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ABSTRACT

Quaternions are extensively used in programming video games, computer graphics, control

theory and quantum physics, etc. A solution of a quaternionic linear differential equation

with constant coefficients can be presented in terms of right eigenvalues as well as their

corresponding eigenvectors of the associated quaternionic matrix. The study of a quater-

nionic linear differential equation with constant coefficients is based on finding the zeros of

its corresponding quaternionic polynomial. In contrast to the complex case, the location

of left eigenvalues of a quaternionic matrix plays an important role in the characterization

of zeros of quaternionic polynomials. The stability of linear difference/differential equa-

tions with quaternionic matrix coefficients is based on the location of right eigenvalues of

their corresponding block companion matrices.

This thesis mainly deals with localization theorems for the left and right eigenval-

ues of a quaternionic matrix and their applications for finding bounds/location of zeros

of quaternionic polynomials. Bounds for the left and right eigenvalues of quaternionic

matrix polynomials are derived. In the proposed research work we also discuss about

perturbation bounds for right eigenvalues/generalized right eigenvalues of a quaternionic

matrix/quaternionic matrix pencil. The entire work of this thesis is divided into seven

chapters and has been briefly described below:

Chapter 1 describes preliminaries and basic facts related to the development of our

theory.

In Chapter 2, inclusion regions for eigenvalues of a quaternionic matrix are derived

and bounds for the zeros of quaternionic polynomials are presented. In this chapter, we

study Gerschgorin, Ostrowski, and Brauer type theorems for the left and right eigenvalues

of a quaternionic matrix. Thereafter a sufficient condition for the stability of a continuous-

time quaternionic system is given.

Chapter 3 presents inclusion regions of zeros of quaternionic polynomials.



Chapter 4 discusses basic properties of regular quaternionic matrix pencils, localiza-

tion theorems of generalized right eigenvalues of quaternionic matrix pencils, and their

applications.

Chapter 5 derives the definitions of the left and right eigenvalues of quaternionic ma-

trix polynomials. Next, we present bounds of left and right eigenvalues of quaternionic

matrix polynomials. A sufficient condition for the stability of a discrete-time quater-

nionic system is given. Furthermore, bounds for the absolute values of the left and right

eigenvalues of quaternionic matrix polynomials are devised and illustrated for the matrix

p-norm, where p = 1, 2,∞, and F (Frobenius). The above results generalize bounds for

the absolute values of the eigenvalues of complex matrix polynomials.

Chapter 6 gives the concept of perturbation bounds for right eigenvalues/generalized

right eigenvalues of a quaternionic matrix/quaternionic matrix pencil. In particular,

Bauer-Fike type theorems for right eigenvalues/generalized right eigenvalues of a diagonal-

izable quaternionic matrix/diagonalizable quaternionic matrix pencil are derived. Then,

a relative perturbation bound for right eigenvalues of an invertible diagonalizable quater-

nionic matrix is given. Perturbation bounds of right eigenvalues of a quaternionic matrix

and perturbation bounds for the zeros of quaternionic polynomials are presented.

Finally, in Chapter 7, we give conclusions of our research work and future prospect of

this work.
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NOTATION

Symbols

R the field of real numbers

C the field of complex numbers

C∞ the extended complex plane C ∪ {∞}
C+ closed upper complex halfplane

R+ the set of positive real numbers

H the set of real quaternions

=(z) the imaginary part of z ∈ C

q = qH the conjugate of q ∈ H

|q| the modulus of q ∈ H

Re(q) the real part of q ∈ H

Im(q) the imaginary part of q ∈ H

SH− the set {q ∈ H : Re(q) < 0}
SH the unit ball {q ∈ H : |q| < 1}
[q] the equivalence class of q ∈ H

Kn the collections of all n-column vectors with entries

in K, where K ∈ {R,C,H}
xT the transpose of x ∈ Kn

x the conjugate of x ∈ Kn

xH the transpose conjugate of x ∈ Kn

Mm×n(K) the set of m× n matrices with entries in K, abbreviated to Mn(K)

if m = n

In the n× n identity matrix

0n the n× n zero matrix

A−1 the inverse of A ∈Mn(K)

AT the transpose of A ∈Mm×n(K)



A the conjugate of A ∈Mm×n(K)

AH the conjugate transpose of A ∈Mm×n(K)

A⊗B the Kronecker product of A ∈Mn(H) with B ∈Mn(H)

diag(A1, . . . , Ak) block diagonal matrix with the diagonal blocks A1, . . . , Ak ∈Mn(K),

abbreviated to diag(Aj)
k
j=1

‖A‖p the norm of A ∈Mn(K), where p = 1, 2,∞ and F (Frobenius)

K2(A) the condition number of A ∈Mn(H) with respect to the matrix

2-norm

ΨA the complex adjoint matrix of A ∈Mn(H)

Λ(A) the set of eigenvalues of A ∈Mn(C)

Λl(A) the set of left eigenvalues of A ∈Mn(H)

Λr(A) the set of right eigenvalues of A ∈Mn(H)

Λs(A) the set of standard right eigenvalues of A ∈Mn(H)

ρl(A) the left spectral radius of A ∈Mn(H)

ρr(A) the right spectral radius of A ∈Mn(H)

pl(z) the simple quaternionic polynomial of the form
∑m

j=0 qjz
j,

where z, qj ∈ H (0 ≤ j ≤ m)

pr(z) the simple quaternionic polynomial of the form
∑m

j=0 z
jqj,

where z, qj ∈ H (0 ≤ j ≤ m)

ql(z) the simple monic reversal quaternionic polynomial of pl(z)

qr(z) the simple monic reversal quaternionic polynomial of pr(z)

ZH(p(z)) the set of zeros of a simple quaternionic polynomial p(z)

ZC(p(z)) the set of complex zeros of a simple quaternionic polynomial p(z)

Cpl the corresponding companion matrix of the simple monic

polynomial pl(z)

Cpr the corresponding companion matrix of the simple monic

polynomial pr(z)

Cql the corresponding companion matrix of the simple monic reversal

polynomial ql(z)

Cqr the corresponding companion matrix of the simple monic reversal

polynomial qr(z)
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CHAPTER 1

INTRODUCTION

1.1. Introduction

The set of quaternions was discovered by the Irish mathematician Sir William Rowan

Hamilton in 1843. It is an extension of the complex field. The set of quaternions is an asso-

ciative but non-commutative algebra of rank four over R. Quaternions are extensively used

in programming video games, control theory, computer graphics, controlling spacecrafts,

signal processing, quantum physics etc. (see, for example, [1,8,24,26,40,58]). Quaternions

are used for describing rotations and orientations of objects in 3-dimensional space. For

instance, spacecraft altitude-control systems are commanded in terms of quaternions (see,

for example, [1,26] and the references therein). A quaternion is expressed by 4 real num-

bers whereas a 3×3 matrix requires 9 numbers. The composition of two rotations requires

16 multiplications and 12 additions in quaternion representation, but 27 multiplications

and 18 additions in matrix representation [39].

The applications of complex eigenvalue problems have been studied in [4,7,10,11,14,

16,51,54,57]. The quaternionic eigenvalue problems occur in many scientific applications

(see, for example, [2,3,9,13,18,27,31,32,43,44,52,53,55,56,61] and the references therein).

The location of right eigenvalues of a quaternionic matrix plays an important role to find

the stability of the linear differential equation with quaternionic matrix coefficients

dm

dtm w(t) + Am−1
dm−1

dtm−1 w(t) + Am−2
dm−2

dtm−2 w(t) + · · ·+ A0w(t) = 0,(1.1)

and the quaternionic matrix difference equation

w(t+m) + Am−1w(t+m− 1) + · · ·+ A1w(t+ 1) + A0w(t) = 0,(1.2)

where w(t) = (w1(t), w2(t), . . . , wn(t))T ∈ Hn with wi : R → H (t ∈ R, 1 ≤ i ≤ n) (H

and Hn are defined in Preliminaries 1.2) (see, for example, [43, 44]). The location of left

eigenvalues of a quaternionic matrix plays a crucial role to find bounds/location of zeros

of quaternionic polynomials.



The quaternionic eigenvalue problems and location of left and right eigenvalues of a

quaternionic matrix and their applications have been studied extensively (see, for exam-

ple, [3, 6, 9, 18, 22, 27, 31, 32, 43, 44, 52, 60–63] and the references therein). Computation of

zeros of quaternionic polynomials and their bounds have been studied extensively covering

the theory as well as the applications (see, for example, [12, 19, 20, 23, 30, 41, 42, 45, 50]).

An application of quaternionic quadratic equations is also found in solving homogeneous

quaternionic linear second order differential equations with quaternion constant coeffi-

cients [28,29]. The solution of quaternionic differential equation

d2

dt2 u(t)− q1
d

dt
u(t)− q0 u(t) = 0,(1.3)

where u : R → H, q0, q1 ∈ H and t ∈ R, can be transformed by substituting u(t) =

exp[z t] (z ∈ H) to the following quaternionic quadratic equation:

z2 − q1z − q0 = 0.(1.4)

Generalizing (1.3), we observe that the problem of finding the solution of m-order linear

differential equations with quaternion constant coefficients

dm

dtm u(t)−
m−1∑
k=1

qk
dk

dtk
u(t)− q0 u(t) = 0,(1.5)

where qj ∈ H, (0 ≤ j ≤ m− 1), can be transformed to the problem of finding the zeros of

the corresponding m-order quaternionic polynomial,

Pl(z) = zm −
m−1∑
j=0

qjz
j.(1.6)

To understand of the complexity of the quaternionic left and right eigenvalue problems

is a challenge for mathematicians and physicists. Nowadays, the study of the eigenvalue

problem for complex linear quaternionic operators [31] plays a fundamental role in solving

quaternionic differential equations [28].

Many physical problems that are governed by differential operators are much simpli-

fied by applying the quaternionic matrix formalism and solving the corresponding quater-

nionic right eigenvalue problem. For example, the solutions of linear differential equations

with quaternion constant coefficients

dm

dtm u(t)− qm−1
dm−1

dtm−1 u(t)− qm−2
dm−2

dtm−2 u(t)− · · · − q0 u(t) = 0,(1.7)

2



where qj ∈ H (0 ≤ j ≤ m − 1), can be presented in terms of right eigenvalues and

eigenvectors of the quaternionic matrix



qm−1 qm−2 . . . q0

1 0 . . . 0

. . . . . .

. . . . . .

0 . . . 1 0


.

This thesis mainly deals with localization results of eigenvalues of a quaternionic matrix,

bounds for eigenvalues of quaternionic matrix polynomials, bounds of zeros of quater-

nionic polynomials, and perturbation bounds for right eigenvalues of a quaternionic ma-

trix/quaternionic matrix pencil. We developed localization theorems for the left and right

eigenvalues of a quaternionic matrix which include the Gerschgorin, Ostrowski, and Brauer

type theorems for the left and right eigenvalues of a quaternionic matrix. We proposed

inclusion regions for right eigenvalues of special matrices, viz., central closed quaternionic

matrices, quaternionic Hermitian matrices, and quaternionic η-Hermitian matrices, where

η ∈ {i, j,k} and i, j,k are the standard quaternion imaginary units. A sufficient condition

for the stability of a continuous-time quaternionic system is given. Bounds/location of

zeros of quaternionic polynomials are proposed.

Thereafter inclusion regions for generalized right eigenvalues of a quaternionic matrix

pencil and their applications are presented.

Next, the definitions of left and right eigenvalues of quaternionic matrix polynomials

are proposed. We present bounds for the left and right eigenvalues of quaternionic matrix

polynomials via localization theorems for left and right eigenvalues of a quaternionic

matrix/quaternionic block matrix. Further, a sufficient condition for the stability of a

discrete-time quaternionic system is given. Bounds for the absolute values of the left and

right eigenvalues of quaternionic matrix polynomials are derived and illustrated for the

quaternionic matrix p-norm, where p = 1, 2,∞, and F (Frobenius). The above results

generalize bounds for the absolute values of eigenvalues of complex matrix polynomials

which give sharper bounds to the existing bounds for the case of 1, 2, and ∞ matrix

norms.

3



Finally, the concept of perturbation bounds for right eigenvalues/generalized right

eigenvalues of a quaternionic matrix/quaternionic matrix pencil is developed. In par-

ticular, Bauer-Fike type theorems for right eigenvalues/generalized right eigenvalues of

a diagonalizable quaternionic matrix/diagonalizable quaternionic matrix pencil are de-

rived. Moreover, a relative perturbation bound for right eigenvalues of an invertible

diagonalizable quaternionic matrix is discussed. A residual bound for right eigenvalues

of a quaternionic Hermitian matrix is also considered. Perturbation bounds for zeros of

quaternionic polynomials are presented.

This thesis is organized as follows. Chapter 2 derives location of the left and right

eigenvalues of quaternionic matrices and bounds of zeros of quaternionic polynomials.

Chapter 3 explores inclusion regions for zeros of quaternionic polynomials. Chapter 4

concerns localization theorems for generalized right eigenvalues of quaternionic matrix

pencils and their applications. Chapter 5 is devoted to bounds of eigenvalues of quater-

nionic matrix polynomials. Perturbation analysis for quaternionic matrices and quater-

nionic polynomials are presented in Chapter 6. Finally, in Chapter 7, we give conclusions

of this thesis and future prospect of our work.

1.2. Preliminaries

Throughout this thesis, R and C denote the fields of real and complex numbers, respec-

tively. We define the closed upper complex halfplane as

C+ := {α + βi : α, β ∈ R, β ≥ 0}.

Define

R+ := {α : α ∈ R, α > 0}.

The set of real quaternions is defined by

H := {q = a0 + a1i + a2j + a3k : a0, a1, a2, a3 ∈ R}

with i2 = j2 = k2 = ijk = −1. This relation implies

ij = −ji = k, jk = −kj = i, ki = −ik = j.

4



The conjugate and the modulus of q = a0 + a1i + a2j + a3k are defined as

q = qH := a0 − a1i− a2j− a3k and |q| :=
√
a2

0 + a2
1 + a2

2 + a2
3,

respectively.

=(a) denotes the imaginary part of a ∈ C. The real and imaginary parts of a quater-

nion q = a0 + a1i + a2j + a3k are defined as

Re(q) := a0 and Im(q) := a1i + a2j + a3k,

respectively.

The stability region of a continuous-time quaternionic system is defined as

SH− := {q ∈ H : Re(q) < 0} .(1.8)

Similarly, the stability region of a discrete-time quaternionic system is defined as

SH := {q ∈ H : |q| < 1} .(1.9)

Let p, q ∈ H. Then p and q are said to be similar, denoted by p ∼ q, if

p ∼ q ⇔ ∃ 0 6= r ∈ H such that p = r−1qr.(1.10)

The set

[p] := {u ∈ H : u = ρ−1 p ρ for all 0 6= ρ ∈ H}(1.11)

is called an equivalence class of p ∈ H.

It is known [61, Theorem 2.2] that

p ∼ q ⇔ Re(p) = Re(q) and |p| = |q|.(1.12)

From (1.10), (1.11) and (1.12), [p] can be written as

[p] := {x ∈ H : Re(x) = Re(p), |x| = |p|}.(1.13)

From (1.13), we have

p ∈ [p].

The collections of all n-column vectors with entries in R, C and H are denoted by Rn,

Cn and Hn, respectively.

5



For x ∈ Kn, where K ∈ {R,C,H}, the transpose of x is xT . If x = [x1, . . . , xn]T , the

conjugate of x is defined as x := [x1, . . . , xn]T and the conjugate transpose of x is defined

as xH := [x1, . . . , xn].

Some elementary properties of the algebra of quaternions are listed below.

Proposition 1.1. Let p, q, r ∈ H. Then

1. ppH = ppH ;

2. |p| = |pH |;
3. |.| is a norm on H, i.e., for all p, q ∈ H we have:

|p| ≥ 0 with equality if and only if p = 0;

|p+ q| ≤ |p|+ |q|;

|pq| = |qp| = |p||q|;

4. jcjH = kckH = c for every c ∈ C;

5. (pq)H = qHpH ;

6. p = pH if and only if p ∈ R;

7. αp = pα for every p ∈ H if and only if α ∈ R;

8. every p ∈ Hr {0} has an inverse p−1 = pH

|p|2 ∈ H; in more detail,

p×
(
pH

|p|2
)

=

(
pH

|p|2
)
× p = 1;

9. (pq)r = p(qr);

10. in general, (p+ q)2 6= p2 + 2pq + q2;

11. p2 = −1 has infinitely many solutions over H;

12. for every p ∈ H, p can be uniquely written as p = c1 + c2j, where c1, c2 ∈ C.

We now briefly consider vector norm to be used in the subsequent development.

Definition 1.2. A function ‖ · ‖ : Hn → R is said to be a quaternion norm on Hn (or a

quaternion vector norm) if ‖ · ‖ satisfies the following conditions:

• ‖y‖ = 0⇔ y = 0.

• ‖αy‖ = |α|‖y‖ for α ∈ H and y ∈ Hn.

• ‖y + z‖ ≤ ‖y‖+ ‖z‖ for y, z ∈ Hn.

6



For y, z ∈ Hn, define 〈y, z〉 := zHy as an inner product and ‖y‖2 :=
√
〈y, y〉, the norm

on Hn. For y ∈ Hn, the vector p-norm on Hn is defined as

‖y‖p :=

 (
∑n

j=1 |yj|p)1/p, for 1 ≤ p <∞,
max1≤j≤n |yj|, for p =∞.

1.2.1. Quaternionic matrices

The sets of m × n real, complex, and quaternionic matrices are denoted by Mm×n(R),

Mm×n(C), and Mm×n(H), respectively. These sets are simply denoted by Mn(K), K ∈
{R,C,H}, when m = n. In denotes the n×n identity matrix. For A = (aij) ∈Mm×n(K),

the conjugate, transpose and conjugate transpose of A are defined as A = (aij), A
T =

(aji) ∈ Mn×m(K), and AH = (A)T ∈ Mn×m(K), respectively. Let Aj ∈ Mn(K) (1 ≤ j ≤
k). Then, we denote the block diagonal matrix by diag (A1, A2, . . . , Ak), or by diag(Aj).

For µj ∈ H (1 ≤ j ≤ n), define

diag(µj) := diag(µ1, µ2, . . . , µn).

The Jordan block of size m associated with λ ∈ H is defined as

Jm(λ) :=



λ 1 0 . . . 0

0 λ 1 . . . 0
...

...
. . . . . . 0

...
... λ 1

0 0 . . . 0 λ


∈Mm(H), λ ∈ H.(1.14)

For A := (aij) ∈ Mn(K), the deleted absolute row and column sums of A are defined

as

ri(A) :=
n∑

j=1, j 6=i

|aij| and ci(A) :=
n∑

j=1, j 6=i

|aji| (1 ≤ i ≤ n),(1.15)

respectively. Similarly, the absolute row and column sums of A are defined by

r′i(A) := ri(A) + |aii| and c′i(A) := ci(A) + |aii| (1 ≤ i ≤ n),(1.16)

respectively. Let A,B ∈Mm×n(H). Then we have the following properties:

• αA = Aα, for all α ∈ R.

• (αA+ βB)H = AHαH +BHβH , for all α, β ∈ H.

• (Aα +Bβ)H = αHAH + βHBH , for all α, β ∈ H.
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• (AH)H = A.

Let A := (aij) ∈Mn(K) be partitioned into k × k real/complex/quaternionic blocks

(1.17) A := (Ars) :=


A11 A12 . . . A1k

A21 A22 . . . A2k

...
...

. . .
...

Ak1 Ak2 . . . Akk


n×n

,

where Ar,s ∈Mnr×ns(K) (1 ≤ r, s ≤ k) is the (r, s) block of A such that n1 + · · ·+nk = n.

Definition 1.3. A matrix A ∈Mn(H) is said to be invertible (nonsingular) if there exists

B ∈Mn(H) such that AB = BA = In, where In is the n× n identity matrix. If A is not

invertible, then A is said to be singular.

Definition 1.4. Let A ∈Mn(H). Then the matrix A is said to be nilpotent if Ak = 0 for

a least exponent k, where k is a positive integer and 0n is the n× n zero matrix.

Definition 1.5. A function ‖.‖ : Mm×n(H) → R is a quaternionic matrix norm on

Mm×n(H) if it satisfies the following conditions:

• definiteness, E 6= 0⇒ ‖E‖ ≥ 0;

• homogeneity, ‖αE‖ = |α|‖E‖;
• the triangle inequality, ‖E + F‖ ≤ ||E‖+ ‖F‖,

where E,F ∈Mm×n(H) are arbitrary matrices and α ∈ H.

For A ∈ Mn(K), the 1-norm, ∞-norm, 2-norm (operator norm) and the Frobenius

norm of A ∈Mn(K) are defined as

‖A‖1 := max
1≤j≤n

n∑
i=1

|aij| = ‖AH‖∞, ‖A‖∞ := max
1≤i≤n

n∑
j=1

|aij| = ‖AH‖1,

‖A‖2 := sup
x 6=0

{‖Ax‖2

‖x‖2

: x ∈ Kn
}

= ‖AH‖2, and ‖A‖F :=
[
trace

(
AHA

)]1/2
,

respectively.

Definition 1.6. Let A ∈Mn(H) be an invertible matrix. Then the condition number of

A with respect to the matrix 2-norm is defined as

K2(A) := ‖A‖2 ‖A−1‖2.
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Definition 1.7. Let A := (aij) ∈Mn(H). Then A is said to be

1. Hermitian if and only if AH = A;

2. normal if and only if AHA = AAH ;

3. unitary if and only if AHA = AAH = In;

4. upper triangular if and only if aij = 0 for all j < i;

5. lower triangular if and only if aij = 0 for all j > i;

6. η-Hermitian if and only if AηH = A, where AηH = −ηAHη and η ∈ {i, j,k};
7. η-anti-Hermitian if and only if AηH = −A, where AηH = −ηAHη and η ∈ {i, j,k};
8. positive semidefinite if A is Hermitian matrix and yHAy ≥ 0 for all nonzero vector

y ∈ Hn;

9. positive definite if A is Hermitian matrix and yHAy > 0 for all nonzero vector

y ∈ Hn.

Definition 1.8. Let A ∈ Mn(H). Then A is said to be a central closed matrix if there

exists an invertible matrix T such that

T−1AT = diag(λ1, λ2, . . . , λn),

where λi ∈ R (1 ≤ i ≤ n).

Some properties of matrices over the complex field do not hold over the skew field of

quaternions. In general, for A ∈ Mm×n(H) and B ∈ Mn×p(H), AB 6= AB. We have the

following facts for quaternionic matrices.

Proposition 1.9. [61] Let A ∈Mm×n(H) and let B ∈Mn×p(H). Then

1.
(
A
)T

= AT ;

2. (AB)H = BHAH ;

3. (AB)−1 = B−1A−1 if A and B are invertible;

4. (AH)−1 = (A−1)H if A is invertible;

5. in general, (AB)T 6= BTAT ;

6. in general, (A)−1 6= (A−1);

7. in general, (AT )−1 6= (A−1)T .
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1.2.2. Complex adjoint matrix

Definition 1.10. Let x ∈ Hn. Then x can be uniquely expressed as x = x1 + x2j, where

x1, x2 ∈ Cn. Define a function ψ : Hn → C2n by

ψx :=

 x1

−x2

 .
The vector ψx is called the complex adjoint vector of x. This function ψ is an injective

linear transformation from Hn to C2n.

Definition 1.11. Let A ∈ Mn(H). Then A can be uniquely expressed as A = A1 + A2j,

where A1, A2 ∈Mn(C). Define a function Ψ : Mn(H)→M2n(C) by

ΨA :=

 A1 A2

−A2 A1

 .(1.18)

The matrix ΨA is called the complex adjoint matrix of A. This function Ψ is an injective

H-homomorphism.

Theorem 1.12. [61] Let A,B ∈ Mn(H) and let Ψ be the function which is defined in

(1.18). Then

1. ΨIn = I2n;

2. ΨAB = ΨAΨB;

3. ΨαA = αΨA, where α ∈ R;

4. ΨA+B = ΨA + ΨB;

5. ΨAH = (ΨA)H ;

6. ΨA−1 = (ΨA)−1 if A−1 exists;

7. ΨA is unitary, invertible, diagonalizable, Hermitian or normal if and only if A is

unitary, invertible, diagonalizable, Hermitian or normal, respectively.

Lemma 1.13. [34] Let A ∈Mn(H). Then we have

‖A‖2 := max
‖x‖2 6=0

‖Ax‖2

‖x‖2

= max
‖y‖2 6=0

‖ΨAy‖2

‖y‖2

=: ‖ΨA‖2,

where ‖x‖2 =

(∑n
i=1 xixi

) 1
2

on Hn and ‖y‖2 =

(∑2n
i=1 yiyi

) 1
2

on C2n.
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1.2.3. The eigenvalue problem

We start this subsection with the definition of an eigenvalue of a complex matrix.

Definition 1.14. Let A ∈Mn(C) and let λ ∈ C. Then λ is said to be an eigenvalue of A

if Ax = λx for some nonzero x ∈ Cn. The set

Λ(A) := {λ ∈ C : Ax = λx for some nonzero x ∈ Cn}

is called the complex spectrum of A.

For example, let A =

i 2 + i

0 3i

. Then we have Λ(A) = {i, 3i}.

Unlike the complex case, there are two types of eigenvalues for quaternionic matrices,

namely left and right eigenvalues which are defined as follows.

Definition 1.15. Let A ∈ Mn(H) and let λ ∈ H. Then λ is said to be a left eigenvalue

of A if Ay = λy for some nonzero y ∈ Hn. The set

Λl(A) := {λ ∈ H : Ay = λy for some nonzero y ∈ Hn}

is called the left spectrum of A.

Similarly, λ is said to be a right eigenvalue of A if Ay = yλ for some nonzero y ∈ Hn.

The set

Λr(A) := {λ ∈ H : Ay = yλ for some nonzero y ∈ Hn}

is called the right spectrum of A.

Due to the commutativity of quaternions with real numbers, real right eigenvalues of

A ∈ Mn(H) are also left eigenvalues of A and vice versa. Thus, the quaternionic matrix

A may have at most n real right eigenvalues. Hence the quaternionic matrix A may have

at most n real left eigenvalues.

It is known that every quaternionic matrix A ∈ Mn(H) has exactly n complex right

eigenvalues which are contained in C+. These are called the standard right eigenvalues of

A.

Definition 1.16. Let A ∈ Mn(H) and let λ ∈ C. Then λ (=(λ) ≥ 0) is said to be a

standard right eigenvalue of A if Ay = yλ for some nonzero y ∈ Hn. The set

Λs(A) := {λ ∈ C : Ay = yλ for some nonzero y ∈ Hn, =(λ) ≥ 0}
11



is called the standard right spectrum of A.

Definition 1.17. Let A ∈ Mn(H). Then the left spectral radius and the right spectral

radius of A are given as

ρl(A) := max {|λ| : λ ∈ Λl(A)} , and ρr(A) := max {|λ| : λ ∈ Λr(A)} ,

respectively.

By applying the determinant of a complex matrix and the complex adjoint matrix of

a quaternionic matrix, we present the Cayley-Hamilton theorem for the quaternion case.

Theorem 1.18. [61] Let A ∈ Mn(H) and PA(λ) = det (λI2n −ΨA), called the char-

acteristic polynomial of A, where λ is a complex indeterminant. Then PA(A) = 0 and

PA(λ0) = 0 if and only if λ0 is a right eigenvalue.

Proposition 1.19. [62] Let A ∈Mn(H) and let λ ∈ H. Then λ is a left eigenvalue of A

if and only if

det
[
Ψ(A−λIn)

]
= 0.

We have the following relation between left and right eigenvalues of a square real

matrix.

Theorem 1.20. [61] Let A be a square real matrix. Then the left and right eigenvalues

of A are same, i.e., Λl(A) = Λr(A).

We can also compute the right eigenvalues of a quaternionic matrix with the help of

the standard right eigenvalues of that quaternionic matrix. Let λi (1 ≤ i ≤ n) be the

standard right eigenvalues of a matrix A ∈ Mn(H). Then, the set of right eigenvalues of

A is given as

Λr(A) := ∪ni=1[λi],

where [λi] are equivalence classes of λi (1 ≤ i ≤ n), respectively.

Proposition 1.21. [27] Let A ∈Mn(H). Then A has exactly 2n complex right eigenval-

ues.

Proposition 1.22. [61] Let A ∈Mn(H). Then A has exactly n complex right eigenvalues

which are contained in the closed upper complex halfplane C+. These right eigenvalues

are called the standard right eigenvalues of A.
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Definition 1.23. Let A ∈ Mn(H). Then A is said to be a diagonalizable matrix if there

exists an invertible quaternionic matrix P such that

P−1AP = diag(λ1, λ2, . . . , λn),

where λi ∈ Λs(A) (1 ≤ i ≤ n).

Definition 1.24. Let A ∈Mn(H). Then the continuous-time quaternionic system

d

dt
w(t) = Aw(t)

is stable if and only if Λr(A) ⊂ SH− (defined in (1.8)).

Definition 1.25. Let A ∈Mn(H). Then the discrete-time quaternionic system

w(t+ 1) = Aw(t)

is asymptotically stable if and only if Λr(A) ⊂ SH (defined in (1.9)).

Next, we present the Jordan canonical form, singular-value decomposition, and Schur

decomposition of a quaternionic matrix.

Proposition 1.26. [59] Let A ∈ Mn(H). Then there exists an invertible matrix Y ∈
Mn(H) such that

Y −1AY = diag(Jm1(λ1), Jm2(λ2), . . . , Jmk(λk)),(1.19)

where λi ∈ H, λi ∈ Λs(A) (1 ≤ i ≤ k) and Jmi(λi) are the mi × mi Jordan blocks with

right eigenvalues λi, respectively. Moreover, the right hand side of (1.19) is uniquely

determined by A up to permutation of diagonal blocks, and up to replacement of each λj

with any similar quaternion µj .

Theorem 1.27. [61] Let A ∈Mm×n(H) be of rank r. Then there are two unitary matrices

U ∈Mm(H) and V ∈Mn(H) such that

UHAV =

Σr 0

0 0

 ,
where Σr = diag(σ1, . . . , σr) and σi are the singular values of A.

Theorem 1.28. [9] Let A ∈Mn(H). Then there exist matrices T, V ∈Mn(H) such that:

1. V HAV = T, where V is an unitary matrix and T is an upper triangular matrix;
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2. every diagonal entry of T is contained in the closed upper complex halfplane C+.

Theorem 1.29. [9] Let A ∈ Mn(H) be normal. Then there exist an unitary matrix

V ∈Mn(H) and a diagonal matrix D ∈Mn(H) such that:

1. V HAV = D;

2. every diagonal entry of D is contained in the closed upper complex halfplane C+.

We also need the following result for the development of our theory.

Proposition 1.30. [46] Let A ∈Mm(H) and let B ∈Mn(H). Then the equation

AX = XB, X ∈Mm×n(H)

has only the trivial solution X = 0 if and only if Λr(A) ∩ Λr(B) = ∅.

Further, we present some basic known facts on A and ΨA for the development of our

theory.

Theorem 1.31. [61] Let A ∈Mn(H). Then the following statements are equivalent:

1. A is invertible;

2. Ax = 0 has a unique solution;

3. det(ΨA) 6= 0, i.e., ΨA is invertible;

4. A has no zero eigenvalue. More precisely, if Ax = λx or Ax = xλ for some λ ∈ H

and some vector 0 6= x ∈ Hn, then λ 6= 0;

5. A is the product of elementary quaternionic matrices.

We next derive the following theorem which gives a method for diagonalization of a

quaternionic matrix.

Theorem 1.32. [21] Let A ∈ Mn(H). Then A is diagonalizable if and only if ΨA is

diagonalizable. If ΨA is diagonalizable, then there exists an invertible matrix T ∈M2n(C)

such that

T−1ΨAT =

D 0

0 D

 = ΨD ⇔ ΨAT = TΨD,

where D = diag(λ1, λ2, . . . , λn) with λi ∈ Λs(A) (1 ≤ i ≤ n). Let

Y =
1

4

[
In −jIn

]
(T + S−1

n TSn)

 In
jIn

 ,
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where

Sn =

 0 −In
In 0

 .
Then Y −1AY = diag(λ1, λ2, . . . , λn), where Y is an invertible quaternionic matrix.

1.2.4. Quaternionic polynomials and their companion matrices

Due to the noncommutativity of quaternions, there are three types of quaternionic poly-

nomials since the coefficients of polynomial can be taken to be on the left, on the right

or on both sides of the indeterminant. However, throughout this thesis, we follow the

following quaternionic polynomials:

pl(z) := qmz
m + qm−1z

m−1 + · · ·+ q1z + q0,(1.20)

pr(z) := zmqm + zm−1qm−1 + · · ·+ zq1 + q0,(1.21)

where qj, z ∈ H, (0 ≤ j ≤ m). The polynomials (1.20) and (1.21) are called “simple”

and “monic” when qm = 1. These polynomials play an important role in quaternion linear

algebra since they are connected with linear difference and differential equations with

quaternion coefficients.

The set of zeros of a quaternionic polynomial p(z) is denoted by ZH(p(z)). The set

of complex zeros of a quaternionic polynomial p(z) is denoted by ZC(p(z)). For example,

let us consider the quaternionic polynomial

pl(z) := z6 + jz5 + iz4 − z2 − jz − i.

Then ZC(pl(z)) = {1,−1, i,−i} and

ZH(pl(z)) = {1,−1, [i], (0.5− 0.5i− 0.5j− 0.5k), (−0.5 + 0.5i− 0.5j− 0.5k)}.

The corresponding companion matrices of the simple monic polynomials pl(z) and

pr(z) are given by

Cpl :=


0 1 0
...

. . .

0 0 1

−q0 −q1 . . . −qm−1

 and Cpr := CT
pl
,

respectively.
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We now define the block forms of companion matrices Cpl and Cpr as follows.

Cpl :=


0 1 0
...

. . .

0 0 1

−q0 −q1 . . . −qm−1

 :=


1 m−1

m−1 0 I

1 Cpl(m, 1) Cpl(m, 2 : m)

 andCpr := CT
pl
,

respectively, where Cpl(m, 1) := −q0 and Cpl(m, 2 : m) := [−q1 . . .− qm−1].

For p, q ∈ H, define p× q := pq. For 0 6= p ∈ H and q ∈ H, define

1

p
× q := p−1 × q := p−1q, and q × 1

p
:= q × p−1 := qp−1.

Consider q0 6= 0, i.e., z = 0 is not a zero of the simple monic polynomials pl(z) and pr(z).

Define simple monic reversal polynomials of the polynomials pl(z) and pr(z) as follows.

ql(z) :=
1

q0

× pl
(

1

z

)
× zm = zm + q−1

0 q1z
m−1 + · · ·+ q−1

0 qm−1z + q−1
0 ,(1.22)

qr(z) := zm × pr
(

1

z

)
× 1

q0

= zm + zm−1q1q
−1
0 + · · ·+ zqm−1q

−1
0 + q−1

0 ,(1.23)

respectively. Similarly, the corresponding companion matrices of the simple monic reversal

polynomials ql(z) and qr(z) are denoted by Cql and Cqr , respectively. We observe that the

zeros of ql(z) and qr(z) are reciprocals of the zeros of pl(z) and pr(z), respectively.

Remark 1.33. If the simple quaternionic polynomial pl(z) is not monic, we can always

factorize. For example, if pl(z) := qmz
m + qm−1z

m−1 + · · · + q1z + q0 with qm 6= 0, then

pl(z) = qm p
′
l(z) and p′l(z) is a simple monic polynomial.

Remark 1.34. To compute bounds for the zeros of the quaternionic polynomial pr(z) =∑m
j=0 z

jqj, we define a quaternionic polynomial

Pl(z) :=
m∑
j=0

qjz
j.

