is

m−p∏
j=1

λ2
∣∣2(p− β)e−iα cosα + j − 1

∣∣2
j2

=
cos2 α

(m− p)2

(
4λ2(p− β)2 +

m−p∑
k=2

(
λ2(2p− 2β + k − 1)2

(4.12)

− (k − 1)2(sec2 α− λ2 tan2 α)
)) k−1∏

j=1

λ2
∣∣2(p− β)e−iα cosα + j − 1

∣∣2
j2

,
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when λ2
(
2p− 2β + (m− p− 1)

)2
> (m− p− 1)2

(
sec2 α− λ2 tan2 α

)
for m ≥ p+ 2.

The equation (4.12) is valid for m = p + 2. Suppose that (4.12) is true for all

m, p+ 2 < m ≤ n− p. Then by (4.11), we obtain

|an|2 ≤
cos2 α

(n− p)2

{
4λ2(p− β)2 +

n−p−1∑
k=2

(
λ2(2p− 2β + k − 1)2

− (k − 1)2(sec2 α− λ2 tan2 α)
) k−1∏
j=1

λ2
∣∣2(p− β)e−iα cosα + j − 1

∣∣2
j2

+

(
λ2(2p− 2β + n− p− 1)2 − (n− p− 1)2(sec2 α− λ2 tan2 α)

)

×
n−p−1∏
j=1

λ2
∣∣2(p− β)e−iα cosα + j − 1

∣∣2
j2

}
.

By induction hypothesis for m = n− 1, we get

|an|2 ≤
cos2 α

(n− p)2

{
(n− p− 1)2

cos2 α

n−p−1∏
j=1

λ2
∣∣2(p− β)e−iα cosα + j − 1

∣∣2
j2

+

(
λ2(2p− 2β + n− p− 1)2 − (n− p− 1)2(sec2 α− λ2 tan2 α)

)

×
n−p−1∏
j=1

λ2
∣∣2(p− β)e−iα cosα + j − 1

∣∣2
j2

}
,

i.e

|an|2 ≤
λ2

(n− p)2

(
(2p− 2β + n− p− 1)2 cos2 α + (n− p− 1)2 sin2 α)

)

×
n−p−1∏
j=1

λ2
∣∣2(p− β)e−iα cosα + j − 1

∣∣2
j2

.

On simplification, the above inequality leads to

|an| ≤
n−p∏
j=1

λ
∣∣2(p− β)e−iα cosα + j − 1

∣∣
j

.

It is easy to prove that the bounds are sharp as can be seen by the rotation of the function

kp,α,β,λ(z) =
zp

(1 + λz)ζ
.
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kn p α β λ

k1 2 π/4 1 0.5

k2 2 π/4 1.5 0.9

k3 3 −π/3 2 0.8

k4 3 −π/3 0.5 0.2

Table 4.4. The extremal function kn
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Figure 4.3. Images of the unit disk under k1 and k2.

Here ζ := 2(p− β)e−iα cosα. This completes the proof of Theorem 4.5.

Remark 4.6. Letting the different values of p, α, β and λ in Theorem 4.5, we obtain

results which were proved in [29, 30, 31, 34, 49, 63, 64, 77, 100].

For different values of p, α, β and λ (see Table 4.4), the images of the unit disk under the

extremal functions kn := kp,α,β,λ are described in Figures 4.3 & 4.4. We now give the

correct form of the statement stated in Theorem C and its proof.

Theorem 4.7. Let 0 < λ ≤ 1, p ∈ N and b 6= 0 be any complex number. If f ∈ Cp(b, λ)

is of the form (1.16), then we have

(4.13) |ap+1| ≤
2λp2|b|
1 + p

;
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Figure 4.4. Images of the unit disk under k3 and k4.

for |2bp+ n− p− 1| ≤ n− p− 1 (equivalently |1 + 2bp| ≤ 1), we get

(4.14) |an| ≤
2λp2|b|
n(n− p)

, n ≥ p+ 2;

and for |2bp+ n− p− 1| > n− p− 1,

(4.15) |an| ≤
p

n

n−p−1∏
j=0

λ|j + 2bp|
j + 1

, n ≥ p+ 2.

The equality signs in (4.13), (4.14) and (4.15) are attained.

Proof. Let f(z) ∈ Cp(b, λ). By the equation (1.19), we see that there is an analytic

function φ : D→ D with φ(0) = 0 such that

1 +
zf ′′(z)

f ′(z)
=
p(1 + (2b− 1)λφ(z))

1− λφ(z)
,

or

zf ′′(z)− (p− 1)f ′(z) = −λ
(

(p− 2bp− 1)f ′(z)− zf ′′(z)
)
φ(z).

Using the representation (1.16), we observe that

∞∑
k=1

k(k + p)ak+pz
k = λ

(
2p2b+

∞∑
k=1

(k + p)(k + 2bp)ak+pz
k
)
φ(z).
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k p b λ V

2 1 1 0.1 −3.998

2 1 1 0.6 1.76

4 2 3− 2i 0.2 −3.2

4 2 3− 2i 0.3 12.8

Table 4.5. Signs of the constant V

(This is the place where the in correctness of Aouf’s proof is found!)

We apply Clunie’s method [18] for m ∈ N (see also [80, 79]) and obtain

m∑
k=1

k2(k + p)2|ak+p|2 ≤ λ2
(

4p4|b|2 +
m−1∑
k=1

(k + p)2|k + 2bp|2|ak+p|2
)
.

The above inequality yields

|am+p|2 ≤
1

m2(m+ p)2

(
4λ2p4|b|2 +

m−1∑
k=1

(k + p)2
(
λ2|k + 2bp|2 − k2

)
|ak+p|2

)
.

Replacing m+ p by n, we get

|an|2 ≤
1

n2(n− p)2

(
4λ2p4|b|2 +

n−p−1∑
k=1

(k + p)2
(
λ2|k + 2bp|2 − k2

)
|ak+p|2

)
(4.16)

for n ≥ p+ 1.

Note that the terms under the summation in the right hand side of (4.16) may be

positive as well as negative. We inspect this by including here a table (see Table 4.5) for

values of

V := λ2|k + 2bp|2 − k2

for different choices of k, p, b and λ. So, we can not apply direct mathematical induction

in (4.16) to prove the required coefficients bounds for f ∈ Cp(b, λ). Therefore, we are

taking different cases for this.
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First, for n = p+ 1, (4.16) reduces to

|ap+1| ≤
2λp2|b|
1 + p

.

This proves (4.13).

Secondly, we consider the case |2bp+n−p−1| ≤ n−p−1 (equivalently, |1+2bp| ≤ 1)

for n ≥ p+ 2. Since all the terms under the summation in (4.16) are non-positive, we get

|an| ≤
2λp2|b|
n(n− p)

,

which establishes (4.14). The equality holds in (4.13) and (4.14) for the rotation of the

functions kn,p,b,λ ∈ Cp(b, λ) given by

k′n,p,b,λ(z) =
pzp−1

(1 + λzn−1)2bp/(n−1)
.

Finally, we prove (4.15) when |1+2bp| ≥ |2bp+n−p−1| > n−p−1 for n ≥ p+2. We see

that all the terms under the summation in (4.16) are positive. We prove the inequality by

the mathematical induction. We consider that (4.15) holds for k = 3, 4, . . . , n− p. Then

from (4.16), we obtain

(4.17) |an|2 ≤
1

n2(p− n)2

(
4λ2p4|b|2 +

n−p−1∑
k=1

p2
(
λ2|k + 2bp|2 − k2

) k−1∏
j=0

λ2|j + 2bp|2

(j + 1)2

)
.

We now prove that the square of the right hand side of (4.15) is equal to the right

hand side of (4.17), that is

m−p−1∏
j=0

λ2|j + 2bp|2

(j + 1)2
=

1

(p−m)2

(
4λ2p2|b|2 +

n−p−1∑
k=1

(
λ2|k + 2bp|2 − k2

)
(4.18)

×
k−1∏
j=0

λ2|j + 2bp|2

(j + 1)2

)
,

when |2bm+ p− p− 1| > m− p− 1, m ≥ p+ 2.

For m = p + 2, the equation (4.18) is recognized. Suppose that (4.18) is true for all

m, p+ 2 < m ≤ n− p. Then from (4.17), we obtain

70



|an|2 ≤
1

n2(p− n)2

(
4λ2p4|b|2 +

n−p−2∑
k=1

p2
(
λ2|k + 2bp|2 − k2

) k−1∏
j=0

λ2|j + 2bp|2

(j + 1)2

+ p2
(
λ2|n− p− 1 + 2bp|2 − (n− p− 1)2

) n−p−2∏
j=0

λ2|j + 2bp|2

(j + 1)2

)
.

Using relation (4.18) for m = n− 1, we find that

|an|2 ≤
1

n2(p− n)2

(
p2(p− n+ 1)2

n−p−2∏
j=0

λ2|j + 2bp|2

(j + 1)2

+ p2
(
λ2|n− p− 1 + 2bp|2 − (n− p− 1)2

) n−p−2∏
j=0

λ2|j + 2bp|2

(j + 1)2

)
.

It is equivalent to

|an| ≤
pλ|j + 2bp|
n(p− n)

n−p−2∏
j=0

λ|j + 2bp|
(j + 1)

,

Which establishes (4.15).

The bounds are sharp for the rotation of the function kp,b,λ ∈ Cp(b, λ) which is given

by

k′p,b,λ(z) =
pzp−1

(1 + λz)2bp
.

This completes the proof of Theorem 4.5.

