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Abstract 

 
Base catalyzed methyl ester hydrolysis of discotic C3 symmetric benzene-

1,3,5-tricarboxamides coupled with (L) and (D) phenylalanine were found to 

self-assemble into supramolecular gels with helical morphological features. 

The handedness of macroscopic chirality was tuned by the chiral amino 

acids attached with the periphery of benzene-tri-carboxamides which were 

revealed by circular dichroism, scanning electron microscopy and 

transmission electron microscopic studies. Thixotropic and self-healing 

properties of the supramolecular gels were also assessed. 
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Chapter 1: Introduction and Reaction scheme 

1.1 Introduction: 
Supramolecular chirality is a unique evolution in nature that reveals 

the chirality at supramolecular level. Supramolecular chirality 

arises due to the involvement of non-covalent interactions1-2 like 

hydrogen bonding, van der Waals interactions, π-π stacking and 

hydrophobic interactions3-5 as well as the influence of chiral 

building blocks in the system. These forces perceive over a wide 

region that start from molecular level and extend up to 

supramolecular level.6 Supramolecular chirality has attracted more 

attention in the research field due to its various applications in the 

areas of catalysis,7-8 non-linear optics,9 polymer and materials 

science,10-12 molecular recognition,13-14 molecular device,15-17 and 

absolute configuration determination.18-20 To induce the chirality 

within the supramolecular system, it is not necessary that the 

building block should be chiral. Sometimes achiral constituents can 

also provoke supramolecular chirality.21-24 However, chiral micro-

environments are fabricated with the use of chiral building blocks 

which offer an additional factor to induce chirality within the 

supramolecular system.25-31 Supramolecular gel, a spell-binding 

soft matter,32 is constructed based on the arrangement of low 

molecular weight gelator units (LMWGs) in a hierarchical manner 

through non-covalent interactions, which can form different 

morphological structures such as nanorods,33-35 nanoribbons, 

nanotubes, nanotwist36-38 and microtubes.39-41 The formation of 

different morphological structures depends on the structure of the 

monomer,42 functional groups present in monomer, assembly rate,43 

change in pH,44-45 ultrasound,46-48 redox potential49 and solvent-

solute interactions.50-54 Nanohelix is one of the most fascinating 

nanostructures that is formed by the self-assembly of the building 

blocks due to their various applications in chemistry,55-58  biology59-

60  and materials sciences.61-64  After a detailed survey of the 

previous studies, it was found that (L)- amino acid based derivatives 
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favour to form right-handed helical structure and (D)-amino acid 

based derivatives approbate the opposite one. However, there are 

few reports where (L)-amino acid derivatives produced left-handed 

helical structure.65 So, chirality of the monomeric unit is not a 

convenient parameter to fabricate the chirality at supramolecular 

level. Supramolecular chirality also depends on other parameters. 

Chirality of supramolecular gel systems depends on the 

arrangement, chirality of the gelators and solvent-solute 

interactions.66-69 Here, so called memory effect70  is responsible for 

transferring the proper chiral information from one gelator unit to 

another gelator unit which helps to induce the chirality within this 

supramolecular system.71-72 As a result, chirality is directly 

transferred from the molecular building block units to 

supramolecular structures which help to tune the chirality within the 

whole supramolecular system.73 The control of chirality in synthetic 

self-assembled systems is very important for the applications in 

molecular recognition, mimicking of catalytic activity of enzymes 

and in the field of asymmetric catalysis.74 Meijer et al have 

explained co-operative self-assembly between C3 symmetrical 

chiral molecule and its achiral analog according to the ‘sergeants 

and soldiers’ principle. The chiral sergent strongly amplifies the 

handedness of the mixed stacks.75  Liu et al demonstrated that C3 

symmetrical benzene-1,3,5-tricarboxamide substituted with achiral 

ethyl cinnamate self-assembled to form mixed right handed and left 

handed twisted morphological structures. However, introduction of 

chiral building blocks tuned the handedness and macroscopic 

chirality of the self-assembled gels.24 Zhao et al reported that achiral 

bipyridines formed right handed helical nanostructures in a 

cooperative self-assembly with (L)-phenylalanine derivative 

through hydrogen bonding interactions formed between the pyridyl 

and carboxylic acid groups.76  

In this work, the role of chiral configuration of two enantiomeric 

amino acids attached with benzene-1,3,5-tricarboxamides to tune 

the spatial arrangement of the building block units from the 
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molecular level to the supramolecular level was one of our 

