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                                ABSTRACT 

 

Ferrocenyl-substituted diketopyrrolopyrroles (DPPs) with the symmetrical 

π-bridged donor–acceptor (D–π–A) frameworks D′–π–D–A–D–π–D′ as 

well as unsymmetrical D–A–D–π–D′ frameworks were designed and 

synthesized by a Pd-catalyzed Sonogashira cross-coupling reaction. The 

photophysical, computational, and electrochemical properties were also 

investigated and show substantial donor–acceptor interactions between the 

ferrocene and DPP moieties. DFT studies reveal that HOMO-LUMO gap 

decreases on incorporation of ferrocenyl unit to DPP. The symmetrical 

ferrocenyl-DPPs have more thermal stability than the unsymmetrical 

derivatives. 
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CHAPTER ONE 

 

1.  INTRODUCTION 

 

1.1. General Introduction 

The growing energy demand throughout the world has given great attention 

towards exploring the clean and renewable energy sources. Production of 

energy from sunlight using photovoltaic technology is one of the most 

important long-term solution. Donor–acceptor molecular architectures with 

extended π-conjugation are of significant interest due to their wide variety 

of applications as organic light-emitting diodes (OLEDs), organic 

photovoltaics (OPVs), two photon absorption and organic field-effect 

transistors (OFETs) [1]. The broad absorption bands in the visible region 

and low HOMO-LUMO gap values in small organic molecules make them 

potential candidate for optoelectronics [2]. 

Our group is involved in the development of donor–acceptor molecules for 

optoelectronic applications. The diketopyrrolopyrrole (DPP) is a widely 

recognized as an acceptor due to its strong electron-withdrawing nature [3]. 

Farnum, et al. in 1974, for the first time reported the synthesis of DPP 

(Scheme 1). The desired reaction was failed and accidentally the diphenyl 

DPP was formed in low yield (5-20%) [4]. 
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Scheme 1. Preparation of DPP (Farnum, et al. 1974). 

 

The first DPP pigment has been developed in 1986 and came to market for 

applications like paints, plastics, fibers and inks. After Farnum’s synthesis 

there are several other reports for the synthesis of DPP came [5-7]. Succinic 

ester route is regarded as the best one from all the routes [5,6]. In this 

succinic ester is condensed by pseudo-Stobbe condensation reaction with 

an aromatic nitrile in the presence of strong base to get desired the DPP in 

a yield over 60% (Scheme 2). The formation of pyrrolinone esters from the 

initially formed enaminoesters is the key step of this mechanism, further it 

reacts with another benzonitrile under basic conditions and subsequent ring 

closure gives the desired product. 
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Scheme 2. Preparation of DPP via the succinic ester route. 

 

There are number of publications found in literature on the synthesis of DPP 

from Morton and Riggs [8-10]. The synthesis of unsymmetrical DPP was 

also reported more recently [11,12].  Methods such as the microwave have 

also been reported for the synthesis of DPP [13].  

The DPP is a bicyclic 8π electron system contains two lactam units. Typical 

diphenyl-DPPs have melting points over 350 oC and low solubility in most 

of the organic solvents. They show an absorption in the visible region 

[5,14,15] and strong fluorescence between 500 and 600 nm [16]. 
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Figure 1. UV/vis absorption and photoluminescence spectra of diphenyl 

DPP. 

The X-ray of diphenyl-DPP shows that the whole molecule is almost in one 

plane [15, 17-22]. The phenyl rings of DPP are twisted out of the plane by 

7o. The intermolecular hydrogen bonding between neighboring lactam NH 

and carbonyl units dominates the structure of DPP in the solid state which 

determines the molecular packing. The π-π interaction between the layers 

of DPPs is then understandable. The optimum interlayer distance between 

the planes is 3.36 Å and the distance between phenyl ring planes is 3.54 Å 

is short enough for the significant π-π interaction. 

