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Abstract

Spectra of networks adjacency matrices are known to be fingerprint of the

underlying complex systems. Most of the works on the network spectra have

revolved around analysis of largest eigenvalue. In this work, we analyse the

second largest eigen value (λ2) of the networks adjacency matrices. We find

that λ2 may follow an entirely different behaviour than that of the largest

eigen value. While, the largest eigenvalue contains information of the largest

degree of the underlying network, thereby, exhibiting an increasing behvaiour

throughout with an increase in the average connectivity of a network, λ2

emulates this behaviour until a critical connectivity, after which it exhibits

a continuous decrease. The behaviour of λ2 provides an insight to degree

of freedom available to the nodes to form connected pairs. More interesting

is the behvaiour of λ2 fluctuations, in the presence of inhibitory couplings.

Inspired by the presence as well as importance of inhibitory couplings in

many complex systems, including brain and ecological systems, we introduce

such couplings in networks and investigate its impact on λ2. For this case,

while average behaviour of the largest and the second largest eigenvalues

are exactly same for various value of inhibitory probability, the fluctuation

statistics for the exhibit a very different behavior indicating importance of

second largest eigenvalue in getting information of underlying system.
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Chapter 1

Introduction

1.1 Structure properties of complex networks

A network is a graphical representation of many interacting units. The com-

ponent of the network are called nodes and there interaction is shown by

link. example of networks include social networks, biological network, tech-

nology networks etc. Some of the structural properties of complex networks

are listed below

1) Average Degree

Degree of node is defined as the number of edge connected to a node. The

average degree is thus defined as

〈k〉 = 2E
N
.

2) Clustering Coefficient

A common property of complex networks is that cliques form, representing

circles of friends in which every person knows each other member. This

3



4 CHAPTER 1. INTRODUCTION

property is quantified as Clustering Coefficient.

Ci =
2Ei

N×(N−1)

where Ei is the number of edges that actually exists between neighbours of

node say i. ki is number of edges connecting i node to other ki node.

3)Betweenness Centrality

Betweenness centrality is the measure of node centrality in a network. It is

the fraction of shortest path between node pairs that pass through the said

node of interest.

Xi =
∑

i 6=j

ni
st

gst

where ni
st is number of path from s to t that passes through i. gst is total

number of path from s to t.

4) Diameter

The diameter of a network is the maximal distance between any pairs of

nodes. It tell us how quickly information cab be spread in a networks and

how integrated the network.

5) Degree- Degree correlation

The (dis)assortativity has emerged as an important structural measure, used

for understanding (dis)likelihood in connectivity in the underlying systems

assortativity. Various social networks are known to be assortative, while

many of the biological and technological networks are found to be disassor-

tative Assortativity We quantify degree-degree correlation of a network by

considering the pearson(degree- degree) correlation coefficient as

r =
[Nc

−1
∑Nc

l=1
dlid

l
j ]−[Nc

−1
∑Nc

l=1

1

2
(dli+dlj)

2]

[Nc
−1

∑Nc
l=1

1

2
(dli

2
+dlj

2
)]−[Nc

−1
∑Nc

l=1

1

2
(dli+dlj)

2]
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where ji and ki are the degree of the nodes at both the end of the ith con-

nection and M represents the total connection in the network.

if r > 0 the network is assortive which means nodes with similar degree tend

to be connected. example:- social network.

if r < 0 the network is disassortative which means dissimilar degree nodes

tend to connect among themselves. example :- biological networks,technological

network.

1.2 Model Networks

1.2.1 ER random network

ER random network is coined by Erdos and Renyi. We can generate a random

network by using ER model, where we give two parameter for the construc-

tion of the network. The probability that a given node is connected to other

nodes is p and total number of nodes equal to N. Some of the properties of

ER networks are listed below.

1) The average degree of the node is given by 〈k〉 = p*N(N-1).

2) The degree distribution follow the binomial distribution.

3) The average path length is log N.

