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Dynamics in Superfluids

Abstract
The Ginzburg Landau equation can also be used to study the dynam-

ics of superfluids apart from the superconductors.The GL equation is a

non-linear equation. Some of the simplest solutions of GL equations for

superfluids consist of the tan hyperbolic function. Also we can use dif-

ferent methods to find the solution for this kind of differential equation

such as the method of separation of variables. By finding the cylindri-

cally symmetric solutions for this equation something can be physically

concluded about the geometry of the vortices in superfluids.There must

be a specific reason as to why the vortices always appear to be formed

in a hexagonal pattern rather than square or any other. This can be

concluded by looking at the free energy equations of this system.
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1 Introduction to superconductivity

Using iterative Joule-Thomson cooling, Heike Kammerlingh Onnes succeeded in liq-

uefying helium gas at the University of Leiden in the Netherlands on July 10, 1908.

It can be considered as the beginning of research on superconductivity and more gen-

erally, low-temperature physics. In the following years, Kammerlingh Onnes started

investigating the electrical resistance of metals as a function of temperature. Mer-

cury is a liquid at room temperature and distillation techniques can be used to purify

it. With the idea of examining properties of a high-purity metal, he took up the

measurement of electrical resistivity of mercury in early 1911. Mercury was filled in

a U-shaped tube with wires inserted at both ends and its resistance was measured

as a function of temperature. The result obtained was quite remarkable in that the

resistance decreased with decreasing temperature and then dropped precipitously to

zero at about 4.2 K.

The graph shows the variation of resistance as a function of temperature in a super-

conductor. As temperature decreases, the resistance falls gradually (as for a normal

metal). However, at Tc, the resistance drops very sharply to zero and remains so at

lower temperatures! Also shown is the variation of heat capacity with temperature

in the case of a superconductor. A sharp peak is seen at Tc signifying the phase

transition.

This was the first ever observation of superconductivity. He was deciding between

gold and mercury for his first measurement and it is fortunate that he chose mercury

since gold is not superconducting. Onnes realized the commercial potential of his

discovery of superconductivity and began examining other metals. Tin and lead were

the next elements to be found superconducting by him. Since the Leiden lab had

a near monopoly in the production of liquid helium, Onnes and his co-workers were

the leaders in low-temperature physics for many years. Subsequent to the original

discovery of Onnes of zero resistance in Hg at 4.2 K, many new superconductors and

allied phenomena were discovered. In one of his experiments Onnes started a current

in a loop of lead wire cooled to 4 K. Even after a year the current was still flowing

2



Figure 1: The graph shows the variation of resistance as a function of temperature

in a superconductor

without any noticeable change. This was called a persistent current by Onnes. Kam-

merlingh Onnes was awarded the Nobel prize in 1913.

Finally Onnes was the person who also found that superconductivity could be de-

stroyed by an applied magnetic field called the critical field. The empirical relation for

the temperature variation of the critical field was found to beHc(T ) = Hc(0)[1−( T
Tc

)2].

Here, Tc(the critical temperature) is the temperature below which the substance is

superconducting when no magnetic field is applied and Hc(T ) is the magnetic field

necessary to decrease the critical temperature to T .

The field above which superconductivity is destroyed is called the critical field. The

critical field curve separates the normal and the superconducting regions.

A theoretical explanation for any of the observations related to superconductivity

was lacking at that time though people believed that it lay in quantum mechanics.

Researchers kept working to discover new superconductors and to learn new proper-

ties in order to shed more light on this new and astonishing phenomenon. The next

important finding was made by Meissner and Ochsenfeld who, in 1933, found that

superconductors are not merely perfect conductors (i.e., having a zero resistance) but

also exclude a magnetic field from their interior.

This goes by the name of Meissner effect. The response of a superconductor when

3



it is cooled in a field (Meissner effect) is quite different than that for a hypothetical

perfect conductor. The illustration portrays this fact very easily. For a perfect con-

ductor this will result in a field remaining inside the material even after switching off

the field after the conductor has been cooled in a field to a perfect conductor state.

In contrast, for a superconductor, the field is expelled from the interior even when it

is cooled in a field.

Figure 2: Behavior of a perfect conductor

Figure 3: behavior of a superconductor

There were early efforts by brothers London to explain flux expulsion from a super-

conductor.

4



It did introduce an important physical length scale, namely the penetration depth,

associated with superconductors. The microscopic theory of superconductivity was

proposed several decades later in 1957 by J. Bardeen (then a Professor of Physics

at University of Illinois Urbana Champagne, USA and also a Nobel prize winner for

the invention of the point contact transistor) along with his post-doctoral fellow L.

Cooper and his PhD student J.R. Schrieffer.

Many of the already observed aspects were explained by the theory. Further, pre-

dictions were made which were verified in the years that followed. Bardeen, Cooper,

and Schrieffer were awarded the Nobel prize for the theory of superconductivity (also

called the BCS theory) in 1972. Even before the BCS theory, a general phenomenol-

ogy of phase transitions was given by the Ginzburg-Landau theory in 1950. They

expressed the free energy as a series in powers of an order parameter which char-

acterized the superconducting state. Using minimization procedures, they obtained

further insight into the initially unknown parameters that were included in the theory.

With this insight, they obtained a handle on various properties of a superconductor.

On the applications front, superconductors (Nb3Sn and Nb3Ti) were already being

used commercially for solenoid magnets, SQUID sensors, etc.

The superfluid forms condensate at very low temperature and the formation of con-

densate is the ground state of our system.Thus we construct a Hamiltonian for our

system and find its eigenvalues and eigenvectors. The eigenvector with minimum

eigenvalue corresponds to the ground state of our system in which condensates are

formed. At the ground state the system acquires new exciting properties. To study

about these properties and fluctuations we just need to look at the ground state. The

Hamiltonian includes all the interactions between the particles. Here I have tried

to derive the time independent form of the Gross Pitaevskii equation to explain the

system. In order to simplify our problem we use the ’mean field approximation’ by

assuming that all the interactions are identical in case of every particle.

Then we talk about the symmetry breaking by the formation of Bose Einstein conden-

sates at very low temperatures below the transition temperature. The Bose Einstein

condensate is the ground state in a superfluid. This ground state is not invariant
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with respect to transformation of the original symmetry of Lagrangian of the system.

This is called spontaneous symmetry breaking.
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2 Normal metals

2.1 Basic Properties Of Metals In The Normal State

Before delving into the properties of superconductors, it is important to give a brief

account of the salient features of normal metals. In a non-interacting electron picture,

the contribution of the electrons to various properties can be calculated. This is

worked out in standard texts on solid state physics and the summary of the results

is given below.

2.2 Electrical conductivity

We recall that in the non-interacting-electrons description of metals, one considers

electrons moving in a periodic potential of the lattice. In this “Bloch” picture, a per-

fect crystal is expected to have an infinite electrical conductivity. In real materials, a

finite conductivity appears due to the inherent imperfections and defects. Addition-

ally, at non-zero temperatures, lattice vibrations lead to a deviation from periodicity

and contribute to electron scattering. In summary, one gets resistivity ρ ∼ T for T

� ΘD where ΘD is the Debye temperature. On the other hand, for T � ΘD one

obtains ρ ∼ T 5. The residual resistivity as T → 0 decreases with decreasing amounts

of impurities. A typical value of resistivity of a good metal at room temperature is

of the order of 10−6 ohm cm.

As an example, the variation of the resistivity with temperature for silver is shown in

the figure below At high temperature, a linear variation of resistivity with tempera-

ture is seen while at low temperatures a residual resistivity is present which is linked

to the presence of defects and impurities.

For ideal metals, the thermal conductivity due to electrons is given by 1
3
v2 τ cv

where v2 is the mean square electronic speed, τ is the relaxation time, and cv is the

specific heat capacity of the electrons. The ratio of the thermal conductivity κ to

the electrical conductivity times temperature (σT) of an electron gas is a universal

constant (Lorentz number) and this is called Wiedmann-Franz law. The value of the

7



Figure 4: The resistivity variation with temperature is shown for a normal metal.
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Lorentz number is of the order of 10−8 Watt ohm
K2 in typical metals.

2.3 Heat capacity

The temperature dependence of the specific heat capacity of an electron gas is given

by cv
kB

= γT = π3

3
g(εF )kBT where kB is the Boltzmann constant and g(εF ) is the

density-of-states at the Fermi level. The value of γ in typical metals is of the order

of 1 mJ
mole K2 . In the Debye model, the phonon contribution to the heat capacity per

atom is given by cv
kB

= 9( T
ΘD

)3
ΘD/T∫

0

x4exdx
(ex−1)2

where ΘD is the Debye temperature.

The heat capacity variation for a typical metal is shown in the figure. At high

temperatures, it tends to a constant value while at low temperatures the heat capacity

is a combination of a linear term (due to electrons) and a cubic term (due to lattice

vibrations or phonons). When C/T is plotted as function of T 2, a straight line is

9



obtained. The intercept on the y-axis gives information about the electron density of

states while the slope provides information about characteristic energy associated with

lattice vibrations. In the low-temperature limit T� ΘD, the phonon contribution

reduces to cv
kB

= 12π4

5
( T

ΘD
)3. In a typical metal, the low-temperature heat capacity

has, therefore, a combination of a linear and a cubic term in temperature. The low-

temperature heat capacity measurement serves as an important probe of the Fermi

surface properties of the electron gas.

3 Magnetic susceptibility and Hall effect

3.1 Magnetic susceptibility

The magnetic (spin) susceptibility of a non-interacting electron gas is called the Pauli

spin susceptibility and is given by χ = µ2
Bg(εF ) where µB is the Bohr magneton.
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Since the temperatures at which the magnetic susceptibility is typically measured are

much smaller than εF
kB

, it is independent of temperature. The Pauli susceptibility

has a typical value of 10−6 cm3

mole
. In addition, there are other contributions to the

susceptibility namely, the Van Vleck orbital paramagnetism, the diamagnetism from

the orbital motion of the core electrons, and Landau diamagnetism from the orbital

motion of the free electrons. The magnetic susceptibility of conventional metals is

independent of temperature.

3.2 Hall effect

The Hall effect is used to determine the concentration and nature of charge carriers

in a material. In the standard Hall effect geometry, a magnetic field is applied per-

pendicular to the direction in which an ohmic current is flowing. Due to the Lorentz

force on the charge carriers, a voltage develops along the third orthogonal direction

and is called the Hall voltage. The Hall coefficient is defined as RH = Ey
jxBz

where jx

is the ohmic current density in the x-direction, Bz is the applied magnetic field in

the z-direction, and y is the electric field that is developed in the y-direction. The

Hall coefficient is equal to − 1
ne

(MKS units) if the charge carriers are electrons (of

charge e and density n). A typical value of the Hall coefficient in metals is 10−10 m3

C
.

In contrast to the above, there are qualitative changes that take place in the prop-

erties of materials when they become superconducting. These will be elaborated at

appropriate places when the properties of superconductors are discussed.

Charge carriers (shown as positive for convenience) flow in the conductor on appli-

cation of an electrostatic potential and constitute an ohmic current. Switching on a

magnetic field perpendicular to the ohmic current results in a Lorentz force on the

charge carriers which move in a direction perpendicular to both the ohmic current

and the magnetic field. The accumulation of charge carriers as shown will result in

an electrostatic potential (Hall voltage) which counteracts the Lorentz force.
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4 Superconductivity phenomenon

Superconductivity is a phenomenon of exactly zero electrical resistance and expulsion

of magnetic fields occurring in certain materials when cooled below a characteristic

critical temperature. It was discovered by Dutch physicist Heike Kamerlingh Onnes

on April 8, 1911 in Leiden. Like ferromagnetism and atomic spectral lines, supercon-

ductivity is a quantum mechanical phenomenon. It is characterized by the Meissner

effect, the complete ejection of magnetic field lines from the interior of the super-

conductor as it transitions into the superconducting state. The occurrence of the

Meissner effect indicates that superconductivity cannot be understood simply as the

idealization of perfect conductivity in classical physics. The electrical resistivity of a

metallic conductor decreases gradually as temperature is lowered. In ordinary con-

ductors, such as copper or silver, this decrease is limited by impurities and other

defects. Even near absolute zero, a real sample of a normal conductor shows some re-

sistance. In a superconductor, the resistance drops abruptly to zero when the material

is cooled below its critical temperature. An electric current flowing through a loop of

superconducting wire can persist indefinitely with no power source. In 1986, it was

discovered that some cuprate-perovskite ceramic materials have a critical temperature

above 90 K (183 C). Such a high transition temperature is theoretically impossible for

a conventional superconductor, leading the materials to be termed high-temperature

superconductors. Liquid nitrogen boils at 77.2 K, and superconduction at higher

temperatures than this temperature facilitates many experiments and applications

that are less practical at lower temperatures.