DPP has unique structure because of its aromatic conjugated structure 

enhances the – stacking and improves charge transport abilities. The 

substitution of fused aromatic DPP with appropriate electron donor in the 

conjugated backbone gives strong interaction in the solid through   D–A and 

– interactions result in highly ordered structure. The energy levels of 

conjugated DPP adjusted to produce p-type, n-type, or ambipolar organic 

semiconductors depends on the type of moieties incorporated. DPP exhibit 

high thermal stability which is required for fabricating stable   electronic 

devices. The DPP based small molecules have been widely used for organic 
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photovoltaics because of their excellent light absorbing and charge 

transporting ability. 

There are many reports found in literature on the applications of DPP-based 

materials for example OLEDs, chemical sensors and memory devices.  

The thiophene flanked DPP derivatives have been widely used due to their 

easy synthesis, high performance, and better D-A interactions. The furan 

based DPPs have emerged as versatile semiconducting materials with 

numerous applications in various polymer optoelectronics devices. 

 

1.2. Polymers and semiconducting materials based on DPP 

The generic use of DPP polymers as organic semiconductors was first 

patented by Turbiez et al. in 2008 [23] and high mobility organic field effect 

transistors have been published in the same year [24]. Also, the first use of 

PDPPs in solar cells was demonstrated in 2008 by Wienk et al [25]. 

Beyond PDPPs, also defined low molecular weight compounds based on 

DPP, hereafter referred to as small molecules, were used as organic 

semiconductors, first reported in 2008 by the group of Thuc-Quyen Nguyen 

[26] and at the same time applied as donor materials in solar cells [27]. In 

2009 this group demonstrated DPP based small molecule solar cells with 

nanoscale phase separation and high photovoltaic efficiencies with a report 

counting more than 500 citations, being the most cited DPP paper upto date 

[28]. 

DPPs have gained enormous interest in the design of semiconducting 

organic materials due to their extended absorption range [29], the excellent 

stability, their remarkable aggregation behavior, [30] their superior 

performance in transistors [31-33], integrated circuits [34] and solar cells 

[35]. Over the past few years the performance boundaries of organic 

semiconductors were pushed over several orders of magnitude, not without 
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the aid of DPPs. Charge carrier mobilities in organic field effect transistors 

for example have improved from about 0.1 cm2V-1s-1 in 2008 [36] to 12-18 

cm2V-1s-1 for hole transport [37,38] and over 6 cm2V-1s-1 for electron 

transport [39]. 

Likewise, organic solar cell efficiencies have improved greatly over the last 

years and low molecular weight DPP compounds as well as DPP polymers 

have contributed significantly to this success [40,41]. The careful 

optimization of the catalytic system for the polycondensations allowed to 

obtain polymers with very high molecular weights that exhibited improved 

power conversion efficiency up to 8% in organic solar cells [42]. 

Furthermore, side chains were optimized on different DPP systems in order 

to tailor material properties towards high performance in organic electronics 

[43,44].  

 

1.3. N-Alkylation of DPP 

The following Scheme 3 is the example of N-methylation of diphenyl-DPP 

[45]. 

The N-alkylation of DPP results in the loss of intermolecular hydrogen 

bonding and solubilities are drastically raised. The N-substituted DPP based 

chromophores exhibit fluorescence in solution with a quantum yield up to 

95%. 
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Scheme 3. The N-methylation of DPP. 

 

1.4. Electrophilic aromatic substitution 

DPP shows ESR and get sulfonated by oleum to form the disulfonic acid 

and the salts of the disulfonic acid. The sulfonation gives rise to water 

soluble DPP. The 4,4’dibromophenyl DPP can be synthesized from the 

reaction of diphenyl DPP with Br2 gas but the chlorination does not happen 

which may be due to the reason that bromine is a better leaving group and 

nucleophile compared to chlorine [5]. 
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Scheme 4. Electrophilic aromatic substitution. 

 

1.5. Nucleophilic aromatic substitution 

At high temperature, nucleophilic aromatic substitution has been reported 

in literature (Scheme 5). 
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Scheme 5. Nucleophilic aromatic substitution. 