4) The clustering coefficient (CC) of random networks is given by
〈k〉

N
.
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1.2.2 Scalefree networks

Albert Barabasi purposed the scalefree networks. It is constructed on the

algorithm of preferential attachment. Scalefree networks are constructed us-

ing BA preferential model method [18] in which each node prefers to connect

with higher degree nodes. Thus node having higher degree has more chance

of getting connected to upcoming nodes leading to ’rich get richer effect’ The

scalefree networks has many application to provide robustness to the system

against the random attack. Most of the social networks are scalefree. Some

of the various properties of scalefree networks are

1) The scalefree networks posses power law degree distribution.

2) Scalefree networks has lower value of diameter as compared to the random

networks.

3) The clustering coefficient of scalefree networks is proportional to N−0.75.

1.2.3 Small world networks

The smallworld networks was coined by Watts and Strogatz. Most of the

social networks have a small diameter and high clustering coefficient as com-

pared to random networks. Smallworld networks carry both these properties.

Smallworld network is generated by starting with regular lattice of N nodes.

We then start rewiring the network with probabiity pr and slowly increases

the value pr such that we get a network which has high clustering and low

diameter. It is build in concept of six degree of separation . The average

path length between any pairs of node is given by L = log N.
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1.3 Spectra properties of Complex Networks

1.3.1 Degeneracy at zero eigenvalue

A network can be represented by its adjacency matrix

Aij =











1 if i ∼ j

0 otherwise

(1.1)

The eigen values of adjacency matrix are λ1,λ2,λ3 and so on. The associated

eigenvector v1,v2,v3.....vN satisfy the eigen vector equation Av(i)= λv(i). If

the rank of the matrix is r then there will be N-r zero eigen values where N is

total number of node in the network and hence dimension of the adjacency

matrix. The factor responsible for the lowering the rank of the adjacency

matrix are following.

(1) when two rows have exactly same entries it is termed as complete dupli-

cation.

R1 = R2 (1)

(2) when two or more rows (column) added together equals to some other

rows(columns) then we call it as partial duplicates.

R1+R2 → R3 +R4 +R5 (2)

(3) An isolated node will not be connected to any of the node and thus all

the entry in its row will be zero thus lowering the rank of the matrix.

Next we will discuss the kind of topology which will generate zero degeneracy

[1]. There are two cases 1) complete duplication 2) partial duplication. For

example consider a network of 5 nodes as shown Fig1.1a. Node1 and Node2



8 CHAPTER 1. INTRODUCTION

both are connected to same neighour Node3, Node4, Node5. So Node1 and

Node2 are said to be duplicates nodes contributing to one zero eigen values.

If there are two duplicates nodes then this will lead to two zero eigen values

and so on.

Further we consider the second case which lead to zero degeneracy. The kind

of topology which can contribute to condition 2 can be seen from Fig1.1b. In

Fig1.1b , we have considered a network of 6 nodes. The node2 is connected

with two Node4 and Node5 while node 3 is connected to only one node 6.

The sum of neighours of node2 and node3 i.e node4 ,node5 ,node6 are also

connected to node 1 as shown in Fig1.1b.

i.e N2 +N3 → N1

This lead to partial duplicates and contribute to one zero eigen value. If we

carefully observe the diagram we can deduce that Node1 and Node2 are con-

nected to same neighour Node4 and Node5. Thus they are duplicates nodes

and contributing to one more zero eigen value. The number of duplicates

(complete or partial) equals to the number of zero eigen values. We can find

the nodes which are contributing toward zero degeneracy from the non-zero

entry of the corresponding eigen vector.

1.3.2 Degeneracy at -1 eigenvalue

We try to find out the information which we can get from -1 degeneracy[2].