objectives. Herein, acid-amine coupling reaction was carried out 

between benzene-1,3,5-tricarboxylic acid (BTC) and methyl esters 

of (L)-phenylalanine (L-Phe-OMe) and (D)-phenylalanine (D-Phe-

OMe). Both enantiomeric triamides formed gels in reaction medium 

during hydrolysis by 1M aqueous LiOH solution in THF solution. 

Circular dichroism spectra, scanning electron microscopy, 

transmission electron microscopy images confirmed that two 

enantiomers formed opposite helical fibrillar structures.  

 

Here, the chirality,77-82 the arrangement of the building block units 

and increasing structural complexity during the origin of the 

supramolecular structures from the monomeric units83 act as the 

executive parameter to determine the handedness of the structure 

from helix to fiber.84  
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Scheme 1: Self-assembly of (L) monomeric units into left 

handed and (D) monomeric units into right handed 

helical superstructures 
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1.2 Reaction Scheme: 

 

 

 

 

Scheme 2: Chemical structures and synthetic scheme of 

compound 1 and its corresponding (L)-gel 
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Scheme 3: Chemical structures and synthetic scheme of 

compound 2 and its corresponding (D)-gel 
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Chapter 2: Experimental sections 

2.1 Materials: 

All of the amino acids, benzene-1,3,5-tricarboxylic acid were purchased 

from Sigma-Aldrich, U.S.A. N,N’-dicylohexylcarbodiimide and 1-

hydroxybenzotriazole were acquired from Sisco Research Laboratories 

Pvt. Ltd. (SRL), Mumbai, India 

 

2.2 Synthesis of compounds: 

Synthesis of Benzene Tricarboxamide (BTCA). C-terminal end of 

both (D) and (L) phenylalanine was protected by methyl ester. C-terminus 

protected amino acid was coupled with benzene tricarboxylic acid in 

dimethyl formamide followed by addition of N,N’-

dicyohexylcarbodiimide and 1-hydroxybentriazole (DCC-HOBt). Final 

compounds were purified by flash chromatography and fully 

characterized by 1H NMR, 13C NMR, ESI-MS and FT-IR studies. 

2.2.1 Synthesis of BTC-(L-Phe-OMe)3 / Compound 1: 0.5 gm (2.38 

mmol) of benzene-1,3,5-tricarboxylic acid in 5 mL DMF was cooled in 

an ice bath. (L)-Phe-OMe was isolated from 2.3 gm (10.71 mmol) of the 

corresponding methyl ester hydrochloride by neutralization and 

subsequent extraction with ethyl acetate, and the ethyl acetate extract 

was concentrated to 4 mL. It was then added to the reaction mixture 

followed immediately by 1.77 gm (8.56 mmol) of DCC, 0.96 gm (7.14 

mmol) of HOBt. The reaction mixture was stirred overnight. The 

progress of the reaction was monitored by thin layer chromatography 

(TLC). Then ethyl acetate (50 mL) was added to the reaction mixture 
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and DCU was filtered off. The organic layer was washed with 1 M HCl 

(3×50 mL), brine (2×50 mL), 1 M sodium carbonate (3×50 mL) and 

brine (2×50 mL) and dried over anhydrous sodium sulfate and 

evaporated under vacuum to yield (1) as a white solid. Purification was 

done by flash chromatography using hexane-ethyl acetate (1:1) as 

eluent. 