 

 

Scheme 6. Reactions of DPP. 

 

 

 



10 
 

 

1.6. Aim of the Project 

 

The substitution of the DPP with a donor will result in a strong D-A 

molecular system. The ferrocene group is a widely studied donor for various 

applications and its derivatives are thermally and photochemically stable. 

Ferrocene exhibit highly reversible redox active center with strong 

nonlinear optical (NLO) response. 

Herein, we have synthesized symmetrical and unsymmetrical DPP systems 

of  D′–π–D–A– D–π–D′ and D–A–D–π–D′ type in which the ferrocene and 

thiophene moieties act as donors and the DPP unit act as acceptor. The N-

alkylated derivatives of DPP were used to improve the solubility in common 

organic solvents such as chloroform, dichloromethane, tetrahydrofuran, and 

toluene. Here, our aim is to study the effect of ferrocene on the 

photophysical and electrochemical properties of DPP. The structural, 

optical and electrochemical properties of these DPP derivatives were 

explored. 
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Figure 2. Bonding in DPP 5 and DPP 6. 
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CHAPTER TWO 

2. EXPERIMENTAL SECTION 

2.1. Materials and methods 

Chemicals were used as received unless otherwise indicated. All the oxygen 

or moisture sensitive reactions were carried out under argon atmosphere. 1H 

NMR spectra were recorded using a Brukar AV 400 MHz spectrometer. 

Chemical shifts are reported in delta (δ) units, expressed in parts per million 

(ppm) downfield from tetramethylsilane (TMS) using residual protonated 

solvent as an internal standard {CDCl3, 7.26 ppm}. 13C NMR spectra were 

recorded using a 100 MHz spectrometer. Chemical shifts are reported in 

delta (δ) units, expressed in parts per million (ppm) downfield from 

tetramethylsilane (TMS) using the solvent as internal standard {CDCl3, 77.0 

ppm}. The 1H NMR splitting patterns have been described as “s, singlet; d, 

doublet; t, triplet and m, multiplet.” The HRMS spectra of the compounds 

were recorded by using Bruker Daltonics MicroTOF-Q II mass 

spectrometer using chloroform as solvent.  UV-visible absorption spectra of 

all compounds were recorded on Parkin Almer UV/Vis spectrophotometer 

lambda 35 in choloroform solution.Cyclic voltamograms and differential 

pulse voltamograms were recorded on CH1620D electrochemical analyzer 

using Glassy carbon as working electrode, Pt wire as the counter electrode, 

and Saturated Calomel Electrode (SCE) as the reference electrode. The scan 

rate was 100mVs-1 for cyclic voltammetry. A solution of 

tetrabutylammonium hexafluorophosphate (TBAPF6) in CHCl3 (0.1M) was 

used as supporting electrolyte. 
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2.2. General procedure for synthesis of precursors 

2.2.1. Synthesis of DPP 1 

DPP 1 was prepared with 65% yield by using procedure which involves the 

reaction of 2-thiophenecarbonitrile with half equivalent of dimethyl 

succinate in presence of strong base sodium tert-butoxide in tert-butanol at 

120 oC for 12 hours under argon atmosphere and worked up by methanol-

hydrochloric acid (300mL methanol:15mL concentrated HCl), filtered on 

Buchner funnel and finally washed with methanol yielded maroon solid as 

shown in scheme 7. 

