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Abstract

Periocular recognition has been an active area of research in the past few years due

to its potential use in practical security applications. In spite of the advancements

made in this area, the cross-spectral matching of visible (VIS) and near-infrared (NIR)

periocular images remains a challenge. In this work, we propose a method based on il-

lumination normalization of VIS and NIR periocular images. Specifically, the approach

involves normalizing the images using the difference of Gaussian (DoG) filtering, fol-

lowed by the computation of various texture based and shape based descriptors.These

features include local binary patterns (LBP), histogram of oriented gradients (HOG),

Gabor filter based features and local phase quantisation (LPQ) based features. Finally,

the feature vectors corresponding to the query and the enrolled image are compared us-

ing the cosine similarity metric (COS) to generate a matching score. Both verification

and identification experiments are performed on three publicly available benchmark

databases of cross-spectral periocular images, which include IIIT Delhi multi-spectral

periocular (IMP) database, PolyU cross-spectral iris database and cross-eyed periocu-

lar database. We have also investigated the performance of other existing illumination

normalization methods on these databases. Our approach yields significant improve-

ment in performance (verification accuracy) over the existing approach. We have also

developed an in-house database of cross-spectral periocular images. This database in-

cludes VIS and NIR images of the left and right periocular images of 201 subjects.

The performance of the proposed approach is also evaluated on this database for both

verification and identification scenarios.
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Chapter 1

Introduction

1.1 Overview

Periocular region corresponds to the region of the eye as well as the area surrounding

it. This can be easily acquired at the time of face or iris image acquisition. In addition

to civilian applications, it plays an indispensable role in surveillance applications that

aid law enforcement agencies. For example, in establishing the identity of an offender

wearing a ski-mask, whose facial images have been captured by a surveillance camera.

As discussed in [1], a user may also cover his face partially for health related reasons. It

is known that face recognition algorithms perform poorly in presence of such occlusions.

But performance of periocular recognition does not depend on these occlusions. Also

this region is invariant to variations in facial expression.

Iris recognition is used in India and United Arab in their Aadhaar Program and bor-

der security programs, respectively [2]. It has also been shown [3] that the challenges

that iris recognition faces in unconstrained scenarios can be overcome by adopting peri-

ocular biometrics. The recognition performance of iris biometrics is better for the case

of NIR images whereas periocular biometrics performs satisfactorily in both VIS and

NIR spectra. In addition, this region has high discriminating ability and are relatively

permanent [4]. Therefore, the periocular region is regarded as an important biometric
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trait.

Traditional biometric systems rely on intra-spectral data where both the enrolled and

query images are of the same spectrum. However, advanced surveillance applications

need Infra-red (IR) sensors to be installed into the system to have a clear visualization

of offenders during night time. However, existing databases mostly include VIS gallery

images. Therefore, development of algorithms that can match VIS-IR images is highly

required.

Cross-spectral face recognition systems have gained importance in the last two

decades due to their high impact in the field of practical security applications. Many

researchers have put their efforts for developing cross-spectral matching systems that

deal with NIR, short wave infra-red (SWIR), middle wave infra-red (MWIR) and VIS

spectrum images [5, 6].

1.2 Related work

Periocular biometrics has received a lot of attention ever since its utility as a biometric

trait has been investigated by Park et al. [7]. The authors have investigated periocular

biometrics using global and local descriptors such as LBP and scale invariant feature

transform (SIFT) features. Their experiments included cropping of periocular regions

from their own collected face database and recognition. The extended version of their

work can be found in [8].

In recent years, several approaches have been developed for periocular recognition.

Authors in [9] have performed periocular recognition using convolutional restricted

Boltzman machine(CRBM) feature based learning. In [10], the authors have inves-

tigated the performance of periocular recognition in presence of several degradation

factors and also proposed a new method for extracting the region-of interest (ROI) of

the periocular images. Alonso et al. [11] have performed NIR and VIS light periocular

recognition using a new eye detection system and Gabor features. Uzair et al. [12] have

extensively studied periocular region based person identification using videos in VIS,

2



NIR and hyper-spectral scenarios.

In [13], a method based on periocular skin texture for person identification is pre-

sented. The authors have performed both verification and identification experiments

using LBP features and city-block similarity measure. Woodard et al. [14] have per-

formed experiments to evaluate the application of periocular appearance cues for bio-

metric identification. Mahalingam et al. [15] have proposed a method for periocular

recognition based on LBP features on challenging datasets. Their experimental results

indicate that LBP operator gives higher perfomance as compared to other feature vec-

tors. A similar work by Xu et al. [16] performs a detailed investigation of a number of

features that can be extracted from periocular region and compared their performances

with the proposed local Walsh-transform binary pattern encoding scheme. Karahan

et al. [17] have performed periocular region based identification using popular feature

extraction algorithms such as SIFT and speeded up robust features (SURF) and showed

that their method provides lower error rates than the current state-of-the-art methods.

Authors in [18] have explored projection based methods such as principal component

analysis (PCA) and linear discriminant analysis (LDA) in order to perform periocular

identity verification. Alonso et al. [19] have explored the problem of periocular recog-

nition using retinotropic sampling grids and Gabor based decomposition of local power

spectrum of the images. Mikaelyan et al. [20] have presented periocular recognition

based on local symmetry patterns. Their feature extraction method describes neigh-

bourhoods around the key points by projecting them onto the harmonic functions and

estimates the presence of symmetric curve families around those points. The authors

in [21] have proposed a method for periocular recognition which fuses LPQ and Gabor

wavelet features, which not only improves the performance but also achieves robust-

ness. Similarly Joshi et al. [22] have performed both verification and identification of

periocular images using the features extracted from a bank of Gabor filters. They have

used direct linear discriminant analysis (DLDA) method and Parzen probabilistic neu-

ral network (PPNN) for dimension reduction and classification of the feature vectors,

3



respectively.

