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Abstract 

We report molecular state of self-assembly of a amino acid based discotic 

molecule using spectroscopic and microscopic techniques. Discotic moiety 

containing phenylalanine forms a metallogel using LiOH at room temperature. 

The hydrogen bonding and π-π stacking are responsible for the formation of self-

assembled metallogel, which is confirmed by FTIR, wide angle X-ray scattering 

and fluorescence spectroscopic study. SEM revels that the gelator molecules self-

assemble into left-handed helical nano-fiber like structure. The viscoelastic nature 

of the metallogel was investigated by rheological experiments. 
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Chapter 1: Introduction and Reaction Scheme:  

1.1 Introduction:  

The self-assembly is a spontaneous process in which molecules combine 

into ordered nanostructures and deliver a bottom-up approach to obtain the 

structural regularity of various morphologies such as fibers[1], helix[2] and 

rectangles.[3] A large amount of organic solvent or water could entrap into 

these self-assembled nanostructure forming supramolecular organogels or 

hydrogels.[4-10] As name suggest, organogel represents the gelator 

molecules that immobilize organic solvents while hydrogel represents the 

molecules that immobilize water. These gels are commonly recognized by 

their flow characteristics, despite being mainly liquid in composition 

(usually 99% by weight of the gel is liquid) they afford solid like 

appearance and do not flow. Supramolecular organogels or hydrogels can 

be formed through the involvement of non-covalent interactions such as 

hydrogen bonding, π-π stacking, van der Waals and electrostatic 

interactions. Owing to the weak character of these forces, supramolecular 

gels can change their physical or chemical behavior, often reversibly, 

when they acted upon by some external stimuli such as sound, light, 

chemicals, pH, temperature, redox and magnetic field.[11–16] 

Supramolecular gels can be used in chemosensors[17], pollutants capturing 

and removal, drug delivery and several other applications.[18-23] Synthetic 

peptides also form gel as usually they self-assemble to form various supra-

molecular structure such as hollow fibers[24], tapes[25] and tubes.[26] 

Metallogels are one such class of supramolecular gels in which metal ions 

incorporates into the ordered nanostructure of gelator molecule and forms   

gel.[27-52] LMWGs containing metal ion have various non-covalent 

interactions but they also have strong coordination-interaction between 

gelator moiety and metal ions. These coordination-interaction play a key 

role in the formation of gel fiber network.[53-55] Several complexes[56], 
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coordination polymers[57-59] or cross-linked coordination polymers[60] also 

form gel fibers through molecular self-assembly. Non-coordinated metal 

and metallic nanoparticals may also be incorporated into the gel 

matrices.[61,62] With the involvement of metal ion in the gel structures, 

metallogels have acquire unique and interesting properties, which could 

hardly be achieved by organic compounds alone. Thus, metallogels can be 

turned to imparts redox, magnetic, catalytic and spectroscopic 

properties.[63-69] Similarly, ‘‘tuning’’ of gel behavior  by metal ion and 

anion binding is also become very active area of research. [70-76] Although 

synthesis of all metallogels are almost same, depend on the self-assembly 

of gelator molecules in the appropriate conditions but they differ mainly in 

the metal ion used, which directly influences their functions. Over the 

years, many transition metals effectively incorporate into the gelator 

moiety and formed beneficial metallogels. Among numerous metals ions 

that are used, metallogel of gold ion appears as a red-luminescent gel, 

which formed by Au(I) in trinuclear gold(I) pyrazolate complexes with 

long akyl chains and hydro-metallogel of gold ion appear as a transparent 

hydrogel, which formed by Au(III) and glutathione.[77] Due to high affinity 

to bind with nitrogen, silver metal ion also formed stable supramolecular 

metallogels.[78]  However, copper ion have a unrestricted nature that allows 

them to bind with several kind of ligands, which readily form stable 

metallogels with several distinct properties. Metallogels formed by copper 

ion with bipyridines can lead to research about the coordination of copper 

ion to DNA base pair.[78]  Copper ion can easily binds with oxalic acid 

dihydrate, which can be used as proton conductor.[79] One of the recent 

studies in copper hydrogels that shown self-healing properties in which 

metallogel formed through coordination with glyme.[80] Therefore, 

formation of metallogels  with different types of metal ions are very active 

area of interest from early decades to date.[55,81-83] 
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Fig. 1: Schematic representation of self-assembly into 

metallogel.  