Remark 4.8. Letting the different values of p, b and λ in Theorem 4.7, we obtain results

which were proved in [6, 31, 77, 97].

For different values of p, b and λ (see Table 4.6), the images of the unit disk under the

extremal functions gn := k′p,b,λ(z) are described in Figures 4.5 & 4.6.

We end this chapter here.
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gn p b λ

g1 2 1 + i 0.4

g2 2 2− 3i 0.4

g3 3 1− 2i 0.7

g4 3 3− 2i 0.7

Table 4.6. The extremal function gn

- 30 - 20 -10 0 10

- 20

-10

0

10

20

The image domain g1(D)

-1500 -1000 - 500 0 500 1000

-1000

- 500

0

500

1000

1500

The image domain g2(D)

Figure 4.5. Images of the unit disk under g1 and g2.
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Figure 4.6. Images of the unit disk under g3 and g4.
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CHAPTER 5

INTEGRAL MEANS AND MAXIMAL AREA INTEGRAL

PROBLEMS FOR p-VALENT FUNCTIONS

This chapter is composed of two types of problems. First one is the integral means and

second one is the maximal area integral problems for certain classes of p-valent functions.

The structure of this chapter is as follows. Section 5.1 gives some preliminary information

on the family S∗p (A,B) and other basic definitions that are used in the sequel. Section 5.2

and 5.3 deal with the statements of our main results and some of their important conse-

quences. In section 5.4, we state and prove some lemmas which are used as tools to prove

our main results. We prove our main results in Section 5.5. Finally, in section 5.6, we

propose some open problems.

The results of this chapter have been included in:

Sharma N.L., Integral means and maximum area integral problems for certain family of

p-valent functions, Communicated.

5.1. Basic Information

The motivation to study p-valent functions comes from the theory of univalent func-

tions. One of the basic problems in p-valent function theory is to see how results from

univalent function theory fit analogously into the theory of p-valent functions for p ≥ 2.

Background on some of the important problems in the theory of p-valent functions, for

instance, can be found in [16, 31, 29, 63, 64, 75]. However, in this collection, the clas-

sical integral means and area problems have not been studied in p-valent setting, which

is our objective in this chapter.



Recall, we considered the class S∗p (A,B) in Chapter 1 by (1.22) with the conditions

A ∈ C, A 6= B and −1 ≤ B ≤ 0. The function kA,B,p, defined by (1.26), plays the role of

an extremal function for the class S∗p (A,B).

Choosing A = λe−iα(e−iα − (2β/p) cosα) and B = −λ, the class S∗p (A,B) reduces to

the class Fp(α, β, λ) of functions f ∈ Ap, satisfying the relation

(5.1) eiα
zf ′(z)

pf(z)
≺ eiα + (e−iα − (2β/p) cosα)λz

1− λz
, z ∈ D,

or the equation (5.1) is equivalent to the equation (1.18) (see also Definition 4.2). Here

0 < λ ≤ 1, 0 ≤ β < p, p ∈ N and |α| < π/2. In Chapter 4, we obtained the correct forms

of the coefficient bounds for functions to be in the class Fp(α, β, λ) and other related

classes of p-valent functions. If we take different values of p, α, β and λ in the class

Fp(α, β, λ), then we get certain subclasses of p-valent functions (see p. 55, Chapter 4). It

is easy to see that the function kp,α,β,λ is defined by

(5.2) kp,α,β,λ(z) =
zp

(1− λz)ξ
, ξ = 2(p− β)eiα cosα

belongs to the class Fp(α, β, λ).

We note that, by taking distinct parameters A,B and p in the class S∗p (A,B), we

get the following classes which were investigated and studied by several authors. We list

down some of them as follows:

1. S∗p (1− (2β/p),−1) =: S∗p (β), 0 ≤ β < p and S∗p (1,−1) =: S∗p .

2. S∗p ((1−(2β/p))λ,−λ) =: Tp(λ, β) (i.e. Fp(0, β, λ) =: Tp(λ, β)), the class of p-valent

functions of T (λ, β) which is studied in [8].

3. The class S∗1 ((1− 2β)λ,−λ) =: T (λ, β) (0 ≤ β < 1) (see Table 3.1).

4. S∗1 (β) =: S∗(β) (0 ≤ β < 1) and S∗1 (1,−1) =: S∗.

In this chapter, we consider the functions f in Ap (p ∈ N) such that zp/f is non-

vanishing in D, hence it can be represented as Taylor’s series of the form

(5.3)
zp

f(z)
= 1 +

∞∑
n=1

bn+p−1z
n, z ∈ D.
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5.2. Integral Means Problems

Suppose, f ∈ Ap, let us consider the integral means

M(r, f, p, λ1, λ2) =
1

2π

∫ π

−π
|f(reiθ)|λ1|f ′(reiθ)|λ2dθ,

for λ1, λ2 ∈ R and r ∈ (0, 1). For the special case λ1 = −2 and λ2 = 0, we find the

following interesting integral means such that

I1(r, f, p) := M(r, f, p,−2, 0) =
1

2π

∫ π

−π

1

|f(reiθ)|2
dθ.

The integral means L1(r, f, p) := r2pI1(r, f, p) defined in Chapter 1 by (1.20).

One of the motivation to study this form of the integral means comes from the fol-

lowing observations. The integral means L1(r, f, 1) are associated with some functionals

appearing in planar fluid mechanics concerning isoperimetric problems for moving phase

domains; see [95, 96]. Another aim to study integral means problem was to solve the

Bieberbach conjecture; see [22, 80] and references therein. In 2002, Gromova and Vasil’ev

[36] made a conjecture that if f ∈ S∗(β) := S∗1 (1−2β,−1) for β ∈ [0, 1), then the estimate

L1(r, f) := L1(r, f, 1) ≤ Γ(5− 4β)

Γ2(3− 2β)

holds, where Γ is the classical gamma function. The estimate was proven sharp only for

β = 0 and β = 1/2. This conjecture has been recently settled by Ponnusamy and Wirths

in [71] for a more general setting by considering the family S∗(A,B) := S∗1 (A,B) with

−1 ≤ B < A ≤ 1.

In this chapter, we estimate the quantity L1(r, f, p) for f ∈ S∗p (A,B), A ∈ C, −1 ≤

B ≤ 0 and A 6= B and for other related class of p-valent functions. We stated our first

main result by Theorem 1.9 in Section 1.3 and its proof presented in Section 5.5. We now

discuss some of their consequences.

We remark that when p = 1 in Theorem 1.9, then we obtain [71, Theorem 1]. For

A = 1− (2β/p) and B = −1, Theorem 1.9 implies the following corollaries:
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Corollary 5.1. For 0 ≤ β < p and p ∈ N, let f ∈ S∗p (β). Then we have

L1(r, f, p) ≤ Γ(1 + 4(p− β))

Γ2(1 + 2(p− β))
, r ∈ (0, 1].

In particular, we have

• L1(r, f, p) ≤ Γ(1 + 4p)/Γ2(1 + 2p) for f ∈ S∗p .

• L1(r, f, 1) =: L1(r, f) ≤ Γ(5 − 4β)/Γ2(3 − 2β) for f ∈ S∗(β) and L1(r, f) ≤ 6 for

f ∈ S∗1 (0) =: S∗ (see [71, Corollary 1]).

All inequalities are sharp.

Moreover, choosing B = −A in Theorem 1.9, we have

Corollary 5.2. Let f ∈ S∗p (A,−A) for 0 < A ≤ 1 and p ∈ N. Then we have

L1(r, f, p) ≤ 2F1(−2p,−2p; 1;A2), 0 < r ≤ 1.

In particular, L1(r, f, 1) ≤ 1 + 4A2 + A4 for f ∈ S∗1 (A,−A) (see [71, Corollary 2]).

If we choose A = λe−iα(pe−iα − 2β cosα)/p and B = −λ, then

pφ = p

(
A

B
− 1

)
= −e−iα(pe−iα − 2β cosα)− p

= −2e−iα(p− β) cosα =: −ξ.

By Theorem 1.9, for B 6= 0, we get the following integral means for f ∈ Fp(α, β, λ) :=

S∗p (λe−iα(e−iα − (2β/p) cosα),−λ).

Theorem 5.3. For 0 < λ ≤ 1, 0 ≤ β < p, p ∈ N and |α| < π/2. Let f ∈ Fp(α, β, λ) be

such that zp/f has the form (5.3), then we have

L1(r, f, p) := r2pI1(r, f, p) ≤
∞∑
n=0

∣∣ξCn∣∣2λ2n,

where ξ = 2(p − β)e−iα cosα and ξCn denotes the combination. The equality is attained

for the functions kp,α,β,λ as defined by (5.2).

If we let λ = 1, then Theorem 5.3 yields:
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Corollary 5.4. Let f ∈ Fp(α, β, 1) =: Sα,p(β), for 0 ≤ β < p, p ∈ N and |α| < π/2.

Then we have

L1(r, f, p) ≤
∞∑
n=0

∣∣ξCn∣∣2,
where ξ = 2(p− β)eiα cosα. The estimate is sharp. In particular, we have the following

• L1(r, f, p) ≤
∑∞

n=0

∣∣ηCn∣∣2 for f ∈ Fp(α, 0, 1) =: Sα,p where η = 2pe−iα cosα.

• L1(r, f, p) ≤ Γ(1 + 4p)/Γ2(1 + 2p) for f ∈ Fp(0, 0, 1) =: S∗p .

All inequalities are sharp.

5.3. Area Integral Problems

The area ∆(r, f) of the multi-sheeted image of Dr, 0 < r ≤ 1 under f ∈ Ap is

defined by (1.21) in Chapter 1. We now state our second main results and some of their

consequences.