4.1 Two fluid model for superconductivity and London equa-

tions

4.1.1 Phenomenon of superconductivity

As mentioned before, the resistance of metallic materials decreases with a decrease in

temperature and displays a T 5- behavior at low-temperatures.
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As temperature decreases, the resistance falls gradually (as for a normal metal).

However, at Tc, the resistance drops very sharply to zero and remains so at lower

temperatures. Also shown is the variation of heat capacity with temperature in the

case of a superconductor. A sharp peak is seen at Tc signifying the phase transition.

While the amount of residual resistivity (i.e., ρ(T → 0)) does depend on the purity

of the material, the temperature variation of ρ is smooth. In contrast, for super-

conductors and as found by Onnes for the first time for the case of mercury, the dc

resistivity decreases sharply to zero at the critical temperature Tc. Note that in a

typical measurement of dc resistivity, a constant dc current is applied to the sample

and the voltage developed across it is measured as a function of temperature. On the

other hand, for measuring the ac resistivity (or conductivity), an ac current source

has to be used.

4.1.2 Frequency dependent conductivity in the Drude model

The Drude model treats the electron gas with the methods of the kinetic theory of a

dilute neutral gas with the following assumptions: (i) between collisions, the motion of

electrons is considered to be independent of the static ions or the other electrons, (ii)

collisions are thought to be instantaneous events which abruptly change the velocities

of the electrons, (iii) a relaxation time τ is introduced which is the mean time between

collisions, and (iv) electrons achieve equilibrium with their surroundings only via

collisions. The conductivity in a spatially uniform and time-independent electric field

13



is given by σ0 = ne2τ
m

. For a time-dependent field represented by E(t) = <(E(ω)e−iωt),

one obtains the current density j(ω) = σ(ω)E(ω) where the frequency dependent

conductivity is given by

σ(ω) =
σ0

1− iωτ
=

σ0

1 + ω2τ 2
+ i

σ0ωτ

1 + ω2τ 2
(1)

4.1.3 Two fluid model

Since the response of superconductors to ac fields is known to be dissipative, a simple

two-fluid model is introduced to explain the ac conductivity of superconductors. Con-

sider a material with total electron density n, which comprises of a superconducting

part ns and a normal part nn having relaxation times τs and τn , respectively. Since

infinite conductivity is obtained for a superconductor in the dc case, it is natural to

consider τs = ∞. The shape of the σ0
1+ω2τ2

part of the conductivity as a function

of frequency is bell shaped. At a given temperature, the height of the peak at zero

frequency (σ0) grows as τ increases with the area under the curve remaining constant.

Note that
∫

dω
1+ω2τ2

= π
2τ

and hence the area under the curve is ne2π
2m

. As τ →∞, the

width of the curve approaches zero and the height diverges with the area remaining

constant (i.e., a Dirac-delta function). Similarly, the imaginary part of the conduc-

tivity approaches ne2

mω
as τ →∞.

Therefore, at non-zero frequencies, the superconducting fraction of the electrons con-

tribute only to the imaginary part of the conductivity which is nse2

mω
. Further, in

the limit ωτn � 1, the real part of the conductivity is approximately nne2τ
m

which

is finite. This illustrates the dissipative behavior of a superconductor in an ac field.

Since a dc current can flow in a superconductor without dissipation, it is possible to

set up currents in superconducting loops which do not decay with time. These are

called persistent currents. Indeed, solenoid magnets made of superconducting wires

are commercially available which can routinely provide magnetic fields as large as

100-200 kOe. The highest persistent field (268 kOe) has been achieved using cuprate

based (YBCO) superconductors. In reality, there is a small decay of the circulating

current due to something called flux flow resistance. This is however extremely small

and only ppm level changes in the magnetic fields are seen over decades.
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4.1.4 Diamagnetism

Another defining feature of superconductors is diamagnetism. We note here that

the response of a superconductor to an applied magnetic field is distinctly different

from what one might expect of a hypothetically perfect or ideal conductor (σ =∞).

Imagine that a normal, non-superconducting material were cooled in the absence of a

magnetic field. Further consider that this material becomes a perfect conductor below

some temperature. If a magnetic field is now turned on, the magnetic field (B) inside

the conductor should remain unchanged at zero (this follows from Maxwell equations

and is shown below). On the other hand, if the material were cooled in the presence of

a magnetic field, the field would penetrate the material in the finite conductivity state

and will continue to do so when the material is cooled to temperatures where it has

σ = ∞. In contrast to the above behavior expected of a perfect or ideal conductor,

a superconductor (for T < Tc) always has B = 0 inside it, i.e., whether it is cooled

in a magnetic field or the field is turned on after cooling the sample (issues such as

penetration depth and critical fields will be discussed later). The expulsion of field

from the superconductor when it is cooled in a field is called the Meissner effect while

a similar consequence which takes place when the sample is cooled in zero field and

then a field is applied for T < Tc is called perfect diamagnetism. Let us start from

the Maxwell equation also referred to as the Faraday law

−→
∇ ×

−→
E = −1

c

∂
−→
B

∂t
(2)

Newton’s law for electrons under the influence of an electric field is given by (note

that this is strictly valid only for spatially uniform fields which is not the case at

interfaces)

m
d~v

dt
= −e ~E (3)

⇒ m
∂(−ne~v)

∂t
= ne2 ~E (4)

⇒ ~∇× ~E =
m

ne2
~∇× ∂ ~J

∂t
(5)
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Consequently

~∇× ∂ ~J

∂t
=
ne2

mc

∂ ~B

∂t
(6)

Making use of another of Maxwell equations (neglecting the displacement current and

taking ~B = ~H for the superconductor we get ~∇× ~B = 4π
c
~J), we obtain

~∇× ∂(~∇× ~B)

∂t
=

4πne2

mc2

∂ ~B

∂t
(7)

Further, using the vector identity
−→
∇ ×

−→
∇ ×

−→
B =

−→
∇(
−→
∇ ·
−→
B ) − ∇2−→B along with

no-magnetic-monopole condition ~∇ · ~B = 0,

∇2∂
−→
B

∂t
=

4πne2

mc2

∂
−→
B

∂t
(8)

Applying the above equation to a slab of a perfect conductor implies that ∂B
∂t

must

fall off exponentially inside the conductor with a characteristic length scale (Lon-

don penetration depth λ) of
√

mc2

4πne2
. Therefore, changes in the field are attenuated

exponentially inside a perfect conductor.

4.1.5 London Equations

In order to explain the Meissner effect in superconductors, Fritz and Heinz London

proposed the following equations in 1935.

−→
∇ ×

−→
J = −ne

2

mc
~B ⇒

−→
J = −ne

2−→A
mc

(9)

∂
−→
J

∂t
= −ne

2

m

−→
E (10)

The second of the above equations is, in any case, valid for a perfect conductor

while the first one helps explain Meissner effect. Note that the first equation did not

follow from any microscopic theory but was merely an attempt to describe empirical

observations. The penetration depth varies with temperature in a qualitative manner

as indicated in the figure below. The empirical variation has been found to follow

λ(T ) =
λ(0)√

1− ( T
Tc

)4
(11)
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The values of λ(0) range from tens of Ao to thousands of Ao

Figure 5: The figure illustrates the penetration of magnetic field inside a supercon-

ductor. The schematic variation of penetration depth with temperature is also shown.

4.1.6 Critical field

We will now talk about the effect of a magnetic field on the Tc of a superconductor.

The Tc is found to decrease when a magnetic field is present and superconductivity

can be completely suppressed by applying a sufficiently strong magnetic field (called

the critical field) Hc. As will be discussed later, Type I superconductors have a single

critical field ( Hc) while Type II superconductors have a lower and an upper critical

field ( Hc1 and Hc2, respectively) between which the substance is said to be in the

mixed state. Typical values of Hc are in the region of 0.01 Tesla while those of Hc2

can be as high as 100 Tesla. Clearly, the Type II superconductors with high Hc2

are useful from the point of view of applications. The typical variation of Hc with

temperature is shown in the figure below. It follows
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Hc(T ) = Hc(0)

(
1−

(
T

Tc

)2)
(12)

Here, at a temperature T a field of Hc(T ) is needed to suppress superconductivity

completely.

Figure 6: The schematic variation of critical field with temperature for Type-I and

Type-II superconductors is shown in the figure.

4.1.7 Critical current

Likewise, there is a limit to the current that one can pass through a superconductor

beyond which it is normal (non-superconducting). For a cylindrical conductor, one

can estimate it in the following manner. For a current I flowing uniformly through

a cylindrical conductor of radius a, the field at the surface is H = I
2πa

. Clearly, if

this exceeds Hc the whole wire will become normal. The critical current is therefore

Ic = 2πaHc. In practice, a current of hundreds of Amperes can be passed through

superconducting wires without dissipation.

4.1.8 critical temperature

The critical temperature for superconductors is the temperature at which the elec-

trical resistivity of a metal drops to zero. The transition is so sudden and complete

that it appears to be a transition to a different phase of matter; this superconduct-

ing phase is described by the BCS theory. Several materials exhibit superconducting
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phase transitions at low temperatures. The highest critical temperature was about

23 K until the discovery in 1986 of some high temperature superconductors.

Materials with critical temperatures in the range 120 K have received a great deal

of attention because they can be maintained in the superconducting state with liquid

nitrogen (77 K).

4.1.9 Isotope effect

Among the parameters which affect Tc, the isotopic mass M plays an important

role and changes Tc as Tc ∝ M−α with α ≈ 0.5. The isotope effect was discovered

in 1950 in Hg and Sn where different isotopes could be synthesized using methods

of nuclear physics. This must have been an important clue in the development of

the BCS theory since it indicated the importance of the lattice for the mechanism

of superconductivity. The most important consequence of London equations is the

screening of a magnetic field from the bulk of a superconductor.

5 Solution of London equations and free energy

calculations

5.0.10 Solution of London Equations for sample cases

Flat slab in a magnetic field Consider a flat superconducting slab of thickness

d in a magnetic field Ha parallel to the slab. The boundary condition is that field

matches at x = ±d/2. Subject to this condition, the solution to the London equation

∇2h = 1
λ2
h, where h is the microscopic value of the flux density, is easily determined

to be a superposition of two exponential terms. The result can be written as

h = Ha
cosh(x/λ)

cosh(d/2λ)
(13)

Clearly, the minimum value of the flux density is attained at the mid-plane of the

slab where it has a value Ha/ cosh(d/2λ).

Averaging this internal field over the sample thickness one gets
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Figure 7: The field variation inside a superconducting slab is shown.

B ≡ h̄ = Ha
2λ

d
tanh

(
d

2λ

)
(14)

Let us consider the limit d� λ. This leads to B = 0 deep inside the superconductor.

In the other limit, i.e., d� λ, we expand tanh(x) = x−x3/3. Therefore, B approaches

Ha(1− d2

12λ2
). Since B = Ha + 4πM , we get

M = −Ha

4π

(
d2

12λ2

)
(15)

As a consequence, magnetization measurements can be made on thin films of known

thicknesses and the penetration depth can be estimated from such measurements.