If z0 is a zero of Pl(z), then

Pl(z0) =
m∑
j=0

qjzj =
m∑
j=0

zjqj = pr(z0) = 0.

Thus, z0 is a zero of pr(z) and, therefore, it is sufficient to treat only one type of polyno-

mial, preferably the polynomial pl(z).

Also, we need the following result for improvement of our theory.
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Proposition 1.35. [50] Let pl(z) be a simple monic polynomial over H of degree m.

Then the set of zeros of pl(z) belongs to at most m equivalence classes of quaternions.

Proposition 1.36. [50] Let λ ∈ H. Then λ is a zero of the simple monic polynomial

pl(z) if and only if λ is a left eigenvalue of its corresponding companion matrix Cpl.

In general, a right eigenvalue of Cpl is not necessarily a zero of the simple monic

polynomial pl(z). For example, consider a simple monic polynomial pl(z) = z2 + jz + 2.

Then its companion matrix is given by

Cpl =

 0 1

−2 −j

 .
Here i is a right eigenvalue of Cpl . However, i is not a zero of pl(z).

Analogous to Proposition 1.36, the following result is presented for pr(z).

Proposition 1.37. Let λ ∈ H. Then λ is a zero of the simple monic polynomial pr(z) if

and only if λ is a left eigenvalue of its corresponding companion matrix Cpr .

Proof. Let λ be a left eigenvalue of Cpr . Then there exists some nonzero x ∈ Hn such

that Cprx = λx. Let x := [x1, . . . , xm]T ∈ Hn. Then
0 . . . 0 −q0

1 0 −q1

. . .

0 1 −qm−1




x1

x2

...

xm

 = λ


x1

x2

...

xm

 .(1.24)

(1.24) gives the following system of linear equations

−q0xm = λx1,

x1 − q1xm = λx2,

x2 − q2xm = λx3,

...

xm−1 − qm−1xm = λxm.

By solving the above system of linear equations, we have(
λm + λm−1qm−1 + · · ·+ λq1 + q0

)
xm = 0.

17



Since x cannot be the zero quaternionic vector, xm 6= 0. Hence we conclude that

λm + λm−1qm−1 + · · ·+ λq1 + q0 = 0.

Thus, the left eigenvalue λ is a zero of pr(z). �

Lemma 1.38. [50] Let λ ∈ H be a left eigenvalue of Cpl. Then it is also a right eigenvalue

of Cpl.

Unlike the case of complex polynomials, quaternionic polynomials may have infinitely

many zeros. For example, let us consider the following polynomial pl(z) over H:

pl(z) = z6 + (i + 3k)z5 + (3 + j)z4 + (5i + 15k)z3 + (−4 + 5j)z2 + (6i + 18k)z + (6j− 12).

The set of zeros of pl(z) are given in [50] as follows.

ZH(pl(z)) = {−i− 2k, [i
√

3], [i
√

2],−0.6i− 0.8k}.

We observe that the following relation between ZH(pl(z)), Λl(Cpl) and Λr(Cpl).

• From Proposition 1.36, we have ZH(pl(z)) = Λl(Cpl). For instance, let

pl(z) := z4 + 2z3 − z2 + 2z + 1.

Then, the set of right eigenvalues of Cpl is given by

Λr(Cpl) := {−2.6180,−0.3820, [0.5000 + 0.8660i]}.

From Theorem 1.20, we have Λl(Cpl)) = Λr(Cpl). Thus, the set of zeros of pl(z) is

given by

ZH(pl(z)) = {−2.6180,−0.3820, [0.5000 + 0.8660i]}.

Hence, ZH(pl(z)) = Λl(Cpl).

• Let λ ∈ ZH(pl(z)). Then from Proposition 1.36, we have λ ∈ Λl(Cpl). From Lemma

1.38, we obtain λ ∈ Λr(Cpl). This implies that ZH(pl(z)) ⊆ Λr(Cpl). For example,

let us consider the quaternionic polynomial

pl(z) := z6 + jz5 + iz4 − z2 − jz − i.

Then, the set of right eigenvalues of Cpl is given by

Λr(Cpl) := {1,−1, [i], [0.5 + 0.5i], [−0.5− 0.5i]} .
18



The set of zeros of pl(z) is given in [19] as follows.

ZH(pl(z)) = {1,−1, [i], (0.5− 0.5i− 0.5j− 0.5k), (−0.5 + 0.5i− 0.5j− 0.5k)}.

Since 0.5− 0.5i− 0.5j− 0.5k is similar to 0.5 + 0.5i and −0.5 + 0.5i− 0.5j− 0.5k

is similar to −0.5− 0.5i, we have

ZH(pl(z)) ⊆ Λr(Cpl).

• It is never true that ZH(pl(z)) ⊃ Λr(Cpl). From Proposition 1.35, it is known that

all the zeros of pl(z) belong to at most m equivalence classes of standard right

eigenvalues of Cpl .

1.2.5. The generalized eigenvalue problem

Let L′1(Mn(H)) be the space of matrix pencils over a quaternion division algebra. L′1 ∈
L′1(Mn(H)) is defined as

L′1(λ) := A+ λB,(1.25)

where λ ∈ H and A,B ∈ Mn(H). Throughout this thesis we consider the following three

cases:

Case 1: when λ ∈ R and A,B ∈Mn(H),

Case 2: when λ ∈ H and A,B ∈Mn(H),

Case 3: when λ ∈ C and A,B ∈Mn(C).

Case 1. Let L1(Mn(H)) be the space of matrix pencils over a quaternion division algebra.

L1 ∈ L1(Mn(H)) is defined as

L1(λ) := A+ λB,(1.26)

where A,B ∈ Mn(H) and λ commutes with the quaternionic matrices. This matrix

pencil over a quaternion division algebra can be found in [33, 46, 47]. Now we turn to

define generalized right eigenvalue of L1 ∈ L1(Mn(H)) of the form (1.26) as follows.

Definition 1.39. Let L1 ∈ L1(Mn(H)) be as in (1.26) and let µ ∈ H. Then µ is called a

generalized right eigenvalue of L1 if

Ax = Bxµ
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for some nonzero x ∈ Hn. Here x is called the right eigenvector corresponding to the

generalized right eigenvalue µ. The set of generalized right eigenvalues of L1 is called

right spectrum of L1, denoted by Λr (L1) .

Definition 1.40. Let L1 ∈ L1(Mn(H)) be as in (1.26). Then the matrix pencil L1 is

called regular if there exists α ∈ R such that A+ α B is an invertible matrix.

Let P1(M2n(C)) be the space of complex matrix pencils. P1 ∈ P1(M2n(C)) is defines as

P1(µ) := ΨA + µΨB,(1.27)

where A,B ∈Mn(H) and µ ∈ C.

Then, we have the following relation between quaternionic matrix pencils and complex

matrix pencils.

Lemma 1.41. [33] Let L1 ∈ L1(Mn(H)) be of the form L1(λ) := A + λB, where λ

commutes with the quaternionic matrices. Let P1 ∈ P1(M2n(C)) be of the form P1(µ) :=

ΨA + µΨB, where µ ∈ C. Then

1. the quaternionic matrix pencil L1 is regular if and only if the complex matrix pencil

P1 is regular;

2. the quaternionic matrix pencil L1 is regular if and only if a quaternionic matrix

pencil L2 is regular, where L2(λ) := B + λA.

We now give a relation between the set of generalized right eigenvalues of a quater-

nionic matrix pencil and the set of eigenvalues of the complex adjoint matrix of that

quaternionic matrix pencil as follows.

Proposition 1.42. [33] Let L ∈ L1(Mn(H)) be of the form L(λ) := A + λB, where λ

commutes with A and B. Let P ∈ P1(M2n(C)) be of the form P (µ) := ΨA + µΨB, where

µ ∈ C. Then

(1.28)

{
Λr(L) ∩ C = Λ(P ),

Λr(L) = {ρ−1λρ : λ ∈ Λ(P ), 0 6= ρ ∈ H}.

Assume that B = I in Proposition 1.42, we have the following corollary which also

can be found from [33].
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Corollary 1.43. Let A ∈Mn(H). Then

Λr(A) ∩ C = Λ(ΨA),

Λr(A) = {ρ−1λρ : λ ∈ Λ(ΨA), 0 6= ρ ∈ H}.

Case 2. We define generalized left eigenvalue of L′1 ∈ L′1(Mn(H)) of the form (1.25) as

follows.

Definition 1.44. Let L′1 ∈ L′1(Mn(H)) be of the form (1.25) and let µ ∈ H. Then µ is

called a generalized left eigenvalue of L′1 if

Ax = µBx

for some nonzero x ∈ Hn. Here x is called the left eigenvector corresponding to the gener-

alized left eigenvalue µ. The set of generalized left eigenvalues of L′1 is called generalized

left spectrum of L′1, denoted by Λl (L
′
1) .

1.2.6. The polynomial eigenvalue problem

Let Pm(Mn(C)) be the space of complex matrix polynomials. P ∈ Pm(Mn(C)) is defined

by

P(λ) :=
m∑
i=0

λiAi,

where Ai ∈ Mn(C) (0 ≤ i ≤ m) and λ ∈ C. Then the eigenvalue problem P(λ)x = 0 is

referred as a complex polynomial eigenvalue problem. The polynomial P ∈ Pm(Mn(C)) is

said to be regular if det(P(λ)) 6= 0 for some λ ∈ C. The spectrum of a regular polynomial

P is denoted by Λ(P) and is defined by

Λ(P) := {λ ∈ C : det(P(λ)) = 0}.

Let Pm(M2n(C)) be the space of complex matrix polynomials. P ∈ Pm(M2n(C)) is

defined as

P (µ) :=
m∑
i=0

ΨAiµ
i,(1.29)

where Ai ∈Mn(H) (0 ≤ i ≤ m) and µ ∈ C.
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Let L′m(Mn(H)) be the space of matrix polynomials over a quaternion division algebra.

L′ ∈ L′m(Mn(H)) is defined as

L′(ξ) :=
m∑
i=0

ξi Ai,(1.30)

where ξ ∈ H and Ai ∈ Mn(H) (0 ≤ i ≤ m). Throughout this thesis we consider the

following three cases:

Case 1: when ξ ∈ R and Ai ∈Mn(H) (0 ≤ i ≤ m),

Case 2: when ξ ∈ H and Ai ∈Mn(H) (0 ≤ i ≤ m),

Case 3: when ξ ∈ C and Ai ∈Mn(C) (0 ≤ i ≤ m).

Case 1. Let Lm(Mn(H)) be the space of matrix polynomials over a quaternion division

algebra. L ∈ Lm(Mn(H)) is defined as

L(λ) :=
m∑
i=0

Aiλ
i,(1.31)

where Ai ∈ Mn(H) (0 ≤ i ≤ m) and λ commutes with the quaternionic coefficients of

the matrix polynomial. This polynomial over a quaternion division algebra can be found

in [46–48].

We now turn to define right eigenvalue of L ∈ Lm(Mn(H)) of the form (1.31) as

follows.

Definition 1.45. Let L ∈ Lm(Mn(H)) be as in (1.31) and let µ ∈ H. Then µ is called a

right eigenvalue of L if

A0x+ A1xµ+ A2xµ
2 + · · ·+ Amxµ

m = 0

for some nonzero x ∈ Hn. Here x is called the right eigenvector corresponding to the right

eigenvalue µ. The set of right eigenvalues of L is called right spectrum of L, denoted by

Λr (L) .

Case 2. Left eigenvalue of L′ ∈ L′m(Mn(H)) of the form (1.30) is defined as follows.

Definition 1.46. Let L′ ∈ L′m(Mn(H)) be of the form (1.30) and let µ ∈ H. Then µ is

called a left eigenvalue of L′ if

A0x+ µA1x+ µ2A2x+ · · ·+ µmAmx = 0
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for some nonzero x ∈ Hn. Here x is called the left eigenvector corresponding to the left

eigenvalue µ. The set of left eigenvalues of L′ is called left spectrum of L′, denoted by

Λl (L
′) .

We write the linearization of the matrix polynomial L ∈ Lm(Mn(H)) as follows.

• For the right eigenvalues: The polynomial L ∈ Lm(Mn(H)) of the form (1.31)

can be written in the form:

CL + λX,

where CL, X ∈Mmn(H) are of the forms

CL :=



0 In 0 . . . 0

0 0 In 0
...

...
. . .

...

0 0 0 . . . In

−A0 −A1 −A2 . . . −Am−1


, X :=



In 0 0 . . . 0

0 In 0 . . . 0

0 0 In 0
...

...
. . .

...

0 0 0 . . . Am


and λ commutes with quaternionic coefficients of matrix polynomial. When Am =

In, the identity matrix, the matrix polynomial (1.31) is said to be monic matrix

polynomial and its linearization is given by

CL + λE, where E := Inm.

We next find the corresponding linearization of the matrix polynomial L′ ∈ L′m(Mn(H))

as follows.

• For the left eigenvalues: The polynomial L′ ∈ L′m(Mn(H)) of the form (1.30)

can be written in the linearization form:

CL′ + ξ X,

where ξ ∈ H, CL′ , X ∈Mmn(H) are of the forms

CL′ :=



0 0 0 . . . −A0

In 0 0 . . . −A1

. . .
... . . .

...

0 0 In −Am−2

0 0 . . . In −Am−1


, X :=



In 0 0 . . . 0

0 In 0 . . . 0

0 0 In 0
...

...
. . .

...

0 0 0 . . . Am


.
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When Am = In, the identity matrix, then the polynomial L′ ∈ L′m(Mn(H)) of the

form (1.30) is said to be monic matrix polynomial and its linearization is given by

CL′ + ξ E, where E := Inm.

24



CHAPTER 2

LOCALIZATION THEOREMS OF MATRICES OVER A

QUATERNION DIVISION ALGEBRA

In this chapter, Gerschgorin, Ostrowski, and Brauer type theorems are derived for the left

and right eigenvalues of a quaternionic matrix. Generalizations of Gerschgorin type theo-

rems are discussed for the left and right eigenvalues of a quaternionic matrix. Thereafter

a sufficient condition for the stability of a continuous-time quaternionic system is given

that generalizes the stability condition for a continuous-time complex system. Finally, a

characterization of bounds for the zeros of quaternionic polynomials is presented.

2.1. Introduction

This chapter attempts to study localization theorems for matrices over a quaternion di-

vision algebra, which include the Ostrowski, Brauer, and Gerschgorin type theorems.

Bounds for the zeros of quaternionic polynomials pl(z) and pr(z) (defined in (1.20) and

(1.21)) are also considered.

In Section 2.2, we provide a general framework for localization theorems for quater-

nionic matrices. Let Mn(H) be the space of all n × n quaternionic matrices. Then, for

any A := (aij) ∈Mn(H), we prove a Ostrowski type theorem which states that all the left

eigenvalues of A are located in the union of n balls

Ti(A) := {z ∈ H : |z − aii| ≤ ri(A)γci(A)1−γ},

where ri(A) and ci(A) are defined in (1.15) and ∀ γ ∈ [0, 1]. We deduce a sufficient con-

dition for invertibility of a quaternionic matrix. We proved that Ostrowski type theorem

is also valid for right eigenvalues when all the diagonal entries of the quaternionic matrix

A are real. We find that the Brauer type theorem, proved in [22] for the left eigenvalues

in the case of deleted absolute column sums of a quaternionic matrix, is incorrect. We

prove a corrected version of the Brauer type theorem. In addition, we derive some better

results than [22, Theorems 6, 7] and [63, Theorem 4.3]. In the case of the generalized



Hölder inequality over the skew field of quaternions, we show that all the left eigenvalues

of A = (aij) ∈Mn(H) are contained in the union of n generalized balls

Bi(A) := {z ∈ H : |z − aii| ≤ (n− 1)
1−γ
q ri(A)γ(n

(p)
i (A))1−γ},

where γ ∈ [0, 1], n
(p)
i (A) :=

(∑n
j=1, j 6=i |aij|p

) 1
p
, for any p, q ∈ (1, ∞) with 1

p
+ 1

q
= 1.

Further, we prove that all the right eigenvalues of the quaternionic matrix A with all real

diagonal entries are contained in the union of n generalized balls Bi(A).

In Section 2.3, we provide bounds for the zeros of quaternionic polynomials pl(z) and

pr(z) by using the aforementioned localization theorems. Some recent developments on

the location and computation of zeros of quaternionic polynomials pl(z) and pr(z) can be

found in [12, 19, 20, 30, 41, 42, 45, 50]. As a consequence of the localization theorems for

quaternionic matrices, we provide sharper bounds compared to the bound introduced by

G. Opfer in [42] for the zeros of quaternionic polynomials pl(z) and pr(z). Finally, we

provide sharper bounds for the zeros of quaternionic polynomials pl(z) and pr(z) in terms

of powers of the companion matrices associated with the quaternionic polynomials pl(z)

and pr(z). We show that the proposed bounds are better than that in [42].

2.2. Distribution for the left and right eigenvalues of quaternionic

matrices

It is known from [47, Corollary 3.2] that a quaternionic matrix A and its conjugate

transpose AH have the same right eigenvalues. However, A and AH may not have the

same left eigenvalues. For example, the matrices

A =

i 0

0 j

 and AH =

−i 0

0 −j


do not have the same left eigenvalues. We now present the following lemma for left

eigenvalues of A and AH .

Lemma 2.1. Let A ∈Mn(H) and let λ ∈ H. Then λ is a left eigenvalue of A if and only

if λ is a left eigenvalue of AH .
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Proof. Let λ be a left eigenvalue of A. Then there exists x( 6= 0) ∈ Hn such that (A −
λIn)x = 0. This can be written as Ψ(A−λIn)ψx = 0. Hence it follows that λ is a left eigen-

value of A if and only if det
[
Ψ(A−λIn)

]
= 0 ⇔ det

[
ΨH

(A−λIn)

]
= 0 ⇔ det

[
Ψ(A−λIn)H

]
=

0⇔ det
[
Ψ(AH−λIn)

]
= 0. Thus, λ is a left eigenvalue of AH . �

The Gerschgorin type theorem is proved in [62] for the left eigenvalues in the case of

deleted absolute row sums of a matrix A ∈ Mn(H). However, Gerschgorin type theorem

for the left eigenvalues has not established for the deleted absolute column sums of A. We

state the following Gerschgorin type theorem for the deleted absolute column sums of A.

Theorem 2.2. Let A := (aij) ∈Mn(H). Then all the left eigenvalues of A are located in

the union of n Gerschgorin balls Ωi(A) := {z ∈ H : |z − aii| ≤ ci(A)} (1 ≤ i ≤ n), i.e.,

Λl(A) ⊆ Ω(A) := ∪ni=1Ωi(A).

Proof. Let λ be a left eigenvalue of A. Then from Lemma 2.1, λ is a left eigenvalue of AH .

Then there exists some nonzero x ∈ Hn such that AHx = λx. Let x := [x1, . . . , xn]T ∈ Hn

and let xt be an element of x such that |xt| ≥ |xi| ∀ i (1 ≤ i ≤ n). Then, |xt| > 0. From

the t-th equation of AHx = λx, we have

n∑
j=1

ajtxj = λxt.

This shows

|λ− att| ≤
n∑

j=1, j 6=t

|ajt| := ct(A). �

We now have the following localization theorem for the deleted absolute row and

column sums of a matrix A ∈Mn(H) which is known as Ostrowski type theorem.

Theorem 2.3. (Ostrowski type theorem for the left eigenvalues) Let A := (aij) ∈Mn(H)

and let γ ∈ [0, 1]. Then all the left eigenvalues of A are located in the union of n balls

Ti(A) := {z ∈ H : |z − aii| ≤ ri(A)γci(A)1−γ} (1 ≤ i ≤ n), i.e.,

Λl(A) ⊆ T (A) := ∪ni=1Ti(A).

Proof. Let λ be a left eigenvalue of A. Then by [62, Theorem 6], for γ ∈ [0, 1], we have

(2.1) |λ− aii|γ ≤ ri(A)γ (1 ≤ i ≤ n).
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Similarly, from Theorem 2.2, we obtain

(2.2) |λ− aii|1−γ ≤ ci(A)1−γ (1 ≤ i ≤ n).

Combining (2.1) and (2.2), we get

|λ− aii| ≤ ri(A)γci(A)1−γ (1 ≤ i ≤ n).

Thus, all the left eigenvalues of A are located in the union of n balls Ti(A). �

Next, we derive Ostrowski type theorem for right eigenvalues of A ∈ Mn(H) with all

real diagonal entries.

Theorem 2.4. Let A := (aij) ∈Mn(H) with aii ∈ R and let γ ∈ [0, 1]. Then all the right

eigenvalues of A are located in the union of n balls

Gi(A) :=
{
z ∈ H : |z − aii| ≤ ri(A)γci(A)1−γ} (1 ≤ i ≤ n), i.e.,

Λr(A) ⊆ G(A) := ∪ni=1Gi(A).

Proof. Let λ be a right eigenvalue of A. Then there exists some nonzero x ∈ Hn such

that Ax = xλ. Let x := [x1, . . . , xn]T ∈ Hn and let xt be an element of x such that

|xt| ≥ |xi| ∀ i (1 ≤ i ≤ n). From the t-th equation of Ax = xλ, we have

attxt +
n∑

j=1, j 6=t

atjxj = xtλ.(2.3)

Since att ∈ R, attxt = xtatt. Proceeding as in the proof of Theorem 2.2, we obtain

|λ− att| ≤
n∑

j=1, j 6=t

|ajt| =: rt(A).(2.4)

From [47, Corollary 2.7], λ is also a right eigenvalue of AH . Then

|λ− att| ≤
n∑

j=1, j 6=t

|atj| =: ct(A).(2.5)

Let γ ∈ [0, 1]. Then from (2.4) and (2.5), we obtain

|λ− att|γ ≤ rγt (A),(2.6)

|λ− att|1−γ ≤ c1−γ
t (A).(2.7)

Combining (2.6) and (2.7), we get

|λ− att| ≤ r(A)γt c(A)1−γ
t . �
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Corollary 2.5. For any A := (aij) ∈Mn(H), n ≥ 2 and for any γ ∈ [0, 1]. Assume that

(2.8) |aii| > ri(A)γ ri(A)1−γ ∀ i (1 ≤ i ≤ n).

Then A is invertible.

Proof. On the contrary, suppose A is not invertible. Then by Theorem 1.31, there is a

left eigenvalue λ = 0 of A. Now from Theorem 2.3, we obtain |aii| ≤ ri(A)γci(A)1−γ. This

contradicts our assumption (2.8). Hence A is invertible. �

It is known that a matrix A ∈Mn(H) may have at most 2n complex right eigenvalues.

From Theorem 2.4, all the complex right eigenvalues of a matrix A = (aij) ∈Mn(H) with

all real diagonal entries lie in the union of n-discs

Ei(A) := {z ∈ C : |z − aii| ≤ ri(A)γci(A)1−γ} (1 ≤ i ≤ n), i.e.,

Λc(A) ⊆ E(A) := ∪ni=1Ei(A),(2.9)

where Λc(A) := {λ ∈ C : Ax = xλ, 0 6= x ∈ Hn}.
The Brauer type theorem is proved in [22] for the left eigenvalues in the case of deleted

absolute column sums of a matrix A ∈Mn(H), i.e., if λ ∈ Λl(A), then its conjugate λ lies

in the union of n(n−1)
2

ovals of Cassini. However, this is incorrect as the following example

suggest:

Example 2.6. Let A =

i k

0 j

 . Then by [22, Theorem 5], oval of Cassini is given by

{z ∈ H : |z − i| |z − j| ≤ 0} . Here, i is a left eigenvalue of A and its conjugate −i is not

contained in the above oval of Cassini.

According to [22, Theorem 5], if λ ∈ Λl(A), then λ ∈ ∪ni,j=1,
i 6=j

Fij(A), where

Fij(A) := {z ∈ H : |z − aii| |z − ajj| ≤ ci(A)cj(A)} (1 ≤ i, j ≤ n; i 6= j).

However, this result is not necessarily true as

|λ− aii| |λ− ajj| > ci(A)cj(A) ∀ i, j (1 ≤ i, j ≤ n; i 6= j)

which follows from Example 2.6. Now, we derive a corrected version of [22, Theorem 5]

as follows.
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Theorem 2.7. Let A := (aij) ∈Mn(H). Then all the left eigenvalues of A are located in

the union of n(n−1)
2

ovals of Cassini

Fij(A) := {z ∈ H : |z − aii| |z − ajj| ≤ ci(A)cj(A)} (1 ≤ i, j ≤ n; i 6= j), i.e.,

Λl(A) ⊆ F (A) := ∪ni,j=1,
i 6=j

Fij(A).

Proof. Let λ be a left eigenvalue of A. Then by Lemma 2.1, λ is a left eigenvalue of AH , so

that there exists some nonzero x ∈ Hn such that AHx = λx. Let x := [x1, . . . , xn]T ∈ Hn

and let xs be an element of x such that |xs| ≥ |xi| ∀ i (1 ≤ i ≤ n). Then, |xs| > 0. Clearly,

if all the other elements of x are zero, then the required result holds.

Let xs and xt be two nonzero elements of x such that |xs| ≥ |xt| ≥ |xi| ∀ i (1 ≤ i ≤
n, i 6= s). From the s-th equation of AHx = λx, we have

n∑
j=1

ajsxj = λxs,

which implies

(λ− ass)xs =
n∑

j=1, j 6=s

ajsxj.

Thus

(2.10) |λ− ass| ≤
( |xt|
|xs|

)
cs(A).

Similarly, from AHx = λx, we obtain

(2.11) |λ− att| ≤
( |xs|
|xt|

)
ct(A).

Combining (2.10) and (2.11), we have

|λ− ass| |λ− att| ≤ cs(A)ct(A).

Hence, all the left eigenvalues of A are located in the union of n(n−1)
2

ovals of Cassini

Fij(A) (1 ≤ i, j ≤ n, i 6= j). �

Theorem 7 of [22] was stated for a central closed quaternionic matrix. Now we gen-

eralize this result for all quaternionic matrices as follows.

Theorem 2.8. Let A := (aij) ∈ Mn(H) and let γ ∈ [0, 1]. Then all the left eigenvalues

of A are located in the union of
n(n− 1)

2
ovals of Cassini

Kij(A) :=
{
z ∈ H : |z − aii| |z − ajj| ≤ ri(A)γ rj(A)γ ci(A)1−γ cj(A)1−γ}
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(1 ≤ i, j ≤ n; i 6= j), i.e.,

Λl(A) ⊆ K(A) := ∪ni,j=1
i 6=j

Kij(A).

Proof. Let λ be a left eigenvalue of A. Then by [22, Theorem 4] and Theorem 2.7, for

γ ∈ [0, 1], we have

(2.12) |λ− aii|γ|λ− ajj|γ ≤ ri(A)γrj(A)γ (1 ≤ i, j ≤ n; i 6= j),

and

(2.13) |λ− aii|1−γ|λ− ajj|1−γ ≤ ci(A)1−γcj(A)1−γ (1 ≤ i, j ≤ n; i 6= j).

Combining (2.12) and (2.13), we have

|λ− aii||λ− ajj| ≤ ri(A)γrj(A)γci(A)1−γcj(A)1−γ (1 ≤ i, j ≤ n; i 6= j). �

Corollary 2.9. For any A := (aij) ∈Mn(H), n ≥ 2 and for any γ ∈ [0, 1]. Assume that

|aii||ajj| > ri(A)γrj(A)γ ci(A)1−γcj(A)1−γ ∀ i, j (1 ≤ i, j ≤ n, i 6= j).

Then A is invertible.

Corollary 2.10. Let A := (aij) ∈ Mn(H). Then all the left eigenvalues of A are located

in the union of n(n−1)
2

ovals of Cassini

Λl(A) ⊆ Φ(A) := ∪ni,j=1
i 6=j
{z ∈ H : |z − aii| |z − ajj| ≤ min{ri(A)rj(A), ci(A)cj(A)}} .

Proof. Substituting γ = 0, 1 in Theorem 2.8, we obtain the following:

(a) Λl(A) ⊆ E(A) := ∪ni,j=1
i 6=j
{z ∈ H : |z − aii| |z − ajj| ≤ ci(A)cj(A)} .

(b) Λl(A) ⊆ F (A) := ∪ni,j=1
i 6=j
{z ∈ H : |z − aii| |z − ajj| ≤ ri(A)rj(A)} .

Combining (a) and (b), we get the required result. �

The following result provides better estimation compare to Theorem 2.4.

Theorem 2.11. Let A := (aij) ∈ Mn(H) with aii ∈ R and let γ ∈ [0, 1]. Then all the

right eigenvalues of A are located in the union of
n(n− 1)

2
ovals of Cassini Gij(A) :=

{z ∈ H : |z − aii| |z − ajj| ≤ ri(A)γ rj(A)γ ci(A)1−γ cj(A)1−γ} (1 ≤ i, j ≤ n, i 6= j), i.e.,

Λr(A) ⊆ G(A) := ∪ni,j=1
i 6=j
Gij(A).
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Proof. Proof follows from the proof method of Theorem 2.8 and by applying [63, Theorem

4.1, Corollary 4.1]. �

From Theorem 2.11, all the complex right eigenvalues of a matrix A := (aij) ∈Mn(H)

with aii ∈ R ∀ i (1 ≤ i ≤ n) are contained in the union of n(n−1)
n

ovals of Cassini Fij(A) :=

{z ∈ C : |z − aii| |z − ajj| ≤ ri(A)γrj(A)γ ci(A)1−γcj(A)1−γ} (1 ≤ i, j ≤ n, i 6= j), i.e.,

Λc(A) ⊆ F(A) := ∪ni,j=1
i 6=j
Fij(A),(2.14)

The following theorem shows that Theorem 2.8 is sharper than Theorem 2.3.

Theorem 2.12. Let A := (aij) ∈Mn(H) with n ≥ 2 and let γ ∈ [0, 1]. Then

K(A) ⊆ T (A),

where G(A) and G(A) are defined in Theorem 2.3 and Theorem 2.8, respectively.

Proof. Let z ∈ Kij(A) and fix any i and j, (1 ≤ i, j ≤ n, i 6= j). Then from Theorem 2.8,

we have

(2.15) |z − aii| |z − ajj| ≤ ri(A)γrj(A)γci(A)1− γcj(A)1− γ.

Now the following two cases are possible.

Case 1: If ri(A)γ rj(A)γci(A)1− γcj(A)1− γ = 0, then z = aii or z = ajj. However,

from Theorem 2.3, we have aii ∈ Ti(A) and ajj ∈ Tj(A). Thus z ∈ Ti(A) ∪ Tj(A).

Case 2: If ri(A)γrj(A)γci(A)1− γcj(A)1− γ > 0, then by (2.15)

(2.16)

(
|z − aii|

ri(A)γci(A)1− γ

)(
|z − ajj|

rj(A)γcj(A)1− γ

)
≤ 1.

As the left side of (2.16) cannot exceed unity, then one of the factors of the left side can

be at most unity, i.e., z ∈ Ti(A) or z ∈ Tj(A). Hence z ∈ Ti(A) ∪ Tj(A). Thus

Kij ⊆ Ti(A) ∪ Tj(A).(2.17)

From Theorem 2.3 and Theorem 2.8, we obtain

K(A) := ∪ni,j=1
i 6=j

Kij(A) ⊆ ∪ni,j=1
i 6=j
{Ti(A) ∪ Tj(A)} = ∪nk=1Tk(A) =: T (A). �

Similarly, we have the following relation between Theorem 2.11 and Theorem 2.4.
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Theorem 2.13. Let A := (aij) ∈Mn(H), n ≥ 2 with aii ∈ R and let γ ∈ [0, 1]. Then

G(A) ⊆ G(A),

where G(A) and G(A) are defined in Theorem 2.4 and Theorem 2.11, respectively.

Proof. The proof is immediate from the proof method of Theorem 2.12 and by applying

Theorems 2.4 and 2.11. �

The following example verifies Theorem 2.13 for complex right eigenvalues of a matrix

A := (aij) ∈Mn(H) with aii ∈ R ∀ i (1 ≤ i ≤ n).

Example 2.14. Let A =


3 1 + i + j− k 2 + 3j−

√
3k

5 +
√

2j + 3k −2 3j + 4k

4 + 3j 2− i− 2k −5

 . Substituting

γ = 1/4 in (2.9), we get the following three discs:

E1(A) := {z ∈ C : |z − 3| ≤ 9.4533},

E2(A) := {z ∈ C : |z + 2| ≤ 6.0894},

E3(A) := {z ∈ C : |z + 5| ≤ 8.7389}.

Similarly, let γ = 1/4 in (2.14), we get the following three ovals of Cassini:

F12(A) := {z ∈ C : |z − 3| |z + 2| ≤ 57.5649},

F23(A) := {z ∈ C : |z + 2| |z + 5| ≤ 53.2145},

F31(A) := {z ∈ C : |z + 5| |z − 3| ≤ 82.6108}.

In this example, there are six complex right eigenvalues λj (1 ≤ j ≤ 6) which are shown

in FIGURE 2.1. The set F(A) := F12(A) ∪ F23(A) ∪ F31(A) is represented by shaded

region in FIGURE 2.1. From FIGURE 2.1, it is clear that F(A) ⊂ E(A), where E(A) :=

E1(A) ∪ E2(A) ∪ E3(A).

For A := (aij) ∈Mn(H), define

n
(p)
i (A) :=

(
n∑

j=1, j 6=i

|aij|p
) 1

p

(1 ≤ i ≤ n); p ∈ (1,∞).

We are now ready to derive the following localization theorem for left eigenvalues of

a quaternionic matrix.
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Figure 2.1. Location of complex right eigenvalues of A (Example 2.14) as +.

Theorem 2.15. Let A := (aij) ∈ Mn(H) and let γ ∈ [0, 1]. Then all the left eigenvalues

of A are contained in the union of n generalized balls

Bi(A) :=
{
z ∈ H : |z − aii| ≤ (n− 1)

1−γ
q ri(A)γ(n

(p)
i (A))1−γ

}
(1 ≤ i ≤ n), i.e.,

Λl(A) ⊆ B(A) := ∪ni=1Bi(A),

for any p, q ∈ (1,∞) with 1
p

+ 1
q

= 1.

Proof. Let µ be a left eigenvalue of A. Then there exists some nonzero x ∈ Hn such

that Ax = µx. Let x := [x1, . . . , xn]T ∈ Hn and let xt be an element of x such that

|xt| ≥ |xi| ∀ i (1 ≤ i ≤ n). Then from Ax = µx, we have

attxt +
n∑

j=1, j 6=t

atjxj = µxt,

this implies

(2.18) |µ− att||xt| =
∣∣∣∣∣

n∑
j=1, j 6=t

atjxj

∣∣∣∣∣ ≤
n∑

j=1, j 6=t

|atj| |xj|.

Applying the generalized Hölder inequality to (2.18), we have

|µ− att||xt| ≤
(

n∑
j=1, j 6=t

|atj|p
) 1

p
(

n∑
j=1, j 6=t

|xj|q
) 1

q

.
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Since |xt| ≥ |xi| ∀ i (1 ≤ i ≤ n), we have

|µ− att||xt| ≤ n
(p)
t (A) ((n− 1)|xt|q)

1
q , i.e.,

(2.19) |µ− att| ≤ n
(p)
t (A) (n− 1)

1
q .

Similarly, using |xt| ≥ |xi| ∀ i (1 ≤ i ≤ n) in (2.18), we get

(2.20) |µ− att| ≤
n∑

j=1, j 6=t

|atj| = rt(A).

Combining (2.19) and (2.20) for γ ∈ [0, 1], we have

(2.21) |µ− att|1−γ ≤ (n
(p)
t (A))1−γ(n− 1)

1−γ
q and |µ− att|γ ≤ rt(A)γ, i.e.,

|µ− att| ≤ (n− 1)
1−γ
q (n

(p)
t (A))1−γrt(A)γ. �

Now, we present the following results from the literature:

• Assuming p = q = 2 and γ = 1 in Theorem 2.15. We obtain that all the left

eigenvalues of A := (aij) ∈ Mn(H) are contained in the union of n Greschgorin

balls Bi(A) := {z ∈ H : |z − aii| ≤ ri(A)} (1 ≤ i ≤ n), i.e.,

Λl(A) ⊆ B(A) := ∪ni=1Bi(A).