First we will try to focus on the occurrence of -1 degeneracy and the charac-

teristics structure which can lead to -1 degeneracy. To study the -1 degen-

eracy we will do a transformation on Adjacency matrix of the network. We

are adding Identity matrix to the adjacency matrix i.e A + I . We make a
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Figure 1.1: Zero degeneracy

Schematic diagram representing (a) complete node duplication and (b) par-

tial node duplication

change of variables in the characteristic polynomial such as χA+I (λ) = χA+I

(µ). By this way, µ is an eigenvalue of A if and only if λ is an eigenvalue

of A + I. Thus -1 eigen value of adjacency matrix A can be considered as

zero eigen value of transformed matrix A + I. Now we will follow the same

procedure as we did for zero degeneracy of Adjacency matrix discussed in

previous section. The number of zero eigen values of transformed matrix

(A+I) will be equal to N-r where N is the dimension of the matrix and r is

the rank of the matrix. Again there will be three condition which can lead

to it.

(1) when two rows have exactly same entries and are equal.

R1 = R2 (1)

(2) when two or more rows (column) added together equals to some other

rows(columns).

R1+R2 → R3 +R4 +R5 (2)
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(3) An isolated node will not be connected to any of the node and thus all

the entry in its row will be zero thus lowering the rank of the matrix.

For the A+I matrix the condition 3 can never meet.It is difficult to define a

typical structure corresponding to condition 2 [ref loic manuscript]. however

we can illustrate it with the graph shown in Fig1.2

R1+R4 → R2 +R5.

Here degeneracy of −1 in A+I matrix and corresponding eigen vector give us

idea about the structure of the networks. The structure which can give rise

to -1 degeneracy can be explained by considering a subset of n node forming

complete graph K which is connected to the another set S of different nodes

forming K*S network contributing to -1 eigen value with multiplicity n-1.

When we find out the eigen vector, most of the entries of such eigen-vector

are zero. It turns out that the non-null entries reveals nodes which contribute

to decreasing the rank of a matrix.

Figure 1.2: Degeneracy at -1

Schematic diagram for which the condition (2) is verified in A + I.
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Figure 1.3: Structure giving rise to -1 degeneracy

Here k a complete subgraph of 3 node connected to set S having 2 node

giving rise to two -1 eigen value.
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Chapter 2

Analysis of second largest eigen

value

2.1 Introduction

With an accelerated development in field of network science, various commu-

nities belonging different branches of science, economics, biology, sociology

witness a growing application of networks in their respective fields. Since,

the resolution of seven bridges of Königsberg problem[3], the theory of net-

works which deals with th study of complex interacting units represented

as graphs, has demonstrated remarkable applications in various real-world

networks[4]. From epidemic threshold of a disease outbreak[5] to determin-

ing stability of a systems[6], the analysis of the spectra of network plays a

pivotal role in bridging dynamical and structural properties of the network.

Among various aspects of spectral analysis, the second largest eigenvalue

of network matrix (λ2) has many theoretical and practical applications [7].

Various expansion (and concentration) properties of graphs in related with

13
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the second largest eigenvalue[8]. These properties in turn, is related to many

applications in diverse fields including mathematics and computer science.

The second largest eigenvalue is also known to denote algebraic connectivity

of certain classes of graphs[9]. The expansion properties found its application

in computation complexity theory[10], determining robustness of computer

networks[11], graph pebbling, parallel sorting algorithms and theory of error-

correcting codes[14]. It can also be used in dynamics like markov chain. It

is found that graph with small λ2 is termed as rapidly mixing for reversible

markov chain[15].

Furthermore, inhibition which introduces directness in between interacting

units of a graph, plays a pivotal role in various real-world networks including

ecological systems[16] and brain networks. The interaction between neurons

often studied using a synaptic graph with includes inhibitive properties of

neurons[17]. The ecological network is constructed keeping the predator-prey

nature of various species acting as nodes and thus includes inhibition from

top predators of the food chain. In this report, we investigate the statistics of

the λ2 of network adjacency matrix which includes inhibition to mimic prop-

erties of real world networks under GEV framework. We consider inhibitory

and excitatory couplings in between the interactions of individual units and

study the statistical properties of the λ2.