Theorem 5.5. Let f ∈ S∗p(A), for 0 < |A| ≤ 1 and p ∈ N, be of the form (5.3). Then we

have

(5.4) max
f∈S∗p (A)

∆

(
r,
zp

f

)
= π|A|2p2r2

0F1(2, |A|2p2r2) =: EA(r, p),

where r, 0 < r ≤ 1, and the maximum is attained by the rotations of kA,p(z) = zpeApz.

The case A = 1 simplifies to

Corollary 5.6. If f ∈ S∗p (1), for p ∈ N. Then we have

max
f∈S∗p (1)

∆

(
r,
zp

f

)
= πp2r2

0F1(2, p2r2), r ∈ (0, 1].

The maximum is attained by the rotations of the function k1,p(z) = zpepz.

Our main theorem for B 6= 0 presented in Chapter 1 by Theorem 1.10. Moreover,

Theorem 1.10, for A = 1− (2β/p) and B = −1, gives the following result.
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Corollary 5.7. If f ∈ S∗p (β), for 0 ≤ β < p and p ∈ N, then we have

max
f∈S∗p (β)

∆

(
r,
zp

f

)
= 4π(p− β)2r2

2F1

(
(2β − 2p+ 1), (2β − 2p+ 1); 2; r2

)
,

for all r ∈ (0, 1]. The maximum is attained for the rotations of the function zp/(1−z)2p−2β.

In particular, for f ∈ S∗p (0) =: S∗p , one has

max
f∈S∗p

∆

(
r,
zp

f

)
= 4πp2r2

2F1

(
1− 2p, 1− 2p; 2; r2

)
, r ∈ (0, 1],

and the maximum is attained for the rotations of the function zp/(1− z)2p.

For the case p = 1, the above Theorems and Corollaries of Section 5.3 have been

proved in Chapter 3. Choosing A = (1 − (2β/p))λ and B = −λ in Theorem 1.10, then

we find that

Corollary 5.8. Let f ∈ Tp(λ, β), for 0 < λ ≤ 1, 0 ≤ β < p and p ∈ N. Then we have

max
f∈Tp(λ,β)

∆

(
r,
zp

f

)
= 4πλ2(p− β)2r2

2F1

(
(2β − 2p+ 1), (2β − 2p+ 1); 2;λ2r2

)
,

where r, 0 < r ≤ 1, and the maximum is attained for the rotations of zp/(1 − λz)2p−2β.

In particular, for f ∈ Tp(1, β) =: S∗p (β), we get Corollary 5.7.

We end this section with the following special results.

The case A = λe−iα(e−iα − (2β/p) cosα) and B = −λ, simplifies that

p

(
A

B
− 1

)
+ 1 = −e−iα(pe−iα − 2β cosα)− p+ 1

= 1− 2e−iα(p− β) cosα =: 1− ξ.

By Theorem 1.10, we obtain Yamashita’s conjecture on area maximum property for the

class Fp(α, β, λ).

Theorem 5.9. Let λ, β, α such that 0 < λ ≤ 1, 0 ≤ β < p, −π/2 < α < π/2 and p ∈ N.

If the function f , defined by (5.3), belongs to the class Fp(α, β, λ), then we have

max
f∈Fp(α,β,λ)

∆

(
r,
zp

f

)
= Eα,β,λ(r, p),
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where

Eα,β,λ(r, p) = πr2λ2|ξ|22F1(1− ξ, 1− ξ; 2;λ2r2),

with ξ = 2(p − β)e−iα cosα. The maximum is attained for the rotations of kp,α,β,λ as

defined by (5.2).

The case λ = 1 of Theorem 5.9 gives

Corollary 5.10. Let f ∈ Sα,p(β) := Fp(α, β, 1) be of the form (5.3). Then we have

max
f∈Sα,p(β)

∆

(
r,
zp

f

)
= πr2|ξ|22F1(1− ξ, 1− ξ; 2; r2), 0 < r ≤ 1.

The maximum is attained for the rotations of kp,α,β,1 as defined by (5.2).

In particular, for f ∈ Sα,p := Sα,p(0), one has

max
f∈Sα,p

∆

(
r,
zp

f

)
= πr2|η|22F1

(
1− η, 1− η; 2; r2

)
, η = 2pe−iα cosα,

for all r ∈ (0, 1].

For the case p = 1, Corollaries 5.8 and 5.10 give the results which are obtained in

Chapter 3 (see Corollary 3.3), and in [71, Theorem 3 and Corollary 4], respectively.

Proofs of Theorems 5.5 and 1.10 are presented in Section 5.5. To see the bounds for

the Dirichlet finite function, we denote

EA(1, p) = πp2|A|2
∞∑
n=0

1

(1)n(2)n
p2n|A|2n,

EA,B(1, p) = πp2|A−B|2
∞∑
n=0

(pφ+ 1)n(pφ+ 1)n
(2)n(1)n

B2n and

Eα,β,λ(1, p) = πλ2|ξ|2
∞∑
n=0

(1− ξ)n(1− ξ)n
(2)n(1)n

λ2n.

The images of the disk Dr (r ∈ (0, 1]) under the extremal functions gA,p(z) := zp/kA,p(z) =

e−Apz, gA,B,p(z) := zp/kA,B,p(z) = (1 + Bz)(1−A/B)p and zp/kp,α,β,λ(z) =: lp,α,β,λ(z) =

(1 − λz)ξ and numerical values of EA(r, p), EA,B(r, p) and Eα,β,λ(r, p) are described in

Figures 5.1–5.5 and Tables 5.1 & 5.2, respectively, for several values of A,B, α, β, λ, r and
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Figure 5.1. Images of the disk Dr under g2/5,2 and g1/5,3.
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Figure 5.2. Images of the disk Dr under g(1+i)/3,2 and g2/8−i/5,3.

p. We remind the reader that for B = −1, EA,B(1, p) is finite only if 2 > Re(2 + p(φ +

φ)/B), i.e. if ReA > −1.

In the next section, we present the following crucial lemmas which play important

roles for the proofs of our main results.
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Figure 5.3. Images of the disk Dr under g2/5,−3/5,2 and g1/5,−9/10,3.
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Figure 5.4. Images of the disk Dr under g(1+i)/3,−0.5,2 and g2/8−i/5,0.99,3.

5.4. Preparatory Results

We first present a necessary coefficient condition for a function f ∈ S∗p (A,B).
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Figure 5.5. Images of the disk Dr under l2,−π/6,1,0.9 and l3,π/4,1.5,0.6.

p A r Approximate Values B Approximate Values

of EA(r, p) of EA,B(r, p)

2 2/5 1 2.7264 −3/5 26.19994

3 1/5 0.9 1.05631 −9/10 112.473

2 (1 + i)/3 0.8 2.34613 −1/2 10.5859

3 2/8− i/5 0.7 1.76615 −99/100 26.98

Table 5.1. Approximate values of EA(r, p) and EA,B(r, p)

p α β λ r Approximate Values of

Eα,β,λ(r, p)

2 −π/6 1 9/10 1 11.2667

3 π/4 1.5 3/5 0.9 7.1980

Table 5.2. Approximate values of Eα,β,λ(r, p)

Lemma 5.11. Let f ∈ S∗p (A,B), for A ∈ C,−1 ≤ B ≤ 0, A 6= B, p ∈ N and f be of the

form (5.3). Then

∞∑
k=1

(
k2 − |kB + (A−B)p|2

)
|bk+p−1|2 ≤ |A−B|2p2
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holds. Equality is attained for the function kA,B,p as defined by (1.26).

Proof. Let f ∈ S∗(A,B) and g(z) := zp/f(z). Then by subordination principle, we obtain

zg′(z)

pg(z)
=

(B − A)zw(z)

1 +Bzw(z)
, z ∈ D,

where w(0) = 1 in D. Substituting this in the series expansion (5.3) of g, we get

∞∑
k=1

kbk+p−1z
k−1 = −

(
(A−B)p+

∞∑
k=1

(
kB + (A−B)p

)
bk+p−1z

k

)
w(z).

It is equivalent to

n∑
k=1

kbk+p−1z
k−1 +

∞∑
k=n+1

ckz
k−1 = −

(
(A−B)p+

n−1∑
k=1

(
kB + (A−B)p

)
bk+p−1z

k

)
w(z)

for certain coefficients ck. By Clunie’s method [18] (see also [19, 79, 80]) for n ∈ N,

since |w(z)| < 1 in D, we find

n∑
k=1

k2|bk+p−1|2r2k−2 ≤ |A−B|2p2 +
n−1∑
k=1

∣∣kB + (A−B)p
∣∣2|bk+p−1|2r2k,

it holds for all r ∈ (0, 1) and for all large n. It is equivalent to

(5.5)
n∑
k=1

k2|bk+p−1|2r2k−2 −
n−1∑
k=1

∣∣kB + (A−B)p
∣∣2|bk+p−1|2r2k ≤ |A−B|2p2.

If we take r → 1− and allow n→∞, then we get the desired inequality

∞∑
k=1

(
k2 −

∣∣kB + (A−B)p
∣∣2) |bk|2 ≤ |A−B|2p2.

Equality occurs in the above inequality for the function kA,B,p as defined by (1.26). The

proof of Lemma 5.11 is complete.

Lemma 5.12. Let 0 < |A| ≤ 1 and f ∈ S∗p (A). For |z| < r, suppose that

zp

f(z)
= 1 +

∞∑
k=1

bk+p−1z
k and e−Apz = 1 +

∞∑
k=1

ck+p−1z
k, r ∈ (0, 1].