A detailed survey on periocular biometrics can be found in [23]. This paper describes

databases, algorithms, applications and challenges in this area. Uzair et al. [24] have

performed periocular region based identification using NIR image sets. Hollingsworth et

al. [25] have conducted an experiment to study the performance of humans in comparing

periocular image pairs which included both NIR and VIS images. They have also

calculated the performance of three different computer algorithms and compared the

above results with those of human experiments.

Authors in recent years have also focused on combining both iris and periocular

biometrics. This not only improves the performance of individual traits but also ac-

counts for eliminating their drawbacks. In [26], different iris and periocular matchers

are fused in both VIS and NIR spectra. Authors have also compared both iris and

periocular biometrics based on their recognition accuracies. Santos et al. [27] have pro-

posed a method to improve cross-sensor iris recognition problem by combining both iris

and periocular images through score level fusion. Authors in [28] have also performed

combination of iris and periocular biometrics in the visible spectrum using weighted

sum rule and showed that the performance of the combination is higher than those

of individual biometrics. Raja et al. [29] have explored iris and periocular recognition

problem in the visible spectrum using binarized statistical image features (BSIF) and

independent component analysis (ICA). In [30], the authors have performed fusion of

iris and periocular biometrics in NIR spectrum and showed that in case of non-ideal

imagery, the fusion outperforms the iris biometrics. Tan et al. [31] have proposed an

automatic joint iris and periocular recognition at-a-distance using Leung-Mallik filter

based features. Their experiments show an improvement of rank-1 identification rate

over only that of iris recognition.

Another application of periocular biometrics is for soft biometric classification, such

as gender recognition. Lyle et al. [32] have investigated the performance of local ap-

pearance based features extracted from periocular images in VIS spectrum for soft
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classification on gender and ethnicity . They have also extended their work in [33]

where gender classification is performed both in VIS and NIR spectra. Authors in [34]

have performed periocular region based gender recognition for gender transformation

cases and showed that periocular region outperforms the face component based method.

Existing studies in periocular biometrics have focused largely on intra-spectral match-

ing. However, advanced surveillance applications require cross-spectral matching of pe-

riocular images, especially, matching query NIR images with VIS images in the gallery

and vice-versa. The problem of cross-spectral matching has been studied in the context

of face [5, 35, 36] and iris [37–39] biometrics. Xu et al. [5] have proposed a joint dictio-

nary learning and reconstruction based method for matching face images across NIR

and VIS spectra. Maeng et al. [35] have included cross-spectral face recognition with

short and long distance measures. Zhu et al. [36] have addressed the problem of cross-

spectral matching of NIR and VIS face images using transduction method. They have

also proposed a feature representation to alleviate the heterogeneities between the VIS

and NIR images. In [37], the authors have examined the possibility of cross-domain iris

matching. They have also analyzed iris imaging at longer wavelengths. Zuo et al. [38]

presented an adaptive method to match the NIR iris images against color iris images.

In [39], both sensor-specific and wavelength-specific cross-matching of iris images based

on domain adaption framework are proposed.

Recently, there have been some efforts to address the matching of periocular images

in cross-spectral scenarios [1, 40–43]. Sharma et al. [40] have presented a neural net-

work based approach, which uses pyramid of histogram of oriented gradients (PHOG)

features. In their approach, two neural networks are trained separately for VIS and

NIR spectra and then combined to train on the cross-spectral features. Their approach

achieves genuine acceptance rate (GAR) of 47.08% at 1% false acceptance rate (FAR).

The approach presented in [41] involves Gabor filtering, followed by feature extrac-

tion and encoding. The I-divergence distance measure is used for comparing feature

vectors. The performance evaluation has been carried out using their in-house database,
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which contains images acquired at short as well as long standoff distances. Authors have

also explored cross-spectral matching of SWIR and MWIR images. Results from their

extended study is presented in [42] and [43].

Ramaiah and Kumar [1] have presented an approach for cross-spectral periocular

recognition based on markov random fields (MRF) and variants of LBP. Authors have

also shown that performance of periocular matching can be improved further by using

real-valued features extracted from iris regions. They have reported GARs of 73.20%

and 18.35% at 0.1 FAR on PolyU and IMP databases, respectively.

It is evident from the discussion here that the performance of periocular biometrics

in cross-spectral scenarios needs to be improved significantly before these algorithms

can be deployed in real-world applications. This motivated us to develop an approach

for accurate periocular recognition in cross-spectral scenarios.

1.3 Organization of the thesis

The thesis is organized as follows:

• In Chapter 2, the proposed periocular recognition approach is discussed. The first

section describes in detail different processing stages involved in the proposed

method for cross-spectral matching of periocular images. Section 2 includes a

detailed description of the databases used. Details of the in-house cross-spectral

periocular database is given in section 3.

• In Chapter 3, experimental results for both verification and identification experi-

ments are presented on all four databases. This also includes a brief discussion of

the performance results.

• In Chapter 4, conclusions are made and a discussion on the possibility of future

work is presented.
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Chapter 2

Proposed Periocular Recognition

Based on Illumination

Normalisation

2.1 Proposed method

The core of our approach for cross-spectral periocular recognition is the DoG filtering

for illumination normalization. Figure 2.1 shows the block diagram of our approach for

both verification and identification scenarios, which consists of three processing stages

namely, pre-processing, feature extraction and matching.