2.2 Model:

We conduct the analysis for various model network, particularly Erdös-Renýi

(ER) random, scalefree and regular networks. ER random networks are con-



2.2. MODEL: 15

structed using ER model where every pair of nodes is connected with a

probability p [4]. Scalefree networks are constructed using BA preferential

model method [18] in which each node prefers to connect with higher degree

nodes. The degree distribution of scalefree networks thus created follow a

power law. In regular networks every node has exactly the same degree and

each node is connected to its nearest neighbors.

We can represent a network by its adjacency matrix. The adjacency matrix

A of a network has entries 1 or 0 depending upon whether i and j nodes

are connected or not. The diagonal entries of A are zero depicting no self

connection.

Aij =











1 if i ∼ j

0 otherwise

(2.1)

The eigen values of adjacency matrix of a complex network are refereed as

spectra of networks. The spectra of a network provides lot of information

about the structural properties of networks as well as dynamical behaviour

of interacting nodes on these networks. For example degeneracy of zero and

one eigenvalue provide clue to the structural symmetries in the networks [19].

The largest eigenvalue, in addition to capture the information of the largest

degree, is related with the synchronization phenomena of diffusively coupled

dynamical units on the network [20]. Eigenvalues of the adjaceny matrix can

be written as λ1 > λ2 > λ3....λN .

The inhibitory node in the network is introduced as follow. An introduc-

tion of the inhibitor coupling with probability pin leads to -1 entries in the

corresponding rows of the adjacency matrices and consequently symmetri-

cal property of the matrix is lost [21] leading to complex eigenvalues. For
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this case, the first and the second largest eigenvalue denote the first and the

second largest real part of the eigenvalues, respectively. We will analyze the

mean as well as fluctuation behaviour of the second largest eigenvalue around

its mean. Particularly, we will study the role of inhibition on the behaviour

of λ2 and will compare the behaviour with that of the largest eigen value λ1.

Further, the GEV statistics has been successfully applied to many real-word

systems including stock markets, natural disasters, galaxy distributions as

a model for extreme events. The GEV statistics of independent, identically

distributed random variable can be characterized entirely in terms of three

universal probability distribution functions (PDF) namely Weibull, Gumbel

and Fr’echet depending on the tail of density function being a power law,

faster than the power law and bounded or unbounded, respectively. The

probability density function for these three distributions can be written as

[22].

ρ(x) =



























1
σ

[

1 +
(

ξ
(x−µ)

σ

)]−1− 1

ξ exp
[

−
(

1 +
(

ξ
(x−µ)

σ

))− 1

ξ
]

if ξ 6= 0

1
σ
exp

(

− x−µ
σ

)

exp
[

− exp
(

− x−µ
σ

)]

if ξ = 0.

(2.2)

where µ, σ, ξ represent location parameter, scale parameter and shape pa-

rameter, respectively. The underlying statistics can be determined by the

value of the shape parameter as follows; ξ > 0 (Fréchet Statistics), ξ = 0

(Gumbel statistics) and ξ < 0 (Weibull statistics).



Chapter 3

Result and Discussion

The largest eigen value λ1 of a network exhibits an increases with the average

degree. From the Gershgorin circle theorem, the eigen values of a square

matrix aij lie on atleast one of Gershgorin disks [23] whose radius is defined

as

Ri =
∑

i 6=j aij with centre lying aii

. (3.1)

If the disks are disjoint from each other than they will contain exactly one

eigen value. Since the concentric circles are disjoint so each cirle will contain

exactly one eigen value.

For a adjacency matrix corresponding to a simple graph, devioding of self

connection, diagonal entries are zero. Consequently, every eigenvalue will lie

within a circle having center at zero and radius being the degree of a node.

17



18 CHAPTER 3. RESULT AND DISCUSSION

Thus λ1 and λ2 both will have upper bound of the highest and the second

highest degree of the network, i.e., kmax and kmax2, respectively. Further, λ1

has lower bound given by the average degree of the network [24]. Since λ1

has upper bound of kmax and lower bound of 〈k〉 and for a regular graph the

largest degree kmax and the average degree are equal, i.e 〈k〉 = kmax it is very

clear that λ1 = 〈k〉.