2.2.2. Synthesis of DPP 2 

To make soluble DPP 1 it was reacted with excess amount of 1-

bromodecane in presence of base K2CO3 in N, N-dimethylformamide 

(DMF) at 145 oC for 12 hours under argon atmosphere. The reaction 

contents were cooled to room temperature and solvent was removed under 

vacuo. The crude compound was purified by silica column chromatography 

(eluted with 50% dichloromethane in hexane) yielded 23% shiny crystalline 

solid (DPP 2) as shown in scheme 7. 1H NMR (400 MHz, CDCl3): δ= 8.92 

(m, 2 H), 7.62 (m, 2 H), 7.27 (d, 2 H), 4.06 (m, 4 H), 1.73 (m, 4 H), 1.30 (s, 

24 H), 0.88 (m, 6 H) ppm. HRMS (ESI): calcd. for C34H48N2O2S2 [M]+ 

581.3220; found 581.3343. UV/Vis (CH2Cl2): λmax (ε, M–1 cm–1) = 551 nm 

(4.6 × 104). 
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2.2.3. Synthesis of DPP 3 and DPP 4 

DPP 2 was brominated with one equivalent and two equivalents of N- 

Bromosuccinmide to give monobrominated DPP 3 and dibrominated DPP 

4 respectively. Bromination reaction was carried out at room temperature in 

dry chloroform and compounds were purified by the use of silica-column 

chromatography, eluted with 30–80% of dichloromethane in hexane yielded 

90% of pure compounds as shown in scheme 8. 

 

 

 

 

 

Figure 3. Photograph of DPP 2 in DCM in day light and TLC showing 

separation between DPPs 2, 3 and 4. 

2.2.4. Synthesis of DPP 5 

In a 100mL round-bottom flask monobromo-substituted DPP 3 (0.200 g, 

0.30 mmol) and ethynylferrocene (0.064 g, 0.30 mmol) were dissolved in 

dry toluene (10 mL) and triethylamine (6 mL). The reaction mixture was 

degassed with argon for 10 min, and then PdCl2(PPh3)2 (0.028 g, 0.030 

mmol), PPh3 (0.014 g, 0.060 mmol), and CuI (0.006 g, 0.030 mmol) were 

added (Scheme 9). The reaction mixture was stirred at 80 °C overnight. 

After completion of reaction, the mixture was cooled to room temperature. 

The solvents were removed in vacuo, and the product was purified by 

repeated chromatography on a silica column (hexane/dichloromethane, 3:1) 

to yield DPP 5. (0.191 g, 80 % yield); m.p. 92 °C. 1H NMR (400 MHz, 
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CDCl3): δ = 8.94 (d, J = 4 Hz, 1 H), 8.89 (d, J = 4 Hz, 1 H), 7.65 (d, 1 H), 

7.32 (d, 1 H), 7.29 (m, 1 H), 4.56 (s, 2 H), 4.33 (s, 2 H), 4.28 (s, 4 H), 4.07 

(m, 4 H), 1.75 (s, 4 H), 1.42 (s, 4 H), 1.26 (s, 24 H), 0.87 (m, 6 H) ppm; 13C 

NMR (100 MHz, CDCl3): δ = 161.4, 161.3, 139.9, 139.3, 135.5, 135.4, 

132.3, 130.8, 129.9, 129.7, 129.5, 128.7, 108.2, 107.9, 98.2, 78.8, 71.7, 

70.2, 69.6, 63.9, 53.5, 42.3, 31.9, 30.1, 30.0, 29.8, 29.6, 29.4, 29.3, 22.7, 

14.2 ppm; HRMS (ESI): calcd. for C46H56N2FeO2S2 [M]+ 788.3128; found 

788.3122; UV/Vis (CH2Cl2): λmax (ε, M–1 cm–1) = 584 nm (4.6 × 104). 

2.2.5. Synthesis of DPP 6 

In a 100mL round-bottom flask dibromo-substituted DPP 4 (0.200 g, 0.28 

mmol) and ethynylferrocene (0.116 g, 0.56 mmol) dissolved in dry toluene 

(10 mL) and triethylamine (6 mL). The reaction mixture was degassed with 

argon for 10 min, and then PdCl2(PPh3)2 (0.020 g, 0.028 mmol), PPh3 (0.014 

g, 0.056 mmol), and CuI (0.006 g, 0.028 mmol) were added (Scheme 9). 