This can be found in [62, Theorem 6].

• Assuming p = q = 2 and γ = 0 in Theorem 2.15. We obtain that all the left

eigenvalues of A := (aij) ∈ Mn(H) are contained in the union of n balls Bi(A) :={
z ∈ H : |z − aii| ≤ (n− 1)

1
2n

(2)
i (A)

}
(1 ≤ i ≤ n), i.e.,

Λl(A) ⊆ B(A) := ∪ni=1Bi(A).

This can be seen in [60, Theorem 1].

We present a generalization of [62, Theorem 7] and [63, Theorem 3.1] by applying

the generalized Hölder inequality over the skew field of quaternions. For a general matrix

A := (aij) ∈ Mn(H) , all the right eigenvalues may not lie in the union of n generalized

balls Bi(A) (1 ≤ i ≤ n). On the other hand, we show that every connected region of the

generalized balls Bi(A) (1 ≤ i ≤ n) contains some right eigenvalues of A.
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Theorem 2.16. Let A := (aij) ∈ Mn(H) and let γ ∈ [0, 1]. For every right eigenvalue µ

of A there exists a nonzero quaternion β such that β−1µβ (which is also a right eigenvalue)

is contained in the union of n generalized balls

Bi(A) :=
{
z ∈ H : |z − aii| ≤ (n− 1)

1−γ
q ri(A)γ(n

(p)
i (A))1−γ

}
(1 ≤ i ≤ n), i.e.,

{
z−1µz : 0 6= z ∈ H

}
∩ ∪ni=1Bi(A) 6= ∅,

where p, q ∈ (1,∞) with 1
p

+ 1
q

= 1.

Proof. Let µ be a right eigenvalue of A. Then there exists some nonzero x ∈ Hn such that

Ax = xµ. Let x := [x1, . . . , xn]T ∈ Hn and choose xt from x as given in Theorem 2.15.

Consider ρ ∈ H such that xtµ = ρxt. Then we have

(2.22) |ρ− att||xt| =
∣∣∣∣∣

n∑
j=1, j 6=t

atjxj

∣∣∣∣∣ ≤
n∑

j=1, j 6=t

|atj| |xj|.

Now from the proof method of Theorem 2.15, we have

|ρ− att| ≤ (n− 1)
1−γ
q (n

(p)
t (A))1−γrt(A)γ. �

We can see the following results from the literature:

• Substituting p = q = 2 and γ = 1 in Theorem 2.16, we obtain

{z−1µz : 0 6= z ∈ H} ∩ ∪ni=1{z ∈ H : |z − aii| ≤ ri(A)} 6= ∅.

This can be seen in [62, Theorem 7].

• Substituting p = q = 2 and γ = 0 in Theorem 2.16, we get

{z−1µz : 0 6= z ∈ H} ∩ ∪ni=1

{
z ∈ H : |z − aii| ≤

√
n− 1 n

(2)
i (A)

}
6= ∅.

This can be found in [63, Theorem 3.1].

We next present a sufficient condition for the stability of a matrix A ∈Mn(H) for the

case of a continuous-time quaternionic system.

Proposition 2.17. Let A := (aij) ∈Mn(H) and let γ ∈ [0, 1]. Assume that

Re(aii) + (n− 1)
1−γ
q ri(A)γ(n

(p)
i (A))1−γ < 0 ∀ i (1 ≤ i ≤ n),(2.23)

where 1
p

+ 1
q

= 1 with p, q ∈ (1,∞). Then the matrix A is stable.
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Proof. Let λ ∈ Λr(A). Then from Theorem 2.16 there exists 0 6= ρ ∈ H such that ρ−1λρ ∈
∪ni=1Bi(A). Without loss of generality, we assume ρ−1λρ ∈ Bl(A), i.e.,

|ρ−1λρ− all| ≤ (n− 1)
1−γ
q rl(A)γ(n

(p)
l (A))1−γ.

Consider λ := λ1 + λ2i + λ3j + λ4k and all := al + bli + clj + dlk. Then from (2.23), we

obtain

|(λ1 − al) + (ρ−1λ2iρ− bli) + (ρ−1λ3jρ− clj) + ξ1| < −Re(all) = −al,(2.24)

where ξ1 = ρ−1λ4kρ− dlk. (2.24) is possible when λ1 < 0, i.e., Re(λ) < 0, hence λ ∈ H−.

This shows that the matrix A is stable. �

When all the diagonal entries of a matrix A ∈ Mn(H) are real, then we have the

following theorem.

Theorem 2.18. Let A := (aij) ∈ Mn(H) with aii ∈ R and let γ ∈ [0, 1]. Then all the

right eigenvalues of A are contained in the union of n generalized balls

Bi(A) :=
{
z ∈ H : |z − aii| ≤ (n− 1)

1−γ
q ri(A)γ(n

(p)
i (A))1−γ

}
(1 ≤ i ≤ n), i.e.,

Λr(A) ⊆ B(A) := ∪ni=1Bi(A),

where p, q ∈ (1,∞) with 1
p

+ 1
q

= 1.

Proof. Let λ be a right eigenvalue of A. Then there exists some nonzero x ∈ Hn such

that Ax = xλ. Let x := [x1, . . . , xn]T ∈ Hn and let xt be an element of x such that

|xt| ≥ |xi| ∀ i (1 ≤ i ≤ n). Then |xt| > 0. Thus from Ax = xλ, we have

attxt +
n∑

j=1, j 6=t

atjxj = xtλ.

Since att ∈ R, so attxt = xtatt. Then from the proof method of Theorem 2.15, we have

|λ− att| ≤ (n− 1)
1−γ
q (n

(p)
t (A))1−γrt(A)γ. �

The above result has great significance as Hermitian and η-Hermitian matrices have

all real diagonal entries. In general, η-Hermitian matrices arise widely in applications

[17, 55, 56]. To that end, we state the following proposition when all diagonal entries of

A ∈Mn(H) are real. In particular, this result gives a sufficient condition for the stability

of a matrix A ∈Mn(H).
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Proposition 2.19. Let A := (aij) ∈Mn(H) with aii ∈ R and let γ ∈ [0, 1]. Assume that

aii + (n− 1)
1−γ
q ri(A)γ(n

(p)
i (A))1−γ < 0 ∀ i (1 ≤ i ≤ n),

where p, q ∈ (1, ∞) with 1
p

+ 1
q

= 1. Then the matrix A is stable.

From Theorem 2.18, all the complex right eigenvalues of a matrix A = (aij) ∈Mn(H)

with all real diagonal entries lie in the union of n-discs

Di(A) := {z ∈ C : |z − aii| ≤ (n− 1)
1−γ
q ri(A)γ(n

(p)
i (A))1−γ} (1 ≤ i ≤ n), i.e.,

Λc(A) ⊆ D(A) := ∪ni=1Di(A).(2.25)

However, if diagonal entries are from C \R, then it is not necessary that all the complex

right eigenvalues of A are contained in the union of n-discs Di(A) (1 ≤ i ≤ n) as the

following examples suggest.

Example 2.20. Let A :=


1− 2i j k

0 −2i −i

0 k 3 + i

 . Then the set of complex right eigenval-

ues of A is given by

Λc(A) := {λ1, λ2, λ3, λ4, λ5, λ6},

where λ1 = −0.0164 + 2.0083i, λ2 = −0.0164 − 2.0083i, λ3 = 1 + 2i, λ4 = 1 − 2i, λ5 =

3.0164 + 1.0324i, and λ6 = 3.0164 + 1.0324i. For γ = 1 in (2.25), the discs D1(A), D2(A),

and D3(A) are given as follows:

D1(A) := {z ∈ C : |z − 1 + 2i| ≤ 2},

D2(A) := {z ∈ C : |z + 2i| ≤ 1}, and

D3(A) := {z ∈ C : |z − 3− i| ≤ 1}.

From FIGURE 2.2, it is clear that λ1, λ3, and λ6 lie outside of the discs D1(A), D2(A),

and D3(A).

Example 2.21. Let A =


−4 1 + j +

√
2k j

i + j −10 2j− k

i− 2j + 2k
√

3 + 2j− 3k −8

 . In this example, there

are six complex right eigenvalues λj (1 ≤ j ≤ 6) which are shown in FIGURE 2.3.
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Figure 2.2. Location of complex right eigenvalues of A (Example 2.20) as +.

Substituting γ = 1 in (2.25), then all the complex right eigenvalues of the matrix A are

contained in the union of three discs D1(A), D2(A), and D3(A), where

D1(A) := {z ∈ C : |z + 4| ≤ 3},

D2(A) := {z ∈ C : |z + 10| ≤
√

2 +
√

5}, and

D3(A) := {z ∈ C : |z + 8| ≤ 7}.

From FIGURE 2.3, the standard right eigenvalues of A are λ1, λ3, and λ5. Thus

Λr(A) = [λ1] ∪ [λ3] ∪ [λ5].

Also, from FIGURE 2.3, we observe that Re(λi) ∈ H− (i = 1, 3, 5). Hence

Re(λ1) = Re(ρ−1λ1ρ), Re(λ2) = Re(τ−1λ2τ), Re(λ3) = Re(ν−1λ3ν) ∀ ρ, τ, ν ∈ H

Thus the matrix A is stable.

In general, similar quaternionic matrices may not have the same left eigenvalues,

see, [62, Example 3.3]. However, the following result is true.

Proposition 2.22. Let A ∈Mn(H) and let W be any invertible real matrix. Then A and

WAW−1 have the same left eigenvalues.

39



−15 −10 −5 0
−8

−6

−4

−2

0

2

4

6

8

X−axis

Y
−
a
x
i
s

λ5

λ6

λ4

λ2

λ1

+ Λc(A)

D2(A)

λ3

D3(A)

D1(A)

Figure 2.3. Location of complex right eigenvalues of A (Example 2.21) as +.

Proof. Let λ be a left eigenvalue of A. Then there exists some nonzero x ∈ Hn such that

Ax = λx. Let W be an invertible real matrix. Then

WAx = Wλx = λWx.

Now, WAW−1Wx = λWx. Putting Wx = y. Then WAW−1y = λy. �

Let A := (aij) ∈ Mn(H). Suppose W = diag(w1, w2, . . . , wn) with wi ∈ R+ (1 ≤ i ≤
n). Then

W−1AW =

(
aijwj
wi

)
and Λl(A) = Λl(W

−1AW ).

Define

rWi (A) :=
n∑

j=1, j 6=i

|aij|wj
wi

and cWi (A) :=
n∑

j=1, j 6=i

|aji|wi
wj

(1 ≤ i ≤ n).

Applying Theorem 2.3 to W−1AW , we get the following theorem which may be

sharper than Theorem 2.3 depending upon the choice of W .

Theorem 2.23. Let A := (aij) ∈Mn(H). Then all the left eigenvalues of A are contained

in the union of n balls

TWi (A) := {z ∈ H : |z − aii| ≤ (rWi (A))γ (cWi (A))1−γ} (1 ≤ i ≤ n), i.e.,

Λl(A) = Λl(W
−1AW ) ⊆ TW (A) := ∪ni=1T

W
i (A).
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Since the above theorem holds for every W = diag(w1, w2, . . . , wn), where wi ∈ R+,

we have

Λl(A) = Λl(W
−1AW ) ⊆ ∩

W∈Mn(S)
TW (A) =: T S(A),

where Mn(S) is a set of invertible real diagonal matrices and T S(A) is called the minimal

Ostrowski type set for the matrix A.

Substituting γ = 1 in Theorem 2.23, we obtain the following.

(a) Λl(A) = Λl(W
−1AW ) ⊆ ηW (A) := ∪ni=1η

W
i (A),

where ηWi (A) :=
{
z ∈ H : |z − aii| ≤ rWi (A)

}
. Now from here, we get

Λl(A) = Λl(W
−1AW ) ⊆ ∩

W∈Mn(S)
ηW (A) =: ηS(A),

where ηS(A) is called the first minimal Gerschgorin type set for the matrix A.

For γ = 0 in Theorem 2.23, we have the following.

(b) Λl(A) = Λl(W
−1AW ) ⊆ ΩW (A) := ∪ni=1ΩW

i (A),

where ΩW
i (A) :=

{
z ∈ H : |z − aii| ≤ cWi (A)

}
. Then

Λl(A) = Λl(W
−1AW ) ⊆ ∩

W∈Mn(S)
ΩW (A) =: ΩS(A),

where ΩS(A) is called the second minimal Gerschgorin type set for the matrix A.

Equivalently, applying Theorem 2.8 to W−1AW, we get the following theorem.

Theorem 2.24. Let A := (aij) ∈ Mn(H) and let γ ∈ [0, 1]. Then all the left eigenvalues

of A are contained in the union of n(n−1)
2

ovals of Cassini KW
ij (A) := {z ∈ H : |z−aii| |z−

ajj| ≤
(
rWi (A)

)γ
(rWj (A))γ(cWi (A))1−γ(cWj (A))1−γ} (1 ≤ i, j ≤ n; i 6= j), i.e.,

Λl(A) = Λl(W
−1AW ) ⊆ KW (A) := ∪ni,j=1

i 6=j
KW
ij (A).

Since Theorem 2.24 holds for every W = diag(w1, w2, . . . , wn) with wi ∈ R+. Then

Λl(A) = Λl(W
−1AW ) ⊆ ∩

W∈Mn(S)
KW (A) =: KS(A),

KS(A) is called the minimal Brauer type set for the matrix A.
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Example 2.25. Let A =


j k 2j +

√
5k

0 i + k
√

2i + j− k

0 0 2− i

 . Substituting γ = 1 in Theorem 2.3,

we have the following three Gerschgorin type balls:

G1(A) := {z ∈ H : |z − j| ≤ 4},

G2(A) := {z ∈ H : |z − i− k| ≤ 2}, and

G3(A) := {z ∈ H : |z − 2 + i| ≤ 0}.

If W = diag(w1, w2, w3) with w1 = 8, w2 = 4, w3 = 1. Then by (a), we have the following

balls:

ηW1 (A) := {z ∈ H : |z − j| ≤ 7/8},

ηW2 (A) := {z ∈ H : |z − i− k| ≤ 1/2}, and

ηW3 (A) := {z ∈ H : |z − 2 + i| ≤ 0}.

Hence it is clear that ηW1 (A) ⊂ G1(A) and ηW2 (A) ⊂ G2(A).

For γ = 1, Theorem 2.8 gives the following ovals of Cassini:

K12(A) := {z ∈ H : |z − j| |z − i− k| ≤ 8},

K23A) := {z ∈ H : |z − i− k| |z − 2 + i| ≤ 0}, and

K31(A) := {z ∈ H : |z − 2 + i| |z − j| ≤ 0}.

Consider W = diag(w1, w2, w3) with w1 = w2 = 6, and w3 = 1. Then by Theorem 2.24

with γ = 1, we obtain the following ovals of Cassini:

KW
12 (A) := {z ∈ H : |z − j| |z − i− k| ≤ 1/2},

KW
23 (A) := {z ∈ H : |z − i− k| |z − 2 + i| ≤ 0}, and

KW
31 (A) := {z ∈ H : |z − 2 + i| |z − j| ≤ 0}.

Hence KW
12 (A) ⊂ K12(A). �

42



2.3. Bounds for the zeros of quaternionic polynomials

First, in this section, we present bounds for the zeros of quaternionic polynomial pl(z)

as follows, which is an extension of the result given in [15] for the case of the zeros of

complex polynomials.

Theorem 2.26. Let pl(z) be a simple monic polynomial over H of degree m. Then every

zero z̃ of pl(z) satisfies the following inequality:(
max

1≤i≤m

(
r′i(Cql)

γ c′i(Cql)
1−γ))−1

≤ |z̃| ≤ max
1≤i≤m

(
r′i(Cpl)

γ c′i(Cpl)
1−γ) ,

for every γ ∈ [0, 1].

Proof. From Proposition 1.36, zeros of pl(z) and left eigenvalues of Cpl are same. Thus, if

z̃ is a zero of pl(z), then z̃ is a left eigenvalue of Cpl . By applying Theorem 2.3 (Ostrowski

type theorem) to Cpl , we obtain

|z̃| ≤ max
1≤i≤m

(
r′i(Cpl)

γ c′i(Cpl)
1−γ) .

Proof for lower bounds: We use the respective upper bounds for the zeros of the simple

monic reversal polynomial ql(z) for the desired lower bounds for the zeros of pl(z). �

Corollary 2.27. Let pl(z) be a simple monic polynomial over H of degree m. Then every

zero z̃ of pl(z) satisfies the following inequalities:

1.
|q0|

max
1≤i≤(m−1)

{1, |q0|+ |qi|}
≤ |z̃| ≤ max

1≤i≤(m−1)
{|q0|, 1 + |qi|} .

2.
|q0|

max
{
|q0|, 1 +

∑m−1
i=1 |qi|

} ≤ |z̃| ≤ max
{

1,
∑m−1

i=0 |qi|
}
.

Proof. Substituting γ = 0, 1 in Theorem 2.26, we obtain the desired results. �

Next, we derive the following lemma which gives a better bound than G. Opfer’s

bound [42, Theorem 4.2] for |q0| ≥ 1.

Lemma 2.28. Assume that |q0| ≥ 1. Then α ≤ T , where α := max
1≤i≤m−1

{|q0|, 1 + |qi|} and

T := max
{

1,
∑m−1

i=0 |qi|
}
.

Proof. Case 1: If |q0| = 1, then

α = max
1≤i≤m−1

{|q0|, 1 + |qi|} = max
1≤i≤m−1

{1 + |qi|} . Also
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T := max
{

1,
∑m−1

i=0 |qi|
}

= max
{

1, |q0|+
∑m−1

i=1 |qi|
}

= 1 +
∑m−1

i=1 |qi|.
Case 2: If |q0| > 1, then

α = max
1≤i≤(m−1)

{|q0|, 1 + |qi|} = |q0| or max
1≤i≤(m−1)

{1 + |qi|} and

T := max{1,∑m−1
i=0 |qi|} = max

{
1, |q0|+

∑m−1
i=1 |qi|

}
= |q0| +

∑m−1
i=1 |qi|. Thus α ≤ T .

This completes the proof. �

On the other hand, if |q0| < 1, then α ≤ T or α > T follows from a simple monic

polynomial p′l(z) := z3 + (i + 2j + 2k)z2 − 2kz + 0.5k. Then α = 4 and T = 5.5. Hence

α < T and further, if we consider p′′l (z) = z3 ++0.5jz2 +(0.2i+0.3j)z+0.5i. Then α = 1.5

and T = 1.36. Hence α > T .

Theorem 2.29. Let wi ∈ R+ (1 ≤ i ≤ m) and let γ ∈ [0, 1]. Then every zero z̃ of the

simple monic polynomial pl(z) satisfies the following inequality:[
max

1≤i≤m

{
r′i(WCqlW

−1)γ c′i(WCqlW
−1)1−γ}]−1

≤ |z̃| ≤ ξ1,

where ξ1 = max
1≤i≤m

{r′i(WCplW
−1)γ c′i(WCplW

−1)1−γ} and W := diag(w1, w2, . . . , wm).

Proof. The companion matrix of pl(z) is given by

Cpl =


1 m−1

m−1 0 I

1 −q0 [−q1 . . .− qm−1]

.
Then

WCplW
−1 =


1 m−1

m−1 0 diag
(
w1

w2
, . . . , wm−1

wm

)
1 −wm

w1
q0 −wm

w2
q1 . . .− qm−1

.
By Proposition 2.22, Cpl and WCplW

−1 have the same left eigenvalues. Rest of the proof

follows from the proof method of Theorem 2.26. �

Corollary 2.30. Let pl(z) be a simple monic polynomial over H of degree m. Then every

zero z̃ of pl(z) satisfies the following inequalities:

1.

[
max

0≤j≤m−1

{
(|q0|wj + wm|qm−j|)

|q0|dj+1

}]−1

≤ |z̃| ≤ max
0≤j≤m−1

{
wj + wm|qj|

wj+1

}
, where w0 =

0.

2.

[
max

1≤j≤m−1

{
wj
wj+1

,
m−1∑
i=0

wm|qi|
|q0|wi+1

}]−1

≤ |z̃| ≤ max
1≤j≤m−1

{
wj
wj+1

,
m−1∑
i=0

wm|qi|
wi+1

}
.
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Proof. Substituting γ = 0, 1 in Theorem 2.29, we get the desired results. �

Let wj = wm|qj| (1 ≤ j ≤ m− 1) in the part (1) of Corollary 2.30. Then we obtain

|z̃| ≤ max
1≤j≤m−1

{∣∣∣∣q0

q1

∣∣∣∣ , 2 ∣∣∣∣ qjqj+1

∣∣∣∣} .
This is called the Kojima type bound for the zeros of the simple monic polynomial pl(z).

Bounds for the zeros of quaternionic polynomial pr(z) : For computation of

bounds of the zeros of pr(z), we define the following polynomial:

p̃l(z) := pr(z) :=
m∑
j=0

qjz
j.

Now, we discuss the following theorem which shows relation between the zeros of pr(z)

and p̃l(z).

Theorem 2.31. Let λ ∈ H. Then λ is a zero of the simple monic polynomial pr(z) if and

only if λ is a zero of the simple monic polynomial p̃l(z).

Proof. The corresponding companion matrices of pr(z) and p̃l(z) are given by

Cpr := CT
pl

and Cp̃l := CH
pr ,

respectively. By Lemma 2.1, if λ is a left eigenvalue of Cpr , then λ is a left eigenvalue of

CH
pr = Cp̃l . By Propositions 1.36 and 1.37, the left eigenvalues of Cpr and Cp̃l imply the

zeros of pr(z) and p̃l(z), respectively. Hence if λ is a zero of pr(z), then λ is also a zero of

p̃l(z). �

Remark 2.32. Similar results can be obtained for the quaternionic polynomial pr(z) as

well.

Bounds for the zeros of quaternionic polynomials by using the powers of com-

panion matrices: First, we present some preliminary results for the powers of companion

matrices Cpl and Cpr . In general, if λ is a left eigenvalue of a quaternionic matrix A, then

λ2 is not necessarily a left eigenvalue of A2 follows from the following quaternionic matrix

A =

 0 i

−i 0

 .
Then

Λl(A) :=
{
µ : µ = α + βj + γk, α2 + β2 + γ2 = 1

}
.
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Now, we have

A2 =

1 0

0 1

 . So Λl(A
2) := {1}.

Here, j is a left eigenvalue of A. However, j2 is not a left eigenvalue of A2.

Now, we prove the following result for left eigenvalues of Cpl and Ct
pl

(t is a nonzero

integer).

Proposition 2.33. If λ is a left eigenvalue of Cpl with respect to the eigenvector x ∈
Hn, then λt (t is a nonzero integer) is a left eigenvalue of Ct

pl
corresponding to the same

eigenvector x ∈ Hn.

Proof. Case (a): When t is a nonzero positive integer. Let λ be a left eigenvalue of Cpl .

Then, there exists 0 6= x := [1, λ, λ2, . . . , λm−1]
T ∈ Hn such that Cplx = λx. Therefore,

C2
pl
x = Cpl(Cplx) = Cplxλ = xλ2

...

Ct
pl
x = Ct−1

pl
(Cplx) = Ct−1

pl
xλ = · · · = xλt = λtx.

Thus, λt is a left eigenvalue of matrix Ct
pl

corresponding to the same eigenvector x ∈ Hn.

Case (b): When t is a negative integer. From Case (a), we have Cplx = xλ. This

implies C−1
pl
x = xλ−1. Therefore,

C−2
pl
x = C−1

pl
(C−1

pl
x) = C−1

pl
xλ−1 = xλ−2

...

Ct
pl
x = C(t+1)

pl
(C−1

pl
x) = C(t+1)

pl
xλ−1 = · · · = xλt = λtx.

Thus, λt is a left eigenvalue of Ct
pl

with respect to the same eigenvector x ∈ Hn. �

Next, we state the following result for left eigenvalues of Cpr and Ct
pr (t is a nonzero

integer).

Proposition 2.34. If λ is a left eigenvalue of Cpr with respect to the eigenvector x ∈
Hn, then λt (t is a nonzero integer) is a left eigenvalue of Ct

pr corresponding to the same

eigenvector x ∈ Hn.
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Proof. Case (a): When t is a nonzero positive integer. Let λ be a left eigenvalue of

Cpr . Now from Lemma 2.1, λ is a left eigenvalue of CH
pr . Then there exists 0 6= x :=[

1, λ, (λ)2, . . . , (λ)m−1
]
∈ Hn such that CH

prx = λx = xλ. This gives

(
CH
pr

)2
x = CH

pr(C
H
prx) = CH

prxλ = x(λ)2

...(
CH
pr

)t
x =

(
CH
pr

)t−1
(CH

prx) =
(
CH
pr

)t−1
xλ = · · · = x(λ)t = (λ)tx.

Thus, (λ)t is a left eigenvalue of
(
CH
pr

)t
. Then by Lemma 2.1, λt is a left eigenvalue of

Ct
pr .

Case (b): When t is a negative integer. From Case (a), we have CH
prx = λx = xλ.

This implies (CH
pr)
−1x = x(λ)−1. Thus

(CH
pr)
−2x = (CH

pr)
−1{(CH

pr)
−1x} = (CH

pr)
−1x(λ)−1 = x(λ)−2

...

(CH
pr)

tx = (CH
pr)

(t+1){(CH
pr)
−1x} = (CH

pr)
(t+1)x(λ)−1 = · · · = x(λ)t = (λ)tx.

Thus, (λ)t is a left eigenvalue of
(
CH
pr

)t
. Then by Lemma 2.1, λt is a left eigenvalue of

Ct
pr . �

Further, we present a framework to find the powers of the companion matrix Cpl

which can be derived in a simple procedure as follows, keeping in view that quaternions

do not commute.

Theorem 2.35. Consider Cpl =


1 m−1

m−1 0 I

1 Cpl(m, 1) Cpl(m, 2 : m)

.

(a) If t < m is a positive integer, then

(2.26) Ct
pl

=


t m−t

m−t 0 I

t C D

,
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(b) if t ≥ m, then

Ct
pl

=



C
t−(m−1)
pl (m, 1 : m)

C
t−(m−2)
pl (m, 1 : m)

...

Ct−1
pl

(m, 1 : m)

Ct
pl

(m, 1 : m)


m×m

,(2.27)

where

Ct
pl

(m, 1) := Ct−1
pl

(m,m)Cpl(m, 1),

Ct
pl

(m, 2 : m) := Ct−1
pl

(m, 1 : m− 1) + Ct−1
pl

(m,m)Cpl(m, 2 : m),

C :=


Cpl(m, 1 : t)

C2
pl

(m, 1 : t)
...

Ct
pl

(m, 1 : t)


t×t

, and D :=


Cpl(m, t+ 1 : m)

C2
pl

(m, t+ 1 : m)
...

Ct
pl

(m, t+ 1 : m)


t×(m−t)

.

Note that Cpl(k, 1 : m) denotes the k-th row of the matrix Cpl .

Proof. Assuming t = 1, then (2.26) becomes

Cpl =


1 m−1

m−1 0 I

1 Cpl(m, 1) Cpl(m, 2 : m)

,
where Cpl(m, 1) := −q0, Cpl(m, 2 : m) := [−q1 . . . − qm−1]. Thus the theorem is true for

t = 1. Now, let us consider Cpl as

Cpl =


m−k k

k A′ B′

m−k C ′ D′

, where

A′ := Cpl(1 : k, 1 : m − k), B′ := Cpl(k + 1 : m,m − k + 1 : m), C ′ := Cpl(k + 1 : m, 1 :

m− k), D′ := Cpl(k + 1 : m,m− k + 1 : m). For t = k = 3, we get

C3
pl

=


2 m−2

m−2 0 I

2 C D

 
m−2 2

2 A′ B′

m−2 C ′ D′

 =


m−2 2

m−2 C ′ D′

2 CA′ +DC ′ CB′ +DD′

.
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Note that in each step, size of the identity matrix I reduces by order 1 and the size of

matrix C increases by order 1. Similarly, the matrix D increases by 1 row and decreases

by 1 column. Finally, after rearranging and separating 0 and I matrices we get


2+1 m−2−1

m−2−1 0 I

2+1 C D

,
where C and D are of size 3×3 and 3× (m−3), respectively. Assuming that the theorem

is true for t = k. Then we have

Ck+1
pl

= Ck
pl
Cpl =


m−k k

m−k C ′ D′

k CA′ +DC ′ CB′ +DD′

 =


k+1 m−k−1

m−k−1 0 I

k+1 C D

,
where the corresponding C and D matrices are given in the statement of the theorem.

Similarly, we can prove for t ≥ m. �

In the case of quaternionic matrix, Cpl = CT
pr but Ct

pr 6= (Ct
pl

)T for t ≥ 2. It follows

from the following example.

Example 2.36. Consider the following simple monic polynomials over H :

pl(z) = z3 − kz2 + (k− j)z + (i + j) and pr(z) = z3 − z2k + z(k− j) + (i + j).

The corresponding companion matrices of pl(z) and pr(z) are given by

Cpl =


1 2

2 0 I

1 Cpl(3, 1) Cpl(3, 2 : 3)

 and Cpr = CT
pl
,

respectively, where Cpl(3, 1) = −i− j and Cpl(3, 2 : 3) := [j− k,k]. Then

C2
pl

=


0 0 1

−i− j j− k k

i− j 1− 2i− j j− k− 1

 and C2
pr =


0 −i− j j− i

0 j− k 1− j

1 k j− k− 1

 .
This shows that C2

pr 6= (C2
pl

)T .

Hence, we can write the similar algorithm to Theorem 2.35 for the case of Ct
pr , t ≥ 2.
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Theorem 2.37. Consider Cpr =


m−1 1

1 0 Cpr(1,m)

m−1 I Cpr(2 : m,m)

.

(a) If t < m is a positive integer, then

(2.28) Ct
pr =


m−t t

t 0 C

m−t I D

,
(b) if t ≥ m, then

Ct
pr =

[
C
t−(m−1)
pr (1 : m,m) C

t−(m−2)
pr (1 : m,m) . . . Ct−1

pr (1 : m,m) Ct
pr(1 : m,m)

]
m×m

,

where

C :=
[
Cpr(1 : t,m) C2

pr(1 : t,m) . . . Ct
pr(1 : t,m)

]
,

D :=
[
Cpr(t+ 1 : m,m) C2

pr(t+ 1 : m,m) . . . Ct
pr(t+ 1 : m,m)

]
,

Ct
pr(1,m) := Cpr(1,m) Ct−1

pr (m,m), and

Ct
pr(2 : m,m) := Ct−1

pr (1 : m− 1,m) + Cpr(2 : m,m) Ct−1
pr (m,m).

Proof. The proof follows from the proof method of Theorem 2.35. �

Now from Example 2.36, we write

p̃l(z) := pr(z) = z3 + kz2 + (j− k)z + (−i− j), and

p̃r(z) := pl(z) = z3 + z2k + z(j− k)− (i + j).

Thus the companion matrices corresponding to p̃l(z) and p̃r(z) are given by

Cp̃l = Cpl andCp̃r = Cpr ,

respectively. Next,

C2
p̃l

=


0 0 1

i + j −j + k −k

i− j 1 + j k− j− 1

 andC2
p̃r =


0 i + j j− i

0 −j + k 1 + 2i + j

1 −k −1− j + k

 .
Then

(a) max
1≤i≤3

[
(r′i(C

2
pl

))1/2
]

= 2.3655 and max
1≤i≤3

[
(r′i(C

2
p̃r))

1/2
]

= 1.9656.
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(b) max
1≤i≤3

[(
r′i
(
C2
pr

))1/2
]

= 1.9319 and max
1≤i≤3

[
(r′i(C

2
p̃l

))1/2
]

= 2.1355.

Now, we have

max
1≤i≤3

[
(r′i(C

2
pl

))1/2
]
6= max

1≤i≤3

[
(r′i(C

2
p̃r))

1/2
]

and

max
1≤i≤3

[(
r′i
(
C2
pr

))1/2
]
6= max

1≤i≤3

[
(r′i(C

2
p̃l

))1/2
]
.

Hence, we have the following bounds for the zeros of pl(z) and pr(z) for γ ∈ [0, 1].

Theorem 2.38. Let pl(z) and pr(z) be the simple monic polynomials over H of degree

m and let Ct
pl

and Ct
pr (t ≥ 2) be the t-th power of the companion matrices Cpl and Cpr ,

corresponding to pl(z) and pr(z), respectively. Then, for γ ∈ [0, 1]

1. bounds for every zero z̃ of pl(z) satisfies the following inequalities:

(a) (ξ′1)−1 ≤ |z̃| ≤ ξ1,

(b) (ξ′2)−1 ≤ |z̃| ≤ ξ2,

where

ξ1 = max
1≤i≤m

[(
r′i
(
Ct
pl

))γ/t (
c′i
(
Ct
pl

))(1−γ)/t
]
,

ξ′1 = max
1≤i≤m

[(
r′i
(
Ct
ql

))γ/t (
c′i
(
Ct
ql

))(1−γ)/t
]
,

ξ2 = max
1≤i≤m

[(
r′i
(
Ct
p̃r

))γ/t (
c′i
(
Ct
p̃r

))(1−γ)/t
]
,

ξ′2 = max
1≤i≤m

[(
r′i
(
Ct
q̃r

))γ/t (
c′i
(
Ct
q̃r

))(1−γ)/t
]

;

2. bounds for every zero z̃ of pr(z) satisfies the following inequalities:

(a)

(
max

1≤i≤m

[(
r′i
(
Ct
qr

))γ/t (
c′i
(
Ct
qr

))(1−γ)/t
])−1

≤ |z̃| ≤ ξ3,

(b)

(
max

1≤i≤m

[(
r′i
(
Ct
q̃l

))γ/t (
c′i
(
Ct
q̃l

))(1−γ)/t
])−1

≤ |z̃| ≤ ξ4,

where

ξ3 = max
1≤i≤m

[(
r′i
(
Ct
pr

))γ/t (
c′i
(
Ct
pr

))(1−γ)/t
]
,

ξ′3 = max
1≤i≤m

[(
r′i
(
Ct
qr

))γ/t (
c′i
(
Ct
qr

))(1−γ)/t
]
,

ξ4 = max
1≤i≤m

[(
r′i
(
Ct
p̃l

))γ/t (
c′i
(
Ct
p̃l

))(1−γ)/t
]
,

ξ′4 = max
1≤i≤m

[(
r′i
(
Ct
q̃l

))γ/t (
c′i
(
Ct
q̃l

))(1−γ)/t
]
.
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Proof. 1(a). Let λ be a left eigenvalue of Cpl . Then by Proposition 2.33, λt ( t ≥ 2 is

positive integer) is a left eigenvalue of Ct
pl
. Hence by applying Theorem 2.3, we get the

desired result.

1(b). By Lemma 2.1, λ is a left eigenvalue of Cp̃r and by Proposition 2.34, (λ)t is a left

eigenvalue of (Cp̃r)
t. Then from Theorem 2.3, we get the desired result.

For 2(a) and 2(b), the proofs are similar to the proof methods of 1(a) and 1(b), respectively. �

Substituting t = 2 and γ = 1 in Theorem 2.38, we have the following corollary.