 

So, we require a perfect moiety for our desire interest for the formation of 

new class of metallogel. Benzene-1,3,5-tricarboxamide (BTA) moiety 

plays an important role in the formation of supramolecular metallogel.[84] 

They have three amide groups which are not only capable of 

intermolecular hydrogen bond formation but also effectively coordinate 

with metal ion turn out to be highly beneficial in immobilizing solvent 

molecules.[85]  

The nature of the side chain the BTA molecules also play an important 

role in the potential application. For example, BTAs comprising bulky, 

aliphatic side chains are high melting crystalline solids, which crystallize 

as fiber-like needles, long alkyl side chains induce thermotropic liquid 

Disk molecules Supramolecular  

 Interaction 

Helical nano-fibers  Metallogel 
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crystalline behavior and branched alkyl side chains result in organogel 

behavior.[86] Inspiring from these various important applications of BTA 

based compounds, we have selected L-phenylanaline as side chain and by 

coupling it with trimesic acid, we have prepared 2-[3,5-Bis-(1-

methoxycarbonyl-2-phenyl-ethylcarbamoyl)-benzoylamino]-3-phenyl-

propionic acid methyl ester. 
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1.2 Reaction Scheme: 

 

 

 

Reagents: (i) distilled SOCl2, dry MeOH ; (ii) (3) HOBt, DIPC, 

dry DMF ; (iii) 1 (N) LiOH, dry THF. 
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Chapter 2: Experimental sections: 

2.1 Materials:  

Amino acid, diisopropylcarbodiimide (DIPC), and 1-hydroxybenzotriazole 

(HOBt) were purchased from Sigma-Aldrich, India. All the solvents, 

which were used in the reactions and for column chromatography were 

properly dried and distilled. All the synthesized products were dried under 

high vacuum pump before sample characterizations (1H NMR, ESI-MS). 

Milli-Q water was used for reaction purposes. 

 

2.2: Synthesis of compounds: 

2.2.1 Synthesis of methyl ester of L-phenylalanine: 

20 mL dry methanol was taken in 250 mL round bottom flask stirring with 

a magnetic bar. Methanol was cooled in ice bath for 10 min. Thionyl 

chloride (2.65 mL) was added dropwise in cooled methanol. Then, L-

phenylalanine (3 g, 18.16 mmol) was added to the reaction mixture. The 

reaction mixture was stirred for overnight. The reaction mixture was 

evaporated using rotavapor. Then, the reaction mixture was washed with 

diethyl ether. The compound was dried on a vacuum pump. 

 

2.2.2 Synthesis of 2-[3,5-Bis-(1-methoxycarbonyl-2-phenyl-        

ethylcarbamoyl)-benzoylamino]-3-phenyl-propionic acid 

methyl ester: 

0.5 g (2.37 mmol) of benzene-1,3,5- tricarboxylic acid was dissolved in a 

mixture of 1.5 mL of dry N,N-dimethyl formamide (DMF) and cooled in 

an ice-water bath. NH2-Phe-OMe was isolated from 1.983 g (9.2 mmol) of 

the corresponding methyl ester hydrochloride by neutralization with 

saturated sodium carbonate, subsequent extraction with ethyl acetate. This 

was added to the reaction mixture, followed immediately by 1.2 mL (3.3 
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mmol) of N,N’-diisopropylcarbodiimide (DIPC) and 0.966 g (3 mmol) of 

HOBt. The reaction mixture was allowed to cool down at room 

temperature and stirred for 24 h. DMF was evaporated, and the residue 

was taken in ethyl acetate.  N, N'-diisopropylurea was filtered off. The 

organic layer was washed with 1N HCl (3 × 20 mL), brine water (3 × 20 

mL), 1N sodium carbonate (3 × 20 mL) solution. Then the organic layer 

was dried over anhydrous sodium sulphate and evaporated under vacuum 

to yield 1.2 g of compound 2 (73.00%). 1H NMR (400 MHz, CDCl3, 

TMS, r.t).) δ 8.14 (s, 3H, ArH), 7.08-7.25(m, 15H, Phe), 6.80 (d, 3H, -

NH), 3.11-3.23 (m, 6H, -CH2), 4.98-5.03 (q, 3H, -CH), 3.70 (s, 9H, -

OCH3) ppm;  13C NMR (100 MHz, CDCl3); δ 172.33, 165.23, 136.01, 

134.64, 129.21, 128.71, 127.24, 54.17, 52.58, 37.87 ppm; MS (ESI) m/z 

for C39H39N3O9  calcd.: 693.2, found: 716.2 [M+Na]+. 