2.1.1 Pre-processing

In the proposed approach, the inherent illumination variation between the VIS and the

NIR images is handled at the pre-processing stage. Specifically, images are convolved

with a DoG filter to mitigate the illumination variations, which adversely affect the

matching of VIS and NIR periocular images. This process generates images that are

largely free of illumination induced variations.

Essentially, DoG is a band-pass filter which has been shown to approximate the

7



Figure 2.1: Block diagram of the proposed method: (a) Verification scenario, (b) Iden-

tification scenario

Laplacian of Gaussian (LoG) function. The Laplacian operator and the Gaussian func-

tion are defined as follows:

∇2 =
δ2

δx2
+

δ2

δy2
(2.1)

and

G(x, y) = exp(−x
2 + y2

2σ2
) (2.2)

The LoG function is then defined as follows:

∇2G(x, y) =
x2 + y2 − 2σ2

σ4
exp(−x

2 + y2

2σ2
) (2.3)

In the above equation, the Gaussian part blurs the image, reducing structural noises

at scales much smaller than the standard deviation σ. Unlike averaging masks, Gaussian

operator is smooth in both spatial domain and frequency domain. Therefore, less

artifacts are introduced. The Laplacian part is isotropic and hence invariant to rotation
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which also corresponds to its in-variance to changes in intensity in any direction.

For an image I(x, y), DoG filtering can be mathematically expressed as follows:

DoG ∗ I(x, y) = (Gσ1 −Gσ2) ∗ I(x, y) (2.4)

= Gσ1 ∗ I(x, y)−Gσ2 ∗ I(x, y) (2.5)

where Gσ1 and Gσ2 are the discrete Gaussian kernels having standard deviation σ1

and σ2, respectively. We have used σ1 and σ2 as 1 and 2 respectively. The symbol ∗

represents the two-dimensional convolution operation. In general, a Gaussian kernel

can be defined as follows:

Gσ(x, y) =
1√
2πσ

exp(−x
2 + y2

2σ2
) (2.6)

Figures 2.2, 2.3 and 2.4 show the results of illumination normalization using DoG

filtering on sample VIS and NIR images from IMP, PolyU and cross-eyed databases

respectively. As can be observed, the resultant images look very similar in all the three

cases.

2.1.2 Feature extraction and matching

Having performed the illumination normalization, we have extracted texture and shape

descriptors that carry discriminatory information useful for matching the query NIR

image to the enrolled VIS images of the claimed identity. Specifically, we have explored

four popular feature descriptors namely, LBP, HOG, Gabor and LPQ features for this

purpose.

LBP is a texture descriptor that has been successfully applied to diverse image anal-

ysis tasks. We have used LBP1,8 [44] features computed using a circular neighbourhood

of unit radius with eight sampling points. Considering uniform binary patterns, the

above process generates a 59-dimensional histogram feature.

HOG features effectively capture local shape information and have been shown to

outperform wavelets and other gradient based descriptors [45].
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Figure 2.2: Illustration of DoG filtering on IMP database: (a) VIS periocular image,

(b) NIR periocular image, (c) DoG filtered VIS periocular image and (d) DoG filtered

NIR periocular image

The LPQ [46] is a blur insensitive texture classification method, which uses local

phase information extracted using short-term Fourier transform (STFT) computed in

local neighborhood at each pixel position of the image.

We have also used Gabor filter based features in our experiments where the magni-

tudes of the filtered image at each pixel are considered as features [47]. This feature is

insensitive to changes in rotation, scale, translation, illumination and noise.

The proposed approach uses the COS metric for comparison of the feature vectors

extracted from the query and the enrolled images. Suppose p = (p1, p2, ..., pn) and

q = (q1, q2, ..., qn) denote the two n-dimensional feature vectors being compared. The

COS score, which provides a measure of similarity between the two vectors p and q, is
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Figure 2.3: Illustration of DoG filtering on PolyU database: (a) VIS periocular image,

(b) NIR periocular image, (c) DoG filtered VIS periocular image and (d) DoG filtered

NIR periocular image

defined as follows:

D(p,q) =
p · q
‖p‖‖q‖

(2.7)

=

∑n
i=1 piqi∑n

i=1

√
p2i

∑n
i=1

√
q2i

(2.8)

2.2 Databases and experimental protocol

Performance of the proposed approach has been evaluated on three publicly available

periocular image databases namely, IMP periocular dataset, PolyU iris database and

cross-eyed periocular database. The following section presents detailed descriptions of

the databases and the experimental protocol adopted for performance evaluation for

both verification and identification scenarios.
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Figure 2.4: Illustration of DoG filtering on cross-eyed database: (a) VIS periocular

image, (b) NIR periocular image, (c) DoG filtered VIS periocular image and (d) DoG

filtered NIR periocular image

1. IMP database

This database contains periocular images of 62 subjects, with 5 images each cap-

tured in VIS, NIR and night vision spectra. In this work, we have used periocular

images captured only in the VIS and NIR spectra. Figure 2.5 shows sample VIS

and NIR periocular images of a subject in this database.