For other graphs the upper and lower bound do not shed light on the exact

value an eigenvalue will take. Since by increasing the average degree keep-

ing N constant will increase the highest degree kmax node in the network.

it is interesting to notice that for ER and SF networks as well λ1 follows

exactly the highest degree displaying an increasing trend with an increase in

the average connectivity . Such a behaviour is not exhibited by the second

largest eigen value λ2 which also has upper bound of kmax2. λ2 does not

depict a continuous increase with an increase in average connectivity or the

second largest degree of a network. If by keeping the network size fixed, we

increase the average connectivity of a network, λ2 first exhibits an increase

until 〈k〉 ∼ N/2, which is not surprising as λ1 also exhibits an increase and

one can think of a similar trend followed by the second, however, the sur-

prising phenomena emerges if we increase the average connectivity further,

λ2 shows a decreasing behaviour with 〈k〉. Figure 3.2(a) depicts behaviour

of λ1 and λ2 for a regular lattice. λ1 shows a linear function of the average

degree (λ1 = 〈k〉). However, the second largest eigenvalue λ2 manifests first

an increase with an increase in the average connectivity but for the higher

average connectivity shows a decreasing trend. The similar behavior of first

an increase and then decrease in λ2 after 〈k〉 = N/2 is depicted by ER and

SF networks also. This is more surprising for these networks, as for these

networks the second largest degree kmax2 keeps on increasing as average con-
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nectivity of a network increases, being more prominent for SF networks.
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Figure 3.1: degree of freedom of connections

Number of possible ways N〈k〉 connections can be distributed among N

nodes as a function of average degree.

Intuitively, the reason behind this behaviour of λ2 can be related with the

degree of freedom associated with the distribution of connections among the

nodes. For N nodes, the total number of possible connections among them

is given by NT = NC2 = N(N−1)
2

. Next, number of ways r connections from

these NT connections can be selected is NTC2. It is easy to see that upon

varying r from 0 to NT , the possible ways in which r pairs of the nodes can

be selected from NT pairs, avoiding self and duplicate connections, will first

increase followed by a decrease. Additionally, from NCr = NCN−r, we know

that it will be symmetrical in the nature. The philosophy behind this dis-

cussion is that as we increase the value of r, the possible number of choices
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Figure 3.2: Variation of λ1 and λ2 with 〈k〉

The analysis has been averaged for 5000 realizations of network generation

for SF and ER networks. Note that for a regular network only one realization

of the graph is possible for a given network parameter. (©) and (•) are used

for λ1 and λ2 respectively. (a) Regular network, (b) ER random and (c) SF

networks.

for the connections among N nodes first increases for r being exactly being

equal to the half of total number of possible connections for these nodes. For

a further increase in r, the number of available choice to make connections or

degree of freedom available to the network become less. Figure 3.1 illustrates

that as the average connectivity increases, the possible ways of distributing

connections first increases followed by a decrease exactly as average degree

becomes N/2. Since, λ2 emulates the similar behaviour as discussed about

the degree of freedom (Figure 3.1), we can intuitively relate it with the degree

of freedom.

Comparison of λ2 with λ1 for various model networks is illustrated in Fig-

ure 3.3. The largest eigenvalue of SF network is higher than that of the

random and the regular network due to the presence of a hub nodes having

much higher degree in the scalefree network as compared to the highest de-

gree nodes of the regular and ER random networks. As we are increasing
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Figure 3.3: Comparison of λ1 and λ2

The analysis has been averaged for 5000 realizations of network generation

for SF and ER networks. Note that for a regular network only one realization

of the graph is possible for a given network parameter. (�), (©) and (•) are

used for scalefree, random and regular networks. (a) λ1 (b) λ2

the average connectivity highest degree node in the network increases. The

increase in the largest degree provides a scaling factor to λ1 yielding λ1 for

SF greater than that of regular and ER network at all average connectivity.

Whereas for λ2, regular networks have higher values than those of the ER

random and scalefree networks at all average connectivity.

Though, the degree of freedom network connections have provide clue to the

overall behaviour of λ2 for various average degree, it does not shed light on

higher value of λ2 for 1D lattice as compared to SF and ER random networks.