Since the magnetization is reduced below its Meissner value, the effective critical field

for a thin sample is greater than that for bulk. The difference in the free energy

between the normal state and the superconducting state is

(Fn − Fs) |H=0= −
Hc∫
0

MdH (16)

For the case of complete flux expulsion, the above difference in free energies is

∆F = −
Hc∫
0

H

4π
dH =

H2
c

8π
(17)
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This energy, which stabilizes the superconducting state is called the condensation

energy and Hc is called the thermodynamic critical field. For a thin film sample

(with a field applied parallel to the plane) we get,

∆F =
1

4π

d2

12λ2

∫ Hcpar

0

HdH =
H2

c par

8π

d2

12λ2
(18)

In terms of the bulk thermodynamic critical field

H2
c par

8π

d2

12λ2
=
H2
c

4π
(19)

Hcpar =

√
12λ

d
Hc (20)

5.0.11 Critical current of a wire

Consider a long superconducting wire having a circular cross-section of radius a.

Also, assume that λ � a. A current I is passed through the wire. This gives rise

to a circumferential magnetic field at the surface of the wire H= 2I
ca
. In a simple

minded picture, when this field reaches Hc, the wire will become normal. Therefore,

the critical current Ic = ca
2
Hc depends linearly on the radius and not on the area.

The current flows only in a surface layer of thickness λ. Hence, the current density

Jc ≈ Ic
2πaλ

= Hc

2πaλ
ca
2

. Therefore, Jc = c
4π

Hc

λ
.

5.0.12 Free energy calculations

Now consider the case of a type I superconductor in a relatively large field. First we

will carry out some calculations assuming zero demagnetisation factor. For a normal

sample of volume V in a magnetic field Ha, the Helmholtz free energy is given by

Fn = V fn0 = V
H2

a

8π
+ Vext

H2
a

8π
(21)

Here fn0 is the free energy density in zero applied field. Vext is the volume external to

the sample volume where the field Ha exists. On the other hand, for a superconductor,

the field is excluded from its interior and hence its free energy is given by
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Fs = V fs0 + Vext
H2

a

8π
(22)

Here we have ignored the fact that the field actually penetrates in a layer of depth

∼ λ from the surface. The difference between the above two free energies is then

Fn − Fs = V (fn0 − fs0) + V
H2

a

8π
(23)

Since the condensation energy density is the stabilization energy

Fn − Fs = V
H2

c

8π
+ V

H2
a

8π
(24)

For Ha = Hc

(Fn − Fs) |Hc= V
H2

c

4π
(25)

This is the energy increase (sample plus the surroundings) when a sample becomes

normal at Ha = Hc. The increase comes about because the energy source (generator)

maintaining the constant field does work against the back emf. This emf is induced as

the flux threading the sample changes (starts entering the bulk of the superconductor).

Actually, discussion in terms of a Helmholtz free energy is appropriate for a situation

where B is held constant (i.e., no induced emf). Here, we are holding H constant

so the appropriate thermodynamic potential is the Gibbs free energy G. Recall that

the Gibbs free energy density g is related to the Helmholtz free energy density f as

follows

g = f − hH

4π
(26)

In the normal state, the local flux density h is equal to the average flux density B

which is the same as the applied field Ha. Therefore we get

Gn = V fn0 − V
H2

a

8π
− Vext

H2
a

8π
(27)

In the superconducting state, flux is excluded from the superconductor, so h = B = 0.

This gives
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Gs = V fs0 − Vext
H2

a

8π
(28)

The difference between the two free energies is then

Gn −Gs = V (fn0 − fs0)− V H
2
a

8π
(29)

For an applied field equal to the thermodynamic critical field, we get Gn = Gs

i.e., there will be a phase equilibrium between the normal and the superconducting

phase at Ha = Hc.

5.0.13 Field variation for a non-zero demagnetization factor

Consider a spherical sample of radius R. Outside the sphere, we have ∇ � ~B = 0 and

~∇× ~B = 0. Consequently ∇2 ~B = 0. Clearly, B approaches Ha as r →∞. Also, the

perpendicular component of B is zero at r = R. The solution to to ∇2B = 0 is then

Bout = Ha +
HaR

3

2

−→
∇
(

cos θ

r2

)
(30)

Therefore, the tangential component of B at the surface of the sphere can be calcu-

lated and is given below

Bθ(r = R) =
3

2
Ha sin θ (31)

This exceeds the applied field at the equator. Even when the applied field is less than

Hc, so long as it is greater than 2
3
Hc, B can attain a value of Hc at the equator. There-

fore, for 2
3
Hc < Ha < Hc there will be a coexistence of normal and superconducting

regions. This has been called the “intermediate” state. Note that this is different

from the “mixed” state which occurs at applied magnetic fields between Hc1 and Hc2,

even in the absence of demagnetization effects.In general, for ellipsoidal samples (i.e.,

where a demagnetization factor is well defined), when the applied field is in the range

1 − η < Ha

Hc
< 1(where η is the demagnetization factor) an intermediate state will

occur. The value of η for a sphere is 1/3, for a flat plate with field perpendicular to

it is 1, for a long cylinder with the field along the axis it is 0, and for a long cylinder
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with a field perpendicular to its axis it is 1/2.

Contrast of exterior-field pattern (a) when demagnetizing coefficient is nearly zero

and (b) when it is 1/3 for a sphere. In (b) the equatorial field is three halves the ap-

plied field for the case of full Meissner effect, which is shown. The field pattern inside

Figure 8: Contrast of exterior-field pattern (a) when demagnetizing coefficient is

nearly zero and (b) when it is 1/3 for a sphere. In (b) the equatorial field is three

halves the applied field for the case of full Meissner effect, which is shown.

a spherically shaped superconducting sample is shown. The larger concentration of

field lines near the equator is a result of the demagnetization factor.
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6 Thermodynamics of the superconducting tran-

sition

The variation of specific heat with temperature is often a good probe of phase tran-

sitions in matter. Historically, it is Ehrenfest who first classified phase transitions

based on the variation of the thermodynamic free energy with some state variable

such as temperature. The order of a transition was defined as the lowest derivative of

free energy (with respect to some variable) that was discontinuous at the transition.

If the first derivative of free energy is discontinuous (such as the case of a solid-liquid

transition where the density is discontinuous), then the transition is called first order.

In the case of ferromagnetic transition of Fe for example, the susceptibility (i.e., the

second derivative of free energy with field) is discontinuous and one would classify it

as a second order phase transition. However, there are many cases in nature where

rather than discontinuous jumps in thermodynamic variables, there is a divergence

such as in the heat capacity of a superconductor. Over the decades, changes in these

criteria have been proposed to accommodate such cases. The modern classification of

phase transitions is based on the existence or lack thereof of a latent heat. If a phase

transition involves a latent heat, i.e., the substance absorbs or releases heat without

a change in temperature, then it is called a 1st order phase transition. In the absence

of a latent heat, the phase transition is a 2nd order transition. Landau gave a theory

of 2nd order phase transitions and its application to superconductors.

For a type I superconductor, in general, there is an entropy change at the transition

temperature (and therefore a latent heat) making the transition 1st order. However,

in zero magnetic field, the entropy change is zero and hence the transition is 2nd

order. In the normal state, the electronic contribution to the heat capacity is linear

in temperature, as explained in a previous chapter. The heat capacity exhibits a jump

at Tc and at lower temperatures, it falls with an exponential temperature dependence.

The exponential dependence is due to the opening up of a gap in the excitation

spectrum. Signatures of a gap are seen in various other properties such as thermal

conductivity, current-voltage characteristics, etc.
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Figure 9: The figure shows the schematic variation of enthalpy in the case of a

transition involving a latent heat

The accompanying figures contrast the variation with temperature of some basic

thermodynamic quantities such as the entropy S, the internal energy U, the heat

capacity C and the Helmholtz free energy F.

6.0.14 Basic thermodynamics and magnetism

We will first review the basic thermodynamics related to magnetic materials. Consider

a solenoid having N/L turns per unit length. A long cylindrical sample (for this

choice the dimagnetisation field is negligible) is placed in the solenoid. The field in

the sample is
−→
H= NI

L
ẑ if a current I flows in the solenoid. The total work done on

increasing the current from I to I + dI is (finally, a positive work is done by the

sources in increasing the energy of the sample and the vacuum)

dW = −NEIdt (32)
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= N
dφ

dt
Idt (33)

= NIdφ (34)

= NAIdB (35)

=
V

4π

−→
H · d

−→
B (36)

= V (
−→
H · d

−→
M +

−→
H · d

−→
H ) (37)

The first term is the magnetic work done on the sample. If the sample were not

present, work would still have been done to increase the electromagnetic field energy

and that is the second term. Our convention will be to include ONLY the magnetic

work done on the sample and not on the vacuum. The first law of thermodynamics

then reads
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Figure 10: 1. Entropy 2. Heat capacity 3. Internal Energy 4. Free Energy

dU = TdS + V
−→
H · d

−→
M (38)

This is analogous to the gas equation where the work done on the gas is −PdV . The

field
−→
H is similar to −P and the magnetization is similar to the volume of the gas.

Therefore we can think of the internal energy as a function of the entropy and the

magnetization with

T =
∂U

∂S
(39)

H =
1

V

∂U

∂M
(40)

However, S and M are not very convenient variables to work with from a practical

viewpoint since what we control externally is the current and hence H and rather the

temperature T than the entropy. Therefore, it will be useful to write down an energy

equation expressed in terms of changes in applied magnetic field and temperature.
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For a magnetic system, the Helmholtz and the Gibbs free energy can then be written

down as follows

F (T,M) = U − TS (41)

(10) and

G(T,H) = U − TS − V
−→
H ·
−→
M (42)

Therefore the appropriate free energy to consider is the Gibbs free energy (which is

expressed in terms of changes in temperature and magnetic field) and the entropy

and magnetization can be calculated from its derivatives.

dG = dU − TdS − SdT − V
−→
H · d

−→
M − V

−→
M · d

−→
H (43)

= −SdT − V
−→
M · d

−→
H (44)

S = −∂G
∂T

(45)

M = − 1

V

∂G

∂H
(46)

From the Gibbs free energy we can also write the Helmholtz free energy F =

G+ V
−→
H ·
−→
M as also the internal energy U .

6.0.15 Application to superconductors

We will now calculate the Gibbs free energy difference between the normal state and

superconducting state. At a fixed temperature, the applied magnetic field is varied to

a critical field Hc, so that superconductivity is destroyed and the substance becomes

normal. Therefore, we integrate the dG equation from 0 to Hc. This yields

Gs(T,Hc)−Gs(T, 0) = −V
∫ −→
M · d

−→
H (47)

Since, in the Meissner state, H = −4πM , the integral gives V H2
c

8π
. At the critical field,

of course, the free energy of the superconductor is equal to that of the normal phase
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i.e., Gs(T,Hc) = Gn(T,Hc). Also, since the normal state has negligible magnetization,

Gn(T,Hc) = Gn(T, 0). Therefore, in zero magnetic field, the superconducting state

is lower in energy (Gibbs free energy) than the normal state by an amount V H2
c

8π
.

Clearly in zero field, the Gibbs and the Helmholtz free energy are the same and so

the above statement is also valid for Helmholtz free energy. The above difference in

the energy density between the normal and the superconducting state (the normal

state being of higher energy) is called the condensation energy. The entropy difference

can be calculated by taking the derivative of the Gibbs free energy with temperature.

The equation below gives the difference in the entropy per unit volume between the

superconducting and the normal state.

Ss(T,Hc)− Sn(T,Hc) = −Hc

4π

dHc

dT
(48)

Therefore, when the external field is zero, the entropy difference is zero and there

is no latent heat. The transition is then second-order. On the other hand, in the

presence of a field there is a non-zero entropy change and hence the transition is of

first-order.