As can be seen in this figure, the VIS images in the database contain both left and

right periocular regions and each of these images has a dimension of 301 × 601

pixels. Therefore, we have separated each of the VIS images into left and and

right periocular images. Before separating the left and right periocular images,

we have performed eye-pair detection using Viola-Jones algorithm [48]. Once an

eye-pair is detected, a rectangular ROI around the eye is extracted. The ROI

12



Figure 2.5: Sample images from IMP database: (a) VIS periocular image (b) left and

(c) right NIR periocular images

size is determined based on the dimensions of the bounding box produced by the

eye-pair detector. Specifically, it is (w + w
a
, h + h

b
) pixels, where w and h are the

width and the height of the bounding box, respectively. The parameters a and b

in the fractions are set empirically in our experiments.

On the other hand, NIR images of the left and right periocular regions have been

captured separately, with each containing 640× 480 pixels. Therefore, a total of

1240 left and right periocular images, with 620 images each in the VIS and NIR

image subsets, have been used in our experiments. To reduce computation time,

we have down-sampled these images to 64× 64 pixels.

2. PolyU cross-spectral iris database

The PolyU cross-spectral iris database [39] contains VIS and NIR periocular im-

ages from 209 subjects with 15 images per spectrum per subject. There are

separate images for left and right periocular regions. Figure 2.6 shows the sample
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periocular images. The original images have dimensions of 640 × 480. We have

down-sampled these periocular images to 60× 80 pixels for further processing.

Figure 2.6: Sample images from PolyU cross-spectral iris database: (a) Left VIS pe-

riocular image (b) Left NIR periocular image (c) Right VIS periocular image and (d)

Right NIR periocular image

3. Cross-eyed periocular database

The cross-eyed periocular database [49] contains 8 VIS and NIR images of both

left and right periocular regions for each of the 120 subjects. Figure 2.7 shows

the sample VIS and NIR images for left and right periocular regions of a subject

in this database. In the database, the eye regions are masked so as to avoid use

of iris information. The original size of each of the periocular images is 800× 900

pixels. We have down-sampled each of them into 64× 64 pixels.

Table 2.1 shows an overview of the three periocular databases used in our experi-

ments.
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Figure 2.7: Sample images from Cross-eyed database: (a) Left VIS periocular image (b)

Left NIR periocular image (c) Right VIS periocular image and (d) Right NIR periocular

image

2.3 Development of a new cross-spectral periocular

database

Though cross-spectral periocular biometrics has been extensively researched upon, only

a few number of databases are available publicly, on which the performance can be

evaluated. This motivated us to develop a new and challenging cross-spectral periocular

database. Our database consists of images from 201 subjects (144 males and 57 females),

most of which are students of IIT Indore. The database has been collected in three

different sessions (July 2016, December 2016 and May 2017). These images are captured

in both NIR and VIS spectra and at two different stand-off distances with 7 different

pose variations. Hence, a total of 5628 images from 201 subjects are collected.

The dataset is created using HIK Vision IR cube network camera, which is a true
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Table 2.1: Overview of the databases used
PPPPPPPPPPPPPP
Properties

Database IMP

database

PolyU

database

Cross-eyed

database

Development
IIIT Delhi

(2014)

Hong Kong Polytechnic

University (2014)

University of Reading,

USA (2016)

Subjects 62 209 120

Spectra

VIS

NIR

Night Vision

VIS

NIR

VIS

NIR

No of images per subject

per spectra
5 15 8

Size of images
301-by-601 (VIS)

640-by-480 (NIR)
480-by-640 800-by-900

day and night camera. The sensor present in the camera detects the presence of light

and thus automatically switches the mode of operation between VIS and NIR. Network

camera is a small and reliable embedded digital surveillance product with combined

features of both traditional analog camera and network digital video server (DVS). This

camera finds its application in remote control network applications such as network

surveillance for markets and industries as well as remote surveillance for homes and

offices.

Initially, we have captured streams of videos of each individual which includes contin-

uous variations in pose. The frames are then extracted from those videos with required

pose variations at different instants of time. The next task is to crop the periocular

regions from the whole images. To accomplish this task, we have performed eye-pair de-

tection using Viola-Jones algorithm [48]. This algorithm crops the periocular regions by

using the previously cropped face regions. Figure 2.8 shows the images corresponding

16



to the input and output of this process.

Figure 2.8: (a) Original image extracted from the captured video stream, (b) Cropped

face image, (c) Cropped periocular image

Finally all the images are resized to dimensions of 60× 120 pixels. As can be seen

from Figure 2.8, the cropped images contain left and right periocular images. Hence

we have separated the left and right periocular images while performing individual

experiments. This results in left and right periocular images of dimension 60 × 60

pixels. Table 2.2 shows the properties of the database created.

Figures 2.9, 2.10, 2.11 and 2.12 show the sample images corresponding to VIS and

NIR periocular images of a male subject and a female subject, respectively. As we can

see from these figures, the images correspond to the pose variations indicated in Table

2.2.

The performance evaluation on this database has been partitioned into two different

sets of experiments. The first set of experiments are performed on a subset of the in-

house dataset which contains first 5 images (corresponding to eye movement only) from

all subjects, resulting in a total of 4020 images. The second set of experiments are

performed on the entire database. These two sets of images have been named as image

sets 1 and 2 respectively. The motivation of performing two sets of experiments can be

well explained if we will look at Figures 2.9 to 2.12. From these figures, it can be seen
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Table 2.2: Properties of the new cross-spectral periocular database

Development By IIT Indore

Subject description
201 subjects

144 males and 57 females

Number of images 7 images per subject per spectrum per distance measure

Variations

Spectra
VIS

NIR

Distance
Near distance (0.3 m)

Far distance (0.9 m)

Pose

Eye movement

(Front, Left, Right, Up, Down)

Face movement

(Left, Right)