Corollary 2.39. Let pl(z) and pr(z) be the simple monic polynomials over H of degree

m. Then

1. bounds for every zero z̃ of pl(z) satisfies the following inequalities:

(a)
1

β1

≤ |z̃| ≤ α1,

(b)
1

β2

≤ |z̃| ≤ α2,

where

α1 = max

1,

(
m−1∑
j=0

|qj|
)1/2

,

(
m−1∑
j=0

|qm−1qj − qj−1|
)1/2

,
α2 = max

2≤j≤m−1

{
(|q0|+ |q0 qm−1|)1/2 , (|q1|+ |q1 qm−1 − q0|)1/2 ,

(1 + |qj|+ |qj qm−1 − qj−1|)1/2

}
,

β1 = max

1,

(
m−1∑
j=1

|q−1
0 qj|

)1/2

,

(
m−1∑
j=0

|q−1
0 q1q

−1
0 qm−j − q−1

0 qm−j+1|
)1/2

,
β2 = max

2≤j≤m−1

{(
|q−1

0 |+ |q−1
0 q1q

−1
0 |
)1/2

,
(
|qm−1q

−1
0 |+ |qm−1q

−1
0 q1q

−1
0 − q−1

0 |
)1/2

,(
1 + |qm−jq−1

0 |+ |qm−jq−1
0 q1q

−1
0 − qm−j+1q

−1
0 |
)1/2

}
;

2. bounds for every zero z̃ of pr(z) satisfies the following inequalities:

(a)
1

β3

≤ |z̃| ≤ α3,

(b)
1

β4

≤ |z̃| ≤ α4,
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where

α3 = max
2≤j≤m−1

{
(|q0|+ |q0 qm−1|)1/2 , (|q1|+ |q1 qm−1 − q0|)1/2 ,

(1 + |qj|+ |qj qm−1 − qj−1|)1/2

}
,

α4 = max

1,

(
m−1∑
j=0

|qj|
)1/2

,

(
m−1∑
j=0

|qm−1 qj − qj−1|
)1/2

,
β3 = max

2≤j≤m−1

{(
|q−1

0 |+ |q−1
0 q1q

−1
0 |
)1/2

,
(
|qm−1q

−1
0 |+ |qm−1q

−1
0 q1q

−1
0 − q−1

0 |
)1/2

,

(
1 + |qm−jq−1

0 |+ |qm−jq−1
0 q1q

−1
0 − qm−j+1q

−1
0 |
)1/2

}
,

β4 = max

1,

(
m−1∑
j=1

|q−1
0 qj|

)1/2

,

(
m−1∑
j=0

|q−1
0 q1 q−1

0 qm−j − q−1
0 qm−j+1|

)1/2
,

q−1 = 0 = qm+1, qm = 1.

Proof. The proof follows from Theorem 2.38 and APPENDIX-A. �

Example 2.40. Consider the following polynomials pl(z) and pr(z) over H:

pl(z) = z6 + (i + 3k)z5 + (3 + j)z4 + (5i + 15k)z3 + (−4 + 5j)z2 + (6i + 18k)z + (6j− 12),

pr(z) = z6 + z5(i + 3k) + z4(3 + j) + z3(5i + 15k) + z2(−4 + 5j) + z(6i + 18k) + (6j− 12).

The zeros of pl(z) are given in [50]. Moreover, we find the zeros of pr(z) by Niven’s

algorithm [41].

ZH(pl(z)) =: z1 Abs(z1) ZH(pr(z)) =: z2 Abs(z2)

−i− 2k 2.2361 −0.4i− 2.2k 2.2361

[i
√

3] 1.7321 [i
√

3] 1.7321

[i
√

2] 1.4142 [i
√

2] 1.4142

−0.6i− 0.8k 1 −k 1

Table 2.1. The zeros of pl(z) and pr(z) and their absolute values.

z1 := the set of zeros of pl(z), z2 := the set of zeros of pr(z),

Denote LB:= Lower Bound, UB:= Upper Bound.
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Example 2.40 LB UB

Corollary 2.27 (1) 0.4142 19.9737

Corollary 2.27 (2) 0.2766 60.9291

Theorem 2.26, γ = 1/4 0.3744 8.1415

Table 2.2. Lower and upper bounds for the zeros of pl(z) and pr(z).

Example 2.36 LB UB

Corollary 2.39 1(a) 0.6156 2.3655

Corollary 2.39 1(b) 0.6078 1.9656

Corollary 2.39 2(a) 0.6078 1.9319

Corollary 2.39 2(b) 0.6436 2.1355

Table 2.3. Lower and upper bounds for the zeros of pl(z) and pr(z).
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CHAPTER 3

LOCATION OF ZEROS OF POLYNOMIALS OVER A

QUATERNION DIVISION ALGEBRA

In this chapter, inclusion regions for the left and right eigenvalues of quaternionic ma-

trices are derived. The location of zeros of quaternionic polynomials is discussed via left

eigenvalues of the companion matrices. The present investigation shows that the obtained

ovals of Cassini are smaller than the existing ovals of Cassini for polynomials over the

complex field under certain conditions.

3.1. Introduction

The work carried out in this chapter is based on Theorems 2.3, 2.4, 2.8, and 2.11. In this

work, we discuss a theory for polynomials with quaternion coefficients. Thereafter we

move to study similar results for polynomials with complex coefficients. Then, inclusion

regions for the left and right eigenvalues of a quaternionic matrix are derived. Further,

the location of zeros of the quaternionic polynomials pl(z) and pr(z) (defined in (1.20)

and (1.21)) is discussed. The present work also focuses on inclusion regions for the zeros

of the quaternionic polynomials pl(z) and pr(z) by applying Theorem 2.3 and Theorem

2.8. It is found that Theorem 2.3 and Theorem 2.8 give two sets; the first one describes

the union of two balls and the second one is the union of a ball and an oval of Cassini.

These sets can be reduced into smaller sets which depend on a parameter γ ∈ [0, 1]. By

considering ω(z) = z2 + qm−1z, where qm−1, z ∈ H, we present two ovals of Cassini and

each contains all the zeros of the quaternionic polynomials pl(z) and pr(z). We show that

the inclusion regions obtained in the present work are comparatively smaller than the

inclusion regions developed in [37] under certain conditions.



3.2. Inclusion regions for left eigenvalues of quaternionic com-

panion matrices

The corresponding companion matrices to the simple monic polynomials pl(z) and pr(z)

are given by

Cpl :=


0 1 0
...

. . .

0 0 1

−q0 −q1 . . . −qm−1

 and Cpr := CT
pl
,

respectively. Left eigenvalues of Cpl are the zeros of the simple monic polynomial pl(z).

Also, left eigenvalues of Cpr are the zeros of the simple monic polynomial pr(z). However,

right eigenvalues of Cpl need not be zeros of the simple monic polynomial pl(z). Now

define ω(z) as:

ω(z) :=
∑
j∈S

αjz
j,(3.1)

where αj, z ∈ K, K ∈ {R,C,H}, and S is defined as the set of integers when A ∈Mn(K)

is invertible; otherwise S is the set of nonnegative integers. Throughout this chapter we

consider the following three cases:

Case 1: when αj, z ∈ H, and A ∈Mn(H),

Case 2: when αj ∈ R, z ∈ H, and A ∈Mn(H),

Case 3: when αj, z ∈ C, and A ∈Mn(C).

In general, if λ is a left eigenvalue of a matrix A ∈Mn(H), then λ2 is not necessarily a

left eigenvalue of A2. If λ is a left eigenvalue of the quaternionic matrix A with correspond-

ing eigenvector x ∈ Hn, then λ−1 is a left eigenvalue of A−1. However its corresponding

eigenvector may be different to x. On the other hand, if λ is a left eigenvalue of Cpl

with corresponding eigenvector y ∈ Hn, then λk is a left eigenvalue of Ck
pl

with the same

eigenvector y, where k is a nonzero integer. The above argument follows from Proposition

2.33. Now, we take Case 1 for the development of our theory.

Case 1. We consider ω(z) as:

ω(z) :=
∑
j∈S

αjz
j,(3.2)
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where αj, z ∈ H and S is defined as the set of integers when A ∈ Mn(H) is invertible;

otherwise S is the set of nonnegative integers. Then we have the following result.

Lemma 3.1. Let Cpl be a companion matrix of the simple monic polynomial pl(z) and

let ω(z) be defined in (3.2). If λ is a left eigenvalue of Cpl , then ω(λ) is a left eigenvalue

of ω(Cpl).

Proof. Let λ be a left eigenvalue of Cpl . Then Cplx = λx for some nonzero x ∈ Hn. So

ω(Cpl)x =

(∑
j∈S

αjC
j
pl

)
x.

From Proposition 2.33, we obtain

ω(Cpl)x =

(∑
j∈S

αjλ
j

)
x = ω(λ)x. �

We next present a generalization of Theorems 2.3 and 2.8 for a quaternionic companion

matrix as follows.

Theorem 3.2. Let Cpl := (cij) ∈ Mn(H) be a companion matrix of the simple monic

polynomial pl(z) and let γ ∈ [0, 1]. Then all the left eigenvalues of Cpl are located in the

union of n sets Bi(Cpl , ω) := {z ∈ H : |ω(z)−(ω(Cpl))ii| ≤ rγi (ω(Cpl)) c
1−γ
i (ω(Cpl))} (1 ≤

i ≤ n), i.e.,

Λl(Cpl) ⊆ B(Cpl , ω) := ∪ni=1Bi(Cpl , ω),

where ω(z) is defined in (3.2).

Proof. Let λ be a left eigenvalue of Cpl . Then from Lemma 3.1, ω(λ) is a left eigenvalue

of ω(Cpl). Then there exists some nonzero x ∈ Hn such that ω(Cpl)x = ω(λ)x. Let

x := [x1, . . . , xn]T ∈ Hn and let xt be an element of x such that |xt| ≥ |xi| ∀ i (1 ≤ i ≤ n).

Then |xt| > 0. From the t-th equation of ω(Cpl)x = ω(λ)x, we have

n∑
j=1

ω(Cpl)tjxj = ω(λ)xt.

Since |xt| ≥ |xi| ∀ i (1 ≤ i ≤ n), then

|ω(λ)− ω(Cpl)tt| ≤
n∑

j=1, j 6=t

|ω(Cpl)tj| := rt(ω(Cpl)).(3.3)
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From Lemma 2.1, λ is a left eigenvalue of AH and hence ω(λ) is a left eigenvalue of

(ω(Cpl))
H . Similarly, we have

|ω(λ)− ω(Cpl)tt| ≤
n∑

j=1, j 6=t

|ω(Cpl)jt|.

This implies

|ω(λ)− ω(Cpl)tt| ≤
n∑

j=1, j 6=t

|ω(Cpl)jt| := ct(ω(Cpl)).(3.4)

Then for any γ ∈ [0, 1], (3.3) and (3.4) give

|ω(λ)− ω(Cpl)tt|γ ≤ rγt (ω(Cpl)),(3.5)

as well as

|ω(λ)− ω(Cpl)tt|1−γ ≤ c1−γ
t (ω(Cpl)).(3.6)

Combining (3.5) and (3.6), we obtain

|ω(λ)− ω(Cpl)tt| ≤ rγt (ω(Cpl)) c
1−γ
t (ω(Cpl)). �

From Theorems 2.3 and 3.2, it is clear that all the left eigenvalues of Cpl are contained

in T (Cpl) ∩B(Cpl , ω).

Theorem 3.3. Let Cpl := (cij) ∈ Mn(H) be a companion matrix of the simple monic

polynomial pl(z) and let γ ∈ [0, 1]. Then all the left eigenvalues of Cpl are located in

the union of n(n−1)
2

sets Pij(Cpl , ω) := {z ∈ H : |ω(z) − (ω(Cpl))ii| |ω(z) − (ω(Cpl))jj| ≤
rγi (ω(Cpl)) r

γ
j (ω(Cpl)) c

1−γ
i (ω(Cpl)) c

1−γ
j (ω(Cpl))} (1 ≤ i, j ≤ n; i 6= j), i.e.,

Λl(Cpl) ⊆ P (Cpl , ω) := ∪ni,j=1
i 6=j

Pij(Cpl , ω),

where ω(z) is defined in (3.2).

Proof. Let λ be a left eigenvalue of Cpl . Then by Lemma 3.1, ω(λ) is a left eigenvalue

of ω(Cpl). Then there exists some nonzero x ∈ Hn such that ω(Cpl)x = ω(λ)x. Let

x := [x1, . . . , xn]T ∈ Hn and let xs be an element of x such that |xs| ≥ |xi| ∀ i (1 ≤ i ≤ n).

Then |xs| > 0. Clearly, if all the other elements of x are zero, then the result holds.
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Now, suppose that there are at least two nonzero elements of x, and let xt be an

element with second largest absolute value, i.e., |xs| ≥ |xt| ≥ |xi| ∀ i (1 ≤ i ≤ n, i 6= s),

and xs 6= 0 6= xt. From the s-th equation of ω(Cpl)x = ω(λ)x, we have

n∑
j=1

ω(Cpl)sjxj = ω(λ)xs,

which implies

(ω(λ)− ω(Cpl)ss)xs =
n∑

j=1, j 6=s

ω(Cpl)sjxj.

Thus

(3.7) |ω(λ)− ω(Cpl)ss| ≤
( |xt|
|xs|

)
rs(ω(Cpl)).

Similarly, from the t-th equation of ω(Cpl)x = ω(λ)x, we obtain

(3.8) |ω(λ)− ω(Cpl)tt| ≤
( |xs|
|xt|

)
rt(ω(Cpl)).

Combining (3.7) and (3.8), we have

|ω(λ)− ω(Cpl)ss| |ω(λ)− ω(Cpl)tt| ≤ rs(ω(Cpl)) rt(ω(Cpl))(3.9)

(1 ≤ s, t ≤ n, s 6= t).

Now, from Lemma 2.1, λ is a left eigenvalue of CH
pl

and hence ω(λ) is a left eigenvalue

of (ω(Cpl))
H . Similarly, we can obtain

|ω(λ)− ω(Cpl)ss| |ω(λ)− ω(Cpl)tt| ≤ cs(ω(Cpl)) ct(ω(Cpl))(3.10)

(1 ≤ s, t ≤ n, s 6= t).

For any γ ∈ [0, 1], (3.9) and (3.10) yield

|ω(λ)− ω(Cpl)ss|γ |ω(λ)− ω(Cpl)tt|γ ≤ rγs (ω(Cpl)) r
γ
t (ω(Cpl)),(3.11)

and

|ω(λ)− ω(Cpl)ss|1−γ |ω(λ)− ω(Cpl)tt|1−γ ≤ c1−γ
s (ω(Cpl)) c

1−γ
t (ω(Cpl)).(3.12)

Combining (3.11) and (3.12), we obtain

|ω(λ)− ω(Cpl)ss| |ω(λ)− ω(Cpl)tt| ≤ rγs (ω(Cpl)) r
γ
t (ω(Cpl)) c

1−γ
s (ω(Cpl)) c

1−γ
t (ω(Cpl)).

Hence, all the left eigenvalues of A are located in the union of n(n−1)
2

sets Pij(Cpl , ω) (1 ≤
i, j ≤ n, i 6= j). �
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From Theorems 2.8 and 3.3, we conclude that all the left eigenvalues of Cpl are con-

tained in K(Cpl) ∩ P (Cpl , ω).

In general, similar quaternionic matrices may not have the same left eigenvalues,

see, [62, Example 3.3]. However, if A ∈Mn(H) and W is any invertible real matrix, then

A and WAW−1 have the same left eigenvalues (proved in Chapter 2).

Also, in general, ω(WAW−1) 6= Wω(A)W−1, where W is any quaternionic invertible

matrix. For example, let

A =

i + j k

j 1− j

 ,
where W =

j 0

0 k

 and W−1 =

−j 0

0 −k

 . Suppose ω(z) = z2 + (j + k)z. Then

ω(WAW−1) 6= Wω(A)W−1.

However, if W is any invertible real matrix, then we have the following proposition.

Proposition 3.4. Let A ∈Mn(H) and let W be a real invertible matrix. Then ω(WAW−1) =

Wω(A)W−1, where ω(z) be defined in (3.2).

Proof. We have

ω(WAW−1) =
∑
j∈S

αj(WAW−1)j.

Since αjW = Wαj ∀ j (0 ≤ j ≤ m), α0WW−1 = Wα0W
−1, and (Wα0W

−1)t = Wαt0W
−1

(t is a nonzero integer), we obtain

ω(WAW−1) = W

(∑
j∈S

αjA
j

)
W−1 = Wω(A)W−1. �

Remark 3.5. From Proposition 2.22, we observe that left eigenvalues of quaternionic

matrices A and WAW−1 are same, where W is any invertible real matrix. Applying

Theorems 2.3 and 2.8 to WAW−1 instead of A, we obtain different and potentially smaller

inclusion regions.

Remark 3.6. By applying Theorems 3.2 and 3.3 to ω(WCplW
−1) = Wω(Cpl)W

−1 in-

stead of ω(Cpl), we obtain different and potentially sharper inclusion regions.

Remark 3.7. Similar results can be obtained for the quaternionic companion matrix Cpr

as well.
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3.3. Inclusion regions for right eigenvalues of quaternionic ma-

trices

Case 2. We consider ω(z) as:

ω(z) :=
∑
j∈S

αjz
j,(3.13)

where αj ∈ R, z ∈ H and S is defined as the set of integers when A ∈Mn(H) is invertible;

otherwise S is the set of nonnegative integers. Thus, an extension of the Gerschgorin type

theorem [62, Theorem 7] for right eigenvalues of a quaternionic matrix to the quaternionic

matrix ω(A) is as follows.

Theorem 3.8. Let A = (aij) ∈ Mn(H). For every right eigenvalue λ of A there exists

a nonzero quaternion β such that β−1ω(λ)β (which is a right eigenvalue of ω(A)) is

contained in the union of n sets

Bi(A, ω) := {z ∈ H : |ω(z)− (ω(A))ii| ≤ ri(ω(A))} (1 ≤ i ≤ n), i.e.,

{z−1ω(λ)z : 0 6= z ∈ H} ∩ ∪ni=1Bi(A, ω) 6= ∅,

where ω(z) is defined in (3.13).

Proof. Let λ be a right eigenvalue of A. Then, ω(λ) is a right eigenvalue of the matrix

ω(A), so that there exists some nonzero x ∈ Hn such that ω(A)x = xω(λ). Let x :=

[x1, . . . , xn]T ∈ Hn and let xt be an element of x such that |xt| ≥ |xi| ∀ i (1 ≤ i ≤ n).

Then |xt| > 0. Thus from ω(A)x = xw(λ), we have

(ω(A))ttxt +
n∑

j=1, j 6=t

(ω(A))tjxj = xtω(λ).

Since xt 6= 0, consider ρ ∈ H such that xtλ = ρxt. Then xtλ
j = ρjxt, where j ∈ S; the set

of integers when A ∈ Mn(H) is invertible; otherwise S is the set of nonnegative integers.

Thus

(ω(A))ttxt +
n∑

j=1, j 6=t

(ω(A))tjxj = ω(ρ)xt,

which implies

(ω(ρ)− ω(A)tt)xt =
n∑

j=1, j 6=t

(ω(A))tjxj.
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Since |xt| ≥ |xi| ∀ i (1 ≤ i ≤ n), we obtain

|ω(ρ)− (ω(A))tt| ≤
n∑

j=1, j 6=t

|(ω(A))tj| := rt(ω(A)). �

Remark 3.9. It is known that if λ is a right eigenvalue of A ∈ Mn(H), then λk (k is an

integer when A is nonsingular, whereas k is a nonzero positive integer when A is singular)

is a right eigenvalue of Ak. Thus similar results to Theorems 3.2 and 3.3 can be obtained

for right eigenvalues of A = (aij) ∈ Mn(H), where (ω(A))ii ∈ R for all i (1 ≤ i ≤ n)

with ω(z) as defined in (3.13). Since similar quaternionic matrices have the same right

eigenvalues. Thus we can obtain potentially sharper inclusion sets by applying similar

results to the matrix WAW−1 or ω(WAW−1) = Wω(A)W−1, where W is any invertible

real matrix.

3.4. Inclusion regions for zeros of quaternionic polynomials

Inclusion regions for zeros of the simple monic polynomials pl(z) and pr(z) are discussed

in this section. We first define the following notation:

ξ
(γ)
1 := largest element of the set

{|q0|1−γ, (1 + |q1|)1−γ, . . . , (1 + |qm−2|)1−γ},

ξ
(γ)
2 := second largest element of the set

{|q0|1−γ, (1 + |q1|)1−γ, . . . , (1 + |qm−2|)1−γ},

ξ
(γ)
3 :=

(
m−2∑
j=0

|qj|
)γ

, and ξ
(γ)
4 :=

(
m−3∑
j=0

|qj|
)γ

,

where γ ∈ [0, 1].

Then by applying Theorems 2.3 and 2.8 to Cpl , we have the following result.

Theorem 3.10. Let pl(z) be a simple monic polynomial over H of degree m and let

γ ∈ [0, 1]. Then all the zeros of pl(z) are contained in each of the following sets:

T (γ) := {z ∈ H : |z| ≤ ξ
(γ)
1 } ∪ {z ∈ H : |z + qm−1| ≤ ξ

(γ)
3 }, and

K(γ) := {z ∈ H : |z| ≤
√
ξ

(γ)
1 ξ

(γ)
2 } ∪ {z ∈ H : |z| |z + qm−1| ≤ ξ

(γ)
1 ξ

(γ)
3 }.
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Each of sets T (γ) is the union of two balls, whereas the set K(γ) for each γ ∈ [0, 1] is

the union of a ball and an oval of Cassini. Also, K(γ) ⊆ T (γ) ∀ γ ∈ [0, 1] which was proved

in Theorem 2.12.

Case 1. We consider ω(z) as:

ω(z) :=
∑
j∈S

αjz
j,(3.14)

where αj, z ∈ H and S is defined as the set of integers when A ∈ Mn(H) is invertible;

otherwise S is the set of nonnegative integers. Now, we take ω(z) as follows:

ω(z) := z2 + qm−1z.

To find ω(Cpl), we first construct C2
pl

;

C2
pl

=



0 0 1
. . .

1

−q0 −q1 −q2 . . . −qm−1

qm−1q0 qm−1q1 − q0 qm−1q2 − q1 . . . q2
m−1 − qm−2


.

Therefore, we obtain

C2
pl

+ qm−1Cpl =



0 qm−1 1

0 0 qm−1
. . .

0 0 0
. . . 1

qm−1 1

−q0 −q1 −q2 . . . −qm−2 0

0 −q0 −q1 . . . −qm−3 −qm−2


.

Throughout this chapter for γ ∈ [0, 1], we adopt the following notation.

β
(γ)
1 := |q0|(1−γ) (1 + |qm−1|)γ,

β
(γ)
2 := (|q0|+ |q1|+ |qm−1|)(1−γ) (1 + |qm−1|)γ,

β
(γ)
j := (|qj−2|+ |qj−1|+ |qm−1|+ 1)(1−γ) (1 + |qm−1|)γ; (3 ≤ j ≤ m− 2),

β
(γ)
m−1 := ξ

(γ)
4 (|qm−1|+ |qm−3|+ 1)(1−γ).
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(3.15)

{ η
(γ)
1 and η

(γ)
2 be the largest and second largest elements of a setS,

whereS := {β(γ)
1 , β

(γ)
2 , . . . , β

(γ)
m−2},

η
(γ)
3 = 1

2

(
|qm−2|+

√
|qm−2|2 + 4η

(γ)
1 β

(γ)
m−1

)
.

By applying Theorem 3.2 to ω(Cpl), we have the following theorem which derives inclusion

regions for zeros of pl(z).

Theorem 3.11. Let pl(z) be a simple monic polynomial over H of degree m and let

γ ∈ [0, 1]. Then all the zeros of pl(z) are contained in G(γ)
1 ∪ G(γ)

2 , where

G(γ)
1 := {z ∈ H : |ω(z)| ≤ η

(γ)
1 },

G(γ)
2 := {z ∈ H : |ω(z) + qm−2| ≤ β

(γ)
m−1},

and ω(z) := z2 + qm−1z with z, qm−1 ∈ H.

Proof. Applying Theorem 3.2 to ω(Cpl) and using η
(γ)
1 and β

(γ)
m−1, we have the desired

result. �

The union of G(γ)
1 and G(γ)

2 can easily be enclosed in one of the two ovals of Cassini

which is as follows.

Theorem 3.12. Let pl(z) be a simple monic polynomial over H of degree m and let

γ ∈ [0, 1]. Then all the zeros of pl(z) are contained in each of the following ovals of

Cassini:

K(γ)
1 := {z ∈ H : |z| |z + qm−1| ≤ max{η(γ)

1 , |qm−2|+ β
(γ)
m−1}},

K(γ)
2 := {z ∈ H : |z2 + qm−1z + qm−2| ≤ max{|qm−2|+ η

(γ)
1 , β

(γ)
m−1}}.

Proof. To prove the theorem, we prove the following conditions:

G(γ)
1 ∪ G(γ)

2 ⊆ K(γ)
1 and G(γ)

1 ∪ G(γ)
2 ⊆ K(γ)

2 .

Clearly G(γ)
1 ⊆ K(γ)

1 . Consider z ∈ G(γ)
2 implies |z2 + qm−1z + qm−2| ≤ β

(γ)
m−1. Then |z2 +

qm−1z| ≤ |qm−2| + β
(γ)
m−1. This implies z ∈ K(γ)

1 . Hence G(γ)
2 ⊆ K(γ)

1 . Thus from the above,

we have G(γ)
1 ∪ G(γ)

2 ⊆ K(γ)
1 .

For the 2nd part: It is clear that G(γ)
2 ⊆ K(γ)

2 . Let z ∈ G(γ)
1 . Then |z2 + qm−1z| ≤ η

(γ)
1 .

This shows that |z2 + qm−1z + qm−2| − |qm−2| ≤ η
(γ)
1 . This implies |z2 + qm−1z + qm−2| ≤

|qm−2|+ η
(γ)
1 . Hence z ∈ K(γ)

2 implies G(γ)
1 ⊆ K(γ)

2 . Therefore, G(γ)
1 ∪ G(γ)

2 ⊆ K(γ)
2 . �
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We give the following example to illustrate our theory.

Example 3.13. Consider the following quaternionic polynomial pl(z):

pl(z) = z6 + jz5 + iz4 − z2 − jz − i.

The zeros of pl(z) are given in [19] as follows:

ZH(pl) = {1, −1, [i],
1

2
(1− i− j− k),

1

2
(−1 + i− j− k)}.

The corresponding companion matrix to pl(z) is given as

Cpl =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

i j 1 0 −i j


.

We have the following expressions:

β
(γ)
1 = 2γ,(3.16)

β
(γ)
2 = β

(γ)
4 = β

(γ)
5 = η

(γ)
2 = 31−γ 2γ,(3.17)

β
(γ)
3 = η

(γ)
1 = 41−γ 2γ,(3.18)

η
(γ)
3 =

1

2

[
1 +
√

1 + 25−2γ 3γ
]
.(3.19)

Substituting γ = 1/2 in Theorem 3.12, then we have the following ovals of Cassini:

K(1/2)
1 := {z ∈ H : |z| |z + j| ≤ 3.4495},

K(1/2)
2 := {z ∈ H : |z2 + jz + i| ≤ 3.8284}.

From the above, it is clear that all the zeros of pl(z) are contained in the ovals of Cassini

K(1/2)
1 and K(1/2)

2 .

We now present the following inclusion regions for zeros of pl(z) by applying Theorem

3.3.

65



Theorem 3.14. Let pl(z) be a simple monic polynomial over H of degree m and let

γ ∈ [0, 1]. Then all the zeros of pl(z) are contained in Γ
(γ)
1 ∪ Γ

(γ)
2 ∪ Γ

(γ)
3 , where

Γ
(γ)
1 := {z ∈ H : |ω(z)| ≤

√
η

(γ)
1 η

(γ)
2 },

Γ
(γ)
2 := {z ∈ H : |ω(z) + qm−2| ≤ ξ

(γ)
4

√
β

(γ)
m−1},

Γ
(γ)
3 := {z ∈ H : |ω(z)| |ω(z) + qm−2| ≤ η

(γ)
1 β

(γ)
m−1},

and ω(z) = z2 + qm−1z with z, qm−1 ∈ H.

Proof. Applying Theorem 3.3 to ω(z), where ω(z) = z2 + qm−1z and from the definitions

of η
(γ)
1 , η

(γ)
2 , ξ

(γ)
4 , and β

(γ)
m−1, we have the desired result. �

Before deriving next inclusion regions for the zeros of the simple monic polynomial

pl(z), we require the following lemma.

Lemma 3.15. Let Υ1,Υ2, and Υ3 be the three sets such that

Υ1 := {z ∈ H : |z| |z + a| ≤ δ}, Υ2 := {z ∈ H : |z|2 − |a| |z| ≤ δ}, and

Υ3 := {z ∈ H : |z| ≤ 1

2
(|a|+

√
|a|2 + 4δ)},

where a ∈ H and δ > 0. Then Υ1 ⊆ Υ2 := Υ3.

Proof. Consider z ∈ Υ1. Then, |z||z+ a| ≤ δ implies |z|2− |a||z| ≤ δ. Hence z ∈ Υ2. This

shows Υ1 ⊆ Υ2. Next, we assume that z ∈ Υ2 ⇔ |z|2 − |a||z| ≤ δ, then

(3.20)

[
|z| − 1

2

(
|a|+

√
|a|2 + 4δ

)] [
|z| − 1

2

(
|a| −

√
|a|2 + 4δ

)]
≤ 0.

Since |z| ≥ 1
2

(
|a| −

√
|a|2 + 4δ

)
, then from (3.20), we have

|z| ≤ 1

2

(
|a|+

√
|a|2 + 4δ

)
.

Hence z ∈ Υ3. Thus Υ2 = Υ3. �

We give the following inclusion sets for the zeros of the quaternionic polynomial pl(z).

Theorem 3.16. Let pl(z) be a simple monic polynomial over H of degree m and let

γ ∈ [0, 1]. Then all the zeros of pl(z) are contained in each of the following ovals of

Cassini:

Ω
(γ)
1 := {z ∈ H : |z| |z + qm−1| ≤ max{

√
η

(γ)
1 η

(γ)
2 , η

(γ)
3 , |qm−2|+

√
β

(γ)
m−1}},
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Ω
(γ)
2 := {z ∈ H : |z2 + qm−1z + qm−2| ≤ max{|qm−2|+

√
η

(γ)
1 η

(γ)
2 , η

(γ)
3 ,

√
β

(γ)
m−1}},

where η
(γ)
1 , η

(γ)
2 , and η

(γ)
3 are defined in (3.15).

Proof. To prove the theorem, we prove the following conditions:

Γ
(γ)
1 ∪ Γ

(γ)
2 ∪ Γ

(γ)
3 ⊆ Ω

(γ)
1 and Γ

(γ)
1 ∪ Γ

(γ)
2 ∪ Γ

(γ)
3 ⊆ Ω

(γ)
2 .

Clearly Γ
(γ)
1 ⊆ Ω

(γ)
1 . Consider z ∈ Γ

(γ)
2 , this implies |z2 + qm−1z + qm−2| ≤ β

(γ)
m−1. This

shows that |z2 + qm−1z| ≤ |qm−2|+ β
(γ)
m−1. Then z ∈ Ω

(γ)
1 . Hence Γ

(γ)
2 ⊆ Ω

(γ)
1 .

Next we assume z ∈ Γ
(γ)
3 . This implies |ω(z)| |ω(z) + qm−2| ≤ η

(γ)
1 β

(γ)
m−1. Hence

(|ω(z)|2 − |ω(z)||qm−2|) ≤ η
(γ)
1 β

(γ)
m−1. Now, from Lemma 3.15, we obtain |ω(z)| ≤ η

(γ)
3 .

Hence z ∈ Ω
(γ)
1 . Thus from the above, we have Γ

(γ)
1 ∪ Γ

(γ)
2 ∪ Γ

(γ)
3 ⊆ Ω

(γ)
1 .

On the other hand, it is clear that Γ
(γ)
2 ⊆ Ω

(γ)
2 . Considering z ∈ Γ

(γ)
1 it implies

|z2 + qm−1z| ≤
√
η

(γ)
1 η

(γ)
2 . Then we write |z2 + qm−1z + qm−2 − qm−2| ≤

√
η

(γ)
1 η

(γ)
2 . This

shows |z2 + qm−1z + qm−2| ≤ |qm−2|+
√
η

(γ)
1 η

(γ)
2 which implies z ∈ Ω

(γ)
2 . Thus Γ

(γ)
1 ⊆ Ω

(γ)
2 .

Now, let z ∈ Γ
(γ)
3 . Then |ω(z)| |ω(z) + qm−2| ≤ η

(γ)
1 β

(γ)
m−1. Thus

(|ω(z) + qm−2| − |qm−2|)|ω(z) + qm−2| ≤ η
(γ)
1 β

(γ)
m−1.

From the above discussion and by Lemma 3.15, we have

|ω(z) + qm−2| ≤ η
(γ)
3 .

Thus, we obtain z ∈ Ω
(γ)
2 . Therefore Γ

(γ)
1 ∪ Γ

(γ)
2 ∪ Γ

(γ)
3 ⊆ Ω

(γ)
2 . �

To illustrate Theorem 3.16, we take Example 3.13. Substituting γ = 1/2 in Theorem

3.16, we have the following ovals of Cassini from Example 3.13:

Ω
(1/2)
1 = {z ∈ H : |z| |z + j| ≤ 6.1723}, and

Ω
(1/2)
2 = {z ∈ H : |z2 + jz + i| ≤ 7.1723}.

Here it is also clear that all the zeros of pl(z) (defined in Example 3.13) are located in the

ovals of Cassini Ω
(1/2)
1 and Ω

(1/2)
2 .

Theorems 3.12 and 3.16 give the following corollary.

Corollary 3.17. Let pl(z) be a simple monic polynomial over H of degree m. Then all

the zeros of pl(z) are contained in ovals of Cassini K(γ)
1 ∩Ω

(γ)
1 ∀γ ∈ [0, 1] and also in ovals

of Cassini K(γ)
2 ∩ Ω

(γ)
2 ∀ γ ∈ [0, 1].
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Inclusion regions for the zeros of the quaternionic polynomial pr(z) : Since left

eigenvalues of CT
pl

= Cpr are the zeros of the simple monic polynomial pr(z). We also need

some machinery for the development of inclusion regions for the zeros of pr(z). Now, let

us take ω(z) as

ω(z) := z2 + qm−1 z,

where z, qm−1 ∈ H. To find ω3(Cpl), we first construct Cpl
2

:

Cpl
2

=



0 0 1
. . .

1

−q0 −q1 −q2 . . . −qm−1

qm−1 q0 qm−1 q1 − q0 qm−1 q2 − q1 . . . qm−1
2 − qm−2


.

Thus, we have

Cpl
2

+ qm−1 Cpl =



0 qm−1 1

0 0 qm−1
. . .

0 0 0
. . . 1

qm−1 1

−q0 −q1 −q2 . . . −qm−2 0

0 −q0 −q1 . . . −qm−3 −qm−2


.

It is known from Lemma 2.1 that if λ is a left eigenvalue of a quaternionic matrix A,

then λ is a left eigenvalue of AH . Thus if λ is a left eigenvalue of the companion matrix

Cpr , then λ is a left eigenvalue of CH
pr = Cpl . Therefore λ

2
+ qm−1 λ is a left eigenvalue of

Cpl
2

+ qm−1 Cpl .

Remark 3.18. Almost similar results can be obtained for the zeros of the simple monic

polynomial pr(z) with ω(z) := z2 + qm−1 z by using the ideas given in this section for the

zeros of the simple monic polynomial pl(z).

3.4.1. Inclusion regions for zeros of complex polynomials

Case 3. Let us consider ω(z) as:

ω(z) :=
∑
j∈S

αjz
j,(3.21)
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where αj, z ∈ C and S is defined as the set of integers when A ∈ Mn(C) is invertible;

otherwise S is the set of nonnegative integers. Throughout this section, we use the

polynomial ω(z) (defined in (3.21)).

We take pl(z) and pr(z) over the complex field. Then pl(z) = pr(z) = p(z) (say).