Then for all N ∈ N,

(5.6)
N∑
k=1

k|bk+p−1|2r2k ≤
N∑
k=1

k|ck+p−1|2r2k

holds.
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Proof. It is enough to prove the lemma for 0 < A ≤ 1. From the relation (5.5) for B = 0,

we get
n−1∑
k=1

(k2 − A2p2r2)|bk+p−1|2r2k−2 + n2|bn+p−1|2r2n−2 ≤ A2p2.

Multiplying by r2 on both sides, we obtain

(5.7)
n−1∑
k=1

(k2 − A2p2r2)|bk+p−1|2r2k + n2|bn+p−1|2r2n ≤ A2p2r2.

Obviously, the function e−Apz shows that the equality, when n→∞, in (5.7) attains with

bk+p−1 = ck+p−1.

We split remaining part of the proof into three following steps.

Step-I: Cramer’s Rule.

We consider the inequalities corresponding to (5.7) for n = 1, 2, . . . , N and multiply the

nth coefficient by a factor λn,N . These factors are chosen in such a way that the addition

of the left sides of the modified inequalities results the left side of (5.6) and hence from

the modified inequalities, we get

(5.8)
N∑
k=1

k|bk+p−1|2r2k ≤ A2p2r2λn,N .

First, we shall evaluate the suitable multipliers λn,N by Cramer’s rule. Secondly, in Step-

II, we will prove that these multipliers are all positive. Finally, from (5.6) and (5.8), we

will prove the inequality

(5.9) A2p2r2λn,N ≤
N∑
k=1

k|ck+p−1|2r2k

in Step-III. Here ck+p−1 = (Ap)k/(k!).

For the calculation of the factors λn,N , we get the following system of linear equations

(5.10) k = k2λk,N +
N∑

n=k+1

λn,N(k2 − A2p2r2), k = 1, 2, . . . , N.

Since the matrix of this system is an upper triangular matrix with positive integers

as diagonal elements, the solution of this system is uniquely determined. Cramer’s rule
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allows us to write the solution of the system (5.10) in the form

λn,N =
((n− 1)!)2

(N !)2
DetAn,N ,

where An,N is the (N − n+ 1)× (N − n+ 1) matrix constructed as follows:

An,N =


n n2 − A2p2r2 · · · n2 − A2p2r2

n+ 1 (n+ 1)2 · · · (n+ 1)2 − A2p2r2

...
...

...
...

N 0 · · · N2

 .

Determinants of these matrices can be obtained by expanding, according to Laplace’s rule

with respect to the last row, wherein the first coefficient is N and the last one is N2. The

rest of the entries are zeros. This expansion and a mathematical induction lead to the

following formula: if k ≤ N − 1, then

λk,N = λk,N−1 −
1

N

(
1− A2p2r2

k2

) N−1∏
m=k+1

(
A2p2r2

m2

)
.

We see that the sequence {λk,N} is strictly decreasing in N when k ∈ N is fixed and

N ≥ k, i.e. λk,N < λk,N−1 with

(5.11) λk := lim
N→∞

λk,N =
1

k
−
(

1− A2p2r2

k2

) ∞∑
n=k+1

1

n

n−1∏
m=k+1

(
A2p2r2

m2

)
.

To prove that λk,N > 0 for all N ∈ N, 1 ≤ k ≤ N , it is adequate to show that λk ≥ 0 for

k ∈ N. This will be completed in Step II. But before that we want to remark that the

proof of the said inequality is sufficient for the proof of the theorem, since, as we remarked

for (5.7), equality holds for bk+p−1 = ck+p−1.

Step-II: Positivity of the Multipliers.

In this step, we show that

∞∑
n=k+1

1

n

n−1∏
m=k+1

(
A2p2r2

m2

)
≤ 1

k
(

1− A2p2r2

k2

) =
1

k

∞∑
n=k+1

(
A2p2r2

k2

)n
,

which is indeed easy to prove, i.e. from (5.11), λk ≥ 0.
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Step-III:

Since the sequence {λn,N} is strictly decreasing in N for each fixed n, n ≤ N , i.e. λn,N <

λn,n, so that

A2p2r2λn,N < A2p2r2λn,n =
A2p2r2

n

< A2p2r2 ≤
N∑
k=1

k(Ap)2k

(k!)2
r2k.

This means that inequality (5.9) holds. The proof of our lemma is complete.

Lemma 5.13. Let f ∈ S∗p (A,B), for A ∈ C,−1 ≤ B < 0, A 6= B and p ∈ N. Suppose

that

(1−Bz)(1−(A/B))p = 1 +
∞∑
k=1

dk+p−1z
k and

zp

f(z)
= 1 +

∞∑
k=1

bk+p−1z
k

for all r, 0 < r ≤ 1. Then the inequality

(5.12)
N∑
k=1

k|bk+p−1|2r2k ≤
N∑
k=1

k|dk+p−1|2r2k

is valid for all N ∈ N.

Proof. From Lemma 5.11, using inequality (5.5), and then multiplying the resulting in-

equality by r2 on both sides, we obtain

n−1∑
k=1

(
k2 −

∣∣kB + (A−B)p
∣∣2r2

)
|bk+p−1|2r2k + n2|bn+p−1|2r2n ≤ |A−B|2p2r2.

Set for an abbreviation φ := (A/B)− 1, we get

(5.13)
n−1∑
k=1

(
k2 − |k + pφ|2B2r2

)
|bk+p−1|2r2k + n2|bn+p−1|2r2n ≤ B2p2r2|φ|2.

It is apparent that in the inequality (5.13), the equality is attained for the function

(1−Bz)(1−(A/B))p with bk+p−1 = dk+p−1, when n→∞.

We split remaining part of the proof into three following steps.

Step-I: Cramer’s Rule.

We consider the inequalities corresponding to (5.13) for n = 1, 2, . . . , N and multiply the
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nth coefficient by a factor λn,N . These factors are chosen in such a way that the addition

of the left sides of the modified inequalities results the left side of (5.12) and hence from

the modified inequalities, we get

(5.14)
N∑
k=1

k|bk+p−1|2r2k ≤ B2p2r2|φ|2λn,N .

First, we shall evaluate the suitable multipliers λn,N by Cramer’s rule. Secondly, in Step II,

we shall prove that these multipliers are all positive. Finally, from (5.12) and (5.14), we

shall prove the inequality

(5.15) B2p2r2|φ|2λn,N ≤
N∑
k=1

k|dk+p−1|2r2k, n = 1, 2, . . . , N

in Step III. Here dk+p−1 = Bk(pφ)k/(k!).

For the calculation of the factors λn,N , we get the following system of linear equations

(5.16) k = k2λk,N +
(
k2 − |k + pφ|2B2r2

) N∑
n=k+1

λn,N , k = 1, 2, . . . , N.

Since the matrix of this system is an upper triangular matrix with positive integers as

diagonal elements, the solution of this system is uniquely determined. Cramer’s rule

allows us to write the solution of the system (5.16) in the form

λn,N =
((n− 1)!)2

(N !)2
DetAn,N ,

where An,N is the (N − n+ 1)× (N − n+ 1) matrix constructed as follows:

An,N =


n n2 − |n+ pφ|2B2r2 · · · n2 − |n+ pφ|2B2r2

n+ 1 (n+ 1)2 · · · (n+ 1)2 − |n+ 1 + pφ|2B2r2

...
...

...
...

N 0 · · · N2

 .

Determinants of these matrices can be found by expanding according to Laplace’s rule

with respect to the last row, wherein the first coefficient is N and the last one is N2. The

rest of the entries are zeros. This expansion and a mathematical induction result in the
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k A B p r Uk,p

1 0.9 −0.6 2 0.4 0.0784

2 3 −0.4 2 0.8 −4.76

3 3− i −0.9 2 0.2 0.8666

2 0.8 −0.7 5 0.9 −6.5350

3 0.5 −1 5 0.6 0.19

2 2 + 3i −0.8 5 0.3 −7.5221

Table 5.3. Signs of the constant Uk,p

following formula. If k ≤ N − 1, then

(5.17) λk,N = λk,N−1 −
1

N

(
1−

∣∣∣∣1 +
pφ

k

∣∣∣∣2B2r2

)
N−1∏

m=k+1

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)
.

Note that Uk,p :=
(
1− |1 + (pφ/k)|2B2r2

)
in (5.17) may be positive as well as negative

for all k ∈ N. We investigate this by including here a table (see Table 5.3).

Case (i): Suppose that Uk,p is non-positive.

From (5.17), we see that, the sequence {λk,N} is strictly increasing in N for every

fixed k ∈ N, k ≤ N − 1, i.e.

λk,N − λk,N−1 > 0

so that

λk,N > λk,N−1 > · · · > λk,k = 1/k > 0,

and thus λk ≥ 0 when N →∞ as is required.

Case (ii): Suppose that Uk,p is non-negative.

From (5.17), for each fixed k ∈ N, N ≥ k, the sequence {λk,N} is strictly decreasing

in N , i.e. λk,N − λk,N−1 < 0 with

(5.18) λk := lim
N→∞

λk,N =
1

k
−

(
1−

∣∣∣∣1 +
pφ

k

∣∣∣∣2B2r2

)
∞∑

n=k+1

1

n

n−1∏
m=k+1

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)
.
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To show that λk,N > 0 for all N ∈ N, k ∈ [1, N ], it is enough to show that λk ≥ 0 for

k ∈ N. This will be completed in Step II. But before that, we want to note that the proof

of the said inequality is adequate for the proof of the theorem, since, we observed in the

beginning of the proof, equality is obtained for bk+p−1 = dk+p−1.