Figure 2.9: VIS periocular images corresponding to a male subject

that images corresponding to face movement contain background regions in addition

to the periocular regions. This is because, the position of the camera does not change
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Figure 2.10: NIR periocular images corresponding to a male subject

Figure 2.11: VIS periocular images corresponding to a female subject

with respect to the face. Due to this, the performance on the overall database degrades

slightly. On the other hand, this makes the database more challenging from practical

point of view.
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Figure 2.12: NIR periocular images corresponding to a female subject

20



Chapter 3

Experiments and Discussion

In order to evaluate the performance of the proposed approach, we have performed

verification as well as identification experiments. For the case of verification experi-

ments, in addition to the receiver operating characteristic (ROC) curves, we report the

equal error rates (EER) and GARs at 0.1 FAR as the performance measures. Similarly,

the performance measures in case of identification experiments include the rank-1 and

rank-10 recognition rates and cumulative match characteristic (CMC) curves.

3.1 Verification experiments

In this section, we present results from a set of verification experiments that have

been carried out to evaluate the performance of our approach using left and right

periocular images. We have also evaluated the performance of our approach when the

left and right periocular images are combined at the feature-level through simple feature

concatenation.

Tables 3.1, 3.2 and 3.3 present results from our experiments on IMP, PolyU and

cross-eyed databases, respectively. As mentioned previously, these tables show EERs

(%) and GARs (%) at 0.1 FAR for verification using the left periocular images, right

periocular images and their feature-level combination.

As can be seen from Table 3.1, the LPQ feature yields higher GARs (%) for the

21



Table 3.1: Verification performance of the proposed method on IMP database

Features

Left

Periocular

Right

Periocular
Combined

EER (%) GAR (%) EER (%) GAR (%) EER (%) GAR (%)

LBP 45.34 10.19 45.82 9.87 45.29 10.19

HOG 43.85 23.81 46.01 24.97 45.84 25.03

Gabor 41.41 24.90 45.01 19.55 41.19 23.74

LPQ 38.76 30.00 39.46 23.94 37.83 32.06

Table 3.2: Verification performance of the proposed method on PolyU database

Features

Left

Periocular

Right

Periocular
Combined

EER (%) GAR (%) EER (%) GAR (%) EER (%) GAR (%)

LBP 36.61 25.56 35.74 29.43 33.55 35.37

HOG 19.57 70.97 18.79 73.12 13.87 83.12

Gabor 22.95 61.01 22.84 62.87 17.27 75.41

LPQ 27.16 44.06 24.91 52.14 19.81 66.13

IMP database. However for the case of right periocular images, both HOG and LPQ

features perform similarly. Table 3.2 shows that for PolyU database the performance

of HOG feature is significantly higher for left, right and combined periocular images.

Similarly, from Table 3.3 we can see that, the LPQ feature yields higher GAR (%)

values for cross-eyed database.

The results presented in these tables clearly indicate that the HOG and LPQ de-

scriptors yield consistently higher GARs for left,right as well as combined periocular

matching. This is indicated in boldface in the tables. The superior performance of the

HOG and LPQ features as compared with LBP and Gabor features is perhaps due to
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Table 3.3: Verification performance of the proposed method on Cross-eyed database

Features

Left

Periocular

Right

Periocular
Combined

EER (%) GAR (%) EER (%) GAR (%) EER (%) GAR (%)

LBP 17.62 69.39 15.11 76.65 10.36 89.27

HOG 16.55 80.03 17.63 77.55 13.22 85.35

Gabor 14.02 83.49 16.04 80.29 11.27 88.01

LPQ 6.68 94.51 5.85 95.48 3.99 97.14

the fact that the normalized periocular images contain largely shape information, which

these descriptors are capable of capturing effectively.

Similarly, for the in-house database, Tables 3.4 and 3.5 show EERs (%) and the

verification accuracies in terms of GARs (%) at 0.1 FAR value on image sets 1 and 2,

respectively.

Table 3.4: Verification performance of the proposed method on image set 1

Features

Left

periocular

Right

periocular
Combined

EER (%) GAR (%) EER (%) GAR (%) EER (%) GAR (%)

LBP 39.24 23.24 33.99 25.47 39.54 23.05

HOG 34.28 46.06 32.34 48.85 30.73 55.05

Gabor 37.28 38.67 35.27 41.38 33.67 46.64

LPQ 33.24 39.63 33.99 37.84 32.92 39.34

As can be seen from these tables, performance of HOG feature descriptor is highest

for all cases. We can also observe that performance of the proposed method on image

23



Table 3.5: Verification performance of the proposed method on image set 2

Features

Left

periocular

Right

periocular
Combined

EER (%) GAR (%) EER (%) GAR (%) EER (%) GAR (%)

LBP 42.40 20.96 41.91 22.06 40.85 21.02

HOG 37.82 38.94 35.84 41.82 34.51 46.37

Gabor 39.14 35.01 37.30 36.79 35.95 41.46

LPQ 37.91 33.03 38.45 31.95 35.76 34.44

set 2 is lower than that of the image set 1 (as we have discussed in chapter 2).

Figures 3.1, 3.2 and 3.3 show the ROC curves for IMP database for VIS-NIR match-

ing of left periocular images, right periocular images and combined periocular images,

respectively.
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Figure 3.1: ROC curves for IMP database (Left periocular)
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Figure 3.2: ROC curves for IMP database (Right periocular)
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Figure 3.3: ROC curves for IMP database (Combined)
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Figures 3.4, 3.5 and 3.6 show the ROC curves for PolyU database for VIS-NIR

matching of left periocular images, right periocular images and combined periocular

images, respectively.
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Figure 3.4: ROC curves for PolyU database (Left periocular)

Figures 3.7, 3.8 and 3.9 show the ROC curves for cross-eyed database for VIS-NIR

matching of left periocular images, right periocular images and combined periocular

images, respectively.