Hence the complex polynomial is defined as

p(z) := qmz
m + qm−1z

m−1 + · · ·+ q1z + q0,(3.22)

where qj, z ∈ C (0 ≤ j ≤ m). The polynomial (3.22) is called monic if qm = 1. Then, the

corresponding companion matrix of the monic polynomial p(z) is given by

Cp :=


0 1 0
...

. . .

0 0 1

−q0 −q1 . . . −qm−1

 .

Remark 3.19. Similar results to Theorems 2.3 and 2.8 can be obtained in the case of

complex matrices.

Remark 3.20. Similar results to Theorems 3.2 and 3.3 can be obtained in the case of

complex matrices with ω(z).

Remark 3.21. Similar results to Theorems 3.10, 3.11, 3.12, 3.14, and 3.16 can be obtained

for the zeros of the complex monic polynomial p(z).

Now, we have the following corollary for the zeros of complex polynomials from Corol-

lary 3.17.

Corollary 3.22. Let p(z) be a monic polynomial over C of degree m. Then all the zeros

of p(z) are contained in oval of Cassini K(γ)
1 ∩Ω

(γ)
1 ∀γ ∈ [0, 1] and also in oval of Cassini

K(γ)
2 ∩ Ω

(γ)
2 ∀ γ ∈ [0, 1].

We now state the following results from the above remarks which are available in the

literature.
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• Assuming γ = 0 in Theorem 3.10 for the case of complex monic polynomial p(z),

we observe that all the zeros of p(z) are contained in each of the following sets:

T (0) := {z ∈ C : |z| ≤ ξ
(0)
1 } ∪ {z ∈ C : |z + qm−1| ≤ 1},

K(0) := {z ∈ C : |z| ≤
√
ξ

(0)
1 ξ

(0)
2 } ∪ {z ∈ C : |z| |z + qm−1| ≤ ξ

(0)
1 }.

This can be seen in [37, Theorem 3.1].

• Substituting γ = 0 in Theorem 3.11 for the case of complex monic polynomial p(z),

we obtain that all the zeros of p(z) are contained in G(0)
1 ∪ G(0)

2 , where

G(0)
1 := {z ∈ C : |ω(z)| ≤ η

(0)
1 }, G(0)

2 := {z ∈ C : |ω(z) + qm−2| ≤ β
(0)
m−1}

with ω(z) := z2 + qm−1z, qm−1, z ∈ C. This can be found in [37, Theorem 3.2].

• Let γ = 0 in Theorem 3.12 for the case of complex monic polynomial p(z), we see

that all the zeros of p(z) are contained in the oval of Cassini defined by

K(0)
1 := {z ∈ C : |z| |z + qm−1| ≤ max{η(0)

1 , |qm−2|+ β
(0)
m−1}},

and also in the oval of Cassini defined as

K(0)
2 := {z ∈ C : |z2 + qm−1z + qm−2| ≤ max{|qm−2|+ η

(0)
1 , β

(0)
m−1}}.

This can be seen in [37, Theorem 3.3].

• Assuming γ = 0 in Theorem 3.14 for the case of complex monic polynomial p(z),

we obtain that all the zeros of p(z) are contained in Γ
(0)
1 ∪ Γ

(0)
2 ∪ Γ

(0)
3 , where

Γ
(0)
1 := {z ∈ C : |ω(z)| ≤

√
η

(0)
1 η

(0)
2 },

Γ
(0)
2 := {z ∈ C : |ω(z) + qm−2| ≤

√
β

(0)
m−1},

Γ
(0)
3 := {z ∈ C : |ω(z)| |ω(z) + qm−2| ≤ η

(0)
1 β

(0)
m−1}

with ω(z) := z2 + qm−1z, qm−1, z ∈ C. This can be found in [37, Theorem 3.4].

• Assuming γ = 0 in Theorem 3.16, then all the zeros of the complex monic polyno-

mial p(z) are contained in the oval of Cassini defined as

Ω
(0)
1 := {z ∈ C : |z| |z + qm−1| ≤ max{

√
η

(0)
1 η

(0)
2 , η

(0)
3 , |qm−2|+

√
β

(0)
m−1}},

and also in the oval of Cassini given by

Ω
(0)
2 := {z ∈ C : |z2 + qm−1z + qm−2| ≤ max{|qm−2|+

√
η

(0)
1 η

(0)
2 , η

(0)
3 ,

√
β

(0)
m−1}},
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where η
(0)
3 := 1

2

(
|qm−2|+

√
|qm−2|2 + 4η

(0)
1 β

(0)
m−1

)
. This is stated in [37, Theorem

3.5].

Comparisons with the existing results: The inclusion regions T (0), K(0), G
(0)
1 , G

(0)
2 ,

K(0)
1 ,K(0)

2 ,Γ
(0)
1 , Γ

(0)
2 , Γ

(0)
3 ,Ω

(0)
1 ,Ω

(0)
2 are also given in [37]. Now, we compare these inclusion

regions with T (γ), G
(γ)
1 , G

(γ)
2 , K(γ)

1 , K(γ)
2 ,Γ

(γ)
1 ,Γ

(γ)
2 ,Γ

(γ)
3 Ω

(γ)
1 ,Ω

(γ)
2 ∀ γ ∈ [0, 1], under certain

conditions which are as follows:

(a) Let ξ
(γ)
3 ≤ 1 ∀γ ∈ [0, 1]. Since ξ

(γ)
1 ≤ ξ

(0)
1 ∀ γ ∈ [0, 1], then T (γ) ⊆ T (0) ∀γ ∈ [0, 1].

Further, we have seen that ξ
(γ)
1 ξ

(γ)
3 ≤ ξ

(0)
1 and ξ

(γ)
2 ≤ ξ

(0)
2 ∀ γ ∈ [0, 1], then K(γ) ⊆

K(0) ∀ γ ∈ [0, 1].

(b) If 1 + |qm−1| ≤ η
(0)
1 , then η

(γ)
1 ≤ η

(0)
1 ∀ γ ∈ [0, 1]. Further, if ξ

(γ)
4 ≤ 1 ∀ γ ∈ [0, 1],

then β
(γ)
m−1 ≤ β

(0)
m−1. Consequently, G(γ)

1 ⊆ G(0)
1 and G(γ)

2 ⊆ G(0)
2 ∀ γ ∈ [0, 1].

(c) Considering 1 + |qm−1| ≤ η
(0)
1 and ξ

(γ)
4 ≤ 1 ∀γ ∈ [0, 1], then max{η(γ)

1 , |qm−2| +
β

(γ)
m−1} ≤ max{η(0)

1 , |qm−2| + β
(0)
m−1}, and max{|qm−2| + η

(γ)
1 , β

(γ)
m−1} ≤ max{|qm−2| +

η
(0)
1 , β

(0)
m−1} ∀ γ ∈ [0, 1]. Thus K(γ)

1 ⊆ K(0)
1 and K(γ)

2 ⊆ K(0)
2 ∀ γ ∈ [0, 1].

(d) Supposing 1 + |qm−1| ≤ η
(0)
1 and 1 + |qm−1| ≤ η

(0)
2 , then η

(γ)
1 ≤ η

(0)
1 and η

(γ)
2 ≤

η
(0)
2 ∀ γ ∈ [0, 1] . Consequently,

√
η

(γ)
1 η

(γ)
2 ≤

√
η

(0)
1 η

(0)
2 ∀ γ ∈ [0, 1]. Also if ξ

(γ)
4 ≤

1 ∀ γ ∈ [0, 1], then ξ
(γ)
4

√
β

(γ)
m−1 ≤

√
β

(0)
m−1 and η

(γ)
1 β

(γ)
m−1 ≤ η

(0)
1 β

(0)
m−1. Hence Γ

(γ)
1 ⊆

Γ
(0)
1 , Γ

(γ)
2 ⊆ Γ

(0)
2 , and Γ

(γ)
3 ⊆ Γ

(0)
3 ∀ γ ∈ [0, 1].

(e) If 1 + |qm−1| ≤ η
(0)
1 , then η

(γ)
1 ≤ η

(0)
1 . Similarly, if ξ

(γ)
4 ≤ 1 ∀ γ ∈ [0, 1], then β

(γ)
m−1 ≤

β
(0)
m−1. Consequently, η

(γ)
3 ≤ η

(0)
3 . Hence Ω

(γ)
1 ⊆ Ω

(0)
1 and Ω

(γ)
2 ⊆ Ω

(0)
2 ∀ γ ∈ [0, 1].

We see the following observations:

• If 1 + |qm−1| ≤ η
(0)
1 and ξ

(γ)
4 ≤ 1 ∀γ ∈ [0, 1], then K(γ)

1 ⊆ K(0)
1 , K(γ)

2 ⊆ K(0)
2 , Ω

(γ)
1 ⊆

Ω
(0)
1 , and Ω

(γ)
2 ⊆ Ω

(0)
2 ∀ γ ∈ [0, 1].

• If ξ
(γ)
3 ≤ (1+ρ)γ ∀ γ ∈ (0, 1], then our inclusion regions K(γ) ∀γ ∈ (0, 1] are sharper

than the inclusion region K(0) [37, Theorem 3.1].

• If ξ
(γ)
4 ≤ (1 + kρ)γ ∀ γ ∈ (0, 1]; k = 2, 3, then ovals of Cassini K(γ)

1 ∩Ω
(γ)
1 ∀γ ∈ (0, 1]

and K(γ)
2 ∩Ω

(γ)
2 ∀γ ∈ (0, 1] are sharper than the ovals of Cassini [37, Corollary 3.1].

Finally, we compare our results with A. Melman’s results given in [37]. Then each of

the sets T (γ) and K(γ) (for the case of complex polynomials) can be shown that they

are smaller than the sets T (0) and K(0), respectively. For example, consider the complex
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polynomial

p(z) = z5 + (7− 15i)z4 + (14 + 7i)z3 + 3z2 + 35z + 2 + 3i.(3.23)

T (0) = {z ∈ C : |z| ≤ 35} ∪ {z ∈ C : |z + 7− 15i| ≤ 1},

K(0) = {z ∈ C : |z| ≤
√

(35) (16.6526)} ∪ {z ∈ C : |z| |z + 7− 15i| ≤ 35},

T (γ) = {z ∈ C : |z| ≤ (35)1−γ} ∪ {z ∈ C : |z + 7− 15i| ≤ (58.2580)γ},

K(γ) = {z ∈ C : |z| ≤
√

(35)1−γ (16.6526)1−γ} ∪ {z ∈ C : |z| |z + 7− 15i| ≤ χ},

where χ = (35)1−γ (58.2580)γ.

−40 −20 0 20 40

−30

−20

−10

0

10

20

30

X−axis

Y
−
a
x
i
s

(a) � T (0), � T (1/2);

the sets T (0) and T (1/2) are

shaded in green and blue

color, respectively. The

white dots are the zeros of

p(z).
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(b) � K(0), � K(1/2);
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yellow color, respectively.

The star symbols are repre-

sented as the zeros of p(z).

Figure 3.1. Location of zeros of p(z).
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CHAPTER 4

LOCALIZATION THEOREMS FOR QUATERNIONIC

MATRIX PENCILS

In this chapter, a general framework for defining and analyzing the generalized right eigen-

values of a quaternionic matrix pencil are developed. Inclusion regions for the generalized

right eigenvalues of a quaternionic matrix pencil and their applications are presented.

4.1. Introduction and preliminaries

Quaternionic matrix pencils and their corresponding canonical forms have been derived

in [46,47]. In this chapter, we derive localization theorems for generalized right eigenvalues

of a quaternionic matrix pencil with some properties. Location of zeros of quaternionic

polynomials is presented.

Throughout this chapter, we adopt the following basic facts: Let L1(Mn(H)) be the

space of matrix pencils over a quaternion division algebra. L1 ∈ L1(Mn(H)) is defined as

L1(λ) := A+ λB,(4.1)

where A,B ∈Mn(H) and λ commutes with the quaternionic matrices. This matrix pencil

over a quaternion division algebra can be found in [33,46–48].

Now we define generalized right eigenvalue of L1 ∈ L1(Mn(H)) of the form (4.1) which

is as follows.

Definition 4.1. Let L1 ∈ L1(Mn(H)) be as in (4.1) and let µ ∈ H. Then µ is called a

generalized right eigenvalue of the matrix pencil L1 if

Ax = Bxµ

for some nonzero x ∈ Hn. Here x is called the right eigenvector corresponding to the

generalized right eigenvalue µ. The set of generalized right eigenvalues of L1 is called

right spectrum of L1, denoted by Λr (L1) .



Regular matrix pencil over a quaternion division algebra is defined as follows.

Definition 4.2. Let L1 ∈ L1(Mn(H)) be as in (4.1). Then the matrix pencil L1 is called

regular if there exists α ∈ R such that A+ α B is an invertible matrix.

Let P1(M2n(C)) be the space of complex matrix pencils. P1 ∈ P1(M2n(C)) is defined

as

P1(µ) := ΨA + µΨB,(4.2)

where A,B ∈Mn(H) and µ ∈ C.

4.2. Location of generalized right eigenvalues

We give the following theorem with the help of the complex adjoint matrix.

Theorem 4.3. Let L1 ∈ L1(Mn(H)) be as in (4.1). Then the matrix pencil L1 is a regular

if and only if P1 ∈ P1(M2n(C)) is a regular complex matrix pencil.

Proof. Consider L1 ∈ L1(Mn(H)) is a regular matrix pencil, then there exists α ∈ R

such that L1(α) = A + αB is an invertible matrix pencil. Now from Theorem 1.12, the

corresponding complex matrix pencil ΨL1(α) = ΨA +αΨB is an invertible complex matrix

pencil. Thus, P1(µ) is a regular complex matrix pencil.

Conversely let P1(µ) be a regular complex matrix pencil, then

det[P1(η)] 66= 0 for some η ∈ C, i.e.,

det[ΨA + ηΨB] 6= 0.

Thus, there exists a real number λ0 (say) such that

det[ΨA + λ0ΨB] 6= 0,

i.e., ΨA + λ0ΨB = Ψ(A+λ0B) is an invertible complex pencil. Then by Theorem 1.12, the

matrix pencil A + λ0B is invertible. Hence L1 ∈ L1(Mn(H)) is a regular quaternionic

matrix pencil. �

Proposition 4.4. Let L1 ∈ L1(Mn(H)) be as in (4.1) and let µ ∈ H be a generalized right

eigenvalue of the matrix pencil L1. Let 0 6= ρ ∈ H. Then ρ−1µρ is a generalized right

eigenvalue of L1.
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Proof. Suppose µ is a generalized right eigenvalue of the matrix pencil L1 corresponding

to an eigenvector x ∈ Hn, then

Ax = Bxµ.(4.3)

If ρ ∈ H \ {0}, then from (4.3), we have

Axρ = Bxρ(ρ−1µρ).

Thus ρ−1µρ is also a generalized right eigenvalue of the matrix pencil L1 corresponding

to an eigenvector xρ. �

Complex matrix pencils: Let A,B ∈Mn(C). Let L(z) := A− zB be complex matrix

pencil. The complex eigenvalue problem L(λ)x = 0, is called the generalized complex

eigenvalue problem. Denote the set of n × n matrix pencils by L̃ (Mn(C)). L ∈ L̃
(Mn(C)) is said to be regular if det(L(λ)) 6= 0 for some λ ∈ C. The spectrum of a regular

matrix pencil L is given by

Λ(L) := {λ ∈ C : Ax = λBx = Bxλ for some nonzero x ∈ Cn} .

We define generalized standard right eigenvalue of a regular matrix pencil L1 ∈ L1(Mn(H))

as follows.

Definition 4.5. Let L1 ∈ L1(Mn)(H) be as in (4.1). Then we define the set of the

generalized standard right eigenvalues of a regular matrix pencil L1 as

Λs(L) := {α ∈ C∞ : Ax = Bxα, 0 6= x ∈ Hn, =(α) ≥ 0} , where C∞ = C ∪ {∞}.

The above definition generalizes the definition of standard right eigenvalues of a single

quaternionic matrix [5, 27].

It is known that if B is not invertible, then ΨB is not invertible. Hence P1(µ) =

ΨA +µΨB has an infinite eigenvalue. Consequently, L1(λ) = A+λB has an infinite right

eigenvalue. However, if B is an invertible matrix, then P1(µ) = ΨA +µΨB has exactly 2n

finite eigenvalues. Then, L1(λ) = A+λB has exactly 2n finite complex right eigenvalues.

Thus, we have the following observations:

• If L1 is regular, then L1 has 2n right eigenvalues in C∞.

• If B is an invertible matrix, then L1 has exactly 2n finite complex right eigenvalues.
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We now present the Gerschgorin-type localization of eigenvalues of complex matrix

pencils as follows.

Theorem 4.6. [25] Let L ∈ L̃ (Mn(C)) be a complex regular matrix pencil. Then all the

eigenvalues of L are contained in the union of n regions

Gi(L) :=

{
z ∈ C : |zbii − aii| ≤

n∑
j=1, j 6=i

|aij − zbij|
}

(1 ≤ i ≤ n), i.e.

Λ(L) ⊆ ∪ni=1Gi(L).

Similarly, we define n regions over the skew field of quaternions as follows.

Gi(L1) :=

{
z ∈ H : |zbii − aii| ≤

n∑
j=1, j 6=i

|aij − zbij|
}

(1 ≤ i ≤ n),(4.4)

where L1(λ) := A+ λB is defined in (4.1).

But, in the case of quaternionic matrix pencil, a generalized right eigenvalue is not

necessarily contained in the union of n regions Gi(L1) as the following example suggest.

Example 4.7. A generalized right eigenvalue is not necessarily contained in a region.

Consider the quaternionic matrix pencil L1(λ) = A+ λB, where

A =

2i 0

0 1

 , B =

1 0

1 0


and λ commutes with A and B. For finding generalized right eigenvalue, let

det[µΨB −ΨA] = 0,

where µ ∈ C. Then (µ+ 2i)(µ− 2i) = 0 has two zeros corresponding to the values µ = 2i

and −2i with multiplicity 1. From (4.4), we have the following regions:

G1(L1) := {z ∈ H : |z − 2i| ≤ 0}, and

G2(L1) := {z ∈ H : | − 1| ≤ 1}.

In particular, −2i is a generalized right eigenvalue of L1. However it is not contained in

any regions Gi(L1), i = 1, 2.

Moreover, we present the generalized Gerschgorin type theorem for a quaternionic

matrix pencil as follows.
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Theorem 4.8. (Generalized Gerschgorin type theorem for generalized right eigenvalues)

Let L1 ∈ L1(Mn(H)) be a quaternionic regular matrix pencil. For every generalized right

eigenvalue µ of L1 there exists a nonzero quaternion α such that α−1µα (which is also a

generalized right eigenvalue) is contained in the union of n regions

Di(L1) := {z ∈ H : |biiz − aii| ≤ |z| ri(B) + ri(A)} (1 ≤ i ≤ n), i.e.,

{z−1µz : 0 6= z ∈ H} ∩ ∪ni=1Di(L1) 6= ∅.

In particular, when µ is real, then it is contained in the union of the regions Di(L1).

Proof. Let λ be a generalized right eigenvalue of the quaternionic matrix pencil L1. Then

Ax = Bxµ for some nonzero x = [x1, . . . , xn]T ∈ Hn. Let xt be an element of x such that

|xt| ≥ |xi| ∀ i (1 ≤ i ≤ n). Then |xt| > 0. From the t-th equation of Ax = Bxµ, we have

n∑
j=1

atjxj =
n∑
j=1

btjxjµ

attxt +
n∑

j=1, j 6=t

atjxj = bttxtµ+
n∑

j=1, j 6=t

btjxjµ.

Since xt 6= 0, let xtµ = ξxt, i.e., ξ is similar to µ. Then

attxt − bttξxt =
n∑

j=1, j 6=t

btjxjµ−
n∑

j=1, j 6=t

atjxj

(att − bttξ)xt =
n∑

j=1, j 6=t

btjxjµ−
n∑

j=1, j 6=t

atjxj,

which yields, by the triangle inequality,

|att − bttξ||xt| = |
n∑

j=1, j 6=t

btjxjµ−
n∑

j=1, j 6=t

atjxj|

≤
n∑

j=1, j 6=t

|btjxjµ|+
n∑

j=1, j 6=t

|atjxj|

|att − bttξ||xt| ≤
n∑

j=1, j 6=t

(|btjµ|+ |atj|)|xj|

|att − bttξ| ≤
n∑

j=1, j 6=t

(|btjµ|+ |atj|)

|att − bttξ| ≤ |µ| rt(B) + rt(A).
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Note that ξ is also a generalized right eigenvalue of L1 and |µ| = |ξ|. Hence, ξ lies in the

union of n regions Di(L1). �

Theorem 4.9. Let L1 ∈ L1(Mn(H)) be a quaternionic regular matrix pencil and let all

the diagonal entries of quaternionic matrices A and B are real. Then all the generalized

right eigenvalues of L1 are contained in the union of n regions

Di(L1) := {z ∈ H : |biiz − aii| ≤ |z| ri(B) + ri(A)} (1 ≤ i ≤ n),

which means

Λr(L1) ⊆ ∪ni=1Di(L1).

Proof. The proof is immediate from the proof method of Theorem 4.8 by using the fact

that ab = ba ∀ a ∈ R and ∀ b ∈ H, so we skip the proof. �

Before going to locate the zeros of quaternionic polynomials, we first recall the quater-

nionic polynomials pl(z) and pr(z) from (1.20) and (1.21) as follows.

pl(z) := qmz
m + qm−1z

m−1 + · · ·+ q1z + q0,(4.5)

pr(z) := zmqm + zm−1qm−1 + · · ·+ zq1 + q0,(4.6)

where qj, z ∈ H, (0 ≤ j ≤ m). The polynomial pl(z) is associated with the quaternionic

matrix pencil

T1(λ) := λE − Cpl ,(4.7)

where λ commutes with the quaternionic matrices

Cpl :=


0 1 0
...

. . .

0 0 1

−q0 −q1 . . . −qm−1

 and E :=


1 0 . . . 0

. . .
...

0 . . . 1 0

0 . . . . . . qm

 .

This is known as a linearization of pl(z). We now turn to find the relation between the

zeros of pl(z) and generalized right eigenvalues of the quaternionic matrix pencil T1(λ) =

λE − Cpl .

Theorem 4.10. Let T1(λ) be a quaternionic matrix pencil as in (4.7). For every gener-

alized right eigenvalue µ of T1 there exists a nonzero quaternion β such that β−1µβ is a

zero of the quaternionic polynomial pl(z).
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Proof. Let µ be a generalized right eigenvalue of T1. Then, there exists some nonzero

x ∈ Hn such that Cplx = Exµ. Let x := [x1, . . . , xm]T ∈ Hn. Then
0 1 0
...

. . .

0 0 1

−q0 −q1 . . . −qm−1




x1

x2

...

xm

 =


1 0 . . . 0

. . .
...

0 . . . 1 0

0 . . . . . . qm




x1

x2

...

xm

µ.(4.8)

(4.8) gives the following system of linear equations

x2 = x1µ,

x3 = x2µ,

...

xm = xm−1µ,

−q0x1 − q1x2 − q2x3 − · · · − qm−2xm−1 − qm−1xm = qmxmµ.

By solving the above system of linear equations, we obtain

−q0x1 − q1x1µ− q2x1µ
2 − · · · − qm−2x1µ

m−2 − qm−1x1µ
m−1 = qmx1µ

m.(4.9)

Since x cannot be the zero quaternionic vector, xm 6= 0 and hence multiplying by x−1
1 on

the both sides of (4.9), we obtain

−q0− q1x1µx
−1
1 − q2x1µ

2x−1
1 − · · · − qm−2x1µ

m−2x−1
1 − qm−1x1µ

m−1x−1
1 − qmx1µ

mx−1
1 = 0.

Putting x1µx
−1
1 = ρ, we obtain

q0 + q1ρ+ q2ρ
2 + · · ·+ qm−2ρ

m−2 + qm−1ρ
m−1 + qmρ

m = 0.

Hence ρ is a zero of pl(z). �

Let Cpl := (cij) ∈Mn(H) and let E := (eij) ∈Mn(H). We define the following regions.

Di(T1) := {z ∈ H : |eiiz − cii| ≤ |z| ri(E) + ri(Cpl)} (1 ≤ i ≤ n),

where T1(λ) := λE−Cpl with λ commutes with the quaternionic matrices. Now, we have

the following observations:
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• From Theorem 4.10, if µ is a generalized right eigenvalue of the quaternionic matrix

pencil T1 (associated with pl(z)), then β−1µβ (0 6= β ∈ H) is a zero of pl(z). From

Theorem 4.8, we obtain

β−1µβ ∈ ∪ni=1Di(T1), i.e.,

{z−1µz : 0 6= z ∈ H} ∩ ∪ni=1Di(T1) 6= ∅.

• Let qm, qm−1 ∈ R and let µ be a generalized right eigenvalue of T1. Then from

Theorem 4.9, µ as well as β−1µβ (zero of pl(z)) are contained in the union of n

regions Di(T1).

Remark 4.11. Similar results can be obtained for pr(z) as well.
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CHAPTER 5

BOUNDS FOR EIGENVALUES OF MATRIX

POLYNOMIALS OVER A QUATERNION DIVISION

ALGEBRA

In this chapter, the definitions of the left and right eigenvalues of quaternionic matrices

are extended to quaternionic matrix polynomials. Localization theorems are discussed for

the left and right eigenvalues of a quaternionic block matrix. Furthermore, bounds for the

absolute values of the left and right eigenvalues of quaternionic matrix polynomials are

devised and illustrated for the matrix p-norm, where p = 1, 2,∞, and F (Frobenius). The

above bounds generalize the bounds on the absolute values of the eigenvalues of complex

matrix polynomials which give sharper bounds to the existing bounds for the case of 1, 2,

and ∞ matrix norms.

5.1. Introduction and preliminaries

The bounds for the absolute values of the eigenvalues of complex matrix polynomials

have been described in [15]. The location of the eigenvalues when computed with an

iterative method, see e.g. [54], is of pivotal importance. The applications on matrices,

matrix pencils, and matrix polynomials over a quaternion division algebra are discussed

in [44, 47, 48]. The literature available on the theory of quaternionic matrix polynomials

is limited [43, 44] and are restricted to the stability of various systems with quaternionic

matrix coefficients. Therefore, it is of prime significance to carry out further research on

quaternionic matrix polynomials to characterize the stability of systems with quaternionic

matrix coefficients. The stability analysis of a given system depends on the behavior of

right eigenvalues of quaternionic matrix polynomials. For understanding the stability of

a given system it is required to analyze the location of the right eigenvalues of quaternion

matrix polynomials. There are two types of eigenvalues for the case of matrix pencils and

matrix polynomials over a quaternionic division algebra. In view of these facts, in this



chapter, we have extended the ideas developed in Chapter 2 to obtain a general framework

for matrix polynomials over a quaternion division algebra. A systematic procedure for

finding the left and right eigenvalues and their corresponding eigenvectors for matrix

polynomials over a quaternion division algebra is derived.

Besides, bounds for the absolute values of the left and right eigenvalues are obtained

for quaternionic matrix polynomials which generalize bounds for the absolute values of the

eigenvalues of complex matrix polynomials for 1, 2, and ∞-matrix norms. Specifically,

bounds for the absolute values of the left and right eigenvalues of quaternionic matrix

polynomials are presented by using localization theorems for the left and right eigenvalues

of a quaternionic block matrix.

Some of the results (given in Subsection 5.3.2) directly generalize the bounds for

the zeros of the right quaternionic polynomials. In this work, we show that some of

our bounds for the absolute values of the eigenvalues of complex matrix polynomials

are sharper than the bounds given in [15, Lemma 2.3 (2.1), Corollary 2.4 (2.5) (2.6)].

Moreover, we develop an algorithm to derive the above results for the powers of the block

companion matrices which give better and sharper results than the bounds obtained

via block companion matrices for the left and right eigenvalues of quaternionic matrix

polynomials. Our bounds so obtained via the powers of block companion matrices are

better than the bounds illustrated in [15, Lemma 2.3].

Throughout this chapter, we adopt the following notation and terminology: For

A,B ∈Mn(H), Kronecker product of A and B is defined as

A⊗B := (aijB).

Let A ∈Mn(K), K := {R,C,H}, be partitioned into k × k complex/quaternionic blocks

(5.1) A := (Aij) :=


A11 A12 . . . A1k

A21 A22 . . . A2k

...
...

. . .
...

Ak1 Ak2 . . . Akk


n×n

,

where Ai,j ∈Mni×nj(K), (1 ≤ i, j ≤ k), is the (i, j) block of A such that n1 + · · ·+nk = n.

82



Let us define

r
(p)
i (A) :=

k∑
j=1, j 6=i

‖Aij‖p , c
(p)
i (A) :=

k∑
j=1, j 6=i

‖Aji‖p ,

R
(p)
i (A) := r

(p)
i (A) + ‖Aii‖p, C(p)

i (A) := c
(p)
i (A) + ‖Aii‖p,

where p = 1, 2 and∞.

5.2. Inclusion regions for the eigenvalues of quaternionic block

matrices

We first derive inclusion regions for the left and right eigenvalues of a quaternionic block

matrix.

Theorem 5.1. Let A := (Aij) ∈ Mn(H) be a block matrix as in (5.1). Then all the left

and right eigenvalues of A are contained in ball E := ∩p=1,2,∞E (p), where

E (p) := ∪ki=1E (p)
i with E (p)

i := {z ∈ H : |z| ≤ R
(p)
i (A)},(5.2)

similarly, all the left and right eigenvalues of A are contained in ball F := ∩p=1,2,∞F (p),

where

F (p) := ∪ki=1F (p)
i with F (p)

i := {z ∈ H : |z| ≤ C
(p)
i (A)},(5.3)

p = 1, 2,∞ and (1 ≤ i ≤ k).

Proof. The proof of the first part is similar to that of the complex case , for p = 1, 2 and

∞.

Second part: For p = 2, let λ be a right eigenvalue of the quaternionic block matrix A.

Then from [47, Corollary 2.7], λ is also a right eigenvalue of AH . Thus AHy = yλ with

nonzero y = [yT1 , y
T
2 , . . . , y

T
k ]T ∈ Hn, where yi ∈ Hni . Let yt be an element of y such that

‖yt‖2 ≥ ‖yi‖2 for all i (1 ≤ i ≤ k). Then AHy = yλ implies

k∑
j=1

AHjtyj = ytλ.
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Taking 2-norm and applying ‖yt‖2 ≥ ‖yi‖2 for all i (1 ≤ i ≤ k),
∥∥AHjt∥∥2

= ‖Ajt‖2 , we

obtain

|λ| ≤
k∑
j=1

‖Ajt‖2 .

Similar proofs can be obtained for p = 1 and ∞.
Let λ be a left eigenvalue of a quaternionic matrix A. Then from Lemma 2.1, λ is a

left eigenvalue of AH . Now analogue proof can be obtained for the desired results. �

Theorem 5.2. Let A := (Aij) ∈ Mn(H) be a block matrix as in (5.1) and let γ ∈ [0, 1].

Then all the left and right eigenvalues of A are contained in ball T := ∩p=1,2,∞T (p), where

T (p) := ∪ki=1T (p)
i with T (p)

i := {z ∈ H : |z| ≤ R
(p)
i (A)γ C

(p)
i (A)1−γ},

p = 1, 2,∞ and (1 ≤ i ≤ k).

Proof. The proof is immediate from Theorem 5.1, so we skip the proof. �

We now state an inclusion region for the left and right eigenvalues of a general quater-

nionic matrix which follows immediately from Theorem 5.2. Thus we have the following

corollary.

Corollary 5.3. Let A := (aij) ∈ Mn(H) and let γ ∈ [0, 1]. Then all the left and

right eigenvalues of A are contained in the union of n-balls Gi(A) := {z ∈ H : |z| ≤
r′i(A)γ c′i(A)1−γ} (1 ≤ i ≤ n), i.e.,

Λl(A), Λr(A) ⊆ G(A) := ∪ni=1Gi(A),

where r′i(A) and c′i(A) are defined in (1.16).

Now, we present a sufficient condition for the stability of the discrete-time quaternionic

system

w(t+ 1) = Aw(t),

where w : R→ H, t ∈ R and A ∈Mn(H).

Proposition 5.4. Let A = (aij) ∈Mn(H). Assume that

ωi(A)γ τi(A)1−γ < 1 ∀ i (1 ≤ i ≤ n).

Then A is stable.

84



Proof. The proof is immediate from Corollary 5.3 and Definition 1.25. �

It is known that all the right eigenvalues of a quaternionic Hermitian matrix A are

real. Thus λs(A) = Λr(A). By applying this argument, we have the following result.

Theorem 5.5. Let A = (aij) ∈Mn(H) be a Hermitian matrix. Then

trace(A) =
n∑
i=1

λi(A),

where λi ∈ Λr(A), (1 ≤ i ≤ n).

Proof. Let A be a quaternionic Hermitian matrix. Then from Theorem 1.29, we have

A = V DV H ,

where V ∈ Mn(H) is an unitary matrix and D is a diagonal matrix with the standard

right eigenvalues λi (1 ≤ i ≤ n) of A. Applying mapping Ψ and taking trace, we obtain

trace (ΨA) = trace (ΨUDUH ) = trace (ΨUΨDΨUH ) = trace (ΨD) .

If all the diagonal entries of A ∈Mn(H) are real, then trace(ΨA) = 2trace(A).�

Lemma 5.6. Let A = (aij) ∈Mn(H). Then ‖A‖2 ≤ ‖A‖F .

Proof. By the definition of matrix 2-norm and from Theorem 5.5, we have

‖A‖2
2 = ρr(AA

H) ≤
n∑
i=1

λi(AA
H) = trace(AAH) = ‖A‖2

F . �

Lemma 5.7. Let A = (aij) ∈Mn(H). Then

ρl(A), ρr(A) ≤ ‖A‖F .

Proof. The proof is immediate from [62, Theorem 3] and Lemma 5.6, so we skip the

proof. �

Lemma 5.8. Let A = (aij) ∈Mn(H). Then

‖A‖2
2 =

∥∥AH∥∥2

2
=
∥∥AHA∥∥

2
=
∥∥AAH∥∥

2
.

Proof. By the definition of the operator norm of A

‖A‖2
2 = ρr

(
AHA

)
= ρ

(
Ψ(AHA)

)
=
√
ρ
(
Ψ(AHA) Ψ(AHA)

)
=
√
ρ
(
Ψ(AHA)(AHA)

)
‖A‖2

2 =
√
ρr ((AHA)(AHA)) = ‖AHA‖2.
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Analogue proof can be derived for the remaining parts. �

Theorem 5.9. Let A = (Aij) ∈Mn(H) be a block matrix as in (5.1). Then

ρl(A), ρr(A) ≤
(
‖A‖2

F −
[

max
1≤i≤k

|ξi(A)− ξi(AT )|
]2
)1/2

,

where ξi(A) :=
k∑

j=1, j 6=i

‖Aij‖F .

Proof. We prove the equivalent statement

ρl(A), ρr(A) ≤
[
‖A‖2

F −
(∣∣ξi(A)− ξi(AT )

∣∣)2
]1/2

(1 ≤ i ≤ k).

Let ξi(A) 6= 0, ξi(A
T ) 6= 0 and let Ww = diag(I1, . . . , Ii−1, Wi, Ii+1, . . . , Ik) with

Wi = diag(w,w, . . . , w),

where 0 6= w ∈ R+, in the i-th position. By [63, Lemma 2.3] and Proposition 2.22, we

have

ρr(WwAW
−1
w ) = ρr(A) and ρl(WwAW

−1
w ) = ρl(A).

Then by Lemma 5.7, we obtain the following.