 Yield: 0.4gm (0.58 mmol, 80%). FT-IR (KBr): ῦ 3225.12 (broad), 

1748.27 (s), 1641.34 (s), 1560.65 (s), 1219.29 (s) cm-1. 1H NMR (400 

MHz, CDCl3, δ): 8.06 ( s, 3H, Ar-Hs of BTC), 7.32-7.12 (m, 18H, 15 

Ar-Hs of Phe(1), Phe(2), Phe(3) and 3 NHs of Phe(1), Phe(2), Phe(3)), 

4.99-4.96 (q, J = 12.64 Hz, 3H, CαHs of Phe(1), Phe(2) and Phe (3)), 

3.68(s, 9H,  -COOMe). 3.21-3.10 (dd, 6H, CβHs of Phe(1), Phe(2) and 

Phe (3)) ppm. 13C NMR (100 MHz, CDCl3, δ): 172.58, 165.29, 136.10, 

134.39, 129.10, 54.21, 52.54, 37.76 ppm. MS (ESI) m/z (M+Na)+ Calcd 

for C39H39O9H3: 716.2579; found: 716.2592. 

2.2.2. Synthesis of BTC-(D-Phe-OMe)3 / Compound 2: 0.5 gm (2.38 

mmol) of benzene-1,3,5-tricarboxylic acid in 5 mL of DMF was cooled 

in an ice bath. (D)-Phe-OMe was isolated from 2.30 gm (10.71 mmol) of 

the corresponding methyl ester hydrochloride by neutralization and 

subsequent extraction with ethyl acetate and the ethyl acetate extract was 

concentrated to 4.2 mL. It was then added to the reaction mixture 

followed immediately by 1.77 gm (8.56 mmol) of DCC, 0.96 gm (7.14 

mmol) of HOBt. The reaction mixture was stirred overnight. The 

progress of the reaction was monitored by thin layer chromatography 

(TLC). Then, ethyl acetate (50 mL) was added to the reaction mixture 

and DCU was filtered off. The organic layer was washed with 1 M HCl 

(3×50 mL), brine (2×50 mL), 1 M sodium carbonate (3×50 mL) and 

dried over anhydrous sodium sulfate and evaporated under vacuum to 

yield (2) as a white solid. Purification was done by flash 

chromatography using hexane-ethyl acetate (1:1) as eluent. 

Yield: 0.42 gm (0.60 mmol, 84%). FT-IR (KBr): ῦ = 3225.12 (broad), 

1748.24 (s), 1641.34 (s), 1560.65 (s), 1219.29 (s) cm-1. 1H NMR (400 
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MHz, CDCl3, δ): 8.11 ( s, 3H, Ar-Hs of BTC), 7.23-7.08 (m, 18H, 15 

Ar-Hs of Phe(1), Phe(2), Phe(3) and 3 NHs of Phe(1), Phe(2), Phe(3)), 

5.01-4.98 (q, J = 12.64 Hz, 3H, CαHs of Phe(1), Phe(2) and Phe(3)), 3.69 

(s, 9H, -COOMe group), 3.23-3.10 (dd,. CβHs of Phe(1), Phe(2) and Phe 

(3)) ppm. 13C NMR (100 MHz, CDCl3, δ): 172.64, 165.33, 136.16, 

134.48, 129.22, 128.69, 54.27, 52.62, 37.85 ppm. MS (ESI) m/z 

(M+Na)+ Calcd for C39H39O9H3: 716.2579; found: 716.2588. 

 

Preparation of Gel. 

2.2.3 Preparation of (L)-gel: 60 mg (17.31 mmol) of BTC-(L-Phe-

OMe)3 1 was dissolved in 5 mL tetrahydrofuran. Then 300 μL of 1(N) 

LiOH was added to the solution dropwise. The solution was allowed to 

stir for 4 h and (L)-gel was formed. 

FT-IR (KBr): ῦ 3357 (broad), 3063 (w), 1630 (s), 1406 (s), 1291 (s), 

1100 (s). MS (ESI) m/z (M-H)-  Calcd for C36H33O9N3: 650.2133; found: 

650.2145. 

2.2.4 Preparation of (D)-gel: Similarly, (D)-gel was also prepared. 

FT-IR (KBr): ῦ 3338 (broad), 3057 (w), 1635 (s), 1410 (s), 1290 (s), 

1102 (s). MS (ESI) m/z (M-H)-  Calcd for C36H33O9N3: 650.2133; found: 

650.2123. 