Figures 3.10, 3.11 and 3.12 show the ROC curves corresponding to VIS-NIR match-

ing of left, right and combined periocular images belonging to image set 1.

Similarly, Figures 3.13, 3.14 and 3.15 show the ROC curves corresponding to VIS-

NIR matching of left, right and combined periocular images belonging to image set

2.
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Figure 3.5: ROC curves for PolyU database (Right periocular)
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Figure 3.6: ROC curves for PolyU database (Combined)
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Figure 3.7: ROC curves for Cross-eyed database (Left periocular)
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Figure 3.8: ROC curves for Cross-eyed database (Right periocular)
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Figure 3.9: ROC curves for Cross-eyed database (Combined)
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Figure 3.10: ROC curves for image set 1 (Left periocular)
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Figure 3.11: ROC curves for image set 1 (Right periocular)
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Figure 3.12: ROC curves for image set 1 (Combined)
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Figure 3.13: ROC curves for image set 2 (Left periocular)
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Figure 3.14: ROC curves for image set 2 (Right periocular)
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Figure 3.15: ROC curves for image set 2 (Combined)

3.1.1 Comparative analysis

For a comparison of performance, we have selected three other illumination normal-

ization methods namely, Hilbert transform [50], contrast limited adaptive histogram

equalization (CLAHE) [51] and single-scale-retinex (SSR) [52]. Table 3.6 shows the

GARs (%) at 0.1 FAR for various cases. GARs (%) reported in this table correspond

to the HOG feature-based approach as it has provided satisfactory performance in our

previous set of experiments. As can be seen in this table, the Hilbert transform based

method performs marginally better than the proposed method in a few cases, espe-

cially on the cross-eyed database. However, the performance of the proposed method is

more consistent and it yields significant improvement over the Hilbert transform-based

method on the PolyU database.