Step-II: Positivity of the Multipliers.

Let for an abbreviation

Sk =
∞∑

n=k+1

1

n

n−1∏
m=k+1

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)
, k ∈ N.

We now show that

Sk ≤
1

k
(

1−
∣∣1 + pφ

k

∣∣2B2r2
) .

From the equation (5.18), we get

λk =
1

k
− Sk +

(∣∣∣∣1 +
pφ

k

∣∣∣∣2B2r2

)
Sk.

Again set for an abbreviation

Tk =
1

k
+

(∣∣∣∣1 +
pφ

k

∣∣∣∣2B2r2

)
Sk.

It is enough to prove that

(5.19) Tk ≤
1

k
(

1−
∣∣1 + pφ

k

∣∣2B2r2
) .

To prove (5.19) we use the inequality

(5.20)
1

n
(

1−
∣∣1 + pφ

n

∣∣2B2r2
) > 1

(n+ 1)
(

1−
∣∣1 + pφ

n+1

∣∣2B2r2
)

(this inequality follows from the fact that n
(
1− |1 + (pφ/n)|2B2r2

)
is an increasing by

derivative test) and the identity

(5.21)
1

n
(

1−
∣∣1 + pφ

n

∣∣2B2r2
) =

1

n
+

∣∣1 + pφ
n

∣∣2B2r2

n
(

1−
∣∣1 + pφ

n

∣∣2B2r2
) ,
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which are admissible for each n ∈ N. Repeated application of (5.20) and (5.21) for

n = k, k + 1, . . . , Q results in the inequality

1

k
(

1−
∣∣1 + pφ

k

∣∣2B2r2
) > Q∑

n=k

1

n

n−1∏
m=k

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)

+

Q∏
m=k

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)

Q

(
1−

∣∣∣1 + pφ
Q

∣∣∣2B2r2

)
=: Sk,Q +Rk,Q, for k ≤ Q.

Since Rk,Q > 0, allow the limit as Q→∞, we get

1

k
(

1−
∣∣1 + pφ

k

∣∣2B2r2
) ≥ lim

T→∞
Sk,Q =

∞∑
n=k

1

n

n−1∏
m=k

(∣∣∣∣1 +
pφ

m

∣∣∣∣2B2r2

)
= Qk,

and we complete the inequality (5.19).

Step-III:

Taking the left side of (5.15) for N = 2, n = 1 and using the inequality (5.17), we obtain

B2p2r2|φ|2λ1,2 = B2p2r2|φ|2
(
λ1,1 −

1

2

(
1− |1 + pφ|2B2r2

))
=
B2p2r2|φ|2

2
+
B4p2r4|φ|2|1 + pφ|2

2
( since λ1,1 = 1)

< B2p2r2|φ|2 +
B4p2r4|φ|2|1 + pφ|2

2
=

2∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k.

Since, dk+p−1 = Bk(pφ)k/(k!), then the inequality (5.15) holds for N = 2, n = 1.

Now, we can complete the proof by a method of induction. Therefore, if we assume

that the inequality (5.15) is true for N = m i.e.

(5.22) B2p2r2|φ|2λn,m ≤
m∑
k=1

k|dk+p−1|2r2k, n = 1, 2, . . . ,m.
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Then for N = m+ 1, using the inequality (5.17), we deduce that

B2p2r2|φ|2λn,m+1 = B2p2r2|φ|2
[
λn,m −

1

m+ 1

(
1−

∣∣∣∣1 +
pφ

n

∣∣∣∣2B2r2

)

×
m∏

t=n+1

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)]

≤
m∑
k=1

k|dk+p−1|2r2k − 1

m+ 1

(
1−

∣∣∣∣1 +
pφ

n

∣∣∣∣2B2r2

)

×
m∏

t=n+1

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)
B2p2r2|φ|2 ( by (5.22))

=
m∑
k=1

k|dk+p−1|2r2k − 1

m+ 1

m∏
t=n+1

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)
B2p2r2|φ|2

+
1

m+ 1

m∏
t=n

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)
B2p2r2|φ|2

≤
m∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k +

1

m+ 1

m∏
t=n

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)
B2p2r2|φ|2.

Since dk+p−1 = Bk(pφ)k/(k!), the last inequality implies that

B2p2r2|φ|2λn,m+1 <
m∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k +

1

m+ 1

m∏
t=1

(∣∣∣∣1 +
pφ

t

∣∣∣∣2B2r2

)
B2p2r2|φ|2

or equivalently,

B2p2r2|φ|2λn,m+1 <
m∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k +

(m+ 1)(B2r2)m+1

(1)2
m+1

m∏
t=1

(∣∣∣∣1 +
pφ

t

∣∣∣∣2
)

(1)2
mp

2|φ|2

=
m∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k +

(m+ 1)(B2r2)m+1

(1)2
m+1

m∏
t=1

(
|t+ pφ|2

)
p2|φ|2

=
m∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k +

(m+ 1)(B2r2)m+1

(1)2
m+1

|(pφ)m+1|2

=
m+1∑
k=1

k|(pφ)k|2

(k!)2
(Br)2k.

Hence, we obtain the desired inequality (5.15). The proof of Lemma 5.13 is complete.
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5.5. Proofs of the Main Results

Proof of Theorem 1.9. Let f ∈ S∗p (A,B). We apply the theorem of Hallenbeck and

Ruscheweyh [37, Theorem 2] and get

f(z)

zp
≺ 1

(1 +Bz)(1−(A/B))p
, z ∈ D,

so that

(5.23)
zp

f(z)
≺ (1 +Bz)(1−(A/B))p =: χA,B,p(z), z ∈ D,

where

χA,B,p(z) =
zp

kA,B,p(z)
=

 (1 +Bz)(1−(A/B))p if B 6= 0

e−Apz if B = 0
.

For B 6= 0, we rewrite the quantity χA,B,p(z) in hypergeometric notation and get

χA,B,p(z) =

 2F1(pφ, 1; 1;−Bz) if B 6= 0

e−Apz if B = 0

=:
∞∑
n=0

dn+p−1z
n(5.24)

with φ = (A/B)− 1 and

dn+p−1 =


(−1)n(pφ)nBn

n!
if B 6= 0

(−1)n(Ap)n

n!
if B = 0

.

If zp/f and χA,B,p(z) are two analytic functions such that (5.23) holds, and both the

functions have the forms (5.3) and (5.24) (with bp−1 = 1 = dp−1), respectively. Then by

Rogosinski’s result (see [22, 80]) we get

k∑
n=0

|bn+p−1|2r2n ≤
k∑

n=0

|dn+p−1|2r2n,
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for 0 < r < 1 and k ∈ N. Thus, from (5.23) and (5.24), we obtain

k∑
n=0

|bn+p−1|2r2n ≤



k∑
n=0

(pφ)n(pφ)n
(n!)2

B2nr2n if B 6= 0

k∑
n=0

1

(n!)2

(
p|A|

)2n
r2n if B = 0

.

If we take r → 1 and allow k →∞, then we find the inequality

1 +
∞∑
n=1

|bn+p−1|2 ≤



∞∑
n=0

(pφ)n(pφ)n
(n!)2

B2n if B 6= 0

∞∑
n=0

1

(n!)2

(
p|A|

)2n
if B = 0

=


2F1

(
pφ, pφ; 1;B2

)
if B 6= 0

J0(2ip|A|) if B = 0

,

where J0(z) is the Bessel function of zero order (see for the definition [93]).

Now, we evaluate the integral means for the function zp/f and get

L1(r, f, p) := r2pI1(r, f, p) =
1

2π

∫ 2π

0

r2p

|f(reiθ)|2
dθ =

1

2π

∫ 2π

0

∣∣∣∣ zpf(z)

∣∣∣∣2 dθ
= 1 +

∞∑
n=1

|bn+p−1|2r2n

≤ 1 +
∞∑
n=1

|bn+p−1|2,

which establishes the desired inequality. The result is sharp and it can be easily verified

by considering the function zp/kA,B,p, defined in (1.26).

Proof of Theorem 5.5. Suppose f ∈ S∗p (A), 0 < |A| ≤ 1 and p ∈ N. It is enough to

prove the theorem for 0 < A ≤ 1. By the definition of S∗p (A), we get

zf ′(z)

pf(z)
≺ 1 + Az =

zk′A,p(z)

pkA,p(z)
, z ∈ D.
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Let g(z) = zp/f(z) be of the form (5.3). Then using the theorem of Hallenbeck and

Ruscheweyh [37, Theorem 2] and subordinate property, we get

g(z) ≺ e−Apz =
zp

kA,p(z)
.

By rewriting the last subordination relation in power series form, we have

1 +
∞∑
k=1

bk+p−1z
k ≺ e−Apz = 1 +

∞∑
k=1

ck+p−1z
k,

where ck+p−1 = (−1)k(Ap)k/(k!). Now, by Lemma 5.12, for r ∈ (0, 1], we have

N∑
k=1

k|bk+p−1|2r2k ≤
N∑
k=1

k|ck+p−1|2r2k, N ∈ N.

If we assume N →∞, then it follows

π
∞∑
k=1

k|bk+p−1|2r2k ≤ π
∞∑
k=1

k|ck+p−1|2r2k,

i.e.

∆

(
r,
zp

f

)
≤ ∆

(
r,

zp

kA,p

)
.

It is easy to simplifies that ∆ (r, zp/kA,p) = π|A|2p2r2
0F1(2, |A|2p2r2) = EA(r, p), then we

get the desired identity (5.4). The maximum is attained by rotations of kA,p(z) = zpeApz.