7 Ginzburg-Landau phenomenological theory

Ginzburg Landau theory The next several lectures will discuss the phenomenological

theory of superconductivity proposed by Ginzburg and Landau. This starts with the

proposal of a free energy functional involving an expansion in terms of an order pa-

rameter. A minimization procedure leads to the Ginzburg-Landau equations. These

can be solved and various predictions made regarding the properties of the super-

conducting state. Introduction The Ginzburg-Landau (GL) theory while not being a

microscopic theory (but rather a macroscopic theory) provides a physically intuitive

picture of the properties of superconductors. Broadly speaking, it starts by proposing

a “wave function” ψ(r) as a complex order parameter, characteristic of the supercon-

ducting state. Consequently, |ψ(r)|2 is considered as the density of superconducting

electrons ns(r). Next, it is assumed that the free-energy density of a superconductor
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can be expanded in powers of the supercarrier density as also in powers of |∇ψ|2.

After doing so, the free-energy density is minimized with respect to the order param-

eter to finally obtain the energy stabilization of the superconducting state compared

to the normal state. Note that the mechanism which drives superconductivity is not

addressed by this theory but rather a practical approach is taken whereby given the

fact that superconductivity exists, equations are provided to model their properties

and in the process, new length scales such as the penetration depth and coherence

length emerge. Functional description in different limiting cases is obtained. Further

the existence of Type II superconductors can be hypothesized. The GL theory was

proposed in 1950 (after Landau had given a general theory of second order phase

transitions) which was before the BCS theory and in 1959, after the publication of

the BCS theory, Gor’kov showed that the GL theory could in fact be rigorously ob-

tained as a limiting case of the microscopic BCS theory. Free energy formulation We

now introduce the GL free energy density and then carry out a derivation of the GL

equations followed by their application to specific geometries.

fs = fn0 + α|ψ|2 +
β

2
|ψ|4 +

1

2m∗
|(p− qA

c
)ψ|2 +

h2

8π
(49)

Let us now elaborate on what the various terms in the RHS above are. Here, fn0

is the (Helmholtz) free energy density in the absence of an applied magnetic field.

Since the theory is considered to be applicable at temperatures close to the transition

(where ns(r) is expected to be small), higher order terms in |ψ(r)|2 and |∇ψ|2 are

neglected. One might ask as to why can we not expand in powers of the complex

order parameter ψ(r) as opposed to the square of its magnitude? The answer to this

is that since the free energy is a real quantity, we need the RHS to be real as well.

In that case, why can we not expand in powers of |ψ| which is real and would then

give a cubic term? The answer to this is that |ψ|3 is not analytic at the origin and

hence not admissible (derivative is different as one approaches the origin from different

directions). The kinetic energy term takes into account the effect of applied external

magnetic fields (here −→p is the operator −i~
−→
∇ and (−→p − q

−→
A
c

) is the operator for the

kinetic momentum; (pkin + qA
c

) is the canonical momentum). The mass and charge
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have been taken as m∗ and q since at this point a connection with the electronic (or

of pairs) mass and charge is not evident. The total kinetic energy would be given by

∫
d3r

1

2m∗
ψ∗(−→p − q

−→
A

c
)2ψ (50)

Integrating this by parts, the first term will vanish at the extrema since the wave

function should be well behaved. The second term gives

∫
dr

1

2m∗
|(−→p − q

−→
A

c
)ψ|2 (51)

The integrand is then the energy density and this explains the electromagnetic

term in the GL energy density. The last term is simply the magnetic self energy of

the normal phase while fn0is free energy of the normal phase in zero applied field.

Free energy in the absence of field, currents and gradients Let’s us first consider the

simplest situation where there are no magnetic fields nor are there any gradients of

the wave function (this would correspond to a region well inside a superconductor).

Here the free energy density reduces to

fs = fn + α|ψ|2 +
β

2
|ψ|4 (52)

It is evident that both the coefficients α and β can not be positive since that

would not give rise to an energy lowering for finite |ψ|2 and would in fact describe the

normal state. The only physically meaningful possibility is for α to be negative and

β to be positive (either (i) the inverse or (ii) both having a negative sign would give

lowest free energy for arbitrarily high values of |ψ|2 and hence are not admissible).

For a negative α, taking the derivative of fs − fn with respect to |ψ|2, we get

|ψ|2 = −α
β

(53)

The schematic variation of the free energy stabilization as a function of |ψ|2 is

shown in figure for both positive and negative α.

Now let us study general case of nonuniform Superconductor in magnetic field.
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Figure 11: The schematic variation of the free energy stabilization as a function of

|ψ|2 is shown in figure for both positive and negative α.

At T tends to Tc the Gibbs free energy density can be written as

Gs(H) = Gn + α|ψ|2 +
β

2
|ψ|4 +

1

2m∗
|(−i~∇ψ − 2eA)ψ|2 +

B2

2µ0

−B.H (54)

Gn is the free energy of the system in the normal state. ψ is the complex order

parameter. B is the magnetic field and H is the magnetic field strength. where the

kinetic energy density is written using the fact that 2mv = p2eA and knowing that

p̂ = i∇. The quantity m∗ means the double electron mass. The Gibbs free energy is

Gs(H) = Gn + ∫ α|ψ|2 +
β

2
|ψ|4 +

1

2m∗
|(−i~∇ψ − 2eA)ψ|2 +

∇× A2

2µ0

−∇× A.H

(55)

Our task is to find the functions ψ(r) and A(r). Taking into account that |ψ|2 = ψψ∗,

we, first, write variation of energy with respect to ψ, assuming that ψ and A are

constant and then using the identity:

∇(δψ∗.v) = v.∇δψ∗ + δψ∗.∇.v (56)

∫ dV (∇δψ∗)v = −∫ δψ∗.∇v.dV + ∫ ∇(δψ∗.v)dV (57)
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= −∫ δψ∗.∆v.dV +

∮
δψ∗.v.dS (58)

where we have used the Gauss theorem.

substituting equation (5) in equation (2); Now the second term becomes

∫ dV [(i~(∇δψ∗)− 2eA)v] (59)

∫ dV [i~v(∇δψ∗)− 2eAv] (60)

∫ dV (−i~δψ∗∇v − 2eAv) +

∮
s

...dS (61)

∫ dV δψ∗(−i~∇− 2eA)2ψ +

∮
s

...dS (62)

0 = ∫ dV [αψ + βψ|ψ|2 +
1

4m
(−i~∇− 2eA)2ψ]δψ∗ +

∮
s

[−i~∇ψ − 2eAψ]δψ∗dS (63)

This expression can be equal to zero for arbitrary variation δψ∗ only if the expressions

in the square brackets are both equal to zero. Thus, we arrive to the first Ginzburg-

Landau equation and to the boundary condition which supplements it:

αψ + βψ|ψ2|+ 1

4m
(−i~∇− 2eA)2ψ = 0 (64)

(−i~∇ψ − 2eAψ).n = 0 (65)

where n is the vector normal to the surface of the SC. It is easy to check that variation

of the Gibbs energy with respect to ψ will give an equation complex conjugate. Let

us do the variation with respect to A.

δAGS = ∫ dV [
1

4m
δA[(i~∇ψ∗)(−i~∇ψ − 2eAψ)] +

∇×A∇× δA
µ0

−H∇× δA] (66)

= ∫ dV [
1

4m
(2eψ∗δA)(−i~∇ψ−2eAψ)+

1

4m
(i~∇ψ∗−2eψ∗)(−eψδA)+(

∇×A

µ0

−H)∇×δA]

(67)

now we shall use the identity

a.∇× b = b∇× a−5.[a∇× b] (68)

so the last term becomes

∫ dV (
∇×A

µ0

−H)∇×δA = ∫ dV δA∇×A∇×A

µ0

−
∮
dS[δA×(

∇×A

µ0

−H)] (69)
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The last integral vanishes because δA|S = 0 Finally, after some transformations,

∫ dV [
i~e
2m

(ψ∗∇ψ − ψ∇ψ∗) +
2e∗

m
A|ψ|2 +

∇×∇×A

µ0

]δA = 0 (70)

This integral can be equal to zero for any variation δA only if the expression in

the square brackets is equal to zero. This leads us to the second Ginzburg-Landau

equation:
∇×∇×A

µ0

= − i~e
2m

(ψ∗∇ψ − ψ∇ψ∗)− 2e∗

m
A|ψ|2 (71)

We introduce the dimensionless wave function

ψ(r) =
ψ(r)

ψ0

(72)

where ψ0 = ns
2

= |α|
β

.

Further, we introduce the following new quantities

ξ2 =
~2

4m|α|
; (73)

λ2 =
mβ

2e2|α|µ0

(74)

Then both GL equations can be rewritten in the more convenient and compact form

ξ2(i∇+
2π

φ0

A)
2

ψ − ψ + ψ|ψ|2 = 0 (75)

λ2∇×∇×A = −iφ0(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A (76)

The boundary condition leads to the following boundary condition for ψ

(i∇+
2π

φ0

A)nψ = 0 (77)

Actually even more general boundary condition

(i∇+
2π

φ0

A)nψ = iαψ (78)

this also gives jS = 0 at the boundary.
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7.0.16 Determination of coefficients a and b in the absence of fields and

gradients

The cross terms in the product above cancel out and some simple algebra yields for

the energy 1
2m∗

(~2−→∇(|ψ|)2 +(~
−→
∇ϕ− q

−→
A
c

)2|ψ|2). The first term gives the kinetic energy

from the regions where there is a variation of the magnitude of the wave function such

as at the boundary or in a domain wall. The second term involves the gradient of

the phase and is associated with the supercurrent. This can be seen as follows. The

quantum mechanical probability current density for a charged particle in a magnetic

field is given by

~
2m∗i

(ψ∗
−→
∇ψ − ψ

−→
∇ψ∗)− q

m∗c
~A|ψ|2 =

1

m∗
(~
−→
∇ϕ− q

−→
A

c
)2|ψ|2 (79)

Note that to get the electrical current density, one has to multiply this by the charge.

Therefore the last term in the kinetic energy is J2m∗

2q2|ψ|2 . We know that the vector

potential is not unique and we can add the gradient of a scalar and still get the same

magnetic field. We choose a gauge here (which is called the London Gauge) which

cancels the ~
−→
∇ϕ term. Then the kinetic energy term (in the absence of a gradient of

the magnitude of the wave function) becomes q2A2|ψ|2
2m∗c2 = A2

8π
4πq2|ψ|2
mc2

. We have earlier

seen that in the London model λ2
L = mc2

4πne2
. The kinetic energy term now has the

identification A2

8πλ2GL
where |ψ|2 is proportional to the superconducting carrier density,

q is the effective charge and m∗is the effective mass. While it was not known at

the time the theory was formulated as to what the effective mass and charge were

(they were thought to be the bare electron mass and charge, respectively), it is now

clear that due to the pairing of electrons, m∗ = 2m and q∗ = 2q. Consequently, the

density of superconducting pairs n∗s is half the density of electrons ns. As a result,

the expression for the GL penetration depth is the same as the London penetration

depth.

α = − H2
c

4πns
= − q2

mc2
H2
c (T )λ2

GL(T ) (80)

We can now try to give physical meaning to the coefficients α and β. Since H2
c

8π
= α2

2β
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and β = − α
ns

, we have

α = − H2
c

4πns
= − q2

mc2
H2
c (T )λ2

GL(T ) (81)

β =
4πq4

m2c4
H2
c (T )λ4

GL(T ). (82)

Of course, |ψ∞|2 = n∗s = mc2

4πq2λ2GL(T )
. Here, Hc(T ) and λGL(T ) are experimentally

measurable quantities. Using the empirical temperature dependence for the critical

field and the penetration depth i.e., Hc(T ) ∝ (1− ( T
Tc

)2) and 1
(λGL(T ))2

∝ (1− ( T
Tc

)4),

we obtain the temperature dependence of α and β.

α(T ) ∝
(1− ( T

Tc
)2)2

(1− ( T
Tc

)4)2
=

(1− ( T
Tc

)2

(1 + T
Tc

)2)2
w 1− T

Tc

(83)

β(T ) ∝
(1− ( T

Tc
)2)2

(1− ( T
Tc

)4)2
=

1

(1 + T
Tc

)2)2
w constant (84)

Here we have expanded in powers of 1 − T
Tc

and kept only the leading terms. In all

the above treatment, we have ignored any spatial variation of the order parameter

inside the superconductor.