(5.4) [ρl(A)]2 , [ρr(A)]2 ≤
∥∥WwAW

−1
w

∥∥2

F
= ‖A‖2

F − ξi(A)2 − ξi(AT )2 + Φ1,

where Φ1 = w2ξi(A)2+w−2ξi(A
T )2. Suppose f(w) := ‖A‖2

F−ξi(A)2−ξi(AT )2+w2ξi(A)2+

w−2ξi(A
T )2, then its first and second derivatives are given by f ′(w) = 2wξi(A)2−2w−3ξi(A

T )2

and f ′′(w) = 2ξi(A)2 + 6w−4ξi(A
T )2, respectively. Then f ′(w) = 0 yields

w2 = ±
[
ξi(A

T )

ξi(A)

]
,

and f ′′(w) = +ve. Hence f(w) has minimum value at w2 =
[
ξi(A

T )
ξi(A)

]
. Therefore

ρl(A), ρr(A) ≤
[
‖A‖2

F −
(
|ξi(A)− ξi(AT )|

)2
]1/2

. �

Corollary 5.10. Let A := (aij) ∈Mn(H). Then

ρl(A), ρr(A) ≤
(
‖A‖2

F −
[

max
1≤i≤n

|Mi(A)−Mi(A
T )|
]2
)1/2

,

where Mi(A) :=

(
n∑

j=1, j 6=i

|aij|2
)1/2

.
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5.3. Quaternionic matrix polynomials

Let Pm(Mn(C)) be the space of complex matrix polynomials. P ∈ Pm(Mn(C)) is defined

by

P(λ) :=
m∑
i=0

λiAi,(5.5)

where Ai ∈ Mn(C) (0 ≤ i ≤ m) and λ ∈ C. Then the eigenvalue problem P(λ)x = 0 is

referred as a complex polynomial eigenvalue problem. The polynomial P ∈ Pm(Mn(C)) is

said to be regular if det(P(λ)) 6= 0 for some λ ∈ C. The spectrum of a regular polynomial

P is denoted by Λ(P), and is defined by

Λ(P) := {λ ∈ C : det(P(λ)) = 0}.

The above space of complex matrix polynomials can be extended to the space of matrix

polynomials over a quaternion division algebra. Quaternionic matrix polynomials are

derived in [44, 46–48], but for the case of right eigenvalues, where the matrix coefficients

commutes with the variable identity of quaternionic matrix polynomial. Now in this

section, we define a general framework for matrix polynomials over a quaternion division

algebra to discuss the left and right eigenvalues of quaternionic matrix polynomials.

Let L′m(Mn(H)) be the space of matrix polynomials over a quaternion division algebra.

L′ ∈ L′m(Mn(H)) is defined as

L′(ξ) :=
m∑
i=0

ξi Ai,(5.6)

where Ai ∈ Mn(H) (0 ≤ i ≤ m) and ξ ∈ H. Throughout this chapter we consider the

following three cases:

Case 1: when ξ ∈ R and Ai ∈Mn(H) (0 ≤ i ≤ m),

Case 2: when ξ ∈ H and Ai ∈Mn(H) (0 ≤ i ≤ m),

Case 3: when ξ ∈ C and Ai ∈Mn(C) (0 ≤ i ≤ m).

Case 1. Let Lm(Mn(H)) be the space of matrix polynomials over a quaternion division

algebra. L ∈ Lm(Mn(H)) is defined as

L(λ) :=
m∑
i=0

Aiλ
i,(5.7)

87



where Ai ∈ Mn(H) (0 ≤ i ≤ m) and λ commutes with the quaternionic coefficients of

the matrix polynomial. This polynomial over a quaternion division algebra can be found

in [46–48].

Now we turn to define the right eigenvalue of L ∈ Lm(Mn(H)) of the form (5.7) which

is as follows.

Definition 5.11. Let L ∈ Lm(Mn(H)) be as in (5.7) and let µ ∈ H. Then µ is called a

right eigenvalue of L if

A0x+ A1xµ+ A2xµ
2 + · · ·+ Amxµ

m = 0

for some nonzero x ∈ Hn. Here x is called the right eigenvector corresponding to right

eigenvalue µ. The set of right eigenvalues of L is called right spectrum of L, denoted by

Λr (L) .

Case 2. We define the left eigenvalue of L′ ∈ L′m(Mn(H)) which is as follows.

Definition 5.12. Let L′ ∈ L′m(Mn(H)) be of the form (5.6) and let µ ∈ H. Then µ is

called a left eigenvalue of L′ if

A0x+ µA1x+ µ2A2x+ · · ·+ µmAmx = 0

for some nonzero x ∈ Hn. Here x is called the left eigenvector corresponding to left

eigenvalue µ. The set of left eigenvalues of L′ is called left spectrum of L′, denoted by

Λl (L
′) .

5.3.1. Right eigenvalues of quaternionic matrix polynomials and their bounds

In this subsection, first we give the linearization form of the quaternionic matrix poly-

nomial L (defined in (5.7)) by using the standard linearization technique given in [10] for

the right and left eigenvalues of L.

• For the right eigenvalues: The polynomial L ∈ Lm(Mn(H)) be as in (5.7) can

be written in the form:

CL + λX,
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where CL, X ∈Mmn(H) are of the forms

CL :=



0 In 0 . . . 0

0 0 In 0
...

...
. . .

...

0 0 0 . . . In

−A0 −A1 −A2 . . . −Am−1


, X :=



In 0 0 . . . 0

0 In 0 . . . 0

0 0 In 0
...

...
. . .

...

0 0 0 . . . Am


and λ commutes with the quaternionic coefficients of the matrix polynomial. When

Am = In, the identity matrix, then the matrix polynomial (5.7) is said to be monic

matrix polynomial and linearization form of it is given by

CL + λE, where E := Inm.

Let Pm(M2n(C)) be the space of complex matrix polynomials. P ∈ Pm(M2n(C)) is

given by

P (µ) :=
m∑
i=0

ΨAiµ
i,(5.8)

where Ai ∈Mn(H), ΨAi ∈M2n(C) (0 ≤ i ≤ m) and µ ∈ C.

Theorem 5.13. Let L ∈ Lm(Mn(H)) be as in (5.7) and let (CL, X) be a matrix pencil

obtained from the linearization of L. Then they have the same right eigenvalues.

Proof. Let µ ∈ H be a right eigenvalue of the quaternionic matrix pencil (CL, X), then

there exists x := [xT1 , x
T
2 , . . . , x

T
m]T ∈ Hn with xi ∈ Hn, i = 1, 2, . . . ,m such that

(5.9)



0 In 0 . . . 0

0 0 In 0
...

...
. . .

...

0 0 0 . . . In

−A0 −A1 −A2 . . . −Am−1





x1

x2

...

xm−1

xm


=



In 0 0 . . . 0

0 In 0 . . . 0

0 0 In 0
...

...
. . .

...

0 0 0 . . . Am





x1

x2

...

xm−1

xm


µ,
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then (5.9) implies

x2 = x1µ,

x3 = x2µ,

...

xm = xm−1µ,

−A0x1 − A1x2 − · · · − Am−1xm = Amxmµ.

Consecutive substitutions of the (m− 1)st system of equations give

xj := x1µ
j−1, j = 2, 3, . . . ,m.(5.10)

Substituting (5.10) in the last system of equation and solving, we obtain

A0x1 + A1x1µ+ · · ·+ Am−2x1µ
m−2 + Am−1x1µ

m−1 + Amx1µ
m = 0.

Hence µ is a right eigenvalue of the quaternionic matrix polynomial L. �

Regular matrix pencil over the quaternion skew filed has been defined in [33] and now,

we extend it for matrix polynomial over the quaternion skew field.

Definition 5.14. Let L ∈ Lm(Mn(H)) be as in (5.7). Then the matrix polynomial L is

called regular if there exists α ∈ R such that A0 + α A1 + · · · + αm Am is an invertible

matrix.

Theorem 5.15. Let L ∈ Lm(Mn(H)) be of the form (5.7). Then the matrix polynomial

L is a regular polynomial if and only if P ∈ Pm(M2n(C)) is a regular complex matrix

polynomial.

Proof. Consider L ∈ Lm(Mn(H)) is a regular matrix polynomial, then there exists α ∈ R

such that L(α) = A0+αA1+· · ·+αmAm is an invertible matrix polynomial. From Theorem

1.12, the corresponding complex matrix polynomial ΨL(α) = ΨA0 + αΨA1 + · · ·+ αmΨAm

is an invertible complex matrix polynomial. Thus, P (µ) is a regular complex matrix

polynomial.

Conversely, let P (µ) be a regular complex matrix polynomial, then

det[P (η)] 66= 0, for some η ∈ C, i.e.,

det[ΨA0 + ηΨA1 + · · ·+ ηmΨAm ] 6= 0.
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Thus, there exists a real number λ0 (say) such that

det[ΨA0 + λ0ΨA1 + · · ·+ λm0 ΨAm ] 6= 0,

i.e., ΨA0 + λ0ΨA1 + · · · + λm0 ΨAm = Ψ(A0+λ0A1+···+λm0 Am) is an invertible complex matrix

polynomial. Then by Theorem 1.12, the matrix polynomial A0 + λ0A1 + · · ·+ λm0 Am

is an invertible quaternionic matrix polynomial. Hence L ∈ Lm(Mn(H)) is a regular

quaternionic matrix polynomial. �

Proposition 5.16. Let L ∈ Lm(Mn(H)) be as in (5.7) and let µ ∈ H be a right eigenvalue

of L. Assume that 0 6= ρ ∈ H, then ρ−1µρ is also a right eigenvalue of L.

Proof. Suppose x is a quaternionic eigenvector of the matrix polynomial L corresponding

to the right eigenvalue µ of the matrix polynomial L, then

A0x+ A1xµ+ A2xµ
2 + · · ·+ Amxµ

m = 0.(5.11)

If ρ ∈ H \ {0}, then from (5.11), we have

A0xρ+ A1xρ(ρ−1µρ) + A2xρ(ρ−1µ2ρ) + · · ·+ Amxρ(ρ−1µmρ) = 0.

Thus ρ−1µρ is also a right eigenvalue of the matrix polynomial L corresponding to an

eigenvector xρ. �

Theorem 5.17. Let L ∈ Lm(Mn(H)) be as in (5.7). Then

Λr(L) ∩ C = Λ(P ),(5.12)

Λr(L) = {ρ−1µρ ∈ H : µ ∈ Λ(P ), 0 6= ρ ∈ H}.(5.13)

Proof. Consider Ai ∈ Mn(H) for i = 0, 1, . . . ,m and x ∈ Hn. We write Ai and x as

Ai = Ai
′ + A

′′
i j, 0 ≤ i ≤ m and x = x1 + x2j, where A

′
i, A

′′
i ∈ Mn(C) and x1, x2 ∈ Cn. If

µ ∈ Λr(L)∩C, then there exists x ∈ Hn such that A0x+A1xµ+A2xµ
2 + · · ·+Amxµ

m = 0

which is equivalent to the complex system. Hence from Theorem 1.12, we obtain A
′
0 A

′′
0

−A′′0 A
′
0

 x1

−x2

+ µ

 A
′
1 A

′′
1

−A′′1 A1
′

 x1

−x2

+ · · ·+ µm Φ2

 x1

−x2

 = 0,(5.14)

91



where Φ2 =

 A
′
m A

′′
m

−A′′m A′m

 and also

 A
′
0 A

′′
0

−A′′0 A
′
0

x2

x1

+ µ

 A
′
1 A

′′
1

−A′′1 A1
′

x2

x1

+ · · ·+ µm

 A
′
m A

′′
m

−A′′m A′m

x2

x1

 = 0;

thus µ, µ ∈ Λ(P ).

Conversely, suppose µ ∈ Λ(P ), then there exists x := [xT1 , x
T
2 ]T ∈ C2n such that A

′
0 A

′′
0

−A′′0 A
′
0

x1

x2

+ µ

 A
′
1 A

′′
1

−A′′1 A1
′

x1

x2

+ · · ·+ µm

 A
′
m A

′′
m

−A′′m A′m

x1

x2

 = 0,

which is equivalent to the following systems

(5.15)

{
A
′
0x1 + A

′′
0x2 + µA

′
1x1 + µA

′′
1x2 + · · ·+ µmA

′
mx1 + µmA

′′
mx2 = 0,

−A′′0x1 + A
′
0x2 − µA′′1x1 + µA

′
1x2 + · · · − µmA′′mx1 + µmA′mx2 = 0.

Suppose that x = x1−x2 j, then (5.15) is equivalent toA0x+A1xµ+A2xµ
2+· · ·+Amxµm =

0, hence µ ∈ Λr(L) ∩ C.

For (5.13), consider µ ∈ Λ (ΨCL
,ΨX) = Λ (P ) , then for every 0 6= ρ ∈ H, it is clear

that ρ−1µρ ∈ Λr(CL, X) = Λr (L) . Conversely; consider λ ∈ Λr(CL, X) = Λr (L) , then

by [5, Lemma 9], there exists 0 6= ρ ∈ H such that ρµρ−1 = µ1 ∈ Λr(CL, X)∩C. Applying

(5.12), we have µ1 ∈ Λ(P ) and also µ = ρ−1µ1ρ. �

We now state two corollaries to Theorem 5.17 which are also available in [33].

Corollary 5.18. Let L ∈ L1(Mn(H)) be of the form L(λ) := A+ λB, where λ commutes

with the quaternionic matrices and let P ∈ P1(M2n(C)) be of the form P (µ) := ΨA+µΨB,

where µ ∈ C. Then

(5.16)

{
Λr(L) ∩ C = Λ(P ),

Λr(L) = {ρ−1λρ : λ ∈ Λ(P ), 0 6= ρ ∈ H}.

Proof. Assume that m = 1 in Theorem 5.17, then we have the desired result. �

Also we give another corollary of Theorem 5.17 which can be found from [33].

Corollary 5.19. Let A ∈Mn(H). Then

Λr(A) ∩ C = Λ(ΨA),

Λr(A) = {ρ−1λρ : λ ∈ Λ(ΨA), 0 6= ρ ∈ H}.
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Proof. Assume that B = In in Corollary 5.18, we have the desired result. �

Remark 5.20. From (5.14), it is also clear that µ ∈ H is a right eigenvalue of the

quaternionic matrix polynomial L if and only if det(P (µ)) = 0.

Let Pm(M2n(C)) be the space of complex matrix polynomials of degree (≤ m), and

let P ∈ Pm(M2n(C)) be of the form (5.8). If Am is invertible, then P has 2mn finite

eigenvalues, i.e., L does not have any infinite (∞) right eigenvalue as there is one one

correspondence between the space of matrix polynomials of degree m over a quaternion

division algebra and the space of its conjugate matrix polynomial P of degree m over

the complex field. Also, if Am is not invertible, then P has at least one infinite (∞)

eigenvalue. In general, if Am is not invertible, then the quaternionic matrix polynomial L

has at least one infinite right eigenvalue, whereas if A0 is not invertible, then 0 is a right

eigenvalue of the quaternionic matrix polynomial L. Therefore, for upper bounds of the

absolute values of the right eigenvalues of L require Am to be invertible and the lower

bounds of the absolute values of the right eigenvalues of L require A0 to be invertible.

Hence, now onwards, we assume A0 and Am are invertible quaternionic matrices.

Let d be the degree of det[P (µ)], where µ ∈ H. Then the d zeros of det[P (µ)] are

called the finite eigenvalues of P . If d < 2mn, then we say that P (µ) has 2mn − d

infinite eigenvalues. Let L ∈ Lm(Mn(H)) be a regular polynomial and if Am is not

invertible, then the corresponding adjoint complex matrix ΨAm is not invertible. Thus,

the complex matrix polynomial P (µ) has at least one infinite (∞) eigenvalue and hence

the quaternionic matrix polynomial L has at least one infinite (∞) right eigenvalue.

Example 5.21. Consider the quaternionic matrix pencil L(λ) = A + λB, where λ com-

mutes with the quaternionic matrices and A,B ∈Mn(H) of the forms

A =

 i + j 2 + k

1− j 3− i− j

 , B =

0 j + k

0 0

 .
Since B is not invertible, hence ΨB is also not invertible. The complex matrix pencil

ΨA + µΨB, µ ∈ C has at least one infinite (∞) eigenvalue. Hence L has an infinite (∞)

right eigenvalue. In this case, the set of right eigenvalues of L is {[−1 + 2.5495i],∞} .

Now, consider Am is invertible. Then from [5, 27] the block companion matrix CV

has exactly mn right eigenvalues which are complex numbers with non-negative imaginary
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parts. Also, we observe that if Am is not invertible and L is regular, then P ∈ Pm(M2n(C))

has the corresponding matrix polynomial has exactly mn right eigenvalues which belong

to C∞ := C ∪ {∞} with non-negative imaginary parts. Those right eigenvalues are said

to be the standard right eigenvalues of L. Thus, we define the standard right eigenvalues

of L ∈ Lm(Mn(H)) as follows.

Definition 5.22. Let L ∈ Lm(Mn)(H) be as in (5.7). Then we define the set of standard

right eigenvalues of a regular matrix polynomial L as

Λs(L) := {α ∈ C∞ : A0x+ A1xα + · · ·+ Amxα
m = 0, 0 6= x ∈ Hn, =(α) ≥ 0} ,

C∞ = C ∪ {∞}.

The above definition generalizes the definition of standard right eigenvalues of a single

quaternionic matrix [5, 27].

Now, we state a framework to find bounds for the right eigenvalues of quaternionic

matrix polynomials.

• To find bounds of the right eigenvalues of the quaternionic matrix polynomial

L ∈ Lm(Mn(H)), we introduce two new quaternionic matrix polynomials associated

with L ∈ Lm(Mn(H)) :

LV (λ) := λmIn +
m−1∑
i=0

λi Vi,(5.17)

where Vi := A−1
m Ai, i = 0, 1, . . . ,m− 1, so that L(λ) = AmLV (λ), and

LS(λ) := λmIn +
m∑
i=1

Siλ
m−i,(5.18)

where Si := A−1
0 Ai, i = 1, . . . ,m, now A−1

0 λmL(1/λ) = LS(λ). The polynomials

L and LV have the same right eigenvalues, whereas the right eigenvalues of the

polynomial LS are the reciprocal of the right eigenvalues of the polynomial L.

The block companion matrices CV and CS corresponding to the monic matrix

polynomials LV and LS are given by

CV :=


n n(m−1)

n(m−1) 0 I

n −V0 −∆V

 and CS :=


n n(m−1)

n(m−1) 0 I

n −Sm −∆S

,
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respectively, where ∆V , ∆S ∈Mn×n(m−1)(H) are of the forms

∆V =
[
V1 V2 . . . Vm−1

]
, ∆S =

[
Sm−1 Sm−2 . . . S1

]
.

Moreover, the right eigenvalues of the monic matrix polynomials LV (λ),LS(λ) and

the right eigenvalues of the block companion matrices CV , CS are same, respectively.

Bounds for the right eigenvalues of quaternionic matrix polynomials: Now

onwards, we define

V :=
[
V0 V1 . . . Vm−1

]
∈Mn×mn(H), S :=

[
Sm Sm−1 . . . S1

]
∈Mn×mn(H),

where Vi, Sj ∈Mn(H), (0 ≤ i ≤ m− 1), (1 ≤ j ≤ m).

Theorem 5.23. Let L ∈ Lm(Mn(H)) be as in (5.7). Then for any right eigenvalue µ of

the polynomial L satisfies the following inequalities:

1

β1

≤ |µ| ≤ α1,(5.19)

1

β2

≤ |µ| ≤ α2,(5.20)

1

β3

≤ |µ| ≤ α3,(5.21)

where γ ∈ [0, 1],

α1 := min
p=1,2,∞

{
max

(
‖V0‖p, 1 + max

1≤j≤m−1
(‖Vj‖p)

)}
,

β1 := min
p=1,2,∞

{
max

(
‖Sm‖p, 1 + max

1≤j≤m−1
(‖Sj‖p)

)}
,

α2 := min
p=1,2,∞

{
max

(
1,

m−1∑
j=0

‖Vj‖p
)}

,

β2 := min
p=1,2,∞

(
max

{
1,

m∑
j=1

‖Sj‖p
})

,

α3 := min
p=1,2,∞

{
max

1≤i≤m

(
R

(p)
i (CV )γ C

(p)
i (CV )1−γ

)}
, and

β3 := min
p=1,2,∞

{
max

1≤i≤m

(
R

(p)
i (CS)γ C

(p)
i (CS)1−γ

)}
.
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Proof. The proofs are immediate from Theorems 5.1 and 5.2, so we skip the proofs. �

It is known that similar quaternionic matrices have the same right eigenvalues. There-

fore, we can apply a similarity transformation to obtain different and potentially tighter

bounds. So, we now define the following matrices.

C ′V := WCVW
−1, C ′S := WCSW

−1, W := w1In ⊕ (W ′ ⊗ In) = w1In ⊕ · · · ⊕ wmIn,

W ′ := diag(w2In, w3In, . . . , wmIn), where wi are positive integers. The matrix C ′V can

also be written as

C ′V := WCVW
−1(5.22)

with W :=


n(m−1) n

n C1 0

n(m−1) C2 C3

 and W−1 :=


n(m−1) n

n C ′1 0

n(m−1) C ′2 C ′3

,
where

C1 :=
[
w1In 0 . . . 0

]
, C ′1 :=

[
1
w1
In 0 . . . 0

]
,

C2 :=



0 w2In 0 . . . 0
... 0 w3In 0
...

...
. . . 0

0 0 0 . . . wm−1In

0 0 0 . . . 0


, C ′2 :=



0 1
w2
In 0 . . . 0

... 0 1
w3
In 0

...
...

. . . 0

0 0 0 . . . 1
wm−1

In

0 0 0 . . . 0


,

C3 :=


0

0
...

wmIn

 , and C ′3 :=


0

0
...

1
wm
In

 .

By using above arguments and, Theorems 5.1 and 5.2, we have the following bounds.
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Theorem 5.24. Let wj ∈ R+, (1 ≤ j ≤ m), with wm = 1. Then for any right eigenvalue

µ of L ∈ Lm(Mn(H)) satisfies the following inequalities:

1

β1

≤ |µ| ≤ α1,(5.23)

1

β2

≤ |µ| ≤ α2,(5.24)

1

β3

≤ |µ| ≤ α3,(5.25)

where γ ∈ [0, 1],

α1 := min
p=1,2,∞

{
max

(‖V0‖p
w1

, max
1≤j≤m−1

(
wj
wj+1

+
‖Vj‖p
wj+1

))}
,

β1 := min
p=1,2,∞

{
max

(‖Sm‖p
w1

, max
1≤j≤m−1

(
wj
wj+1

+
‖Sm−j‖p
wj+1

))}
,

α2 := min
p=1,2,∞

{
max

(
max

1≤j≤m−1

(
wj
wj+1

)
,
m−1∑
i=0

‖Vi‖p
wi+1

)}
,

β2 := min
p=1,2,∞

{
max

(
max

1≤j≤m−1

(
wj
wj+1

)
,
m−1∑
i=0

‖Sm−i‖p
wi+1

)}
,

α3 := min
p=1,2,∞

{
max

1≤i≤m

(
R

(p)
i (C ′V )γ C

(p)
i (C ′V )1−γ

)}
, and

β3 := min
p=1,2,∞

{
max

1≤i≤m

(
R

(p)
i (C ′S)γ C

(p)
i (C ′S)1−γ

)}
.

Proof. The block companion matrix of the monic matrix polynomial LV (λ) is given by

CV :=


n n(m−1)

n(m−1) 0 I

n −V0 −∆V

.
Now (5.22) yields

C ′V := WCVW
−1

=


n(m−1) n

n C1 0

n(m−1) C2 C3

 
n n(m−1)

n(m−1) 0 I

n −V0 −∆V

 
n(m−1) n

n C ′1 0

n(m−1) C ′2 C ′3



C ′V =


n(m−1) n

n C ′′1 0

n(m−1) C ′′2 C ′′3

, where C ′′1 =
[
0 w1

w2
In 0 . . . 0

]
,
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C ′′2 =



0 0 w2

w3
In 0 . . . 0

...
... 0 w3

w4
In 0

...
...

...
. . . 0

0 0 0 0 . . . wm−2

wm−1
In

−wm
w1
V0 −wm

w2
V1 −wm

w3
V2 −wm

w4
V3 . . . − wm

wm−1
Vm−2


, and C ′′3 :=



0

0
...

wm−1

wm
In

−Vm−1


.

Upper bounds of the right eigenvalues of the matrix polynomial L are obtained by applying

Theorems 5.1 and 5.2 to the matrix C ′V .

Also, lower bounds of the right eigenvalues of the matrix polynomial L are obtained

by applying Theorems 5.1 and 5.2 to the matrix C ′S. �

Substituting wj = ‖Vj‖p, (p = 1, 2,∞), in the part (1) of Theorem 5.24 , we obtain

|µ| ≤ min
p=1,2,∞

{
max

(‖V0‖p
‖V1‖p

, 2 max
1≤j≤m−1

‖Vj‖p
‖Vj+1‖p

)}
.(5.26)

Now we discuss the different bounds for the right eigenvalues of quaternionic matrix

polynomials.

Theorem 5.25. Let L ∈ Lm(Mn(H)) be as in (5.7). Then for any right eigenvalue µ of

L satisfies the following inequality:

1

ηCS
≤ |µ| ≤ ηCV ,

where

ηCα :=

[
‖Cα‖2

F −
{

max
1≤i≤m

∣∣ξi (Cα)− ξi
(
CT
α

)∣∣}2
]1/2

, α ∈ {V, S}.

Proof. The proof is immediate from Theorem 5.9, so we omit the proof. �

Theorem 5.26. Let L ∈ Lm(Mn(H)) be as in (5.7). Then for any right eigenvalue µ of

L satisfies the following inequality:

1

ηCS
≤ |µ| ≤ ηCV , where

ηCα :=

[
‖Cα‖2

F −
{

max
1≤i≤m

∣∣Mi (Cα)−Mi

(
CT
α

)∣∣}2
]1/2

, α ∈ {V, S}.

Proof. The proof is immediate from Corollary 5.10, so we omit the proof. �

Next, we give upper bounds for the left and right spectral radius of quaternionic

matrices in term of quaternionic matrix norms.
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Theorem 5.27. Let A ∈ Mn(H). If ‖.‖β, (β = 1, 2,∞, F ), are the quaternionic matrix

norms, then

ρl(A), ρr(A) ≤ ‖A‖β.

Proof. The proof is similar to that of the complex case. �

By applying Theorem 5.27, we extend bounds for the eigenvalues of a complex matrix

polynomial [15] to bounds for the right eigenvalues of a quaternionic matrix polynomial

which are as follows.

Theorem 5.28. Let L ∈ Lm(Mn(H)) be as in (5.7). Then for any right eigenvalue µ of

L satisfies the following inequalities:

1. max

(
‖Sm‖1, 1 + max

1≤i≤m−1
(‖Si‖1)

)−1

≤ |µ| ≤ max

(
‖V0‖1, 1 + max

1≤i≤m−1
(‖Vi‖1)

)
,

2. max (1, ‖S‖∞)−1 ≤ |µ| ≤ max (1, ‖V ‖∞),

3.
(
‖In + SSH‖2

)−1/2 ≤ |µ| ≤
(
‖In + V V H‖2

)1/2
.

Proof. The first two bounds are follows from Theorem 5.27 ( for β = 1,∞ ). Now for the

third bound, applying Theorem 5.27 ( β = 2 ), we have

(‖CS‖2)−1 ≤ |µ| ≤ ‖CV ‖2.

To find ‖CV ‖2, we write

M :=



0 In 0 . . . 0

0 0 In 0
...

...
...

. . .
...

0 0 0 . . . In

0 0 0 . . . 0


andN :=



0 0 0 . . . 0

0 0 0 0
...

...
...

. . .
...

0 0 0 . . . 0

−V0 −V1 −V2 . . . −Vm−1


.

Then MHN = NHM = 0. Thus by Lemma 5.8, we have

‖CV ‖2
2 = ‖CH

V CV ‖2 = ‖(M +N)H(M +N)‖2 = ‖MHM +NHN‖2

≤ ‖Imn +NHN‖2 = ‖Imn +NNH‖2 = ‖In + V V H‖2.

For finding ‖CS‖2 analogue proof can be given, so we skip the proof. �

Theorem 5.29. Let wj ∈ R+, (1 ≤ j ≤ m), with wm = 1. Then for any right eigenvalue

µ of L ∈ Lm(Mn(H)) satisfies the following inequalities:
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1.

[
max

1≤j≤m−1

{‖Sm‖1

w1

,
wj
wj+1

+
‖Sm−j‖1

wj+1

}]−1

≤ |µ| ≤ max
1≤j≤m−1

{‖V0‖1

w1

,
wj
wj+1

+
‖Vj‖1

wj+1

}
.

2. 1
β1
≤ |µ| ≤ α1,

where

α1 := max
1≤j≤m−1

(
wj
wj+1

,

∥∥∥∥[V0

w1

, . . . ,
Vm−2

wm−1

, Vm−1

]∥∥∥∥
∞

)
,

β1 := max
1≤j≤m−1

(
wj
wj+1

,

∥∥∥∥[Smw1

, . . . ,
S2

wm−1

, S1

]∥∥∥∥
∞

)
.

3.

[
max

1≤j≤m−1

(
w2
j

w2
j+1

)
+

m−1∑
j=0

‖Sm−j‖2
2

w2
j+1

]−1/2

≤ |µ| ≤
[

max
1≤j≤m−1

(
w2
j

w2
j+1

)
+

m−1∑
j=0

‖Vj‖2
2

w2
j+1

]1/2

.

Proof. The proofs are immediate from the proof method of Theorem 5.28 and using

Lemma 5.27 on the matrices C ′V and C ′S. �

The following theorem is a direct application of Corollary 5.3 which gives bounds for

the right eigenvalues of quaternionic matrix polynomials.

Theorem 5.30. Let L ∈ Lm(Mn(H)) be as in (5.7) and let γ ∈ [0, 1]. Then for any right

eigenvalue µ of L satisfies the following inequality:[
max

1≤i≤mn

{
r′i(CS)γ t′i(CS)1−γ}]−1

≤ |µ| ≤ max
1≤i≤mn

{
r′i(CV )γ c′i(CV )1−γ} .

By the definition of the right spectral radius, we have for any A ∈Mn(H)

‖A‖2
2 = ρr(A

HA) ≤
∥∥AHA∥∥

1
≤

∥∥AH∥∥
1
‖A‖1

‖A‖2
2 ≤ ‖A‖∞ ‖A‖1.

Now, we have two cases as follows.

Case 1: If ‖A‖1 ≤ ‖A‖∞, then ‖A‖2 ≤ ‖A‖∞ .
Case 2: If ‖A‖∞ ≤ ‖A‖1, then ‖A‖2 ≤ ‖A‖1 .

Thus if A ∈ S := { symmetric, skew symmetric, Hermitian, skew-Hermitian, η-Hermitian,

η-anti-Hermitian}, then we have

‖A‖2 ≤ ‖A‖∞ = ‖A‖1 .
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It is clear that if Vj (0 ≤ j ≤ m − 1) ∈ S, then ‖Vj‖2 ≤ ‖Vj‖q (β = 1,∞). Thus from

Theorem 5.23, we obtain

min
p=1,2,∞

{
max

(
‖V0‖p, 1 + max

1≤j≤m−1
(‖Vj‖p)

)}
= max

(
‖V0‖2, 1 + max

1≤j≤m−1
(‖Vj‖2)

)
,

min
p=1,2,∞

{
max

(
1,

m−1∑
j=0

‖Vj‖p
)}

= max

(
1,

m−1∑
j=0

‖Vj‖2

)
,

min
p=1,2,∞

{
max

1≤i≤m

(
R

(p)
i (CV )γ C

(p)
i (CV )1−γ

)}
= max

1≤i≤m

(
R

(2)
i (CV )γ C

(2)
i (CV )1−γ

)
.

Other bounds can also be written in reduced form for the above structured matrices.

Bounds for the right eigenvalues of quaternionic matrix polynomials using

powers of block companion matrix: We first define the colon notation. Let A :=

(Aij) ∈ Mn(H) be a block matrix as in (5.1), then A[s, :] designates the sth block row of

the block matrix A as in (5.1) as follows:

A[s, :] =
[
As1 . . . Ask

]
∈Mn×nk(H),

and the sth block column of the block matrix A as in (5.1) is specified by

A[:, s] :=


A1s

...

Aks

 ∈Mnk×n(H),

where 1 ≤ s ≤ k. Consider the integers p, q, r satisfy 1 ≤ p ≤ q ≤ k, 1 ≤ r ≤ k. Define

A[r, p : q] :=
[
Arp . . . Arq

]
∈Mn×n(q−p+1)(H).

Similarly if 1 ≤ p ≤ q ≤ k, 1 ≤ c ≤ k, then we define

A[p : q, c] :=


Apc

...

Aqc

 ∈Mn(q−p+1)×n(H).

Now, we present a framework to find the powers of the quaternionic block companion

matrix CL with the help of above colon notation as follows.
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Theorem 5.31. Consider CL =


n n(m−1)

n(m−1) 0 I

n −A0 −∆

 and let t < m be a positive

integer, then

(5.27) Ct
L =


nt n(m−t)

n(m−t) 0 I

nt C D

.
If t ≥ m, then

Ct
L =



C
t−(m−1)
L [m, 1 : m]

C
t−(m−2)
L [m, 1 : m]

...

Ct−1
L [m, 1 : m]

Ct
L[m, 1 : m]


nm×nm

,(5.28)

where

C =


CL[m, 1 : t]

C2
L[m, 1 : t]

...

Ct
L[m, 1 : t]


nt×nt

, D =


CL[m, t+ 1 : m]

C2
L[m, t+ 1 : m]

...

Ct
L[m, t+ 1 : m]


nt×n(m−t)

,

∆ =
[
A1 A2 . . . Am

]
, Ct

L[m, 1] := Ct−1
L [m,m]CL[m, 1], and

Ct
L[m, 2 : m] := Ct−1

L [m, 1 : m− 1] + Ct−1
L [m,m]CL[m, 2 : m].

Proof. The proof is similar to the proof method of Theorem 2.35 and by using above

notation. �

We can now derive the following results similar to the complex case. Consider A ∈
Mn(H), then

ρr(A) = ρr
(
At
)1/t ≤

∥∥At∥∥1/t

β
≤ ‖A‖β, t = 1, 2, . . . ,

where ‖.‖β is any quaternionic matrix norm. Also we have

ρr(A) = lim
t→∞

∥∥At∥∥1/t

β
.

The following bound for the right eigenvalues of a quaternionic matrix polynomial is

derived by using powers of the corresponding quaternionic block companion matrices.
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Theorem 5.32. Let L ∈ Lm(Mn(H)) be as in (5.7) and let γ ∈ [0, 1]. Then for any right

eigenvalue µ of L satisfies the following inequality:

1

ξ′1
≤ |µ| ≤ ξ1,

where

ξ1 = min
p=1,2,∞

{
max

1≤i≤m

((
R

(p)
i (Ct

V )
)γ/t (

C
(p)
i (Ct

V )
) 1−γ

t

)}
,

ξ′1 = min
p=1,2,∞

{
max

1≤i≤m

((
R

(p)
i (Ct

S)
)γ/t (

C
(p)
i (Ct

S)
) 1−γ

t

)}
.

Proof. The proof follows from Theorem 5.2, so we skip the proof. �

Next, we derive bounds for the right eigenvalues of quaternionic matrix polynomials

by using the matrix 1, 2 and ∞-norms and powers of corresponding quaternionic block

companion matrices which are as follows.

Theorem 5.33. Let L ∈ Lm(Mn(H)) be as in (5.7). Then for any right eigenvalue µ of

L satisfies the following inequality:(
‖Ct

S‖1

)−1/t ≤ |µ| ≤
(
‖Ct

V ‖1

)1/t
,(5.29) (

‖Ct
S‖∞

)−1/t ≤ |µ| ≤
(
‖Ct

V ‖∞
)1/t

,(5.30) (
‖Ct

S‖2

)−1/t ≤ |µ| ≤
(
‖Ct

V ‖2

)1/t
.(5.31)

Proof. Consider λ is a right eigenvalue of the block companion matrix CV , then λt ( t ≥ 2

is a positive integer) is a right eigenvalue of the matrix Ct
V . Thus by proof method of

Theorem 5.27, we have

(5.32) ρr(CV ) ≤ ‖Ct
V ‖1/t

β , (β = 1, 2,∞).