 

2.3 General Methods: 

All NMR characterizations were carried out on a Bruker AV 400 MHz 

spectrometer at 300 K. Compound concentrations were in the range 

5−10 mmol L−1 in CDCl3. Mass spectra were recorded on a Bruker 

micrOTOF-Q II by positive mode and negative mode electrospray 

ionizations 
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2.4. High performance liquid chromatography (HPLC) 

analysis: 

A Dionex HPLC-Ultimate 3000 (High Performance Liquid 

Chromatography) pump was used to analyze compounds 1 and 2 and 

base catalyzed hydrolyzed products. 20 μL of sample was injected onto 

a Dionex Acclaim ® 120 C 18 column of 250 mm length with an internal 

diameter 4.6 mm and 5 μm fused silica particles at a flow rate of 1 mL 

min-1 (linear gradient of 40% v/v) acetonitrile in water for 35 min, 

gradually rising to 100% (v/v) acetonitrile in water at 35 min). This 

concentration was kept constant until 40 min. The sample preparation 

was involved mixing of 100 μL of gel/solution with acetonitrile water 

(900 μL, 50: 50 mixture) containing 0.1% trifluoroacetic acid. The 

samples were then filtered through a 0.45 μm syringe filter (Whatman, 

150 units, 13 mm diameter, 2.7 mm pore size) prior to injection. The 

hydrolyzed products were identified by using Ultimate 3000 RS 

Variable Wavelength Detector at 280 nm. 

HPLC analysis: Both the esters (D) and (L) BTC-(Phe-OMe)3 and their 

gels were performed by taking 20mg samples in 1000L solution of 

miliQ water-acetonitrile (1 1). Ultimate 3000 RS Variable Wavelength 

Detector at 280 nm 

 

52.5 FT-IR study: 

All reported FT-IR spectra were taken using a Bruker (Tensor 27) FT-

IR spectrophotometer. Solid-state measurements were performed with 

the compounds 1 and 2 using KBr pellet technique with a scan range 

between 400 and 4000 cm-1 over 64 scans at a resolution of 4 cm-1 and 

an interval of 1 cm-1. Further,Again the gel samples were placed between 
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crystal Zn–Se windows and scanned between 900 to 4000 cm-1 over 64 

scans at a resolution of 4 cm-1 and an interval of 1 cm-1 

 

2.6 Circular dichroism (CD) study: 

Secondary structures of both (L) and (D) gels were analyzed with Jasco 

J-815 Circular Dichroism (CD) spectrometer with the course of dynamic 

reactions. (L) and (D) gels (17 mmol L−1) were diluted to a final 

concentration of  5 × 10-5 M in ddH2O and dTHF (1:1) for experiment 

and measured from 450 to 200 nm with 0.1 nm data pitch, 20 nm min−1 

scanning speed, 1 nm bandwidth and 4 s D.I.T. 

 

2.7 Morphological Study 

For SEM study, supramolecular gels ((L)-gel and (D)-gel) were placed 

on a glass slide and coated with gold. Then, micrographs were recorded 

using a Scanning Electron Microscope (Jeol Scanning Microscope-

JSM-7600F). Transmission electron microscopic (TEM) images were 

taken using a PHILIPS electron microscope (model: CM 200) operated 

at an accelerating voltage of 200 kV. Both the supramolecular gels (17 

mmol L-1) were diluted to 1 mmol L-1 in distilled tetrahydrofuran and 

dried on carbon-coated copper grids (300 mesh) by slow evaporation in 

air, then allowed to dry separately under vacuum at room temperature. 

 

2.8 Wide angle X-ray diffraction study: 

Powder X-ray diffraction studies of compounds 1-2 and corresponding 

xerogels were performed by placing the samples on the glass plate. 

Experiments were recorded using Rigaku Smart Lab X-ray 

diffractometer with a wavelength of 1.5406 A˚. X-rays were produced 

using a sealed tube, and X-ray was detected using a linear counting 
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detector based on silicon strip technology (Scintillator NaI 

photomultiplier detector). 