 

2.2.3. Synthesis of 2-[3,5-Bis-(1-carboxy-2-phenyl-

ethylcarbamoyl) benzoylamino]-3-phenyl-propionic acid:  

A solution of 2-[3,5-Bis-(1-methoxycarbonyl-2-phenyl-ethylcarbamoyl)-

benzoylamino]-3-phenyl-propionic acid methyl ester (200 mg, 0.288  

mmol) in 20 mL of dry THF was allowed to react with 1M LiOH solution. 

The progress of the reaction was monitored by thin layer chromatography 

(TLC). The reaction mixture was stirred for 2 h. Then, THF was removed 

under vacuum. The residue was taken in water and washed with diethyl 

ether (2 x 20 mL). The pH of aqueous layer was adjusted to 2 using 1 M 

HCl and it was extracted with ethyl acetate (3 x 30 mL). The ethyl acetate 

layer was dried over anhydrous sodium sulfate and evaporated under 

vacuum to yield the desired product. Yield = 120 mg (63%); 1H NMR 

(400 MHz, DMSO-d6): δ 8.96 (d, 3H, -NH), 7.15-7.30 (m, 15H, Phe), 

4.62-4.67 (q, 3H, -CH), 3.04-3.21 (m, 6H, -CH2), 8.30 (s, 3H, ArH) ppm; 

MS (ESI) m/z for C36H33N3O9 
 calcd.: 651.6., found: 652.6 [M+H]+. 
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2.2.4 Preparation of Gel: 

A solution of 2-[3,5-Bis-(1-methoxycarbonyl-2-phenyl-ethylcarbamoyl)-

benzoylamino]-3-phenyl-propionic acid methyl ester (60 mg, 0.086 

mmol) in 5 mL of dry THF was allowed to react with 1M LiOH (300 

µL) solution. The progress of the reaction was monitored after every 15 

minutes by thin layer chromatography (TLC). The reaction mixture was 

stirred for 90 minutes and the gel was formed. 

 

2.3 General methods: 

All the chemicals and reagents were obtained commercially. All NMR 

spectra were recorded at 400 MHz Bruker Advance III 400 NMR. 

Compounds concentrations were in the range of 1-10 mmol in (CD3)2SO 

and CDCl3. Mass spectra were recorded on Bruker micrOTOF-Q II by 

positive mode electrospray ionizations. 

 

2.3.1 Rheology: 

Rheological measurements were carried out using an Anton Paar Physica 

MCR 301 rheometer with parallel plate of geometry (25 mm in diameter, 

0.200 μm gap). 200 μL of gel was prepared in glass vial and transferred 

onto the plate of the instrument using microspatulla. The temperature was 

kept at 25 C by using an integrated temperature controller. To investigate 

the rheological properties of gel, we measure dynamic frequency sweep as 

function of frequency in the range of 0.05-100 rad s-1 with constant strain 

value 0.1%. To determine the exact strain for frequency sweep, the linear 

viscoelastic (LVE) regime were performed at a constant frequency of 10 

rad s-1.  
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2.3.2 Morphology (SEM): 

Field-emission Gun-scanning electron microscopic study was done by 

using Jeol Scanning Microscope-JSM-7600F. The gel sample was dried on 

a glass cover slip and coated with gold. 

 

2.3.3 Wide angle X-ray scattering:  

The Wide angle X-ray scattering measurements were performed using 

Rigaku Smart Lab, Automated Multipurpose X-ray diffractometer. The X-

rays were produced using a sealed tube and the wavelength of the X-ray 

was 1.54 Å (Cu K-alpha). The X-rays were detected using a linear 

counting detector based on silicon strip technology (Scintillator NaI 

photomultiplier detector).  