7.0.17 GL equations in presence of fields currents and gradients

We have presently solved for a situation where there were no fields, currents or gra-

dients. In case these are present we need to minimize the free energy containing the

contribution of these terms,

F =

∫
fsd

3x =

∫
(fn0 + α|ψ|2 +

β

2
|ψ|4 +

1

2m∗
|(−ι~~∇− q

−→
Ac)ψ|2 +

h2

8π
)d3x (85)

This is really a free energy functional which is a scalar number but it depends on

ψ(and ψ∗and A) at all coordinate points in the system. The free energy has to be

minimized with respect to variations of ψ, ψ∗and A. This means the following.

dF =

∫
[
∂fs
∂ψ

dψ +
∂fs
∂ψ∗

dψ∗ +
∂fs
∂A

dA]d3x = 0 (86)

To evaluate the above, let us write the free energy density in an expanded form
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fs − fn0 = α|ψ|2 +
β

2
|ψ|4 +

1

2m∗
|(−ι~~∇− q

−→
Ac)ψ|2 +

h2

8π
(87)

= αψ∗ψ+
β

2
ψ2ψ∗2 +

1

2m∗
[~2|~∇ψ|2 +

q2ψ∗ψA2

c2
+
ι~qA
c

(ψ∗~∇ψ−ψ~∇ψ∗)] +
(
−→
∇ ×

−→
A )2

8π
(88)

Now we take the partial derivative with respect to ψ∗.

Note that
∫

1
2m∗

∂
∂ψ∗

[~2|
−→
∇ψ|2]dψ∗d3x can be integrated by parts (write |

−→
∇ψ|2 =

−→
∇ψ∗ ·

−→
∇ψand use

∫ −→
∇u · −→v d3x =S

∫
u−→v · dS −

∫
u
−→
∇ ·−→v d3x) to give −~

2

2m∗

∫
∇2ψ dψ∗d3x +

a surface integral (let us call this S1). Similarly

∫
1

2m∗
∂

∂ψ∗

[
q2ψ∗ψA2

c2

]
dψ∗d3x =

∫
q2ψA2

2m∗c2
dψ∗d3x (89)

and

∫
1

2m∗
∂

∂ψ∗
[
ι~qA
c

(ψ∗~∇ψ)]dψ∗d3x =

∫
ι~qA
2m∗c

(
−→
∇ψ)dψ∗d3x (90)

Further
∫

1
2m∗

∂
∂ψ∗

[ i~q
−→
A ·
c

(−ψ
−→
∇ψ∗)]dψ∗d3x can be integrated by parts. This integration

yields the above volume integral + a surface integral (let us call this S2). Combine

the two surface integrals S1 and S2, and impose the following boundary condition to

make them zero. (normal component of (−i~
−→
∇ − q

−→
A
c

)ψ on the bounding surface is

zero). Putting the integrand corresponding to ∂fs
∂ψ∗

=0, we get

αψ + β|ψ|2ψ +
1

2m∗
|(−ι~~∇− q

−→
A

c
)2|ψ = 0 (91)

This is called the first GL equation. Minimizing the energy with respect to ψ just

yields the complex conjugate of this equation. Next we need to minimize the free

energy wrt A. For this we need to consider only the terms in the free energy which

depend on A.

The variation of the above terms due to a variation δA toA is [ q
2|ψ|2A
m∗c2

+ i~q
2m∗c

(ψ∗
−→
∇ψ−

ψ
−→
∇ψ∗)]δA . Now we need to do the same for the (

−→
∇×
−→
A )2

8π
term.

(
−→
∇ × (

−−−−→
A+ δA))2 (92)
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=
−→
∇ × (

−−−−→
A+ δA) ·

−→
∇ × (

−−−−→
A+ δA) (93)

The change in energy due to variation of A (keeping only the term linear in δA)

is (
−→
∇×
−→
A )·(
−→
∇×
−→
δA)

4π
.

The two GL equations are now summarized below:

αψ + β|ψ|2ψ +
1

2m∗

(
− ι~
−→
∇ − q

−→
A

c

)2

ψ = 0 (94)

−→
J =

q|ψ|2

m∗

(
~
−→
∇ϕ− q

−→
A

c

)
(95)

The first equation is very similar to the Schroedinger equation (except for the β|ψ|2ψ

term). The non-linear term tends to favor wave functions which have small or no

spatial variations. In the case of the appearance of an interface (such as between a

superconductor and a normal metal), clearly the wave function (or the order parame-

ter) will become zero at the surface while deep inside the superconductor it will have

its maximum value.

8 Coherence length and penetration length

Consider a Superconductor semispace x > 0 and a thin film of normal metal at

−t < x < 0. It is clear that close to the Normal state boundary the concentration of

Superconducting electrons (order parameter ψ) will be a bit smaller than in the bulk

of Superconductor (|ψ| = 1). Let us find the characteristic length scale on which ψ

recovers. Since we have 1D problem, ψ = ψ(x). We choose such a calibration of A

that ψ is real. In this case the GL equation reads

−ξ2d
2ψ

dx2
− ψ + ψ3 = 0 (96)

Assuming that the order parameter changes just a little, i.e., that ψ = 1 − ε(x) we

can rewrite this equation leaving only terms linear in ε :

ξ2 d
2ε

dx2
− 2ε = 0 (97)
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The solution is

ε = ε(0)e−
√
2x
ξ (98)

ξ is a characteristic length on which the order parameter changes.

ξ is the so-called coherence length.

The quantity λ is known London penetration depth (penetration depth of magnetic

field).

now

λ2 =
m

2e2|ψ0|2µ0

=
m

e2nSµ0

(99)

Also the temperature dependencies are

λ ∝ (Tc − T )
−1
2 (100)

ξ ∝ (Tc − T )
−1
2 (101)

Using λ(T ) and ξ(T ) we introduce the Ginzburg-Landau parameter

κ =
λ

ξ
(102)

κ =
√

2
2π

ψ0

λ2Hcm (103)

Hcm is the critical magnetic field.

√
2µ0Hcm =

√
2Bc =

φ0

2πλξ
(104)

1.If λ << ξ, the magnetic field can penetrate only a small distance into the surface

region of a superconductor but not into its interior. Such a superconductor has only

one critical magnetic field and is called type-I superconductor.

If λ >> ξ, we expect that the magnetic field can penetrate deep into the interior of

a superconductor and that small normal regions of size ξ will be formed within the

superconductor while it remains in the superconducting phase. Such a superconductor

has two critical magnetic fields and is called the type-II superconductor.
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9 vortex formation in type-II superconductor

In type II superconductor, the magnetic field can penetrate into the interior of the

superconductor while it still remains to be superconducting. In this case, the mag-

netic flux passes through only the normal regions of the superconductor. The normal

regions are tube shaped and are referred to as vortices. also the magnetic flux con-

tained in each vortex is quantized. This demonstrates that superconductivity is a

macroscopic quantum phenomenon.

10 Field and order parameter variation inside a

vortex

Magnetic properties of classic Type-II superconductors As seen earlier, superconduc-

tors with κ > 1√
2

have solutions of the GL equations with non-zero order parameter

for fields less than Hc2. The Abrikosov solution has a regular array of vortices. Each

unit cell of the flux line array has total flux equal to φ0 = hc
2e

. We will now examine the

solution to the GL equation at Hc1 where the first vortex enters the superconductor.

Field and order parameter variation inside a vortex Consider a situation where the

applied field is small such that the vortex density is small. No interaction between

vortices is considered. As argued earlier, the term in a magnetic system, analogous

to the −PdV term of a hydrostatic system, is HdM . Therefore, when H is the con-

trol parameter (held constant), the relevant free energy is the Gibbs free energy. At

H = Hc1

Gs |no flux= Gs |first vortex (105)

Note that G = F - H
4π

∫
hd3r where h is the B-field at the location r. For the case of

no flux in the superconductor, Gs = Fs. The LHS of equation (1) is then Fs. Imagine

that the vortex has an extra free energy per unit length ε1. For a vortex of length L,

the energy contribution is ε1L. Therefore, RHS of equation (1) is Fs-
Hc1
4π

∫
hd3r+ε1L

Remember that h is the local B-field. Hence
∫
hd3r (which is integrated over the
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volume of the vortex) is φ0L where φ0is the flux quantum. The energy lowering by

the
∫
hd3r term is matched by the increase due to the vortex energy ε1L such that

the net change in G is zero. This leads to

Hc1 =
4πε1
φ0

(106)

Now consider the extreme Type-II limit κ� 1, i.e., λ� ξ. The core of the vortex

can be thought to have a radius ξ. Since the B-field falls over a length λ (starting

from the center of the vortex) which is much greater than ξ, over most of the vortex

the order parameter is at its full value and the superconductor can be treated as a

London superconductor.

Let ψ = ψ∞f(r)eiθ represent the vortex wave function (axial symmetry is built

into this). Now the vector potential

−→
A = A(r)θ̂ (107)

and

A(r) =
1

r

r∫
0

rh(r)dr (108)

In the London gauge
−→
∇ �
−→
A = 0. Here that is not the case since A∞ here is φ0

2πr

while in the London gauge A∞ = 0. Also, near the center of the vortex A(r) w h(0)r
2

.

This is because A(r) = 1
r

r∫
0

r h(r) dr = 1
r
r2

2
h(0). Now substitute ψ = ψ∞f(r)eiθin the

first GL equation given below

αψ + β|ψ|2ψ +
1

2m∗
|
(
− ι~
−→
∇ − q

−→
A

c

)2

|ψ = 0 (109)

Writing the gradient in cylindrical coordinates and then simplifying one gets

f − f 3 − ξ2

[(
1

r
− 2πA

φ0

)2

f − 1

r

d

dr

(
r
df

dr

)]
= 0 (110)

Similarly, write the equation for the current density
−→
J = c

4π

−→
∇ ×

−→
h .

We need simultaneous solutions to the two GL equations. This requires numerical

methods for a general case. Consider the limiting situation r → 0 i.e., near the center
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of the vortex. Here A(r) = h(0)r
2

. Substitute this in the first GL equation obtained

above. Further, assume a power law solution f = crn where n is positive. For small r,

the leading term will be −ξ2crn−2(1−n2). this should go to zero for small r. Therefore

n = 1 and f varies linearly near the center of the vortex. To determine higher order

corrections, consider that f has terms quadratic and cubic in r in addition to the

linear one. This leads to

f ≈ crbigg[1− r2

8ξ2

(
1 +

h(0)

Hc2

)]
(111)

where c is a normalization constant. This shows that the rise of f(r) begins to

saturate at r ≈ 2ξ. The approximate general solution is f ≈ tanh νr
ξ

where ν is a

constant of order 1.

11 BEC and symmetries

11.1 Bose-Einstein condensation

From thermodynamics we know that, within a gas, all the particles behave in the

same manner and in principle they can occupy certain quantum states, that is certain

energy states. If these particles are fermions, two or more of them cannot occupy the

same quantum state as they obey the Pauli exclusion principle. However, if they are

bosons, any number of them can occupy the same quantum state. When we put these

particles in a given configuration, they will get distributed in the energy levels of such

a configuration, with an increasing occupation of the states of minimum energy as

we lower the temperature. For a collection of bosons, and in the limit where the

temperature goes to zero, all the particles are going to occupy the ground state of the

system. Therefore, for a sufficiently low temperature, the majority of the particles

are in the same quantum state, and have the same velocity. In this way, the collection

of bosons behaves like a macroscopic fluid with new properties, such as superfluidity.

In order to study these properties, it is only necessary to concentrate on the ground

state. The state of the particles in a certain level is described by a normalized function,

43



which is an eigenvector of the Hamiltonian associated to the physical situation under

consideration, and whose eigenvalue corresponds to the energy of that level. Thus,

we have to find the eigenvectors with minimum eigenvalue for the Hamiltonian that

describes our system. This Hamiltonian includes all the interactions between every

pair of particles. In order to simplify the problem, we make use of the mean-field

approximation, which means that the action felt by a given particle due to the rest

is substituted by the mean action of the fluid over the particle. This approximation

is good if one can neglect the correlations in the gas, that is, if the gas is diluted,

which is the case for the condensates obtained experimentally. In this way, we have

changed a complex model for the interaction among bosons by a very simplified one

that is valid for diluted gases. The interactions between bosons are not necessary for

condensation to take place; however, they play a very important role in the properties

of the condensate as we will see later on. In this sense, using the usual Schrodinger

equation is not enough; instead we require the use of the Gross-Pitaevskii equation

(GPE).