The proof of our theorem is complete. �

Proof of Theorem 1.10. Let g(z) = zp/f(z) be of the form (5.3). Now, by the definition

of S∗p (A,B), we obtain

zf ′(z)

pf(z)
≺ 1 + Az

1 +Bz
=
zk′A,B,p(z)

pkA,B,p(z)
.

By Hallenbeck and Ruscheweyh’s result [37] and subordinate principle, we find that

g(z) ≺ (1 +Bz)(1−(A/B))p =
zp

kA,B,p(z)
.

Suppose, zp/kA,B,p has the power series representation 1 +
∑∞

k=1 dk+p−1z
n with dk+p−1 =

(−1)kBk(pφ)k/(k!). Then it follows from Lemma 5.13, for N ∈ N,

N∑
k=1

k|bk+p−1|2r2k ≤
N∑
k=1

k|dk+p−1|2r2k, 0 < r ≤ 1,
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which implies that

π
∞∑
k=1

k|bk+p−1|2r2k ≤ π
∞∑
k=1

k|dk+p−1|2r2p,

i.e.

∆

(
r,
zp

f

)
≤ ∆

(
r,

zp

kA,B,p

)
.

By the area formula for zp/kA,B,p, we easily have

π−1∆

(
r,

z

kA,B,p

)
=
∞∑
k=1

k|dk+p−1|2r2k

=
∞∑
k=1

k
(pφ)k(p)φ)k

(1)2
k

B2kr2k

= B2p2r2|φ|2
∞∑
k=0

(pφ+ 1)k(pφ+ 1)k
(2)k(1)k

B2kr2k.

Hence,

∆

(
r,

z

kA,B,p

)
= π|A−B|2p2r2

2F1

(
pφ+ 1, pφ+ 1; 2;B2r2

)
= EA,B(r, p),

and the proof of Theorem 5.3 is complete. �

5.6. Concluding Remarks and Open Problem

For −1 ≤ B ≤ 0 and A ∈ C, A 6= B, define

Cp(A,B) :=

{
f ∈ Ap :

1

p

(
1 +

zf ′′(z)

f ′(z)

)
≺ 1 + Az

1 +Bz
, z ∈ D

}
.

The choices A = 1− (2β/p), 0 ≤ β < p and B = −1 turn the class Cp(A,B) into the class

Cp(β), the class of p-valent convex of order β. The class Cp(0) =: Cp is the usual class of

p-valent convex functions. The results of this paper (e.g. Theorem 5.5 and 1.10) motivate

the following problems for further research in this direction:

Open problem 5.25. Discuss the maximal area integral problem for the functions of

type zp/f when f ∈ Cp(A,B), in particular when f is in CP and C(β), respectively.

With this, we end this chapter here.
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CHAPTER 6

STARLIKENESS AND CONVEXITY OF INTEGRAL

TRANSFORMS

The duality principle is used to determine the starlikeness (or convexity) of the integral

transform Vλ(f) defined by (1.8). Section 6.1 discusses about the class Pa,b,c(β). In

Section 6.2 and 6.3, we investigate the necessary and sufficient conditions for Vλ(f) to be

starlike and convex.

The results in this chapter are from the article: Sahoo S.K., Sharma N.L. (2014), Du-

ality technique on a class of function defined by convolution with Gaussian hypergeometric

functions, J. Analysis, 113(1), 145–155.

6.1. The class Pa,b,c(β)

Study of starlikeness and convexity of certain integral transforms of analytic functions

in the open unit disk plays a significant role in geometric function theory. In Chapter 1,

we discussed about the integral transform Vλ(f) for f ∈ A in (1.8). More precisely,

Vλ(f) over the class Pa,b,c(β) is taken, which is defined by (1.12), using the notion of

convolution and expressed in the form of Gaussian hypergeometric functions. The newly

considered class Pa,b,c(β) is a generalization of the family Pγ(β) defined in (1.11). In [66],

Ponnusamy used the idea of differential subordination to discuss the starlikeness of the

Bernardi integral transform of functions belonging to a family related to the family Pγ(β).

Indeed, the family Pγ(β) has been considered by a number of authors in the literature

to study certain problems in analytic function theory; see for instance [12, 66, 68] and

references therein. For f ∈ P1(β), the starlikeness of Vλ(f) was first studied in [25]



Year Authors Ref. Order of Starlikeness f ∈ Pγ(β)

of Vλ

1994 Fournier and Ruscheweyh [25] zero P1(β)

1997 Ponnusamy and Rønning [68] µ ∈ [0, 1/2] P1(β)

2001 Kim and Rønning [47] zero Pγ(β), γ > 0

2004 Balasubramanian, [9] µ ∈ [0, 1/2] Pγ(β), γ > 0

Ponnusamy, and Prabhakaran

Table 6.1. Order of Starlikeness of Vλ(f)

by Fournier and Ruscheweyh and later the case of starlikeness of order µ (0 ≤ µ ≤ 1
2
)

was investigated by Ponnusamy and Rønning [68, 69]. The case 1/2 < µ < 1 is yet

to be settled. Significant contributions on starlikeness of the integral transform Vλ(f) of

f ∈ P1(β) are listed in Table 6.1 where duality principle [82] played a crucial role in their

proofs. In fact, for f ∈ Pγ(β), contributions on convexity of Vλ(f) have also been made

by several authors. We discuss this part separately in Section 6.3.

We now observe that if f ∈ Pγ(β) in (1.11) then we write

(1− γ)
f(z)

z
+ γf ′(z) =

f(z)

z
∗ F

(
1, 1 +

1

γ
;

1

γ
; z

)
=: k(z)

where k(z) ∈ P(β) := {p(z) : p(z) is analytic in D, p(0) = 1 and Re p(z) > β}. In view of

this observation, f takes to the form

f(z)

z
= F

(
1,

1

γ
; 1 +

1

γ
; z

)
∗ k(z).

This representation motivates us to introduce the new three parameter family, denoted

as Pa,b,c(β), which is defined by (1.12) in chapter 1. In particular, if we substitute a = 1

in the definition of Pa,b,c(β), it reduces to the two parameter family Pb,c(β) which can be

defined in the form

Pb,c(β) :=

{
f ∈ A : Re

(
f(z)

z
∗ F (1, c; b; z)

)
> β; 1 ≤ b < c, 0 ≤ β < 1

}
.
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This form of the definition of Pb,c(β) is possible due to the fact that

f(z) = 2F1(1, r; s; z) ∗ g(z) ⇐⇒ f(z) ∗ 2F1(1, s; r; z) = g(z)

for f, g ∈ A. For special values given to the parameters a, b and c, the class Pa,b,c(β)

reduces to various well-known classes already studied in the literature. Thus, this new

class may be looked up as a unifying class of all those classes of functions.

In this chapter, we are interested to find conditions such that either Vλ(f) ∈ S∗(µ) or

Vλ(f) ∈ C(µ) for functions f ∈ Pa,b,c(β). Section 6.2 is devoted to the discussion on the

starlikeness of Vλ(f).

6.2. Starlikeness of the Integral Transform Vλ(f)

We stated our main theorem concerning the starlikeness of the integral transform in

Chapter 1 by Theorem 1.11.

Proof of Theorem 1.11. Definition of Pa,b,c(β) and the duality principle [82] (see also

[9, 68]) guarantees that

(6.1)
f(z)

z
= 2F1 (a, b; c; z) ∗

(
(1− β)

1 + xz

1 + yz
+ β

)
, z ∈ D.

By Theorem 1.1 (see Chapter 1), we know that

Vλ(f) ∈ S∗(µ) ⇐⇒ Vλ(f)(z)

z
∗ hµ(z)

z
6= 0,

where z ∈ D and hµ(z) is defined by (1.9). Therefore, we have

Vλ(f) ∈ S∗(µ) ⇐⇒
∫ 1

0

λ(t)

1− tz
dt ∗ f(z)

z
∗ hµ(z)

z
6= 0.
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Since
β

1− β
∗ 2F1(a, b; c; z) =

β

1− β
, (6.1) yields

∫ 1

0

λ(t)

1− tz
dt ∗ f(z)

z
∗ hµ(z)

z

=

∫ 1

0

λ(t)

1− tz
dt ∗

(
2F1(a, b; c; z) ∗

(
(1− β)

1 + xz

1 + yz
+ β

))
∗ hµ(z)

z

= (1− β)

∫ 1

0

λ(t)

1− tz
dt ∗

(
2F1(a, b; c; z) ∗ hµ(z)

z
+

β

1− β

)
∗ 1 + xz

1 + yz
.

It is equivalent to∫ 1

0

λ(t)

1− tz
dt ∗ f(z)

z
∗ hµ(z)

z

= (1− β)

∫ 1

0

λ(t)

(
2F1(a, b; c; zt) ∗ hµ(z)

z
+

β

1− β

)
dt ∗ 1 + xz

1 + yz
.

This, together with the relation (1.30), yields∫ 1

0

λ(t)

1− tz
dt ∗ f(z)

z
∗ hµ(z)

z
= (1− β)

∫ 1

0

λ(t)
(

2F1(a, b; c; zt) ∗ hµ(z)

z

− gµa,b,c(t)
)
dt ∗ 1 + xz

1 + yz
.(6.2)

We also know from [82, Theorem 1.6, p. 23] that for f ∈ A

f(z)

z
∗ 1 + xz

1 + yz
6= 0 ⇐⇒ Re

f(z)

z
>

1

2

holds. Therefore, from (6.2) and the last implication, it follows that Vλ(f) belongs to

S∗(µ) if and only if

Re

(
(1− β)

∫ 1

0

λ(t)

(
2F1(a, b; c; zt) ∗ hµ(z)

z
− gµa,b,c(t)

)
dt

)
>

1

2
,

or equivalently,

(6.3) Re

(∫ 1

0

λ(t)

(
2F1(a, b; c; zt) ∗ hµ(z)

z
− gµa,b,c(t)

)
dt

)
− 1

2(1− β)
> 0.