Similarly, we have also for CS

(5.33) ρr(CS) ≤ ‖Ct
S‖1/t

β , (β = 1, 2,∞).

Thus, from (5.32) and (5.33), we have the required results. �

Now, we define

U :=
[
U0 U1 . . . Um−1

]
, L :=

[
Lm Lm−1 . . . L1

]
,

where Uj = Vm−1Vj−Vj−1 and Lj+1 = S1Sj+1−Sj+2, (0 ≤ j ≤ m−1) with V−1 = Sm+1 =

0.
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Substituting t = 2 in Theorem 5.33 and applying APPENDIX-B, we obtain the

following corollaries.

Corollary 5.34. Let L ∈ Lm(Mn(H)) be as in (5.7). Then for any right eigenvalue µ of

L satisfies the following inequalities:

1

β4

≤ |µ| ≤ α4,(5.34)

max (1, ‖S‖∞, ‖L‖∞)−1/2 ≤ |µ| ≤ max (1, ‖V ‖∞, ‖U‖∞)1/2 ,(5.35)

where

α4 :=

[
max

(
‖V0‖1 + ‖U0‖1, ‖V1‖1 + ‖U1‖1, 1 + max

2≤i≤m−1
(‖Vi‖1 + ‖Ui‖1)

)]1/2

,

β4 :=

[
max

(
‖Sm‖1 + ‖Lm‖1, ‖Sm−1‖1 + ‖Lm−1‖1, 1 + max

1≤i≤m−2
(‖Si‖1 + ‖Li‖1)

)]1/2

.

Corollary 5.35. Let L ∈ Lm(Mn(H)) be as in (5.7). Then for any right eigenvalue µ of

L satisfies the following inequality:(∥∥I2n + TTH
∥∥

2

)−1/4 ≤ |µ| ≤
(∥∥I2n +DDH

∥∥
2

)1/4
,

where D =

V 0

0 U

 and T =

S 0

0 L

 .
Proof. Let us consider P = C2

V = X + Y + Z, where

X :=


0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

U0 U1 . . . Um−1

 , Y :=


0 0 . . . 0
...

...
...

−V0 −V1 . . . −Vm−1

0 0 . . . 0

 , Z :=



0 0 In 0
...

...
...

. . .
...

0 0 0 . . . In

0 0 0 . . . 0

0 0 0 . . . 0


.

Now, we have
∥∥XY H

∥∥
2

=
∥∥XZH

∥∥
2

=
∥∥Y XH

∥∥
2

=
∥∥Y ZH

∥∥
2

=
∥∥ZXH

∥∥
2

=
∥∥ZY H

∥∥
2

= 0.Thus

‖P‖2
2 =

∥∥PPH
∥∥

2
≤

∥∥XXH + Y Y H + ZZH
∥∥

2

≤
∥∥Imn +XXH + Y Y H

∥∥
2

=
∥∥I +DDH

∥∥
2

‖P‖2 ≤
(∥∥I2n +DDH

∥∥
2

)1/2
.
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If µ is any right eigenvalue of CU , then

|µ| ≤
∥∥C2

V

∥∥1/2

2
≤
(∥∥I2n +DDH

∥∥
2

)1/4
.

Analogue proof can be given for the lower bound. �

We give the following example to illustrate our theory.

Example 5.36. Consider the quaternionic matrix polynomial L ∈ L2(M2(H)) of the form

L(λ) := A2λ
2 + A1λ+ A0, where

A0 =

1 + i 1 + i

1 1− i

 , A1 =

11 + 2i + 3j + k 7 + 3i− j + 8k

1− 8i− 3j− 7k 9 + 5i + j− k

 , A2 =

2 + i 2− i

2 1− i

 .
Then

V0 = A−1
2 A0 =

 0.5− 0.5i 1− 2i

−0.5 + 0.5i −2 + i

 ,
V1 = A−1

2 A1 =

−5.5− 13.5i− 4j− 13k 4 + 9i + 2j− 6k

−3.5 + 15.5i− 7j + 12k 7− 6i− 8j + 5k

 ,
S1 = A−1

0 A1 =

 3 + i− 4j + 4k 12− 6i + 7k

3.5− 5.5i + 6j− 5k −7 + 4i + 3.5j− 2.5k

 ,
S2 = A−1

0 A2 =

 2− i 1− 2i

−0.5 + 0.5i −0.5 + 0.5i

 .
The right spectrum of L(λ) is

Λr(L) = [1.5719+23.2242i]∪ [−3.0550+4.1765i]∪ [−0.0806−0.0730i]∪ [0.0637+0.0421i].

Also max
λi∈Λr(L)

|λi| = 23.2773 and min
λi∈Λr(L)

|λi| = 0.0764.

Let LB:= Lower Bound, UB:= Upper Bound. Thus Theorem 5.23 is verified.

Also we have verified our results for the case of the 1-norm, 2-norm and the ∞-norm.

5.3.2. Left eigenvalues of quaternionic matrix polynomials and their bounds

In this subsection, we state that if the variable of a matrix polynomial is a quaternion

identity, then we always be able to find the bounds for the left eigenvalues of quaternionic

matrix polynomials. So, if we consider any left matrix polynomial L′ as given in (5.6)
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Example 5.36 LB UB

Theorem 5.23

(5.19) 0.0464 34.7804

(5.20) 0.0419 36.9768

(5.21), γ = 1/4 0.0452 35.3178

Theorem 5.25 0.0469 34.1084

Theorem 5.26 0.0608 24.2378

Theorem 5.28

(1) 0.0412 42.0443

(2) 0.0383 35.7120

(3) 0.0480 33.9391

Table 5.1. Lower and upper bounds for right eigenvalues of L(λ).

including the one define in (5.7), then the similar bounds as in the previous section for

the right eigenvalues of L can be derived for the left eigenvalues of L′.

Let L′ ∈ L′m(Mn(H)) of the form (5.6). Then, we have the following linearization

form of the matrix polynomial L′.

• For the left eigenvalues: The matrix polynomial L′ ∈ L′m(Mn(H)) of the form

(5.6) can be written in the linearization form:

CL′ + ξ X,

where ξ ∈ H, CL′ , X ∈Mmn(H) are of the forms

CL′ :=



0 0 0 . . . −A0

In 0 0 . . . −A1

. . .
... . . .

...

0 0 In −Am−2

0 0 . . . In −Am−1


, X :=



In 0 0 . . . 0

0 In 0 . . . 0

0 0 In 0
...

...
. . .

...

0 0 0 . . . Am


.

When Am = In, the identity matrix, then the matrix polynomial L′ ∈ L′m(Mn(H))

of the form (5.6) is said to be monic matrix polynomial and the corresponding

linearization form of it is given by

CL′ + ξ E, where E := Inm.
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Theorem 5.37. The quaternionic matrix polynomial L′ of the form (5.6) and the pencil

(CL′ , X) have same left eigenvalues.

Proof. Let µ ∈ H be a left eigenvalue of the quaternionic matrix pencil (CL′ , X). Then

there exists x := [xT1 , x
T
2 , . . . , x

T
m]T with xi ∈ Hn, i = 1, 2, . . . ,m such that

(5.36)



0 0 0 . . . −A0

In 0 0 . . . −A1

. . .
...

...

0 0 In −Am−2

0 0 . . . In −Am−1





x1

x2

...

xm−1

xm


= µ



In 0 0 . . . 0

0 In 0 . . . 0

0 0 In 0
...

...
. . .

...

0 0 0 . . . Am





x1

x2

...

xm−1

xm


,

then (5.36) implies

−A0xm = µx1,

x1 − A1xm = µx2,

x2 − A2xm = µx3,

...

xm−2 − Am−2xm = µxm−1,

xm−1 − Am−1xm = µAmxm.

By solving the mst system of equations, we obtain

A0xm + µA1xm + µ2A2xm + · · ·+ µmAmxm = 0.

Hence µ is a left eigenvalue of the quaternionic matrix polynomial L′. �

Theorem 5.38. Let L′ ∈ Lm(Mn(H)) be of the form (5.6). Then µ ∈ H is a left eigen-

value of L′ if and only if det[Ψ(A0+µA1+···+µmAm)] = 0.

Proof. Consider µ is a left eigenvalue of L, then there exists a nonzero x ∈ Hn such that

A0x+ µA1x+ µ2A2x+ · · ·+ µmAmx = 0. Applying the mapping Ψ, we have

Ψ(A0+µA1+···+µmAm)Ψx = 0.

It follows that µ is a left eigenvalue of L′ if and only if

det[Ψ(A0+µA1+···+µmAm)] = 0. �
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We now state a framework to find bounds for the left eigenvalues of quaternionic

matrix polynomials.

• To find the bounds of the left eigenvalues of the quaternionic matrix polynomial

L′, we again introduce the new quaternionic matrix polynomials associated with

L′ :

L′V ′′(ξ) := ξmIn +
m−1∑
i=0

ξiV ′′i ,(5.37)

where V ′′i := AiA
−1
m , i = 0, 1, . . . ,m− 1, so that L′(ξ) = L′V ′′(ξ)Am, and

L′S′′(ξ) := ξmIn +
m∑
i=1

ξm−iS ′′i ,(5.38)

where S ′′i := AiA
−1
0 , i = 1, . . . ,m, now ξmL′(1/ξ)A−1

0 = L′S′′(ξ). The matrix poly-

nomials L′ and L′V ′′ have the same left eigenvalues, whereas the left eigenvalues of

the matrix polynomial L′S′′ are the reciprocal of the left eigenvalues of the matrix

polynomial L′. The block companion matrices CV ′′ and CS′′ corresponding to the

monic matrix polynomials L′V ′′ and L′S′′ are given by

CV ′′ :=


n(m−1) n

n 0 −V ′′0
n(m−1) I −∆V ′′

 and CS′′ :=


n(m−1) n

n 0 −S ′′m
n(m−1) I −∆S′′

,
respectively, where

∆V ′′ =
[
V ′′1

T V ′′2
T . . . V ′′m−1

T
]T
∈Mn(m−1)×n(H),

∆S′′ =
[
S ′′m−1

T S ′′m−2
T . . . S ′′1

T
]T
∈Mn(m−1)×n(H).

Moreover, the left eigenvalues of the monic matrix polynomials L′V ′′(ξ),L
′
S′′(ξ) and

the left eigenvalues of the block companion matrices CV ′′ , CS′′ are same, respec-

tively.
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Theorem 5.39. Consider CL′ =


n(m−1) n

n 0 −A0

n(m−1) I −∆

 and let t < m be a positive

integer, then

(5.39) Ct
L′ =


n(m−t) nt

nt 0 C

n(m−t) I D

.
If t ≥ m, then we write

Ct
L′ =

[
C
t−(m−1)
L′ [1 : m,m] C

t−(m−2)
L′ [1 : m,m] . . . Ct−1

L′ [1 : m,m] Ct
L′ [1 : m,m]

]
,

where Ct
L′ are nm× nm matrices,

∆ :=
[
AT1 AT2 . . . ATm

]T
, C :=

[
CL′ [1 : t,m] C2

L′ [1 : t,m] . . . Ct
L′ [1 : t,m]

]
,

D :=
[
CL′ [t+ 1 : m,m] C2

L′ [t+ 1 : m,m] . . . Ct
L′ [t+ 1 : m,m]

]
,

Ct
L′ [1,m] := CL′ [1,m] Ct−1

L′ [m,m], and

Ct
L′ [2 : m,m] := Ct−1

L′ [1 : m− 1,m] + CL′ [2 : m,m] Ct−1
L; [m,m].

Proof. The proof is similar to the proof method of Theorem 2.37 and by using colon

notation of Subsection 5.3.1. �

Remark 5.40. Similar results can be obtained for the left eigenvalues of the quaternionic

matrix polynomial L′ ∈ L′m(Mn(H)).

Next, we define the right quaternionic polynomial as

pr(z) := zmqm + zm−1qm−1 + · · ·+ zq1 + q0,(5.40)

where z, qj ∈ H (0 ≤ j ≤ m). The polynomial (5.40) is called monic if qm = 1. Then we

write the following remark.

Remark 5.41. If we take n = 1, then the quaternionic matrix polynomial L′ will be

reduced into the right quaternionic polynomial pr(z).

Now we have the following observations.
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• By Remark 5.41, Theorems 5.25 and 5.26 for left eigenvalue of the matrix polyno-

mial L′ yield the bounds for the zeros of the right monic quaternionic polynomial

pr(z).

• Theorem 5.30 for left eigenvalue of the matrix polynomial L′ yields the bounds for

the zeros of the right monic quaternionic polynomial pr(z) which can be found in

Theorem 2.26 for the zero of the right monic quaternionic polynomial pr(z).

The following corollary is a particular case of Theorem 5.28 for the bounds of the left

eigenvalues of the quaternionic matrix polynomial L′ ∈ L′m(Mn(H)) which generalizes the

bounds for the zeros of right quaternionic polynomials and these can be seen in Corollary

2.27.

Corollary 5.42. Let L′ ∈ L′m(Mn(H)) be as in (5.6). Then for any left eigenvalue µ of

L′ satisfies the following inequalities:

(
1 + max

1≤i≤m
‖S ′′i ‖1

)−1

≤ |µ| ≤ 1 + max
0≤i≤m−1

‖V ′′i ‖1,(5.41)

max

(
1,

m∑
i=1

‖S ′′i ‖∞
)−1

≤ |µ| ≤ max

(
1,

m−1∑
i=0

‖V ′′i ‖∞
)
,(5.42)

(
1 +

m∑
i=1

‖S ′′i ‖2
2

)−1/2

≤ |µ| ≤
(

1 +
m−1∑
i=0

‖V ′′i ‖2
2

)1/2

.(5.43)

5.4. Bounds for eigenvalues of complex matrix polynomials

We show that the bounds obtained in Subsections 5.3.1 and 5.3.2 for the left and right

eigenvalues are similar to the bounds for the eigenvalues of complex matrix polynomials.

Our framework for the bounds of the eigenvalues of quaternionic matrix polynomials are

same with the bounds on the eigenvalue of complex matrix polynomials. That is the

bounds for the left and right eigenvalues of quaternionic matrix polynomials are same

with the bounds for the eigenvalues of a complex matrix polynomial. Bounds for the

eigenvalues of a complex matrix polynomial and their applications are given in [4,15,38].

If Am is not invertible in the matrix polynomial P ∈ Pm(Mn(C)) given in (5.5), then

P(z) has an infinite eigenvalue. While if A0 is not invertible, then 0 is an eigenvalue of

the matrix polynomial P(z). Therefore, for upper bounds of the absolute values of the
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eigenvalues of P(z) require Am to be invertible and lower bounds of the absolute values

of eigenvalues of P(z) require A0 to be invertible.

For finding the upper and lower bounds for the absolute values of the eigenvalues of

the complex matrix polynomial P(z), we state the following remarks from Section 5.2 and

Subsection 5.3.1.

Remark 5.43. It is seen that Theorems 5.1 and 5.2 are true for the eigenvalues of

complex block matrices. Then Theorems 5.23 and 5.24 are true for the eigenvalues of

complex matrix polynomials.

From Remark 5.43, it is clear that bounds (5.19) and (5.20) for the absolute values of

the eigenvalues of complex matrix polynomials are tighter than the bounds given in [15,

Lemma 2.3 (2.1), Corollary 2.4 (2.5) (2.6)]. Now we have the following observations from

Section 5.2 and Subsection 5.3.1.

• From Remark 5.43 it shows that Theorems 5.32 is true for the eigenvalues of com-

plex matrix polynomials.

• Theorem 5.33 is true for the eigenvalues of complex matrix polynomials for 1, 2

and ∞-matrix norms over the complex field.

• It is obvious that Theorem 5.9 is also true for complex block matrices. Hence

Theorem 5.25 holds for the eigenvalues of complex matrix polynomials.

• It is also seen that Corollary 5.10 is true for complex matrices. Hence, Theorem

5.26 is valid for the eigenvalues of complex matrix polynomials.

If we take bounds for the absolute values of the eigenvalues of complex matrix polynomials

by using powers of block companion matrix, then the bounds (5.29), (5.30) and (5.31) for

complex matrix polynomials are sharper than the bounds given in [15, Lemma 2.3].

Example 5.44. Consider the complex matrix polynomial

P(z) := A5z
5 + A4z

4 + A3z
3 + A2z

2 + A1z + A0,

where

A0 =

 2 + i 13− 2i

−2 + 13i 4

 , A1 =

 23i 7 + 3i

−7 + 3i 31 + i

 ,
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A2 =

 2 1 + 2i

1− 2i 23i

 , A3 =

 1 9− 7i

7 + 9i 2

 ,
A4 =

7 + i 3i

3 25

 , A5 =

11 + 2i 10 + 8i

8− 10i 6− 7i

 .
The spectrum of P(z) is given by

Λ(P) =

{
3.3319− 1.0719i, 1.0701− 1.3366i,−0.6994− 1.0580i,−1.3205 + 0.0574i,

−0.8939 + 0.5348i, 0.1973 + 1.1657i, 0.7705− 0.5866i, 0.2632 + 0.6958i,

0.4865 + 0.0727i,−0.4532 + 0.0166i

}
,

max
λi∈Λ(P(z))

|λi| = 3.5001, and min
λi∈Λ(P(z))

|λi| = 0.4535.

As we have already explained in this section that Theorems 5.23, 5.32 and 5.33 are true

for the eigenvalues of complex matrix polynomials. Thus we now give the following tables

for the absolute values of the eigenvalues of (P(z)).

Example 5.44 LB UB

Theorem 5.23

(5.19) 0.2962 8.6818

(5.20) 0.1105 23.1505

(5.21) , γ = 1/4 0.2280 7.6143

Table 5.2. Lower and upper bounds for eigenvalues of P(z).
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Example 5.44 LB UB

[15, Lemma 2.3]

(2.1) 0.2501 8.7210

(2.2) 0.1049 23.0150

(2.3) 0.2407 11.3218

Theorem 5.33, t=2

(5.29) 0.3299 6.0610

(5.30) 0.2304 9.3571

(5.31) 0.3473 6.6054

Theorem 5.33, t=3

(5.29) 0.3528 5.2268

(5.30) 0.2954 6.9081

(5.31) 0.3709 5.4567

Theorem 5.33, t=4

(5.29) 0.3853 4.7508

(5.30) 0.3315 5.8152

(5.31) 0.4086 4.8856

Table 5.3. Lower and upper bounds for eigenvalues of P(z).
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CHAPTER 6

PERTURBATION BOUNDS FOR RIGHT EIGENVALUES OF

QUATERNIONIC MATRICES AND THEIR APPLICATIONS

This chapter deals with the concept of perturbation bounds for right eigenvalues/generalized

right eigenvalues of a quaternionic matrix/quaternionic matrix pencil. In particular,

Bauer-Fike type theorems for right eigenvalues/generalized right eigenvalues of a diagonal-

izable quaternionic matrix/diagonalizable quaternionic matrix pencil are derived. Other

perturbation bounds for right eigenvalues of a quaternionic matrix are discussed. Further-

more, the location of standard right eigenvalues of a quaternionic matrix and a sufficient

condition for the stability of a perturbed quaternionic matrix are given. Perturbation

bounds for the zeros of quaternionic polynomials are derived. Finally, we give numerical

examples to illustrate our results.

6.1. Introduction

The goal of this chapter is to derive Bauer-Fike type theorems for right eigenvalues/generalized

right eigenvalues, perturbation analysis for quaternionic matrices, location of right eigen-

values of perturbed quaternionic matrices, and perturbation bounds for the zeros of

quaternionic polynomials.

Bauer-Fike theorems are the standard results in the perturbation theory over the

complex field. The applications of the Bauer-Fike theorems over the complex field are

given in [7,11,35,36,51]. In general, quaternionic matrix similarity is meaningless for left

eigenvalues. However, there are many literatures on matrix similarity and diagonalization

for right eigenvalues of a quaternionic matrix. Many results, like the Jordan canonical

form, Schur decomposition, singular-value decomposition, diagonalizable of a quaternionic

matrix have been extended from the complex field to the skew field of quaternions by

different authors. For instance, see [9,21,46,49,61]. However, an extension of Bauer-Fike

theorem, perturbation analysis on quaternionic matrices, perturbation analysis of zeros of



quaternionic polynomials have not yet been studied. Perturbation analysis over the skew

field of quaternions is important in quantum physics, control theory, and mechanics (see,

for example, [1, 26,43,49]).

In this chapter, we extend the Bauer-Fike theorems over the complex field to the

skew field of quaternions. Specifically, Bauer-Fike type theorems for right eigenval-

ues/generalized right eigenvalues of a diagonalizable quaternionic matrix/diagonalizable

quaternionic matrix pencil are derived. Other perturbation results for right eigenvalues of

a quaternionic matrix are given via Jordan canonical form and block diagonal decomposi-

tion of a quaternionic matrix. Meanwhile, localization theorems for right eigenvalues of a

quaternionic matrix and a sufficient condition for the stability of a perturbed quaternionic

matrix are derived. Perturbation bounds for the zeros of the quaternionic polynomials

pl(z) and pr(z) (defined in Subsection 1.2.4) are given.

6.2. Perturbation analysis on quaternionic matrices

We derive the following lemmas for the development of our theory.

Lemma 6.1. Let a, b ∈ C+. Then |a− b| ≤ |a− b|.

Proof. Suppose a = x+ iy and b = p+ iq, where x, p ∈ R and y, q ∈ R+ ∪ {0}. We have

(6.1) |a− b| = |x+ iy − (p+ iq)| = |(x− p) + i(y − q)|, and

(6.2) |a− b| = |x− iy − (p+ iq)| = |(x− p) + i(y + q)|.

It is known that if y, q ∈ R+ ∪ {0}, then y + q ≥ y − q. Hence from (6.1) and (6.2), we

have |a− b| ≤ |a− b|. �

Lemma 6.2. Consider αk, βk, γk ∈ R, (k = 1, 2), such that α2
1 + β2

1 + γ2
1 = 1 and α2

2 +

β2
2 + γ2

2 = 1. Then

α1α2 + β1β2 + γ1γ2 ≤ 1.

Proof. We have that

(α1 − α2)2 + (β1 − β2)2 + (γ1 − γ2)2 = 2− 2 (α1α2 + β1β2 + γ1γ2) ≥ 0, i.e.,

α1α2 + β1β2 + γ1γ2 ≤ 1. �
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Lemma 6.3. Let λ, µ ∈ C+ and let 0 6= ρ, η ∈ H. Then

|λ− µ| ≤
∣∣ρ−1λρ− η−1µη

∣∣ .
Proof. Consider λ = λ′ + λ′′i, µ = µ′ + µ′′i, ρ−1iρ = α1i + β1j + γ1k, and η−1iη =

α2i + β2j + γ2k, where αk, βk, γk ∈ R (k = 1, 2) with α2
1 + β2

1 + γ2
1 = α2

2 + β2
2 + γ2

2 = 1.

Then

P = |λ− µ|2 = (λ′ − µ′)2 + (λ′′)2 + (µ′′)2 − 2λ′′µ′′.(6.3)

Also, Q = |ρ−1λρ−η−1µη|2 = (λ′−µ′)2+(λ′′α1−µ′′α2)2+(λ′′β1−µ′′β2)2+(λ′′γ1−µ′′γ2)2 =

(λ′ − µ′)2 + (λ′′)2[α2
1 + β2

1 + γ2
1 ] + (µ′′)2[α2

2 + β2
2 + γ2

2 ]− 2λ′′µ′′[α1α2 + β1β2 + γ1γ2]. From

Lemma 6.2, we have

α1α2 + β1β2 + γ1γ2 < 1.

Thus P ≤ Q, i.e.,

|λ− µ| ≤
∣∣ρ−1λρ− η−1µη

∣∣ . �
Lemma 6.4. Let A ∈ Mn(H) such that At = 0n for any positive integer t, where 0n is

the n× n zero matrix. Then Ψt
A = 02n, where 02n is the 2n× 2n zero matrix.

Proof. Consider A ∈Mn(H) such that At = 0n for any positive integer t. Then by taking

the complex adjoint matrix of At = 0n and by applying Theorem 1.12, we have

ΨAt = Ψ0n ⇒ Ψt
A = 02n. �

Lemma 6.5. Let T ∈Mn(H) be partitioned as follows:

T =


p q

p T11 T12

q 0 T22

.
Define the linear transformation φ : Mp×q(H)→Mp×q(H) by

φ(X) = T11X −XT22,

where X ∈ Mp×q(H). Then φ is invertible if and only if Λr(T11) ∩ Λr(T22) = ∅. If φ is

invertible and Y ∈Mn(H) is defined by

Y =

Ip Z

0 Iq

 , φ(Z) = −T12
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then Y −1TY = diag(T11, T22).

Proof. Let X ∈Mp×q(H). Then singular value decomposition of X is given by

UHXV =


r q−r

r Σr 0

p−r 0 0

,(6.4)

where Σr = diag(σi) and r =rank(X). Assuming φ(X) = 0 for X 6= 0. Substituting (6.4)

into the quaternionic matrix equation T11X = XT22, we haveA11 A12

A21 A22

Σr 0

0 0

 =

Σr 0

0 0

B11 B12

B21 B22

 ,
where UHT11U := (Aij) and V HT22V := (Bij). By comparing blocks we see that A21 = 0,

B12 = 0, and Λr(A11) = Λr(B11). Consequently,

∅ 6= Λr(A11) = Λr(B11) ⊆ Λr(T11) ∩ Λr(T22).

On the other hand, if λ ∈ Λr(T11)∩Λr(T22), then there exist nonzero x, y ∈ Hn such that

T11x = xλ, TH22y = yλH .

Then yHT22 = λyH and hence φ(xyH) = 0. Finally, if φ is invertible, then the quaternionic

matrix Z exists and

Y −1TY =

I −Z
0 I

T11 T12

0 T22

I Z

0 I


=

T11 T11Z − ZT22 + T12

0 T22

 =

T11 0

0 T22

 . �
We next establish block diagonal decomposition of a quaternionic matrix.

Theorem 6.6. (Block diagonal decomposition) Suppose

UHAU = T =


T11 T12 . . . T1q

0 T22 . . . T2q

...
...

. . .
...

0 0 . . . Tqq


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is a Schur decomposition of A ∈ Mn(H) and assume that the Tii are square. If Λr(Tii) ∩
Λr(Tjj) = ∅ whenever i 6= j, then there exists an invertible matrix Y ∈Mn(H) such that

(QY )−1A(QY ) = diag(T11, . . . , Tqq).

Proof. The proof is immediate by applying Lemma 6.5 and induction. �

6.2.1. Bauer-Fike type theorem for the right eigenvalues

We first derive Bauer-Fike type theorem for diagonalizable quaternionic matrices which

is as follows.

Theorem 6.7. Let A ∈ Mn(H) be a diagonalizable matrix, i.e., A = Y ΛY −1, Λ =

diag(λ1, . . . , λn), where λi are the standard right eigenvalues of A and Y be an invertible

quaternionic matrix. Let ∆A ∈ Mn(H). If µ is a standard right eigenvalue of A + ∆A,

then

dist
(
µ,Λs(A)

)
:= min

λi∈Λs(A)

{
|λi − µ|

}
≤ K2(Y ) ‖∆A‖2.

Moreover, we have

dist
(
ξ,Λr(A)

)
:= inf

ηj∈Λr(A)

{
|ηj − ξ|

}
≤ K2(Y ) ‖∆A‖2,

where ξ ∈ Λr(A + ∆A) and K2(·) is the condition number with respect to the matrix

2-norm.

Proof. Let λi 6= µ for any i. Since µ is a standard right eigenvalue of A+ ∆A, then there

exists x 6= 0 ∈ Hn such that (A + ∆A)x = xµ. This system is equivalent to the complex

system

ΨA+∆Aψx = µψx

which implies

(ΨA+∆A − µI2n)ψx = 0.

From this we have

(ΨA + Ψ∆A − µI2n)ψx = 0.

The above system can be written as (µI2n −ΨY ΛY −1)ψx = Ψ∆Aψx. Further we can write

ΨY (µI2n − ΨΛ)ΨY −1ψx = Ψ∆Aψx. Then (µI2n − ΨΛ)(ΨY )−1ψx = (ΨY )−1Ψ∆Aψx. Thus
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(ΨY )−1ψx = (µI2n − ΨΛ)−1[(ΨY )−1Ψ∆AΨY ](ΨY )−1ψx. Taking matrix 2-norm (operator

norm) on both sides, we get

‖(ΨY )−1ψx‖2 ≤ ‖(µI2n −ΨΛ)−1‖2 ‖(ΨY )−1Ψ∆AΨY ]‖2 ‖(ΨY )−1ψx‖2

1 ≤ ‖(µI2n −ΨΛ)−1‖2 ‖(ΨY )−1‖2 ‖Ψ∆A‖2 ‖ΨY ‖2

1 ≤ max
λi∈Λs(A)

{
1

|λi − µ|
,

1

|λi − µ|

}
‖(ΨY )−1‖2 ‖Ψ∆A‖2 ‖ΨY ‖2.

From Lemma 6.1, we have

1 ≤ max
λi∈Λs(A)

{
1

|λi − µ|

}
‖(ΨY )−1‖2 ‖Ψ∆A‖2 ‖ΨY ‖2

1 ≤ 1

min
λi∈Λs

(A){|λi − µ|}
K2(ΨY )‖Ψ∆A‖2

min
λi∈Λs(A)

{
|λi − µ|

}
≤ K2(ΨY ) ‖Ψ∆A‖2.

Now from Lemma 1.13, we obtain

min
λi∈Λs(A)

{
|λi − µ|

}
≤ K2(Y )‖∆A‖2.

Thus Lemma 6.3 yields

min
λi∈Λs(A)

{|λi − µ|} = inf
ηj∈Λr(A)

{|ηj − ξ|},

where ξ ∈ Λr(A+ ∆A). Hence

inf
ηj∈Λr(A)

{|ηj − ξ|} ≤ K2(Y ) ‖∆A‖2. �

In particular, when A ∈Mn(H) is normal, Theorem 6.7 leads to the following corollary.

Corollary 6.8. Let A ∈ Mn(H) be a normal matrix and let µ be a standard right eigen-

value of the perturbed quaternionic matrix A+ ∆A. Then

dist(µ,Λs(A)) := min
λi∈Λs(A)

{
|λi − µ|

}
≤ ‖∆A‖2.

Moreover, we have

dist
(
ξ,Λr(A)

)
:= min

ηj∈Λr(A)

{
|ηj − ξ|

}
≤ ‖∆A‖2,

where ξ ∈ Λr(A+ ∆A).

We next have the following theorem for a relative perturbation bound.
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Theorem 6.9. Let A ∈ Mn(H) be diagonalizable and invertible, i.e., A = Y ΛY −1, Λ =

diag(λ1, . . . , λn), where λi are the standard right eigenvalues of A and Y be an invertible

quaternionic matrix. Let ∆A ∈ Mn(H). If µ is a standard right eigenvalue of A + ∆A,

then

dist
(
µ,Λs(A)

)
:= min

λi∈Λs(A)

{ |λi − µ|
|λi|

}
≤ K2(Y ) ‖A−1∆A‖2.

Moreover, we have

dist
(
ξ,Λr(A)

)
:= inf

ηj∈Λr(A)

{ |ηj − ξ|
|ηj|

}
≤ K2(Y ) ‖A−1∆A‖2,

where ξ ∈ Λr(A + ∆A) and K2(Y ) = ‖Y ‖2 ‖Y −1‖2 is the condition number of Y with

respect to the matrix 2-norm.

Proof. Let λi 6= µ for any i. Since µ is a standard right eigenvalue of A+∆A, there exists

x 6= 0 ∈ Hn such that (A+ ∆A)x = xµ. This system is equivalent to the complex system

ΨA+∆Aψx = µψx.

Since A is an invertible matrix, multiplying by −ΨA−1 from left, we obtain

−ΨA−1 (ΨA + Ψ∆A)ψx = −µΨA−1ψx

(−I2n −ΨA−1∆A)ψx = −µΨA−1ψx

(µΨA−1 − I2n) = ΨA−1∆Aψx.

The matrix A is diagonalizable, i.e., A = Y ΛY −1, we obtain

(µΨY Λ−1Y −1 − I2n)ψx = ΨA−1∆Aψx

ΨY (µΨΛ−1 − I2n)ΨY −1ψx = ΨA−1∆Aψx.

Thus by calculation, we get

(ΨY )−1ψx = (µΨΛ−1 − I2n)−1[(ΨY )−1ΨA−1∆AΨY ](ΨY )−1ψx.

By applying the proof method of Theorem 6.7, we have

dist
(
µ,Λs(A)

)
:= min

λi∈Λs(A)

{ |λi − µ|
|λi|

}
≤ K2(Y ) ‖A−1∆A‖2.

As well as

dist
(
ξ,Λr(A)

)
:= inf

ηj∈Λr(A)

{ |ηj − ξ|
|ηj|

}
≤ K2(Y ) ‖A−1∆A‖2,

where ξ ∈ Λr(A+ ∆A). �
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Before going to present a localization theorem of standard right eigenvalues of the

perturbed quaternionic matrix A+ ∆A. We see that a right eigenvalue of the perturbed

quaternionic matrix A+ ∆A is not necessarily contained in the union of n-discs

(6.5) Ωi(A) := {z ∈ C : |z − λi| ≤ K2(Y ) ‖∆A‖2} (1 ≤ i ≤ n),

where A is diagonalizable, i.e., A = Y diag(λi)Y
−1 and λi ∈ Λs(A). For example, con-

sider a quaternionic matrix A =

1 + i 0

0 i

 . Let ∆A =

ε 0

0 ε

 .Then A + ∆A =1 + i + ε 0

0 i + ε

 and ‖∆A‖2 = ε. Since A is normal, K2(Y ) = 1. We set ε = 10−3.

From (6.5), we get the following two discs:

Ω1(A) =
{
z ∈ C : |z − 1− i| ≤ 10−3

}
and Ω2(A) =

{
z ∈ C : |z − i| ≤ 10−3

}
.

The perturbed quaternionic matrix A+ ∆A has two standard right eigenvalues 1 + i + ε

and i + ε. In particular, 1− i + ε is also a right eigenvalue of A+ ∆A. However it is not

contained in any discs. Fortunately, we can show that all the standard right eigenvalues

of A+ ∆A are contained in the union of n-discs Ωi(A) which is as follows.

Theorem 6.10. Let A ∈ Mn(H) be a diagonalizable matrix, i.e., A = Y ΛY −1, Λ =

diag(λ1, . . . , λn), where λi are the standard right eigenvalues of A and Y be an invert-

ible quaternionic matrix. Let ∆A ∈ Mn(H). Then all the standard right eigenval-

ues of the perturbed matrix A + ∆A are contained in the union of n-discs Ωi(A) :=

{z ∈ C : |z − λi| ≤ K2(Y ) ‖∆A‖2} (1 ≤ i ≤ n), i.e.,

Λs(A+ ∆A) ⊆ Ω(A) := ∪ni=1Ωi(A).

Proof. The proof follows direct from Theorem 6.7. �

The following result is a sufficient condition for the stability of the perturbed quater-

nionic matrix A+ ∆A.