 

2.3.4 FT-IR:  

Fourier transform infrared (FTIR) spectra of compound 2 and gel were   

recorded on Bruker (Tensor 27) FTIR spectrophotometer. FTIR of 

compound 2 was performed with KBr pellet technique. In case of gel, the 

gel sample was placed between ZnSe windows and scanned between 700 

and 3600 cm-1 over 16 scans at a resolution of 4 cm-1 and an interval of 1 

cm-1. 

 

2.3.5 UV-Vis spectroscopy: 

UV-Vis absorption spectrum of gel (20 mmol L-1) was recorded using a 

Varian Cary100 Bio UV-Vis spectrophotometer.  

 

2.3.6 Fluorescence spectroscopy: 

Fluorescence emission spectrum of gel (20 mmol L-1) was recorded on a 

Horiba Scientific Fluoromax-4 spectrophotometer with a 1 cm path length 

quartz cell at room temperature. The slit width for the excitation and 
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emission was set at 2 nm and 1 nm data pitch. Excitation of sample was 

performed at 335 nm and the data range was in between 345 to 650nm.  

 

Chapter 3: Results and discussion:  

3.1. Synthesis of compounds: 

A metallogel containing discotic moiety having an amino acid was 

prepared for the molecular state of self-assembly study. Gel was formed 

from 2-[3,5-Bis-(1-carboxy-2-phenyl-ethylcarbamoyl)-benzoylamino]-3-

phenyl-propionic acid (1), which was synthesized according to reaction 

scheme described above. Starting from commercially available L-

phenylanaline which was treated with thionylchloride in dry MeOH 

medium followed by esterification to the synthesis of compound (3) 

according to the reported method.[39] Then, coupling of compound (3) with 

benzene-1,3,5-tricarboxylic acid in presence of coupling reagents N,N’-

diisopropylcarbodiimide (DIPC), hydroxybenzotriazole (HOBt) in dry 

N,N-dimethyl formamide (DMF) medium 2-[3,5-bis-(1-methoxycarbonyl-

2-phenyl-ethylcarbamoyl)-benzoylamino]-3-phenyl-propionic acid methyl 

ester (2)  was synthesized. Compound (1) was synthesized by base 

catalyzed hydrolysis of compound (2). The self-assembly of the gel was 

studied by rheology, fluorescence, SEM, FT-IR and wide angle X-ray 

scattering. Compounds 1-3 were characterized by ESI-MS, 1H NMR. 

 

3.1.1: Rheology study of gel: 

Rheological measurements (Fig. 2 and Fig. 3) demonstrate the viscoelastic 

properties of gel. Viscoelastisity is the property of materials that exhibit 

both viscous and elastic characteristics when undergoing deformation. To 

investigate the rheological properties of gel (20 mmol L-1), we measure 

dynamic frequency sweep as a function of frequency in the range of 0.05-

100 rad s-1 with constant strain value 0.1%. To determine the exact strain 
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for frequency sweep, the linear viscoelastic (LVE) regime were performed 

at constant frequency of 10 rad s-1. The values of the storage modulus (G’) 

(that describes the elastic properties) exceeded those of the loss modulus 

(G’’) (that describes the viscous properties) by an order of magnitude, 

which indicates the formation of strong and rigid gel.[87] 

 

 

 

 

 
 
 
 
 
 

 

Fig. 2: Rheological measurement: LVE of gel at a constant frequency 

10 rad s-1.  
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Fig. 3: Dynamic frequency sweep of gel at a constant strain 0.1%. 
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3.1.2: Morphological study of gel: 

SEM was performed to investigate the self-assembled morphological 

diversity of gel. We performed scanning electron microscopy to study the 

morphological features. As shown in the SEM image (Fig.4), a left-handed 

helical nano-fiber like structure was observed for the gel formed by 

compound 2 with an average width of the helix 50 nm.  

 

 

 
 
 

Fig. 4: SEM image indicating helical nano-fiber like structure of gel. 