We see that the relation (1.30) is equivalent to
1

1− β
=

∫ 1

0

λ(t)(1 − gµa,b,c(t))dt, and so

(6.3) simplyfies to

(6.4) Re

(∫ 1

0

λ(t)

(
2F1(a, b; c; zt) ∗ hµ(z)

z
−

1 + gµa,b,c(t)

2

)
dt

)
> 0.
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It is evident from (1.27) that Λa,b,c(1) = 0. In order to complete the required proof, we

use the representation of Λa,b,c(t) and rewrite (6.4) by dividing and multiplying by the

factor ta+2b−c, then we get

Re

(∫ 1

0

(−Λ
′

a,b,c(t))

(
hµ(z)

z
∗
(
ta+2b−c

2F1(a, b; c; zt)
)

−
ta+2b−c(1 + gµa,b,c(t))

2

)
dt

)
> 0.(6.5)

Using the facts Λa,b,c(1) = 0 and limt→0+ t
a+2b−cΛa,b,c(t) = 0, and applying the integration

by parts to the relation (6.5), it yields

Re

(∫ 1

0

ta+2b−c−1Λa,b,c(t)

[
hµ(z)

z
∗
(
t
d

dt
2F1(a, b; c; tz) + (a+ 2b− c)2F1(a, b; c; zt)

)
−1

2

(
(a+ 2b− c)(1 + gµa,b,c(t)) + t

d

dt
gµa,b,c(t)

)]
dt

)
> 0.

From (1.28), we have

Re

(∫ 1

0

ta+2b−c−1Λa,b,c(t)

[
hµ(z)

z
∗
(
t
d

dt
2F1(a, b; c; tz) + (a+ 2b− c)2F1(a, b; c; zt)

)
−(a+ 2b− c) 1− µ(1 + t)

(1− µ)(1 + t)2

]
dt

)
> 0.

Using (1.10), we obtain

Re

(∫ 1

0

ta+2b−c−1Λa,b,c(t)

[
hµ(tz)

tz
∗
(abz
c

2F1(a+ 1, b+ 1; c+ 1; z)

+(a+ 2b− c)2F1(a, b; c; z)
)
− (a+ 2b− c) 1− µ(1 + t)

(1− µ)(1 + t)2

]
dt

)
> 0, z ∈ D.

The assertion follows.

If we choose a = 1 in Theorem 1.11, then we obtain

Theorem 6.1. For 0 ≤ β < 1, let f ∈ Pb,c(β) with 1 ≤ b < c. Suppose that λ : [0, 1]→ R

is a non-negative weight function so that
∫ 1

0
λ(t)dt = 1 and Λb,c is defined by (1.29) with

the assumption that limt→0+ t
2b−c+1Λb,c(t) = 0. Assume that the quantity β is related by

β

1− β
= −

∫ 1

0

λ(t)gµb,c(t)dt,

where gµb,c satisfies (1.29). Then Vλ(f) ∈ S∗(µ), 0 ≤ µ ≤ 1/2 if and only if LµΛb,c(hµ) ≥ 0.
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Year Authors Ref. Order of Convexity f ∈ Pγ(β)

of Vλ(f)

1995 Ali and Singh [2] zero P1(β)

2002 Choi, Kim, and Saigo [20] zero Pγ(β), γ > 0

2005 Durai and Parvatham [3] µ ∈ [0, 1/2] P1(β)

2007 Balasubramanian, [10] µ ∈ [0, 1/2] Pγ(β), γ > 0

Ponnusamy, and Prabhakaran

Table 6.2. Order of Convexity of Vλ(f)

Remark 6.2. When b = 1, c = 2 and µ = 0, Theorem 6.1 leads to a result of Fournier

and Ruscheweyh; see [25, Theorem 2]. If we set b = 1 and c = 2 in Theorem 6.1 then

we obtain [68, Theorem 2.1], the result due to Ponnusamy and Rønning. If we substitute

b = 1/γ, c = 1 + b and µ = 0 in Theorem 6.1 then we get [47, Theorem 2.1] proved by

Kim and Rønning. Putting b = 1/γ and c = 1 + b in Theorem 6.1, we easily see that our

result reduces to an equivalent result of [9, Theorem 1.2] due to Balasubramanian, et al.

6.3. Convexity of the Integral Transform Vλ(f)

In this section, we find conditions so that the integral transform Vλ(f) carrying func-

tions from Pa,b,c(β) into C(µ), 0 ≤ µ ≤ 1/2. In 1995, Ali and Singh [2] first discussed the

convexity of the integral transform Vλ(f) of functions belonging to P1(β) with the help

of the duality theory of convolution developed by Ruscheweyh in [82]. Subsequently, a

number of authors investigated this problem in a more general setting. We now list down

them in Table 6.2.

Our main aim in this section is to generalize the convexity result of Balasubramanian

et al. [10] for functions belonging to the class Pa,b,c(β). The following basic notations are
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useful: For the function Λa,b,c(t) stated in (1.27), we define

Mµ
Λa,b,c

(hµ) = inf
z∈D

∫ 1

0

ta+2b−c−1Λa,b,c(t)

[
Re

(
1

z

d

dt
hµ(tz)

∗
(
abz

c
F (a+ 1, b+ 1; c+ 1; z) + (a+ 2b− c)2F1(a, b; c; z)

))
− (a+ 2b− c)(1− µ)− t(1 + µ)

(1− µ)(1 + t)3

]
dt,

where a, b, c are real parameters and hµ(z) is defined as in (1.9). We set

(6.6) Mµ
Λb,c

:= Mµ
Λ1,b,c

.

Let φµa,b,c(t) be the solution of the initial value problem

(6.7)
d

dt

(
ta+2b−cφµa,b,c(t)

)
= (a+ 2b− c)

ta+2b−c−1
(

(1− µ)− t(1 + µ)
)

(1− µ)(1 + t)3
,

with φµa,b,c(0) = 1. Set φµb,c := φµ1,b,c.

Theorem 6.3. For 0 ≤ β < 1, let f ∈ Pa,b,c(β), a ≤ b < c. Suppose that λ and Λa,b,c

satisfy as in the hypothesis of Theorem 1.11. Then Vλ(f) is convex of order µ (0 ≤ µ ≤

1/2) if and only if Mµ
Λa,b,c

(hµ) ≥ 0, where β ∈ [0, 1) is related by

(6.8)
β − 1/2

1− β
= −

∫ 1

0

λ(t)φµa,b,c(t)dt,

and φµa,b,c is defined as in (6.7).

Proof. Let F (z) = Vλ(f)(z). It is well-known that F is convex of order µ if and only if

zF ′ is starlike of order µ. Then, by Theorem 1.2 (see for instance [82]), we have

F ∈ C(µ)⇐⇒ 1

z
(zF

′
(z) ∗ hµ(z)) 6= 0.

It is enough to show that

0 6= 1

z
(zF

′
(z) ∗ hµ(z)) =

1

z
(F (z) ∗ zh′µ(z))

=

∫ 1

0

λ(t)
f(tz)

tz
dt ∗ h′µ(z)

=

∫ 1

0

λ(t)

1− tz
dt ∗ f(z)

z
∗ h′µ(z).(6.9)
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Using (6.1), the relation (6.9) holds if and only if

0 6=
∫ 1

0

λ(t)

1− tz
dt ∗

(
2F1(a, b; c; z) ∗

(
(1− β)

1 + xz

1 + yz
+ β

))
∗ h′µ(z)

= (1− β)

∫ 1

0

λ(t)

(
2F1(a, b; c; zt) ∗ h′µ(z) +

β

1− β

)
dt ∗ 1 + xz

1 + yz
,

which clearly holds if and only if

Re

(
(1− β)

∫ 1

0

λ(t)

(
2F1(a, b; c; zt) ∗ h′µ(z) +

β

1− β

)
dt

)
>

1

2
,

or equivalently,

(6.10) Re

(∫ 1

0

λ(t)

(
2F1(a, b; c; zt) ∗ h′µ(z) +

β − 1/2

1− β

)
dt

)
> 0.

Dividing and multiplying by the factor ta+2b−c with the integrand in (6.10), the rela-

tion (6.8) leads

Re

(∫ 1

0

(−Λ
′

a,b,c(t))
(
ta+2b−c

2F1(a, b; c; zt) ∗ h′µ(z)− ta+2b−cφµa,b,c(t)
)
dt

)
> 0.

This on integration by parts and using Λa,b,c(1) = 0, limt→0+ t
a+2b−cΛa,b,c(t) = 0 and (6.7),

we obtain

Re

(∫ 1

0

ta+2b−c−1Λa,b,c(t)

[
h
′

µ(z) ∗
(
t
d

dt
2F1(a, b; c; tz) + (a+ 2b− c)2F1(a, b; c; zt)

)
−(a+ 2b− c)(1− µ)− t(1 + µ)

(1− µ)(1 + t)3

]
dt

)
> 0.

From (1.10), we have

Re

(∫ 1

0

ta+2b−c−1Λa,b,c(t)

[
1

z

d

dt
hµ(tz)

∗
(
abz

c
2F1(a+ 1, b+ 1; c+ 1; z) + (a+ 2b− c)2F1(a, b; c; z)

)
−(a+ 2b− c)(1− µ)− t(1 + µ)

(1− µ)(1 + t)3

]
dt

)
> 0.