 

2.9 UV-Vis Spectroscopy:  

UV-Vis absorption spectra of compounds 1-2 and corresponding gels 

were recorded using a Varian Cary100 Bio UV-Vis spectrophotometer. 

All the samples were diluted to 2 × 10-5 M as concentration and UV-Vis 

spectra were recorded 

 

2.9 Fluorescence Spectroscopy.  

Fluorescence spectra of compounds 1-2 and corresponding gels were 

recorded on a Horiba Scientific Fluoromax 4 spectrometer with 1 cm 

path length quartz cell at room temperature. The slit width for the 

excitation and emission spectra was set at 2 nm and 1 nm data pitch 

 

2.10 Rheological measurement and self-healing property: 

Mechanical properties of the supramolecular gels ((L)-gel and (D)-gel) 

were measured using an Anton Paar Physica MCR 301 rheometer with 

a parallel plate geometry (diameter: 25 mm, gap: 0.5 mm). The 

temperature was maintained at 25˚C using an integrated temperature 

controller. To determine the mechanical strengths of the supramolecular 

gels, a dynamic frequency sweep of the self-assembled gels were plotted 

as a function of frequency in the range 0.05–100 rad/sec with a constant 

strain value of 0.01%. The stiffness of the self-assembled gels was 

determined when the storage modulus (G′) exceeded the loss modulus 

(G′′). A linear viscoelastic regime (LVR) was performed to determine 

the exact strain for the experiment at a constant frequency of 10 rad/sec. 
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The experiments were repeated 3 times with new samples in order to get 

more precise value for discussion. 

 

 

Chapter 3: Results and discussion 

3.1 Synthesis of the compounds: 

Methyl esters of (L) and (D) phenylalanine (Phe) were synthesized and 

two enantiomeric phenylalanine methyl esters (Phe-OMe) were coupled 

with benzene-1,3,5-tricarboxylic acid (BTC) by conventional solution 

phase methodology. Two compounds BTC-(L-Phe-OMe)3 1 and BTC-

(D-Phe-OMe)3 2 were purified and fully characterized by 1H NMR, 13C 

NMR, FT-IR and mass spectrometry. 17.31 mmol of compounds 1-2 in 

THF was taken in round bottom flask separately and hydrolysed by 1M 

LiOH solution. After 1 hour, gel formation was started and completed 

within 4 hours. Similarly, methyl ester hydrolysis of compounds 1-2 was 

tried by using 1M KOH and 1M NaOH. However, gel was not formed. 

Here, counter cations (K+ and Na+) of corresponding acids play a crucial 

role for the formation of supramolecular gels. 
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3.2 HPLC analysis and mass spectrometry: 

 

Product conversation after methyl ester hydrolysis was confirmed by 

high-performance liquid chromatography (HPLC) and mass 

spectrometry. Both HPLC and mass spectrometry studies revealed that 

almost 98% esters were converted into its corresponding acids. 

  

 

Fig.1: Both mass spectrometry and HPLC analysis show 

that compound 1 is completely hydrolyzed into acid using 

LiOH as a base. 
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Fig.2: Compound 2 is completely converted into its 

corresponding acid during hydrolysis 

 

 

3.3 FT-IR study of gelators and gels: 

FTIR spectroscopy was executed in order to investigate the organization 

of intermolecular H ̶ bonding within the compounds and also to 

determine the functional groups that are present within the gels and 

gelators. BTC-(L-Phe-OMe)3 exhibited N-H bands at 3229, 3061 cm-1,   ̶

C=O stretch of amide at 1640 cm-1, amide II band at 1554 cm-1 and 

ester    ̶C=O band at 1745 cm-1  Where as BTC-(D-Phe-OMe)3 displayed 

N ̶ H stretches at 3234, 3052 cm-1,  ̶C=O stretch of amide at 1640 cm-1, 

amide II band85 at 1556 cm-1 and  ̶ C=O stretch of ester at 1744 cm-1. 