It is rather difficult here to prove that why degree of freedom connections

have for 1D is much higher than that for the random networks and may

require additional insights. Nevertheless, algebraic connectivity of networks

provides a different view to λ2 behaviour.

The second smallest eigenvalue or first nonzero eigenvalue of the Laplacian

matrix of a network is refereed as the algebraic connectivity [25] α of the
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Figure 3.4: λ1 and λ2 with pin

Variation of λ1 (open symbol) and λ2 (closed symbol) as a function of pin for

two different value of the average degree 〈k〉 = 10, 30 . The analysis is done

for N = 100 and for 5000 random realizations of the networks arising due to

different manner entries in a matrix change there sign with probability pin.

(a) ER random network (b) SF network and (c) regular network. (©), (�)

are used for λ1 and λ2 for 〈k〉 = 30 and (•) and (�) are λ1 and λ2 for average

degree 10.

network. The algebraic connectivity of a graph is greater than zero if and

only if the graph is connected. For a regular lattice, the algebraic connectivity

α is related with the second largest eigen value λ2 [25] as α = 〈k〉 - λ2. ⇒

λ2 = 〈k〉 - α.

Though this relation holds good only for the regular lattice, what we un-

derstand from this relation is that for a fixed average degree λ2 is higher if

the algebraic connectivity is less and vice versa. The algebraic connectivity

for the various model networks such as regular, scle-free is displayed in the

Table 3.4. We can see that algebraic connectivity is always increasing func-

tion of the average connectivity. But for the average degree being less than

that of N/2, α of the regular network is much lower than that of scale free

networks which in turn reflects a higher value for λ2 of the regular networks
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Figure 3.5: λ2 statistics for SF network

Distribution of λ2 for various pin with average degree 〈k〉 = 10 of scalefree

networks. The blue and red line indicate normal and GEV distribution,

respectively.

than scalefree networks. However as the average degree becomes higher than

N/2, there is a sudden increase in the value of α for a regular network leading

to decrease in the value of λ2.For the scalefree networks no such change is ob-

served in α and thus λ2 is almost constant even for the higher average degree.

As discussed earlier that inspired by the role of inhibition in many real world

systems including brain [26] and ecological we introduce inhibitory node in

networks. and study the variation of second largest eigen value λ2 for dif-

ferent value of pin. For a fixed average degree, the average behaviour of

second largest eigen value λ2 is similar to that of largest eigen value λ1 for

introduction of inhibitory nodes. λ1 is asymmetric about pin = 0.5. From

the Figure 3.4 , we can see that both the largest eigen value λ1 and second

the largest eigen value λ2 are decreasing up to pin = 0.5 and then they start

increasing. Thus second largest eigen value λ2 is more related to the average
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Figure 3.6: λ2 statistics for ER network

Distribution of λ2 for various pin with average degree 〈k〉 = 10 of ER random

networks. The blue and red line indicate normal and GEV distribution,

respectively.

degree than inhibitory nodes. Further the reason behind the behaviour of λ2

with the inhibitory node can be explained by simple matrix algebra. Since

when pin = 1 all the 1s entries of the adjacency matrix for pin = 0 become

equal to -1. So the adjacency matrix A has changed to -A for pin = 1 . Thus

all the eigen values of the adjacency matrix A will change their sign for -A.

Hence, second minimum eigen value λmin2 of adjacency matrix for pin = 0

becomes equal to second largest eigen value λ2 of the adjacency matrix for

pin = 1 and since λmin2 6= λ2 for a adjacency matrix when pin = 0. Thus,

there will be asymmetric graph .