The reaction mixture was stirred at 80 °C overnight. After completion of 

the reaction, the mixture was cooled to room temperature. The solvents were 

removed in vacuo, and the blue product was purified by chromatography on 

a silica column (hexane/dichloromethane, 3:1) to yield DPP 6. (0.230 g, 85 

% yield); m.p. 130 °C. 1H NMR (400 MHz, CDCl3): δ = 8.90 (d, 2 H), 7.32 

(d, 2 H), 4.55 (s, 4 H), 4.32 (d, 4 H), 4.28 (d, 4 H), 4.07 (m, 4 H), 1.75 (s, 4 

H), 1.42 (s, 6 H), 1.25 (s, 22 H), 0.86 (m, 6 H) ppm; 13C NMR (100 MHz, 

CDCl3): δ = 163.1, 139.0, 135.5, 132.3, 129.8, 129.6, 108.5, 78.8, 71.7, 

70.2, 69.6, 63.9, 53.5, 42.4, 31.9, 30.1, 29.8, 29.6, 29.3, 27.0, 22.7, 14.2 

ppm; HRMS (ESI): calcd. for C58H64N2Fe2O2S2 [M]+ 996.3106; found 

996.3019; UV/Vis (CH2Cl2): λmax (ε, M–1 cm–1) = 624 nm (4.4 × 104). 
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CHAPTER THREE 

 

3. Results and Discussion 

3.1. Synthesis and characterization 

DPP 2 (23% yield) was synthesized by reacting DPP 1 with excess amount 

of 1-bromodecane in presence of base K2CO3 in N, N-dimethylformamide 

(DMF) (scheme 7). Ferrocenyl-DPPs 5 and 6 were synthesized by a Pd-

catalyzed Sonogashira cross-coupling reaction. Monobromo and dibromo-

substituted DPPs 3 and 4 were synthesized according to reported 

procedures (Scheme 8). The Sonogashira cross coupling reactions of mono- 

and dibrominated DPPs 3 and 4 were carried out with 1 and 2 equiv. of 

ethynylferrocene to give unsymmetrical ferrocenyl-DPP 5 and symmetrical 

ferrocenyl-DPP 6 in 80 and 85 % yield, respectively (Scheme 9). The 

ferrocenyl-DPPs were purified by column chromatography over silica gel 

and recrystallization techniques.1H NMR of DPP 2 shows peaks between 

δ= 0.8 to 4.0 ppm for aliphatic alkyl chains protons and δ=7.2 to 9.0 ppm 

for thiophene protons. 1H NMR of DPP 5 shows peaks between δ=0.8 to 

4.0 ppm for aliphatic alkyl chains protons and δ=4.2 to 4.6 ppm for 

ferrocenyl protons and δ=7.2 to 9.0 ppm for thiophene protons which 

include a peak at δ=9.0 ppm which is absent in DPP 6 as it contains two 

ferrocenyl units attached to two thiophene units of DPP. 1H NMR of DPP 

6 shows peaks between δ=0.8 to 4.0 ppm for aliphatic alkyl chains protons 

and δ=4.2 to 4.8 ppm for ferrocenyl protons and δ=7.0 to 8.8 ppm for 

thiophene protons. 
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Scheme 7. Synthesis of DPP 1 and DPP 2. 

 

 

 

                   

 

Scheme 8. Synthesis of DPP 3 and DPP 4. 
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Scheme 9. Synthesis of Ferrocenyl substituted DPP 5 and DPP 6. 
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3.2. Photophysical Properties 

The electronic absorption spectra of DPP 2 and ferrocenyl DPPs 5 and 6 in 

dichloromethane exhibit broad bands that cover the entire UV/Vis region. 

The strong absorption bands at longer wavelengths correspond to π-π⁕ 

transition. The symmetrical DPPs 6 shows red shifted absorption bands as 

compared to DPP 2 and DPP 5, due to extended conjugation. A photograph 

of ferrocenyl-DPPs 5 and 6 in dichloromethane in daylight is shown in 

Figure 4. 