We have also compared the performance of our approach with the one proposed

by Ramaiah et al. [1] as they have also evaluated their method on IMP and PolyU

databases. Their approach does not require a training set of images and hence, it has
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Table 3.6: Comparison of GARs (%) of various illumination normalization methods
```````````````````````̀
Database

Method Hilbert

transform
CLAHE SSR DoG

IMP

database

Left periocular 22.52 18.58 15.48 23.81

Right periocular 18.97 9.03 13.42 24.97

Combined 25.61 15.03 16.77 25.03

PolyU

database

Left periocular 55.53 65.71 50.78 70.97

Right periocular 58.00 68.19 54.89 73.12

Combined 68.41 76.60 58.69 83.12

Cross-eyed

database

Left periocular 81.72 79.43 80.47 80.03

Right periocular 80.35 77.60 77.27 77.55

Combined 88.31 85.39 85.66 85.35

In-house

database

(Image set 1)

Left periocular 40.44 33.12 22.67 46.06

Right periocular 39.95 35.24 25.19 48.85

Combined 47.96 38.42 27.62 55.05

In-house

database

(Image set 2)

Left periocular 34.73 37.00 24.57 38.94

Right periocular 33.90 38.96 27.23 41.82

Combined 40.08 43.06 30.35 46.37

been evaluated on the entire dataset. Therefore, a direct comparison is made in Table

3.7 with the results reported in [1]. As can be seen, the proposed approach provides

significant improvement in GAR over the existing method [1].

Table 3.7 also includes the results of Sharma et al. [40]. However, it may be noted

that their method requires a training set of periocular images and therefore, GAR (%)

is obtained on a test dataset which is a subset of the whole dataset. Therefore, a fair

comparison cannot be made as our method has been evaluated on the entire database.
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Table 3.7: Performance comparison with the existing approaches

Approach
IMP

database

PolyU

database

Ramaiah et al. [1] 18.35 73.20

Sharma et al. [40] 47.08 -

Proposed

work
25.03 83.12

3.2 Identification experiments

In addition to verification experiments, we have performed identification experiments

on all four databases, where the query NIR images are identified against the VIS gallery

images. We present results in this case are in terms of rank-1 and rank-10 % recog-

nition rates. We also present CMC curves for all four databases. Tables 3.8, 3.9 and

3.10 show the rank-1 and rank-10 accuracies for IMP, PolyU and cross-eyed databases,

respectively.

Table 3.8: Identification performance of the proposed method on IMP database

Features

Left

Periocular

Right

Periocular
Combined

Rank 1 Rank 10 Rank 1 Rank 10 Rank 1 Rank 10

LBP - 20.00 - 21.61 - 20.97

HOG - 31.61 - 33.87 - 31.61

Gabor - 25.81 - 19.68 - 25.81

LPQ 16.45 54.52 - 45.81 13.55 55.16

In all these tables, bold-faced numbers indicate the highest recognition rates for
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Table 3.9: Identification performance of the proposed method on PolyU database

Features

Left

Periocular

Right

Periocular
Combined

Rank 1 Rank 10 Rank 1 Rank 10 Rank 1 Rank 10

LBP - 21.91 - 24.24 - 30.72

HOG 44.66 74.45 43.48 75.28 60.57 85.71

Gabor 18.44 51.52 15.98 50.11 18.44 51.52

LPQ 12.50 39.59 17.83 49.73 27.34 68.29

Table 3.10: Identification performance of the proposed method on Cross-eyed database

Features

Left

Periocular

Right

Periocular
Combined

Rank 1 Rank 10 Rank 1 Rank 10 Rank 1 Rank 10

LBP 42.60 81.87 44.58 85.94 76.06 96.35

HOG 80.00 91.87 76.88 90.00 80.00 91.87

Gabor 53.96 80.21 51.67 78.54 53.96 80.21

LPQ 95.83 98.44 95.21 98.96 98.54 99.38

each case. LPQ feature results in highest identification accuracy for both IMP and

cross-eyed database, whereas HOG feature gives consistently higher performance on

PolyU dataset. Similar to verification results, LBP feature performs poorly on all the

four databases.

Tables 3.11 and 3.12 show the results of the identification experiments in terms of

rank-1 and rank-10 recognition rates for image sets 1 and 2, respectively.

From these tables, it can be observed that HOG performs better as compared to

other features. Similar to verification experiments, proposed method has achieved better

identification accuracies on image set 1 than that of image set 2.
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Table 3.11: Identification performance of the proposed method on image set 1

Features

Left

periocular

Right

periocular
Combined

Rank 1 Rank 10 Rank 1 Rank 10 Rank 1 Rank 10

LBP - 24.48 - 27.56 - 23.78

HOG 28.81 54.68 31.09 57.31 43.88 66.97

Gabor 19.20 43.53 16.82 45.02 17.36 43.68

LPQ 19.50 52.04 15.52 43.68 15.52 48.96

Table 3.12: Identification performance of the proposed method on image set 2

Features

Left

periocular

Right

periocular
Combined

Rank 1 Rank 10 Rank 1 Rank 10 Rank 1 Rank 10

LBP - 21.57 - 23.67 - 21.75

HOG 23.06 48.83 25.80 51.60 36.53 63.40

Gabor 13.29 38.45 10.55 36.50 14.93 41.01

LPQ 14.57 43.00 12.01 37.99 12.97 43.46

Figures 3.16, 3.17 and 3.18 show the CMC curves for IMP database for VIS-NIR

matching of left periocular images, right periocular images and combined periocular

images, respectively.

Figures 3.19, 3.20 and 3.21 show the CMC curves for PolyU database for VIS-NIR

matching of left periocular images, right periocular images and combined periocular

images, respectively.

Figures 3.22, 3.23 and 3.24 show the CMC curves for cross-eyed database for VIS-

NIR matching of left periocular images, right periocular images and combined periocular

images, respectively.
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Figure 3.16: CMC curves for IMP database (Left periocular)
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Figure 3.17: CMC curves for IMP database (Right periocular)
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Figure 3.18: CMC curves for IMP database (Combined)
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Figure 3.19: CMC curves for PolyU database (Left periocular)
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Figure 3.20: CMC curves for PolyU database (Right periocular)
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Figure 3.21: CMC curves for PolyU database (Combined)
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Figure 3.22: CMC curves for Cross-eyed database (Left periocular)

Figures 3.25, 3.26 and 3.27 show the CMC curves corresponding to VIS-NIR match-

ing of left, right and combined periocular images belonging to image set 1.

Similarly, figures 3.28, 3.29 and 3.30 show the CMC curves corresponding to VIS-

NIR matching of left, right and combined periocular images belonging to image set

2.

3.3 Discussion

Our experimental results suggest that reliable cross-spectral matching of periocular im-

ages can be performed with the proposed approach, which achieves best GARs (at 0.1

FAR) of 32.06%, 83.12% and 97.14% on IMP, PolyU and cross-eyed databases, respec-

tively when both left and right periocular images are used for biometric verification.

More importantly, the proposed method achieves state-of-the-art performance on the
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Figure 3.23: CMC curves for Cross-eyed database (Right periocular)
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Figure 3.24: CMC curves for Cross-eyed database (Combined)
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Figure 3.25: CMC curves for image set 1 (Left periocular)
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Figure 3.26: CMC curves for image set 1 (Right periocular)

42



Rank
100 101 102

R
ec

og
ni

tio
n 

R
at

e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CMC curve

LBP
HOG
Gabor