Both the precursor (L) and (D) esters (compounds 1-2) exhibited more 

than one N ̶ H stretches which indicates that few N ̶ H groups are free 

and others are hydrogen bonded.86  The N ̶ H band along with  ̶ C=O 
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band of amide and amide II band of both the compounds 1-2 had 

typically been attributed to the presence of threefold intermolecular 

hydrogen bonding between the neighboring molecules.87  N ̶ H stretch 

of the (L)-gel appeared at 2966 cm-1 whereas a peak at 2974 cm-1 

appeared for N-H stretching vibration of (D)-gel. A red shift of N ̶H band 

occurred when gels were produced from their corresponding esters 

indicating strong self-assembly within the gels. (L)-gel displayed a 

weak  ̶ C=O stretching band at 1640 cm-1 and amide II band at 1565 cm-

1. (D)-gel also showed  ̶ C=O stretch of the amide at 1638 cm-1 and amide 

II band at 1540 cm-1. (L) and (D) gels showed a peak at 1640 cm-1 and 

1638 cm-1 respectively which was attributed to the helical structure at 

the supramolecular level.88 The -C=O stretching bands of the ester 

groups disappeared when compounds 1-2 formed gels upon hydrolysis. 

 

Fig. 3: FT-IR spectrum of compound 1 
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Fig. 4: FT-IR spectrum of (L)-gel 

 

 

Fig. 5: FT-IR spectrum of compound 2 
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Fig. 6: FT-IR spectrum of (D)-gel 
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Table 1: FT-IR stretching frequencies of compound 1 and 
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3.4 Circular dichroism (CD) study of gels: 

Circular dichroism (CD) study was performed in order to investigate the 

chirality of the self-assembled structures, secondary structure of the gels 

and co-operativity. CD spectrum exhibited characteristic negative peak 

at 218 nm for (L)-gel and positive peak at 216 nm for (D)-gel which were 

attributed to the n-π* transition in amide bonds89 Another positive CD 

signal of the (L)-gel appeared at 243 nm whereas a negative CD signal 

of the (D)-gel at 248 nm was observed due to the presence of side chain 

phenylalanine residues.90 Circular dichroism spectra of two 

enantiomeric benzene-tri-carboxamide derivatives showed opposite 

cotton effects with respect to one another. The chirality of the peripheral 

side chains induces the core during self-assembly to originate chiral 

superstructures. The CD signals in the region of 190 nm and 260 nm 

indicate the helical arrangement of the benzene-1,3,5 tricarboxamide 

derivatives.91 Here, chiral helical superstructures were formed for (L)-

gel and (D)-gel.  

Fig. 7: CD spectra of (L) and (D)-gels 

 

 

 

250 300 350 400 450
-10

-5

0

5

10

 

 

C
D

 (
m

d
e

g
)

Wavelength (nm)

 (L)-gel 

 (D)-gel



 
20 

 

3.5 Morphological study of gels: 

The handedness of the self-assembled (L)-gel and (D)-gel was assessed 

by scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM). SEM images of self-assembled (L)-gel displayed 

left handed whereas (D)-gel showed right handed helical structures. 

TEM images also favored the helicities those were exhibited by SEM. 

These results suggested that chiral phenylalanine residues play an 

important role to determine the handedness of the helical structures. 

 

 

Fig. 8: a) SEM image of (L)-gel, b) SEM image of (D)-gel,  

          c) TEM image of (L)-gel and d) TEM image of (D)-gel 
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3.6 Wide angle XRD study of gelators and dried gels: 

In order to obtain structural information, dried (L) and (D) gels were 

characterized by power X-ray diffraction (PXRD) technique. The 

scattering patterns of both the compounds showed a series of 

characteristics diffraction peaks, which help us to describe different 

types of self-assembly arising within the gels. Dried (L)-gel displayed a 

peak at 2θ = 5.25˚ (d = 16.81 A˚) and dried (D)-gel showed a 

characteristic scattering pattern at 2θ = 5.52˚ (d = 15.99A˚) which are 

attributed due to the circular cross sectional diameter of  BTA-Phe 

moiety.92 Other diffraction peaks for (L)-gel at 2θ = 18.18˚ (d = 4.87A˚) 

and for (D)-gel at 2θ = 18.10˚ (d = 4.89A˚) were the characteristic 

distance between hydrogen bonded two molecules N (N-H)---C (C=O). 