This means that Mµ
Λa,b,c

(hµ) > 0, which completes the proof of our theorem.

If we set a = 1 in Theorem 6.3, we get
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Theorem 6.4. For 0 ≤ β < 1, let f ∈ Pb,c(β), 1 ≤ b < c. Suppose that λ and Λb,c(t)

satisfy as in the hypothesis of Theorem 6.1. Then Vλ(f) is convex of order µ (0 ≤ µ ≤ 1/2)

if and only if Mµ
Λb,c

(hµ) ≥ 0, where 0 ≤ β < 1 is related by

β − 1/2

1− β
= −

∫ 1

0

λ(t)φµb,c(t)dt,

and φµb,c and Mµ
Λb,c

(hµ) are respectively defined by (6.7) and (6.6).

Remark 6.5. When b = 1, c = 2 and µ = 0, Theorem 6.4 leads to a result of Ali and

Singh; see [2, Theorem 1]. If we choose b = 1/γ, c = 1+ b and µ = 0 in Theorem 6.4, then

we obtain a result due to Choi, et al. (see [20, Lemma 3]). If we substitute b = 1 and

c = 2 in Theorem 6.4, then we get the result [3, Theorem 2] due to Durai and Parvatham.

If we set b = 1/γ and c = 1 + b, then one can easily see that Theorem 6.4 reduces to an

equivalent form of [10, Theorem 2.3] due to Balasubramanian, et al.

We end our discussion of this chapter here.
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CHAPTER 7

CONCLUSION AND SCOPE FOR FUTURE WORK

In Chapter 1, we focus on basic definitions and properties of univalent and p-valent

functions in D which are used in the subsequent chapters.

In the second chapter, we study the class of q-close-to-convex functions and determine

several sufficient conditions for f(z) = z +
∑∞

n=2 anz
n to be in Kq. In addition, we prove

the Bieberbach-de Branges Theorem for functions in the class Kq. This produces several

power series of analytic functions convergent to q-hypergeometric function. Since not

much work has been done in the literature about the class Kq and thus it is worth to

deduce some new results in this topic. Further work in this field will certainly bring

a strong base between q-theory and geometric function theory. It would be interesting

to investigate the q-theory and its applications more in geometric function theory, in

particular, to analyse the q-analog of convex functions and other related functions.

In the third and fifth chapter, we are particularly interested to solve Yamashita’s

conjecture on area maximum property for univalent and p-valent functions, respectively.

We also discuss some integral means problem for several class of p-valent functions. It

would be interesting to solve the analog of Yamashita’s extremal and the integral means

problems for other geometric subclasses of functions from S and Ap. For example, to

determine the analog of Yamashita’s conjecture when zf ′ belongs to the class S∗(A,B)

and also for functions f in the Bazilević class [13], and to derive Yamashita’s extremal

problem for p-valent convex functions.

In the fourth chapter, we present a correct form of the coefficient bounds for a function

to be in certain family of p-valent functions. There are many application of Bieberbach’s

conjecture problem in univalent function theory. It would be interesting to find possible

applications of coefficient estimates that we obtained for p-valent functions.



The duality theory for convolutions is used to investigate the starlikeness and con-

vexity of order µ ∈ [0, 1/2] of the integral transform Vλ(f) in the sixth chapter. For the

order µ ∈ (1/2, 1), this problem is unsolved. By using Duality technique or otherwise,

this problem and other related problems with their applications can be interested for

researchers to investigate.

108



BIBLIOGRAPHY

[1] Alexander J.W (1915), Functions which map the interior of the unit circle upon

simple regions, Ann. of Math., 17(1), 12–22.

[2] Ali R.M., Singh V. (1995), Convexity and Starlikeness of functions defined by a

class of integral operators, Complex Var. Theory Appl., 26(4), 299–309.

[3] Durai Anbu M., Parvatham R. (2005), On order of convexity of functions defined

by certain integral transforms, Complex Var. Theory Appl., 50(12), 913–922.

[4] Andrews G.E. (1974), Applications of basic hypergeometric functions, SIAM Rev.,

16, 441–484.

[5] Andrews, G.E., Askey, R., Roy, R. (1999), Special functions, Cambridge University

press, U.K.

[6] Aouf M.K. (1985), p-Valent classes related to convex functions of complex order,

Rocky Mountain J. Math., 15(4), 853–863.

[7] Aouf M.K. (1987), On a class of p-valent starlike functions of order α, Internat. J.

Math. & Math. Sci., 10(4), 733–744.

[8] Aouf M.K. (1988), Coefficient estimates for some classes of p-valent functions, In-

ternat. J. Math. & Math. Sci., 11(1), 47–54.

[9] Balasubramanian R., Ponnusamy S., Prabhakaran D.J. (2004), Duality techniques

for certain integral transforms to be starlike, J. Math. Anal. Appl., 293(1), 355–373.

[10] Balasubramanian R., Ponnusamy S., Prabhakaran D.J. (2007), Convexity of integral

transforms and function spaces, Integral Transforms Spec. Funct., 18(1), 1–14.

[11] Balasubramanian R., Ponnusamy S., Vuorinen M. (2002), On hypergeometric func-

tions and function space, J. Comput. Appl. Math., 193(2), 299–322.

[12] Barnard R.W., Naik S., Ponnusamy, S. (2006), Univalency of weighted integral trans-

forms of certain functions, J. Comput. Appl. Math., 193(2), 638–651.



[13] Bazilevic̆ I.E. (1955), On a case of integrability in quadratures of the Loewner-

Kufarev equation, Mat. Sb. N.S., 37, 471–476.

[14] Bieberbach L. (1916), Über die Koeffizienten derjenigen Potenzreihen, welche eine

schlichte Abbildung des Einheitskreises vermitteln, S.-B. Preuss. Akad. Wiss., 138,

940–955.

[15] Branges L. de (1985), A proof of the Bieberbach conjecture, Acta Math., 154, 137–

152.

[16] Blakley G.R. (1962), Classes of p-valent starlike functions, Proc. Amer. Math. Soc.,

13, 152–157.

[17] Chichra P.N. (1975), Regular functions f(z) for which zf ′(z) is α-spirallike, Proc.

Amer. Math. Soc., 49, 151–160.

[18] Cluine, J. (1959), On meromorphic schlicht functions, J. London Math. Soc., 34,

215–216.

[19] Clunie J., Keogh F.R. (1960), On starlike and convex schlicht functions, J. London

Math. Soc., 35, 229–233.

[20] Choi J.H., Kim Y.C., Saigo M. (2002), Geometric properties of convolution operators

defined by Gaussian hypergeometric functions, Integral Transforms Spec. Funct.,

13(2), 117–130.

[21] Dai S., Chen H., Pan Y. (2010), The schwarz pick lemma of high order in several

variables, Michigan Math. J., 59(3), 517–533.

[22] (1983), Duren P.L., Univalent Functions, Grundlehren Math. Wiss. 259, Springer-

Verlag, New York.

[23] Ernst T. (2001), The History of q-calculus and a New Method, Licentiate Disserta-

tion, Uppsala.

[24] Fine N.J. (1988), Basic Hypergeometric Series and Applications, Mathematical Sur-

veys and Monographs No. 27, Amer. Math. Soc. Providence.

[25] Fournier R., Ruscheweyh St. (1994), On two extremal problems related to univalent

functions, Rocky Mountain J. Math., 24(2), 529–538.

[26] Friedman B. (1946), Two theorems on schlicht functions, Duke Math. J., 13, 171–

177.

110



[27] Goel R.M., Mehrok B.S. (1981), On the coefficients of a subclass of starlike func-

tions, Indian J. Pure Appl. Math., 12(5), 634–647.

[28] Goluzin G.M. (1969), Geometric theory of functions of a complex variable, Trans.

Math. Monographs Vol. 26, Amer. Math. Soc, Providence, R. I..

[29] Goluzina E.G. (1974), On the coefficients of a class of functions, regular in a disk

and having an integral representation in it, J. of Soviet Math., 6(2), 606–617.

[30] Goodman A.W. (1948), On some determinants related to p-valent functions, Trans.

Amer. Math. Soc., 63, 175–192.

[31] Goodman A.W. (1950), On the Schwarz-Christoffel transformation and p-valent

functions, Trans. Amer. Math. Soc., 68, 204–223.

[32] Goodman A.W., Robertson M.S. (1951), A class of multivalent functions, Trans.

Amer. Math. Soc., 70, 127–136.

[33] Goodman A.W. (1983), Univalent Functions, Vol. 1–2, Mariner, Tampa, Florida.

[34] Gopalakrishna H.S., Umarani P.G. (1980), Coefficients estimates for some classes

of spiral-like functions, Indian J. Pure Appl. Math., 11(8), 1011–1017.

[35] Graham I., Kohr G. (2003), Geometric Function Theory in one and higher dimen-

sions, Marcel Dekker Inc., New York.

[36] Gromov, L., Vasil’ev A. (2002), On integral means of star-like functions, Proc.

Indian Acad. Sci. (Math. Sci.), 112(4), 563–570.

[37] Hallenbeck D.J., Ruscheweyh St. (1975), Subordination by convex functions, Proc.

Amer. Math. Soc., 52, 191–195.
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[58] Obradović M., Ponnusamy S., Wirths, K.-J. (2013), A proof of Yamashita’s conjec-

ture on area integral, Comput. Methods Funct. Theory, 13(3), 479–492.
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