11.2 The two fluid model for BECs

When helium gas (isotope 4He) is cooled down, it is possible to observe a transition

into a liquid phase at a temperature of 4.2 K and at a pressure of 1 atmosphere. If we

continue cooling down the system well under 2.17 K, this liquid phase acquires highly

unusual properties: it becomes a superfluid. Superfluidity is manifested, among other

effects, by the lack of viscosity; in other words, the liquid flows without friction. Thus,

if we launch some of this superfluid helium into a ring-shaped channel for example, it

will not stop. If we try to move an object up to a certain velocity across the surface

of the liquid, it will not experience any resistance. Another interesting feature of the

system is the creation of vortices, which can be seen as small twisters inside the liquid,

that behave quite differently from the ones observed in water for example. These

vortices have certain quantisation properties (the velocity of the liquid cannot take

any arbitrary value). These properties, observed in liquid helium 4He in 1937, were

also seen in helium 3He at a lower temperature and more recently in Bose-Einstein

44



condensates. As discussed above, a BEC is a particular state of matter achieved

at ultra cold temperatures. These phenomena are the macroscopic manifestation of

quantum effects. In the 1950s, Landau and Ginzburg proposed to model the electrons

that give rise to superconductivity as a superfluid with the aid of an equation of the

simplified form

i~
∂u

∂t
= −~2

2
∇2u+ gu(|u|2 − 1), (112)

in the frame of a two-fluid model, where |u|2 represents the superfluid density,

which flows without friction, whereas the rest of the matter is supposed to be in a

normal fluid state, and g is a proportionality constant with dimensions of energy. This

equation renders satisfactory predictions, but its usage is limited due to the fact that

the interactions in a liquid such as helium are fairly strong. However, the Landau-

Ginzburg model is a particular case of an equation that emerges quite naturally when

we study the behavior of Bose-Einstein condensates up to a first order approximation.

This equation is known as the Gross-Pitaevskii equation (GPE).

i~
∂ψ

∂t
=

(
− ~2

2m
∇2 + Vext + g|ψ|2

)
ψ, (113)

where m is the mass of the atoms of the condensate, |ψ|2 is the atomic density,

Vext represents an external potential and g is a parameter that measures the atomic

interactions. The GPE has the same mathematical form as the nonlinear Schrodinger

equation (NLSE), which is basically the Schrodinger equation

i~
∂ψ

∂t
=

(
− ~2

2m
∇2 + Vext

)
ψ, (114)

plus a nonlinear term that in this case takes into account the interaction between the

particles. In the case of Bose-Einstein condensates, the interactions are so weak that

the predictions made with this equation are very good.

11.3 The Gross-Pitaevskii equation

Bose-Einstein condensate is obtained from a collection of bosons in the ground state

at very low temperatures. We can therefore ask about the energy of the ground state
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and use this to provide us with information about the system as we can indeed do

for any other gas. The general Hamiltonian that describes the system is given by

Ĥ =
N∑
i=1

(
p2
i

2m
+ Vext(ri)

)
+

1

2

N∑
i=1

N∑
j 6=i

V (|ri − rj|) , (115)

where the first term on the right-hand-side is the kinetic energy of the i-th particle, the

following term represents the external effects introduced by the external potential Vext,

and the final term represents the interactions between the N particles. The ground

state corresponds to the minimum energy and thus we can find it by minimizing it.

Now we need to minimize the free energy F = E − µN , where E is the energy and

’µ’ is the chemical potential. Given a Hamiltonian Ĥ and a wave function ψ, we can

obtain the energy as follows:

E(ψ) =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

, (116)

and as such we can use this expression to minimize the free energy F. In the condensate

we have N particles and we can thus associate a wave function ψi to every one of them.

However, in order to capture the essential aspects of the problem we make a mean-

field approximation. This means that for one particle, all the rest have the same

status as they all are in the same independent state |ψ〉 and thus we can drop the

labeling of the wave functions. In this way we need to minimize the free energy over

a space of functions of the type |Ψ〉 = |ψ〉 ⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉, where ⊗ represents the

tensor product and thus |Ψ〉 is the N-particle tensor product wave function; we are

considering the following normalization 〈Ψ|Ψ〉 = 1. This approximation is valid if the

condensate is not very dense; otherwise, the interactions with the closer neighbors

would be much stronger than with the particles that are farther apart. Our problem

is thus reduced to minimizing F (Ψ) = 〈Ψ|Ĥ|Ψ〉 − µ〈Ψ|Ψ〉. Let us now compute each

of the terms involved in this calculation. For the kinetic energy term, we have that

〈Ψ|
N∑
i=1

p2

2m
|Ψ〉 =

N∑
i=1

~2

2m

∫
∇ψ∗(ri)∇ψ(ri)dri,

= N
~2

2m

∫
|∇ψ(r)|2dr,

= −N ~2

2m

∫
ψ∗(r)∇2ψ(r)dr, (117)
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where as stated above |Ψ〉 is the N-particle tensor product wave function and ψ(r) is

the single particle wave function. The potential term can readily be written as

〈Ψ|
N∑
i=1

Vext(ri)|Ψ〉 = N

∫
ψ∗(r)Vextψ(r)dr. (118)

For the interaction term we have

〈Ψ|1
2

N∑
i=1

N∑
j 6=i

V (|ri − rj|) |Ψ〉

=
1

2

N∑
i=1

N∑
j 6=i

∫
dri

∫
ψ∗(ri)ψ

∗(rj)V (|ri − rj|)ψ(ri)ψ(rj)drj,

=
N(N − 1)

2

∫
dr

∫
ψ∗(r)ψ(r′)V (|r− r′|)ψ(r)ψ(r′)dr′. (119)

where we have written the expression in order to facilitate the rest of our calculations.

Given the expressions above, we now need to minimize them. We will consider a small

variation in the wave function ψ(r),its real and imaginary parts, we take ψ and ψ∗ as

independent variables.

δ

δψ∗
〈Ψ|1

2

N∑
i=1

N∑
j 6=i

V (|ri − rj|) |Ψ〉

= N(N − 1)

∫
δψ∗(r)

(∫
|ψ(r)|2V (|r− r′|)dr′

)
ψ(r)dr. (120)

Similarly, for the chemical potential we have

δ〈Ψ|Ψ〉
δψ∗

= N

(∫
ψ∗(r)ψ(r)dr

)N−1 ∫
δψ∗(r)ψ(r)dr

= N

∫
δψ∗(r)ψ(r)dr. (121)

Putting together all the different terms for the free energy F , we have that the

variation is given by:

δF

δψ∗
= 0 = N

∫ [
− ~2

2m
∇2ψ(r) + Vext(r)ψ(r)

+(N − 1)

(∫
|ψ(r)|2V (|r− r′|)dr′

)
ψ(r)− µψ(r)

]
δψ∗(r)dr, (122)

and therefore the quantity inside the square brackets in the above expression must

vanish. It is quite common to choose an interaction potential such that V (|r− r′|) =
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4π~2
m
aδ(r − r′) where a is the s-wave scattering length and using the approximation

that N − 1 ' N we end up with

− ~2

2m
∇2ψ(r) + Vext(r)ψ(r) +N

4π~2

m
a|ψ(r)|2ψ(r) = µψ(r), (123)

which is the time-independent Gross-Pitaevskii equation. The scattering length a

measures the intensity of the interactions between the bosons. Its sign indicates

whether the interactions are attractive (a < 0) or repulsive (a > 0); we will later

discuss the importance of this distinction. In this way, we have to do minimization

of the free energy F = E − µN .

11.4 superfluidity and symmetries

1. U(1) symmetry: Lagrangian of our model will be invariant under this symmetry.

And the spontaneous breaking of this symmetry will be a necessary condition for

superfluidity.

2. Conserved charge: A conserved charge is a consequence of the U(1) symmetry

by the Noether’s theorem. This is essential for all superfluids because this charge is

transported by a superflow.

3.Bose- Einstein condensation: Bose-Einstein condensation is another way of say-

ing that the U(1) symmetry is broken.

4.Spontaneous symmetry breaking: the Bose Einstein Condensate is the ground state

in a superfluid. This ground state is not invariant with respect to transformations of

the original symmetry of the Lagrangian of the system. This is called spontaneous

symmetry breaking.

5. Goldstone mode:If the spontaneously broken symmetry is global, a massless mode

arises for all the temperatures below the critical temperature.
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6. Symmetry restoration and critical temperature: All the superfluids that I am going

to discuss are at very small temperatures. There is a critical temperature at which

the ground state becomes symmetric under the full symmetry of the Lagrangian.

11.5 Lagrangian and conserved charge

We start from the following Lagrangian L for a complex scalar field φ(X) depending

on space-time, X = (x0,x),

L = ∂µϕ
∗∂µϕ−m2|ϕ|2 − λ|ϕ|4 (124)

The Lagrangian describes spin-0 bosons with mass m which interact repulsively with

each other with a coupling constant λ > 0 We first observe that L is invariant under

U(1) rotations of the field,

ϕ = e−iαϕ (125)

Since α is constant one talks about a global transformation or a global symmetry, as

opposed to a local symmetry where α would be allowed to depend on space-time.

In order to account for Bose-Einstein condensation, we need to separate the conden-

sate from the fluctuations. This is done by writing

ϕ(X)→ φ(X) + ϕ(X) (126)

where φ(X) is the condensate and ϕ(X) are the fluctuations. The point of this

decomposition is that the fluctuations are a dynamical field.

Condensate describes a macroscopic occupation of the bosons in the ground state

of the system, usually the zero-momentum state. Analogously, in field theory, we

may Fourier decompose the field and separate the state with zero four-momentum

K = (k0; k). More generally, if we want to allow for a nonzero superfluid velocity vs,

condensation takes place in a state with nonzero four-momentum, say P. Therefore,

a uniform condensate that moves with a constant velocity determined by P can be

written as φ(X) = ϕ(P )e−iPX . At this point, however, we do not need to make any

assumption for φ(X), although later we shall mostly talk about a uniform condensate,

49



or, even simpler, about a condensate at rest, P = 0. We write the complex condensate

in terms of its modulus ρ and its phase φ,

φ(X) =
ρ(X)√

2
eiψX (127)

The fluctuations ϕ(X) will later be needed to compute the dispersion of the Goldstone

mode. As a first step, we neglect the fluctuations. In this case, the Lagrangian only

depends on the classical field,

L = L(0) + fluctuations (128)

where

L =
1

2
∂µρ∂

µρ+
ρ2

2
(∂µψ∂

µψ −m2)− λ

4
ρ4 (129)

Next we write down the equations of motion for ρ and ψ. Notice that the phase ψ

only appears through its space-time derivative, and thus the Euler-Lagrange equations

are

0 =
∂L
∂ρ
− ∂µ

∂L
∂(∂µρ)

(130)

0 = ∂µ
∂L

∂(∂µψ)
(131)

From this general form, we compute

∂µ(ρ2∂µψ) = 0 (132)

where we have abbreviated

σ =
√
∂µψ∂µψ (133)

11.6 Spontaneous symmetry breaking

Let us now for simplicity assume that ρ and ∂µψ are constant in space and time. As a

consequence, the current and the stress-energy tensor also become constant, and the

equations ∂µj
mu = ∂µT

µν = 0 are trivially fulfilled. Therefore, with this assumption

we will not be able to discuss complicated hydrodynamics, but we shall be able to
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discuss the basic concepts of spontaneous symmetry breaking and the physics of a

uniform superflow. In this case, the Lagrangian becomes

L(0) = −U (134)

U = −ρ
2

2
(σ2 −m2) +

λ

4
ρ4 (135)

where U is called tree-level potential. This equation is equivalent to finding ex-

tremal points of U with respect to ρ

0 =
∂U

∂ρ
= ρ(ρ2 −m2 − λρ2) (136)

which has the solutions

ρ = 0; ρ2 =
σ2 −m2

λ
(137)

We need σ2 > m2 for the nontrivial solution to exist. In order to understand this

condition, remember that relativistic Bose- Einstein condensation occurs when the

chemical potential is larger than the mass. Let us try to understand how this comes

about. Usually, a chemical potential µ is introduced viaH−µN with the Hamiltonian

H and the conserved charge density N = j0. This is equivalent to adding the chemical

potential to the Lagrangian as if it were the temporal component of a gauge field,

L = |(∂0 − iµ)ϕ|2 − |∇ϕ|2 −m2|ϕ|2 − λ|ϕ|4 (138)

One can show that this modified Lagrangian with kinetic term |(∂0 − iµ)ϕ|2 and

a condensate with a trivial phase, ψ = 0, is identical to the original Lagrangian

with kinetic term ∂µϕ∂
µϕ∗ and a condensate with a time-dependent phase ψ = µt.