Next, we analyse statistics of the second largest eigen value. First we will

discuss the case pin = 0. We use kolmogorov Smirnov test [27] for the second

largest eigen value statistics. As there exists only one realisation possible for

the architecture of regular lattice the statistic can be drawn from the way

inhibitory nodes are distributed. The statistics of λ2 for the ER and scale-
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free network manifest GEV distribution. The shape parameter characterizes

the statistics as the Weibull distribution of the GEV statistics. The value

parameters are depicted in the Table 3.1 and Table 3.2 . As inhibitory nodes

are introduced althogh the behaviour of λ1 and λ2 are similar, there statistics

manifest different behaviour. Statistics of second largest eigen value is more

dependent on the inhibitory coupling than the average degree. The largest

eigen value λ1 statistics accepts both GEV and gaussian statistics however,

for λ2, KS test accepts only GEV statistics for pin = 0 and the value of shape

parameter characterizes it as the weibull distributon. Few intermediate pin

values can also be modeled with the normal distribution excepts for pin =

0.45, 0.50, 0.55 which always shows GEV statistics for both the Scalefree

and random networks. For higher average degrees, there exists a transition

from the weibull to Frechet via gumbell at pin = 0.40 as shown in Table 3.3

. Note, there exists no such transition for λ1.
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pin ξ of

GEV

σ of

GEV

µ of

GEV

p-value of KS

test for GEV

µ of Nor-

mal

σ of Nor-

mal

p-value of KS

test for Normal

0.00 -0.14 0.19 5.62 0.211 5.70 0.21 0.006

0.20 -0.23 0.36 4.48 0.00019 4.62 0.35 0.309

0.40 -0.14 0.38 3.05 0.10 3.23 0.42 0.0001

0.45 -0.08 0.32 2.88 0.97 3.04 0.37 0.0010

0.50 -0.10 0.32 2.88 0.58 3.04 0.36 0.001

0.55 -0.15 0.38 3.03 0.17 3.20 0.42 0.0006

Table 3.1: KS test for SF networks

Estimated parameters of KS test for fitting GEV and normal distributions of λ2 for different

inhibitory inclusion probability (pin) of SF network over 5000 population. Other parameters are network size

N = 100 and average degree 〈k〉 = 10.



27

pin ξ of

GEV

σ of

GEV

µ of

GEV

p-value of KS

test for GEV

µ of Nor-

mal

σ of Nor-

mal

p-value of KS

test for Normal

0.0000 -0.1900 0.1800 5.6000 0.1100 5.6800 0.1900 0.0200

0.2000 -0.2400 0.2900 4.6400 0.0100 4.7500 0.2900 0.4800

0.4000 -0.2000 0.4000 3.2900 0.0026 3.4600 0.4200 0.0001

0.4500 -0.1300 0.3200 3.0500 0.2900 3.2080 0.3600 0.0000

0.5000 -0.1500 0.2900 3.0000 0.8800 3.1300 0.3100 0.0009

0.5500 0.1600 0.3200 3.0900 0.9000 3.2300 0.3400 0.0003

Table 3.2: KS test for random network

Estimated parameters of KS test for fitting GEV and normal distributions of λ2 for different inhibitory inclusion

probability (pin) of random network over 5000 population. Other parameters are network size N = 100 and average

degree 〈k〉 = 10.
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pin λ1 λ2

0.00 GEV+normalGEV(Weibull)

0.10 Normal GEV(Weibull)

0.20 None Normal

0.30 None GEV(Gumbell)

0.40 None GEV(Frechet)

0.42 None GEV(Frechet)

0.46 None GEV(Frechet)

Table 3.3: KS test for higher average degree

λ1, λ2 statistics for isolated random networks 〈k〉 = 60. The study is done

for 5000 realization.

〈k〉 α Regu-

lar

α S.F

10 0.21 3.005

30 4.68 12.52

50 19.17 22.83

70 45.84 32.15

Table 3.4: algebric connectivity with 〈k〉

Variation of algebraic connectivity for scalefree and regular networks. Total

number of node is equal to 100 and average degree is varied from 10 to 70.
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Conclusion and Future

direction

To conclude, we analysed the second largest eigen value λ2 of the adjacency

matrix of a network and report that it behave completely different from the

largest eigen value λ1. The largest eigenvalue λ1 is more dependent on the

highest degree of the networks. Larger the value of kmax ,higher will be the

value of λ1 but λ2 though having upper bound of kmax2 is independent of

it. λ1 of scalefree networks is always higher than the regular and random

network since it has higher kmax as compare to the random and regular

networks. While λ2 is higher for the regular networks than the random and

scalefree networks. Intitutively we can relate this behaviour with the degree

of freedom of the network. Thus, we say that regular networks has more

degree of freedom than the random and the scalefree networks although kmax2

of scalefree networks is higher than regular networks. Additionaly, we know

that λ2 has a relation with the algebraic connectivity for a regular networks.