The characteristic π-π stacking interactions between the aromatic 

moieties played a paramount role during the self-assembly, which was 

revealed from the diffraction peak at 2θ = 25.30˚ corresponding to the d 

spacing value 3.51A˚ for (L)-gel and from the diffraction peak at 

2θ=25.29˚ corresponding to the d spacing value 3.51A˚ for (D)-gel.93 

 

Fig. 9: Wide angle X-ray scattering of the compound 1 and 

its xerogel 
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Fig. 10: Wide angle scattering of the compound 2 and its 

xerogel 

 

 

Fig. 11: Proposed self-assembly of the monomeric building 

blocks to form both the gels 
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3.7 UV-Vis Spectroscopy of gelators and gels: 

To obtain further insights into the intermolecular interactions in 

supramolecular aggregates and the self-assembly process aided for the 

formation of gels from precursor compounds, we have recorded UV/Vis 

spectra of compounds 1-2 and also the corresponding (L) and (D)-gels. 

UV-Vis spectra of compounds 1-2 showed λmax at 209 nm which was 

ascribed from the π-π* transition of the –CONH group. A broad shoulder 

appeared in the region of 225-261 nm which may be attributed to the n-

π* transition of the –CONH group and π-π* transition within the side 

chain phenyl residues. UV-Vis spectra of both the gels showed λmax  at 

219 nm and broad shoulder within the range of 235-277 nm. The red 

shift in UV-Vis spectrum demonstrated the higher order self-assembly 

in the gel phase materials. 

 

Fig. 12: UV-Visible spectra of compound 1 and it’s gel 
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Fig. 13: UV-Visible spectra of the compound 2 and it’s gel 

 

 

3.8 Fluorescence Spectroscopy: 

 

Fig. 14: Emission and excitation spectra of (L)-gel 
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Fig. 15: Emission and excitation spectra of (D)-gel 

 

 

 

Fig. 16: Photographic images of (L) and (D)-gels under 

UV-Visible light 

 

 

 

3.9 Rheology study of the gels: 

Rheological experiments of (L) and (D) gels were performed to confirm 

their viscoelastic and mechanical properties. The mechanical strength94 
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capability power of the gels to entrap the solvent molecules within the 

three-dimensional molecular network structures which prevents free 

flow of the solvent. Oscillatory frequency sweep and amplitude sweep 

experiments were performed to find out the storage and loss moduli (G′ 

and G′′). The storage modulas G′ represents a solid-like character, which 

denotes resistance power of the gel to prevent deformation under stress. 

Where as the loss modulas G′′ indicates the liquid-like behavior that 

means the inclination of the material to flow. Higher storage modulas 

(G′) value with compare to loss modulas (G′′) supports the formation of 

rigid gels.95 Fig.17 and 18 elucidated that storage moldulas (G′) 

exceeded the loss modulas (G′′) over the oscillating frequency, which 

favor the formation of a strong and rigid supramolecular gel.96 The 

thixotropic nature of the both supramolecular gels were investigated 

using a hysteresis loop test. A constant stain of 0.05% was applied (step 

1) to both the supramolecular gels at a constant angular frequency of 10 

rad s-1. Then, the strain was slowly increased from 0.05% to 30% (step 

2) and kept it for 1.67 min. At this high strain, the non-covalent 

interactions within the supramolecular gels got completely ruptured 

without affecting the fiber structure of the gels97 and as a result gel to sol 

transition occurred (G′ < G′′). Again, sol to gel transition (G′ > G′′) was 

observed by applying low strain to 0.05% (step 3) up to 1.67 min due to 

the reformation of the fibrillar 3D networks. This experiment was 

performed up to the 9 steps. At the steps 2, 4, 6 and 8, both the gels were 

destroyed by the application of 30% strain. Where as at the steps 3, 5, 7 

and 9, the strain was decreased from 30% to 0.05% resulting reformation 

of the gels with 98% recovery of its original stiffness within 1.67 min. 

The gel recovery behavior is known as self-healing behavior of the gels. 