We conclude that it does not matter whether we put the chemical potential directly

into the Lagrangian or whether we introduce it through the phase of the condensate.

Consequently, µ = ∂0ψ is the chemical potential associated with the conserved charge.

However, this is not exactly what we were expecting. We had conjectured that σ =√
∂µψ∂µψ plays the role of a chemical potential. This is only identical to ∂0ψ if we

set ∇ψ = 0. We shall discuss the case of a nonzero ∇ψ below and find that σ is

the chemical potential in the rest frame of the superfluid, while ∂0ψ is the chemical

potential in the frame where the superfluid moves with a velocity determined by ∇ψ.
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Here, we first discuss the simpler case ∇ψ = 0 where indeed µ = σ = ∂0ψ. For

chemical potentials |µ| < m, the minimum is at φ = 0, i.e., there is no condensation.

For condensation, one needs a negative coefficient in front of the φ2 term, i.e., the

modulus of the chemical potential must be larger than the mass. In this case, the

potential has a ’Mexican hat’ or ’bottom of a wine bottle’ shape. (Since we consider a

repulsive interaction for which λ > 0 the potential is bounded from below, otherwise

the system would be unstable.) The U(1) symmetry of the Lagrangian is reflected in

the rotationally symmetric wine bottle potential. The nontrivial minimum, at a given

angle ψ of the condensate, is not invariant under U(1) because a U(1) transformation

rotates the condensate along the bottom of the wine bottle. This mechanism, where

the Lagrangian has a symmetry which is not respected by the ground state, is called

spontaneous symmetry breaking. The object that breaks the symmetry and which is

zero in the symmetric phase, here, the condensate φ, is called the order parameter.
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12 Solutions of GL equation

12.1 Simplest solution for vortex

We begin with writing a simple second order equation of the form

−d
2f

dx2
+ αf + βf 3 = 0 (139)

We put such a function in this equation which is a simple solution such as the tan

hyperbolic function. Here we are considering the tan hyperbolic function because it

has the following identity, which will help us to solve this equation easily

d2

dx2
tanhx = 2 tanh3 x− 2 tanhx (140)

d2f

dx2
= a′b′[1− tanh2 b] + a′′ tanh b+ a′b′[1− tanh2 b] + ab′′(1− tanh2 b)

+ab′2(−2 tanh b)(1− tanh2 b)− ~2

2m
[2a′b′(1− tanh2 b)

+a′′ tanh b+ ab′′(1− tanh2 b)− 2ab′2(tanh b− tanh3 b)] + αa tanh b

+βa3b (141)

− ~2

2m
(2a′b′ + ab′′) = 0 (142)

2a′b′ + ab′′ = 0 (143)

− ~2

2m
(2ab′2) + βa3 = 0 (144)

Let us take

β =
~2

2m
β̃ (145)

−2ab′2 + β̃a2 = 0 (146)

b′2 =
β̃a2

2
(147)
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b′ =

√
β̃

2
a (148)

db

dx
=

√
β̃

2
a (149)

b =

√
β̃

2
dx+ c (150)

where c is a constant.

b′′ =

√
β̃

2
a′ (151)

2a′

√
β̃

2
a+ a

√
β̃

2
a′ = 0 (152)

3

√
β̃

2
a′a = 0 (153)

a′a = 0 (154)

a(x)
da

dx
= 0 (155)

So, either a(x)=0 or da
dx

= 0. This implies that a is a constant.

2a
β̃

2
a2 + α̃a = 0 (156)

a2 = − α̃
β̃

(157)

a = i

√
α̃

β̃
= i

√
α

β
(158)

b =
a

~
√
mβx+ c (159)

− ~2

2m

d2

dx2
[a tanh b(x) + αa tanh b(x) + βa2 tanh3 b(x)] = 0 (160)

− ~2

2m

d

dx
[1− tanh2 b(x)]b′ + α tanh b(x) + βa2 tanh3 b(x) = 0 (161)

− ~2

2m
[−2 tanh b(1− tanh2 b)b′2 + (1− tanh2 b)b′′] + α tanh b+ βa2 tanh3 b = 0 (162)
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− ~2

2m
[−2(1− tanh2 b)

β̃

2
a2] + α + βa2 tanh3 b = 0 (163)

a2 = − α̃
β̃

(164)

Thus we get a simple solution of the GL equation of the form of a tan hyperbolic

function, with a being a function of x and b being a constant.

12.2 Tan hyperbolic solution of the GL equation in a non-

zero magnetic field

ψ = a tanh b (165)

− ~2

2m
∇2ψ +

q2A2

2m
ψ + αψ + ψψ2 = 0 (166)

∂ψ

∂r
= a′ tanh b+ rab′2b (167)

~2

2m

[(
a′

r
+ a′′ − 2ab′

)
tanh b+

(
2a′b′ +

ab′

r
+ ab′′

)
(1− tanh2 b) + 2ab′2 tanh3 b]+

q2k2r2

2m
a tanh b+ αa tanh b+ βa3 tanh3 b = 0

Coefficient of (1− tanh2 b):

2a′b′ +
ab′

r
+ ab′′ = 0 (168)

Coefficient of tanh b:

− ~2

2m

[(
a′

r
+ a′′ − 2ab′

)]
+
q2k2r2a

2m
+ αa = 0 (169)

Coefficient of tanh3 b:

− ~2

2m
(2ab′)2 + βa3 tanh3 b = 0 (170)

~2

m
b′2 = βa2 (171)

b′2 =
mβ

~2
a2 (172)

b′ =
mβ

~
a (173)
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b′′ =
mβ

~
a′ (174)

b =
mβ

~

∫
adr (175)

2a′
mβ

~
a2 +

amβa2

~r
+
aβm

~
.2aa′ = 0 (176)

2a′ +
a

r
+ 2a′ = 0 (177)

4a′ +
a

r
= 0 (178)

4a′ = −a
r

(179)

4
da

dr
= −a

r
(180)

4
da

a
= −dr

r
(181)

4 ln a = − ln r + constant (182)

ln a4 = ln(kr)−1 (183)

a4 =
1

kr
(184)

a =
1

(kr)
1
4

(185)

a2 =
1√
kr

(186)

b′ = β
1√
kr

m

~2
(187)

db

dr
=

βm√
kr~2

(188)

b =
βm√
k~2

∫
dr√
r

(189)

b =
2βm

~2

√
r

k
+ constant (190)

a′ =

(
−1

4

)(
−5

4

)
1

k
1
4

r
9
4 (191)

Solving we finally get

α̃′r
3
2 + α̃′′r4 + α̃r2 = constant (192)

where α̃ = 2mα.
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12.3 Equations in the presence of magnetic field

Now let us see what happens when a magnetic field is applied to the lattice.The

vortices have a cylindrical symmetry. We need to choose a magnetic field which

satisfies the following two conditions.

Condition 1: It should satisfy the symmetry requirement.

A = f(r)φ̂ (193)

Condition 2: It should be equal to the curl of a physically acceptable vector potential.

B = ∇× ~A (194)

∇× ~A =

(
1

r

∂Az
∂φ
− ∂Aφ

∂z

)
êr +

(
∂Ar
∂z
− ∂Az

∂r

)
êφ +

(
1

r

∂

∂r
(rAφ)− 1

r

∂Ar
∂φ

)
êz (195)

~B = −∂f(r)

∂z
êr +

(
1

r

∂

∂r
(rf(r)

)
êz (196)

Br = −∂f(r)

∂z
= 0 (197)

Bz =
1

r
[f(r) + rf ′(r)] (198)

Bz =
f(r)

r
+ f ′(r) (199)

Bz =
f(r)

r
+
∂f(r)

∂r
(200)

if Bz was zero
∂f(r)

f(r)
= −∂r

r
(201)

ln f(r) = − ln r + k (202)

where k is a constant.

ln f(r) = ln
k

r
(203)

f(r) =
k

r
(204)
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But this gives

Bz =
k

r2
− k

r2
= 0 (205)

This is a valid case, but we need a non-zero magnetic field. So, let us take some other

function. If ~A = krφ̂

∇× ~A =
1

r

∂

∂r
(kr2)êz = 2kêz (206)

~B = 2kêz (207)

So, at last we have determined the value of f(r) i.e. f(r) = kr

12.4 Solution of GL equation by the method of separation of

variables

Let us start with writing the simplest form of the Ginzburg-Landau equation i.e.

− ~2

2m
∇2ψ + αψ + βψ3 = 0 (208)

For simplicity let us assume that the value of α is so small that it can be neglected.

We take α = 0

− ~2

2m
∇2ψ + βψ3 = 0 (209)

Let us assume that ψ depends upon the radial distance r and the angle φ.

So we write ψ = R(r)Φ(φ)

∇2ψ =
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂φ2
(210)

∇2ψ =
1

r

∂

∂r

(
r
∂

∂r
(RΦ)

)
+

1

r2

∂2

∂φ2
(RΦ) (211)

Let us substitute the value of ψ in the GL equation

− ~2

2m

[
Φ

1

r

(
∂R

∂r
+ r

∂2R

∂r2

)
+
R

r2

∂2Φ

∂φ2

]
+ βR3Φ3 = 0 (212)

Divide this equation by RΦ

− ~2

2m

[
1

rR

(
∂R

∂r
+ r

∂2R

∂r2

)
+

1

Φr2

∂2Φ

∂φ2

]
+ βR2Φ2 = 0 (213)
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− ~2

2m

[
1

rR

(
∂R

r
+ r

∂2R

r2

)]
+ βR2Φ2 = 0 (214)

Assuming Φ is a constant

− ~2

2m

[
1

rR3

(
R

∂r
+ r

∂2R

∂r2

)]
= −βΦ2 = −k (215)

Φ2 = −k
β

(216)

This implies

Φ = ±

√
k

β
(217)

and it is a constant.

1

rR3

(
∂R

∂r
+ r

∂2R

∂r2

)
=

2mk

~2
= p (218)

1

rR3

∂R

∂r
+

1

R3

∂2R

∂r2
= p (219)

∂2R

∂r2
+

1

r

∂R

∂r
− pR3 = 0 (220)

Solving this differential equation we get

R =
i
√

2√
k
4
r2 + c0r + c1

(221)

Where c0 and c1 are constants.