 

3.1.3 Wide angle X-ray scattering study of gelator molecule 

and dried gel: 

To attain the structural features of the gel formed by compound 2wide 

angle X-ray scattering was performed. (Fig. 5) For dried gel, the scattering 

patterns appeared at 2θ = 18.134 and 20.932 with corresponding d spacing 

of 4.87 Å and 4.23 Å respectively. 4.23 Å peak suggests the presence of  
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intermolecular π-π stacking interactions between two aromatic groups in 

the gelator molecule.[88] For compound 2, the scattering patterns appeared 

at 2θ = 15.199, 17.200, 19.601, 20.800, 25.463 and 26.796 with the 

corresponding d spacing values of 5.824 Å, 5.167 Å, 4.529 Å, 4.277 Å, 

3.500 Å  and 3.347 Å respectively. The reflection peaks appeared at 4.2, 

3.5 and 3.347 Å suggest the presence of intermolecular π-π stacking 

interactions between two aromatic groups of compound 2.[89]  

 

 

 

 

 

 

           

 

   Fig. 5: Wide angle X-ray scattering of dried gel and compound 2 

 

3.1.4 FT-IR study of gelator molecule and gel: 

FT-IR study of compound 2 (Fig. 6) and gel (Fig. 7) were performed to get 

more idea about the secondary structural arrangement of the 

supramolecular metallogel. N-H stretching bands observed at 3228 and 

3264 cm-1 for compound 2 and gel respectively, indicate strong hydrogen 

bonding interaction in both cases. In solid compound 2, peak appeared at 

1642 cm−1 corresponding to the C=O stretching vibration of amide, along 

with an absorption band at 1545 cm−1 corresponding to the N–H bending 

vibration. In gel state, peak appeared at 1678 cm-1, along with a peak at 
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1558 cm-1, which indicates that the gel self-assembled through hydrogen 

bonding interaction into a helical nanofiber like structure. In solid gelator 

molecule, a peak appeared at 1747 cm-1, which indicates the presence of 

ester group, However in gel state the peak is shifted to 1729 cm-1 that 

clearly indicates that ester is converted into carboxylate ion in gel state.       

 

 

 

 

 

 

                            

           

                                  Fig. 6: FTIR spectrum of compound 2 
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        Fig.7: FTIR spectrum of gel 
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3.1.5: Absorption and emission spectra of gel: 

To get more detailed information of the molecular arrangement of gel, 

absorption and emission spectra of gel were acquired. The characteristic 

peak in absorption spectrum for gel (20 mmol L-1) appears at 335 nm (Fig. 

8). This intense absorption peak was corresponds to the π to π* transition 

of the carbonyl group. In emission spectrum, the characteristic emission 

peaks for gel (20 mmol L-1) appears at 380 and 420 nm in the solution 

(Fig. 9). Excitation wavelength for sample was 335 nm and the data range 

was in between 345 to 650 nm. The fluorescence emission spectrum 

reveals that π-π stacking interactions play an important role towards the 

formation of higher ordered self-assembled structures in the self-assembly 

process. The emission peak at 380 nm corresponds to the π-π stacking 

interaction between the two aromatic groups during the self-assembly 

process in the gelator compound.  

 

 

 

 

 

 

 

 

                                      Fig. 8: Absorption spectrum of gel 
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    Fig. 9: Fluorescence emission spectrum of gel (λex = 335 nm). 

 

Chapter 4: Conclusion: 

In this project, we reported molecular state of self-assembly of an α-amino 

acid based discotic molecule using spectroscopic and microscopic 

techniques. Li+1 ion induced metallogel was achieved via mixing the 

phenylalanine incorporated discotic moiety with 1N LiOH solution in 

THF at room temperature. The self-assembled supramolecular metallogel 

matrix was formed through hydrogen bonding, π-π stacking and van der 

Waals interactions. These supramolecular interactions were investigated 

via FTIR, wide angle X-ray diffraction and fluorescence spectroscopic 

studies. Scanning electron microscopic studies reveal the gelator 

molecules self-assemble into a left-handed helical nano-fiber like 

structures that formed a self-supporting supramolecular metallogel. The 

rheological experiments demonstrated the strength of the metallogel as gel 

was strong and rigid enough by external forces. 
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Appendix A: 1H NMR, 13C NMR and Mass spectra of 

compounds:  

NMR Spectra: 

 

 

 

                      

 

 

 

      Fig. 10:  400 MHz  1H NMR spectrum of compound 2 in CDCl3 
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           Fig. 11: 100 MHz 13C NMR spectrum of compound 2 in CDCl3 
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Fig. 12: 400 MHz 1H NMR spectrum of compound 1 in CDCl3 

 

ESI-MS spectra: 

 

 

                            Fig. 13: ESI-MS spectrum for compound 2 
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                               Fig. 14: ESI-MS spectrum for compound 1 
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