The experimental results suggest that in-situ supramolecular 

polymerization and de-polymerization techniques are responsible for 

self-healing behavior of the supramolecular gels. In order to verify the 

self-healing property of the gels, (L) and (D) gels were sliced into two 

parts and one part was colored with Rhodamine B. Then, two different 

parts of the supramolecular gel were kept in touch with each other. After 

30 minutes, two different parts of each supramolecular (L) and (D) gels 
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were found to be joined with each other. This is attributed to the presence 

of numerous hydrogen bonding interactions between the acid/amide 

functional groups present in the supramolecular gels. The interlinking 

directional hydrogen bonding involving   ̶ C=O and  ̶ OH groups of acid 

and  ̶ NH- and  ̶ C=O groups of amides, π-π stacking between the 

aromatic groups were the responsible factors for this self-healing 

process.98  

 

 

Fig. 17: Dynamic frequency sweep of self-assembled (L)-

gel at constant strain 0.01% 
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Fig. 18: Dynamic frequency sweep of self-assembled (D)-

gel at constant strain 0.01% 

 

 

 

Fig. 19: Hysteresis loop test of self-assembled (L)-gel 
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Fig. 20: Hysteresis loop test of self-assembled (D)-gel 

 

 

 

Fig. 21: Self-healing behavior of (L)-gel. 
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3.10.1. Hydrolysis by using LiOH 1(N): 

 

 

 

 

Fig. 22: Both the (D) and (L) compounds form gel during 

the hydrolysis by using LiOH as a base 

 

3.10.2. Hydrolysis by using NaOH 1(N): 

 

 

 

Fig. 23: Both the (D) and (L) compounds form opaque 

solution during hydrolysis by using NaOH as a base 

 

3.10.3. Hydrolysis by using KOH 1(N): 

 

 

 

Fig. 24: Both the (D) and (L) compounds form gel opaque 

solution during hydrolysis by using KOH as a base 
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Chapter 4: Conclusion 

In this work, we have prepared in situ (L) and (D) gels by hydrolyzing 

corresponding (L) and (D) esters. The role of counter cations of 

hydrolyzed acids for the formation of supramolecular gels were also 

assessed. Here smaller size of Li+ allowed the fibers to self-assemble 

into helical superstructure whereas the larger size of Na+ and K+ ions 

resist the fibers to self-assemble into helical superstructure. FT-IR and 

PXRD studies reveled that hydrogen bonding and π-π stacking 

interactions were responsible for the formation of gels. Rheological 

measurements showed self-healing behavior of the gels. Circular 

dichroism, TEM and SEM images revealed that peripheral chiral amino 

acids attached with benzene-1,3,5-tricarboxylic acid induced helical 

superstructure. (L)-phenylalanine derived gel induced left handed as well 

as (D)-phenylalanine derived gel induced right handed helical 

superstructures. Here, phenylalanine acts as chiral dopant and helps to 

induce the chirality within the supramolecular system. A unidirectional 

three folded hydrogen bond is formed due to the self-assembly of 

peripheral side chains of benzene-tri-carboxamide which apparently 

locks the building block units on the top of each other and thereby forms 

columnar stacks. The unidirectional nature of the hydrogen bonds, 

depending upon the chirality of the peripheral units, acts as trigger to 

tune the handedness of helicity at supramolecular level. 
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Appendix A 

1H NMR, 13C NMR and Mass spectrometry of 

compounds: 

 

Fig. 25: 400 MHz 1H NMR spectrum of compound 1 in 

CDCl3 
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Fig. 26: 100 MHz 13C NMR spectrum of compound 1 in 

CDCl3 

 

 

 

Fig. 27: 400 MHz 1H NMR spectrum of compound 2 in 

CDCl3 
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Fig. 28: 100 MHz 13C NMR spectrum of compound 1 in 

CDCl3 

 

 

Mass spectrometry: 

 

 

 

 

 

 

Fig. 29: ESI-MS spectrum of compound 1 
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Fig. 30: ESI-MS spectrum of (L)-gel 

 

 

 

Fig. 31: ESI-MS spectrum of compound 2 
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Fig. 32: ESI-MS spectrum of (D)-gel 
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