Using this relation we have indicated that there lies a drastic change in the

29
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algebraic connectivity of the regular networks for the higher average degree

which intern leads to a decrease in λ2 of regular networks for higher average

degree. There exists no such drastic change in the algebraic connectivity for

scale free networks and λ2 remains almost constant for scalefree networks.

Since for a regular networks λ1 is equal to average connectivity so we can

not get much information about the network from λ1 and thus λ2 become

more important for the regular networks than scalefree and random networks.

Further as inhibitory nodes are introduces in the networks we analysed the

change in behaviour of λ2. We have illustrated that although λ1 and λ2

both have similar behaviour as a behaviour of inhibitory couplings of there

statistics are different from each other. While λ1 follows normal distribution

for pin = 0 , λ2 shows weibull distribution of GEV statistics. There is also

phase transition of λ2 for lower average degree but no such transition is

observed for λ2 but for the higher average degree λ2 shows transition while

statistics of λ1 remain unchanged. Thus, what we understanding from our

work is that both λ1 and λ2 have completely different behaviour. λ1 is

more related to the macroscopic structural property of the network while λ2

provide mere information about detailed topology of the networks. In the

future scope I would like to go more insight in the statistics of eigen values.
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multilayer nature of ecological networks. Nature Ecology Evo-

lution, 1, 0101.

[17] Vogels, T. P., Rajan, K., Abbott, L. F. (2005). Neural network

dynamics.

[18] Barabási, A. L., Albert, R. (1999). Emergence of scaling in

random networks. science, 286(5439), 509-512.

[19] Yadav, A., Jalan, S. (2015). Origin and implications of

zero degeneracy in networks spectra. Chaos: An Interdis-

ciplinary Journal of Nonlinear Science, 25(4), 043110.(DOI:

http://dx.doi.org/10.1063/1.4917286)

[20] Kurths, J., Pikovsky, A., Rosenblum, M. (2001). Synchroniza-

tion: a universal concept in nonlinear sciences. New York: Cam-

bridge University Press.

[21] Dwivedi, S. K., Jalan, S. (2013). Extreme-value

statistics of networks with inhibitory and excitatory

couplings. Physical Review E, 87(4), 042714.(DOI:

https://doi.org/10.1103/PhysRevE.87.042714)

[22] Gumbel, E. J. (2012). Statistics of extremes. Courier Corpora-

tion.

[23] Weisstein, E. W. (2003). Gershgorin circle theorem.

[24] Cvetković, D., Rowlinson, P. (1990). The largest eigenvalue of a

graph: A survey. Linear and multilinear algebra, 28(1-2), 3-33.



34 BIBLIOGRAPHY

[25] Merris, R. (1994). Laplacian matrices of graphs: a survey. Linear

algebra and its applications, 197, 143-176.

[26] Sporns, O. (2011). Networks of the brain MIT Press.

[27] Using KS test, we fit the distribution with GEV statis-tics using

functions kstest, gevfit and gevpdf from MAT- LAB statistics

toolbox. Calculation of GEV distribution parameters are done

with 95


	List of Figures
	List of Tables
	Introduction
	Structure properties of complex networks
	Model Networks
	 ER random network
	 Scalefree networks
	 Small world networks

	Spectra properties of Complex Networks
	Degeneracy at zero eigenvalue
	Degeneracy at -1 eigenvalue


	 Analysis of second largest eigen value
	Introduction
	Model:

	Result and Discussion
	 Conclusion and Future direction
	Bibliography