  

                                                 

   

       Figure 4. Ferrocenyl-DPPs 5 and 6 in dichloromethane in daylight.  
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Figure 5. UV-Visible spectra of (a) DPP 2, (b) DPP 5, (c) DPP 6 in 

dichloromethane. 

 

3.3. Electrochemical Properties 

The electrochemical behavior of DPP 2, 5, 6 were studied by the cyclic 

voltammetric (CV) analysis in dichloromethane solution using 

tetrabutylammonium hexafluorophosphate (Bu4NPF6) as supporting 

electrolyte. The electrochemical data are listed in Table 2 and representative 

cyclic voltammograms of DPP 2, 5 and 6 are shown in Figure 6. The plot 

for DPP 2 show two oxidation waves for two unsymmetrical thiophene 

moieties at 0.87 eV and 1.26 eV, whereas two reduction waves due to the 

formation of mono and di anion of DPP at -1.04 eV and -1.26 eV 

respectively were observed. The plot for DPP 5 shows three oxidation 

waves, one for ferrocenyl moiety and other two for the two thiophene 

moieties (i.e., the terminal and the adjacent thiophene to the ferrocene). The 

plot for DPP 6 exhibit only two oxidation waves, one is related to the 

thiophene and the other to the ferrocene unit. The DPP moiety shows two 
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reduction waves in ferrocenyl-DPPs corresponds to mono and dianion 

formation. 
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Figure 6. CV plots of: (a) DPP 2, (b) DPP 5, (c) DPP 6. 
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3.4. Thermogravimetric Analysis  

The thermal properties of the DPP 2, 5 and 6 were investigated by the 

thermogravimetric analysis (TGA) under nitrogen atmosphere and their 

thermograms are shown in Figure 7. The DPPs 5 and 6 exhibit good thermal 

stability upto 376 °C at 10% weight loss under nitrogen atmosphere. The 

decomposition temperatures for 10% weight loss in DPPs 2, 5, 6 were found 

to be 355 oC, 377 °C, 387 °C respectively. The trend in thermal stability 

follows the order 6 > 5 > 2. This trend in thermal stability reveals that 

symmetrical ferrocenyl DPP 6 is thermally more stable as compared to 

unsymmetrical ferrocenyl DPP 5.  

100 200 300 400 500 600 700 800

45

60

75

90

105  DPP 5

 DPP 6

 DPP 2

%
 w

t.
 l

o
ss

Temperature (
o
C)

 

 

Figure 7. Thermogravimetric analysis of DPPs 2, 5 and 6 measured at a 

heating rate of 10 °C / min under nitrogen atmosphere. 
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Table 1. Photophysical and thermal properties of DPPs 2, 5 and 6. 

Compound Λabs (nm) ϵ/104 (M-1cm-1)a Td (
oC)b 

DPP 2 551 4.6 355 

DPP 5 584 4.6 377 

DPP 6 624 4.4 387 

 
aAbsorbance measured in dichloromethane at 1 × 10-4 M concentration, ε: 

extinction coefficient; bDecomposition temperatures for 10% weight loss at 

a heating rate of 10 °C min-1, under a nitrogen atmosphere. 

 

 

Table 2. Electrochemical properties of DPPs 2, 5 and 6a. 

 

Compound E3(Oxid) 

(eV) 

E2(Oxid) 

(eV) 

E1(Oxid) 

(eV) 

E1(Red) 

(eV) 

E2(Red) 

(eV) 

DPP 2 - 1.26 0.87 -1.04 -1.26 

DPP 5 1.33 1.00 0.60 -0.97 -1.49 

DPP 6 - 1.06 0.61 -0.87 -1.43 

 

aThe electrochemical analysis was performed in a 0.1 M solution of 

Bu4NPF6 in dichloromethane at 100 mVs−1 scan rate, versus Ag/Ag+ at 25 

°C. 