Proposition 6.11. Let A ∈Mn(H) be a diagonalizable, i.e., A = Y ΛY −1, Λ = diag(λ1, . . . , λn),

where λi are the standard right eigenvalues of A and Y be an invertible quaternionic ma-

trix. Let ∆A ∈Mn(H). Assume that

Re(λi) +K2(Y ) ‖∆A‖2 < 0 ∀ i (1 ≤ i ≤ n).(6.6)

Then the perturbed quaternionic matrix A+ ∆A is stable.
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Proof. Let λ be any standard right eigenvalue of A. Then

Re(λ) = Re(ρ−1λρ) ∀ ρ ∈ H,

i.e., the real part of the standard right eigenvalue λ and the real part of corresponding

non standard right eigenvalues are same. Thus, the proof follows from the proof method

of Proposition 2.17 and using Theorem 6.10 with Definition 1.24. �

We next turn to prove the Bauer-Fike type theorem for central closed matrices.

Theorem 6.12. Let A ∈ Mn(H) be a central closed matrix, i.e., A = Y ΛY −1, Λ =

diag(λ1, . . . , λn), where λi are the standard right eigenvalues of A. Let ∆A ∈ Mn(H). If

µ is a standard right eigenvalue of A+ ∆A, then

dist
(
µ,Λs(A)

)
:= min

λi∈Λs(A)

{
|λi − µ|

}
≤ K2(Y ) ‖∆A‖2.

Moreover,

dist
(
ξ,Λr(A)

)
:= inf

λi∈Λr(A)

{
|λi − ξ|

}
≤ K2(Y ) ‖∆A‖2,

where ξ is a right eigenvalue of A + ∆A and K2(·) is the condition number with respect

to the matrix 2-norm.

Proof. Let λi 6= µ for any i. Then it is not trivial. Since µ is a standard right eigenvalue

of A+ ∆A, there exists x 6= 0 ∈ Hn such that (A+ ∆A)x = xµ. By the proof method of

Theorem 6.7, we have

1 ≤ ‖(µI2n −ΨΛ)−1‖2 ‖(ΨY )−1‖2 ‖Ψ∆A‖2 ‖ΨY ‖2.

From Definition 1.8, λi (1 ≤ i ≤ n) are real. Hence

1 ≤ max
λi∈Λs(A)

{
1

|λi − µ|

}
‖(ΨY )−1‖2 ‖Ψ∆A‖2 ‖ΨY ‖2

1 ≤ 1

min
λi∈Λs(A)

{
|λi − µ|

} K2(ΨY )‖Ψ∆A‖2

min
λi∈Λs(A)

{
|λi − µ|

}
≤ K2(ΨY ) ‖Ψ∆A‖2.

By Lemma 1.13, we obtain

min
λi∈Λs(A)

{
|λi − µ|

}
≤ K2(Y ) ‖∆A‖2.
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Since |λi − µ| = |λi − ρ−1µρ|, 0 6= ρ ∈ H. Hence

inf
λi∈Λr(A)

{|λi − η|} ≤ K2(Y ) ‖∆A‖2,

where η ∈ Λr(A+ ∆A). �

The following theorem is a direct consequence of Theorem 6.12 .

Theorem 6.13. Let A ∈ Mn(H) be a central closed matrix, i.e., A = Y ΛY −1, Λ =

diag(λ1, . . . , λn), where λi are the standard right eigenvalues of A. Let ∆A ∈ Mn(H).

Then all the right eigenvalues of A + ∆A are contained in the union of n-balls Gi(A) :=

{z ∈ H : |z − λi| ≤ K2(Y ) ‖∆A‖2} (1 ≤ i ≤ n), i.e.,

Λr(A+ ∆A) ⊆ G(A) := ∪ni=1Gi(A).

Proof. The proof follows from Theorem 6.12. �

Since real numbers commute with quaternions. Therefore, real left eigenvalues of

a matrix A ∈ Mn(H) are also right eigenvalues of A and vice versa. By applying this

argument, we have the following result.

Theorem 6.14. Let A ∈Mn(H) be a Hermitian matrix. For some µ̃ ∈ R and x̃ ∈ Hn with

‖x̃‖2 = 1, define residual vector r = Ax̃− µ̃x̃. Then |µ̃− µ| ≤ ‖r‖2 for some µ ∈ Λr(A).

Proof. Since µ ∈ Λr(A), µ ∈ Λl(A). Now if µ̃ /∈ Λr(A), then µ̃ /∈ Λl(A). Hence (A−µ̃In)−1

exists. So we can write r = Ax̃− µ̃x̃ as follows:

x̃ = (A− µ̃In)−1r.

Since A is a Hermitian matrix. Therefore, from Theorem 1.29, A is unitarily diagonal-

izable, i.e., V −1AV = diag(µi) (1 ≤ i ≤ n), where V is a quaternionic unitary matrix.

Now, by applying the proof method of Theorem 6.7, we have the required result

min
µi∈Λs(A)

{
|µ̃− µi|

}
≤ ‖r‖2. �

6.2.2. Perturbation bounds for non-diagonalizable quaternionic matrices

First, in this subsection, we derive a perturbation result on quaternionic matrices via

block diagonal decomposition of quaternionic matrices.

124



Theorem 6.15. Let A ∈ Mn(H). Consider A = Y TY −1, T = diag(V1, . . . , Vk), where

Vi = Λi+Ni ∈Mni(H) is upper triangular, Λi is diagonal and Ni is strict upper triangular

for i = 1, 2, . . . , k. If µ is a standard right eigenvalue of A + ∆A, then there exists

λj ∈ Λs(A) such that

|λj − µ| ≤ max
(
χ, χ1/nj

)
,

where χ = ‖Y −1∆AY ‖2

∑nj−1
t=0 ‖Nj‖t2, and N

nj
j = 0nj with N

nj−1
j 6= 0nj .

Proof. Let µ /∈ Λs(A). Since µ is a standard right eigenvalue of A + ∆A, there exists

x 6= 0 ∈ Hn such that (A+ ∆A)x = xµ. Then from the proof method of Theorem 6.7, we

have

1 ≤ ‖(µI2n −ΨT )−1‖2 ‖Y −1∆AY ‖2.(6.7)

We have that

1

‖(µI2n −ΨT )−1‖2

=
1

max
1≤i≤k

‖(µI2ni −ΨVi)
−1‖2

=
1

‖(µI2nj −ΨVj)
−1‖2

.(6.8)

Define

τ =
1

‖(µI2nj −ΨΛj)
−1‖2

=
1

max
{

1
|µ−λj | ,

1
|µ−λj |

} = |µ− λj|.(6.9)

Since N
nj
j = 0, from Lemma 6.4, we have Ψ

nj
Nj

= 0. As Nj is a strict upper triangular

quaternionic matrix, ΨNj is also a strict upper triangular. Hence
(
µI2nj −ΨΛj

)
ΨNj =

ΨNj

(
µI2nj −ΨΛj

)
. Therefore,[(

µI2nj −ΨΛj

)−1
ΨNj

]nj
= 0.

Consequently, we get

(
µI2nj −ΨVj

)−1
=

nj−1∑
t=0

(−1)t
[(
µI2nj −ΨΛj

)−1
ΨNj

]t (
µI2nj −ΨΛj

)−1
.(6.10)

Then, we have

‖ (µI2n −ΨT )−1 ‖2 = ‖
(
µI2nj −ΨVj

)−1 ‖2 ≤
1

τ

nj−1∑
t=0

[‖Nj‖2

τ

]t
.(6.11)

If τ > 1, then

‖
(
µI2nj −ΨVj

)−1 ‖2 ≤
1

τ

nj−1∑
t=0

‖Nj‖t2.(6.12)
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From (6.7), (6.9), and (6.12), we obtain

1 ≤ 1

τ

nj−1∑
t=0

‖Nj‖t2 (‖Y −1∆AY ‖2).(6.13)

Setting χ = ‖Y −1∆AY ‖2

nj−1∑
t=0

‖Nj‖t2. Thus τ ≤ χ.

If τ ≤ 1, then

‖ (µI2n −ΨT )−1 ‖2 = ‖
(
µI2nj −ΨVj

)−1 ‖2 ≤
1

τnj

nj−1∑
t=0

‖Nj‖t2.(6.14)

Hence, (6.7), (6.9), and (6.14) yield

1 ≤ 1

τnj

nj−1∑
t=0

‖Nj‖t2 (‖Y −1∆AY ‖2).(6.15)

Thus τnj ≤ χ and hence τ ≤ χ
1
nj . From the above it is clear that

|λj − µ| ≤ max
(
χ, χ1/nj

)
.

where χ = ‖Y −1∆AY ‖2

nj−1∑
t=0

‖Nj‖t2. �

Next, we present a perturbation result on quaternionic matrices via the Jordan canon-

ical form of a quaternionic matrix.

Theorem 6.16. Let A ∈ Mn(H) with Y −1AY = J = diag(Jmi(λi)), where Jmi(λi) (1 ≤
i ≤ t) are Jordan blocks of A. Let ∆A ∈ Mn(H). If µ is a standard right eigenvalue of

A+ ∆A, then

min
1≤i≤t

{
1

‖(Jmi(λi)− µImi)−1‖2

,
1

‖(Jmi(λi)− µImi)−1‖2

}
≤ K2(Y ) ‖∆A‖2,

where K2(·) is the condition number with respect to the matrix 2-norm.

Proof. If µ is not a standard right eigenvalue of any Jordan block matrices Jmi(λi) , then

it is not trivial. Since µ is a standard right eigenvalue of A+ ∆A, there exists x 6= 0 ∈ Hn

such that

(A+ ∆A)x = xµ,
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and this system is equivalent to the complex system

ΨA+∆Aψx = µψx ⇔ (ΨA+∆A − µI2n)ψx = 0⇔ (ΨA + Ψ∆A − µI2n)ψx = 0.

Since A has a Jordan canonical form via the invertible quaternionic matrix Y. Hence

(µI2n −ΨY diag(Jmi (λi))Y
−1)ψx = Ψ∆Aψx

ΨY (µI2n −Ψdiag(Jmi (λi))
)ΨY −1ψx = Ψ∆Aψx

(µI2n −Ψdiag(Jmi (λi))
)(ΨY )−1ψx = (ΨY )−1Ψ∆Aψx.

This implies that (ΨY )−1ψx = (µI2n −Ψdiag(Jmi (λi))
)−1[(ΨY )−1Ψ∆AΨY ](ΨY )−1ψx.

Taking matrix 2-norm on both sides of the above equation, we obtain

‖(ΨY )−1ψx‖2 ≤ ‖(µI2n −Ψdiag(Jmi (λi))
)−1‖2 ‖[(ΨY )−1Ψ∆AΨY ]‖2 ||(ΨY )−1ψx‖2

1 ≤ ‖(µI2n −Ψdiag(Jmi (λi))
)−1‖2 ‖(ΨY )−1‖2 ‖Ψ∆A‖2 ‖ΨY ‖2

1 ≤ max
1≤i≤t
{‖(Jmi(λi)− µImi)−1‖2, ‖(Jmi(λi)− µImi)−1‖2} ‖(ΨY )−1‖2‖Ψ∆A‖2 ‖ΨY ‖2

1 ≤ max
1≤i≤t
{‖(Jmi(λi)− µImi)−1‖2, ‖(Jmi(λi)− µImi)−1‖2} ‖(ΨY )−1‖2 ‖Ψ∆A‖2 ‖ΨY ‖2.

The above inequality can be rewritten as

1

max
1≤i≤t

{
‖(Jmi(λi)− µImi)−1‖2, ‖(Jmi(λi)− µImi)−1‖2

} ≤ ‖(ΨY )−1‖2 ‖Ψ∆A‖2 ‖ΨY ‖2,

i.e.,

min
1≤i≤t

{
1

‖(Jmi(λi)− µImi)−1‖2

,
1

‖(Jmi(λi)− µImi)−1‖2

}
≤ K2(ΨY ) ‖Ψ∆A‖2.

Then, from Lemma 1.13, we have

min
1≤i≤t

{
1

‖(Jmi(λi)− µImi)−1‖2

,
1

‖(Jmi(λi)− µImi)−1‖2

}
≤ K2(Y ) ‖∆A‖2. �

Remark 6.17. Obviously from Lemma 5.6, all the results in the 2-norm (operator norm)

imply that for the Frobenius norm.

We give the following localization theorem for standard right eigenvalues of the per-

turbed quaternionic matrix A+ ∆A when A is not a diagonalizable matrix.
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Theorem 6.18. Let A ∈ Mn(H) with Y −1AY = J = diag(Jmi(λi)), where Jmi(λi) (1 ≤
i ≤ t) are Jordan blocks of A. Let ∆A ∈Mn(H). Then all the standard right eigenvalues

of A+ ∆A are contained in the union of t-sets Pi(A) := Ti(A) ∪Ki(A), where

Ti(A) := {z ∈ C : ‖(Jmi(λi)− µImi)−1‖−1
2 ≤ K2(Y )‖∆A‖2},

Ki(A) := {z ∈ C : ‖(Jmi(λi)− µImi)−1‖−1
2 ≤ K2(Y ) ‖∆A‖2}, i.e.,

Λs(A+ ∆A) ⊆ P (A) := (∪ti=1Ti(A)) ∪ (∪ti=1Ki(A)).

Proof. The proof follows from Theorem 6.16. �

6.3. Perturbation bounds for the zeros of quaternionic polyno-

mials

Theorem 6.19. Let pl(z) = zm +
∑m−1

k=0 qkz
k be a quaternionic simple monic polynomial.

Let Cpl = Y diag(V1, V2, . . . , Vt)Y
−1 with Vi = Λi + Ni ∈ Mni(H) is upper triangular,

Λi is diagonal and Ni is strict upper triangular for i = 1, 2, . . . , t. Assume that p̂l(z) =

zm+
∑m−1

k=0 q̂kz
k is a perturbation of pl(z) with q̂k = qk +∆qk, |∆qk| ≤ ε, (0 ≤ k ≤ m−1).

Then for any complex zero ẑk ∈ ZC(p̂l(z)), there exists a complex zero zj ∈ ZC(pl(z)) such

that

|ẑk − zj| ≤ max(χ, χ1/nj),

where χ := ‖Y −1∆CplY ‖2

∑nj−1
η=0 ‖Nj‖η2, and ∆Cpl := −em[∆q0, . . . ,∆qm−1] with em :=

[0, . . . , 0, 1]T ∈ Rm.

Proof. Let us consider the corresponding companion matrix Cpl to the simple monic poly-

nomial pl(z) such that Cpl = Y diag(V1, V2, . . . , Vt)Y
−1. Since ∆Cpl = −em[∆q0, . . . ,∆qm−1],

therefore

Cpl + ∆Cpl =



0 1 0 . . . 0

0 0 1 0
...

...
...

. . .
...

0 0 0 . . . 1

−q̂0 −q̂1 −q̂2 . . . −q̂m−1


.
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It is known that the left eigenvalues of Cpl and the zeros of pl(z) are same. Also the left

spectrum of Cpl falls in the right spectrum of Cpl . Thus by the proof method of Theorem

6.15, we get the desired result. �

Theorem 6.20. Let pl(z) = zm +
∑m−1

k=0 qkz
k be a quaternionic simple monic polyno-

mial and its companion matrix Cpl = Y DY −1, D = diag(λ1, . . . , λm), λt ∈ Λs(A), t =

1, 2, . . . ,m. Assume that p̂l(z) = zm +
∑m−1

k=0 q̂kz
k is a perturbation of pl(z) with q̂k =

qk + ∆qk, |∆qk| ≤ ε, (0 ≤ k ≤ m− 1). Then the zeros of pl(z) and p̂l(z) can be given as

inf
ẑi∈ZH(p̂l(z))

zj∈ZH(pl(z))

|ẑi − zj| ≤ K2(Y ) ‖∆Cpl‖2,

where ∆Cpl := −em[∆q0, . . . ,∆qm−1] with em := [0, . . . , 0, 1]T ∈ Rm.

Proof. By applying Theorem 6.7 and the proof method of Theorem 6.19, we get the desired

result. �

Remark 6.21. Similar results can be obtained for the zeros of pr(z) as well.

6.4. Bauer-Fike type theorem for generalized right eigenvalues

Let L1(Mn(H)) be the space of matrix pencils over a quaternion division algebra. L1 ∈
L1(Mn(H)) is defined as

L1(λ) := A+ λB,(6.16)

where A,B ∈ Mn(H) and λ commutes with the quaternionic matrices. The generalized

right eigenvalue of L1 ∈ L1(Mn(H)) of the form (6.16) is defined as follows.

Definition 6.22. Let L1 ∈ L1(Mn(H)) be as in (6.16) and let µ ∈ H. Then µ is called a

generalized right eigenvalue of L1 if

Ax = Bxµ

for some nonzero x ∈ Hn. Here x is called the right eigenvector corresponding to the

generalized right eigenvalue µ. The set of generalized right eigenvalues of L1 is called

generalized right spectrum of L1, denoted by Λr (L1) .

Definition 6.23. Let L1 ∈ L1(Mn(H)) be as in (6.16). Then the matrix pencil L1 is

called regular if there exists α ∈ R such that A+ α B is an invertible matrix.
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Next, we give the definition of generalized standard right eigenvalues of quaternionic

matrix pencils.

Definition 6.24. Let L1 ∈ L1(Mn)(H) be as in (6.16). Then we define a set of generalized

standard right eigenvalues of a regular matrix pencil L1 as

Λs(L1) := {α ∈ C∞ : Ax = Bxα, 0 6= x ∈ Hn, =(α) ≥ 0} , C∞ = C ∪ {∞}.

We have the quaternionic generalized right eigenvalue problem

Ax = Bxµ.

If B is an invertible matrix, then B−1Ax = xµ. Moreover, AB−1(Bx) = (Bx)µ. Putting

Bx = y ∈ Hn, AB−1y = yµ. Hence,

Λr(L1) = Λr(A
−1B) = Λr(AB

−1).

Theorem 6.25. Let A + λB (defined in (6.16)) be a quaternionic matrix pencil and let

µ ∈ H be a generalized right eigenvalue of A + λB with eigenvector x ∈ Hn. Then µ is

also a generalized right eigenvalue of the quaternionic matrix pencil PHAQ + λPHBQ

with eigenvector Q−1x ∈ Hn, where P,Q ∈Mn(H) are invertible matrices.

Proof. Let µ be a generalized right eigenvalue of the quaternionic matrix pencil A+ λB.

Then

Ax = Bxµ(6.17)

for some nonzero x ∈ Hn. If P and Q are invertible quaternionic matrices, then (6.17) is

equivalent to the following generalized right eigenvalue problem

PHAQ(Q−1x) = PHBQ(Q−1x)µ. �

Theorem 6.26. Let L1 ∈ L1(Mn(H)) be a quaternionic matrix pencil such that A and

B are Hermitian matrices and B be a positive definite. Then there exists an invertible

quaternionic matrix Q such that QHAQ = diag(µi) with µi are the generalized standard

right eigenvalues of L1 and QHBQ = In.

Proof. Let λ be a generalized right eigenvalue of L1. Then there exists some nonzero

x ∈ Hn such that

Ax = Bxλ.(6.18)
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Since B is a Hermitian positive definite matrix, B has a positive definite square root

B
1
2 . Then the generalized right eigenvalue problem (6.18) is equivalent to the following

quaternionic eigenvalue problem.

B−
1
2AB−

1
2y = yλ,(6.19)

where y = (B−
1
2x) ∈ Hn. Also, we can see that

(B−
1
2AB−

1
2 )H = (B−

1
2 )HAH(B−

1
2 )H = B−

1
2AB−

1
2 .

Hence B−
1
2AB−

1
2 is a Hermitian matrix. From Theorem 1.29, there exists a unitary

matrix V ∈Mn(H) such that

B−
1
2AB−

1
2 = V diag(µi)V

H ,

where µi ∈ Λr(B
− 1

2AB−
1
2 ). Setting Q = B−

1
2V, QHAQ = diag(µi) and QHBQ = I. Thus

from (6.19) and Theorem 6.25, we have the required result. �

Now, we develop Bauer-Fike type theorem for diagonalizable regular quaternionic

matrix pencils.

Theorem 6.27. Let L1 ∈ L1(Mn(H)) be a diagonalizable regular quaternionic matrix

pencil with Λs(L1) = {µ1, µ2, . . . , µn}, i.e., L1(λ) := A + λB = P (D + λIn)Q, where

P,Q ∈ Mn(H) are invertible matrices, D = diag(µ1, µ2, . . . , µn) and λ commutes with

the quaternionic matrices. If µ is a standard generalized right eigenvalue of the perturbed

quaternionic matrix pencil L1 + ∆L1 ∈ L1(Mn(H)), then

min
µi∈Λs(L1)

|µi − µ| ≤ ‖P−1‖2 ‖Q−1‖2 ‖E‖2,

where (L1 + ∆L1)λ := (A+ ∆A) + λ(B + ∆B) and E := µΨ∆B −Ψ∆A.

Proof. If µ ∈ Λs(L1), then the result follows. Assume that µ 6∈ Λs(L1). Since µ ∈
Λs(L1 + ∆L1), there exists 0 6= x ∈ Hn such that

(A+ ∆A)x = (B + ∆B)xµ.

This system is equivalent to the complex system

ΨA+∆Aψx = µΨB+∆Bψx

(ΨA − µΨB)ψx = (µΨ∆B −Ψ∆A)ψx

(ΨPDQ − µΨPInQ)ψx = (µΨ∆B −Ψ∆A)ψx

131



ΨP (ΨD − µI2n)ΨQψx = (µΨ∆B −Ψ∆A)ψx

(ΨD − µI2n)ΨQΨx = Ψ−1
P (µΨ∆B −Ψ∆A)ψx

ΨQψx = (ΨD − µI2n)−1Ψ−1
P (µΨ∆B −Ψ∆A)Ψ−1

Q (ΨQψx).

Taking the matrix 2-norm on both sides, we have

‖ΨQψx‖2 ≤ ‖(ΨD − µI2n)−1‖2 ‖Ψ−1
P ‖2 ‖(µΨ∆B −Ψ∆A)‖2 ‖Ψ−1

Q ‖2 ‖ΨQψx‖2

1 ≤ max
µi∈Λs(L1)

{
1

|µi − µ|
,

1

|µi − µ|

}
‖Ψ−1

P ‖2 ‖(µΨ∆B −Ψ∆A)‖2 ‖Ψ−1
Q ‖2.

By Lemmas 1.13 and 6.1 and putting E := µΨ∆B−Ψ∆A, we have the following expression.

1 ≤ 1

minµi∈Λs(L1){|µi − µ|}
‖P−1‖2 ‖Q−1‖2 ‖E‖2

min
µi∈Λs(L1)

{|µi − µ|} ≤ ‖P−1‖2 ‖Q−1‖2 ‖E‖2. �

Numerical Examples: Here, we give some numerical examples to illustrate our results.

Example 6.28. Let us consider a quaternionic matrix

A =


2i −2j j + k

−k 2 −1

−j 1− i 1

 .
Then the complex adjoint matrix of A is

ΨA =



2i 0 0 0− 2 1 + i

0 2 −1 −i 0 0

0 1− i 1 −1 0 0

0 2 −1 + i −2i 0 0

−i 0 0 0 2 −1

1 0 0 0 1 + i 1


.

Since the complex adjoint matrix ΨA is diagonalizable, from Theorem 1.12, the matrix A

is diagonalizable. The standard right eigenvalues of A are 1, 1 + i and 1 + i. Hence from

Theorem 1.32, there is an invertible quaternionic matrix Y such that

Y =


1 + i i i

j j 0

−k −k −j

 .
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Here Λs(A) = {1, 1 + i}, where 1 + i is with multiplicity 2. Then

Y −1AY = diag(1, 1 + i, 1 + i).

Suppose a perturbation matrix ∆A =


0 0 0

0 0 ε

ε ε ε

 .Take ε = 10−10. Then

A+ ∆A =


2i −2j j + k

−k 2 −1 + ε

−j + ε 1− i + ε 1 + ε

 .
Therefore ‖∆A‖2 = ε

√
(1+
√

2) and Λs(A+∆A) = {1+1.0001i, 1.0001+0.9999i}, where

1 + 1.0001i is with multiplicity 2. The condition number of the quaternionic matrix Y is

K2(Y ) = 10.2193 and

min
λi∈Λs(A)

{|λi − µ|} = inf
ηi∈Λr(A), ξ∈Λr(A+∆A)

{|ηi − ξ|} = 0.0001.

Example 6.29. Consider a quaternionic matrix A =


1 −i −j k

i 1 −2k j

j 2k 7 −i

−k −j i 1

 . Then the

complex adjoint matrix of A is

ΨA =



1 −i 0 0 0 0 −1 i

i 1 0 0 0 0 2− i 1

0 0 7 −i 1 2i 0 0

0 0 i 1 −i −1 0 0

0 0 1 i 1 i 0 0

0 0 −2i −1 −i 1 0 0

−1 2i 0 0 0 0 7 i

−i 1 0 0 0 0 −i 1



.

The set of standard right eigenvalues of A is

Λs(A) = {−1, 1, 2, 8}.

Since ΨA is Hermitian, from Theorem 1.12, A is Hermitian. Also from Theorem 1.29, the

matrix A is unitarily diagonalizable, i.e., UHAU = diag(−1, 1, 2, 8), where U ∈ Mn(H)
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is an unitary matrix. Since A is Hermitian, so Λs(A) = Λr(A). Consider a perturbation

matrix

∆A =


0 0 0 0

0 0 0 ε

0 0 ε ε

ε ε ε ε

 .Take ε = 10−3.ThenA+ ∆A =


1 −i −j k

i 1 −2k j + ε

j 2k 7 + ε −i + ε

−k + ε −j + ε i + ε 1 + ε

 .

Therefore ‖∆A‖2 = 0.0024 and

Λs(A+ ∆A) = {1.0003 + 0.0001i, 2.0005 + 0.0005i,−0.9997 + 0.0003i, 8.0009}.

Since the matrix A is unitarily diagonalizable, K2(Y ) = 1. Moreover, it is clear that A is

also a central closed as well as a normal matrix.

Example 6.30. Define t0 := 2i, t1 := j, t2 := k. Then from [42], the quaternionic

Vandermonde matrix is defined as

A :=


1 1 1

t0 t1 t2

t20 t21 t22

 =


1 1 1

2i j k

−4 −1 −1

 .
The complex adjoint matrix of A is

ΨA =



1 1 1 0 0 0

2i 0 0 0 1 i

−4 −1 −1 0 0 0

0 0 0 1 1 1

0 −1 i −2i 0 0

0 0 0 −4 −1 −1


.

The eigenvalues of ΨA are 0.8014+1.70007i, 0.8014−1.70007i, −0.4552+1.9952i, −0.4552−
1.9952i, −0.3462 + 1.0469i, −0.3462 − 1.0469i. Hence the complex adjoint matrix ΨA is

diagonalizable. Then from Theorem 1.12, A is diagonalizable. The set of standard right

eigenvalues of A is given as Λs(A) = {0.8014 + 1.70007i, −0.4552 + 1.9952i, −0.3462 +

1.0469i}. Then there exists an invertible matrix Y ∈Mn(H) such that

Y −1AY = diag(0.8014 + 1.70007i, −0.4552 + 1.9952i, −0.3462 + 1.0469i).
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Suppose a perturbation matrix

∆A =


0 0 0

0 0 0

ε 0 ε

 .Take ε = 10−3.Then A+ ∆A =


1 1 1

2i j k

−4 + ε −1 −1 + ε

 .
Therefore ‖∆A‖2 = 1.4× 10−3 and

Λs(A+ ∆A) = {0.8016 + 1.7009i, −0.4549 + 1.9950i, −0.3457 + 1.0470i}.

The condition number of the invertible matrix Y is K2(Y ) ≥ 1. Also

min
λi∈Λs(A)

{|λi − µ|} = inf
ηi∈Λr(A)

ξ∈Λr(A+∆A)

{|ηi − ξ|} = 0.0002.

K2(Y )‖∆A‖2 ≥ 0.0014.
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CHAPTER 7

CONCLUSIONS AND SCOPE FOR FUTURE WORK

We have derived localization theorems for the left and right eigenvalues of a quaternionic

matrix. In particular, we have presented the Gerschgorin, Ostrowski, and Brauer type

theorems for the left and right eigenvalues of a quaternionic matrix. Thereafter we have

given a sufficient condition for the stability of a continuous-time quaternionic system.

Furthermore, we have derived bounds/location of zeros of quaternionic polynomials.

We have developed various properties of a quaternionic matrix pencil. We have derived

localization theorems for generalized right eigenvalues of a quaternionic matrix pencil and

their applications.

The definitions of the left and right eigenvalues of quaternionic matrix polynomials

have proposed. We have given a sufficient condition for the stability of a discrete-time

quaternionic system. We have presented bounds for the absolute values of the left and

right eigenvalues of quaternionic matrix polynomials and illustrated for the matrix p-norm,

where p = 1, 2,∞, and F (Frobenius).

Next, we have developed the concept of perturbation bounds for right eigenval-

ues/generalized right eigenvalues of a quaternionic matrix/quaternionic matrix pencil. In

particular, Bauer-Fike type theorems for right eigenvalues/generalized right eigenvalues

of a diagonalizable quaternionic matrix/diagonalizable quaternionic matrix pencil have

derived. We have provided a relative perturbation bound for right eigenvalues of an in-

vertible diagonalizable quaternionic matrix. We have discussed perturbation bounds for

the zeros of quaternionic polynomials.

Finally, we have given the perturbation theory on matrices and polynomials over the

skew field of quaternions. Specifically, the Bauer-Fike type theorems for right eigenval-

ues/generalized right eigenvalues of a diagonalizable quaternionic matrix/diagonalizable

quaternionic matrix pencil have derived. In addition, perturbation bounds for right eigen-

values of a quaternionic matrix are discussed via block diagonal decomposition and Jordan

canonical form of a quaternionic matrix. The location of right eigenvalues of a quaternionic



matrix and a sufficient condition for the stability of a perturbed quaternionic matrix have

given. We have introduced perturbation bounds for zeros of quaternionic polynomials.

In the future work, we extend some of the localization theorems of Chapter 2 for the

left and right eigenvalues of quaternionic block matrices. Another open question is inves-

tigate modified Gerschgorin and Ostrowski balls for the zeros of quaternionic polynomials

by applying the localization theorems (proved in Chapter 2). One can think about the

backward error for right eigenvalues and right eigenvector of structured quaternionic ma-

trix polynomials. Bauer-Fike type theorem for quaternionic matrix polynomials is left for

future investigation. As we have developed a general framework for quaternionic matrices

and quaternionic matrix polynomials. Consequently we can be extended many results

from the complex field to the skew field of quaternions.

138



APPENDIX-A

In this appendix, we find the powers of quaternionic companion matrices. Substituting

t = 2 in Theorem 2.35, we have the following expressions:

C2
pl

=


2 m−2

m−2 0 I

2 C D

, where C =

Cpl(m, 1 : 2)

C2
pl

(m, 1 : 2)

 =

 −q0 −q1

qm−1q0 qm−1q1 − q0


and

D =

Cpl(m, 3 : m)

C2
pl

(m, 3 : m)

 =

 −q2 −q3 . . . −qm−1

qm−1q2 − q1 qm−1q3 − q1 . . . (qm−1)2 − qm−2

 .

C2
p̃l

=


2 m−2

m−2 0 I

2 C D

, where C =

Cp̃l(m, 1 : 2)

C2
p̃l

(m, 1 : 2)

 =

 −q0 −q1

qm−1 q0 qm−1 q1 − q0


and

D =

Cp̃l(m, 3 : m)

C2
p̃l

(m, 3 : m)

 =

 −q2 −q3 . . . −qm−1

qm−1 q2 − q1 qm−1 q3 − q1 . . . (qm−1)2 − qm−2

 .

C2
ql

=


2 m−2

m−2 0 I

2 C D

, where C =

 −q−1
0 −q−1

0 qm−1

q−1
0 q1q

−1
0 q−1

0 q1q
−1
0 qm−1 − q−1

0


and

D =

 −q−1
0 qm−2 . . . −q−1

0 q1

q−1
0 q1q

−1
0 qm−2 − q−1

0 qm−1 . . . (q−1
0 q1)2 − q−1

0 q2

 .

C2
q̃l

=


2 m−2

m−2 0 I

2 C D

, where C =


−q−1

0 −q−1
0 qm−1

q−1
0 q1 q

−1
0 q−1

0 q1 q
−1
0 qm−1 − q−1

0





and

D =


−q−1

0 qm−2 . . . −q−1
0 q1

q−1
0 q1 q−1

0 qm−2 − q−1
0 qm−1 . . .

(
q−1

0 q1

)2

− q−1
0 q2

 .
By Theorem 2.37 for t = 2, we obtain the following expressions:

C2
pr =


m−2 2

2 0 C

m−2 I D

,
where

C =
[
Cpr(1 : 2,m) C2

pr(1 : 2,m)
]

=

−q0 q0qm−1

−q1 q1qm−1 − q0


and

D =
[
Cpr(3 : m,m) C2

pr(3 : m,m)
]

=


−q2 q2qm−1 − q1

−q3 q3qm−1 − q2

...
...

−qm−1 (qm−1)2 − qm−2

 .

C2
p̃r =


m−2 2

2 0 C

m−2 I D

,where C =

−q0 q0 qm−1

−q1 q1 qm−1 − q0

 and

D =


−q2 q2 qm−1 − q1

−q3 q3 qm−1 − q2

...
...

−qm−1 (qm−1)2 − qm−2

 .

C2
qr =


m−2 2

2 0 C

m−2 I D

, where C =

 −q−1
0 q−1

0 q1q
−1
0

−qm−1q
−1
0 qm−1q

−1
0 q1q

−1
0 − q−1

0

 and

D =


−qm−2q

−1
0 qm−2q

−1
0 q1q

−1
0 − qm−1q

−1
0

...
...

−q1q
−1
0 (q1q

−1
0 )2 − q2q

−1
0

 .
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C2
q̃r =


m−2 2

2 0 C

m−2 I D

, where C =


−q−1

0 q−1
0 q1q

−1
0

−qm−1q
−1
0 qm−1q

−1
0 q1q

−1
0 − q−1

0

 and

D =


−qm−2q

−1
0 qm−2q

−1
0 q1q

−1
0 − qm−1q

−1
0

...
...

−q1q
−1
0

(
q1q
−1
0

)2

− q2q
−1
0

 .
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APPENDIX-B

In this appendix, we find the powers of the quaternionic block companion matrices CV

and CS. Hence from Theorem 5.31 for t = 2, we have the following expressions:

C2
V =


2n n(m−2)

n(m−2) 0 I

2n C D

,where C =

CV [m, 1 : t]

C2
V [m, 1 : t]

 =

 −V0 −V1

Vm−1V0 Vm−1V1 − V0


and D =

CV [m, t+ 1 : m]

C2
V [m, t+ 1 : m]

 =

 −V2 −V2 . . . Vm−1

Vm−1V2 − V1 Vm−1V3 − V2 . . . V 2
m−1 − Vm−1

 .
Also we have

C2
S =


2n n(m−2)

n(m−2) 0 I

2n C D

,where C =

CS[m, 1 : t]

C2
S[m, 1 : t]

 =

−Sm −Sm−1

S1Sm S1Sm−1 − Sm


and D =

CS[m, t+ 1 : m]

C2
S[m, t+ 1 : m]

 =

 −Sm−2 −Sm−3 . . . −S1

S1Sm−2 − Sm−1 S1Sm−3 − Sm−2 . . . S2
1 − S2

 .
Now the powers of CV and CS are given as follows.

C2
V :=



0 0 In 0
...

...
. . .

...

0 0 0 . . . In

−V0 −V1 −V2 . . . −Vm−1

U0 U1 U2 . . . Um−1


andC2

S :=



0 0 In 0
...

...
. . .

...

0 0 0 . . . In

−Sm −Sm−1 −Sm−2 . . . −S1

Lm Lm−1 Lm−2 . . . L1


,

where Uj = Vm−1Vj − Vj−1 and Lj+1 = S1Sj+1 − Sj+2, j = 0, 1, . . . ,m − 1 with V−1 =

Sm+1 = 0. Define

U :=
[
U0 U1 . . . Um−1

]
, L :=

[
Lm Lm−1 . . . L1

]
.
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