LPQ

Figure 3.27: CMC curves for image set 1 (Combined)
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Figure 3.28: CMC curves for image set 2 (Left periocular)
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Figure 3.29: CMC curves for image set 2 (Right periocular)
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Figure 3.30: CMC curves for image set 2 (Combined)
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publicly available PolyU dataset, with an improvement of nearly 10% points over the ex-

isting method. Similarly, our method achieves best rank-10 recognition rates of 55.16%,

85.71% and 99.38% for IMP, PolyU and cross-eyed databases, respectively when both

left and right periocular images are used.

We have also compared the performance (in terms of verification accuracy) of the

proposed approach with some of the existing illumination normalisation methods. The

comparison results show satisfactory performance of the proposed approach while HOG

is used as a feature vector.

The in-house database also performs satisfactorily for both verification and identi-

fication experiments (Tables 3.4 and 3.11). The proposed method achieves verification

accuracies of 55.05% and 46.37% on image sets 1 and 2, respectively when HOG feature

vectors are used. Similarly, the rank-10 recognition accuracies achieved on image sets

1 and 2 for HOG feature are 66.97% and 63.40%, respectively. Clearly, performance on

image set 1 is more than that of image set 2 due to presence of higher quality images

in it.

The performance of the proposed method on IMP database for both verification

and identification scenarios is comparatively poor than that of other datasets. This

is because the periocular images in the NIR domain are of poor quality and are not

well aligned, due to which the performance degrades. On the other hand, the proposed

method on cross-eyed database results in significantly higher verification and identifica-

tion accuracies. The reason for this is the presence of perfectly aligned and high quality

VIS and NIR periocular images.
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Chapter 4

Conclusion and Future work

4.1 Conclusion

In this work, we have proposed a simple yet effective method for periocular recognition

in cross-spectral scenarios. Our approach involves normalizing the images to reduce

the effect of illumination variations. This is followed by the extraction of local texture

descriptors and local shape descriptors and then comparison of the resultant feature

vectors. In addition we have developed a new cross-spectral database consisting of

periocular images of 201 subjects.

The performance of the proposed approach is evaluated on three publicly available

periocular databases and also on the in-house database. Both verification and identifi-

cation experiments are performed and results are presented on all four databases using

four different feature descriptors and COS similarity measure. It is found that per-

formance of the proposed approach on cross-eyed database achieves a GAR of 97.14%

at 0.1 FAR and a rank-10 recognition rate of 99.38% for verification and identification

scenarios respectively.

The in-house cross-spectral periocular database also gives satisfactory results for

both verification and identification experiments. It achieves a verification accuracy of

55.05% at 0.1 FAR and a rank-10 recognition rate of 66.97%. It has also been observed
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that the image set 2 has poor performance as compared to image set 1.

4.2 Future work

As part of our future work, we plan to ascertain the performance of the proposed

approach on periocular images extracted from publicly available databases of hetero-

geneous facial images. We also plan to explore cross-spectral matching of periocular

images acquired in other spectral bands.

In addition to the above, we look forward to developing efficient algorithms that yield

improved performance for matching of cross-spectral periocular images of challenging

databases such as IMP and the in-house database.

47



References

[1] N. P. Ramaiah and A. Kumar, “On matching cross-spectral periocular images

for accurate biometric identification,” in 8th IEEE International Conference on

Biometrics: Theory, Applications, and Systems (BTAS), Sept 2016.

[2] I. Nigam, M. Vatsa, and R. Singh, “Ocular biometrics: A survey of modalities and

fusion approaches,” Information Fusion, vol. 26, pp. 1–35, 2015.

[3] S. Bharadwaj, H. S. Bhatt, M. Vatsa, and R. Singh, “Periocular biometrics: When

iris recognition fails,” in Fourth IEEE International Conference on Biometrics:

Theory Applications and Systems (BTAS), Sept 2010, pp. 1–6.

[4] G. Santos and H. Proena, “Periocular biometrics: An emerging technology for

unconstrained scenarios,” in 2013 IEEE Symposium on Computational Intelligence

in Biometrics and Identity Management (CIBIM), April 2013, pp. 14–21.

[5] F. Juefei-Xu, D. K. Pal, and M. Savvides, “NIR-VIS heterogeneous face recognition

via cross-spectral joint dictionary learning and reconstruction,” in IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2015.

[6] T. Bourlai and B. Cukic, “Multi-spectral face recognition: Identification of people

in difficult environments,” in IEEE International Conference on Intelligence and

Security Informatics (ISI), June 2012, pp. 196–201.

48



[7] U. Park, A. Ross, and A. K. Jain, “Periocular biometrics in the visible spectrum:

A feasibility study,” in 3rd IEEE International Conference on Biometrics: Theory,

Applications, and Systems (BTAS), Sept 2009, pp. 1–6.

[8] U. Park, R. R. Jillela, A. Ross, and A. K. Jain, “Periocular biometrics in the visible

spectrum,” IEEE Transactions on Information Forensics and Security, vol. 6, no. 1,

pp. 96–106, March 2011.

[9] L. Nie, A. Kumar, and S. Zhan, “Periocular recognition using unsupervised convo-

lutional RBM feature learning,” in Pattern Recognition (ICPR), 22nd International

Conference on. IEEE, 2014, pp. 399–404.

[10] C. N. Padole and H. Proenca, “Periocular recognition: Analysis of performance

degradation factors,” in 2012 5th IAPR International Conference on Biometrics

(ICB), March 2012, pp. 439–445.

[11] F. Alonso-Fernandez and J. Bigun, “Near-infrared and visible-light periocular

recognition with gabor features using frequency-adaptive automatic eye detection,”

IET Biometrics, vol. 4, no. 2, pp. 74–89, 2015.

[12] M. Uzair, A. Mahmood, A. Mian, and C. McDonald, “Periocular region-based

person identification in the visible, infrared and hyperspectral imagery,” Neuro-

computing, vol. 149, pp. 854–867, 2015.

[13] P. E. Miller, A. W. Rawls, S. J. Pundlik, and D. L. Woodard, “Personal identi-

fication using periocular skin texture,” in Proceedings of the ACM Symposium on

Applied Computing. ACM, 2010, pp. 1496–1500.

[14] D. L. Woodard, S. J. Pundlik, J. R. Lyle, and P. E. Miller, “Periocular region

appearance cues for biometric identification,” in Computer Vision and Pattern

Recognition Workshops (CVPRW), IEEE Computer Society Conference on. IEEE,

2010, pp. 162–169.

49



[15] G. Mahalingam and K. Ricanek, “LBP-based periocular recognition on challenging

face datasets,” EURASIP Journal on Image and Video processing, vol. 2013, no. 1,

p. 36, 2013.

[16] J. Xu, M. Cha, J. L. Heyman, S. Venugopalan, R. Abiantun, and M. Savvides,

“Robust local binary pattern feature sets for periocular biometric identification,” in

Biometrics: Theory Applications and Systems (BTAS), Fourth IEEE International

Conference on. IEEE, 2010, pp. 1–8.
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