3.5. Theoritical Calculations 

Density functional theory (DFT) calculations were then performed by using 

the Gaussian09W program to understand the geometry and electronic 

structure of DPPs 2, 5 and 6. The geometry optimizations were carried out 

in the gas phase, and the DFT calculations were performed at B3LYP/6-

31+G**. The optimized structures of DPPs 2, 5 and 6 exhibit a planar 

geometry.Frontier molecular orbitals (FMO) of DPPs 2, 5 and 6 is shown 
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in Table 3. The HOMO of DPPs 2, 5 and 6 is distributed throughout the 

entire molecule. The LUMO of DPPs 2, 5 and 6 is localized on DPP and 

thiophene units. The theoretical values obtained by DFT calculations were 

in good agreement with the optical band gaps calculated from the UV/Vis 

absorption and the electrochemical band gaps calculated from CV analysis 

(Table 4). The trend in the theoretical HOMO–LUMO values follow the 

order of 2>5 >6. This shows that the HOMO–LUMO value decreases with 

an increase in the number of ferrocene units.  

 

Table 3. HOMO and LUMO orbitals of DPPs 2, 5 and 6 at the B3LYP/6-

31G** level. 

Compound HOMO (eV) LUMO (eV) 

 

DPP 2 

     

 

DPP 5 

  

 

DPP 6 

 
 

 

 

-4.98 -2.44 

-4.82 -2.57 

-4.72 -2.63 
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Table 4. Comparison of band gaps in DPPs 2, 5 and 6. 

 

Compound Theoritical 

band gap 

(eV) 

Optical band 

gap 

(eV) 

Electrochemical 

band gap (eV) 

DPP 2 2.54 2.12 1.49 

DPP 5 2.25 1.91 1.17 

DPP 6 2.09 1.77 1.12 

 

All the major transitions were calculated from TD-DFT and shown in 

Table 5 for DPP 2, DPP 5, DPP 6 which are due to π-π⁕ transitions. 

 

Table 5. Calculated electronic transitions for DPPs 2, 5 and 6 in the gas 

phase. 

Compound Wavelength (nm) Composition fa 

DPP 2 503 

322 

HOMO     LUMO (0.70) 

HOMO-7     LUMO (0.14) 

0.43 

0.30 

DPP 5 562 

609 

HOMO      LUMO (0.66) 

HOMO-2    LUMO+3 

(0.36) 

0.83 

0.18 

DPP 6 636 

589 

HOMO      LUMO (0.59) 

HOMO      LUMO (0.38) 

1.23 

0.39 

 

fa = Oscillation strength 
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CHAPTER FOUR 

 

4. Conclusions 

 

In summary, we have synthesized symmetrical and unsymmetrical 

ferrocenyl-DPPs 5 and 6 by employing a Sonogashira cross-coupling 

reaction. There is a systematic redshift in the absorption bands from DPP 2 

to DPP 5 and then to DPP 6. These derivatives also demonstrated enhanced 

thermal stability. Photophysical, electrochemical, and computational 

studies show absorption in visible region with low HOMO-LUMO gap 

values. The high thermal stability and low HOMO–LUMO gap values of 

DPPs 2, 5 and 6 make them potential candidates for organic photovoltaics. 

Currently, we are synthesizing new donor-substituted DPPs for 

optoelectronic and photovoltaics applications. 
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APPENDIX A. 

1H NMR, 13C NMR and HRMS spectrum of compounds. 

 

 

 

 

Figure 8. 400 MHz 1H NMR spectrum of DPP 2 in CDCl3. 
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Figure 9. 400 MHz 1H NMR spectrum of DPP 5 in CDCl3. 
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Figure 10. 400 MHz 1H NMR spectrum of DPP 6 in CDCl3. 
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Figure 11. 100 MHz 13C NMR spectrum of DPP 5 in CDCl3. 
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Figure 12. 100 MHz 13C NMR spectrum of DPP 6 in CDCl3. 
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Figure 13. HRMS of DPP 2. 
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Figure 14.  HRMS of DPP 5. 
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Figure 15.  HRMS of DPP 6. 
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