12.5 Cylindrically symmetric solution of the GL equation

The GL equation is

− ~2

2m
∇2ψ + αψ + βψ3 = 0 (222)

Let α = 0

So, the equation now becomes

− ~2

2m
∇2ψ + βψ3 = 0 (223)
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− ~2

2m

1

r

∂

∂r

(
r
∂R

r

)
+ βR3 = 0 (224)

~2

2m

1

r

∂

∂r

(
r
∂R

r

)
= βR3 (225)

1

rR3

∂

∂r

(
r
∂R

∂r

)
=
β2m

~2
= p (226)

1

rR3

∂

∂r

(
r
∂R

∂r

)
= p (227)

∂R

∂r
+ r

∂2R

∂r2
= prR3 (228)

r
dR

dr
=
dR

dρ
(229)

dR

dr
+ r

d2R

dr2
=

d2R

drdρ
(230)

d2R

dρ2
=
dr

dρ

dR

dr
+ r

d2R

dρdr
(231)

d2R

dρ2
= r

dR

dr
+ r2d

2R

dr2
(232)

1

r2

d2R

dρ2
− 1

r

dR

dr
=
d2R

dρ2
(233)

1

r2

d2R

dρ2
− 1

r

dR

dr
+

1

r

dR

dr
= pR3 (234)

where p is a constant.

exp−2ρ d
2R

dρ2
= pR3 (235)∫

d2R

R3
= p

∫
dρ2

exp−2ρ
(236)

d2R

dr2
= − exp−ρ

dR

dρ

dρ

dr
+ exp−ρ

d2R

drdρ
(237)

d2R

dr2
= − exp−ρ

dR

rdρ

dρ

dρ
+ exp−ρ

d2R

rdρdρ
(238)

d2R

dr2
= −exp−ρ

ρ

dR

dρ
+

exp−ρ

ρ

d2R

dρ2
(239)

d2R

dr2
= − exp−2ρ dR

dρ
+ exp−2ρ d

2R

dρ2
(240)

exp−2ρ d
2R

dρ2
= pR3 (241)
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d2R

R3
= p

d2ρ

exp−2ρ
(242)

exp−2ρ d

dρ

(
dR

dρ

)
= pR3 (243)∫

d

(
dR

dρ

)
=

∫
p exp2ρR3dρ+ c0 (244)

dR

dρ
=
p′R3

2
exp2ρ (245)∫

dR

R3
=

∫
p′

2
exp2ρ dρ (246)

1

R2
= −p

′

2
exp2ρ−constant (247)

R = ι

√
2

p′′
exp−ρ = p′′′ exp−ρ (248)

or we can also write

R = k exp−ρ (249)

where k is a constant i.e. equal to p′′′

12.6 Solution of the GL equation in Cartesian coordinates

we know from the preceding section that the solution of the GL equation in cylindrical

coordinates is written as

R = k exp−ρ (250)

where ρ = ln r.

− ~2

2m

[
1

r

∂

∂r

(
r
∂

∂r

(
k

r

))]
+ β

k3

r3
= 0 (251)

− ~2

2m

[
1

r

k

r2

]
+ β

k3

r3
= 0 (252)

This equation will be satisfied if β = ~2
2mk2

.

Now let us suppose that there is a system of two vortices, where one of the vortices

is at the origin and one is at a distance ’a’ on the x-axis.

Let us write the wave functions of the two vortices in Cartesian coordinates and see

whether they satisfy the GL equation individually.

ψ1 =
k√

x2 + y2
;ψ1 =

k√
(x− a)2 + y2

(253)
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Let us first solve for ψ1.

− ~2

2m
∇2

[
k√

x2 + y2

]
+ β

[
k√

x2 + y2

]3

= 0 (254)

− ~2

2m

[
∂2

∂x2
+

∂2

∂y2

][
k√

x2 + y2

]
+ β

k3

(x2 + y2)
3
2

= 0 (255)

−~2k

2m

[
∂

∂x

(
−1

2

2x

(x2 + y2)
3
2

)
+

∂

∂y

(
−1

2

2y

(x2 + y2)
3
2

)]
+ β

k3

(x2 + y2)
3
2

= 0 (256)

~2k

2m

[
1

(x2 + y2)
3
2

− 3x2

(x2 + y2)
5
2

+
1

(x2 + y2)
3
2

− 3y2

(x2 + y2)
5
2

]
+ β

k3

(x2 + y2)
3
2

= 0 (257)

~2k

2m

[
2

(x2 + y2)
3
2

− 3(x2 + y2)

(x2 + y2)
5
2

]
+

~2

2mk2

[
k3

(x2 + y2)
3
2

]
= 0 (258)

−~2k

2m

[
1

(x2 + y2)
3
2

]
+

~2k

2m

[
1

(x2 + y2)
3
2

]
= 0 (259)

the equation is completely satisfied.Hence ψ1 is an exact solution of the GL equation.

Now we shall solve the GL equation for ψ2.

− ~2

2m
∇2

[
k√

(x− a)2 + y2

]
+ β

[
k√

(x− a)2 + y2

]3

= 0 (260)

− ~2

2m

[
∂2

∂x2
+

∂2

∂y2

][
k√

(x− a)2 + y2

]
+ β

k3

((x− a)2 + y2)
3
2

= 0 (261)

− ~2k

2m

[
∂

∂x

(
−1

2

2(x− a)

((x− a)2 + y2)
3
2

)
+

∂

∂y

(
−1

2

2y

((x− a)2 + y2)
3
2

)]
+ β

k3

((x− a)2 + y2)
3
2

= 0 (262)

~2k

2m

[
1

((x− a)2 + y2)
3
2

− 3(x− a)2

((x− a)2 + y2)
5
2

+
1

((x− a)2 + y2)
3
2

− 3y2

((x− a)2 + y2)
5
2

]
+ β

k3

((x− a)2 + y2)
3
2

= 0 (263)

~2k

2m

[
2

((x− a)2 + y2)
3
2

− 3((x− a)2 + y2)

((x− a)2 + y2)
5
2

]
+

~2

2mk2

[
k3

(x− a)2 + y2)
3
2

]
= 0 (264)

−~2k

2m

[
1

((x− a)2 + y2)
3
2

]
+

~2k

2m

[
1

((x− a)2 + y2)
3
2

]
= 0 (265)
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Thus ψ2 is also an exact solution of the GL equation.

Now we put ψ1 + ψ2 in the GL equation,

we can write

ψ =
k√

x2 + y2
+

k√
(x− a)2 + y2

(266)

∇2ψ =

(
2

∂x2
+

2

∂y2

)[
k√

x2 + y2
+

k√
(x− a)2 + y2

]
(267)

= k
∂

∂x

(
− x

(x2 + y2)
3
2

(x− a)

((x− a)2 + y2)
3
2

)
+ k

∂

∂y

(
− y

(x2 + y2)
3
2

y

((x− a)2 + y2)
3
2

)
(268)

= −k
(

2

(x2 + y2)
3
2

− 3

(x2 + y2)
3
2

+
2

((x− a)2 + y2)
3
2

− 3

((x− a)2 + y2)
3
2

)
(269)

= k

(
1

(x2 + y2)
3
2

+
1

((x− a)2 + y2)
3
2

)
(270)

Now the GL equation becomes

= −~2k

2m

[
1

(x2 + y2)
3
2

+
1

((x− a)2 + y2)
3
2

]
+ β

[
k√

x2 + y2
+

k√
(x− a)2 + y2

]3

= 0

(271)

ERROR:

~2

2m

3√
x2 + y2

√
(x− a)2 + y2

[
k√

x2 + y2
+

k√
(x− a)2 + y2

]
(272)

Now let us integrate this error with respect x.

By doing so we get a function of the form(
4
√
−1

(
−
√

2y + ιa log

(
(2(−1)

3
4y(a2 + ιay − ax+ y2 + ιyx)√
a
√

2y − ιa(y − ιx))
−2ιy

√
a2 − 2ax+ y2 + x2

x+ ιm

)
+ ι
√

2y − ιa log

(
2ιy
√
a2 − 2ax+ y2 + x2

x− ιy
− 2 4
√
−1y(a2 − a(x− ιy) + y(y + ιx))√

a
√

2y − ιa(y + ιx)

)

+
√

2y + ιa log

(2m

(
−

4√−1(ax+y2+ιyx))√
a
√

2y−ιa − ι
√
m2 + x2

)
a− ιy − x

)

− ι
√

2y − ιa log

2y

(
4√−1(ιax+ιy2+yx))√

a
√

2y−ιa + ι
√
y2 + x2

)
a− ιy − x

− 2
√
ay
√

2y − ιa
√

2y + ιa

(273)
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~2

2m

3√
x2 + y2

√
(x− a)2 + y2

[
k√

x2 + y2
+

k√
(x− a)2 + y2

]
(274)

for the following equation I have plotted graphs taking a = 5 and 3~2k
2m

= c = 1 and

varying the value of y from 0 to 1 in steps of 0.1.

As we can see the error difference is maximum when we are taking the measurements

Figure 12: at y=0

on the line joining the two vortices As we move away from the vortices the sharpness

Figure 13: y=0.1

of the peak increases and the graph becomes a continuous function.
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Figure 14: y=0.2

Figure 15: y=0.3

13 Why vortices are in hexagonal pattern?

Suppose there are nv vortex lines per unit area of the bucket all having their cores

parallel to the axis of rotation.

each one possesses the same circulation κ. The strength of the array is specified by

the vorticity ~ω, defined to be equal to the total circulation within the unit area

~ω = nv~κ (275)
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Figure 16: y=0.4

Figure 17: y=0.5

we know that

~κ =

∮
L2

~vs.~dl =

∮
A

(~∇× ~vs).d ~A (276)

when (∇ × ~vs) is finite, it signifies the presence of vortices. In a bucket, the total

circulation enclosed by a contour of radius R centered on the axis is πnvR
2κ.

For the superfluid to appear to rotate with uniform angular velocity ~Ω. The total

circulation must be equal to 2πR(RΩ).
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Figure 18: y=0.6

Figure 19: y=0.7

Comparing the two formulae

πNvR
2κ = 2πR(RΩ) (277)

The vortex line density is given by

nv =
2Ω

κ
(278)

~ω = nv~κ (279)

So, the vorticity ~ω = 2~Ω.

for the superfluid rotating with velocity of the container, ~Ω. The condition for equi-
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Figure 20: y=0.8

Figure 21: y=0.9

librium is that the quantity

F ′ = F − ~L.~Ω (280)

should be minimum. F is the free energy of the rotating fluid. ~L is the total angular

momentum.

ASSUMPTION: The liquid is at a temperature that is low enough so that ρs ≈ ρ.

If the radius of the container is R0, the total number of vortex lines with circulation

~κ is

N =
2πR2

0Ω

κ
(281)
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Figure 22: y=1

To minimize F ′, we need to consider those contributions which depend upon N and

κ as F ′ depends upon Ω.

since the vortices have the same circulation, each one will have energy εv i.e.

εv =
ρsκ

2

4π
ln

b

a0

(282)

and the same angular momentum ~lv whose direction is parallel to ~Ω. Thus we need

to minimize the following

F ′′ = N(εv − ln Ω) (283)

The angular momentum of each vortex is given by

~lv =
ρsκ

8πΩ
~κ. (284)

This is additional to the angular momentum possessed by fluid by virtue of its rigid

body rotation.

F ′′ =
1

2
ρsR

2
0Ωκ

[
ln

(
b

a0

)
− 1

2

]
(285)

For fixed Ω, κ must take minimum value. So, the ground state of rotating He II

contains a regular array of vortex lines all having the smallest possible value of cir-

culation, which means the total number lines is a maximum.

Now consider different types of 2-D arrays
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1. Square

2. Hexagonal

Let us find out that out of which of the above cases, the lines are closer

CASE 1. :Square

area = a2

number of lines = 4

nv = 1
a2

CASE 2. :Hexagonal

area = 6x1
6
× a× a sin 600

3
√

3
2
a2

number of lines = 3

nv = 3×2
3
√

3a2

= 2√
3a2

= 1.1547
a2

So, from these calculations it is clear that density in case of hexagonal packing is

preferred.

Figure 23: density in case of hexagonal packing is preferred
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14 Conclusion

The Ginzburg Landau equation can be used to study the dynamics of superfluids

apart from the superconductors. Some of the simplest solutions of GL equations

for superfluids consist of the tan hyperbolic function. Also we can use different

methods to find the solution for this kind of differential equation such as the method

of separation of variables. By finding the cylindrically symmetric solutions for this

equation something can be physically concluded about the geometry of the vortices

in superfluids.There must be a specific reason as to why the vortices always appear

to be formed in a hexagonal pattern rather than square or any other. This can be

concluded by looking at the free energy equations of this system.
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